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Non-modal stability of round viscous jets
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Hydrodynamic stability of round viscous fluid jets is considered within the framework
of the non-modal approach. Both the jet fluid and surrounding gas are assumed to be
incompressible and Newtonian; the effect of surface capillary pressure is taken into
account. The linearized Navier—Stokes equations coupled with boundary conditions at
the jet axis, interface and infinity are reduced to a system of four ordinary differential
equations for the amplitudes of disturbances in the form of spatial normal modes. The
eigenvalue problem is solved by using the orthonormalization method with Newton
iterations and the system of least stable normal modes is found. Linear combinations
of modes (optimal disturbances) leading to the maximum kinetic energy at a specified
set of governing parameters are found. Parametric study of optimal disturbances is
carried out for both an air jet and a liquid jet in air. For the velocity profiles under
consideration, it is found that the non-modal instability mechanism is significant for
non-axisymmetric disturbances. The maximum energy of the optimal disturbances to
the jets at the Reynolds number of 1000 is found to be two orders of magnitude larger
than that of the single mode. The largest growth is gained by the streamwise velocity
component.
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1. Introduction

The problem of jet instability and break-up was first studied within the framework
of the classical linear hydrodynamic stability theory by Rayleigh (1945). Since then,
the practical importance of the problem has given rise to a large number of theoretical
and experimental investigations (Lin & Reitz 1998; Soderberg & Alfredsson 1998;
Sazhin et al. 2008; Turner et al. 2012b).

To the best of the authors’ knowledge, stability of round jets has been analysed only
within the framework of the modal approach, which is based on the analysis of small
disturbances to the main flow in the form of a single normal mode. There are several
examples of shear flows, where the classical stability theory fails to predict flow
transition even qualitatively. For example, it is experimentally observed that the flow
in a round pipe loses stability at sufficiently large Reynolds numbers (Reynolds 1883),
which contradicts the results of the classical hydrodynamic stability theory (Drazin
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& Reid 1983). The instability scenario does not depend on the level of turbulence
in the main flow while it is sufficiently small (Klingmann 1992). The discrepancy
between the experiments and theoretical stability studies gave rise to so-called ‘bypass’
approaches, which describe the transition of shear flows without taking into account
the modal (exponential) structure of disturbances. It is assumed that there are some
initial disturbances to the main flow that can grow and reach the amplitude required
to trigger nonlinear instability or provide basic states for secondary instabilities even if
all normal modes decay.

About 40 years ago, it was shown theoretically that there are disturbances to all
plane-parallel shear flows, which grow linearly during the limited interval of time (‘lift-
up’ or ‘vortex-tilting’ mechanism) (Ellingsen 1975; Landahl 1980). The non-modal
(algebraic) growth of small disturbances can be described based on the analysis
of linear differential operators, which govern the evolution of small disturbances
(e.g. coupled Orr—Sommerfeld and Squire operators for normal velocity and normal
vorticity (Butler & Farrel 1992)). These operators are non-Hermitian, which means
that their system of eigenvectors (normal modes or basic solutions) are not orthogonal.
It is not sufficient to consider only the eigenvector with the largest growth rate in
order to describe the evolution of all small disturbances over the limited time interval,
the whole spectrum should be used. Even if all eigenvectors decay (the flow is stable
in the classical sense), there still can be some combinations of eigenvectors which
grow significantly during a limited interval of time before they eventually decay. This
non-modal or transient growth can trigger the flow transition (Schmid & Henningson
2001). The combinations of normal modes with the largest energy at a certain time
instant (for the temporal approach) or location downstream (for the spatial approach)
are called ‘optimal disturbances’.

The non-modal or transient growth of disturbances has been studied for a number
of typical shear flows (Butler & Farrel 1992; Reshotko & Tumin 2001; Tumin &
Reshotko 2001). It has been found that the optimal disturbances to boundary layer,
plane Poiseuille, Couette and pipe flows are streamwise-elongated structures similar
to those found in experiments. To the best of the authors’ knowledge, the idea of
algebraic instability has not been applied to the problem of round jet break-up, while
streamwise ligaments and other streamwise patterns are observed in experiments on jet
flows (Hoyt & Taylor 1977; Lasheras & Hopfinger 2000; Marmottant & Villermaux
2004). De Luca (2001) has studied optimal disturbances to a plane viscous jet and has
not found any significant non-modal growth. The optimal-to-single mode energy ratio
has not exceeded 2.5. The algebraic instability of a wall jet was investigated by Levin
et al. (2005). It has been found that the energy of stationary optimal disturbances (with
zero frequency) is three orders of magnitude larger than that of the first mode with
the same initial energy. The non-modal growth of disturbances to a sheared interface
has been analysed by Yecko & Zaleski (2005). The significant temporal growth of
streamwise-independent disturbances has been found. The maximum kinetic energy of
optimal disturbances is several orders of magnitude larger than its initial value, and
non-modal growth increases with an increase in the Reynolds number. The shape of
optimal disturbance has been studied and it has been found that there is a significant
amplification of streamwise velocity indicating the origination of streamwise ‘streaky’
structures.

The present study is aimed at the analysis of the algebraic instability of two
types of jets, air jets in air and liquid jets in air, which is expected to improve our
understanding of the problem of jet break-up. The investigation of the latter problem
is important for various environmental and engineering applications, including diesel
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engines (Sazhin et al. 2003; Crua et al. 2004; Sazhin et al. 2008; Turner et al. 2012b).
The understanding of the jet break-up would help us to control it, although the latter
problem is beyond the scope of this paper. Several types of main flow velocity profiles
are considered, which correspond to different distances from the orifice and different
nozzle lengths. In order to perform a thorough non-modal analysis, the linear stability
problem is considered in the most general way: the disturbances are assumed to be
three-dimensional and non-axisymmetric. In contrast to the algebraic instability studies
mentioned above, we consider spatially growing disturbances instead of temporal ones.
It allows us to study the spatial evolution of disturbances in a downstream direction
and evaluate the possible effect of non-modal growth on break-up length of jets.

2. Problem formulation
2.1. Governing equations

We consider an isothermal flow of fluid, injected from a round orifice, into another
fluid. Two types of jets are studied: a fluid jet released into the identical fluid (we
will refer to it as a ‘submerged jet’) and a fluid jet surrounded by a fluid with
different physical properties (‘liquid jet in air’). Both fluids are incompressible and
Newtonian. The system of non-dimensional governing equations in the cylindrical
coordinate system (z,r,6) with the z-axis directed along the flow is presented as
(Batchelor 1967)
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where the subscript o = [, g indicates the jet fluid (liquid) and surrounding fluid (gas),
respectively, U is the maximum velocity of the jet, L is the length scale (radius of the
orifice), p, and u, are densities and viscosities of the fluids, pressures p are scaled by
the corresponding dynamic pressures p,U? (different in jet liquid and surrounding gas).
We have chosen the following independent governing parameters: Re; is the Reynolds
number based on jet liquid parameters; n and ¢ are gas-to-liquid density and viscosity
ratios.
System (2.1)—(2.4) is coupled with the following boundary conditions:

(i) kinematic conditions at the axis r =0 (all flow parameters are finite):

vl <00, pr<oo, Vz,1=0; (2.6)
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(i1) kinematic conditions at the interface r = H(z, 8, t) (fluid particles at the interface
do not leave it)

oH + oH n oH n Wy 0H

Ta. Uy —— Vo 7 R

ot 0z ar r 06
(iii) continuity of velocity and jump in normal stress due to capillary force acting at

the interface r = H(z, 0, 1)

0, a=lg 2.7

U =U,, S —ns;,=R, (2.8)

where
: 1
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s;, §, are jet liquid and ambient gas stresses at the interface; R is the capillary
force; n = {n;, ny, n3} is the unit vector normal to the interface; v, ; are velocity
components of the fluids; o is the surface tension; e; (i = 1, 2, 3) are basis vectors;
We is the Weber number; stresses s, are scaled by the corresponding dynamic
pressures p, U? similar to (2.2)—(2.4);

(iv) conditions of decay at the infinity » — oo

1
Sq = —Poll +
Palt T 5

o

(2.10)

v,— 0, p,<oo. (2.11)

2.2. The base flow velocity profiles

The velocity distribution in a stationary round axisymmetric liquid jet in air depends
on the velocity profile at the orifice, which in turn is determined by the length of
the nozzle L, (Duda & Vrentas 1967; Soderberg & Alfredsson 1998). If L, is small
compared with a typical relaxation length of the velocity profile in the pipe L. ~ aRe,
where a is the pipe radius, then the velocity profile at the orifice is nearly uniform. In
the opposite case of a sufficiently long nozzle, the velocity distribution at the orifice
is close to the Hagen—Poiseuille parabolic profile. By varying the nozzle length, it is
possible to obtain different velocity profiles at the orifice with the shapes somewhere
between these two limiting cases.

The process of velocity relaxation in round jets has been studied by a number
of authors including Duda & Vrentas (1967) and Shkadov & Sisoev (1996). A
non-uniform velocity profile of the jet fluid at the orifice tends to become uniform
downstream from the orifice, as the velocity at the interface is subject to a momentum
exchange with the core of the jet. It was found that for horizontal jets at sufficiently
high Reynolds numbers (Re > 200), the dynamics of velocity distribution across the
jet is affected only by the surface tension determined by the Weber number. The
relaxation length of the jet radius is significantly shorter than that of the jet velocity,
which is of the order of aRe. It was shown that the relaxation process is quite intense
in the vicinity of the orifice; both the jet radius and the velocity at the interface vary
significantly over the near-orifice region with the length of the order of 0.0laRe. The
relaxation process is slow at 0.01Re < z < 0.1Re (the coordinate z is scaled by the
radius of the jet, introduced in the above set of governing equations). This allows
us to consider the local stability of the jet, avoiding the dependence of the velocity
distribution in the main flow on the downstream location z. Note that the focus of
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FIGURE 1. Jet velocity profiles: curves 1 and 2 show profiles U, , for the submerged jet
(86 =0.5); curves 3 and 4 show profiles Us; 4 for the liquid jet in air, { = 0.1 (parameters of the
profiles are presented in appendix A).

the current study is on the analysis of the possibility for non-modal growth of small
disturbances to round jets, while the effect of the velocity profile variation in the
downstream direction on transient growth is beyond the scope of our paper.

We consider the stability of a cylindrical jet with velocity V, and pressure P, in the
following form:

V,=1{U,(), 0,0}, P, =const. (2.12)

Functions (2.12) satisfy system (2.1)—(2.4) subject to boundary conditions
(2.6)—(2.11).

In the case of a submerged jet, the velocity and the pressure are subject to
conditions (2.6) and (2.11) only. We consider two velocity profiles U, ,, namely the
‘top-hat’ velocity profile, which mimics the velocity distribution in the submerged jet
close to the orifice, and the ‘smooth’ profile (Landau & Lifshitz 1959), which is the
asymptotic distribution of the velocity in the far-downstream region of the submerged
jet (figure 1, curves 1 and 2):

U\(r) = 1, r<l
1= exp{—(r—1?/8}, r>1’
1
Uy(r) = ——, 2.14
() = (2.14)
where parameter § determines the steepness of the velocity profile. In our study we

consider § = 0.5.
For the liquid jet in air, boundary conditions (2.6)—(2.11) can be written as

Uy(r) > 0,r = 00;  Ul(l) =U,1),U)(1) = {Ué(l); |Uy(r)] < oo, r— 0. (2.15)

(2.13)

We consider two velocity profiles Us 4 given in appendix A, which satisfy conditions
(2.15) and determine the velocity distributions in the cross-section of the liquid jet in
air, at a certain distance from the orifice. These are shown in figure 1, curves 3 and 4.
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Profile U; refers to the case when the nozzle is long enough to develop the
Hagen—Poiseuille flow at the orifice, while U, refers to a shorter nozzle. As mentioned
earlier, there is a rapid relaxation of the jet velocity in the vicinity of the orifice. We
have chosen intermediate velocity profiles, typical for the region away from the nozzle.

In various engineering applications, jets are unsteady (e.g. in internal combustion
engines the fuel jet is accelerated during a limited interval of time before the
volumetric flux of the fuel levels off). Linear stability analysis of unsteady flows
is significantly more complex compared with that of stationary flows (Schmid &
Henningson 2001; Turner et al. 2012a). The time scale of the disturbance growth and
propagation should be small compared with the time scale of acceleration/deceleration
of the main flow. Otherwise, the normal modes, predicted by the classical local
stability approach, fail to describe the evolution of small perturbations to the non-
stationary jet.

2.3. Formulation of the linear stability problem

We consider the stability of axisymmetric cylindrical jets with profiles U;_4. Note
that the origin of the coordinate system z = 0 is placed at a certain distance
downstream from the nozzle, where the cross-flow distribution of the velocity
corresponds to specified profiles. The base flow described by (2.12) is subject to
small three-dimensional disturbances v, = {u,, vy, Wy}, and p,. The linearized system
of governing equations is written as

ouy 10v,r 10w,

=0, (2.16)
0z r or r 06
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Linearized boundary conditions at the axis (2.6) and at infinity (2.11) remain the
same, while linearized conditions at the disturbed interface r = 1+ h(z, 0, 1) (2.7), (2.8)
are written at the undisturbed surface » = 1 (using the Taylor series) as

on + U, oh [ (2.20)
a. a7 = Vo, o =1 .
ot 0z 8
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We are interested in the solutions to the linearized system of governing equations in
the form of travelling waves with a real frequency w, integer azimuthal number m and
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complex wavenumber k:
Q(z,r, 0,1 =q(rjexpli(kz + mb — wn)}, (2.25)

where vector Q stands for (i, Vg, Wo» Po)-

If we substitute expressions (2.25) into (2.16)—(2.24), we obtain the system of
four ordinary differential equations coupled with homogeneous boundary conditions.
Following the standard approach to the Cauchy problem and using the continuity
(2.16) to eliminate v”(r), the system can be rewritten in the form of six first-order
differential equations:

an =Oa Aql(0)=05 Bql(l)chg(l)a Dqg(oo)=09 q={M’U»W,p, u/awl}a
(2.26)

where L is a 6 x 6 first-order linear differential operator, A, B, C and D are
6 x 6 matrices of boundary conditions. The explicit form of (2.26) is presented in
appendix B. Note that all parameters of liquid at interface ¢;(1) can be expressed in
terms of gas parameters ¢,(1) and vice versa. Therefore, (2.26) determine a two-point
boundary-value problem rather than a three-point boundary-value problem.

Eigenvalue problem (2.26) leads to a set of eigenfunctions and eigenvalues for a
given set of governing parameters Re;, ¢, n, We, m and w:

(@i gei ki), i=1...00. (2.27)

Since the jet flow is unbounded in the r-direction, there is also a continuum set of
modes determined by eigenvalue problem (2.26), and it has to be considered while
solving the initial-value problems for the linearized system of governing equations
(2.16)—-(2.19) (Schmid & Henningson 2001). It is a common approach to represent
the continuous spectrum by discrete eigenvalues and consider only a finite number
N of modes with the highest increments of growth (Butler & Farrel 1992). This can
be done by replacing the infinite flow domain r > O with the finite flow domain
0 < r <R, where R is sufficiently large. The number of modes N and the size of the
computational domain R are determined by the required accuracy of calculations and
cannot be a priori specified.

2.4. Non-modal stability and optimal disturbances

We assume that every 7- and 6-periodic solution to system (2.16)—(2.19) with a given
frequency w and azimuthal mode number m can be approximated by a linear
combination of N normal modes (2.25) (Schmid & Henningson 2001):

N
Gu(r.2.0.0) =Y (¥4, (r) exp(iki2)} expli(mo — o))}, (2.28)

J=1

where complex vector y is the spectral projection of the disturbance into the set of
normal modes.

In order to evaluate the growth of disturbances (2.28), the appropriate norm E(q)
should be introduced. The usual choice for the norm in studies of transient growth in
single-fluid flows is the kinetic energy of the disturbance confined to single periods
in 6 and r (Butler & Farrel 1992; Reshotko & Tumin 2001; Tumin & Reshotko
2001; Yecko & Zaleski 2005). When studying the transient growth in two-fluid
flows it is necessary to include an additional term related to the interfacial energy
into the expression for the norm, otherwise the calculations converge very poorly
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(Renardy 1987; van Noorden et al. 1998; South & Hooper 1999; Malik & Hooper
2007). We consider the following expression for the energy norm:

E=F4+nG+1, (2.29)

where

2ab/ / /({Real[uz]} + {Real[v]}* + {Real[w/]}*)rdrdedd,  (2.30)

2ab/ / /({Real[ug]} + {Real[v,]}* + {Real[w,]}*)rdrdrdo,

a:—b_—— 2.31)

)
2ab/ / M, (Real[h])* dtd6 (2.32)

Real[-] corresponds to the real part of variables, R >> 1 is the outer boundary of the
flow domain in the r-direction and M, > O is a real constant which determines the
input of the interfacial energy term into the norm.

All components of linear combination (2.28) are #- and 6-periodic functions Q with
the following properties:

N
0z, 1, 0,1 =4(r, ) exp(ifmd — wi1}),  §(r,2) =Y yq;(r) exp(ikz), (2.33)

j=1
“\* 1 1
(Real{Q})” = (Q J;Q ) = (@ +{Q'P) + 00", (2.34)
N
Z ¥4} qsvs exp(—i{Im[k;] + Im[k,]}). (2.35)

where the asterisk denotes the complex conjugation.

Since Q* and (Q*)* are r- and O-periodic functions, their integrals involved in
expressions (2.29) are equal to zero. Hence, using expressions (2.33)—(2.35), energy
functional (2.29) can be presented as a positively defined quadratic form with respect
to components of the spectral projection y:

N
Ez.y)=) ¥'Ey=7vEQY, (2.36)

J,s=1
where

E(z) =F(z) + nG(2) + M1 (2), (2.37)
1 1
Fj = 1 / (] g5 + v} 015 + W wi)r drexp(—i{lm[k] + Im[k]}z),  (2.38)
0

1

R
Gj, = 1 /1 (u;jug,s + v;‘,jvg,s + w;ng,s)r drexp(—i{Im[k;] + Im[k]}z), (2.39)

I, = K*hy exp(—i{Im[k;] + Im[k,]}2), (2.40)

Fj, G;; and I;; are components of energy matrices F(z), G(z) and I(z) evaluated
at a downstream location z (they are Gram matrices of eigenvectors v;;, and v,
Jj»s=1...N), parameter M > 0 determines the magnitude of the interfacial energy
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FIGURE 2. Convergence of transient growth calculations, maximum optimal-to-single mode
energy ratio E,,/E,, is plotted against the number of modes N for submerged jet with
‘smooth’ velocity profile U, (a) and for liquid jet in air with velocity profile U; (b) at ¢ = 0.1,
n=1073, We=10 (o, M =0; B, M =0.01; O, M =0.1; ¢, M = 1; o, M = 0 and We = 00).
Here Re = 10>, m =1 and w = 0.1.

term. The effects of different choices of M are explored in figure 2(b). Note that
Renardy (1987), van Noorden et al. (1998), South & Hooper (1999), Yecko & Zaleski
(2005) and Malik & Hooper (2007) used a similar interfacial energy term proportional
to the squared real part of the interface perturbation, the difference is in the choice of
M.

The focus of our analysis is on finding a combination of eigenfunctions (2.28),
which provides the maximum of the energy functional (2.36) at a fixed position z,
given the energy of the disturbance at z =0 is unity:

max E(z, ) — ?: E(0, y) = 1. (2.41)
Yy

The solution y to the maximization problem (2.41) determines the disturbance with
the highest possible energy at a given position z. For large z, the value of energy
E(z, y) is determined by the least stable mode only, while at intermediate values of z,
the influence of other modes can be significant and the algebraic instability of the flow
can be initiated.

3. Numerical solution
3.1. Algorithm of the numerical solution

Eigenvalue problem (2.26) is solved numerically using the orthonormalization method
proposed by Godunov (1961). Below we present the main ideas of the numerical
algorithm for finding a system of normal modes and optimal disturbances.

The number of independent solutions to problem (2.26), which satisfy one of the
boundary conditions either at » << 1 or r > 1, depends on the value of the azimuthal
wavenumber m (Morris 1976). There are one or two independent solutions for m =0
(torsional and meridional modes respectively), and three solutions for m > 0. The
asymptotics of these solutions at the specified regions can be found analytically (Garg
& Rouleau 1971; Morris 1976). In what follows, we present the orthonormalization
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algorithm for finding eigenvalues for problem (2.26) and consider the case of non-
axisymmetric disturbances m = 1.

According to the theory of linear ordinary differential equations, the general
solution to the boundary-value problem under consideration is presented as a linear
combination of three fundamental solutions ¢;, j = 1, 2, 3, which satisfy the boundary
condition at the outer boundary r >> 1:

q(r) = a1q,(r) + a)q»(r) + aszqs(r). (3.1

Three independent fundamental solutions ¢;(r), i = 1,2,3, are obtained by the
integration of (2.26) starting from the outer boundary of the flow r = R towards
the axis using the fourth-order Runge—Kutta method. The initial conditions q;(R) are
specified according to the asymptotical solution to (2.26) for r >> 1, which involves
Hankel functions of first and second orders depending on the governing parameters
(Morris 1976). At the jet axis r =€, ¢ < 1 the linear combination of solutions ¢;(r),
i=1,2,3, should be matched with a linear combination of asymptotical independent
solutions to (2.26) at r < 1 (Garg & Rouleau 1971). If the Reynolds number Re is
large, initially independent vectors ¢q;, j =1, 2, 3, tend to become linear-dependent in
the process of integration, which reduces the accuracy of calculations significantly. The
orthonormalization of these vector functions is required in order to maintain reasonable
accuracy (Godunov 1961). Vector functions g;, j =1, 2, 3, are orthonormalized using
the standard Gram—Schmidt procedure, and the transformation matrices are stored in
order to calculate the eigenfunctions.

Let the linear-independent asymptotic solutions to system (2.26), obtained
analytically at r < 1, be qj(.’, j=1,2,3, (Garg & Rouleau 1971). Then, the boundary
conditions at the axis can be presented as

a141(&) + arq2(¢) + aszqs(e) = a4q(1)(8) + asqg(e) + a(,qg(s), or La=0, (3.2)

where @ = {a,, ..., as}". The homogeneous system of six linear algebraic equations
(3.2) has a non-trivial solution only if its determinant is equal to zero:
W(k) = Det{L.} = 0. (3.3)

For a given set of governing parameters Re;, 1, ¢, We, m, w, dispersion relation (3.3)
determines a set of eigenvalues k; as mentioned in § 2.3. The solution of (3.3) can be
carried out using the standard Newton—Raphson iterative algorithm. An initial guess
for the eigenvalues ky is required in order to start calculations. Since the system of
eigenvalues is not a priori known, we search the eigenvalues by varying the values
of ky with a sufficiently small step over a wide domain in the complex k-plane. The
verification of the numerical algorithm is presented in § 3.2.

The eigenfunctions are expected to vary rapidly over the jet core (r < 1) and in the
vicinity of the interface (r ~ 1), while at the outer boundary of the flow (r > 1) they
tend to zero. In order to maintain reasonable accuracy of calculations, using mesh with
a reasonably small number of nodes, we have implemented the variable mapping. The
mesh is refined in the vicinity of the axis of the jet. The following mapping function
r(s) is used:

r=ée'—ry, s=In(r+ry), e<r<R. 3.4
The value of parameter r, > 0 is determined based on the following conditions:

(i) one of the mesh nodes should coincide with the interface r = 1;
(i1) there is a specified number of mesh nodes in the liquid jet core N, (r < 1) and in
the gas N,.
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Current calculations

R=10

0.2325+i0.0666
0.3838+4-10.3905
0.4840+i0.8973
0.5634+i1.5852

R=150

0.2321+i0.0665
0.3839+i10.3904
0.4839+i0.8973
0.5634+-11.5852

Morris (1976)

0.2322+i0.0666
0.3840+i0.3904
0.4842+i10.8976
0.5628+-11.5850

TABLE 1. Comparison of calculated eigenvalues k =k, + ik; for ¢ = 1073, N; = 200,
N, =800 with those reported by Morris (1976), Re =80, m =0, w =0.2, N; and N,
are the numbers of mesh nodes in the jet core (r < 1) and surrounding gas (1 <r < R),
respectively.

For a given set of parameters ¢, R, N; and N,, the value of ry is calculated using the
Newton method.

The next stage involves the calculation of optimal disturbances based on the
system of eigenfunctions. The integral over the computational domain involved in
the expression for energy functional (2.36) is calculated numerically, and the energy
matrix E(z) is obtained for a given downstream location z. The optimization problem
for energy functional (2.41) is solved using a standard Lagrange-multiplier technique.
The corresponding Lagrange function P and Euler-Lagrange equations are presented
as

P=y'EQ@Qy + »y"'EQQ)y — 1), (E(z)+ AE(0)y =0. (3.5)

The second equation in system (3.5) is a generalized eigenvalue problem for
positively defined Hermitian energy matrices evaluated at a starting location z =0
and at current position z. Eigenvector y, which corresponds to the highest eigenvalue
of (3.5), determines the optimal disturbance. Both the shape of the optimal disturbance
and its energy depend on the location z for a given set of governing parameters. Note
that the jets under consideration are unstable for a wide range of governing parameters,
and the first mode grows in the downstream direction. The energy of any combination
of normal modes which involves the first mode would grow as well. Therefore, we
studied the maximum optimal-to-single mode energy ratio if the flow is unstable at the
specified set of governing parameters, and the actual optimal energy where this was
not the case. Problem (3.5) is solved numerically using the QR-algorithm (Wilkinson
1988).

3.2. Verification of the numerical algorithm

The numerical algorithm is tested for calculation of eigenvalues for the submerged jet
with the ‘smooth’ velocity profile U,. The comparison of calculated eigenvalues with
those reported by Morris (1976) is presented in table 1. We note that only meridional
modes are presented there.

Test calculations of normal modes have also been carried out for liquid jets in air,
and it has been found that the convergence radius for the Newton iteration method,
used to solve dispersion relation (3.3), is highly sensitive to the location of the inner
boundary r = e¢. When calculating the eigenvalues, we have considered the inner
boundary to be sufficiently far from the axis (¢ ~ 0.1). Then we have performed
iterations to obtain the eigenvalues for smaller ¢. We have found that the desired
accuracy of calculations is achieved for R =50, ¢ = 1073, N; = 200 and N, = 800.
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Note that in stability calculations of unbounded flows the infinite flow domain
is approximated by a finite flow domain, and therefore the continuous spectrum
is represented by discrete modes (Butler & Farrel 1992; Schmid & Henningson
2001). Both discrete and continuous parts of the spectrum are obtained and used
in calculations of optimal disturbances.

One of the main disadvantages of the orthonormalization method is that it requires
the first guess of the complex wavenumber to be close enough to the eigenvalue,
otherwise the algorithm will not converge (or converge to another neighbouring
eigenvalue). The non-modal analysis involves the calculation of N most unstable
modes, and thorough calculations must be carried out in order not to overlook
any normal modes, which would result in a reduction of the transient growth. The
procedure for finding eigenvalues was cross-checked and customized by the results
of spectra calculations using the QR-algorithm (Gary & Helgason 1970) implemented
for a submerged jet. Another difficulty is in maintaining a reasonable accuracy of the
calculations of higher (stable) modes (Schmid & Henningson 2001). Test calculations
showed that the absolute error of calculations of the 191st mode of the liquid jet in air
with the velocity profile U; at Re = 10°, ¢ = 0.1, n = 1073, We = 10 with 1000 nodes
(k=0.1268 +i11.922) is below 1073, which we assumed to be sufficiently small.

A sensitivity study of the solution to the optimization problem (2.41) has been
carried out. A typical dependence of the optimal-to-single mode energy ratio on the
number of normal modes N (see (2.28)) for a submerged jet is presented in figure 2(a)
(the modes are ordered by the growth rate). It has been found that in the single-fluid
case it is sufficient to consider ~30 modes in order to maintain reasonable accuracy of
calculations.

As mentioned earlier, several authors have shown that the convergence of transient
growth calculations for multiphase flows requires the interfacial energy term to be
included into the norm. Test calculations of optimal disturbances with different
values of parameter M (see (2.36)) have been carried out. The results have shown
that the inclusion of the interface energy term does not affect the convergence of
transient growth calculations for liquid jets in air. All calculations performed with
M =0,0.01,0.1, 1 require around N =200 modes to converge (figure 2b). Note that
the maximum difference between the values of optimal energy obtained at different M
is around 50 %. We are focused on analysing the physical phenomenon of transient
growth in jets and, therefore, the choice of M depends only on the convergence of
our algorithm. In what follows we present the results of transient growth calculations
at M = 0. Additional calculations of transient growth have been carried out in the
absence of the surface tension (interfacial terms in the boundary conditions at the
jet interface and in the expression for energy were set equal to zero). The results
are presented in figure 2(b). As follows from this figure, there is no convergence in
the absence of the surface tension and interfacial energy terms. The optimal energy
increases with an increase in the number of modes up to 200. This qualitatively agrees
with the results presented by South & Hooper (1999).

4. Results and discussion

4.1. Modal stability analysis

The modal stability of submerged jets with ‘smooth’ velocity profile U, was analysed
in a number of papers, including Batchelor & Gill (1962) and Morris (1976). It was
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3

FIGURE 3. The growth rate of the first mode —k; against the frequency w for the ‘top-hat’
velocity profile U; (2.13), m = 0. Curves 1-3 correspond to Re = 20, 50 and 1000.

found that jets with the velocity profile U, are stable with respect to axisymmetric
disturbances m = 0, and unstable at m > 0 for Re > 38.

In contrast to the ‘smooth’ jet, the ‘top-hat’ jet with the velocity profile U; is
found to be unstable at any value of the azimuthal number. The critical Reynolds
number value Re. is found to be ~20 (figure 3). This agrees with the results of
calculations carried out by Morris (1976) for a qualitatively similar jet velocity profile.
The submerged jets are unstable due to a shear-induced instability mechanism (Drazin
& Reid 1983).

It is found that the liquid jets in air described by velocity profiles Us; 4 are unstable
at any Reynolds number due to the viscous analogue of the Kelvin—Helmholtz
instability (Drazin & Reid 1983). Typical plots for spatial growth rate —k; versus
frequency o for the least stable mode are presented in figure 4. Note that there is a
range in frequencies, over which non-axisymmetric disturbances (m > 0) grow faster
than the axisymmetric disturbances (m = 0). Therefore, it is insufficient to consider
only axisymmetric disturbances in order to describe the stability of liquid jets in air
(Yang 1991). The maximum growth rate is gained by axisymmetric disturbances for
both main-flow jet velocity profiles Us 4.

4.2. Non-modal stability analysis and optimal disturbances

The maximization problem for energy functional (2.41), where the downstream
location z =z is a parameter, leads to the determination of the disturbance with
maximum kinetic energy at a given position z, among all combinations (2.28). It
is interesting to study optimal disturbances with the highest maximum energy gain
among all values of the parameter z,. Unless otherwise stated, in what follows only the
results of calculations of global optimal disturbances, optimized over locations z,, are
presented. Note that, for the case when the jet is unstable, it is more informative to
study the optimal-to-single mode energy ratio rather than the energies separately (they
both grow in space).

The parametric study of global optimal disturbances to jets with profiles U;_4
has been carried out. It is found that, for all velocity profiles under consideration,
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FIGURE 4. Growth rate of the first mode —k; against the frequency w for jet velocity profiles
U; (a) and U, (b). Curves 1-3 correspond to m = 0, 1 and 2, respectively. Here Re = 1000,
n=1073,¢=0.1 and We = 10°.
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FIGURE 5. The ratio of optimal-to-single mode kinetic energy for a ‘top-hat’ jet velocity
profile U; (2.13) versus the position downstream z at Re = 1000 for m = 0 (a) and m =1 (b).
Curves 14 refer to w = 0.1, 0.2, 0.5 and 0.0, respectively. Growth rates —k; of the first mode
are —0.0003, 0.0066, 0.0288 and 0.1921 for 1-4 (@) and 0.0827, 0.1582 and 0.3451 for 1-3

b).

the non-modal growth is significant only for non-axisymmetric disturbances m > 0
(figures 5-7). Note that in figures 5-7 we presented the dependence of the optimal-
to-single mode energy ratio on z with the largest maximum among all locations,
where it is optimized. In other words, we presented the solution to the problem (2.41)
optimized over locations z. The algebraic instability of submerged jets is stronger for
the ‘smooth’ velocity profile U, in a wide range of frequencies (@ > 0.1) and vice
versa at w = 0 (figures 5 and 6). Hence, at finite frequencies the non-modal growth
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FIGURE 6. The ratio of optimal-to-single mode energy versus z for a ‘smooth’ velocity
profile U, (a) at w = 0.1, 0.2 and 0.5 (1-3) and for profiles U; and U, (b) at w =0 (1, 3) and
w = 1073 (2, 4), respectively. Here Re = 1000, m = 1. Growth rates —k; of the first mode are
0.03, 0.0471 and 0.05 for 1-3 (a) and 0.0, 0.0, 0.0002 and 0.0004 for 14 (b).
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FIGURE 7. The optimal-to-single mode energy ratio against z for jet velocity profiles Us;
(a) and Uy (b). Curves 1-4 refer to w = 0, 0.1, 0.2 and 0.5, respectively. Here Re = 1000,
n=1073,¢ =0.1, We = 10° and m = 1. Growth rates —k; of the first mode are 0.0, 0.0225,

0.0503 and 0.1321 for 1-4 (a) and 0.0, 0.016, 0.0887 and 0.0972 for 1-4 (b).

of disturbances is more pronounced in the far-downstream region of the submerged
jet. For the liquid jet in air, the optimal-to-single mode energy ratio oscillates in the
downstream direction and levels off at large values of z, as the contribution of the least
stable mode to the linear combination (2.28) dominates at z >> 1 (figure 7). Note that
although the modal instability of liquid jets in air and submerged jets are initiated by
different mechanisms, the transient growth of disturbances to both jet types is strong.
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The growth rates of the first mode —k; are given in the captions to figures 5—7. These
rates allow us to estimate the actual growth of the optimal energy with z.

For the jet velocity profiles under consideration, the non-modal growth of non-
axisymmetric disturbances decreases with an increase in the frequency w: the highest
energy gain of optimal disturbances is gained at low frequencies w < 1 (figures 5-7).
The non-modal instability mechanism weakens with an increase in w, which could
be predicted a priori by analysing the dependence of normal modes on frequency w.
Although the growth rate of the first mode increases over a wide range of frequencies
(figures 3 and 4), all higher modes decay with an increase in w as k; ~ w. Therefore,
energy of disturbance in the form of linear combination of modes (2.28) decreases
at a given location z. Note that in order to study global optimal disturbances (with
maximum energy gain at a given set of parameters Re, n, { and We), optimization
over frequency should be carried out. One of the main features of the jet spectra is
that the wavenumbers of normal modes to both jet types at high Reynolds numbers are
of the order of frequency k, ~ w. A decrease in frequency below a certain threshold
value results in an increase of wavelengths of disturbances above the jet relaxation
length, and the plane-parallel approach used in the current study becomes inapplicable.
In order to verify the non-modal analysis, the calculations at lower frequencies are also
carried out as shown in figures 6(b) and 7. It is obtained that in submerged jets with
profiles U;, the maximum optimal-to-single mode energy ratio of steady disturbances
(w=0) is E,/Es ~ 10° and is gained far downstream from the nozzle (z ~ 10°).
These results are in agreement with the calculations of spatial transient growth in
boundary layers and pipes (Reshotko & Tumin 2001; Tumin & Reshotko 2001), where
steady disturbances were shown to gain maximum non-modal amplification. Below we
present the results of transient growth calculations for the sufficiently small but still
finite frequency @ = 0.1, assuming that it is above the threshold value below which the
plane-parallel approach is invalid.

The highest optimal-to-single mode energy ratio for both jet types at Re = 1000,
@ =0.1 is of the order of 10? (it is larger for submerged jets than for liquid jets). It
is achieved at z ~ 20 for a wide range of parameters. As discussed in §2.2, at this
distance the velocity profile varies insignificantly for Re > 1. Hence, we can assume
that the instability parameters obtained are qualitatively similar to those for realistic
jets.

The velocity distribution of the global optimal disturbance and that of the least
stable mode with the same (unity) initial energy at z =0 have been studied. The
velocity components of optimal disturbances and the least-stable mode for a liquid
jet in air and submerged jets are shown in figures 8—11. Note that these velocity
components are projections of the velocity vector to the basis vectors of the
cylindrical coordinate system introduced earlier, but we use Cartesian coordinates
x=rcosf, y=rsinf to show their cross-section distribution. The cross-section
velocity distribution of the least stable mode for the liquid jet in air is shown in
figure 8 for the same parameters as in figure 7, curve 2. For a set of parameters
under consideration, the flow is unstable, and the energy of all velocity components
of the least stable mode increases exponentially with an increase in z. The shape
of the initial distribution remains almost the same at all cross-sections downstream,
therefore we present the cross-section distribution of the least-stable mode only at
location z = 20, where the corresponding optimal perturbation gains maximum energy.
The development of the optimal disturbances is different from that of the least stable
mode, as shown in figure 9. The initial shapes of the streamwise velocity component
u are similar for the first mode and the global optimal disturbance (figures 8a and 9a).



112 S. A. Boronin, J. J. Healey and S. S. Sazhin

a) 3.0 ) 3.0 ¢) 30
(a) ) 0.26 © 0.23
15 L] o013 15 o1l
y 0 0 0 0
15 s B -0.13 15 -0.11
~0.26 ~023
30 30 _3.0
230-15 0 1.5 3.0 230-15 0 1.5 3.0 230-15 0 1.5 3.0
X X X

FIGURE 8. Cross-sectional distributions of velocity components u (along z, a), v (along r, b),
and w (along 6, c) for the least stable mode of the liquid jet in air with velocity profile Us,
z = 20. Parameters used for calculations are the same as those for figure 7, curve 2. Cartesian
coordinates x = rcos(f), y = rsin(f) are used.
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FIGURE 9. Cross-section distributions of velocity components u (along z; a,d), v (along r;
b,e), and w (along 6; ¢,f) for the optimal disturbance to a liquid jet in air with velocity profile
U; at z =0 (upper plots) and z = 20 (lower plots). Parameters used for calculations are the
same as those for figure 7, curve 2. Cartesian coordinates x = rcos(f), y = rsin(f) are used.

The distributions of v- and w-velocity components are different for these two cases:

in the case of the least stable mode, the energy of v- and w-velocity components are
concentrated in the jet fluid (figure 8b,c), while in the case of the optimal disturbance
these velocity components are initially concentrated in the ambient gas (figure 9b,c¢).
With an increase in z, the energy of v- and w-velocity components is transformed into
the energy of the u-component (compare the upper and lower plots in figure 9). Note
that in the optimal perturbation, it is only the u-velocity component of the jet liquid
which grows significantly due to the energy transfer from other velocity components,
as the u-distribution of the surrounding gas does not change significantly with an
increase in z (figure 9a,d). The same scenario of the optimal disturbance development
is found in the case of a submerged jet (figures 10 and 11). The energy of all
velocity components of the optimal perturbation increases with an increase in z. The
streamwise velocity gains larger growth than the other components: the maximum of u
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FIGURE 10. Cross-section distributions of velocity components u (along z; a), v (along r; b)
and w (along 0; c) for the least stable mode of the submerged jet with the velocity profile U,,
z =20, Re = 1000, = 0.1 and m = 1. Cartesian coordinates x = r cos 8, y = rsin 0 are used.

FIGURE 11. Cross-section distributions of velocity components u (along z; a,d), v (along
r; b,e) and w (along 0; c, f) for the optimal disturbance to a submerged jet with velocity
profile U, at z =0 (a—c) and z = 20 (d—f), with Re = 1000, @ = 0.1 and m = 1. Cartesian
coordinates x = rcos(6), y = rsin(f) are used.

is increased by two orders of magnitude, while maximums of v and w are increased
only four-fold (figure 11).

The amplification of the streamwise velocity component of the jet is due to the
‘lift-up’ (or ‘vortex-tilting’) instability mechanism which was found in various shear
flows (Ellingsen 1975; Landahl 1980; Butler & Farrel 1992; Reshotko & Tumin 2001;
Tumin & Reshotko 2001; Yecko & Zaleski 2005; Schmid 2007). This mechanism
is easily demonstrated for a plane inviscid flow with velocity profile U(y). If we
consider the streamwise-independent small disturbance to a basic shear flow, then
according to the linearized Euler equations, the normal velocity v is independent of
time and the streamwise velocity component u grows linearly with time (Ellingsen
1975). Alternatively, from the linearized inviscid vorticity equation, it is obtained that
the y-component of the vorticity disturbance grows with time proportionally to the
z-component of the basic flow vorticity meaning that the main vorticity is tilted in the
y-direction (Butler & Farrel 1992).
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FIGURE 12. Optimal-to-single mode energy ratio against the Reynolds number at m =1 (a)
and azimuthal mode number m at Re = 1000 () for liquid jets in air with velocity profiles Us;
(curve 1 and triangles) and U, (curve 2 and squares). Here n = 1073, ¢ = 0.1, We = 10* and
w=0.1.

Dependence of optimal perturbations on the Reynolds number Re has been studied.
In a number of studies devoted to the non-modal stability of plane-parallel flows
(Butler & Farrel 1992; Reshotko & Tumin 2001; Tumin & Reshotko 2001; Yecko &
Zaleski 2005), it was found that the energy of global optimal disturbances increases
by a factor of Re* with an increase in the Reynolds number. The maximum (over
z) energy of optimal disturbances to jets also increases with an increase in Re at
w = 0.1 given that all other parameters are fixed, although the dependence is not
quadratic (figure 12a). For a jet with profile U; the optimal-to-single mode energy
reaches a maximum over Re and z at Re ~ 2500 and decreases at higher Reynolds
numbers. It is found that the optimal-to-single mode energy ratio of a jet with profile
U, increases up to Re = 5000. Note that we study the optimal-to-single mode energy
ratio rather than the optimal energy itself, since jets are unstable in a wide range of
governing parameters. The growth rate of the first mode increases with an increase in
the Reynolds number, and it leads to the weakening of transient growth compared with
the energy growth of the first mode. Since the quadratic increase in global optimal
energy is a unique feature of the transient growth of disturbances to all shear flows,
we carried out calculations of global optimal disturbances to a jet with profile U; at
m=1,¢=0.1, =103, We =10, Re = 1000 and 2000 (global optimal disturbances
are steady w = 0 and the growth rate of the first mode is zero k; = 0). The global
optimal energy values turned out to be 217 and 869, respectively (a two-fold increase
in Re results in a four-fold increase in energy), which confirms the quadratic Reynolds
number scaling of optimal energy in jets.

Calculations of non-axisymmetric optimal perturbations with different azimuthal
mode numbers (m > 1) have been carried out. It is found that for a given set of
parameters the most pronounced non-modal growth is gained by disturbances with
m = 1-4, an increase in m leads to a decrease in the maximum energy of optimal
disturbances (figure 12b). Note that for m =4, 5 first modes for liquid jets with both
velocity profiles U;4 decay. Therefore, for these values of m, the actual maximum
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values of the optimal energy E,,(z) normalised by its values at z =0 are plotted. Note
that the direct comparison of the transient growth at different m shown in figure 12(b)
is impossible without considering the dependence of the growth rate of the first mode
on m. Note that the optimal-to-single mode energy ratio calculated for a jet with
velocity profile Uy at m =1 (E,,/E,, = 37) is lower than that at m =2 (E,,,/E,, = 49),
which in turn is lower than the energy ratio calculated at m =3 (E,,/E,; = 60). The
corresponding growth rates of the first mode at m =1, 2 and 3 are k; = —0.016,
—0.0076 and —0.0007, respectively. The highest optimal energy is gained at z ~ 20 for
all three cases, and comparing the actual values of optimal energies we find that the
highest energy is gained by the optimal disturbance with m = 1, while at m = 3 the
optimal energy value is lowest. The difference between the actual values of optimal
energy is around 5 %, and we expect that all disturbances with m = 1-3 can contribute
to the jet break-up depending on the configuration of initial disturbances (at z = 0).
The significant difference between this and other theoretical studies of non-modal
stability of plane-parallel flows published in the open literature is that liquid jets in
air are unstable at any Reynolds number. Typical growth rates of small disturbances in
two-phase jets are quite high, which makes it difficult to provide a direct comparison
of the current results with existing experimental data. In the plane-parallel flows, such
as plane-channel flow, a subcritical transient growth of disturbances can be initiated
by a certain initial (optimal) perturbation. In the case of a liquid jet in air and
submerged jet at high Reynolds number, any disturbances would grow, and it will not
be easy to distinguish between modal and non-modal instabilities. However, the results
of the current study are qualitatively confirmed by several experimental studies on
jet break-up and theoretical studies on non-modal instability of the two-phase mixing
layer. As discussed earlier, the strongest non-modal growth is obtained at m = 1-5,
and optimal disturbances are non-axisymmetric. The non-axisymmetry of jet break-up
at high Reynolds numbers (Re > 100) was pointed out by Hoyt & Taylor (1977), Lin
& Reitz (1998) and Lasheras & Hopfinger (2000). Marmottant & Villermaux (2004)
suggested the following estimate for the wavelength of transverse disturbances to a jet

A~ 8Wey ' (01/p2)"?, (4.1)

where § is the vorticity layer thickness in air, We; is calculated using gas velocity
at the interface and §, and p;, p, are densities of the jet liquid and air. Results
of calculations presented in figure 12b refer to § ~ 0.2, Wes ~ 50 and p,/p, = 10°.
Formula (4.1) gives A, ~ 0.5, where A, is non-dimensionalised by the jet radius L,
which corresponds to m ~ 12. This qualitatively agrees with the predicted azimuthal
mode numbers with a significant transient growth m = 1-5, shown in figure 12b. Note
that the jet configuration studied by Marmottant & Villermaux (2004) is different from
that investigated in the current study: the focus of their analysis was on a jet with
a high-speed coflowing axial gas stream, while we considered the instability of a
jet released into a stagnant medium. Another source of discrepancy is that we used
different velocity profiles. As has been shown both theoretically and experimentally,
the number of ligaments does not depend on the liquid-to-gas shear layer width (Yecko
& Zaleski 2005). This is confirmed by our calculations: the dependence of transient
growth on the azimuthal mode number m is similar for both velocity profiles U; and
U,, which differ by the liquid shear layer width only. We found, however, that the
non-modal growth is more pronounced for the jet with the velocity profile Us, for
which the liquid shear layer width is larger than that for the profile Uj.
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5. Conclusions

Transient growth of disturbances to round jets has been considered here for the
first time. The systems of three-dimensional normal modes have been calculated for
submerged jets and liquid jets in air with various velocity profiles. Disturbances which
maximize the kinetic energy functional at a given position downstream are found. For
all jet velocity profiles under consideration, the non-modal growth of disturbances
is shown to be significant: the energy gain of optimal disturbances at a Reynolds
number of 1000 is up to two orders of magnitude larger than that of the least stable
single mode at the location downstream which is equivalent to about 20 diameters
of the jet. The non-modal growth is significant only in the case of non-axisymmetric
disturbances. The strongest algebraic instability is gained by steady disturbances; the
transient growth mechanism weakens relative to the exponential growth of the first
mode with an increase in frequency and decrease in Reynolds number. The streamwise
velocity component of optimal disturbances to both jet types gains significantly larger
growth compared with other velocity components due to the ‘lift-up’ mechanism.

In the case of a liquid jet in air and submerged jet at high Reynolds number,
there is a certain range of frequencies which correspond to growing disturbances and
it is not easy to distinguish between modal and non-modal instabilities. The results
of the current study, however, are consistent with several experimental studies on jet
break-up and theoretical studies of non-modal instabilities of a two-phase mixing layer.
The strongest non-modal growth is obtained at m = 1-5, and optimal disturbances are
shown to be non-axisymmetric. In agreement with the previous studies it is shown that
the dependence of transient growth on the azimuthal mode number m is similar for
both velocity profiles U; and U,, which differ by the liquid shear layer width only.
The non-modal growth is shown to be more pronounced for the jet with the velocity
profile Us, for which the liquid shear layer width is larger than that for the profile U,.
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Appendix A.
The main flow velocity profiles Us 4 for a liquid jet in air are approximated as

U =14 " s A1
M= Yayexpl— (r—r)? /82 + B mi<r<1’

2
Ug(r)=(xgexp{_(r_rg)}, r> 1. (A2)

The values of parameters «;, B;, r; and §,, are presented in table 2, and the values of
a,, 1, are determined based on the conditions at the interface (see (2.15)).

Velocity profiles depend on the gas-to-liquid viscosity ratio {. We have taken
8, =0.14 for ¢ =107" and §, = 0.25 for ¢ = 1072 so that the shear layer of the

surrounding gas in the former case is around +/10 times wider than that in the latter
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(2%} B T 4

Us(r) 06 04 0 0.7
Us(r)y 04 06 05 04

TABLE 2. Parameters of velocity profiles for the liquid jet in air U; 4 determined by
expressions (A 1), (A2) and plotted in figure 1.

case (we assume that the shear layer width is scaled as a square root of the Reynolds
number, just as it is scaled for the boundary layer over the flat plate).

Appendix B.

Linearized equations (2.16)—(2.19), in terms of the amplitudes of disturbances in the
form of travelling waves, are presented as (Batchelor & Gill 1962)

1
iku—{—v/—i—g—{—imY:O, (ikU—w)u+U’v:—ikp+FAu, (B 1)
r r e
. , 1 2im
(kU —w)v=—p' + — | Av——Ww |,
Re r? (B2)
. im 1 2im
(kU —o)yw=——p+ — | AW+ —v |,
r Re r2
where
2 1d m* + 1
A=—+-——|F . B3
dr? + rdr < + r2 ) ®3)

Boundary conditions (2.20)—(2.24) can be presented as
ih(kUy — o) = v, (=g, 1), w+hU =u,+ hU;, v=v,, w=w, (B4)
ikv; + uy + hU} = ¢ (ikv, + u, + hUY),
2¢ h (BS)
kI (1 - k2 2
Re; Ve T We( )

W)+ imy, — w; = §(W; + imv, — wy). (B6)

2 /
P Re; Pg
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