University of Brighton

Co-encapsulation of β-Carotene and Quercetin in a nanoparticle using biodegradable polymers

Mira Buhecha*, Chunyu Shi*, Satyanarayana Somavarapu[§], <u>Ananth S V Pannala</u>* *School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, Brighton, UK; School of Pharmacy, University of London, London – WC1N 1AX, UK

RESULTS

Figure 1: SEM images of nanoparticles (coated with palladium). A: PLA co-encapsulated, B: PLGA 75:25 coencapsulated, C: PLGA50:50, D: PLA co-encapsulated, E: PLGA75:25 co-encapsulated, F: PLGA co-encapsulated

Figure 2: FT-IR spectra of PLA coencapsulated sample. Only the bond intensities for the polymer were detected

Figure 4: Representative chromatogram of HPLC analysis of Quercetin (A [methanol: water:0.1N HCl 60:39.5:0.5] 60%: B [MeCN] 40%)

Time (min)

Table 1: Loading efficiency of the nanoparticles with the two antioxidants (n=3)

	Polymer	Loading efficiency (%)	
Sample		β-carotene	Quercetin
Single encapsulated β-carotene	PLGA 50:50	1.75 ± 0.09	-
Single encapsulated β-carotene	PLGA 75:25	$0.86\ \pm 0.04$	-
Single encapsulated β-carotene	PLA	0.34 ± 0.02	-
Single encapsulated Quercetin	PLGA 50:50	-	11.62 ± 0.58
Single encapsulated Quercetin	PLGA 75:25	-	$\textbf{25.44} \pm \textbf{1.17}$
Single encapsulated Quercetin	PLA	-	33.6 ± 1.68
Co-encapsulated β-carotene and Quercetin	PLGA 50:50	1.49 ± 0.08	24.11 ± 1.21
Co-encapsulated β-carotene and Quercetin	PLGA 75:25	$\textbf{3.56} \pm \textbf{0.18}$	28.25 ± 1.41
Co-encapsulated β-carotene and Quercetin	PLA	$\textbf{7.28} \pm \textbf{0.36}$	49.30 ± 3.55

Time (min)

Table 2: Mean particle size and zeta potential of single-encapsulated and co-encapsulated nanoparticles (using either PLA, PLGA75:25 or PLGA 50:50) containing β-carotene and Quercetin

Sample	Polymer Used	Mean Size (nm)	Mean zeta potential
Blank	PLGA 50:50	284 ± 14	-0.8
Blank	PLGA 75:25	244 ± 12	-30.6
Blank	PLA	267 ± 13	-24.0
Single encapsulated β-Carotene	PLA	268 ± 13	-15.4
Single encapsulated β-Carotene	PLGA 50:50	229 ± 11	-10.2
Single encapsulated β-Carotene	PLGA 75:25	252 ± 13	-9.2
Single encapsulated Quercetin	PLA	263 ± 13	-26.6
Single encapsulated Quercetin	PLGA 50:50	281 ± 14	-22.2
Single encapsulated Quercetin	PLGA 75:25	264 ± 13	-7.7
Co-encapsulated β-carotene and Quercetin	PLGA 50:50	277 ± 14	-15.1
Co-encapsulated β-carotene and Quercetin	PLGA 75:25	282 ± 14	-41.6
Co-encapsulated β-carotene and Quercetin	PLA	270 ± 12	-35.4
Figure 6: Comparison of antioxidant activity nanoparticles for Quercetin (A) and β-Carote	of co-encapsulate ene (B) ¹²⁰ 100 LA LGA 75:25 A 75:25 A 50:50 PLA PLGA 75:25	d nanoparticles with	 Blank PLA Blank PLGA 75 Blank PLGA 50 Bc PLGA 75:25 Bc PLGA 50:50 Bc+Qu PLA Bc+Qu PLGA 7
20 BC+QU F 0	PLGA 50:50		-BC+Qu PLGA -BC+Qu PLGA

Time (hours

- tested.
- a solution
- to β -carotene encapsulated nanoparticles.

• Song X, Zhao Y, Wu W, Bi Y, Cai Z, Chen Q, Li Y and Hou S. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: Systematic study of particle size and drug entrapment efficiency. Int. J. Pharmaceutics. **350**(1-2), 320-329, (2008)

- **75**(1), 1-18, (2009)

• Re R, Pellegrini N, Proteggente A, Pannala A, Yang M and Rice-Evans C. Antioxidant Activity applying an improved ABTS Radical Cation Decolorization Assay. *Free Rad. Biol. Med.* **26**(9-10), 1231-1237, (1999).

University of Brighton

RESULTS

CONCLUSIONS

• Quercetin and β -carotene were successfully co-encapsulated in nanoparticles

• Quercetin was encapsulated to a greater extent than β -carotene

• However, significantly higher amount of β-carotene was encapsulated when co-encapsulated with quercetin than when single encapsulated. This observation was found to be true with all the polymers

• Mean particle size for all the nanoparticles ranged between 240 to 300 nm

• The negative zeta potential observed indicates a stable suspension of the nanoparticles when dispersed in

• Antioxidant activity of the compounds when encapsulated was observed to have a faster rate of reaction when co-encapsulated. Nanoparticles containing quercetin alone had a faster rate of reaction compared

• The observations made in this study can increase the potential to develop nanotechnology as a means of delivering a combination of antioxidants/drugs for various health benefits

REFERENCES

• Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. *Colloids Surf B Biointerfaces*.