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Abstract 

Boreal Baltic coastal wetlands differ markedly from temperate salt marshes by their 

generally low maximum elevation (between 0 and 1 m above m.s.l.), low seaward 

gradients and the irregular nature of flooding that is characteristic of the NE Baltic 

Sea coastal region. As a result of these factors these wetlands have been 

considered to be threatened by future sea level rise. This study presents results for 

two Boreal Baltic coastal wetland sites in Estonia using 210Pb and 137Cs radiometric 

dating to investigate the sedimentary development of these coastal systems. Recent 

coastal evolution has been largely driven by continuing glacio-isostatic adjustment 

(GIA), with maximum rates of 2.8 mm yr-1 around the NW Estonian coast and the 

inherited geomorphological setting of generally flat-lying coastal topography, 

resulting in coastal emergence. Broad agreement exists between calculated rates of 

sedimentation identified within the core sequences. Average rates of sedimentation 

using the 210Pbexcess CF:CS (or ‘simple’) model range between 0.2-1.3 mm yr-1. 
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These rates are corroborated using 137Cs, which also suggests an increase in 

sedimentation rates during recent decades approaching maximum values for current 

land uplift. Additionally, the 210Pbexcess CRS model reveals periods of sedimentation 

greatly in excess of these values in response to coastal flooding from known storm 

activity. This study indicates that changes in sea level caused by variations in 

atmospheric pressure and storm surges can contribute a significant sedimentary 

component, which coupled with GIA processes has driven coastal wetland 

development/ emergence and the historical progradation of these wetland systems. 

The recent acceleration in the rate of global sea-level rise may subtly alter this 

relationship. However current rates of GIA and sedimentation will continue to 

maintain the progradation of Boreal Baltic coastal wetlands in the coming decades.  

 

Keywords: Baltic coastal wetlands, 210Pb, 137Cs, sedimentation, storm surges, sea 

level rise 

 

1. Introduction 

Extensive ecologically diverse Boreal coastal wetlands characterize significant areas 

of the Baltic coastline (Fig. 1). They are unique to the Baltic Sea region being found 

in Estonia, Sweden, Finland and to a lesser extent parts of the Latvian coastline (EU 

Habitats Directive, 1992; Ward, 2012). Boreal Baltic coastal wetlands differ markedly 

from more temperate saltmarshes by their generally low maximum elevation relative 

to mean sea level, low seaward gradients and the irregular nature of flooding that is 

characteristic of the NE Baltic Sea coastal region. As a result of these factors, Boreal 

Baltic coastal wetlands are characterised by a discrete internal micro-topography 
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that exerts a major control upon the unique ecological zonation that has afforded 

them protection under the EU RAMSAR convention (Ward, 2012). 

The recent evolution of these coastal systems is a complex product of the interplay 

between regional antecedent glacial erosion, late Holocene sea-level history, 

continuing glacio-isostatic uplift (GIA) resulting in coastal emergence and the 

inherited geomorphological setting of generally flat-lying coastal topography.  

Rates of crustal uplift display subtle variation along the Estonian coastline with 

estimated values of < 0.5 mm yr-1 in the south-west of the country rising to 2.8 mm 

yr-1 in the northwest around the major near-shore islands of Saaremaa, Hiiumaa, 

Muhu and Vormsi (Fig. 1), (Eronen et al., 2001). 

 

Fig. 1 here 

 

Flooding of Baltic coastal wetlands is irregular, and is not driven by tidal inundation 

as tidal amplitudes in the Baltic Sea are negligible at < 0.02 m (Suursaar et al., 

2001b). In this region, coastal flooding occurs sporadically in response to the 

movement of atmospheric pressure systems and fluctuating meteorological 

conditions across the North Atlantic and Fennoscandia (Suursaar and Sööäär, 

2007). When low pressure systems bring about storm surges, rapid changes in sea 

level can occur that are significantly above the expected range of -0.37 m to + 0.63 

m derived from average yearly atmospheric pressure variations for the Baltic region 

(ranging from between 950-1050 mb, Swedish Meteorological and Hydrological 

Institute, 2013). Any rise in water levels is exacerbated by the funnelling effect within 

embayed areas and inlets, where the largest expanses of coastal wetland occur 
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(Kotta et al., 2008). On occasions, flooding can extend inland for significant 

distances (~ 2 km) due to the low-lying topography and land gradients. 

Mean sea level within the NE Baltic Sea region is primarily controlled by global sea-

level change and differential Fennoscandian GIA (Suursaar et al., 2007). These 

authors have estimated recent rates of relative sea-level rise from three tide gauges 

along the Estonian coast and provide values of 1.5 - 1.7 mm yr-1 at Tallinn, 1.7 - 2.1 

mm yr-1 from Narva-Jõesuu and 2.3 - 2.7 mm yr-1 from the gauge at Pärnu in the 

south-west of the country. These data suggest a quasi-equilibrium relationship 

between regional relative sea-level rise in the north and central western coastline, 

which corresponds well with the estimated 20th Century global estimate of 1.7 mm ± 

0.5 mm yr-1 (Church and White, 2006). Further to the south around Pärnu Bay (Fig. 

1), the situation is somewhat different suggesting greater dominance of relative sea-

level rise. However, Suursaar et al., (2007) stress that the data from the Pärnu tide 

gauge record are significantly influenced by positive winter trends due to increased 

storminess and greater intensity of strong westerly winds highlighted by the NAO-

index (Orviku et al., 2003; Suursaar et al., 2006a; 2006b). 

Recent satellite altimetry data suggest a late 20th Century/ early 21st Century 

acceleration in the rate of global sea-level rise with current estimations of ~ 3.3 mm ± 

0.3 mm yr-1 (Cabanes et al., 2001; Holgate and Woodworth, 2004; Church and 

White, 2006). Hence, the interplay between crustal emergence, sea-level rise and 

flooding periodicity may be changing around the Estonian coastline with sea-level 

rise perhaps becoming more dominant. A similar scenario has been highlighted in a 

recent study of late Holocene coastal wetland development in western Scotland 

(Teasdale et al., 2011), where more subtle rates of residual GIA (< 0.5 - 1.0 mm yr-1) 
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now appear to be outpaced by modern rates of regional sea-level rise (Johansson et 

al., 2004; Rennie and Hansom, 2011). 

Other mechanisms may also exert an influence upon sea-level fluctuations around 

the Estonian coast. During winter months, the presence of sea-ice affects the 

inundation capacity of meteorologically driven changes in sea level but these can still 

occur through ‘ice-push’ processes when wind direction is favourable and during 

winter periods when the coast is ‘ice-free’. A recent study by Jaagus (2006) has 

highlighted significant reductions in the period of sea-ice cover in recent decades, 

particularly along the western shoreline of Estonia in conjunction with an identified 

regional trend of intensified autumn and winter storminess which has initiated 

infrequent but significant erosion and morphological adjustment of some areas of the 

Estonian shoreline (Orviku et al., 2003; Suursaar et al., 2003; Rivis, 2004; Kont et 

al., 2007; Orviku, 2009; Suursaar and Kullas, 2009). Notable amongst recent severe 

storms was the event in January 2005, named ‘Gudrun’, which caused significant 

erosion and morphological adjustment of low cliff deposits around the western 

Estonian coastline (Tõnisson et al., 2008). Maximum recorded sea level inundation 

of + 2.75 m above mean sea level occurred within the Gulf of Riga around the city of 

Parnu, central west Estonian coast during the Gudrun event (Suursaar et al., 2006a; 

Fig. 1). 

Despite on-going emergence of the Estonian coastline, considered by some authors 

to be the dominant factor controlling the recent development of Boreal Baltic coastal 

wetlands (Kont et al., 2007), these low-lying environments are now considered by 

some authors to be at risk of increased coastal flooding in response to recent 

significant changes in regional wind regime and winter NAO index (Ekman, 1998; 

Keevallik and Rajasalu, 2001; Kont et al., 2003; Kont et al., 2008; Suursaar et al., 
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2007; Suursaar and Sooäär, 2007) and current estimated rates of early 21st Century 

global sea-level rise (Kont et al., 2008). However, these studies do not consider the 

recent sedimentary response of the Estonian coastal wetlands, and as such, little is 

currently known about relationships between rates of sedimentation, response to 

irregular flooding periodicity, recent relative sea level and climate change within the 

eastern Baltic Sea.  

Here, we present the findings of recent work undertaken on two Boreal Baltic coastal 

wetlands in Estonia using the 210Pb and 137Cs radiometric dating methods to 

investigate the recent sedimentary development of these unique and ecologically 

important systems. The findings are discussed in light of historical fluctuations in sea 

level driven by storm surges and/or atmospheric pressure change and a regional 

outlook of the effects of climate change on Baltic coastal wetlands is presented. 

 

2. Regional setting 

In NW Estonia, Boreal Baltic coastal wetlands are particularly prevalent within the 

shallow enclosed embayments on the mainland and around coastlines of the near-

shore islands of Saaremaa, Hiiumaa, Muhu and Vormsi (Fig. 1), where they 

represent the most commonly occurring morpho-ecological features of the low-

gradient coastal plain. 

The vegetation found in Baltic coastal wetlands is comprised of a mosaic of seven 

predominant plant communities (Burnside et al., 2007; Ward et al., 2013). These 

plant communities have been found to be located at distinct elevations within the 

Boreal Baltic wetlands (Ward et al., 2010; Fig. 2) and the open swards are 

maintained by low intensity grazing without which these wetlands would revert to 

reed and scrub dominated wetlands (Berg et al., 2011).  
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Fig. 2 here 

 

Two sites were selected for the purposes of this study, located at Tahu Bay 

(Estonian: Tahu laht) (Silma Nature Reserve) and at Matsalu Bay (Estonian: Matsalu 

laht) (Matsalu National Park) (Fig. 1). Both sites are low-lying with maximum heights 

of the fringing scrub woodland plant zone not exceeding 1.2 m above mean sea level 

(m.s.l.) as measured at Kronstadt using the BK77 ellipsoid. A recent study by 

Suursaar et al. (2007), investigating hydro-dynamical modelling of Estonian coastal 

waters driven by fluctuations in wind climate, has identified the shallow embayment 

coasts of Tahu and Matsalu bays as being among the most sensitive areas to 

meteorological (wind driven) coastal flooding (Fig. 1). The Tahu study site comprises 

an area of 104 ha on the north-west side of Tahu Bay (50 km2) (Figs. 1, 3). The bay 

receives moderate freshwater input from the Taebla River which drains a catchment 

of some 107 km2 (Kotta et al., 2008). 

 

Fig. 3 here 

 

The site at Matsalu comprises 190 ha of coastal wetland in the Matsalu National 

Park situated within Matsalu Bay (Figs. 1, 4). Matsalu Bay covers an area of 65 km2 

and receives significant freshwater input from the Kasari River which drains a large 

catchment of western Estonia of some 3214 km2 (Kotta et al., 2008). 

 

Fig. 4 here 
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Greatest inundation occurs when the two sites are exposed to storm winds 

emanating from the west and southwest (Kont et al., 2007). During periods of high 

water much of the wetland area is inundated by brackish water (~ 5 ppt) from the 

Baltic Sea resulting in sediment accretion where overland flow occurs. Sea level in 

the region is typically at its lowest in spring and early summer when easterly winds 

prevail (EMHI, 2011). During the winter months sea-ice covers the coastal zone in 

most years and during winter the wetlands are also covered by snow for a minimum 

of two months. 

Rates of residual GIA are highest in N W Estonia. Subtle differences in rates of 

crustal uplift between the site locations are apparent, with 2.3 mm yr-1 at Matsalu 

Bay and 2.8 mm yr-1 at the Tahu site within Haapsalu Bay, (Eronen et al., 2001) (Fig. 

1).  

 

3. Material and methods 

Core sites were selected on the basis of ecological zonation, and hence elevation 

above m.s.l. Elevation data were recorded using a real time kinematic differential 

GPS (Leica GPS1200 Surveying System, accuracy < 0.02 m). All data were 

recorded using the Estonian National Grid 1997 system and elevation relative to the 

Baltic Height System (BK77; Яковлeв, 1989) as measured at Kronstadt 59°59’43” N, 

29°46’00”. The core sites encompassed zones of the Estonian wetlands that 

experience both more regular (Lower Shore, LS) and comparatively irregular flooding 

(Tall Grass, TG) (Berg et al., 2011). At the Tahu and Matsalu sites one core was 

taken from the LS zone with the second core taken from the TG environment.  

Two shallow (< 30 cm) sediment cores were extracted from each site using 75 mm 

diameter plastic tubing driven into the sediment substrate. For one sample this 
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proved to be ineffective due to increased stiffness of the underlying sediment. In this 

case an intact sample was obtained by digging a shallow trench and manually 

cutting a monolith section which was retained using 75 mm diameter plastic 

guttering.  

At Tahu the core removed from the LS community was within 30 m of the shoreline 

and at an elevation of 0.07 m above m.s.l. The TG core was removed from the 

nearest TG patch to the coast which at this site was located some 250 m directly 

inland and at an elevation of 0.70 m above m.s.l. (Fig. 3). 

At the Matsalu coastal wetland site the core removed from the LS community was 

also within 30 m of the shoreline at an elevation of 0.04 m above m.s.l. with the TG 

core site situated 20 m directly inland of the LS core at an elevation of 0.69 m above 

m.s.l. (Fig. 4). The elevation for each sediment core was recorded in metres using a 

dGPS with a mean vertical accuracy of 0.02 m. 

Core barrels were subsequently frozen and then extruded by allowing the outer core 

surface (in contact with the core barrel) to thaw, thus enabling the core section to be 

pushed from the barrels without introducing any sediment compaction. This process 

was assessed by measuring the length of the core section before and immediately 

after the extraction procedure. This revealed that no undue compaction of the 

sediment matrix had occurred. 

Under laboratory conditions the cores were cleaned, logged and sliced at 1 cm 

intervals followed by oven-drying of the sub-samples at 40° C prior to analysis. Dried 

samples for gamma spectrometry were then prepared by gently disaggregating the 

material using a pestle and mortar. Approximately 3 - 5 g of dried sediment was 

carefully weighed into cylindrical plastic vials for determination of 210Pbtotal, 
137Cs and 

214Pb down-core activities.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

10 
 

Prior to particle size analysis organic material was removed by loss on ignition (LOI). 

Core sub-samples previously dried at 40°C were combusted in a muffle furnace at 

360ºC for 24 hours (Schulte, 1995). Using the LOI method to estimate soil organic 

matter can be influenced by loss of clay bonded water at high temperatures (Sun et 

al., 2009). However, this is unlikely to have significantly affected the results in this 

study due to the very low percentages of clay in the samples (typically ~1 %). 

Following LOI, particle size analysis was carried out on non-ground samples using a 

Malvern Mastersizer 2000 laser particle size analyser, with particle size grading 

undertaken in accordance with the Wentworth (1922) size classification scheme. 10 

ml of sodium hexametaphosphate (calgon) was added to the samples prior to 

particle size analysis and samples were stirred for 5 minutes in order to deflocculate 

the clay particles. A small (~ 1 – 1.5 g) sub-sample was analysed with the final data 

for each size classification (clay, silt and sand), representing an average of three 

separate analytical runs (standard error < 1 %).  

 

3.1 210Pb dating 

Using measured activity profiles of 210Pb (half-life (t½) = 22.26 years) is a widely 

established method for the dating of recent coastal sediment sequences (Wise, 

1980; Thompson et al., 2001; Teasdale et al., 2011). In previous studies of 

temperate tidally flooded mature (‘high’) marsh environments, the upper sections of 

sampled cores commonly used for dating purposes have been shown to be generally 

oxic (Cundy and Croudace, 1996; Thompson et al., 2001; Teasdale et al., 2011). 

Within such settings, the semi-diurnal nature of flooding periodicity acts to limit 

inundation frequency of the upper intertidal zoneover the monthly tidal cycle, 

promoting the development of oxic conditions which act to enhance immobility of 
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210Pb. Similar or lesser inundation frequency occurs in both the LS and TG zones 

where soils are also predominantly oxic; from visual observation of these short cores 

there is no discernible redox boundary. 

The 210Pb method is based upon the measurement of 210Pb ‘excess’ activity 

incorporated into the accumulating sediment from atmospheric fallout. Total 

measured 210Pb within sediment sequences is the sum of this ‘excess’ activity and 

the ‘supported’ activity derived from the in-situ decay of 210Pb present within the 

sediment matrix. For dating purposes, the supported component is commonly 

assessed via direct measurement of 226Ra activity, that of daughter radionuclides 

214Bi and/or 214Pb, in conjunction with estimation of constant 210Pb activity at depth. 

In this study 214Pb was utilised as it closely approximated 210Pb at the lowest depths 

of the core, thus indicating that for these sites measurement of 214Pb is a robust 

proxy for supported 210Pb. 

 

3.2 210Pb dating models 

Sedimentation rates for the 4 cores were calculated using the Constant Flux: 

Constant Sedimentation (CF:CS) (or ‘Simple’ model) and the Constant Rate of 

Supply (CRS) model, as outlined in Appleby and Oldfield (1992) and Appleby (2001). 

The CF:CS model provides an average estimation of the rate of sedimentation over 

the entire depth of the core sampled. These were determined from the fit of the least 

squares regression of the natural log of 210Pbexcess (unsupported) activity plotted 

against depth. 

The CRS model uses inventories to calculate specific ages at any depth (x) where 

the total inventory within the core is determined from the sum of 210Pbexcess x Dry 
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Bulk Density x thickness of the core slice (Thompson et al., 2001). Dry bulk density 

for individual depth samples was estimated by the calculation:  

Ρd = (1 – φ) Ρs 

where Ρd = bulk density, φ = porosity, and Ρs = grain specific gravity (in this case 2.5 

g/cm3) (Dadey et al., 1992). Implicit within this model is that the major source of 

210Pb is derived from direct atmospheric input with 210Pb activity being inversely 

proportional to mass flux of sediment (Appleby and Oldfield, 1992).  

 

3.3 137Cs dating 

Significant global atmospheric inputs of 137Cs occurred in 1963 prior to the signing of 

the weapons test ban treaty (Ritchie and McHenry 1990) and further atmospherically 

derived 137Cs, in particular to northern Europe, occurred as a result of the Chernobyl 

nuclear power reactor accident on the 26th of April 1986. This resulted in the 

deposition of 137Cs and other radioisotopes throughout many European countries 

(Anspaugh et al., 1988) and the Baltic Sea region received significant quantities of 

fallout radio-caesium in the days following the accident (Povinec et al., 2003). 

Measured 137Cs activity maxima within undisturbed sediment sequences therefore 

provide useful geochemically independent marker horizons for the assessment of 

sediment accumulation rates. Discharges from other sources are not considered to 

contribute to significant 137Cs inventories within the north-east Baltic Sea region 

(HELCOM, 2003).  

Down-core activity profiles were determined by counting prepared sub-samples on a 

Canberra well-type ultra-low background HPGe gamma ray spectrometer at the 

University of Brighton. Spectra for 210Pb and 137Cs were accumulated using a 16k 

channel integrated multichannel analyzer and analysed using the Genie™ 2000 
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system. Energy and efficiency calibrations were carried out using a bentonite clay 

standard spiked with a mixed gamma-emitting radionuclide standard, QCYK8163, 

and checked against an IAEA marine sediment certified reference material (IAEA 

135). Detection limits are dependent on radionuclide gamma energy, count time and 

sample mass, but were typically ca. 15 Bq/kg for 210Pb, and 3 Bq/kg for 137Cs, for a 

150,000 second count time. 137Cs and 210Pb inventories were used to determine 

likely pathways of these radionuclides to the sediments although due to the spatial 

heterogeneity of atmospheric deposition of 137Cs and paucity of accurate data it is 

not possible to use the inventory ratio of these two radionuclides to assess erosion 

occurrences (Plater and Appleby, 2004). Alternate 1 cm depth samples were run for 

an additional count time of 260,000 s in an attempt to measure 241Am, which in 

previous studies has been found to be linked to pre-1963 weapons testing. However, 

241Am activities were below levels of detection in these samples.  

 

4. Results and Interpretation 

4.1 Character of the Estonian coastal wetland sediments 

The shallow stratigraphy of the four cores is shown in Fig. 5. These are 

characterised by an upper dark-brown/black unit consisting of organic-rich silty sand 

which contains abundant rootlets and near-surface rhizome structures. This unit is of 

variable thickness within the two cores at each site, with greater total depths being 

recorded in those from the LS zones (maximum 16 cm at Tahu), with an upper 

maximum organic content of 53 wt% and 57 wt% situated at 4 cm and 2 cm depth for 

the Tahu and Matsalu LS cores, respectively. The relatively lower thicknesses of 

organic-rich material within the TG cores reflect the more infrequent flooding and low 

organic productivity of the coastal wetlands (Ward, 2012). Beneath this organic-rich 
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unit the stratigraphy grades over ~3 - 5 cm into a blueish-grey/light-grey sand with 

some lenses of silty clay. Particle size analysis reveals that in all four cores the total 

clay content is very low, with values not exceeding 3.6 % and the sediment matrix is 

dominated by high sand content which in all cores is greater than 75 % and silt 

material ranging from 7.5 – 27 %, (Fig. 5). Coefficient of sorting was calculated using 

Trask’s (1932) equation, where So is the sorting coefficient and D25 and D75 are the 

particle diameters for which 25% and 75%, respectively, of the sample is finer than. 

So =  
   

   
 

Mean coefficient of sorting values for the sediment cores were: Tahu LS 1.14 (SD 

0.031), Tahu TG 1.14 (SD 0.032), Matsalu LS 1.14 (SD 0.018), and Matsalu TG 1.16 

(SD 0.028). In a regression analysis there was found to be a significant relationship 

between coefficient of sorting and depth in all but the Tahu TG core (Tahu LS p = 

0.001, R2 = 50.1%; Tahu TG p = 0.326, R2 = 3.0%; Matsalu LS p = 0.040, R2 = 

26.8%; Matsalu TG p = 0.014, R2 = 24.4%). In the lower elevation plant community 

at both sites there was found to be an increase in the sorting coefficient toward the 

surface suggesting a decrease in the degree of sorting with time. However, in the 

Matsalu TG core there is a decrease in the sorting coefficient suggesting an increase 

in the degree of sorting with depth (as a proxy for time) although this relationship is 

not statistically significant.  

 

Fig. 5 here 

 

In a regression analysis there was no significant relationship between depth and D90 

values for the higher elevation plant communities, nor a high standard deviation for 

D90 values in all cores. However, there was a significant increase in D90 values in 
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the lower elevation plant communities at both sites, although a considerably stronger 

relationship at Tahu (Tahu LS p = 0.000, R2 = 75.4%; Matsalu LS p = 0.010, R2 = 

41.9%).  

In a regression analysis to assess the relationship between D10 and depth there was 

found to be no significant relationship at Tahu nor in the lower elevation plant 

community core at Matsalu (Matsalu LS p = 0.100; Tahu LS p = 0.198; Tahu TG p = 

0.153). However, there was a weak significant relationship between D10 values and 

depth in the Matsalu TG core (Matsalu TG p = 0.006, R2 = 26.2%) in which D10 

values increase in more recently deposited sediments.  

The relative proportions of clay, silt and sand material through the core sections 

indicate that there has been no large-scale variation in the proportions of these 

different sediment materials over time. The shallow sedimentary succession 

observed within the Estonian core sequences represents the current juxtaposition of 

recently uplifted coastal plain embayments containing former sub-marine silty sands 

and limited clays material laid down by the Late Littorina Sea (Puurmann & Ratas, 

1998), which have been colonized by brackish wetland species following recent 

coastal emergence.   

 

4.2 210Pb dating 

At the Tahu site, measured 210Pbtotal down-core activity profiles exhibit a near 

exponential decline in activity with depth to depths of 18 cm and 5 cm in the LS and 

TG cores respectively (Fig. 6).  

The only exception to this occurs within the LS core where a significant near-surface 

reduction in 210Pb activity occurs at 2 - 3 cm depth, possibly resulting from the in-

wash of older sediment affecting the LS core. Between 12 - 18 cm depth for the LS 
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core and 3-5 cm for the TG core 210Pb total activity approximates the supported 

component (Fig. 6). Mean activity for 214Pb in the Tahu LS core was 24 Bq/kg, which 

was comparable to the average of the readings of 210Pb total activity at the bottom of 

the core (22 Bq/kg). Hence, supported activity was estimated to be 24 Bq/kg for the 

Tahu LS core. Using the same approach, supported 210Pb activity for the TG core 

was determined at 19 Bq/kg.  

 

Fig. 6 here 

 

Similarly, within the two cores from Matsalu, measured 210Pbtotal down-core activity 

profiles also show near exponential declines in activity with depth, although some 

fluctuations in near-surface activity are apparent in the LS core at the uppermost 5-6 

cm and may be due to the influence of recent erosional processes affecting the LS 

zone at this site. Variation in near-surface activity is less apparent within the TG core 

at Matsalu. Mean values of 26 Bq/kg and 22 Bq/kg were estimated for the LS and 

TG cores, respectively. 

Average rates of sedimentation for the four cores using the CF:CS or ‘simple model’ 

(Appleby, 2001) are shown in Table 1. These reveal generally low rates of 

sedimentation within the TG cores with calculated average values of < 0.5 and 1.0 

mm yr-1 for the Tahu and Matsalu sites respectively. Higher values are recorded for 

the LS cores from each site with average rates of 1.3 mm yr-1 in the Tahu core and a 

similar value of 1.0 mm yr-1 from the LS core at Matsalu. 

 

Table 1 here 
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The variation in average CF:CS model-derived sedimentation values is partially 

reflected within the 210Pbexcess CRS model derived age/depth profiles (Fig. 7) 

although these models reveal subtle differences in the recent sediment response of 

the different plant communities.  

In the TG core from Tahu, a maximum reliable 210Pbexcess date of 1899 (± 9 years) AD 

is reached at a shallow depth of 3 - 4 cm, reflecting the low rates of recent sediment 

accretion defined by the average values. No significant changes in sediment 

accretion are recorded within this core over the period 1899 – 2010 AD, although an 

overall subtle increasing trend over time from values of 0.1 mm yr in 1899 AD to < 

0.5 mm yr-1 within the surface sediments is discernible (Fig. 7). 

In the LS core a maximum 210Pbexcess date of 1903 (± 17years) AD occurs at a depth 

of 17 - 18 cm. Steeper gradients in the CRS-derived age/depth model occurring 

within the dated periods of 1920-1935 AD and 1990-2000 AD reflect periods of 

increased sedimentation rates with values of up to 5 mm yr-1 recorded around 1925 

AD. 

 

Fig. 7 here 

 

At Matsalu, the TG and LS cores record maximum 210Pbexcess ages of 1886 (± 12 

years) AD and 1899 (± 14 years) AD and at depths of 11 - 12 cm and 12 - 13 cm 

respectively (Fig. 7). Unlike the TG core from Tahu, the TG core at Matsalu records 

an early period of relatively increased rates of sedimentation around 1910 AD with 

values of 2.4 mm yr-1. This corresponds quite well with the similar time-scale of 

increased sedimentation in the LS core from Tahu. Throughout the rest of the core 

profile, a subtle increase is evident up to the near-surface sediments where the 
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modern rate declines to 0.9 mm yr-1. The LS core at Matsalu shows little evidence for 

the periods of increased sedimentation rates that can be seen in the other cores. 

However, subtle increases in sedimentation can be identified between the period 

1970-1989 AD and a more rapid increase in the near-surface sediments deposited 

between 2007 and 2010 AD. 

 

4.3 137Cs impulse dating 

Measured 137Cs down-core activity profiles are shown in Fig. 8. In the LS cores from 

both sites a distinct peak in measured 137Cs activity is evident at a depth of 6 - 7 cm, 

confluent with measured activity levels associated with the 1986 Chernobyl accident 

(Povinec et al., 2003; Anderson et al., 2011). 

Within the Tahu LS core some broadening of this peak is evident, likely to be due to 

post-depositional migration and perhaps low retention of 137Cs in the clay deficient 

sediments, although this is not apparent in the LS core from the Matsalu site where 

the 1986 Chernobyl activity marker horizon is quite well defined. 

 

Fig. 8 here 

 

Two peaks with lower measured activity levels of 50 and 75 Bq/kg-1 for the Tahu and 

Matsalu LS cores respectively are evident at a depth of 9 - 10 cm. These are 

confluent with measured activity levels and depths associated with atmospheric 

weapons testing recorded in temperate salt marsh sediments from other north 

European locations (Cundy and Croudace 1996; Thompson et al., 2001; Anderson et 

al., 2011). In the shallower TG cores, the only discernible measured peak in 137Cs 

activity occurs at a depth of 2 - 3 cm within the Tahu TG core. Here, the activity of 
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131 Bq/kg-1 is associated with deposition of 137Cs derived from the Chernobyl 

accident. 137Cs activities in the TG core from the Matsalu site are inconsistent with 

those measured in the other three cores. Here, measured activity levels are lower 

throughout the core profile with highest values of 47.4 Bq/kg -1 located in the surface 

sediments. This suggests that there has either been recent erosion resulting in 

removal of the 1986 Chernobyl marker horizon and/or significant relocation of 137Cs 

due to post-depositional mobility. In this core 137Cs is present in the lowest reaches, 

indicating measured activity within age/depth horizons that greatly exceed the 

maximum age of introduction of this artificial radioisotope to the environment (> 65 

years). The ages of the sediments at these core depths are confirmed by the 

calculated age and low average rate of sedimentation derived from the 210Pbexcess 

CF:CS model (Table 1). This suggests post-depositional mobility of 137Cs down the 

Matsalu TG core. Therefore, it was not possible to date this core using 137Cs with 

any certainty. Rates of sediment accretion using the Chernobyl and Weapons 

Testing 137Cs marker horizons from the LS and Tahu TG core are shown in Table 2.  

 

Table 2 here 

 

The highest 137Cs and 210Pb inventories were found in the Tahu LS core, followed by 

the Matsalu LS and TG cores with similar inventories for both radio nuclides (Table 

3). However, the Tahu TG core had considerably lower inventories than all the other 

cores almost half that of the Matsalu cores. There was however little variation 

between the inventory ratio values of all cores (Table 3). 

 

Table 3 here 
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5. Discussion 

5.1 210Pb and 137Cs dating 

Previous studies have shown that higher proportions of soil organic matter increase 

post-depositional mobility of 137Cs (Ritchie and McHenry, 1990; Rosen et al., 2009). 

The data from this study show that the soils for both the LS and TG communities in 

both the Tahu and Matsalu sites are predominantly composed of sand with a lesser 

proportion of silt and a very small (c. 1%) clay fraction (Fig. 5). Modelling studies by 

Borretzen and Salbu (2002) have suggested that following introduction of 137Cs to 

sediments a proportion of the 137Cs remains mobile whilst a lesser proportion 

becomes adsorbed relatively quickly in clay rich soils. This, together with the low clay 

content, may therefore have exerted some influence on 137Cs retention in these 

sediments. Other mechanisms responsible for 137Cs mobility may include reversible 

ion-fixation (Evans et al., 1983), vertical redistribution such as that seen within the 

pore waters of lake sediments (Comans et al., 1989) likely to be driven by Fe and Mn 

oxyhydroxide cycling (Benoit and Hemmond, 1990). In conjunction with the irregular 

nature of flooding, inundation of the Estonian coastal wetlands also takes place via 

horizontal percolation of water between plant communities with discrete differences 

in elevation relative to mean sea level. This process is known to cause ‘pooling’ 

within the micro-topographical depressions that occur throughout these wetland 

environments (Ward, 2012). Horizontal percolation does not appear to have 

significantly influenced the down-core 137Cs activity profiles within three of the cores. 

However, within the Matsalu TG core the proximity of the core site to the adjacent 

and more regularly flooded LS plant community, as opposed to the position of the 

Tahu TG core, may have resulted in greater horizontal pore water pressures during 
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inundation events. Greater horizontal pore water pressures increase horizontal pore 

water advection of 137Cs (Harvey et al., 1995) along with vertical relocation of 137Cs 

to depths that pre-date the occurrence of caesium in coastal wetland sediments 

(Thompson et al., 2001; Teasdale et al., 2011). The Matsalu TG core was taken from 

a section of the TG community within 20 m of the sea (Fig. 4). The Tahu TG core 

however, was removed from a section of the wetland with 250 m of the LS and US 

plant community between it and the sea (Fig. 3). Ward (2012) has shown that micro-

topography affects the hydrology of these wetlands and inundation occurs by both 

overland flow and percolation. However, with respect to accretion, percolation does 

not supply sediment to the wetland. Therefore, whilst the plant community patches 

where the Tahu and Matsalu TG cores were located were likely to have similar 

water-table levels, the frequencies and depths of inundation and the amount of 

sediment deposited on the Tahu TG core site area was likely to have been 

appreciably lower.  

Total inventory values of both 137Cs and 210Pb from the cores at Tahu and Matsalu 

suggest that while atmospheric deposition is one source pathway for these 

radionuclides within all cores, the greater inventory values for both radionuclides in 

the Tahu LS core and the Matsalu LS and TG cores (Table 3) suggests that there is 

also a 137Cs and 210Pb input from allochthonous sediment sources in these cores, 

although not within the Tahu TG core. The similar 137Cs/210Pb inventory ratios 

recorded within all cores suggests that the proportions of influx are similar from both 

marine-derived and atmospheric radionuclide supply routes. Whilst there is some 

additional input of both radionuclides from allochthonous sources, the broad 

agreement in mean sediment accretion rates derived from the CF:CS and CRS 

methods suggests that this has not compromised these dating tools. 
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At Matsalu, inundation of the TG core site by overland flow may explain the higher 

rates of sedimentation recorded at this point. Within the Tahu TG core, calculated 

rates of sedimentation suggest a quasi-equilibrium relationship between ongoing 

GIA, and recent sea-level rise. However, within both the LS cores current rates of 

sedimentation coupled with GIA appear to be outpacing recent sea level rise. This 

scenario may change given recent evidence which strongly suggests a late 20th/ 

early 21st Century acceleration in the rate of global sea-level rise (Church and White, 

2006).  

The near-exponential decline in measured down-core 210Pbexcess activity within the 

Tahu and Matsalu cores indicates a relatively constant supply of atmospherically 

derived 210Pb to the surface of these Boreal Baltic coastal wetland sites, implicit in 

the assumptions inherent within the CF:CS and CRS dating models (Appleby and 

Oldfield, 1992). 

However, the Matsalu TG core exhibited much lower activity in the surface layers in 

comparison to the other three cores. From this, it appears that there has been a 

removal of the surface layer of the soil. This may also explain the lack of distinct 

peaks in 137Cs activity down the core profile that could be attributed to the Chernobyl 

and pre-1963 weapons testing signatures. Andersen et al. (2000) found similar 

results due to the reworking of sediments and erosion for both 137Cs and 210Pb in the 

Humber estuary, NE England. An increase in sedimentation, and a related decrease 

in clay content, could also potentially explain the distribution of 137Cs in the Matsalu 

TG core, although not the low levels of 210Pb. The results of this study show a 

significant increase in the D10 particle size with time in the Matsalu TG core 

although not the other cores. This could potentially be a factor that has influenced 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

23 
 

the location of 137Cs within the core as a result of a decrease in the relative 

proportion of the fine fraction to which 137Cs can readily adsorb.  

The 137Cs down-core profiles from both the Tahu cores and the Matsalu LS core 

exhibited similar activity levels and a similar trend down the profile, with two distinct 

peaks visible. The upper and larger peak represents deposition derived from the 

1986 Chernobyl disaster, and the lower peak found at a greater depth corresponds 

to the pre-1963 above-ground Weapons Test signature. In the LS cores the overall 

shape of the 137Cs activity depth profile is similar to those reported by Callaway et al. 

(1996) from salt marsh sediments on the Polish coast in the southern Baltic Sea. 

These cores show some evidence, (i.e. the broadening of the 137Cs peaks) for post-

depositional mobility, however, this has not compromised the use of these marker 

horizons for dating purposes.  

137Cs dating is in good broad agreement with rates of sediment accretion derived 

from both the CF:CS and CRS methods for 210Pb and provide a geochemically 

independent comparison with the 210Pb methods (Teasdale et al., 2011). Soil organic 

matter and particle size have an effect on the location of radionuclides in the core 

profile particularly in areas with fluctuating water tables and can result in mobility of 

elements in solution through the core pore waters. Several studies have shown that 

137Cs is selectively fixed to clay minerals and is less mobile in clay rich soils (Walling 

and He, 1993; Cundy and Croudace, 1996; Rosen et al., 2009).  

 

5.2 Sedimentary records of storm events 

During the last century documented storms have impacted the NW Estonian 

coastline and in more recent decades the frequency of these inundation events is 

known to have increased (Jaagus et al., 2008). This is reflected by an increase over 
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time in the D90 fraction for the lower elevation plant communities at both sites 

presented in this study. The results of this study also show that there has been a 

significant increase in the sorting coefficient in the LS community cores at both sites 

over time. This suggests that there has been an increase in the frequency of 

inundation by low energy waves. The significant decrease in the sorting coefficient 

over time in the Matsalu TG core suggests an increase in deposition from high 

energy waves. Due to the greater elevation above sea level as a result of continuing 

GIA, the Matsalu TG core area is likely to be inundated only by storm surges rather 

than the more frequent and lower energy rises in local sea level caused by changes 

in atmospheric pressure. 

210Pbexcess CRS modelled sedimentation rates from the Tahu and Matsalu cores 

reveal a variable record of sedimentation in response to storm inundation events. 

The low rates of sediment accretion recorded in the Tahu TG core (Fig. 7) suggests 

that inundation events are rare at this elevation and distance from the shore, 

although the increase in accretion rates may indicate that there has been more 

frequent inundation since the 1960s in response to a rise in relative sea level and an 

increase in storminess within Estonian coastal waters (Keevallik and Rajasalu, 2001; 

Suursaar et al., 2007). In contrast, the Tahu LS community has undergone more 

significant fluctuations in rates of sediment accumulation which have varied through 

time from 1 – 5 mm yr-1 (Fig. 7). Increased sediment accretion in the period 

extending from the early to mid-1920s and again in the early 1930s are associated 

with two extended periods of high average sea levels in west Estonia, according to 

the Pärnu tidal gauge (Suursaar et al., 2007), which is also evident at the base of 

Matsalu TG core. However, there is little evidence of further storm signatures from 

this time up to the 1990s, which may be the result of site orientation relative to storm 
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track direction and seasonality (e.g. presence of sea ice). Following this a more 

recent period of enhanced sedimentation is apparent in the mid-1990s which is likely 

to be associated with a period of increased storminess in 1992 - 1993 (Kont et al., 

2007; Orviku et al., 2009). 

Sedimentation rates from the Matsalu LS core reveal an increase in sediment 

accretion during the mid-1970s. This coincides with a known increase in the number 

of storm days in 1975-1976, recorded in both the Vilsandi and Pärnu tide gauges 

(Kont et al., 2007; Suursaar et al., 2007). Similar to the Tahu LS core, the Matsalu 

LS core also records a period of enhanced sedimentation in the early to mid-1990s 

associated with increased maximum sea level recorded at both the Vilsandi and 

Pärnu tide gauges located in north and north-west Estonia respectively (Fig. 1) and 

highlighted by Suursaar and Sööäär (2007). 

The Matsalu LS core records one further increase in sediment accretion after 2004. 

This is likely to be associated with a severe winter storm in 2005 “Gudrun” (Orviku et 

al., 2009) that deposited significant quantities of material in Matsalu Bay (Lotman 

pers. comm. 2010). The historical trend of Boreal Baltic coastal wetland development 

has been one of progradation of coastal wetlands into adjacent water bodies driven 

in part by GIA and sediment accretion (Ward, 2012). This study has shown that past 

rates of sedimentation have fluctuated in response to changes in local sea level, 

driven by both atmospheric pressure and storm surges in the Baltic Sea. 

Additionally, there has been an overall increase in the rate of sediment accretion 

since the 1960s likely to be associated with recent climate change in the Baltic and 

perhaps the late 20th Century acceleration in the rise of global sea level and a 

decrease in sea ice (and subsequent increase in sediment deposition due to storm 

surges). The influence of coastal forcing mechanisms does not appear to threaten 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

26 
 

the future development of ecologically important Boreal Baltic coastal wetlands in 

Estonia which look set to follow historical trends of progradation due to the 

combination of present day rates of GIA and sedimentation. 

 

6. Conclusions 

Baltic coastal wetlands are characterised by predominately sand and silt material 

with little clay present although the organic above and below-ground component also 

contributes a significant proportion of the sediment matrix.  

The near-exponential decline in measured 210Pbexcess activity results in good 

agreement between the CF:CS and CRS model age-depth estimations. Independent 

dating control is provided using the 137Cs marker horizons, where distinct peaks in 

measured activity associated with the pre-1963 Weapons Test signature and 

deposition derived from the 1986 Chernobyl accident are evident. Despite some 

evidence for post-depositional migration in the Matsalu TG core and broadening of 

peaks in 137Cs activity, these marker horizons do not appear to have been 

significantly compromised for dating purposes.  

This study has provided the first evaluation of sediment accretion rates in Boreal 

Baltic coastal wetlands revealing that subtle differences in rates of sediment 

accretion have occurred between the Matsalu and Tahu sites, and between the LS 

and TG communities. This work has shown that changes in sea level caused by 

variations in atmospheric pressure and storm surges can contribute a significant 

sedimentary component, which coupled with GIA processes, has driven coastal 

wetland development resulting in the historical progradation of these wetlands. The 

recent acceleration in the rate of global sea level rise may subtly alter this 
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relationship, however we conclude that current rates of GIA and sedimentation will 

result in continued progradation of Boreal Baltic coastal wetlands in Estonia.  
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Figure captions 

Figure 1: Location of Boreal Baltic coastal wetland study sites with isobases of 

current glacio-isostatic adjustment (GIA) in Estonia, (grey dashed lines), (redrawn 

from Eronen et al., 2001). Also shown are the locations of tide-gauge stations (grey 

triangles). 

 

Figure 2: Ecological zonation of Boreal Baltic coastal wetland sites in Estonia (after 

Ward, 2012). CS = Clubrush Swamp; RS = Reed swamp; LS = Low Shore; US = 

Upper Shore; TG = Tall Grass, OP = Open Pioneer; SW = Scrub Woodland. 

 

Figure 3: Location of core sites for the Low Shore (LS) and Tall Grass (TG) 

(highlighted by black stars) within Tahu Bay, Estonia. Plant communities are shown 

by shading, community abbreviations are explained in figure 2 and detailed 

descriptions can be found in Burnside et al. (2007). Maximum inundation due to 

yearly average atmospheric pressure variation is shown by the cross-hatching. 

Maximum recorded inundation in these wetlands, as a result of the 2005 storm 

Gudrun, is denoted by diagonal hatching.  

 

Figure 4: Location of core sites for the Low Shore (LS) and Tall Grass (TG) cores 

(highlighted by black stars) within Matsalu Bay, Estonia. Plant communities are 

shown by shading, community abbreviations are explained in figure 2 and detailed 

descriptions can be found in Burnside et al. (2007). Maximum inundation due to 

yearly average atmospheric pressure variation is shown by the cross-hatching. 

Maximum recorded inundation in these wetlands, as a result of the 2005 storm 

Gudrun, is denoted by diagonal hatching.  
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Figure 5: Stratigraphy of the core sequences from the Low Shore (LS) and Tall 

Grass (TG) plant communities at the Tahu and Matsalu study sites, (a and b = Tahu 

LS and TG cores; c and d = Matsalu LS and TG cores). 

 

Figure 6: 210Pbexcess activity/depth profiles for the four cores with 214Pb activity shown 

(white squares) as a proxy for 226Ra and 210Pbsupported. Also shown are the graphical 

plots of the natural logarithm of 210Pbexcess plotted against depth used for the CF:CS 

or ‘simple model’ estimations of average sedimentation over the entire age/depth 

period. (a and b = Tahu LS and TG sites; c and d = Matsalu LS and TG sites). 

 

Figure 7: 210Pbexcess CRS model age/depth profiles for the four cores. Error for age 

estimations are based upon the value of 210Pbexcess ± 0.002 Bq/kg-1, (where not 

visible, age error bars are smaller than the marker option used). Also shown are 

calculated rates of sedimentation for the four sites plotted against 210Pbexcess CRS 

modelled age, (a and b = Tahu LS and TG sites; c and d = Matsalu LS and TG 

sites). 

 

Figure 8: Measured 137Cs activity/depth profiles for the Tahu and Matsalu cores, (a 

and b = Tahu LS and TG sites; c and d = Matsalu LS and TG sites). Where not 

visible, error bars in measured activity are smaller than the marker option used. 
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Table captions 

Table 1: Average rates of sedimentation for the Tahu and Matsalu cores determined 

from the 210Pbexcess Constant Flux: Constant Sedimentation (CF:CS) or ‘simple’ 

model. 

 

Table 2: Rates of sedimentation in the Tahu LS and TG cores and the Matsalu LS 

core using the measured 137Cs activity marker horizons from pre-1963 weapons 

testing and the 1986 Chernobyl accident. Lower and upper estimations are obtained 

using the maximum and minimum possible depth for each peak in 137Cs activity. 

 

Table 3: 137Cs, 210Pb inventories (Bq/cm-2) and 137Cs/210Pb inventory ratios for the 

Tahu and Matsalu LS and TG cores. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 6 
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Figure 7 
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Figure 8 
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Table 1: Average rates of sedimentation for the Tahu and Matsalu cores determined 

from the 210Pbexcess Constant Flux: Constant Sedimentation (CF:CS) or ‘simple’ 

model.  
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Table 2: Rates of sedimentation in the Tahu LS and TG cores and the Matsalu LS 
core using the measured 137Cs activity marker horizons from pre-1963 weapons 
testing and the 1986 Chernobyl accident. Lower and upper estimations are obtained 
using the maximum and minimum possible depth for each peak in 137Cs activity. 
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Table 3: 137Cs, 210Pb inventories (Bq/cm-2) and 137Cs/210Pb inventory ratios for the 
Tahu and Matsalu LS and TG cores. 
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Highlights:  

 First evaluation of sediment accretion rates in Boreal Baltic coastal wetlands 

 Recorded subtle differences in sedimentation between sites and plant 

communities 

 Deposition largely driven by atmospheric pressure/storm surges (i.e. sea 

level) 

 Predicted continued progradation of Baltic coastal wetlands in spite of global 

SLR  


