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 Abstract: Recently developed approaches to droplet and spray modelling in computational 

fluid dynamics (CFD) codes are reviewed. It is emphasized that the modelling of spray primary 

break-up needs to take into account the transient nature of sprays, while the modelling of droplet 

heating and evaporation needs to take into account a number of factors, including recirculation 

and finite thermal conductivity of liquid, semi-transparency of droplets and the kinetic effects. 

This modelling needs to take place in realistic three-dimensional enclosures, which makes it 

essential to find a compromise between the accuracy of the models and their CPU efficiency.  

 
 Keywords: Sprays, Droplets, Computational Fluid Dynamics Codes, Break-up, Heating, 

Evaporation  

1. Introduction 

 The importance of the accurate multi-dimensional modelling of droplets and sprays 

in various engineering and environmental applications is well recognised (e.g. [1]-[4]).  

In the most general case, the models need to take into account a number of complicated 

fluid dynamics, heat/mass transfer and combustion processes in realistic three-

dimensional configurations. This inevitably leads to the application of rather simplistic 

models describing individual processes. These include simplistic chemical models, 

droplet break-up models, which do not take into account transient effects, and droplet 

heating models, which disregard the effects of internal temperature gradient, and so on. 

The aim of this paper is to summarise the results of recent studies into the necessity for, 

and feasibility of, relaxing some of the simplifying assumptions in the modelling of 

droplet break-up, heating and evaporation in engineering computational fluid dynamics 

(CFD) codes. Some of the new models have been implemented into the customised 
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version of the KIVA 2 computational fluid dynamics (CFD) code. The implementation 

of these models into other CFD codes seems to be a straightforward task. 

    The modelling of the gas phase in CFD codes is generally based on the Eulerian 

approach when the analysis is focused on the solution of discretised equations of 

conservation of mass, momentum and energy for specific computational cells [5, 6]. An 

alternative approach is based on the solution of the vorticity equation [7]-[10], but this 

is rarely used in practical engineering applications. As for spray modelling, two 

approaches have been developed and used: the Eulerian approach, when liquid is treated 

as a continuous medium or as the second phase of the multiphase flow (e.g. [11]), and 

the Lagrangian approach when the analysis is focused on tracing the trajectories of 

individual droplets or groups of droplets (droplet parcels) on a sub-grid scale (e.g. [12]). 

The second approach is generally more popular than the Eulerian one [13]. It is 

implemented in an open-source non-commercial computer code KIVA, widely used for 

development and validation of spray models [14, 15].  

    The Lagrangian approach to spray modelling has a number of well-known 

limitations, including the grid dependency of the results for dense sprays. These 

limitations and the ways in which they can be overcome were discussed in [16]. One of 

the most important elements of Lagrangian spray models is their focus on jet and 

droplet break-up. The nature of the break-up process depends on a spray region. 

Primary break-up takes place near the nozzle exit. Here disintegration of the liquid jet 

occurs. In the far-field spray, where the liquid phase is dispersed in the gas, the 

secondary break-up of large droplets into smaller ones takes place. In many practical 

applications, unified models have been used for both primary and secondary break-up. 

In these models, the jet is approximated by a chain of droplets, with initial diameters 

equal to the diameter of the nozzle, or slightly less than this diameter if the effects of 

cavitation are taken into account [17].  For implementation into CFD codes, designed 

for computation of three-dimensional sprays, the so-called TAB (Taylor Analogy 

Break-up) and WAVE models of break-up and their modifications are commonly 

applied [18]. An important limitation of the above-mentioned break-up models relates to 

the fact that they are based on an unrealistic assumption about single-size droplets 

created after the break-up. More realistic stochastic models describe the break-up in 

terms of the evolution of the droplet distribution function over time ([19]-[23]). Another 

limitation of the break-up models used in CFD codes stems from an assumption about 

quasi-steady-state flow conditions, although in many practical applications spray 

injection is an essentially transient process.  

    As for the modelling of heating and evaporation of individual droplets, only the 

simplest models have been implemented into most available CFD codes. These models 

are based on the assumption that the thermal conductivity of droplets is infinitely high 

so that there are no temperature gradients inside them. In evaporation models it has been 

assumed that vapour in the vicinity of a droplet’s surface is always saturated, and so the 

problem of droplet evaporation reduces to the problem of vapour diffusion to the 

ambient gas (these are the hydrodynamic models) [4]. 

    In what follows, attempts to overcome these limitations of the model in CFD codes 

will be described. 
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2. Break-up of transient sprays 

    In order to account for the effect of transient injection on break-up, the analysis was 

focused on the WAVE model, the parameters of which, controlling the rate of spray 

disintegration, have been modified [24]. The original WAVE break-up model is based 

on the analysis of the Kelvin-Helmholtz instability of a liquid jet. This instability leads 

to stripping of child droplets from the liquid core. The core is approximated by parent 

droplet parcels injected from the nozzle. The radii of the droplets in these parcels dR  

continuously decrease during the break-up process, as described by the following 

equation: 

bu
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dt

dR




 ,                                                                                          (1)               

where bu  is the characteristic break-up time, and eqR  is the radius of droplets in 
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61.0oB  is the model constant,   and   are the wave length and the frequency of 

the fastest growing disturbance on the surface of a liquid jet moving in an inviscid gas. 

These are functions of Reynolds, Weber and Ohnesorge numbers [25]. The break-up 

time bu  is estimated as: 


 d

bu

R
B1726.3 .                                                                                     (3) 

The break-up constant 1B  was taken to be equal to 10 [25] based on the results of 

measurements of quasi-steady-state Diesel spray penetration at relatively low injection 

rates.  Later, it was shown that the break-up constant 1B  can vary widely depending on 

the type of injector. 

    Patterson and Reitz [26] developed this model further in order to account for the 

effect of the Rayleigh-Taylor (RT) instability of droplets. When the wave length 

corresponding to the maximal increment of this instability 

l

RT
a




3
2                                                                                             (4) 

is less than the diameter of a droplet, the bag break-up of the droplet is expected to take 

place. In this expression,   is the surface tension, and 
D

U
Ca

l

g
D



 2

4

3
  is the 

deceleration of the droplet due to the drag force. For the Rayleigh-Taylor type of break-



 MODELLING OF SPRAYS 4 

 

up, 
eqR  was calculated as RTRTeq CR  , where RTC = 2.5 is the model constant 

[26]. The break-up time was estimated as: 

l
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,  .                                                                                 (5) 

    The Kelvin-Helmholtz instability is mainly responsible for the primary break-up, 

while the Rayleigh-Taylor mechanism prevails at the secondary atomisation stage. In 

both cases the droplets conserve momenta during the break-up process.  

    In the modified version of the WAVE model, the decrease in   (the frequency of 

the fastest growing disturbance on the liquid surface) with increasing injection 

acceleration was taken into account, while it was assumed that the wavelength of critical 

instability  is not affected by the transient nature of the flow. This decrease is 

accounted for by introducing the following relation for 1B : 
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where 
dt

dU

U

D
a

inj

inj



2
Re  is the acceleration parameter taking into account the effect of 

flow acceleration; 1c  and 2c  are adjustable constants. In the steady-state limit, a  is 

zero and
stBB ,11  . Following [25], it was assumed that 10,1 stB . 

    A rigid body concept to describe the propagation of disturbances along the liquid core 

was introduced. It was assumed that parcels constituting the liquid core experience no 

drag from the gas and move as a rigid jet at a speed equal to the instantaneous injection 

velocity injjet UU  . The stripping of the jet due to the development of the Kelvin-

Helmholtz instability, however, is allowed. This leads to a continuous decrease in the 

diameter D  of parcels in the spray core described by Equation (1). In computations, the 

length of the liquid core has been limited by the condition
injDD 5.0 , similar to the 

criterion applied by Reitz [25] (
injD  is the initial jet diameter at the nozzle exit). The 

introduction of the critical diameter of the liquid core allows us to distinguish between 

the primary and the secondary break-up regions in the model. 

    The results of calculations of spray tip penetration, using the conventional TAB and 

WAVE (with B1=10), modified WAVE and stochastic (suggested in [19]) models, and 

the corresponding experimental data for a highly transient spray, were compared [24]. 

As follows from this comparison, the conventional WAVE model, TAB and stochastic 

models significantly under-predict the penetration at the initial stage of this process. At 

the same time the modified version of the WAVE model, described above, gave much 

better agreement between the predictions of the model and experimental data, as 

expected, remembering the highly transient nature of the spray under consideration [27]. 

It is recommended that this model is implemented into other CFD codes used for the 

analysis of transient sprays.  
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3. Modelling of droplet heating and evaporation 

Although the heating and evaporation of droplets is a complex process, involving a 

close interaction between the liquid and gas phases (e.g. [28]), the modelling of these 

processes in CFD codes is commonly based on the separate analysis of the two phases. 

 

3.1 Liquid phase models 

 

The liquid phase models actually used in CFD codes, or the ones which can 

potentially be used, are the ITC (infinite thermal conductivity) and ETC (effective 

thermal conductivity) models. The ITC models are based on the energy balance 

equation of the droplet as a whole. The solution to this equation can be presented as [1, 

4]: 
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where 0sT  and gT  are the initial droplet temperature and ambient gas temperature 

respectively, lc  and l  are liquid specific heat capacity and density respectively. 

Droplet temperature T does not depend on the distance from the droplet centre R in this 

case. 

    Assuming that the process is spherically symmetrical, the droplet transient heating in 

finite liquid thermal conductivity models is described by the following equation [4]: 
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where lK = kl/(cl ρl) is the liquid thermal diffusivity, kl is the liquid thermal 

conductivity, assumed to be constant, T is specified at the initial moment of time as 

T|t=0=T0(R), P takes into account the radiative heating of a droplet. The boundary 

condition at R=0 follows from the problem symmetry 0|/ 0 RRT . It was 

assumed that the droplet is heated by convection from the surrounding gas, and cooled 

due to evaporation. The general analytical solution of Equation (8), taking into account 

the changes in droplet radius due to evaporation, would be a difficult task. This could be 

considerably simplified if we take into account that this solution is used in the 

numerical analysis when the time step is small. In this case we can assume that the 

droplet radius is constant, but the effect of evaporation can be taken into account by 

replacing Tg with the effective temperature [4]: 

    h
dt

dR
LTT d

lgeff / ,                                                                                         (9) 

where L is the latent heat of evaporation, effects of swelling are ignored at this stage, h 

is the convection heat transfer coefficient. The solution to (8) for h=const can be 

presented as [4]: 
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0dT  is the droplet initial temperature distribution,  
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)(RP takes into account the radiative heating of droplets. The variations of all 

parameters with temperature and time were accounted for when analytical solution (10) 

was incorporated into a numerical code. 

    The finite liquid thermal conductivity model could be generalised to take into account 

the internal recirculation inside droplets. This could be achieved by replacing the 

thermal conductivity of liquid kl with the so-called effective thermal conductivity keff= χ 

kl, where the coefficient χ varies from about 1 (at droplet Peclet number < 10) to 2.72 (at 

droplet Peclet number >500) [29]. This is known as the effective thermal conductivity 

(ETC) model. 

    Various models for P(R), taking into account the variation of thermal radiation 

absorption inside droplets were suggested (see [4]). It transpired that this function has 

only minor effects on the heating of droplets, which can be ignored in most practical 

applications. Ignoring the dependence of the distribution of thermal radiation absorption 

on R, we can present the expression for P(R) as [4]: 
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where we assume that the radiation temperature θR is equal to the external temperature 

Text , a and b are polynomials (quadratic functions in most cases) of θR, σSB is the Stefan-

Boltzmann constant. For low sulphur ESSO AF 1313 Diesel fuel, it was found that the 

best approximation for a and b in the ranges m 50m5   dR  and 

K 30001000  extT is provided by the functions [4]: 

 

 a= 0.10400 – 0.05432 (Text /1000) + 0.00800 (Text /1000)
2
. 

 b= 0.49162 – 0.09837 (Text /1000) - 0.007857 (Text /1000)
2
.                                     (17) 

 

    Equation (16) is essentially an approximation of the prediction of the Mie solution for 

the absorption of thermal radiation by semi-transparent droplets. Note that in all CFD 

codes known to us the effects of the semi-transparency of droplets are not taken into 

account and the droplets are treated as grey opaque spheres (see [4] for a more detailed 

analysis of this problem). 

 

3.2 Gas phase hydrodynamic models 

 

The values of h are controlled by the conditions in the gas phase. Various 

approximations for h are usually described in terms of the corresponding 

approximations for the Nusselt number
gd khR /Nu  . Droplet heating, discussed in 

the previous section, is accompanied by droplet evaporation, which is described by the 

following equation: 

dpgl

gd

Rc

k

dt

dR

2

Sh
 ,                                                                                                    (18)                               

where kg is the gas thermal conductivity, cpg is the gas specific heat capacity at constant 

pressure, Sh is the Sherwood number. The difference between various gas models is 

essentially described in terms of the approximations of Nusselt and Sherwood numbers 

[30]. As shown in [30], the gas phase model, originally suggested in [29], predicts the 

evaporation time closest to the one based on the approximation of experimental data. 

This gas phase model was recommended for practical application in CFD codes. In 

most cases, the droplet evaporation time depends strongly on the choice of gas phase 

model. The dependence of this time on the choice of liquid phase model, however, is 

weak if the droplet break-up processes are not taken into account. On the other hand, the 

dependence of the droplet surface temperature, at the initial stage of heating and 

evaporation, on the choice of gas phase model is weak, while its dependence on the 

choice of liquid phase model is strong [30].  

    Solution (10) with the radiation term in the form (16) was used in the new approach 

to the numerical modelling of droplet heating and evaporation by convection and 

radiation from the surrounding gas [4]. This solution was applied at the first time step, 

using the initial distribution of temperature inside the droplet. The results of the 

analytical solution over this time step were used as the initial condition for the second 



 MODELLING OF SPRAYS 8 

 

time step, and so on. This approach was compared with those approaches based on the 

numerical solution of the discretised heat conduction Equation (8), and those based on 

the assumption that there is no temperature gradient inside the droplets (see Equation 

(7)) [4]. All of these approaches were applied to the numerical modelling of fuel droplet 

heating and evaporation in conditions relevant to Diesel engines, but without taking into 

account the effects of droplet break-up. The algorithm based on the analytical solution 

for constant h has been shown to be more effective (from the points of view of accuracy 

and CPU time requirement) than the approach based on the numerical solution of the 

discretised heat conduction equation inside the droplet, and more accurate than the 

solution ignoring the temperature gradient inside droplets [4]. This numerical algorithm 

was implemented into a zero-dimensional code, used for the modelling of coupling 

between droplets and gas, and the KIVA II CFD code [24]. The importance of taking 

into account the effects of temperature gradients inside droplets was confirmed by direct 

temperature measurements inside droplets [31]. The validity of the effective thermal 

conductivity model with the simplified radiation term was justified by direct 

comparison of the prediction of this model and the rigorous model, taking into account 

the recirculation inside, and the distribution of the radiation absorption inside, droplets 

[32, 33]. It was recommended that the effects of temperature gradient inside droplets are 

taken into account in computational fluid dynamics codes, using the model described 

above.  

 

3.3 Gas phase kinetic models 

 

    As mentioned in the introduction, the currently used gas phase hydrodynamics 

models for droplet evaporation, including the one described in the previous section, 

implicitly assume that the rate of detachment of molecules of fuel is such that the 

concentration of fuel vapour at the droplet surface is maintained at saturation level. The 

applicability of this assumption to the problem of modelling Diesel fuel droplet 

evaporation in realistic Diesel engines is not at first evident. In [34] a comparative 

analysis of hydrodynamic and kinetic approaches to the problem of Diesel fuel droplet 

evaporation was presented, based on a previously developed approximate kinetic model. 

This model was based on a number of assumptions the applicability of which to realistic 

(including Diesel engine) conditions is not immediately obvious. For example the 

contribution of air in the vicinity of the droplet surfaces was ignored.  

    A new numerical kinetic model for droplet evaporation into a high-pressure 

background gas, approximated by air, is described in [35]-[37]. As in [32], two regions 

above the surface of the evaporating droplet were considered. These are the kinetic 

region, where the analysis is based on the Boltzmann equation, and the hydrodynamic 

region. The contribution of air and heat flux in the kinetic region was taken into 

account. 

    The evolution of the distribution function of air ),,( tff aa vr  and fuel vapour 

),,( tff vv vr  in the kinetic region is controlled by the corresponding Boltzmann 

equations: 
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where J  (α=a,v; β=a,v) are collision integrals defined as  
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,2/)(       and   are the corresponding diameters of molecules, θ 

and  are angular coordinates of molecules β relative to molecules α after the collision, 

superscript ' indicates the velocities and the distribution functions after collisions, 

subscript 1 indicates that molecules of type β collide with molecules of type α and as a 

result of this interaction the function f  is modified. When deriving these equations it 

was assumed that molecules are rigid elastic spheres and body forces acting on them are 

negligible. A modified version of the previously developed method of direct numerical 

solution of these Boltzmann equations was used.  

    Although the model described in [35]-[37] shows considerable progress in the 

development of kinetic models for droplet evaporation, it still has a number of 

important limitations. Its predictions still rely heavily on the choice of the value of the 

evaporation coefficient. The difficulties with the measurement or calculation of this 

coefficient are well known. In most cases it can be assumed that the system is in a state of 

equilibrium, when the evaporation coefficient coincides with the condensation coefficient. 

The rigorous theoretical estimation of both coefficients would require the application of 

molecular dynamics methods, the analysis of which is beyond the scope of this paper (see 

[38-40]). Also, it remains unclear how kinetic effects can possibly be taken into account 

in CFD codes. 

    In the most recent developments the kinetic effects were described as perturbations of 

the predictions of the hydrodynamic models, using simple approximations [41, 42]. This 

approach is expected to open the way to taking  kinetic effects into account in CFD 

codes. The work in this direction has not yet been completed. 

4. Conclusion 

    Recently developed models for transient spray break-up, droplet heating and 

evaporation, suitable for implementation into computational fluid dynamics (CFD) 

codes, are reviewed with a view to specific application to the modelling of the processes 

in Diesel engines. It is pointed out that the gas phase model, taking into account the 

finite thickness of the thermal boundary layer around the droplet, in the form suggested 

by Abramzon and Sirignano [29], predicts the evaporation time closest to the one based 

on the approximation of experimental data. This gas phase model is recommended for 
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practical application in CFD codes. In most cases, the droplet evaporation time depends 

strongly on the choice of the gas phase model. The dependence of this time on the 

choice of the liquid phase model, however, is weak if the droplet break-up processes are 

not taken into account. On the other hand, the dependence of the droplet surface 

temperature, at the initial stage of heating and evaporation, on the choice of the gas 

phase model is weak, while its dependence on the choice of the liquid phase model is 

strong. The relatively small contribution of thermal radiation to droplet heating and 

evaporation allows us to describe it using a simplified model, which takes into account 

their semi-transparency, but does not consider the spatial variations of radiation 

absorption inside droplets. The algorithm based on the analytical solution for constant h 

is more effective (from the points of view of accuracy and CPU time requirement) than 

the approach based on the numerical solution of the discretised heat conduction 

equation inside the droplet, and more accurate than the solution based on the 

assumption that the thermal conductivity inside droplets is infinitely large. It is 

recommended that kinetic effects are taken into account when accurate analysis of 

Diesel fuel droplet evaporation is essential. They may be taken into account in CFD 

codes if the results of kinetic calculations are described as the perturbations to the 

predictions of the hydrodynamic models, using simple approximations. 
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