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Abstract 

Modelling of gasoline fuel droplet heating and evaporation processes is investigated 

using several approximations of this fuel. These are quasi-components used in the quasi-discrete 

model and the approximations of these quasi-components (Surrogate I (molar fractions: 83.0% n-

C6H14 + 15.6% n-C10H22 + 1.4% n-C14H30) and Surrogate II (molar fractions: 83.0% n-C7H16 + 

15.6% n-C11H24 + 1.4% n-C15H32)). Also, we have used Surrogate A (molar fractions: 56% n-

C7H16 + 28% iso-C8H18 + 17% C7H8) and Surrogate B (molar fractions: 63% n-C7H16 + 20% iso-

C8H18+ 17% C7H8), originally introduced based on the closeness of the ignition delay of 

surrogates to that of gasoline fuel. The predictions of droplet radii and temperatures based on 

three quasi-components and their approximations (Surrogates I and II) are shown to be much 

more accurate than the predictions using Surrogates A and B.  

1. Introduction 

Gasoline fuel is widely used in automotive and industrial applications [1]. In Gasoline Direct 

Injection ‘GDI’ engines, the fuel is supplied to the combustion chamber during the compression 

stroke in the form of sprays [2], which consist of droplet  streams.  Droplets in these streams are 

broken up, heated and evaporated, and these processes 
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take place almost simultaneously. They affect the mixture preparation (air + fuel vapour) and the 

physical ignition delay [3].  

Models for heating and evaporation of fuel droplets can be classified based on fuel 

composition: models based on the assumption that fuel is mono-component and those taking into 

account the multi-component composition of the fuel. Models taking into account the multi-

component composition of fuel are very important and relevant for practical applications and our 

analysis will be focused upon them. This group of models can be further subdivided into two 

subgroups: those applicable for a small number of components (Discrete Component Model 

(DCM)) [4]-[15] and those applicable for large numbers of components (e.g. Continuous 

Thermodynamics approach [16]-[23] and the Distillation Curve Model [24]). In the first 

subgroup, the choice of discrete components could be based on either the pseudo-components or 

the key components approach [16]. The pseudo-components approach is based on replacing the 

continuous distribution of the mixture with a discrete one. The key components approach is 

based on replacing the continuous mixture with components with thermodynamics properties 

similar to those of the continuous mixture [16]. In the second subgroup a number of additional 

simplifying assumptions are used including the assumption that species mix infinitely quickly 

inside the droplet or do not mix at all.  

In [3,25], it was pointed out that the effects of finite thermal conductivity and 

recirculation inside the droplets need to be taken into account in modelling droplet heating and 

evaporation. The simplest approach to doing this can be based on the application of the Effective 

Thermal Conductivity (ETC) model [28,29]. Also, in [12,13], which focused on the modelling of 

heating and evaporation of bi-component droplets, it was demonstrated that the effect of finite 

diffusivity and recirculation of liquid species cannot be ignored. These effects were taken into 

account based on the Effective Diffusivity (ED) model. 

A quasi-discrete model for heating and evaporation of complex mixtures with large 

numbers of components was suggested in [26]. This model is based on replacing a large number 

of actual components with a small number of quasi-components to approximate complex 

mixtures. The version of this model developed in [26] is based on the assumption that fuel 

consists only of alkanes (CnH2n+2). These quasi-components are then treated as actual 

components with averaged values of the carbon number n, taking into account the effect of finite 
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thermal conductivity and species diffusivities within the liquid droplet. It was assumed that the 

liquid density, viscosity, heat capacity and thermal conductivity of all quasi-components are the 

same as those for n-dodecane, while the values of latent heat of evaporation and saturated vapour 

pressure take into account the effect of the number of carbon atoms as suggested in [21]. This 

model was applied for the analysis of heating and evaporation of Diesel fuel approximated by 21 

components. These correspond to a maximum of 20 quasi-components, having average 

properties between those for neighbouring alkanes with the difference between carbon numbers 

equal to 1. It was demonstrated that the predictions of the model with 5 quasi-components are 

very close to the predictions of the model that includes contributions from all 20 quasi-

components.  

In [27], the original quasi-discrete model was generalised to take into account the 

dependence of liquid density, viscosity, heat capacity and thermal conductivity on the number of 

carbon atoms. The new model was applied to the analysis of heating and evaporation of both 

Diesel (approximated by 21 components or maximum 20 quasi-components) and gasoline 

(approximated by 14 components or maximum 13 quasi-components) fuels. As in [26], it was 

demonstrated that in the case of Diesel fuel the results predicted using 5 quasi-components are 

almost indistinguishable from the results predicted by the model taking into account the 

contribution of all 20 quasi-components. In the case of gasoline fuel the results predicted using 3 

quasi-components were very close to the results predicted by the model taking into account the 

contribution of 13 quasi-components. This demonstrates the potential usefulness of the quasi-

discrete model for the analysis of heating and evaporation of droplets consisting of many 

components. 

A number of authors have attempted to approximate gasoline fuels with various 

surrogates based on fuel ignition characteristics. In [30] the autoignition characteristics of 

gasoline/air and ternary surrogate/air mixtures behind reflected shock waves in conditions 

similar to those found in homogeneous charge compression ignition (HCCI) engine cycles were 

studied. Two surrogates were considered: Surrogate A (molar fractions: 56% C7H16 + 28% C8H18 

+ 17% C7H8) and Surrogate B (molar fractions: 63% C7H16 + 20% C8H18+ 17% C7H8). The 

range of experiments covered combustion of fuel in air for lean, stoichiometric, and rich 

mixtures (Φ = 0.5, 1.0, 2.0), two pressure ranges (15–25 and 45–60 atm), temperatures from 850 
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to 1280 K, and exhaust gas recirculation (EGR) loadings of 0, 20, and 30%. Strong agreement 

was seen between ignition delay time measurements for RD387 gasoline and Surrogate B fuels. 

In our paper, the feasibility of using Surrogates A or B for the analysis of gasoline fuel droplet 

heating and evaporation will be investigated. We anticipate that our conclusions could be 

potentially extended to other surrogate approximations of gasoline fuels, based on the ignition 

characteristics (e.g. [31]). 

The main focus of this paper is to perform an analysis of heating and evaporation of 

gasoline fuel droplets, assuming that this fuel can be approximated by the above-mentioned 

surrogate fuels, inferred from the study of fuel ignition characteristics, and by the set of quasi-

components, inferred from the quasi-discrete model. The models used in our analysis are briefly 

described in Section 2. The results of the application of these models to the analysis of heating 

and evaporation of gasoline fuel droplets are presented and discussed in Section 3. The most 

important results are summarized in Section 4.  

2. Model 

2.1 Liquid Heat and Mass Transfer 

Our analysis is based on the analytical solutions to the one-dimensional heat conduction 

and species diffusion equations inside spherically-symmetric droplets implemented in the 

numerical code [25,28,12].  

The Effective Thermal Conductivity/Effective Diffusivity (ETC/ED) model has been 

used in our analysis [12,29]. This model takes into account the effect of finite thermal and mass 

diffusivities alongside the effect of recirculation inside the droplet [12].  

The effects of coupling between the droplet and the surrounding gas and the effects of 

thermal radiation are ignored at this stage. 

2.2 Quasi-discrete model     

Following [26,27], the molar mass is used to describe the continuous distribution of 

gasoline fuel which is assumed to consist only of n-alkanes CnH2n+2. The molar mass (kg/kmole) 

of n-alkane components is related to the number of carbon atoms ݊ as: 
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ሺ݊ሻܯ ൌ 14݊ ൅ 2.                                                  (1) 

The distribution function was taken as [21]: 

௠݂ሺ݊ሻ ൌ ,௠൫݊଴ܥ ݊௙൯
ሺெሺ௡ሻିఊሻഀషభ

ఉഀ୻ሺఈሻ
exp ቂെ ቀ

ெሺ௡ሻିఊ

ఉ
ቁቃ,                      (2) 

where 	݊଴ ൌ 5 ൑ ݊ ൑ ݊௙ ൌ 18, subscripts 0 and f stand for initial and final values of n, Γሺαሻ is 

the Gamma function, α ൌ 5.7 and β ൌ 15 are parameters that determine the shape of the 

distribution (they are taken to be the same as in [21]), γ is the origin of the distribution function 

and is set to 0, and ܥ௠ is the normalisation constant and is calculated based on Eq. (4) of [27]. fm 

is defined for the range of n between ݊଴ and ݊௙ and is 0 outside this range. The distribution 

function was chosen to reproduce the distillation curve for gasoline as specified in ASTM D439 

[17]. Following [21], it was truncated at n-pentane and it was assumed that gasoline fuel consists 

only of n-alkanes with 18	 ൒ ݊ ൒ 5 for liquid fuels. This distribution function is shown in Fig. 1. 

The dependence of the latent heat of evaporation, vapour pressure, liquid density, 

viscosity, specific heat capacity and thermal conductivity on the number of carbon atoms are 

taken into account as in [27].  

Following [26,27], the continuous distribution (2) is replaced with a discrete one, 

consisting of ௙ܰ quasi-components with carbon numbers: 

ത݊௝ ൌ
׬ ௡௙೘ሺ௡ሻୢ௡
೙ೕ
೙ೕషభ

׬ ௙೘ሺ௡ሻୢ௡
೙ೕ
೙ೕషభ

.                                                   (3) 

The corresponding molar and mass fractions are found as 

௝ܺ ൌ ׬ ௠݂ሺ݊ሻd݊
௡ೕ
௡ೕషభ

,                                              (4) 

௝ܻ ൌ
ெሺ௡തೕሻ௑ೕ

∑ ൣெሺ௡തೕሻ௑ೕ൧
ೕసಿ೑
ೕసభ

 ,                                               (5) 

where ݆ is an integer in the range 1 ൑ ݆ ൑ ௙ܰ.  

Equations (3-5) are applied to each quasi-component using relevant values of  ௝݊ and ௝݊ିଵ. 
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The diffusion coefficient between quasi-components is assumed to be the same for all 

quasi-components and it is calculated using Eq. (22) of [26]. The viscosity of liquid gasoline 

fuel, used in the ETC/ED model, is assumed to be the same as for n-octane [36].  

௚௙ߤ ൌ 0.001 ∗ 10ሺିହ.ଽଶସହା଼.଼଼଴ଽൈଵ଴
మൈ்ାଵ.ଶଽହହൈଵ଴షమൈ்షభିଵ.ଷହଽ଺ൈଵ଴షఱൈ்మሻ.        (6) 

All other thermo-physical properties of the mixture and the vapour diffusion coefficient 

are calculated as in [12]. The properties of the quasi-components in the quasi-discrete model are 

the same as discussed in [27]. The thermo-physical properties of n-heptane and iso-octane, two 

components used in Surrogates A and B, are assumed to be the same as in [33] and [34], 

respectively. The physical properties of toluene, the third component used in Surrogate A and B, 

are taken from [35,36]. The vapour pressure for each component was calculated based on the 

Clausius-Clapeyron equation [12]. 

3. Results 

A plot of ௠݂ሺ݊ሻ versus ݊ for gasoline fuel, using values of parameters (ߙ, ,ߚ  given in (ߛ

[21,27], is shown in Fig. 1. As can be seen from this figure, the value of ݊ for which ௠݂ሺ݊ሻ is 

maximal is equal to 5. The average value of ݊ is estimated as  ത݊௝ ൌ ૠ. ૙૞, which is reasonably 

close to ݊ ൌ 8 (n-octane), a commonly used approximation for gasoline fuel.  

We focus on a comparative analysis of the effects of various approximations of gasoline 

fuel, discussed in Section 2, on fuel droplet heating and evaporation. The following 

approximations were considered. Firstly we looked at the approximation of gasoline fuel by three 

quasi-components (molar fractions: 83.0% n-C6.26H14.58 + 15.6% n-C10.24H22.48 + 1.4% n-

C14.42H30.84) as suggested in [27] (see Fig. 1 and Table 1). Secondly, we considered the 

approximations of these quasi-components by two surrogates with n rounded up and down to the 

nearest integers: Surrogate I (mole fractions: 83.0% n-C6H14 + 15.6% n-C10H22 + 1.4% n-

C14H30), Surrogate II (molar fractions: 83.0% n-C7H16 + 15.6% n-C11H24 + 1.4% n-C15H32) (see 

Table 1). These surrogates allowed us to investigate the sensitivity of the results to the choice of 

the values of the number of carbon atoms for each quasi-component ( ത݊ଵ, ത݊ଶ and ത݊ଷ). Also, this 

rounding up or down of the values of the carbon numbers would allow us to use these 

approximations of quasi-components in Computational Fluid Dynamics (CFD) codes, which do 
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not recognise substances with non-integer n. Thirdly, we looked at the approximations of 

gasoline fuel by gasoline Surrogates A and B considered in [30] (see Table 1). Surrogates of the 

third group were chosen based of their ignition characteristics. Nobody, to the best of our 

knowledge, has explored the usefulness of these surrogates in investigation of gasoline fuel 

droplet heating and evaporation. The results obtained based on the above approximations will be 

compared with the results based on the approximation of gasoline fuel by 13 quasi-components 

and the simplistic case of one quasi-component, both based on the distribution function shown in 

Fig. 1, as discussed in [27]. 

The plots of droplet surface temperatures ௦ܶ and radii ܴௗ versus time for the five 

surrogates, shown in Table 1, and the approximations of gasoline fuel by 1 (n-C7.05H16.1) and 13 

quasi-components are presented in Fig. 2. The initial droplet radii and temperatures are assumed 

equal to 10 µm and 300 K respectively in all cases; the droplet velocities are assumed to be 

constant and equal to 10 m/s, while gas temperature and pressure are assumed equal to 450 K 

and 0.3 MPa respectively. The calculations were performed using the ETC/ED model. It can be 

seen from this figure that the predicted temporal variations of droplet surface temperatures and 

radii for Surrogates A and B and approximation of gasoline fuel with 1 quasi-component are 

qualitatively different from the predictions taking into account the contributions of all 13 quasi-

components, assumed to be the most accurate approximation of this fuel. It can be seen that 

Surrogates A and B behave as almost one component and this can be attributed to the closeness 

of the boiling points of the individual components of these surrogates. At the same time, the 

predictions for gasoline fuel by 3 quasi-components and Surrogates I and II are reasonably close 

to the predictions based on consideration of 13 quasi-components. This closeness is particularly 

visible in the case of Surrogate II.  

The choice of 3 quasi-components and Surrogates I and II was made to perform a ‘like-

with-like’ comparison with the model based on Surrogates A and B, based on three components. 

We appreciate that the approximation of realistic gasoline fuel by three quasi-components used 

in this paper has a number of limitations. Firstly, this approximation, based on the quasi-discrete 

model, does not take into account the contribution of other components apart from n-alkanes. 

Secondly, the approximation of the actual molar fractions of the n-alkane components by 

distribution (2) could be rather crude. The first limitation is unavoidable due to the current state 
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of development of the quasi-discrete model. The second limitation could be avoided if a more 

accurate approximation were available. Whilst these limitations exist we have no other choice 

but to use the distribution used in [21,27].  

The longest evaporation time and highest droplet surface temperature at the end of 

evaporation is predicted for the 13 quasi-components mixture. This is due to the contribution of 

heavy alkanes in the mixture. It is further observed that there are 3 heating-up periods for the 

approximation based on 3 quasi-components and Surrogates I and II. These periods are not 

observed for other mixtures. This can be attributed to the fact that the approximation based on 3 

quasi-components and Surrogates I and II contains hydrocarbons with a wide range of carbon 

atoms, in contrast to other mixtures. The wide range of carbon atoms leads to significant 

differences in the thermo-physical properties of the mixture components [26,27]. 

The limitations of using 1 quasi-component for the analysis of gasoline fuel droplet 

heating and evaporation were discussed earlier in [27]. As follows from Fig. 2, the replacement 

of 1 quasi-component with Surrogates A or B does not improve the situation. Hence, although 

Surrogates A and B can be used for approximation of the autoignition characteristics of gasoline 

fuel, they are not suitable approximations for the analysis of gasoline fuel droplet heating and 

evaporation. 

Also, one can see from Fig. 2 that the predicted surface temperatures and radii are rather 

sensitive to the values of the carbon numbers, which is illustrated by the difference in predictions 

of these parameters by the approximations of gasoline fuel by 3 quasi-components and 

Surrogates I and II. This could potentially open the way to improving the predictions of the 

quasi-discrete models by replacing the approximation based on 3 quasi-components with non-

integer n with Surrogate II. However, further investigations would be required before we are able 

to issue this recommendation. This would include the analysis of possible contributions of other 

hydrocarbons (apart from n-alkanes) in rigorous approximations of gasoline fuels, and the 

analysis of fuel droplet heating and evaporation for a wide range of parameters. Before this is 

done, our analysis will focus primarily on the approximation based of 3 quasi-components, as in 

[27]. 
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The plots of liquid molar fractions at the surface of the droplets ௟ܺ௦,௝ୀଵ,ଶ,ଷ versus time for 

all 3 quasi-components are shown in Fig. 3. The values of ௟ܺ௦,ଵ (lighter component) and ௟ܺ௦,ଷ 

(heavier component) monotonically decrease and increase with time respectively. The behaviour 

of ௟ܺ௦,ଶ is different where it initially increases with time and then starts to decrease with time 

after the lighter component has fully evaporated. This behaviour is similar to that shown in Fig 

11 of [27] for 4 quasi-components. It is consistent with our observation that the model based on 3 

quasi-components predicts longer evaporation times and larger droplet surface temperatures at 

the final stages of droplet evaporation, compared with the model using 1 quasi-component. 

 

4. Conclusions 

Effects of fuel approximations and initial values of various parameters on heating and 

evaporation of gasoline droplets are investigated. The following approximations are considered: 

3 quasi-components introduced in the quasi-discrete model and their approximations: Surrogate I 

(molar fractions: 83% n-C6H14 + 15.6% n-C10H22 + 1.4% n-C14H30) and Surrogate II (molar 

fractions: 83% n-C6H14 + 15.6% n-C10H22 + 1.4% n-C14H30)), surrogate approximations of 

gasoline fuel based on its ignition characteristics: Surrogate A (molar fractions: 56% n-C7H16 + 

28% iso-C8H18 + 17% C7H8) and Surrogate B (molar fractions: 63% n-C7H16 + 20% iso-C8H18+ 

17% C7H8). The results are compared with the predictions of the model based on the 

approximation of gasoline fuel by 13 and 1 quasi-components. It has been shown that the 

predictions of the quasi-discrete model based on the approximation of gasoline fuel with three 

quasi-components, especially Surrogate II, are much more accurate than those based on other 

surrogate approximations compared with the predictions of the quasi-discrete model based on 13 

quasi-components. This demonstrates the limitation of using fuel surrogates, proposed based on 

fuel ignition characteristics, for the analysis of liquid fuel droplet heating and evaporation. 
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Figure captions 

Fig. 1 A plot of ௠݂ሺ݊ሻ versus ݊ for gasoline fuel, as predicted by Eq. (19), showing the 3 
quasi-components. 

Fig. 2 Plots of droplet surface temperatures Ts and radii Rd versus time, predicted for 1, 3 and 
13 quasi-components used in the quasi-discrete model, the approximations of the 3 quasi-
components with Surrogates I and II (see Table 1) and Surrogates A and B (see Table 1). The 
initial droplet radii and temperatures are taken to be equal to 10 µm and 300 K respectively, the 
droplet velocities equal to 10 m/s, and the gas temperature and pressure, 450 K and 0.3 MPa 
respectively. The calculations were performed using the ETC/ED model. 

 
Fig. 3 Plots of molar fraction Xls at the surface of the droplet for 3 quasi-components versus 

time, predicted for the same input parameters as in Fig. 2. 
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Fig. 3 
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Tables 

 

 

 

 

Approximation Ref. Composition (molar fractions) 

1 quasi-component [27] n-C7.05H16.1 

3 quasi-components [27] 83% n-C6.26H14.58 + 15.6% n-C10.24H22.48 + 1.4% n-C14.42H30.84 

Surrogate I 

Surrogate II 
new 

83% n-C6H14 + 15.6% n-C10H22 + 1.4% n-C14H30 

83% n-C7H16 + 15.6% n-C11H24 + 1.4% n-C15H32 

Surrogate A 

Surrogate B 
[30] 

56% n-C7H16 + 28% iso-C8H18 + 17% C7H8 

63% n-C7H16 + 20% iso-C8H18 +17% C7H8 

 

Table 1. Molar fractions of components in various gasoline fuel approximations and surrogates. 

 


