
Spider Diagrams Augmented with Constants: A Complete System

Gem Stapleton
Visual Modelling Group

University of Brighton, UK
g.e.stapleton@brighton.ac.uk

Abstract

The use of visual languages in computing is varied, rang-
ing from system modelling to the display of data analyzed
in computation processes. A prominent example of a vi-
sual notation is the Unified Modelling Language (UML),
designed for use by software engineers. Constraint dia-
grams were proposed as an alternative to the UML’s Object
Constraint Language. Spider diagrams form a fragment of
constraint diagrams, and their applications are more broad
than just placing constraints on software models, includ-
ing information visualization and displaying the results of
database queries. This paper focuses on spider diagrams
augmented with constants that represent specific individu-
als. We present a sound reasoning system for spider di-
agrams with constants and establish completeness. Fur-
thermore, the technique used to prove completeness can be
adapted to give rise to a decision procedure.

1 Introduction

It is widely recognized that diagrams play an important
role in various areas particularly in many aspects of comput-
ing, including visualizing information and reasoning about
that information. Diagrams are often useful for conveying
complex information in accessible and intuitive ways. This
is one reason behind the widening perception of the impor-
tance of diagrams in computing systems and more widely.

Software engineers form one group of users that need
formal languages to specify and design complex systems.
Ideally, their software specifications should be accessible to
all stakeholders involved in the modelling process, includ-
ing customers, managers and programmers. There is exten-
sive use of diagrams to model software, with the Unified
Modelling Language (UML) being an industry standard,
mainly visual, notation. The only non-diagrammatic part of
the UML is the Object Constraint Language (OCL) which is
designed to place formal constraints on software models. It,
therefore, seems sensible to offer formal diagrammatic no-

M e m b e r

S t o r e

F i l m

j o i n e d

c a n B o r r o w

c o l l e c t i o n

Figure 1. A constraint diagram.

tations for the purpose of precise, yet accessible, software
specification.

Constraint diagrams were introduced in [10] as a way
to visualize object-oriented invariants in the context of the
UML. They have been used to develop high-level models
independently of UML [8, 12]. Building on Euler and Venn
diagrams, constraint diagrams contain spiders to indicate
existential and universal quantification and use arrows to
make statements about binary relations. For example, the
constraint diagram in figure 1 expresses that people can bor-
row only books that are in the collections of libraries that
they have joined. A formalization of constraint diagrams
can be found in [4] and a generalized version of them is
formalized in [16].

The language of spider diagrams [9] forms a fragment of
the constraint diagram language. The only spiders present
in spider diagrams in [9] represent the existence of elements
(called existential spiders) and arrows are not permitted.
The spider diagram d1 in figure 2 expresses, by the inclu-
sion of the curve Lions inside Cats, that all lions are cats
and, in addition, it expresses that there is a cat, which may
or may not be a lion by the use of the existential spider (i.e.
the tree). The spider diagram d2 expresses is something
which is not a dog. It has been shown that the spider dia-
gram language is equivalent in expressive power to monadic
first order logic with equality [18].

The diagrams d4, d5 and d6 include constant spiders;
these are labelled trees whose nodes are visualized as
squares. The diagram d4 tells us that tom is a cat; d5 tells

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Brighton Research Portal

https://core.ac.uk/display/188250842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Cats

Lionstom

d4

Dogs
tom

d5

Cats

tom

d6

Dogs

Cats

Lions

d1

Dogs

d2

Cats

d3

Dogs

Figure 2. Spider diagrams.

us that tom is not a dog. From d4 and d5 we can deduce d6

which tells us that tom is a cat but not a dog. By contrast,
from d1 and d2 we cannot deduce d3 (something is a cat but
not a dog). There are many notations related to spider and
constraint diagrams; see [1, 6, 15, 19] for examples.

There are a number of examples of spider diagrams be-
ing used in practice, such as assisting with the task of iden-
tifying component failures in safety critical hardware de-
signs [2] and in other domains such as [14]. They have also
been used (but not explicitly) for displaying the results of
database queries [20], representing non-hierarchical com-
puter file systems [3], in a visual semantic web editing en-
vironment [13, 21] and other areas [7, 11]. Virtually all of
these application areas, constants are used to represent spe-
cific objects, thus highlighting the importance of augment-
ing spider diagrams with constants.

The contribution made in this paper is to provide a set
of sound and complete reasoning rules for spider diagrams
augmented with constants. Section 2 overviews the syntax
and semantics of spider diagrams with constants. A set of
reasoning rules is presented in section 3. Soundness and
completeness is established in section 4; the proof strategies
are only sketched due to space limits. The technique used
to prove completeness can be trivially adapted to provide a
decision procedure for spider diagrams with constants.

2 Syntax and Semantics

We give an informal overview of the syntax and seman-
tics of spider diagrams with constants; a formalization can
be found in [17]. The spider diagram d1 in figure 2 con-
tains two labelled, closed curves called contours. The mini-
mal regions that can be described as inside certain (possibly
no) contours and outside the remaining contours are called
zones; d1 contains three zones whereas d2 contains just two
zones. Missing zones are zones which could be present in
a diagram, given the contour label set, but are not present;
for example, in figure 2, d1 has exactly one missing zone:
that which is inside Lions but outside Cats . The diagram

Cats

Lions

d1 d2 d3

Cats

Lions
tom

Cats
tom

jerry

Figure 3. Shading and ties.

d2 does not have any missing zones.
Spiders are placed in regions; a region is a set of zones.

The region in which a spider is placed is called its habitat.
Visually, a spider is represented by a tree whose nodes are
either all round or all square; these nodes are called feet.
Spiders with round feet are existential whereas those with
square feet are constant. Constant spiders are labelled. The
contours and spiders are all contained by a boundary rectan-
gle which illustrates ‘where the diagram stops’. Diagrams
enclosed by such a rectangle are called unitary diagrams.
In a unitary diagram, no two labels appear twice. More-
over, the labels used for constant spiders are never used for
contour labels. This applies globally, in that any constant
spider label never labels a contour and vice versa.

Unitary diagrams also contain further syntax: shading
and ties. Shading is placed in zones, as demonstrated in
figure 3. Ties can be placed between any pair of constant
spider feet that are placed in the same zone. We treat the
relation of two feet being joined by a tie as transitive: given
any constant spider feet f1, f2 and f3, if f1 is joined to f2

by a tie and f2 is joined to f3 by a tie then f1 is joined to
f3. Moreover, we also assume that each foot is joined by
a tie to itself (i.e. the relation is reflexive). This simplifies
the formalization of the semantics; see [17]. Visually, ties
are a pair of parallel line segments, like an equals sign, also
demonstrated in d3, figure 3. Note that, rather than drawing
all ties between feet, we draw essentially a spanning forest
of the graph that represents the ‘is joined to be a tie’ relation.
Given two constant spiders, their web is the set of zones in
which their feet are joined by a tie; in d3, figure 3, the web
of tom and jerry is the single zone inside Cats .

We note that ties could also be used to connect existen-
tial spider feet. Indeed, they could also be used to connect
an existential foot to a constant foot. However, for any dia-
gram that incorporated such ties there exists a semantically
equivalent diagram that does not contain such ties. This
is not the case for ties between constant spider feet. It is
straightforward to extend the work in this paper to the case
where these additional ties are permitted.

In addition to the above, we take the symbol ⊥ to be a
unitary diagram. Unitary diagrams form the building blocks
of compound diagrams: if d1 and d2 are spider diagrams
then so are (d1 ∨ d2) and (d1 ∧ d2).

For the semantics, regions represent sets, as illustrated in
the introduction. Spiders represent elements in the sets rep-

resented by their habitats and distinct spiders represent dis-
tinct elements unless they are joined by a tie. Constant spi-
ders represent specific individuals, just like contours repre-
sent specific sets; these individuals and sets are determined,
in part, by their labels. Slightly more formally, an inter-
pretation consists of a universal set, U , and a mapping of
contour labels to subsets of U and constant spider labels
to elements of U . The mapping of contour labels extends
to the interpretation of zones and regions; see [17]. Two
constant spiders represent the same individual if and only if
they both represent an individual which is in the set denoted
by some zone in their web. Shading places an upper bound
on set cardinality: in the set represented by a shaded zone,
all of the elements must be represented by spiders.

In figure 3, d1 asserts that all lions are cats, there are at
least two lions (by the use of two existential spiders) and
there are no more than two lions (by the use of shading);
in other words, all lions are cats and there are exactly two
lions. The diagram d2 expresses that all lions are cats, tom
is a lion or a cat, something else is a lion and there are at
most two lions. The diagram d3 uses a tie to indicate that
tom and jerry are the same individual whenever they are
both cats whereas if at least one of them is not a cat, they do
not denote the same individual (due to the absence of a tie
between their feet in the zone outside Cats).

The diagram ⊥ is interpreted as false. The semantics ex-
tend to compound diagrams in the obvious way. Informally,
we say that an interpretation is a model for a diagram when
it ‘agrees with the meaning of the diagram’ as described
above. Diagrams which have models are said to be satisfi-
able. The following theorem tells us that unitary diagrams
are not capable of expressing contradictory information.

Theorem 2.1 Let d (6=⊥) be a unitary spider diagram with
constants. Then d is satisfiable.

Given diagrams d1 and d2, we say that d1 semantically
entails d2, denoted d1 ² d2, if all of the models for d1 are
also models for d2.

3 Reasoning Rules

We will now develop a set of sound and complete reason-
ing rules for spider diagrams with constants. All of the rea-
soning rules given for spider diagrams without constants in
[9] can be modified (sometimes non-trivially) and extended
to spider diagrams with constants. In addition, new rules
are also required.

3.1 Unitary to unitary reasoning rules

We introduce a collection of reasoning rules that apply
to, and result in, a unitary diagram. For example, we can

d 1

A B

s

t
d 2

A B

s

t

Figure 4. Introducing a shaded zone.

d 2

A
s

d 1

A
s

d 3

A
s

Figure 5. Erasing shading and spiders.

delete shading from a unitary diagram. All of the rules
in this section are extended from those for spider diagrams
without constants. The first rule allows the introduction of
a shaded zone to a unitary diagram, d.

Rule 1 Introduction of a shaded zone Let d1 be a unitary
diagram that has a missing zone. If d2 is a copy of d1 except
that d2 contains a new, shaded zone then d1 may be replaced
by d2 and vice versa.

In figure 4, rule 1 (introduction of a shaded zone) is applied
to d1 to give d2. Applying the introduction of a shaded zone
rule results in a semantically equivalent diagram. The next
two rules are not information preserving.

Rule 2 Erasure of shading Let d1 be a unitary diagram
with a shaded region r. Let d2 be a copy of d1 except that
r is completely non-shaded in d2. Then d1 may be replaced
by d2.

In figure 5, rule 2 (erasure of shading) is applied to d1 to
give d2. Applying this rule ‘forgets’ the upper bound on the
cardinality of the set represented by the region from which
shading is erased.

Rule 3 Erasure of an existential spider. Let d1 be a uni-
tary diagram containing an existential spider e with a com-
pletely non-shaded habitat. Let d2 be a copy of d1 except
that d2 does not contain e. Then d1 may be replaced by d2.

In figure 5, rule 3 (erasure of an existential spider) is applied
to d2 to give d3.

3.2 Unitary to compound reasoning rules

We now specify five further rules, each of which is re-
versible, that allow a unitary diagram to be replaced by a
compound diagram, including a rule that allows us to in-
troduce a contour. In the spider diagram without constants

d 1

A B

u

ts

A A

A A

B B

B B

u

CC

C C
u

u u

u

s
s

s
s

t
t

t
t

d 2 d 3

d 4 d 5

Figure 6. Diagram C-extensions.

d 6

A B

u

ts C

Figure 7. Incorrectly introducing a contour.

system, the introduction of a contour rule applies to, and re-
sults in, a unitary diagram. In figure 6, we can introduce the
contour with label C to d1. When we do so, each zone must
split into two new zones, thus ensuring that information is
preserved. The existential spiders’ feet bifurcate, one new
foot is placed in each new zone of the habitat. More care
must be taken with the constant spiders, however. Consider,
for example, the constant spiders s and t. The individual
represented by both s and t must be either in C − (A ∪ B)
or in U − (A ∪ B ∪ C). The constant spider u represents
an individual that is either in A− (B ∪C) or (A∩C)−B.
This gives rise to four possibilities, shown in d2, d3, d4 and
d5. We call these four diagrams the C-extensions of d1. The
diagram d1 is semantically equivalent to d2 ∨ d3 ∨ d4 ∨ d5.
We could replace d1 with the disjunction of just two unitary
diagrams, each with u having two feet: one foot in the zone
just in A, the other in the zone inside A and C.

It is not the case that the single unitary diagram d6, in
figure 7 is semantically equivalent to d1. The constant spi-
ders s and t must represent the same individual in d1 but
this is not the case in d6, since the semantics of ties are
zone based. To define the introduction of a contour rule, we
first define the component parts of the resulting disjunction.
We call these component parts L-extensions, where L is the
introduced contour label.

Definition 3.1 Let d1 be a unitary diagram such that each
constant spider in d1 has exactly one foot. Let L be a con-
tour label that is not in d1. Let d2 be a unitary diagram such
that each constant spider in d2 has exactly one foot. If the
following conditions hold then d2 is an L-extension of d1.

1. The labels in d2 are those in d1, together with L.

2. The constant spider labels match.

3. The zones in d2 are as follows:

(a) each zone in d1 is split into two zones in d2, one
inside and the other outside L;

(b) shading is preserved in that if a zone is shaded in
d1 then the two zones it splits into in d2 are both
shaded in d2 and no others are shaded in d2.

4. The existential spiders match and their habitats are
preserved under ‘zone splitting’.

5. The habitat of each constant spider, c, in d2 is either
the zone inside L or that outside L (but not both) aris-
ing from its habitat it d1.

6. Spider webs are preserved. Since constant spiders are
single footed, this means that spiders joined by a tie in
d1 have the same habitats as each other in d2.

The set of L-extensions of d1 is denoted EXT (L, d1).

Rule 4 Introduction of a contour label Let d1 (6= ⊥) be a
unitary diagram such that each constant spider has exactly
one foot. Let L be a label not in d1. Then d1 may be re-
placed by

∨
d2∈EXT (L,d1)

d2 and vice versa.

Rule 5 Splitting spiders Let d be a unitary diagram with a
spider s touching precisely every zone of two disjoint re-
gions r1 and r2. Let d1 and d2 be unitary diagrams that
are copies of d except that neither contains s, but instead
each contains an extra spider, s1 and s2 respectively, whose
habitats are regions r1 in d1 and r2 in d2. If s is a constant
spider, then

1. s1 and s2 have the same label as s and

2. any ties joined to any given foot of s in d are joined to
the appropriate foot of s1 in d1 or s2 in d2.

Then d can be replaced by the diagram d1 ∨ d2 and vice
versa.

Figure 8 illustrates an application of the splitting spiders
rule. The spider s in d splits into two spiders, one in d1, the
other in d2. Intuitively, the individual represented by s is
either in the set U − (A ∪B) or the set A ∪B.

Rule 6 Excluded middle Let d be a unitary diagram with a
completely non-shaded region r. Let d1 and d2 be unitary
diagrams that are copies of d except that d1 contains an extra
existential spider whose habitat is r and, in d2, r is shaded.
Then d can be replaced by the diagram d1 ∨ d2 and vice
versa.

d

A B

d 1

A B

d 2

A Bs

t t
ss

t

Figure 8. Splitting spiders.

d

A B

C

d 2

A B

C

d 1

A B

C

Figure 9. Excluded middle.

The diagram d in figure 9 can be replaced by d1 ∨ d2 by
applying the excluded middle rule.

Given a unitary diagram, d, that has only non-empty
models (in which case d contains at least one spider), we
can deduce that the individual represented by a constant spi-
der, t, belongs to one of the sets denoted by the zones in d.
Moreover, this individual must either be the same as, or dif-
ferent from, the elements already represented in d. As an
example, consider d in figure 10 which has only non-empty
models. Thus, in any model for d the constant spider t rep-
resents some individual. Then t is in A, B or U − (A∪B).
If t is in A then it must equal s, since the region inside A is
entirely shaded, shown in d1. If t is in the set B then it may
be either equal to, or different from, the element represented
by the existential spider in B in the diagram d; these cases
are represented by d2 and d3 respectively. Finally, if t is not
in A or B then t must be in U − (A ∪ B), represented by
d4. The diagrams d1, d2, d3 and d4 are called t-extensions
of d. For simplicity, we only add a constant spider to a dia-
gram when all present spiders have exactly one foot; such a
diagram is called an α-diagram.

Definition 3.2 Let d1 be a unitary α-diagram containing
at least one spider and let t be some constant spider (label)
that is not in d1. Let d2 be a unitary α-diagram. If the only

d

A
d 2d 1

d 4d 3

B
s

A B
s

A B
s

A B
s

A B
s

t t

t
t

Figure 10. Diagram t-extensions.

d 1

A B

C
d 2

A B

C
d *

A B

C

s
t

s
t

s
t

Figure 11. Combining diagrams.

differences between d1 and d2 are the following then d2 is
a t-extension of d1:

1. d2 contains t with an arbitrary single zone habitat,

2. if the habitat of t is shaded then it is joined to another
constant spider by a tie or there is one fewer existential
spider in that zone (but not both),

3. if the habitat, z, of t is not shaded then either

(a) the number of existential spiders inhabiting z is
reduced by one, or

(b) the number of existential spiders inhabiting z is
the same, or

(c) t is joined by a tie to some constant spider also
inhabiting z and the number of existential spiders
is the same.

The set of all t-extensions of d1 is denoted EXT (t, d1).

Rule 7 Introduction of a constant spider Let d1 be a uni-
tary α-diagram that contains at least one spider and let t be
a constant spider not in d1. Then d1 can be replaced by the
diagram

∨
d2∈EXT (t,d1)

d2 and vice versa.

Introducing the constant spider t to d in figure 10, by apply-
ing rule 7 results in d1 ∨ d2 ∨ d3 ∨ d4.

The final rule in this section, called combining, replaces
two unitary α-diagrams, with the same zone sets and con-
stant spider label sets, taken in conjunction by a single uni-
tary diagram. In figure 11, we illustrate the combining rule.
We combine d1 ∧ d2 to give d∗. Any shading in either d1

or d2 occurs in d∗. Moreover, the number of spiders in any
zone in d∗ is the same as the maximum number that occur
in that zone in d1 or d2. The diagram d1∧d2 is semantically
equivalent to d∗.

We now give a further example in a build-up to the def-
inition of combining. In this example we derive results by
working at the semantic level, but we will define the com-
bining rule at the syntactic level. In figure 12, d1 and d2

contain contradictory information. We observe the follow-
ing.

1. The zone inside A but outside B and C is shaded in d1

and contains more spiders in d2. Moreover, z1 repre-
sents the empty set in any model for d1. In any model
for d2, z1 does not represent the empty set.

d 1 d 2

A
B

C A
B

C

s
t

s
t

u

u

Figure 12. An unsatisfiable diagram.

2. The constant spider u has different habitats in the two
diagrams. In any model for d1, u represents an indi-
vidual that is not in the set A∪C. In any model for d2,
u represents an individual in the set C.

3. The constant spiders s and t are joined by a tie in d1

but not in d2. In any model for d1, s and t represent the
same individual, but in any model for d2 they represent
distinct individuals.

From any one of these three observations we can deduce
that d1 ∧ d2 is unsatisfiable.

Definition 3.3 Let d1 and d2 be unitary α-diagrams such
that one of the following three conditions holds.

1. The zones are the same and the constant spider labels
are the same.

2. The zones are the same and d1 or d2 is entirely shaded.

3. d1 =⊥ or d2 =⊥.

Then d1 and d2 are called similar.

Definition 3.4 Similar unitary α-diagrams d1 and d2 are
said to be in contradiction if and only if one of the following
four conditions holds.

(i) Either d1 =⊥ or d2 =⊥.

(ii) There is a zone that is shaded in one diagram and con-
tains more spiders in the other.

(iii) There is a constant spider with different habitats in d1

and d2.

(iv) There are two constant spiders that are joined by a tie
in one diagram but not the other.

Lemma 3.1 Let d1 and d2 be similar unitary α-
diagrams.Then d1 and d2 are in contradiction if and only
if d1 ∧ d2 is unsatisfiable.

For completeness, it is sufficient to stipulate that the
combining rule only applies to diagrams that have the same
sets of constant spiders or that are contradictory.

Definition 3.5 Let d1 and d2 be similar unitary α-diagrams
Then their combination, denoted d∗ = d1 ∗ d2, is a unitary
α-diagram defined as follows.

1. If d1 and d2 are in contradiction then d1 ∗ d2 =⊥.

2. Otherwise d∗ = d1 ∗ d2 is a unitary α-diagram such
that the following hold.

(a) The set of zones in the combined diagram is the
same as the set of zones in the original diagrams.

(b) The shaded zones in the combined diagram are
shaded in one (or both) of the original diagrams.

(c) The number of existential spiders in any zone in
the combined diagram is the maximum number
of existential spiders inhabiting that zone in the
original diagrams.

(d) The constant spiders in the combined diagram
are the same as those in the original diagrams.

(e) The habitats of the constant spiders in the com-
bined diagram are the same as those in the orig-
inal diagrams.

(f) The webs of the constant spiders in the combined
diagram are the same as those in the original di-
agrams.

Rule 8 Combining Let d1 and d2 be similar unitary α-
diagrams. Then d1 ∧ d2 may be replaced by d1 ∗ d2, and
vice versa.

3.3 Logic reasoning rules

We now introduce a collection of rules, all of which have
(obvious) analogies in logic. For space reasons, we give few
details; throughout, D1, D2 and D3 are arbitrary diagrams.

1. Connect a diagram D1 can be replaced by D1 ∨D2.

2. Inconsistency ⊥ can be replaced by D1.

3. ∨–Idempotency D1 may be replaced by D1 ∨D1 and
vice versa.

4. ∧–Idempotency D1 may be replaced by D1 ∧D1 and
vice versa

We also assume that we have associativity, commutativ-
ity and distributivity.

3.4 Obtainability

To conclude this section on reasoning rules we define
obtainability.

Definition 3.6 Let D1 and D2 be two diagrams. Then D2

is obtainable from D1, denoted D1 ` D2, if and only if
there is a sequence of diagrams 〈D1, D2, ..., Dm〉 such that
D1 = D1, Dm = D2 and Dk can be transformed into
Dk+1 by an application of a reasoning rule, for each k
(where 1 ≤ k < m). If D1 ` D2 and D2 ` D2, we
write D1 ≡` D2.

4 Soundness, Completeness and Decidability

To prove that the system is sound, the strategy is to start
by showing that each reasoning rules is sound. The sound-
ness theorem then follows by a simple induction argument.
Due to space reasons, we omit the proofs.

Theorem 4.1 Soundness Let D1 and D2 be spider dia-
grams. If D1 ` D2 then D1 ² D2.

The completeness proof strategy for spider diagrams
without constants given in [9] extends to the more general
case here. The extended strategy, outlined in figure 13, is as
follows. Suppose that D1 ² D2. The aim is to transform
D1 and D2 into disjunctions of unitary α-diagrams using
reversible rules, where, roughly speaking, each unitary part
has some specified contour label set and constant spider la-
bel set.

Firstly, we split the constant spiders in D1 and D2 until,
in each unitary part, all the constant spiders have precisely
one foot, giving DS

1 and DS
2 respectively. This allows us

to add contours to the unitary parts in both DS
1 and DS

2 us-
ing the reversible rule 4 (introduction of a contour label),
until each (non-false) unitary part has the same contour la-
bel set, L. This gives DL

1 and DL
2 respectively. For the

next step, zones are introduced to each unitary part until all
(non-false) unitary parts have the same zone set, Z. This
is done using the reversible rule 1 (introduction of a shaded
zone) and yields DZ

1 and DZ
2 respectively. Now we obtain

α-diagrams using the reversible rule 5 (splitting spiders),
yielding Dα

1 and Dα
2 respectively. The formalization of the

diagrams DL
i , DZ

i and Dα
i generalize those given in [9] for

spider diagrams without constants.
We wish to introduce constant spiders to each side un-

til each unitary part has the same constant spider label set.
However, we can only introduce constant spiders when our
diagrams contain at least one spider (ensuring non-empty
models). Thus the next step we take is to apply the ex-
cluded middle rule to both sides until all the (non-false) uni-
tary parts are either entirely shaded or contain a spider. The
reversible rule 7 (introduction of a constant spider) is then
applied, introducing constant spiders to all unitary parts that
contain a spider, until all such unitary parts have some spec-
ified constant spider label set, C. This gives DC

1 and DC
2

respectively. We now apply rule 8 (combining) and some

D 1 D 2

D 1
a D 2

a

D 1
L D 2

L

D 1
Z D 2

Z

D 1
c

a d d c o n t o u r s

a d d z o n e s

s p l i t e x i s t e n t i a l
s p i d e r s

a p p l y e x c l u d e d m i d d l e
a n d a d d c o n s t a n t s p i d e r s

D 1
* D 2

*

c o m b i n e

a d d e x i s t e n t i a l s p i d e r s
a n d s h a d i n g a s
n e c e s s a r y , t h e n d e l e t e
w h a t i s n o t n e e d e d .

D 1
S D 2

S

D 2
c

s p l i t c o n s t a n t
s p i d e r s

Figure 13. Proof strategy.

logic rules to remove all the conjuncts, giving two disjunc-
tions of unitary α-diagrams, D∗

1 and D∗
2 . All of the unitary

parts of D∗
1 and D∗

2 are either

1. ⊥ or

2. have zone set Z and are entirely shaded and contain no
spiders or

3. have zone set Z and constant spider label set C.

We note that D1 ≡` D∗
1 and D2 ≡` D∗

2 , since all the rules
applied so far are reversible. The diagram D∗

1 (D∗
2) is a type

of normal form that reflects the semantics of D1 (D2) in a
clear manner.

We now apply the excluded middle rule to D∗
1 until there

are sufficiently many existential spiders and enough shad-
ing to ensure that each unitary part on the left hand side
syntactically entails a unitary part of D∗

2 , giving D′
1. Hence

D1 ` D∗
1 ` D∗

2 ` D2 and, therefore, D1 ` D2.
The major differences between the completeness proof

strategy here and that for spider diagrams without constants
are the addition of the first step (splitting the constant spi-
ders), with knock on changes to details of the other steps;
and the insertion of an extra stage between splitting ex-
istential spiders and combining diagrams. Showing that
D∗

1 ` D∗
2 is also more challenging.

Theorem 4.2 Completeness Let D1 and D2 be spider dia-
grams with constants. Then D1 ² D2 implies D1 ` D2.

The proof of completeness provides an algorithmic
method for constructing a proof that D1 ` D2 whenever

D1 ² D2. It is simple to adapt this algorithm to determine,
given any D1 and D2, whether D1 ` D2.

Theorem 4.3 Decidability Let D1 and D2 be constraint di-
agrams. There exists an algorithm that determines whether
D1 ` D2.

5 Conclusion

In this paper we have developed a sound and complete
reasoning system for spider diagrams augmented with con-
stants. The rules were largely extensions of those for spi-
der diagrams without constants. However, some extensions
were not straightforward, such as for the rule that allows the
introduction of a contour and that which allows diagrams to
be combined. In the latter case, this is due (in part) to the
increased number of ways that two unitary diagrams can be
inconsistent.

The proof of completeness is constructive, in that it pro-
vides an algorithm to convert a premise diagram into a con-
clusion diagram using the inference rules presented. Whilst
we omitted details of the completeness proof due to space
reasons, the proof strategy was a generalization of that for
spider diagrams without constants. We note, though, that
the actual details of the completeness proof are more com-
plex when constants are involved.

In the future, we plan to integrate constant spiders into
constraint diagrams. The work in this paper lays the foun-
dations for developing a reasoning system for constraint di-
agrams augmented with constants. We also plan to inves-
tigate how to efficiently automate the search for readable
proofs when using spider diagrams augmented with con-
stants, following [5].
Acknowledgement This research is supported by EPSRC
grant EP/E011160 for the Visualization with Euler Dia-
grams project.

References

[1] L. Choudhury and M. K. Chakraborty. On extending Venn
diagrams by augmenting names of individuals. In Proceed-
ings of 3rd International Conference on the Theory and Ap-
plication of Diagrams, volume 2980 of LNAI, pages 142–
146. Springer-Verlag, March 2004.

[2] R. Clark. Failure mode modular de-composition using spi-
der diagrams. In Proceedings of Euler Diagrams 2004, vol-
ume 134 of Electronic Notes in Theoretical Computer Sci-
ence, pages 19–31, 2005.

[3] R. DeChiara, U. Erra, and V. Scarano. VennFS: A Venn
diagram file manager. In Proceedings of Information Visu-
alisation, pages 120–126. IEEE Computer Society, 2003.

[4] A. Fish, J. Flower, and J. Howse. The semantics of aug-
mented constraint diagrams. Journal of Visual Languages
and Computing, 16:541–573, 2005.

[5] J. Flower, J. Masthoff, and G. Stapleton. Generating read-
able proofs: A heuristic approach to theorem proving with
spider diagrams. In Proceedings of 3rd International Con-
ference on the Theory and Application of Diagrams, vol-
ume 2980 of LNAI, pages 166–181, Cambridge, UK, 2004.
Springer.

[6] E. Hammer. Logic and Visual Information. CSLI Publica-
tions, 1995.

[7] P. Hayes, T. Eskridge, R. Saavedra, T. Reichherzer,
M. Mehrotra, and D. Bobrovnikoff. Collaborative knowl-
edge capture in ontologies. In Proceedings of the 3rd Inter-
national Conference on Knowledge Capture, pages 99–106,
2005.

[8] J. Howse and S. Schuman. Precise visual modelling. Journal
of Software and Systems Modeling, 4:310–325, 2005.

[9] J. Howse, G. Stapleton, and J. Taylor. Spider diagrams.
LMS Journal of Computation and Mathematics, 8:145–194,
2005.

[10] S. Kent. Constraint diagrams: Visualizing invariants in
object oriented modelling. In Proceedings of OOPSLA97,
pages 327–341. ACM Press, October 1997.

[11] H. Kestler, A. Muller, T. Gress, and M. Buchholz. General-
ized Venn diagrams: A new method for visualizing complex
genetic set relations. Journal of Bioinformatics, 21(8):1592–
1595, 2005.

[12] S.-K. Kim and D. Carrington. Visualization of formal spec-
ifications. In 6th Aisa Pacific Software Engineering Confer-
ence, pages 102–109, Los Alamitos, CA, USA, 1999. IEEE
Computer Society Press.

[13] J. Lovdahl. Towards a Visual Editing Environment for the
Languages of the Semantic Web. PhD thesis, Linkoping Uni-
versity, 2002.

[14] L. Niebrój. Defining health/illness: Societal and/or clini-
cal medicine? Journal of Physiology and Pharmacology,
57(4):251–262, 2006.

[15] S.-J. Shin. The Logical Status of Diagrams. Cambridge
University Press, 1994.

[16] G. Stapleton and A. Delaney. Evaluating and generalizing
constraint diagrams. Journal of Visual Languages and Com-
puting, available online, 2008.

[17] G. Stapleton, J. Taylor, J. Howse, and S. Thompson. The ex-
pressiveness of spider diagrams augmented with constants.
Journal of Visual Languages and Computing, available on-
line, 2008.

[18] G. Stapleton, S. Thompson, J. Howse, and J. Taylor. The
expressiveness of spider diagrams. Journal of Logic and
Computation, 14(6):857–880, December 2004.

[19] N. Swoboda and G. Allwein. Using DAG transformations to
verify Euler/Venn homogeneous and Euler/Venn FOL het-
erogeneous rules of inference. Journal on Software and Sys-
tem Modeling, 3(2):136–149, 2004.

[20] J. Thièvre, M. Viaud, and A. Verroust-Blondet. Using eu-
ler diagrams in traditional library environments. In Euler
Diagrams 2004, volume 134 of ENTCS, pages 189–202.
ENTCS, 2005.

[21] Y. Zhao and J. Lövdahl. A reuse based method of develop-
ing the ontology for e-procurement. In Proceedings of the
Nordic Confernce on Web Services, pages 101–112, 2003.

