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Abstract 

 The evaporation rate () of n-alkane molecules in the C8-C27 range from molecular 

clusters and nanodroplets is analysed using the quantum chemical solvation model (SMD) and 

the kinetic gas theory, assuming that the system is in a state of thermodynamic equilibrium 

(evaporation and condensation rates are equal). The droplet size, liquid density, evaporation 

enthalpy and Gibbs free energy of evaporation are calculated at 300-640 K. The quantum 

chemical calculations (SMD/HF or SMD/B3LYP methods with the 6-31G(d,p) basis set) are used 

to estimate changes in the Gibbs free energy during the transfer of a molecule from a liquid 

medium (clusters or nanodroplets) into the gas phase. The kinetic gas theory is used to estimate 

the collision rate of molecules/clusters/nanodroplets in the gas phase. This rate depends on partial 

pressures, temperature, sizes and masses of molecules and clusters/nanodroplets. An increase in 

the molecular size of evaporated alkanes from octane to heptacosane results in a strong decrease 

in the values of . Preliminary estimates of the evaporation/condensation coefficient, based on the 

direct analysis of the collisions of individual molecules with molecular clusters, are presented. 
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1  Introduction 

Interest in the investigation of the evaporation of droplets has been stimulated by numerous 

industrial, technological, pharmaceutical and environmental applications [1-13]. Pioneering 

investigations of droplet evaporation were focused on water droplets due to their practical 

importance [4-8]. The droplet evaporation process affects the temperature behaviour of water or 

organic solvents and organic or inorganic solutes forming droplets of various sizes in the gas 

phase or on solid surfaces (e.g. inkjet or 3D polymer printing) [9-12]. The importance of this 

process in Diesel engines has been widely discussed in the literature [1-3,13]. The droplet 

evaporation processes have been studied using both experimental methods and theoretical 

modelling based on hydrodynamic and kinetic approaches [1-3,13-17].  

The boundary condition for the kinetic region at the droplet surface was controlled by the 

evaporation coefficient. The values of this coefficient were calculated using the molecular 

dynamics (MD) approach in which the interaction between individual molecules was described 

by the force field (FF) methods, which simplify both inter- and inner-molecular interactions by 

ignoring electrons per se (quantum effects were ignored) [14,15,18-20]. Alternative quantum 

mechanical methods used to analyse the process of droplet evaporation were described in [21-23].  

Most of the evaporation models were originally developed for water droplets. Despite the 

simplicity of water molecules in comparison with organics, the investigation of water evaporation 

is complex [4-8] due to strong hydrogen bonds between each atom in water molecules causing 

clustered water structures to be strongly affected by solutes and co-solvents [24,25]. These or 

similar effects are not observed in alkanes. The intermolecular bonds in alkanes are of the van-

der-Waals (vdW) type [26]. This allows a certain simplicity of the modelling, including the 

application of molecular mechanics (MM) and molecular dynamics methods based on the vdW 

force field approach [16,18-20]. These models can be applied to both individual liquids and 

complex mixtures including a number of compounds which can be evaporated under various 

conditions [27-34]. However, the MD/FF models used to study evaporation of alkanes can 
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sometimes lead to erroneous results. The main sources of the errors in these models are related to 

the fact that changes in molecular polarisation, electron transfer and ion or radical formation, as 

well as electron factors at relatively high temperatures are ignored. Temperature increase can lead 

to strong thermal vibration of the bonds and changes in the electron density in atoms during 

vibrational excitations, fast rotations, conformational changes, and collisions between molecules. 

The electronic effects (enhanced at high temperatures) in intermolecular interactions between 

evaporated aromatics and organics with polar functionalities, in comparison with alkanes, can 

result in an increase in the errors in modelling of these systems using MD/FF, but investigation of 

aromatics is beyond the scope of this paper. In [23], a complex approach based on quantum 

chemical estimations of the Gibbs free energies of solvation (Gs) and evaporation (Gev) and the 

kinetic gas theory was applied to analyse evaporation of real-life Diesel fuel clusters and 

nanodroplets, including a set of alkanes and substituted aromatics in the C8-C27 range.  

The processes considered in [23] are further investigated in the current paper. In contrast to 

[23], the present analysis is focused only on alkanes as the main components of Diesel fuel, and 

particularly on n-dodecane, the component widely used as a representative of this fuel. Also, a 

number of new processes, not investigated in [23], are discussed. These include molecule-

molecule, molecule-cluster, and molecule-nanodroplet interactions, depending on temperature, 

kinetic energy, and orientation of the molecules hitting a droplet surface. The latter processes are 

expected to allow us to develop a better understanding of the underlying physics of the 

condensation/evaporation processes, described by the condensation/evaporation coefficient. As in 

[23] our analysis is based on the kinetic theory which allows us to apply our model mainly to 

molecular clusters and nanodroplets. Additional theoretical investigations, using ab initio, DFT 

and semiempirical quantum chemical methods, are performed to clarify the underlying physics of 

these processes.  
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2 Modelling methods 

Individual molecules, clusters and nanodroplets of alkanes of the C8-C27 range (including n-

dodecane as a representative alkane) were studied using ab initio (HF/6-31G(d,p)), DFT 

(B3LYP/6-31G(d,p)) and semiempirical methods (PM6, PM7) implemented in the program 

packages: Gaussian 09 (revision D.01, 2013) [35], WinGAMESS (version May 1, 2013) [36,37], 

Firefly (version 8, June 2013) [38], and MOPAC 2012 (versions 13.238L and 13.238W, 2013) 

[39]. The geometry of initial nanodroplets (with 64 or 128 molecules) was optimised using the 

molecular mechanics program AMMP (modern full-featured molecular mechanics, dynamics and 

modelling program, with the CFF91 or MM+ force field method implemented in the VEGA ZZ 

program suit, version 3.0.1, 2013) [40]. After that, the geometry was optimised using the PM7 or 

PM6 methods. The HF and DFT methods with the 6-31G (d, p) basis set were applied to smaller 

systems with 7-8 molecules (molecular clusters). Visualisation of molecular structures was 

performed with the help of the ChemCraft 1.7/375 [41] or GaussView 5.09 [42] programs. 

The Gibbs free energy of solvation (Gs) was calculated using the solvation model (SMD, 

universal solvation model based on solute electron density and on a continuum model of the 

solvent defined by the bulk dielectric constant and surface tensions) developed by Truhlar et al. 

[43] and implemented in Gaussian 09 and WinGAMESS. N-dodecane was used as a solvent in 

SMD. The values of Gs were used to estimate the changes in the Gibbs free energy upon 

evaporation (i.e. transfer of a molecule from the liquid phase into the gas phase where there is no 

solvation effect and Gs = 0). 

The Gibbs free energy of solvation also was computed using OPLS-AA-L (Optimized 

Potentials for Liquid Simulations - All Atom for Long chain n-alkanes) force field [44] and 

dynamic simulation methods in which coupling and de-coupling of electrostatic and LJ 

interactions of an n-dodecane molecule with the rest of the system are taken into account [45]. 

216 n-dodecane molecules were randomly placed into a cubic periodic box to model the liquid 

state. Two subsequent minimisations were made using the steepest descent of 1000 steps and 
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conjugate gradients of 9000 steps. Then after 1 ns molecular dynamics (MD) simulation, the 

system reached equilibrium state. The predicted value of density coincided with the one obtained 

from experimental data (745.0 kg/m
3
 at 298.15 K) [46] (see also [44]). The length of the cubic 

simulation box was reduced from 6.2 nm to 4.3 nm during this simulation.  

The MD simulations were carried out using the particle mesh Ewald method with grid 

spacing of 0.12 nm for the electrostatic interactions. A switch function was used for the analysis 

of the van der Waals interactions. Two values of cutoff, 1.1 nm and 1.3 nm, were used to smooth 

forces at the boundaries [47]. Dispersion effects, which can dominate at longer distances, were 

considered using corrections for energy and pressure [48]. The integration time step was selected 

as 2 fs, with the neighbours being updated every fifth step, using the cutoff distance of 1.5 nm. 

Periodic boundary conditions were used in all directions with a constant number of particles, 

constant pressure and constant temperature (NPT). The system was coupled to external constant 

temperature 298.15 K using the velocity rescaling algorithm with a time constant of 0.1 ps. Also, 

the pressure was coupled by Parrinello-Rahman barostat (1 atm, τ = 4 ps). Bonds and angles were 

flexible, except for the C-H bonds which were constrained using the LINCS algorithm [49]. 

When the equilibrium structure of n-dodecane molecules in the liquid phase was 

established, free energy perturbation (FEP) calculations were started to estimate the differences in 

the Gibbs free energy between different states of an n-dodecane molecule solvated in n-dodecane 

liquid using the Bennet Acceptance Ratio (BAR) technique [45]. In this method, the coupling 

factor λ, which changes from 0 to 1, shows fully de-coupled and coupled states for λ=0 and λ=1, 

respectively. This means that a molecule was transferred from an ideal gas environment to a fully 

solvated state when λ increased from 0 to 1 (eleven values of λ with equidistant spacing of 0.1 

were chosen). Each state was simulated for 200 ps. Equilibrium was reached at 100 ps, which 

was followed by 100 ps (production phase) used for analysis. These FF simulations were carried 

out using the GROMACS-4.6.3 package [50].  
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To study the dynamics of elimination/condensation of molecules from clusters or 

nanodrops, the dynamic reaction coordinate (DRC) method was applied. In this method, one 

calculates atomic velocities (i.e. kinetic energy Ek) and potential energy Ep of the system and 

estimates the average temperature from the value of Ek. After each time step (chosen as t = 10
16

 

s = 0.1 fs), the potential energy of the system is re-calculated using the PM7 method (MOPAC 

2012) [39] or HF/6-31G(d,p) (WinGAMESS or Firefly) [36-38]. The trajectories of atoms are 

calculated using the classical mechanics approach adding the corresponding kinetic energies to 

atoms and re-calculating their velocity and coordinate vectors at each time step. These 

calculations allow one to model either the removal of a molecule from a cluster or nanodroplet, or 

its sticking to the cluster or nanodroplet, and to estimate the corresponding kinetic energies. This 

approach is useful for studying the interactions of molecules with nanodroplets depending on the 

orientation of the attacking molecules and the nanodroplet surface molecules, as well as the 

velocities of the attacking molecules.  

The following equation for the evaporation rate (i(i+j)) [21,22] was used in our analysis  

( )

0

exp
i j i j

i i j ij
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k Tn k T






   
  

 
,       (1) 

where n0 is the initial number of molecules in a cluster or nanodroplet, i(i+j) is the evaporation 

rate of the ith-molecule from a cluster (or nanodroplet) i+j, bij is the collision rate of the ith 

molecule with the jth molecule (cluster/nanodroplet) [23], Gi+j, Gi, and Gj are the Gibbs free 

energies of formation of the molecules (clusters/nanodroplets) from monomers (molecules) at the 

reference pressure p. If i or j refer to a monomer (in the gas phase) then the corresponding Gi or 

Gj are equal to zero. For other cases, Gi+j  Gi  Gj corresponds to changes in the Gibbs 

free energy of the system due to attachment of the ith particle to the jth particle. Note that 

Expression (1) describes the actual rate of removal of molecules from the surface of the droplet, 

which is equal to the rate of condensing molecules in the equilibrium state. Expression (1) cannot 

be used directly for the analysis of evaporation of droplets in Diesel engine-like conditions, in 
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which the system is essentially not in the thermodynamically equilibrium state, but it can be 

applied to the analysis of some special experiments in which the state is close to thermodynamic 

equilibrium [51]. It can, however, be used for the analysis of some trends, which are observed in 

the immediate vicinity of Diesel fuel droplets where the state of the system is expected to be 

close to that of thermodynamic equilibrium [14-16]. 

 As in [23], the collision rate between molecules/clusters/nanodroplets is estimated from 

the kinetic gas theory (KGT), assuming that these structures are in the state of thermodynamic 

equilibrium [17,21,22].  

 The evaporation enthalpy (Qev(T) > 0), contributing to Gev, and the density of liquids 

(T) as functions of temperature were estimated as described in [46].  (T)  was used to estimate 

the size of clusters/nanodroplets at specific temperatures assuming that swelling of a 

cluster/nanodroplet is related to its decreased density. 

We assume that the changes in the Gibbs free energy upon evaporation (Qev(T)  TS = 

Gev > 0) correspond to the changes in the Gibbs free energy of a molecule upon solvation at 

temperature T0 = 298 K but with the opposite sign as Gs,0 = Hs  T0S < 0, i.e. Gs,0 = 

Qev(T0)  T0S at Hs = Qev(T0). This leads us to the following equation  

,0 ,0 0 0 ,0( ) ( ( ) / / (1 ( ) / ))ev s ev s ev sG T G Q T G T T Q T G       ,     (2) 

where Gs,0 is the Gibbs free energy of solvation determined using the SMD method under 

standard conditions. Eq. (2) was derived assuming that the changes in the entropy (S) with 

temperature can be ignored.  

In the case of thermodynamic equilibrium, the number of molecules held in the gas phase 

at temperature T can be described by the equation analogous to the Langmuir equation of 

adsorption [52]  
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where  is a constant (determined from the limiting condition at a sufficiently high temperature), 

pi/p0 is the relative partial pressure of the ith evaporated component, p0 is the total pressure, n0 is 

the initial number of molecules in the droplet equal to the total number of molecules in liquid and 

gas phases during the evaporation process.  

As mentioned earlier, the above analysis is applicable to the case when gas and liquid are in 

a state of thermodynamic equilibrium. When this is not the case, the relevance of quantum 

chemical effects is restricted mainly to the calculation of the evaporation coefficient 

,( ) / ( )v out vr vs vrf f f f    ,         (4) 

where fvs is the distribution function of molecules leaving the liquid surface, assuming that the 

evaporation coefficient is equal to unity, fvr is the distribution function of molecules reflected 

from the droplets. It was assumed that this coefficient is the same for all directions of the 

evaporated molecules [14,15]. The values of  for n-dodecane were estimated based on classical 

MD simulations [15]. As follows from these simulations,  decreases from 0.9-1.0 at T/Tc = 0.45-

0.55 to 0.25 at T/Tc = 0.75-0.9, where Tc is the critical temperature. Direct reproduction of 

calculations presented in [24] but taking into account the quantum chemical effects does not look 

feasible at the moment.  

 In the next section, preliminary estimates of  will be performed based on the analysis of 

trajectories of individual molecules hitting the surfaces of molecular clusters, taking into account 

quantum chemical effects, or using MD/FF methods without consideration of these effects.  

 

3. Results and discussion 

The evaporation rate calculated using Eqs. (1) and (2), relative number of molecules 

evaporated from a droplet (nev/n0) in equilibrium state, and residual number of molecules in a 
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nanodroplet during evaporation (1  nev/n0) versus nanodroplet diameters and temperatures, are 

shown in Figs. 1, 2 and 3, respectively. Parameter nev(T) denotes the number of molecules 

transferred into the vapour phase as a function of temperature, n0 is the total number of 

molecules, assuming that the system is in a state of thermodynamic equilibrium. Condition nev/n0 

= 1, or 1  nev/n0 = 0, corresponds to complete evaporation of a nanodroplet occurring under 

equilibrium conditions at a certain temperature. 

 

 

Fig. 1. Evaporation rate vs. temperature and 

nanodroplet diameter for evaporation of n-

dodecane molecules from dodecane nanodroplets 

(HF/SMD/KGT with temperature dependent 

corrections and Gs = 20.5 kJ/mol at 300 K). 

Fig. 2. Relative number of evaporated 

molecules vs. temperature and nanodroplet 

diameter for evaporation of n-dodecane 

molecules from n-dodecane nanodroplets 

(HF/SMD/KGT with temperature dependent 

corrections and Gs = 20.5 kJ/mol at 300 

K). 

 

The results shown in Figs. 1 and 2 refer to n-dodecane, while the results shown in Fig. 3 refer to a 

range of n-alkanes. Note that the results for droplets with diameters close to 1 μm, shown in Figs. 

1 and 2, should be treated with caution, as for these relatively large droplets the condition of 

thermodynamic equilibrium is not likely to hold. An almost linear decrease in the values of  with 

growing droplet diameters (Fig. 1) can be attributed to the fact that the ratio of volume to surface 

area of spherical nanodroplets is proportional to nanodroplet diameters.  

Comparison of the Gibbs free energy of solvation of n-dodecane obtained by classical 

force field (Gs = 30.9 kJ/mol) and quantum chemical methods (Gs = 20.5 kJ/mol by 
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HF/SMD with WinGAMESS or 25.5 kJ/mol by DFT/SMD with Gaussian 09) shows that the FF 

result is closer to the experimental value, Gs = 32.8 kJ/mol, than the SMD ones [43]. However, 

molecules are evaporated from a droplet surface but not from the bulk solution. At the surface, 

the number of n-dodecane molecule neighbours is about 5/8 of those in the bulk of the droplet for 

an ordered structure with non-bent molecules (simple estimation gives 32.8*5/8 = 20.5). 

Therefore, smaller values of Gi+j  Gi  Gj = Gs (20.5 or 25.5 kJ/mol) will be used in Eq. 

(1) for the calculations of the evaporation rate.  

It follows, from Fig. 3, that large n-alkanes, such as icosane (C20) and heptacosane (C27), 

are more poorly evaporated than smaller n-alkanes (C8, C12) from n-dodecane medium. 

Evaporation of n-dodecane from n-octane medium (Fig. 3, C12
***

) occurs more slowly than from 

n-dodecane medium (C12
*
, C12

**
). In other words, we can expect that, as a result of evaporation, 

the gas phase consists mainly of n-octane from the C12-in-C8 system, while n-dodecane remains 

mainly in nanodroplets at T < Tb,C12 and evaporation of n-dodecane from octane droplets starts at 

T  Tb,C8  399 K. This is expected to lead to an increase in mass fractions of compounds with 

larger molecular masses in complex hydrocarbon droplets during evaporation. 

 
Fig. 3. Relative numbers of molecular residuals in a droplet as a function of temperature and 

droplet diameter for various n-alkanes evaporated from a nanodroplet with n-dodecane as a 

solvent calculated using the SMD/HF/6-31G(d,p)/KGT model (with Gs = 11.3 (C8), 20.5 

(C12
*
), 25.5 (C12

**
), 22.4 (C12

***
 in the octane medium), 39.2 (C20), and 55.1 (C27) kJ/mol at 298 

K).  
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Similar changes in droplet composition were observed for aromatics, in which the evaporation 

rate decreases with increasing molecular weight or the number of aromatic rings in the molecules 

[23]. According to Fig. 1, the composition changes can occur faster for smaller droplets. 

However, changes in nev/n0 do not depend on the droplet sizes (see Figs. 2 and 3).  

For small n-alkane molecules (C6), evaporation of both monomers and dimers was 

observed, but for larger molecules (C16), only monomers were evaporated [53]. This agrees with 

the modelling results for evaporation of monomers and dimers of various alkanes [23]. The 

difference in the evaporation of monomers and dimers can be related not only to the difference in 

their molecular weight but also to the difference in the corresponding values of Qev, Gev and 

Gs. 

The positive evaporation enthalpy Qev decreases with temperature; e.g. for n-dodecane, 

Qev  60 kJ/mol and 18 kJ/mol at 300 K and 640 K, respectively. This leads to a decrease in the 

positive Gibbs free energy of evaporation (Gev > 0) with temperature as intermolecular 

interactions in liquids decrease with temperature (liquid density and intermolecular bonds 

decrease when temperature increases). Therefore, the removal of a molecule from a heated 

droplet needs less energy than its removal from a cold droplet. The Gibbs free energy of solvation 

of molecules in liquid is negative (Gs < 0) and its modulus decreases with temperature due to 

the above-mentioned effect. The evaporation becomes more difficult when the size of evaporated 

molecules increases since this size affects the values of Qev [46], Gev and Gs. For example, 

when the sizes of n-alkane molecules increase, their evaporation from nanodroplets with n-

dodecane as a solvent, calculated using the SMD/KGT model, becomes more difficult (see Fig. 3) 

since the values of |Gs| and Gev significantly increase with increasing molecular size of 

organics [23,46]. Evaporation of C8 – C12 n-alkanes from n-dodecane nanodroplets occurs mainly 

at T < Tb = 489.5 K (boiling temperature of dodecane) (see Fig. 3). An increase in the predicted 

values of |Gs| for n-dodecane from 20.5 kJ/mol (SMD/HF) to 25.5 kJ/mol (SMD/DFT) leads to 
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a shift of the evaporation plot with temperature, as strong n-dodecane molecule-n-dodecane 

medium interaction (i.e. lower Gs or higher |Gs|) slows down evaporation. The value of |Gs| 

for heptacosane in n-dodecane is 55.1 kJ/mol (SMD/HF/6-31G(d,p)), much higher than that for 

C8-C20, and therefore the plot of (1  nev/n0)  for C27 shows the maximal shift towards higher 

temperatures (see Fig. 3).  

The evaporation rates, expressed in terms of the rate of decrease of the squared droplet 

diameter if condensation is removed, (kev) versus temperature for droplets with diameters of 14.4 

m and 64 m, are shown in Fig. 4. The plots shown in this figure are expected to show the 

trends of kev rather than their quantitative characteristics as the validity of the condition of 

thermodynamic equilibrium for such large droplets could be questionable. As follows from this 

figure, an increase in the droplet size leads to an increase in the evaporation rate; for droplets with 

d = 64 m, kev increases with increasing temperatures. Similar effects were observed in the 

experiments, the results of which are described in [51]. In these experiments the evaporation rate 

of n-dodecane droplets was measured in a nitrogen atmosphere at 0.2 MPa at various 

temperatures.  

 
Fig. 4. The rates of evaporation of n-dodecane droplets with the initial diameters 14.4 and 67 m 

and at two initial Gibbs free energies of solvation.  
 

The average kinetic energy of the translational motion of the whole molecules (estimated as 

Ek = 3kBT/2) in the temperature range 300-1200 K (Ek = 3.8-15.1 kJ/mol) is smaller than the 



13 

 

interaction energy of molecules in the liquid state at 300 K (Gs = 25.5 kJ/mol, as predicted by 

SMD/B3LYP/6-31G (d,p)). Therefore, the evaporation of n-dodecane at 300-350 K is very slow 

(see Figs. 2 and 3). However, heating of nanodroplets at T > 400 K (see Figs. 1-4) leads to a 

decrease in the interaction (potential) energy between molecules and an increase in the average 

kinetic energy of the molecules (vide infra). Therefore, the probability that gas-phase molecules 

will stick to droplets is expected to decrease with increasing temperature due to two factors: 

increase in the average kinetic energy of molecules and decrease in the average interaction energy 

of the molecules (the modulus of the potential energy decreases). The molecule/nanodroplet 

scattering and evaporation of molecules from nanodroplets are determined by equilibrium 

conditions and the weight and diameters of nanodroplets, but do not depend on the kinetic 

characteristics of attacking molecules. However, the values and directions of velocities of 

attacking molecules relative to nanodroplet surfaces, as well as orientation of molecules at droplet 

surfaces, are expected to affect the collision processes, leading to scattering or condensation [54]. 

Also, evaporative cooling can reduce temperatures of nanodroplet surfaces which can result in an 

increase in condensation of molecules from the gas phase; this is consistent with experimental 

data [55].  

In our analysis so far, the results of interaction of molecules with nanodroplets, 

determined by the evaporation/condensation rate (Eq. (1)), were obtained assuming the 

equilibrium state of the system in which the collisions between molecules and nanodroplets are 

described using the kinetic gas theory, regardless of the nature of these collisions. In what 

follows, the details of the collision processes are investigated using the dynamic reaction 

coordinate (DRC) method. The DRC results can elucidate the interaction mechanism of a 

molecule with a cluster/nanodroplet depending on the kinetic characteristics and temperature of 

the system. These characteristics refer to scattering or sticking of the molecules. In the DRC 

calculations, the total kinetic energy is partitioned into the kinetic energy of random thermal bond 

vibrations and rotations and the kinetic energy of the translational motion of the whole molecules. 
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In our analysis, the DRC method was applied to study the dependence of sticking/scattering of n-

dodecane molecules on their angles of attack, kinetic energy (temperature), and 

cluster/nanodroplet size. The DRC calculations were performed for molecules interacting with a 

cluster (7 molecules) or a nanodroplet (64 or 128 molecules) of n-dodecane molecules. The 

results are shown in Figs. 5-7.  

Figs. 5 and 6 show that at large angles of attack, a molecule is absorbed by a cluster or 

nanodroplet even of relatively small size (d = 2-7 nm) if the kinetic energy is low and the 

attacking molecule is not oriented exactly towards one of the surface molecules (but rather 

between neighbouring surface molecules) (see Fig. 5b). At   1
o
 (see Fig. 5a) an almost 

perfectly elastic collision was observed if the molecule had relatively high velocity (kinetic 

energy ~10 kJ/mol or larger) and was oriented directly towards one of the surface molecules.  

 
Fig. 5. Interaction of an n-dodecane molecule (hot, temperature ~1100 K) with a cluster of seven 

n-dodecane molecules (initial temperature 473 K; it increases due to the interaction with a hot 

molecule) at the angles of attack   (a) 1
o
, (b) 60

o
 and (c) 90

o
. 

 

 In the DRC calculations shown in Figs. 5-7, the kinetic energy of the molecules in the 

clusters or nanodroplets was low and thermal vibrations and bond rotations corresponded to 300-

400 K. At the same time, the kinetic energy of the attacking molecule was high (its effective 

temperature was in the range 500-1200 K).  
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Fig. 6. Interaction of an n-dodecane molecule (hot, temperature ~1100 K) with clusters (initial 

temperature ~473 K) of (a) 64 and (b) 128 n-dodecane molecules at the angle of attack   90
o
. 

 

 
Fig. 7. Changes in the kinetic energy of the attacking n-dodecane molecule during its interaction 

with a nanodroplet of 64 n-dodecane molecules at various angles of attack: (a) 5
o
, (b) 40

o
, (c) 5

o
, 

and (d) 45
o
, and various initial kinetic energies: (a, b) 125.5, (c) 251, and (d) 1602 kJ/mol (these 

kinetic energies correspond to the energies of both translational motion and thermal vibrations or 

rotations). 
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At relatively low kinetic energies of attacking molecules (T < 450 K), the sticking 

(condensation) is expected to dominate over the scattering of molecules (see Fig. 7a-c), i.e., these 

molecules remain on the droplet surface following collisions after a certain time (3.7-4.5 ps in 

Fig. 7a-c). A significant increase in the kinetic energy of the attacking molecule after a minimum 

at 1.5-2 ps (Fig. 7a-c) is related to reorganisation of the nanodroplet after strong interaction with 

the attacking molecule accompanied by a decrease in its potential energy. An increase in the 

kinetic energy of the attacking molecules at the initial stage of the interactions (curves in Fig. 7a-

c) is related to the reduction of the potential energy of the system when an attacking molecule 

approaches the cluster/nanodroplet. Then the kinetic energy of the attacking molecule decreases 

as it is transferred into the potential energy of the molecules in the cluster/nanodroplet. During 

the interaction of the high-energy scattered molecule with the cluster/nanodroplet (Fig. 7d), the 

kinetic energy of the system per molecule, Ek = 24.7 kJ/mol (including both translational motion 

and thermal vibrations/rotations), was close to |Gs,0| = 25.5 kJ/mol at 298 K or Qev = 26.6 kJ/mol 

at 610 K. The kinetic energy of the system strongly decreases as the kinetic energy of the 

attacking molecule is transferred into the potential energy of the nanodroplet. Note that the 

interaction of a “hot” molecule (T > Tb) with a “cold” nanodroplet (T < Tb) leads to a decrease in 

the molecule’s energy and a corresponding increase in the nanodroplet’s energy, and then to the 

situation when the energies (temperatures) of both become close. The use of nanodroplets at high 

temperatures is restricted by their fast decomposition (see Fig. 8). The results of our calculations 

suggest that in the case where the attacking molecule is parallel or almost parallel to the droplet 

surface, the interaction between this molecule and the surface molecules takes place with many 

CH groups. Therefore, this interaction is expected to be maximal; i.e. the potential energy can be 

minimal at a certain distance between the molecule and the surface. Then, with the molecule 

approaching the surface, the potential energy grows strongly and the kinetic energy of the 

molecule decreases. This multi-centred interaction provides faster dissipation of the excessive 



17 

 

kinetic energy of a hot attacking molecule in the droplet in comparison with a uni-centred 

interaction (spear-type attack). Therefore, the probability of an attacking molecule sticking to the 

droplet is greater in the case of molecules approaching parallel or almost parallel to the droplet 

surface than for molecules attacking the droplet surface at high attacking angles. 

 
Fig. 8. Interaction of an n-dodecane molecule with a nanodroplet of 64 C12: (a) initial geometry 

optimised with MM+; the system is heated (MD/FF(MM+)) for 5 ps at (b) 273 K, (c) 373 K, (d) 

489.5 K (boiling temperature, Tb), (e) 773 K (with the value of Ek of the attacking molecule 

corresponding to the temperature of the system) in an infinite space and (f) in a box with periodic 

boundary conditions at the sides of the box, approximating a flat free surface at 473 K for the 

heating period 3.5 ps.  

 

The process of the interaction between the attacking molecules and nanodroplets (with the 

initial geometry shown in Fig. 8a), heated at T = 273 K, 373 K, 489.5 K, and 773 K for 5 ps, is 

shown in Figs. 8b-e. In all cases, the initial kinetic energies of attacking molecules are equal to 

those of molecules in nanodroplets, and the nanodroplets are located in free unbounded space. As 

follows from Figs. 8b,c, the nanodroplet structures remain stable at 273 K and 373 K according to 
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MD/FF (MM+) calculations. In these cases, relatively cool attacking molecules are condensed at 

the nanodroplet surface, i.e. the condensation coefficient is close to unity. At n-dodecane boiling 

temperature (489.5 K), the nanodroplet starts to disintegrate into small clusters and individual 

molecules (see Fig. 8d). This decomposition of the nanodroplet into monomolecular and clustered 

fragments becomes more intensive at 773 K (see Fig. 8e). 

To model the behaviour of larger structures and to analyse the evaporation process, a 

nanodroplet is located in a box with periodic boundary conditions at the sides of the box (Fig. 8f).  

The MD/FF calculations of such an n-dodecane system at 473 K show only slow removal of 

individual molecules. This result indicates that the condensation process can be less effective at T 

close to the boiling temperature than at lower temperatures. This corresponds to a decrease in the 

value of the condensation coefficient. Thus, the comparison of the mobility of molecules in 

nanodroplets in free space (Fig. 8a-e) and confined space (Fig. 8f) shows that the mobility of 

molecules is expected to reduce when the size of droplets increases. We can anticipate that the 

mechanisms of evaporation of large droplets (microdroplets) and nanodroplets are likely to 

involve rather different processes. In the case of microdroplets, individual C12 molecules are 

evaporated from their surfaces, while in the case on nanodroplets, they are disintegrated into 

clusters and individual molecules. This difference is attributed to different numbers of 

neighbouring molecules in clusters, nanodroplets and microdroplets, i.e. different numbers of 

intermolecular bonds per molecule, which should be broken to enable the removal (evaporation) 

of these structures from the nano- and microdroplets. As follows from our analysis, the 

accommodation time for the dynamic (DRC) interaction of a hot molecule (T > 500 K) with a 

nanodroplet is rather short. This time can be estimated using the Frenkel formula [52,56] for 

accommodation time (lifetime) of a molecule at a surface 

0 exp( / )BE k T  ,          (5) 

where 0  0.1-1.0 ps (time of molecular vibration), and E is the interaction energy. The value of 

E can be estimated as E = Qa - Ek, where Qa is the enthalpy of adsorption of a molecule at a 
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nanodroplet surface. If Qa = Ek in Eq. (5) then   0, but structures shown in Fig. 7a-c are 

characterized by  > 0  0.1-1.0 ps, i.e. Qa > Ek. In the case shown in Fig. 7d, however,   0.4 ps 

and Qa < Ek. If we assume that Qa  Ge, then at 420 K, Ge  8.2 kJ/mol, Ek  5.2 kJ/mol, and  

 0.24-2.4 ps. If the accommodation time is longer than 0.24-2.4 ps at 420 K, then we can assume 

that a molecule is condensed at a nanodroplet.  

 As follows from the above-mentioned results, the condensation coefficient (i.e. the 

attachment of attacking molecules to a droplet surface) is expected to decrease with increasing 

temperatures of attacking molecules due to the increasing probability of scattering of attacking 

molecules at the clusters’/nanodroplets’ surface. Also, the lifetime of the “surface” molecules 

exponentially decreases with temperature and the Gibbs free energy of evaporation decreases 

when the temperature of nanodroplets increases. These processes make additional contributions 

to the reduction of the condensation/evaporation coefficient with temperature. This decrease in 

the evaporation coefficient agrees with the prediction of the classical theory based on the MD 

simulations of n-dodecane molecules [15,16].  

 

4. Conclusion 

The evaporation/condensation processes in molecular clusters and nanodroplets of n-alkane 

molecules in the C8-C27 range are investigated using quantum chemical methods (SMD/HF or 

SMD/B3LYP with the 6-31G(d,p) basis set). These methods were used to estimate changes in the 

Gibbs free energy during the transfer of a molecule from a liquid medium (clusters or 

nanodroplets) into the gas phase.  

Evaporation rate () is analysed using the above-mentioned quantum chemical solvation 

model (SMD) and the kinetic gas theory, assuming that the system is in a state of thermodynamic 

equilibrium (evaporation and condensation rates are equal). The evaporation rate is shown to 

decrease with increasing cluster/nanodroplet diameter and decreasing temperature. The relative 

number of evaporated molecules, however, does not depend on cluster/nanodroplet diameters, 
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and increases with increasing temperature. At certain temperatures, the clusters/nanodroplets are 

expected to fully evaporate. The relative number of residual molecules in clusters/nanodroplets 

for n-alkanes in the range C8-C27 is shown to increase with temperature and the carbon numbers 

in the molecules. Thus the evaporation process of a mixture of n-alkanes is expected to lead to 

increased concentration of heavy n-alkanes in droplets. 

The details of the collision processes of molecules with nanodroplets were investigated 

using the DRC method. The DRC calculations were performed for molecules interacting with a 

cluster (7 molecules) or a nanodroplet (64 or 128 molecules) of n-dodecane molecules. 

It is shown that at large angles of attack (45-90
o
), a molecule is absorbed by a cluster or 

nanodroplet even of relatively small diameter (d = 2-7 nm), if the kinetic energy is low 

(corresponding to T < 473 K) and the attacking molecule is not headed directly toward one of the 

surface molecules. The probability of the attacking molecule sticking to a droplet is maximal if 

the molecular plane is parallel or almost parallel to the droplet surface as this corresponds to 

multipoint interactions of relatively long dodecane molecule with the droplet surface. If the 

kinetic energy of the attacking molecules is high (T > Tb) then it is expected that it will scatter 

and be removed from the cluster/nanodroplet surface. Molecule-nanodroplet interaction results 

(sticking or scattering) depend on the kinetic energy (temperature) and orientations of the 

attacking molecule and surface molecules.  

It is shown that the mechanisms of evaporation of microdroplets and nanodroplets are likely 

to involve rather different processes. In the case of microdroplets, individual C12 molecules are 

evaporated from their surfaces, while in the case of nanodroplets they can be disintegrated into 

clusters and individual molecules. The decrease in the evaporation/condensation coefficient with 

temperature, predicted by our analysis, agrees with the prediction of the classical theory based on 

the MD simulations of n-dodecane molecules. 
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Nomenclature and parameters 
B3LYP Exchange-correlation functional in DFT  

DRC  Dynamic Reaction Coordinate 

DFT  Density Functional Theory 

FF  Force Field 

HF  Hartree-Fock 

KGT  Kinetic Gas Theory 

MD  Molecular Dynamics 

MM  Molecular Mechanics 

PCM  Polarizable Continuum Model 

PM6 and PM7   Semiempirical methods 

SMD  Solvation model 

 

Gs  Gibbs free energy of solvation (kJ/mol) 

S  Entropy change (J/(K mol)) 

  Evaporation rate (s
-1

) 

0   Time of molecular vibration (s) 

 

bij  Collision rate (s
-1

) 

Ek  Kinetics Energy (kJ/mol) 

Ep  Potential Energy (kJ/mol) 

kB  Boltzmann constant (1.3806488×10
−23

 J/K) 

mi  Molecular mass (atomic units, a.u.) 

n0   Initial number of molecule 

nev   Number of evaporated molecules from a droplet 

Q   Evaporation enthalpy (kJ/mol)  

t  Time (s) 

T  Temperature (K) 

 

 

  

http://en.wikipedia.org/wiki/Joule
http://en.wikipedia.org/wiki/Kelvin
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