
1 

Abstract 
The aim of the Reanalysis is determining the structural response of modified 

systems using the pertinent results from the original or “reference” structure, so 

reducing the computational effort. Repeated analyses of structures under certain or 

uncertain loads are often necessary in various fields of applications. Optimization 

techniques, model updating, design process, Monte Carlo simulations of structures 

with uncertain parameters are some examples in which several analyses of slightly 

modified systems occurs. In order to reduce the computational effort in determining 

both the static and the dynamic response, various Reanalysis techniques have been 

proposed in literature. In this paper the main static Reanalysis techniques are 

reformulated to perform the Reanalysis of linear structural systems subjected to 

multi-correlated stationary Gaussian stochastic input for both topological and non-

topological structural modifications.  

 

Keywords: Reanalysis, dynamic response, stationary random response. 

 

 

1 Introduction  
 

Repeated analysis, or “Reanalysis”, is needed in various fields of structural 

applications, as design, structural optimization, model updating and structural 

damage analysis. In these cases, indeed, various modifications that require repetitive 

analysis of modified systems can occur. The aim of the Reanalysis is the evaluation 

of the structural response (e.g. displacements, forces and stresses) for such changes 

without solving the complete set of modified algebraic and/or differential equations. 

The solution procedures usually use the results from the analysis of the original 

structure, called as “reference” structure, so reducing the computational effort. The 

interest in the Reanalysis techniques are increased drastically in last two decades, in 

spite of the significant increase in computer processing power, memory and storage 

space.  
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During design, optimization, model updating and damage analysis processes, 

mechanical and geometrical parameters may change and eventually structural 

components can be added or deleted leading also to a change of the number of the 

degrees of freedom of the the pertinent finite element model. It follows that the 

Reanalysis techniques are classified as “topological” or “non-topological” if the 

modifications lead to a change of the degrees of freedom of the system or not. 

Moreover, the Reanalysis techniques can be used to evaluate the response of 

structures with linear and non-linear behaviour (see e.g. Kirsch 2008). 

In the framework of static Reanalysis, recently Akgun et al. (2001) described and 

compared three methods – the combined approximations, theorems of structural 

variations and virtual distorsion method; they show that all the methods stemming 

from static Reanalysis are equivalent (for truss structures) to the Sherman-Morrison 

(1949, 1950) and Woodbury (1950) formulas. A review of the main contributions in 

Vibration Reanalysis can be found in Kirsch (2008). In this item the main 

computational effort is spent in the solution of the eigenproblem, because of exact 

solution techniques of the problem can be prohibitively expensive or unattainable. 

The deterministic evaluation of dynamic response in the time domain, usually called 

Dynamic Reanalysis, has been performed through  the extension to the dynamics of 

the Combined Approximations approach (see e.g. Kirsch 2008), the virtual 

distorsion method (see Kolakowski et al 2008) or by applying the so-called 

dynamics modification method  to the Reanalysis (Muscolino and Cacciola 2004, 

Cacciola et al  2005). All the previously quoted methods are able to evaluate 

dynamic responses of either linear or non-linear systems. In the combined 

approximation approach (Kirsch 1996, 2008) global expressions can be achieved by 

considering as basis vectors terms of local approximations. In the virtual distorsion 

method, virtual forces, modelling modifications of mass distribution, as well as 

virtual distortions, modelling stiffness modifications of structural elements, are 

introduced (Kolakowski et al 2008) to modify the reference structure in a fast and 

efficient way. The basic idea of third method is grounded on the assumption that all 

the dynamic modifications can be viewed as pseudo-forces, according to the so-

called dynamic modification method (Muscolino 1996). The response of the 

modified structure is retrieved starting from the knowledge of the transition matrix 

and the eigenproperties of the original structure. So that the main difference with the 

classical Vibration Reanalysis is that the eigenproblem Reanalysis is avoided 

drastically reducing the computational effort. Therefore, the transient and loading 

operators involved in the step-by-step numerical procedure are determined in 

appropriate form from the knowledge of the original ones related to the unmodified 

structure. Remarkably, it has been shown that the third approach is also 

computationally very effective in determining the random response of multi-degree-

of-freedom (MDoF) systems with random parameters via a pertinent Monte Carlo 

simulation (Muscolino and Cacciola 2004). Moreover, via this approach the 

response of non-classically damped system is determined without the evaluation of 

complex quantities. The latter method has been extended to the Dynamic Reanalysis 

of linear systems subjected to stochastic excitation, modelled as a white noise 

processes (Muscolino and Cacciola 2004, Cacciola et al 2003, 2005). 
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In this paper the Dynamic Reanalysis of linear structural systems, with both 

topological and non-topological modifications, under multi-correlated stationary 

Gaussian non-white excitations is performed. In particular the Kroneker algebra is 

extensively adopted in order to evaluate the first and second order statistical 

moments of the response, of both original and modified structures, as the solution of 

two sets of algebraic equations (Muscolino 1996). The procedure preliminarily 

requires the projection of the equations governing the evolution of the statistical 

moments in a reduced space, by means of a coordinate transformation which 

requires the evaluation of the eigenproperties of original structure only. To this aim 

the eigenproperties of the original system are suitably exploited so avoiding the 

evaluation of the eigenproperties of the modified system. Therefore, the main 

methods of static Reanalysis are reformulated in order to evaluate the statistics of the 

modified structural system, with reduced computational efforts.  

The numerical results show the accuracy of the proposed approaches for the 

analysis of multi-degrees-of-freedom (MDoF) systems. Computational aspects are 

also addressed. 

 

 

2. Basic equations 
 

2.1.  Deterministic analysis  
Consider an n-DoF quiescent classically damped structure whose dynamic 

behaviour is governed by the following equations of motion 

 

( ) ( ) ( ) ( )o o o o o o o o o; (0) ; (0) ,t t t t+ + = = =M u C u K u f u 0 u 0�� � �       (1) 

 

where oM , oC  and oK  are the mass, damping and stiffness matrices of order n×n , 

respectively; ( )o tu  is the 1n×  vector listing the nodal displacements and o ( )tf  is 

the 1n×  load vector of the nodal time-varying applied forces; ( )o 0u  and ( )o 0u�  are 

the initial conditions and the dot over a variable or a vector defines the time 

derivative. Note that the classically damped system has been chosen for sake of 

convenience. Indeed assuming the original system as classically damped structure, it 

is possible to uncouple the equations of motion by the following modal coordinate 

transformation 

 

o o o( ) ( ),t t=u qΦΦΦΦ                       (2) 

 

where o ( )tq  is the 1s×  ( s n≤ ) vector of the generalized coordinates and oΦΦΦΦ  is the 

modal matrix of order n× s , solution of the following eigenproblem 

 
2

o o o o o o o o,       ,T

s
= =K M M IΦ Φ Ω Φ ΦΦ Φ Ω Φ ΦΦ Φ Ω Φ ΦΦ Φ Ω Φ Φ                (3) 
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in which oΩΩΩΩ  is the diagonal matrix listing the first s  natural circular frequencies 

o, j
ω  of the original or “reference” structure and 

s
I  is the identity matrix of order 

s× s . The uncoupled equations of motion, in the reduced modal space, can be 

written as 

 

( )2

o o o o o o o o o( ) ( ) ( ) ;      (0) ,   (0) ,T
t t t t+ + = = =q q q f q 0 q 0�� � �Ξ Ω ΦΞ Ω ΦΞ Ω ΦΞ Ω Φ           (4) 

 

where oΞΞΞΞ  is the diagonal generalized damping matrix whose j-th elements is 

o, o,2
j j

ζ ω , with o, j
ζ  the damping ratio of the j-th mode. In order to evaluate the 

response, Equation (4) can be conveniently rewritten introducing the 2 1s ×  vector of 

the reduced modal state variables o ( )tz   

 

o o o o o o( ) ( ) ( ); (0) ,t t t= + =z D z V f z 0�                (5) 

 

being 

o

o o o2 T

o o o o

( )
( ) ; ; .

( )

s
t

t
t

     
= = =     
     

q 0 I 0
z D V

q� −Ω −Ξ Φ−Ω −Ξ Φ−Ω −Ξ Φ−Ω −Ξ Φ
              (6) 

 

Once the modal response in the state variable has been evaluated, the nodal state 

vector response can be obtained by the following relationship 

 

o

o o o o

o

( )
( ) ( );   ( ) ,

( )

t
t t t

t

 
= =  

 

u
y z y

u�
ΠΠΠΠ                 (7) 

 

where the matrix oΠΠΠΠ  of order 2 2n s×  is given by 

 

o

o

o

.
 

=  
 

0

0

ΦΦΦΦ
ΠΠΠΠ

ΦΦΦΦ
                      (8) 

 

 

2.2.  Stochastic analysis  
Let us consider a linear system subjected to stochastic processes. The external load 

vector o ( )tf  can be modelled as a multi-correlated Gaussian stochastic process fully 

characterized by the mean vector, 
o
( )tfµµµµ , and correlation vector, 

o o 1 2( , )t tf fr , given 

by 

 

o

o o o o

o

o o1 2 1 2 1 2

( ) E ( ) ;

( , ) E ( ) ( ) ( ) ( ),

t t

t t t t t t

=

= ⊗ − ⊗

f

f f f f

f

r f f

µµµµ

µ µµ µµ µµ µ
         (9) 
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where E ⋅  denotes the stochastic average and the symbol ⊗  means Kronecker 

product (Brewer 1978). The input process o( )tf  can be conveniently split in two 

terms as follows 

 

o o o
( ) ( ) ( )t t t= +f ff X�µµµµ            (10) 

 

In this equation 
o
( )tfµµµµ  is a deterministic vector, whereas 

o
( )tfX�  is a zero-mean 

multi-correlated Gaussian random process, with correlation vector 

( ) ( )
o o o o

o o
1 2 1 2 1 2( , ) E ( , )t t t t t t⊗= ≡

f f
f f f fX X

r X X r� �
� � , accounting for the contribution 

due to the stochastic excitation. In view of the linearity of the problem under 

consideration and taking into account Equation (10) the state vector o( )tz  in modal 

space can expressed as follows 

 

o oo
( ) ( ) ( )t t t= +zz Z�µµµµ            (11) 

 

where the first term 
oo

( )=E ( )t tz zµµµµ  represents the deterministic response 

associated with the mean value load vector 
o
( )tfµµµµ , whereas ( )o tZ�  is a zero mean 

2s -variate random process, solution of the following differential equations 

 

oo o o o o( ) ( ) ( ); (0) .t t t= + =fZ D Z V X Z 0
�� � � �               (12) 

 

In many cases of practical interest, the response is adequately characterized by the 

knowledge of the mean value vector 
o
( )tzµµµµ  and of the covariance vector 

o
( )t ≡zσσσσ  

o oE ( ) ( )t t⊗Z Z� � . The vector 
o
( )tzσσσσ  represents the vectorialized form of the cross-

covariance matrix, i.e. 
o
( )t ≡zσσσσ { }T T

o oVec E ( ) ( )t tZ Z� � , that is a column vector 

formed by all columns of the matrix in parentheses in such a way that the columns 

are written one below each other. 

After some algebra (Muscolino 1996, 2001), the differential equations ruling the 

time-evolution of the vectors 
o
( )tzµµµµ  and 

o
( )tzσσσσ  can be written, respectively, as 

 

o o o

o o o

o o

o,2

( )= ( ) ( );

( ) ( ) ( ),

t t t

t t t

+

= +

z z f

z z Z

D V

D F

�

��

µ µ µµ µ µµ µ µµ µ µ

σ σσ σσ σσ σ

           (13) 

 

Note that by employing  the Kronecker algebra the evolution of the second order 

moment is reduced to a set of first-order ordinary differential equations formally 
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analogous to the one derived for the deterministic case. In writing Equation (13) the 

following positions have been made 

 

( ) ( ) ( ) ( ) ( )
o o o

2 2

o o o o2 2

o oo,2

,E ( ) E ( )

;s s

s st t t t t= ⊗ ⊗ + ⊗ ⊗

= ⊗ ⊗

Z f f

I I

F V I X Z I V Z X

D D + D

� � � � �
 (14) 

 

where 
o,2D  is a matrix of order 2 24 4s s×  and  ( )

o
tZF�  is a deterministic vector of 

order 24s . After very simple algebra, the stochastic averages ( )
o oE ( )t t⊗fX Z� �  and 

( )
ooE ( )t t⊗ fZ X� � , which appear in the second Equation (14), can be evaluated, 

respectively, as follows   

 

( ) ( )

( ) ( )

o

o

o o

o o

o o

o o

o

o

( ) d    

( ) d

E ( )

E ( )

( , )

( , )

t

n

t

n

t

t

t t

t t

t

t

τ τ τ

τ τ τ

= ⊗ −  

= − ⊗  

⊗

⊗

∫

∫

f f

f f

f

f

X X

X X

I V

V I

X Z

Z X

r

r

� �

� �

� �

� �

0000

0000

ΘΘΘΘ

ΘΘΘΘ

      (15)

  

For stationary excitations the response is governed by the solution of the 

algebraic equations obtained removing the time dependence from Equation (13) 

obtaining (Muscolino 1996, 2001): 

 

o o

o o

o o

o,2

= ;+

+ =

Z f

Z Z

D V

D F�

µ µ 0µ µ 0µ µ 0µ µ 0

σ 0.σ 0.σ 0.σ 0.

           (16) 

 

where the elements of vector 
oZF� can be evaluated as: 

 

( ) ( )

( ) ( )

o o

o o

o
o o

o
o o

o

o

( ) d ;

( ) d .

E ( ) ( )

E ( ) ( )

n

n

t

t

t t t

t t t

τ τ − τ

τ τ τ

∞

∞

= ⊗ −  

= − ⊗  

⊗

⊗ −

∫

∫

f f

f f

f X X

f X X

I V

V I

X Z r

Z X r

� �

� �

� �

� �

0000

0000

ΘΘΘΘ

ΘΘΘΘ

       (17) 

 

In the frequency domain the stationary stochastic zero-mean process is fully defined 

by the power spectral density (PSD) function vector 
o o

( )ω
f fX X

s � � . The two function 

vectors are related by the following relationships:   

 



7 

{ } ( )

{ } ( )

o o o o

o o o o

T

T

o o

o o

Vec ( exp i ( )d ;

Vec exp i ( )d ,

( ) )

( ) ( )

t

t

t t

t t

τ τ ω τ ω ω

τ − τ − ω τ ω ω

∞

−∞

∞

−∞

≡ = −  

≡ = −  

− − ∫

∫

f f f f

f f f f

X X X X

X X X X

f f

f f

X X

X X

R s

R s

r

r

� � � �

� � � �

� �

� �

   (18) 

 

where i = -1  is the imaginary unit and 

 

{ } { }
o o o o o o

T ( ) Vec ( ) Vec ( ) .ω ω ω= ≡
f f f f f fX X X X X X

s S S� � � � � �            (19) 

 

 

In this equation ( )ω
f fX X

S � �  is the PSD matrix function of the multivariate stationary 

process stochastic.  By substituting Equation (19) into Equation (18), after some 

algebra, the following relationships are obtained: 

 

( ) { }

( ) { }

o o

o o

o

o

o

*

o

o

o

( ) Vec ( ) d ;

( ) Vec ( ) d ,

E ( )

E ( )

n

n

t t

t t

ω ω ω

ω ω ω

∞

−∞

∞

−∞

 = ⊗ 

 = ⊗ 

⊗

⊗

∫

∫

f f

f f

X X

X X

f

f

I H S

H I S

X Z

Z X

� �

� �

� �

� �

        (20) 

 

where the asterisk means complex conjugate and   

 

( )
( )

( )
o

o 2 o o

o

( ) i
i

sω ω
ω

ω 
 = − =    ω 

-1 h
H I D V

h
           (21) 

 

being ( )o ωh  a matrix of order s n×  defined as 

 

( )
1

2 T

o ο o oi .
s

ω ω
−

 ω = − + h I
2222Ω Ξ ΦΩ Ξ ΦΩ Ξ ΦΩ Ξ Φ            (22) 

 

Note that the inverse matrix, which appears in this equation, can be evaluated in 

closed form for classically damped systems. Indeed, in this case, all the matrices in 

square brackets are diagonal ones. 

Once the statistics vectors, 
o
( )tzµµµµ  and 

o
( )tzσσσσ , in modal subspace are evaluated, 

the nodal mean value and covariance vectors can be obtained as a  

 

( ) ( ) ( ) [ ] ( )2

o o o oo o;      ,t t t t= =y z y zµ Π µ σ Π σµ Π µ σ Π σµ Π µ σ Π σµ Π µ σ Π σ             (23)

  

where the apex in square brackets means Kronecker power.  
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3. Dynamics modifications 

 
Let consider now a system obtained changing the geometric and mechanical 

parameters of the original one. Eventually some structural components can be added 

or deleted so that the degrees of freedom of the modified system can be different 

from the original ones. The equation of motion of the modified structural system is 

written as 

 

m m m m m m m( ) ( ) ( ) ( ).t t t t+ + =M u C u K u f�� �                                             (24) 

 

Note that the modifications could lead to a modified non-classically damped 

system even if the original one is classically damped. Due the structural 

modifications two main cases can be observed: a) non-topological modifications; b) 

topological modifications.  

 

3.1.  Non-topological modifications  
In the case of non-topological modification the number of the degrees-of-

freedom (DOFs) of the modified structural system are the same that one of the 

original system. Accordingly, the matrices mM , mC  and mK , of order n×n , and 

the vector of applied force m ( )tf , of order 1n × , can be written as follows 

  

m o n n m o n n m o n n m o n; ; ; ( ) ( ) ( ) ,t t t= + = + = + = +M M M C C C K K K f f f  (25) 

 

where the matrices n nM , n nC  and n nK , of order n n× , account for the variations, 

induced by the modifications, with respect to the matrices oM , oC  and oK . It is to 

emphasize that non-topological modifications are very common in studying MDoF 

systems with uncertain parameters via a pertinent Monte Carlo simulation. It is well 

known that for this problem the adoption of Monte Carlo simulation is quite 

onerous. In this regard, the main steps involved in a Monte Carlo study require: (i) 

the simulation a set of random variable modelling, (ii) the deterministic analysis of 

the response for each set of variables, (iii) the evaluation of the response statistics 

repeating several times deterministic analysis pertinent to each new simulation. In 

this context the Reanalysis techniques are a promising strategy in reducing the 

computational effort (Muscolino and Cacciola 2004). 

 

 

3.2.  Topological modifications  
The modification is called topological if it induces the change of the number of 

DOFs of the original structural system. This generally happens when structural 

elements as well as joints are added or deleted. If the number of the DOFs increases 

the matrices mM , mC  and mK , of order g g×  ( g n> ), and the forcing vector 

m ( )tf , of order 1g × , can be partitioned in the following form  
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o n n n r o n n n r

T Tm m

n r r r n r r r

o n n n r o n

Tm m

n r r r r

; ;

( ) ( )
; ( ) .

( )

t t
t

t

+ +   
= =   
   

+ +   
= =   

  

M M M C C C
M C

M M C C

K K K f f
K f

K K f

                          (26) 

 

where 
n n

M , 
n n

C , 
n n

K  and 
n
( )tf  list the modifications of the structural matrices and 

the force vector related to the original n-DOFs; while 
r r

M , 
r r

C  
r r

K , and 
r
( )tf  are 

the matrices and the force vector associated with the newly added DOFs; 
n r

M , 
n r

C  

and 
n r

K  represent the coupling between the original and the newly added r g n= −  

DOFs.  

Lastly, in addition to a variation of the structural properties of the original 

system, some joints can be deleted. It follows that the number of DOFs of the 

modified structure is lower than that of the original system ( )g < n , implying a 

reduction of the problem dimension. The new matrices and the force vector of the 

modified system are obtained by cancelling out the rows and columns of their 

original counterparts pertinent to the deleted joints and adding the variations 

 

m o nn m o n n m o n n; ;= + = + = +M M M C C C K K K ;  
m o n( ) ( ) ( )t t t= +f f f .   (27) 

 

In the previous relationships, the overline means that the order of the new matrices 

is lower than the order of those related to the original structure; the matrices n nM , 

n nC  and n nK  are the matrices of order g g×  ( g n< ) which denote further possible 

variations in the modified matrices of the original system. 

 

 

3.3. Equations of the modified system  
In this section the equations of motion of the modified system, in modal subspace, 

with both non-topological and topological modification are formulated in a unified 

way (Muscolino and Cacciola, 2004; Cacciola et al 2003, 2005). In order to do this, 

the following coordinate transformation is considered 

 

m m
( ) ( )t t=u qΨΨΨΨ  ,   (28) 

 

where ΨΨΨΨ  is a transformation matrix of order n× s  that satisfy the following 

condition 

 

m

T

s
=M IΨ ΨΨ ΨΨ ΨΨ Ψ   (29) 
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Remarkably, for non-topological modifications, the transformation matrix ΨΨΨΨ  can be 

conveniently obtained starting from the matrix of eigenvectors 
o

ΦΦΦΦ  as follows 

 
-T

o
=Ψ Φ ΓΨ Φ ΓΨ Φ ΓΨ Φ Γ   (30) 

 

where ΓΓΓΓ  is a triangular matrix of order n×n , evaluated by applying the Cholesky 

decomposition, that is it satisfies the following condition 

 
T

o m o
.

T
MΓ Γ = Φ ΦΓ Γ = Φ ΦΓ Γ = Φ ΦΓ Γ = Φ Φ   (31) 

 

 In the case in which the system dimension changes, i.e. for topological 

modifications, then some rows should be cancelled out (if some nodes are deleted) 

or added (if some nodes are annexed) to the matrix 
o

ΦΦΦΦ  before applying the Gram-

Schmidt procedure. For the case of DOFs addition, the matrix ΨΨΨΨ , of order g× s , 

can be obtained as  

 

o -T

r

 
=  
 

ΦΦΦΦ
Ψ ΓΨ ΓΨ ΓΨ Γ

ΦΦΦΦ
,                                                          (32) 

 

where r, jφφφφ , generic column of the new matrix rΦΦΦΦ  (of order r× s ), is given by  (Chen 

et al 2000) 

 

( ) ( )
1

2 T 2 T

r, r r o, r r n r o, n r o,j j j j
ω ω

−

= − − −K M K Mφ φφ φφ φφ φ ;   (j=1,2,…, s),                                (33) 

 

being o, j
φφφφ  and o,jω  the generic eigenvector and the natural frequency the of the 

original structural system, respectively. In the case of DOFs reduction, the matrix ΨΨΨΨ  

is simply obtained deleting the rows of the matrix oΦΦΦΦ  according to the number of 

nodes deleted in the modified structures 

     Once the matrix ΨΨΨΨ  is defined, by applying the coordinate transformation (28) the 

coupled equations of motion for the modified structural system can be rewritten in 

the reduced modal space as  

 

m m m m m m( ) ( ) ( ) ( ),
T T T

t t t t+ + =q C q K q f�� �Ψ Ψ Ψ Ψ ΨΨ Ψ Ψ Ψ ΨΨ Ψ Ψ Ψ ΨΨ Ψ Ψ Ψ Ψ          (34) 

 

whereas, in the reduced (modal) state space  

 

m m m m m( ) ( ) ( )t t t= +z D z V f�   (35) 

 

being 
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m m

m m

,      .
s

T T T

   
= =   − −   

0 I 0
D V

K CΨ Ψ Ψ Ψ ΨΨ Ψ Ψ Ψ ΨΨ Ψ Ψ Ψ ΨΨ Ψ Ψ Ψ Ψ
 (36) 

 

Note that, in order to numerically evaluate the dynamic response of the modified 

structural system, the procedure recently proposed by the authors (Muscolino and 

Cacciola 2004, Cacciola et al 2003,2005) can be applied. This procedure, according 

to the philosophy of the Reanalysis, requires the following steps: (i) to write the 

solution in the following form 

 

om

m o

om

( )( ) ( )
( ) ( ) ( ),

( )( ) ( )

tt t
t t t

tt t

∆    
= + ∆    ∆    

qq q
z = + = z z

qq q�� �
           (37) 

 

where ( )tz∆∆∆∆  is the increment of the response of the modified structural system in 

the reduced  (modal) subspace with respect to the original modal subspace; (ii) to 

select, for  both the original and the modified structural system, the same number of 

generalized co-ordinates in the reduced subspaces.  

 

 

 

4. Reanalysis of the stochastic stationary response 

 
The most common structural systems of engineering interest are subjected to 

stochastic loads. In this context the Stochastic Mechanics deals with the challenging 

problem determining the random response of a structural system. Several 

approaches have been proposed in literature to cope with this problem (see e.g. Lin, 

1976; Lutes-Sarkani, 1997). The random response is fully defined, by a probabilistic 

point of view, if the probability density function or alternatively all the statistical 

moments of the response are known. In the case in which the system is linear 

possessing deterministic geometry and mechanical parameters, and it is forced by a 

Gaussian process, the response is Gaussian too. So that, only the statistical moments 

until the second order are needed to fully characterize the stochastic response. In this 

section the Reanalysis is formulated for the case of stationary input. 

 

4.1    First and second order statistical moments for dynamic 

modifications 
Let assume now that the linear structural system is modified and that the stochastic 

input is a stationary Gaussian process. According to Equation (16), the first two 

statistical moments of the modified systems are given by the equations 

 

( )

( )

1 1

m o

1 1

m,2 o,2 2

m m m

m m m

m m= = ;

= ;

− −

− −

− − + ∆

= − − + ∆

z f f

z Z Z

D V D D V

D F D D F� �

µ µ µµ µ µµ µ µµ µ µ

σσσσ

 (38)  
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with 
mfµµµµ the stochastic average of vector m( )tf  and 

 

( ) ( ) ( ) ( )

2 2

m m m

m mm,2

m m m m2 2

;

E ( ) E ( ) .

s s

s st t t t

= ⊗ + ⊗

= ⊗ ⊗ + ⊗ ⊗Z f f

I ID D D

F V I X Z I V Z X� � � � �
 (39) 

 

In the Equations (38) the following positions have been made 

 

m o 2 m,2 o,2;      ∆ = − ∆ = −D D D D D D                (40) 

 

The elements of vector 
mZF� ,  which represents the input-output stochastic averages 

for the modified system, can be evaluated as 

 

( ) ( )

( ) ( )

m m

m m

m
m m

m
m m

m

m

( ) d ; 

( ) d .

E ( ) ( )

E ( ) ( )

t

n

t

n

t

t

t t t

t t t

τ τ − τ

τ τ τ

= ⊗ −  

= − ⊗  

⊗

⊗ −

∫

∫

f f

f f

f X X

f X X

I V

V I

X Z r

Z X r

� �

� �

� �

� �

0000

0000

ΘΘΘΘ

ΘΘΘΘ

      (41) 

 

In the latter equation the input-output stochastic average are not time-dependent 

functions, and can be evaluated as: 

 

( ) { }

( ) { }

m m

m m

m

m

m

*

m

m

m

( ) Vec ( ) d  ;

( ) Vec ( ) d

E ( )

E ( )

n

n

t t

t t

ω ω ω

ω ω ω,

∞

−∞

∞

−∞

 = ⊗ 

 = ⊗ 

⊗

⊗

∫

∫

f f

f f

X X

X X

f

f

I H S

H I S

X Z

Z X

� �

� �

� �

� �

       (42) 

 

where 

 

( )
( )

( )
m

m 2 m m

m

( ) i ,
i

s

ω
ω ω

ω ω

 
 = − =   

 

-1 h
H I D V

h
           (43) 

 

and 

 

( )
1

2 T

m m mi .
T T

s
ω ω ω

−
 = − + h K I CΨ Ψ Ψ Ψ ΨΨ Ψ Ψ Ψ ΨΨ Ψ Ψ Ψ ΨΨ Ψ Ψ Ψ Ψ            (44) 
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4.2    Reanalysis methods 
 

The objective of the Reanalysis in this context is the evaluation of the statistical 

moments until the second order of the modified structure taking advantage of the 

results relative to the original structure, so reducing the computational effort. Being  

the equations for determining the statistical moments of the response, for stationary 

input, algebraic ones, the main Reanalysis techniques developed for the 

deterministic static reanalysis are herein extended to the case of stochastic stationary 

Gaussian input.  

 

Sherman-Morrison-Woodbury method 

In mathematics, in particular in linear algebra, the Sherman-Morrison-Woodbury 

(SMW) formula (Sherman and Morrison 1949, 1950; Woodbury 1950) gives the 

exact inverse of an invertible matrix due to a rank-r change, formulated as the 

superposition of  r  change of rank one. It follows that by introducing the vector 
j

v  

of order 2 1s ×  

 

0

0

1

0

j

j th position

 
 
 
 =
 

− 
 
 

v �                    (45)  

 

possessing the element in the j-th position equal to one and all the other equal to 

zero, the matrix mD  can be rewritten in the following form 

 
2 2

m o ,

1 1

s s
T

i j i j

i j

D
= =

+ ∆∑∑D = D v v                   (46),  

 

being ,i j
D∆  the element of the matrix ∆D  located at the i-th row and  j-th column. 

Accordingly to the recursive SMW formula, it is possible to evaluate in exact form 

the inverse of matrix  mD  updating recursively the inverse of the  matrix oD . That is 

 
1

0 o

1 1 2

1 ,

, 1

;

; 1,..., 4
1

T

k i j k

k k i j T

i j j k i

D k s
D

−

− −

−

−

=

= − ∆ =
+ ∆

E D

E v v E
E E

v E v

                (47) 

 

Where k stands for k-th iterations and it is independent of i and j. Obviously the 

procedure should be applied only to the elements , 0
i j

D∆ ≠ . Since most of the 
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elements of the matrix ∆D  are zeros, the number of iterations k are only a few, so 

saving in the computational effort.  

Analogously the covariance vector of the modified system can be obtained updating 

introducing the vector 2, j
v  of order 

2
4 1s ×  

 

 

2,

0

0

1

0

j

j th position

 
 
 
 =
 

− 
 
 

v �                   (48) 

 

possessing the element in the j-th position equal to one and all the other equal to 

zero, the matrix m,2D  can be rewritten in the following form 

 
2 24 4

m,2 o,2 2, , 2, 2,

1 1

s s
T

i j i j

i j

D
= =

+ ∆∑∑D = D v v                 (49)

  

 

Being 2, ,i j
D∆  the element of the matrix 2∆D  located at the i-th row and  j-th 

column. By considering, in the double summation (49), only the terms for which 

2, , 0
i j

D∆ ≠ , the recursive SMW formula leads to  

 
1

2,0 o,2

2, 1 2, 2, 2, 1 4

2, 2, 1 2, ,

2, , 2, 2, 1 2,

;

; 1,...,16
1

T

k i j k

k k i j T

i j j k i

D k s
D

−

− −

−

−

=

= − ∆ =
+ ∆

E D

E v v E
E E

v E v

              (50) 

 

So obtaining the exact solution of the second algebraic Equation (38), updating 

recursively the inverse of the  matrix o,2D . 

 

Combined Approximations method 

The main idea of the Combined Approximations (CA), proposed by Kirsch (1996) 

for the static Reanalysis, is to approximate the displacement vector of the modified 

structure by a linear combination of only few (significantly less than the number of 

DoFs) linearly independent vectors.  The CA provides very accurate results also for 

structural systems with large changes in the structural system (Kirsh 2008). In order 

to extend this method to stochastic stationary Reanalysis, the mean value and 

covariance vectors are herein approximate by two linear combinations of pre-

selected linearly independent basis vectors, generated as 
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m

2 m

(1) 1 ( ) 1 ( 1)

o m o

(1) 1 ( ) 1 ( 1)

o,2 2 o,2 2 2 2

;      2,3,..., ;

;      2,3,..., .

i i

j j

i p

j p

− − −

− − −

= − = − ∆ =

= = − ∆ =

f

Z

r D V r D Dr

r D F r D D r�

µµµµ

                                  (51) 

 

Then the solution of algebraic Equations (38), mean value and covariance vectors, 

can be approximate by these bases of independent vectors as 

 

2 2m m
;     ,z zR x R x� �µ σµ σµ σµ σ                       (52) 

  

where 2 and R R  are two matrices of order 2s p×  and 
2

24s p× , respectively 

defined as 

 
(1) ( ) (1) ( )

2 2 2,  ..., ;     ,  ..., ,i j   = =   R r r R r r                                   (53) 

 

The two vectors 2  and  x x  are of order ( )2p s�  and ( )2

2 4p s� , respectively,  

that can be evaluated in the reduced subspaces as the solution of two sets of  

algebraic equations of reduced order with respect the equations governing the 

problem 

 

m m

1 T 1 T

m 2 2 2;       .− −= − = −f Zx A R V x A R F�µµµµ                      (54) 

 

In these equations, 2 and A A  are two matrices of order p p×  and 2 2p p× , 

respectively, given as 

 
T T

m 2 2 m,2 2;       .= =A R D R A R D R                      (55) 

 

 

 

5  Numerical results  
 

The proposed procedure is herein applied to the bridge-like truss structure depicted 

in Figure 1. The structure is assumed proportionally damped with damping ratio 

0 0.02ζ =  set equal for the first two modes.  The structure undergoes to base non-

uniform base excitation modelled by a zero-mean, tri-variate Gaussian stationary 

process defined by the following cross-spectral density matrix (see e.g. Deodatis 

1996): 
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11 12 13

21 22 23

31 32 33

( ) ( ) ( )

( ) ( ) ( ) ( )  

( ) ( ) ( )
gu

S S S

S S S

S S S

ω ω ω

ω ω ω ω

ω ω ω

 
 

=  
 
 

S
��

           (56) 

The Clough and Penzien (1975) acceleration spectrum is selected to model the 

power spectral density functions ( ), ( 1, 2,3)jjS jω = : 

2
4

2

0 2 2
2 2 2 2

2 2

1 4

( ) ( )

1 4 1 4

gj

gj
fj

jj j j

gj fj

gj gj fj fj

S S S

ω ωζ
ω ω

ω ω

ω ω ω ω
ζ ζ

ω ω ω ω

     +            ≡ =
          
   − + − +                           

 (57) 

In which the following filter parameters have been assumed  

,1 8 /
g

rad sω π= , ,2 5 /
g

rad sω π= , ,3 2.4 /
g

rad sω π=          (58) 

,1 ,2 0.6
g g

ζ ζ= = , ,3 0.85
g

ζ =            (59) 

, ,0,1
f i g i

ω ω= ;         , , ; ( 1, 2,3)
f i g i

iζ ζ= =            (60) 

Moreover,  

2 3

01 0.00623 /S cm s= , 2 3

02 0.00997 /S cm s= , 2 3

03 0.01845 /S cm s=     (61) 

represent three different soil profiles: i.e. rock or stiff soil conditions (1), deep 

cohesionless soils (2) and soft to medium clays and sands (3) as evidenced in Figure 

2.   

The off-diagonal terms are defined as 

( ) ( ) ( ) ( )jk kj jj jkS S Sω ω ω γ ω≡ =            (62) 

where ( )jkγ ω  is the coherence function. The Harichandran andVanmarcke (1986) 

model is chosen to model the coherence function: 

2 2
( ) exp (1 ) (1 ) exp (1 )

( ) ( )

jk jk

jk a a a a a a
ξ ξ

γ ω α α
αθ ω θ ω

   
= − − + + − − − +   

   
       (63) 
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where jkξ  being the distance between points j and k (here it is 

assumed: 12 23 15mξ ξ= =  and 13 30mξ = ) and  ( )θ ω  is given by the following 

equation 
1/ 2

0

( ) 1

b

k
ω

θ ω
ω

−
  
 = +  
   

.                   (64) 

Furthermore, the following parameters have been assumed 

00.626; 0.022; 19700 ; 12.692 / , 3.47a k m rad s bα ω= = = = =     (65) 

In Figure 3 the coherence functions are plotted. Note that the lack of coherency of 

the ground motion accelerations at the three supports is mainly due to the different 

soil profile underneath the supports of the truss.  

After defined the seismic action the second order statistical moments have been 

determined through the procedure described in section 2.2. Specifically the 

equations governing the motion of the original structure read  

 

( ) ( ) ( ) ( )o o o o o o o o o o; (0) ; (0) ,gt t t t+ + = − = =M u C u K u M T u u 0 u 0�� � �� �     (66) 

  

Where ( )g tu��  is the vector of order 3 1×  listing the ground motion accelerations at 

the supports, while oT  is given by the following relationship 

 
1

o o ,og

−= −T K k  

 

in which ,og
k  is the matrix of order 3n×  taking into account of the forces induced 

in the structures due a unitary displacement of each individual support while the 

other are imposed to be zero. Therefore classical modal analysis retaining the first 

10 modes is applied and the analysis is conducted in the reduced modal state space. 

Accordingly the vector oV  and the stochastic averages ( )
o oE ( )t t⊗fX Z� �  and 

( )
ooE ( )t t⊗ fZ X� �  are modified as follows, respectively 

 

o T

o o o

 
=  − 

0
V

M TΦΦΦΦ
                         (67) 

and 

 

( ) { }

( ) { }

g g

g g

g

g

3 o

*

o 3

o

o

( ) Vec ( ) d ;

( ) Vec ( ) d ,

E ( )

E ( )

t t

t t

ω ω ω

ω ω ω

∞

−∞

∞

−∞

 = ⊗ 

 = ⊗ 

⊗

⊗

∫

∫

u u

u u

X X

X X

u

u

I H S

H I S

X Z

Z X

�� ��

�� ��

� �

� �

��

��

� �

� �

        (68) 
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The nodal mean value and covariance vectors have been then determined applying 

Equations(23).  

In Figure 4 are shown three plausible modifications that can be applied to the 

original structures. In all the case the modified structure is assumed classically 

damped. Thus any variation in the stiffness and/or mass matrix induces a variation in 

the damping matrix as well. In the first case (Figure 4a) a change in the geometry is 

imposed. Specifically all the upper joints are translated of one meter. As a 

consequence the mass, stiffness and damping matrices are modified. In this case the 

number of the degrees of freedom does not change so to belonging to the class of 

non-topological modifications. In the second and third case (Figures 4b,c) 

topological modifications are introduced. In the second case (Figures 4b) some 

elements and joints have been deleted so reducing the number of the degrees of 

freedom, while in the last case (Figure 4c) some elements and joints have been 

added so to increase the number of the degrees of freedom. Then the overall scenario 

of possible modifications has been considered in this illustrative example. Second 

order statistics of the modified structural systems have been the determined through 

the proposed reanalysis techniques and compared with the exact solution determined 

through the procedure described in section 2.2 replacing the indexes “o” with “m” 

by considering 10 modes. Since the multi-correlated is zero mean process only the 

response covariance vectors have to be evaluated. In Table (1-3) are compared the 

variance of the 5-th and 13-th joint of the truss structures of Figure 4 with the 

“exact” ones.  Remarkably both the procedure provided result in perfect agreement 

with the exact ones. Interestingly, the CA has been applied by using just 3 base 

vectors (i.e. 2 3p = ) so drastically reducing the computational effort. 

 

 

6  Conclusions  
The main purpose of the Reanalysis is determining the structural response of 

modified systems using the pertinent results from the original structure, so reducing 

the computational effort.  

In this paper a procedure for determining the stationary first and second order 

response statistical moment of linear behaving modified systems under multi-

correlated stationary Gaussian processes is proposed. Preliminarily it has been 

shown that by applying extensively the Kroneker algebra the response statistics 

vectors can be evaluated by solving two sets of algebraic equations. The proposed 

procedure requires the following main steps: (i) projection of the equations 

governing the evolution of the statistical moments in a reduced space, for both 

original and modified structure, by means of a coordinate transformation which 

require the evaluation of the eigenproperties of original structure only; (ii) being the 

equations governing the statistics of the response algebraic ones, the main methods 

of static Reanalysis (Sherman-Morrison-Woodbury formula and combined 

approximation method) are reformulated in order to evaluate the statistics of the 

modified structural system.  
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A bridge-like truss structure under non-uniform earthquake excitation has been 

used for testing the proposed procedure. The numerical results have shown that the 

accuracy archived is very high for both methods. Moreover, the computational effort 

can be drastically reduced, without loss in accuracy, considering only few terms of 

the combined approximation method. 
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Figure 1: Reference truss structure: cross section area of each member 
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Figure 2: Power spectral densities at the tree supports: (1) rock or stiff soil conditions, (2) deep 

cohesionless soils, (3) soft to medium clays and sands.  
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Figure 3: Coherence functions  
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Figure 4: Modified truss structures: a) Non topological modification; b) Topological modification 

reducing the degrees of freedom; c) Topological modification increasing the degrees of freedom. 
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Table 1: Comparison of selected second order moment from exact and approximated 

reanalysis: non topological modifications. 

 

Second order 

moments [m
2
] 

exact reanalysis (CA) reanalysis(SMW) 

2

5,[ ]xE u  2.55344×10
-8

 2.4953×10
-8

 2.49945×10
-8

 

2

5,[ ]yE u  8.8094×10
-8

 8.62552×10
-8

 8.56168×10
-8

 

2

13,[ ]xE u  1.18824×10
-8

 1.16652×10
-8

 1.16623×10
-8

 

2

13,[ ]yE u  6.44497×10
-8

 6.41159×10
-8

 6.3719×10
-8

 

 

 

 

 

 

 

 

 

Table 2: Comparison of selected second order moment from exact and approximated 

reanalysis: topological modifications reducing the degrees of freedom. 

 

Second order 

moments [m
2
] 

exact reanalysis (CA) reanalysis(SMW) 

2

5,[ ]xE u  2.46931×10
-8

 2.46851×10
-8

 2.46851×10
-8

 

2

5,[ ]yE u  1.68161×10
-7

 1.68159×10
-7

 1.68159×10
-7

 

2

13,[ ]xE u  1.27049×10
-8

 1.27173×10
-8

 1.27173×10
-8

 

2

13,[ ]yE u  1.16532×10
-7

 1.16531×10
-7

 1.16531×10
-7

 

 

 

 

 

 

 

Table 3: Comparison of selected second order moment from exact and approximated 

reanalysis: topological modifications increasing the degrees of freedom. 

 

Second order 

moments [m
2
] 

exact reanalysis (CA) reanalysis(SMW) 

2

5,[ ]xE u  2.50065×10
-8

 2.50222×10
-8

 2.50222×10
-8

 

2

5,[ ]yE u  1.68155×10
-7

 1.68157×10
-7

 1.68157×10
-7

 

2

13,[ ]xE u  1.28498×10
-8

 1.28375×10
-8

 1.28375×10
-8

 

2

13,[ ]yE u  1.16614×10
-7

 1.16613×10
-7

 1.16613×10
-7
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