
 1

Adopting ‘Agile’ and ‘Scrum’ Practices as ‘Organisational Becoming’:
Cases from the UK Video Games Industry

Juan Mateos-Garcia and Jonathan Sapsed

CENTRIM - Centre for Research
in Innovation Management,

University of Brighton,
The Freeman Centre,

(University of Sussex campus)
Falmer, Brighton

BN1 9QE, United Kingdom

Tel. +44 (0)1273 877942
Fax. +44 (0)1273 877977

Email: j.d.sapsed@bton.ac.uk

Abstract

Established ‘rational’ methodologies in the field of project management are being
increasingly challenged by scholars who argue that the emphasis that they place on idealised
top-down processes neglect ‘soft’ human dimensions of projects. This has led to negative
outcomes such as delays in delivery, low quality products and overshot budgets. In this
paper, set in the empirical context of video game development, we present and analyse the
Agile Programming Paradigm, an approach to the organisation of software projects that has
recently emerged as an alternative to traditional, formal project management and organisation
methodologies. The proponents of Agile advocate a bottom-up approach to management with
an emphasis on constant product iterations and interaction with customers. They argue that a
shift in attention from processes, documentation and measurement to ‘softer’ variables
supports a development system better able to ‘embrace change’, which is understood as the
key limitation of formal, rational methods. We use emerging analyses of ‘organisational
becoming’ first advanced by Tsoukas and Chia (2002) in order to frame our discussion
theoretically, suggesting that the Agile Paradigm constitutes a potential answer to a key
question formulated during their research, ‘what must organisation(s) be like if change is
constitutive of reality’.

In the empirical part of the paper we present three case studies of organisations that have
implemented Agile techniques. This analysis informs a subsequent discussion where we
assess the advantages and limitations of the Agile Paradigm. We conclude with an
interpretation of our findings within the ‘Organisational Becoming’ philosophical framework.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Brighton Research Portal

https://core.ac.uk/display/188248023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Introduction

Established ‘rational’ methodologies in the field of project management are being
increasingly challenged by scholars who argue that the emphasis that they place on formal,
idealised processes implemented from the top-down has led to a neglect of ‘soft’ human
dimensions of project management, with negative outcomes epitomised by delays in delivery,
low quality outcomes and overshot budgets (Hobday and Brady 2000). In this paper, set in
the empirical context of video game development, we present and analyse the Agile
Programming Paradigm, an approach to the organisation of software projects that has
recently emerged as an alternative to formal methodologies such as ‘the Waterfall model’.
The proponents of Agile put forward practices with a strong focus on the nature of work
carried out by software teams, a bottom-up approach to management and an emphasis on the
dyad of interaction and iteration. They argue that a shift in attention from processes,
documentation and measurement to these other ‘softer’ variables supports a development
system better able to ‘embrace change’, which is understood as the key limitation of formal,
rational methods. We use emerging analyses of ‘organisational becoming’ first advanced by
(Tsoukas and Chia 2002) to frame this debate.

After a brief discussion of some aspects of video game development that hinder the success
of rational management approaches, we describe the key elements of Agile Programming and
the ways in which they purport to address them. In the empirical part of the paper we present
three case studies of organisations that have implemented Agile techniques in different ways
and with diverging degrees of success. This analysis informs a discussion where we examine
the advantages and limitations of Agile techniques when compared to rational approaches to
software management, and identify those contexts where their application would seem most
suitable.

2- Theoretical Discussion

a) Embracing change as a way of organisational becoming

(Tsoukas and Chia 2002) argue, in their discussion on traditional approaches to
organisational change in management science, that the dominant epistemological framework
in the discipline has placed an excessive emphasis on the role that institutional structures
(such as for example routines) play in promoting stability in organisations. In this context,
change is seen as an exceptional occurrence that managers initiate from the top-down, rather
than as the pervasive state of affairs where organisations operate, act upon and are influenced
by. They contend that the prevalence of the former view has resulted in a fragmented
understanding of organisational change and to problems in its implementation, and defend the
adoption of a new philosophical approach where change is understood as the norm in an
organisation, rather than as the exception.

They assert that in order to accomplish this, it is necessary to focus on the ways in which the
habits and beliefs of networks of actors at all levels of an organisation (and outside it) are
interwoven creating pervasive patterns of transformation with beginnings and ends that can
only be arbitrarily established. These processes are what they define ‘organisational
becoming’.

Tsoukas and Chia are advocating a conceptual and methodological shift in the area of
Management Science that, when incorporated into organisational practices, can give rise to

 3

new structures for project management, and original outcomes. In this paper we explore these
issues by analysing the context of application, advantages and limitations of the Agile
Paradigm, an emerging organisational approach with a philosophy and practices that seems to
constitute a possible answer to the central question informing Tsoukas and Chia’s work, this
is, ‘what must organisation(s) be like if change is constitutive of reality?’ More specifically,
we look into the way in which the implementation of management structures which legitimise
the bottom-up emergence of organisational and communication arrangements for
development, and a multiplicity of interactions with a diversity of stakeholders via product
iterations promote flexibility and creativity in video game organisations. In a dynamic
application of Conway’s Law (Conway 1968)), we should expect this organisation to develop
products with architectures better able to incorporate internal (creative) and external (market)
influences, key determinants of market relevance and success.

We accept, however, that ‘embracing change’ might give rise to undesirable trade-offs by
reducing, for example, the predictability of development outcomes, or the stability of a
product component at a particular moment in time, and giving rise to communication and co-
ordination costs. Our analysis is pragmatic and suggests that a philosophy of management
that focuses on change, as perhaps reflected on a wholehearted embrace of Agile tenets,
might not be suitable for all organisations, or at least to all areas inside a project. We examine
these issues in the empirical context of three video game studios who have followed different
Agile implementation strategies, with a diversity of outcomes.

b) Organisational crises in video game development and the limitations of a rational
response

Rationalisation of growing team sizes

The video game sector is a software-intensive creative area of growing economic importance
where organisations have for a long time struggled to establish suitable methodologies for
product development. The need to integrate the outputs of a diversity of disciplines into
sophisticated products, the rapid rates of technological change, intense competitive pressures
and the fuzzy definition of quality (inherent to most creative sectors (Caves 2002)) have
resulted in uncertainty regarding which are the right approaches to the design and creation of
video games. This situation has opened up a space for organisational experimentation in
which many studios are currently engaging.

The majority of the efforts towards better management of video game development have been
informed by research in the Software engineering field. This discipline, devoted to the
elaboration of methodologies and processes to improve the efficiency of software
development, emerged as a reaction to the ‘software crisis’ of the 1960s. This situation was
brought forward by the need to develop increasingly complicated software systems to harness
growing hardware power, a process which put intense pressure on the management
capabilities of organisations faced with the need to co-ordinate the activities of mounting
numbers of developers (Dijkstra 1972; Somerville 2006). The move towards ‘next generation
consoles’ in video game development, and the ensuing need to enlarge team sizes in order to
build products able to fulfil the enhanced potential of new hardware has created similar
pressures towards rationalisation in video games (McGuire 2006).

The Waterfall Model is a dominant approach to the organisation of software projects often
translated to video game development. This methodology, which was first presented, with a

 4

different terminology, in (Royce 1970) establishes a set of clear-cut process phases that any
software project should follow (Cusumano 2006; Somerville 2006). Royce proposes a strong
design effort at the onset of a project aimed at elaborating a robust and thoroughly
documented software architecture that can be implemented afterwards in a systematic and
predictable fashion.

The logical structure of the waterfall model is reflected in the organisational division of
labour inside a video game studios: game designer, developers (this is, programmers
responsible for software code and artists engaged in content production), testers etc., are
located inside different functions of the organisation, carrying out their specialised activities
at each of the different phases presented in Figure 1.

Figure 1- The Waterfall model

Another prevalent tool for process management in software engineering is the Capability
Maturity Model (CMM). The CMM can be understood as a framework for process
improvement inside a software organisation which strives to establish a productive
environment where tasks are ‘optimised’ (Paulk, Curtis et al. 1993). The goals of CMM are
increased precision and predictability in an organisation’s performance as tasks become
growingly well-defined, stabilised and managed. CMM requires the implementation of a
particular lifecycle model for software development, and this has traditionally been the
Waterfall model.

Criticisms of Waterfall

 5

The Waterfall model remains highly popular in software development, and many video game
studios trying to improve the efficiency of increasingly complicated development processes
have adopted it. Although in principle, Waterfall appears like a logical way of organising
software development, with step-by-step sequence including the determination of user needs
(or project goals), strategies to address them, a plan for their implementation and built-in
Quality Assurance procedures, it has nevertheless been subject to strong criticism from both
scholars and practitioners engaged in software (and video game) development.

They contend that the model’s assumptions about the stability and predictability of the
environment where development activities are carried out are unrealistic to an extent that
renders this method inapplicable, or even harmful, for projects above a certain threshold of
size, or inside dynamic sectors. These critics argue that uncertainty and change render highly
detailed project plans irrelevant. Henceforth, the ones adopted in practice are either vaguely
defined, ‘simulacra’ of reality that can be understood as useful maps guiding the development
effort (Parnas and Clements 1986), or as strategic justification for budgets and milestones in
the context of a contract with a client (Brooks 1995). The survival of the Waterfall model in
software production environments is often presented as a consequence of the way in which it
creates an illusion of predictability and offers software clients a legal basis to hold their
contractors accountable for the delivery of project milestones within an agreed schedule and
budget.

We examine below the reasons why this predictability is in many cases deceiving, with initial
references to the classic sources in the software development literature, and examples from
video game development.

Plans are disrupted by emergent problems and unpredicted dependencies

The Waterfall model assumes that the uncertainties of software development can be
addressed through enough ex-ante planning, and that the intricacies of implementation can be
codified and communicated via a complete set of documents (Parnas and Clements 1986).

Critics of the model argue that perfect planning at the front-end of development is impossible
because unexpected problems and dependencies are bound to emerge during the
implementation of any large project. If there is a strong degree of inter-linkage between the
tasks of different team member (as it tends to be the case), it becomes very difficult to
increase or reallocate a project’s staff in order to address emergent problems without further
disruption. Bringing new developers into the project increases communication overhead,
interdependencies between tasks and potential sources of error, resulting in the outcome
which Brook’s summarises in his well-known Law ‘adding manpower to a late software
project makes it later’ (ibid p. 25).

The knock-on effects of the changes made as a reaction to emergent problems puts severe
stress on projects, particularly towards their latter stages, when testers often find more, and
more difficult to solve bugs that expected or allotted for in the schedule. The video game
organisation faces, in this context, an undesirable disjunctive: to release a late product, or a
buggy one.

An strategy often adopted by organisations with limited resources, or aware of the problems
brought by a spike in project headcount late in development, is for the team to go into
‘crunch mode’, this is, to do large amounts of (usually unpaid) overtime in order to release a

 6

more or less ‘complete’ product on time and budget. Crunch-mode is however reported to
impact negatively the productivity and morale of developers, and has become a very
controversial practice the sector, where management is growingly aware of quality of life
issues (Hyman 2007).

The elusive dimension of ‘fun’ (which could be understood as the quality and uniqueness of
the gaming experience) constitutes a key emergent variable difficult to predict at the planning
and component design stages of a project. A game integrates content, technology and user,
and gauging the nature of the experiences of the latter through an analysis of its components
early on development is deemed impossible by practitioners: the proof of a game is in the
playing it, so until the game being produced can be played (even as a prototype) there is a
large degree of uncertainty regarding the success of the development effort. It is often the
case that a game’s fun factor is found wanting when its components are integrated towards
the end of development, and the perennial disjunctive between releasing a late product, or a
low quality one is once again faced by developers (McGuire 2006).

Plans are disrupted by changes in the environment

The uncertainty that characterises software development also presents important external
aspects. For example, the needs and priorities of clients might be difficult to elicit precisely at
the beginning of a project and do in occasions change halfway through its lifecycle, when
new features are requested, disrupting the development effort. The latter problem is
particularly severe in the case of products being developed for highly competitive markets
such as video games. In this sector, the need to react to innovations from rivals or to
pressures from publishers trying to steer the direction of a product as market conditions
change often makes it necessary to modify a project late in its development.

There is conflict between the goals and incentives of different stakeholders

Another important limitation of the Waterfall Model is that it assumes concordance of goals
inside the development organisation, and therefore does not address issues caused by the
divergence of priorities and the misalignment of incentives of the disciplines or groups
engaged in the development of a software project (Boehm and Ross 1989). The traditional
divide between resource-aware ‘rationalising’ conservative project managers and creative,
difficult to manage developers, exemplifies this problem, also manifest inside the developer
‘class’. In the latter case, tensions and communication breakdowns between programmers
and artists with different priorities and professional languages are often reported as a source
of problems during development. Given the high degree of inter-linkage between the
activities of these actors, projects planned according to a methodology which neglects these
issues face unexpected disruptions from internal conflict and misunderstandings.

The trade off between creativity and routinisation

The adoption of incomplete plans which acknowledge the uncertainty of development
processes, or the rejection of complete ones when changes in the production environment
renders them invalid makes it necessary for developers to exercise their creativity throughout
the production process, not just at its front-end.

The existence of this space for the exercise of creativity is often presented as one of the
reasons why video game developers decide to enter this industry, in spite of smaller salaries

 7

compared to other software-intensive sectors: video game development is perceived to be
‘fun’. In this context, strides in the direction of creating a highly predictable and routinised
development environment along the lines defined by both the Waterfall and the CMM models
might alienate the creative personalities that constitute key sources of competitive advantage
for a video game studio (See () and () for a discussion on intrinsic motivations for creativity).

On the other hand, creative freedom can, if unchecked, lead to the widely reported problem
of ‘feature creep’, which emerges when more features than those initially specified are
included in a product (Grantham and Kaplinski 2005). Ambitious or over-enthusiastic
developers might lose focus of the client needs and go on ‘wild goose chases’, perhaps
underestimating the resources required to implement a feature correctly, or without testing its
impact on the performance and usability of the rest of the product. Although feature creep
can take place in almost any product of design (Norman 1988), the apparent easiness with
which additional functionalities can be included in a video game, uncertainty regarding
quality parameters and the desire to target enlarged market niches makes this problem
particularly severe in this sector.

c) What is the Agile Paradigm? How does it address these issues?

The Agile Manifesto (Beck, Beedle et al. 2001) signed by the creators of several innovative
and, in their own words, ‘organisationally anarchistic’ software development methodologies
(including Scrum, Extreme Programming, Adaptive Software Development. Crystal, Feature-
Driven development and Pragmatic Programming) proposes an approach to software
development very different from the rationalist, plan, document and process intensive
strategies implicit in the Waterfall Model.

In the words of Kent Beck, Agile means ‘accepting input from reality and responding to it’
(Computerworld 2007). The Agile manifesto proposes a focus on ‘individuals and
interactions’, ‘working software’, ‘customer collaboration’ and ‘responding to change’ in
order to satisfy customers. There is an acceptance of the uncertain and shifting context in
which software is developed, conditions intensified with the move to competition ‘in Internet
time’ (Cusumano and Yoffie 1998). This is reflected in practices that emphasise constant and
honest communication between disciplines and with the client, and a focus on the rapid
implementation of a flexible feature set that is frequently tested through rapid iterations of the
‘organically evolving’ product. In this sense, the Agile paradigm is linked to the ‘synch and
stabilise’ approach to development adopted by Microsoft in order to build its products
(Cusumano and Selby 1995)

In this section we shall focus on two Agile methodologies, Scrum (Schwaber and Beedle
2002) and Extreme Programming (Beck and Andres 2005) which have become particularly
popular with video game practitioners, briefly describing the way in which some of their key
practices are purported to address the problems we have identified in the previous section
(see Table 1 for a summary).

Prototype iterations in a short development cycle

Agile mandates the rapid implementation of working product features which can be
integrated, tested and incrementally improved in a continuous cycle of iterations. Projects are
split into short development cycles (denominated ‘sprints’ in the case of Scrum) at the end of
which a team should deliver actual ‘shippable’ product functionality. Adopting this approach

 8

makes it possible to address uncertainties and risks early in development, to undertake short,
focussed experiments with innovative features and to keep the team motivated by keeping the
focus of work on the tangible output of their effort. The emphasis on delivering ‘playable’
features and ‘vertical slices’ of a game enables developers and their customers (publishers) to
evaluate the quality (fun) of a growing video game from early stages of development, and
tweak its design in order to address perceived shortcomings and follow up potential
opportunities.

Focus on the user and honest communication

The features implemented in the course of Agile development should be relevant for the
customer, who defines and prioritises them through, in the case of Scrum, the elaboration of a
‘product backlog’ listing all the features that she wants implemented in the product. Extreme
Programming prescribes the redaction of ‘user stories’, defined as ‘visible units of customer-
visible functionality’, and the adoption of ‘test-first’ programming, where the implementation
of features is focussed by defining their minimal conditions of performance (this is, by
establishing, as a first step, when would a feature be considered to be broken, and making it
work).

Although the Agile approach enables rapid incorporation of user feedback into product
development, it also emphasises the need for honesty when acting upon this feedback: Scrum
allows and promotes modifications in the priorities of the contents of a product backlog, and
the incorporation of new items in it in order to, for example, address changes in market
conditions, but the product owner (in charge of managing the backlog) should communicate
clearly the resource implications and trade-offs of these changes to the customer.

Internal communication and conflict resolution

Agile development is carried out by Small and collocated multidisciplinary teams. This
facilitates communication between disciplines and the identification of contentious issues as
part of the conversations and debates that take place during the workday. Scrum prescribes
short, stand-up meetings at the beginning of every day as a way of ensuring that everyone in
the team knows what everyone else is doing, and that any interdependencies between tasks
are quickly identified. The exposure to issues from a range of disciplines also enables
participants in the process to understand and internalise different points of view, and
facilitates learning. Individual incentives are aligned though a strong focus on the delivery of
product functionality at the end of the short development cycle.

Pair Programming is another Extreme Programming practice aimed at promoting
communication between members of a team. In this case, certain programming tasks are
carried out by pairs of individuals who sit in front of the same computer screen, can correct
each other mistakes, and brainstorm to solve problems creatively. These pairs are frequently
rotated in order to favour dialogue between members of the team.

Team self-organisation

Agile places a strong emphasis on team parity. For example, in Scrum teams only one
member has a ‘formal’ title as ‘Scrum Master’. Her role is to ensure that the Scrum rules and
practices are followed, and remove any impediments that might get on the way of the Scrum
Team’s progress, rather than to engage on traditional management of other members’

 9

activities. Another example of the collective nature of the development effort that Agile
promotes is the adoption of ‘shared code’ practices in Extreme Programming, where anyone
is allowed to change any of the product’s code if this is deemed to be necessary. In the
context of Agile, no member of the team is seen to have ownership over specific areas of the
product being developed.

The goals of a Scrum sprint (this is, which features from the product backlog will be
implemented) are determined by the Scrum team, and codified in a list of tasks (the ‘sprint
backlog’) to which the team members sign up autonomously: although the product backlog
establishes the set of goals of development, the team decides independently the path to follow
in order to achieve them.

Figure 2- An agile development cycle

3- Empirical section

a) Methodology

The empirical part of this paper is based on fieldwork conducted in 7 leading UK video game
studios. We carried out semi-structured interviews with lead developers and managers of
these organisations at their offices. Every interview was recorded, and its content analysed

 10

using Nvivo qualitative research software with the aim of identifying some key emergent
themes in the areas of creativity and project management.

We were, when we undertook the interviews, aware of the growing popularity of Agile
approaches to video game development and tried to elicit the opinions of our interviewees in
the area. We found that three of the studios we were interviewing had already implemented
Agile techniques. We focussed our interviews with informants in these teams on the reasons
for this, as well as perceived advantages and shortcomings of the methodology. In this
section we describe the experiences of these three studios, presenting them as case studies of
the adoption of Agile approaches.

Having done this, we undertake a discussion of our findings where we also provide evidence
from informants in other studios we interviewed. The goal of this effort is to map different
approaches to the adoption of Agile, and its benefits and limitations in order to determine the
extent to which the theoretical claims presented in the section above are supported by the
concrete experiences of video game companies.

b) Case studies

Full embrace

Studio A is a small organisation (12 developers at the time of the interview) engaged in the
creation of casual games for handheld platforms. Studio A has fully embraced the practices of
Extreme Programming, and produces its games using a highly iterative incremental approach
with internal releases of a playable version of the game every 48 hours. These versions are
always highly robust because they are programmed using test-first techniques that focus on
the production of code that will not crash.

The production cycle is of six weeks, at the beginning of which a set of ‘visual stories’
(features) are created and displayed in a storyboard. Members of the studio decompose these
stories into tasks and implement them sitting in pairs. This approach is adduced to improve
efficiency by reducing defects in code through peer review, while constant recombination of
pairs facilitates the diffusion of specialist skills throughout the studio. It is also useful to
ensure that developers work throughout the day: since they work with a peer, potential
‘shirkers’ have ‘nowhere to hide’.

The studio is organised in an egalitarian fashion, all members have the same ‘senior’
position, base salaries and royalty share. Everyone contributes ideas to games and is informed
about any relevant information for their work through daily morning meetings, where
developers describe what they intend to do, and problems are flagged and resolved. Business
negotiations are the only area where information is less readily available. One of the
informants report that this is due to the fact that most members of the studio lack business
skills, and it can be quite time-wasting to discuss these issues with them. At the time of the
interview, there were plans to initiate a course to address this perceived shortcoming in the
skill-set of the studio.

Studio A’s relationship with its publisher is reported to be excellent. The publisher
understands the studio and its approach to development. Trust is enhanced by open disclosure
of information (including financial performance) to the publisher, as well as the availability
of an updated, playable high quality version of the game under development at all times

 11

(which makes it possible for the publisher to assess the evolution of the project on a real-time
basis).

Our informants at Studio A are highly satisfied with the outcomes of the adoption of Extreme
Programming, and report that staff morale is high. They have not lost a developer yet, and
have a large number of individuals wishing to join their team. They are also sceptic regarding
the advantages of a less purist approach to the implementation of Extreme Programming,
stating that the only occasions when the results of its adoption are disappointing is when
studios do it in a ‘wishy-washy’ way.

Pick and mix

Studio B, which has traditionally been engaged in work-for-hire porting video games
between platforms is currently working on an original Intellectual Property which includes
several innovative features, particularly in the area of Artificial Intelligence (which
determines the behaviour of a game’s environment and its interaction with the player). Studio
B has adopted Agile practices in certain areas. For example, an ‘epic product backlog’ has
been set up in order to ensure that the game meets the expectations of its client. The use of
this evolving document makes it possible for the client to define and prioritise the features
she wants in the game from the point of view of functionality (e.g user experience), and the
studio focuses on their technical implementation. There are, nevertheless, certain ‘under the
hood’ features of the game, such as for example networking, which are being implemented
and included in the game’s schedule without being listed in this backlog.

Studio B has established a multifunctional Scrum team to implement the aforementioned
Artificial Intelligence (AI) system. Several reasons are adduced for this, including the
important interdependencies between different disciplines in this area: programmers need
game levels to test the functionality of the AI, while the level designers need to design the
levels around the AI functionalities, so it is desirable that they work together as one team. AI
is perceived as a risk area, and the adoption of Scrum enables the team to deliver working
functionalities on time, while adjusting the scope of the system depending on the evolution of
the project. Finally, the adoption of Scrum in this area is seen as a learning experience
potentially useful for other teams in the studio.

The Scrum operates following sprints for the implementation of functionalities specified in a
product backlog owned by the game’s lead designer and the game publisher. This backlog is
co-ordinated with milestone schedules established using traditional component-based
Waterfall methods. The composition of the Scrum team varies between sprints depending on
the tasks that need to be undertaken, and developers with specialised knowledge are brought
in for a sprint if required. This implementation of the practice breaks with the principles of
Agile (which recommend team continuity), and exemplifies the pragmatic approach to Agile
followed by Studio B. According to the game’s project manager, video game studios should
ensure they implement practices that are effective and address the needs of the project they
are engaged with, which will vary depending on its characteristics. In this context, Agile is
not a ‘silver bullet’ one size fits all methodology, but a toolkit with a potentially useful set of
practices that will be more suitable in some contexts than others. One area where the Project
Manager argues Agile could be particularly beneficial is when working in projects where the
client is unsure about what she wants.

 12

Members of Studio B expect Scrum to become more popular as successful studios and
products demonstrate its effectiveness, but still expect other more traditional approaches to
persist in particular areas where stability and predictability is at a premium. Regarding the
Studio’s own experience with its Scrum team, at the time of the interviews the approach had
only been recently implemented, and it was still too early to evaluate its impacts.

Dysfunctional implementation

Studio C has used Scrum successfully in the past for the development of mini-game
collections, as well as in a project exploring the possibilities of an innovative peripheral
device. However, the implementation of the methodology in a recent, more ambitious project
that constitutes this studio’s first ‘next-generation’ effort has been challenging.

Attempts at adapting the Scrum methodology to a contractual framework based on the
delivery of pre-established milestones were unsuccessful, and an initial failure to comply
with the required feature list for the first milestone led to alarm regarding the future of the
project. Scrum-style self-organisation and functionality-based product backlogs were
replaced with a top-down process of low-level task specification with the goal of
guaranteeing milestone deliveries.

The relationship between the studio and the publisher has been difficult, and the
aforementioned concerns regarding the survival of the project have informed a management
of the product backlog tolerant with the publisher’s constant changes of mind and redefinition
of the scope of the game. According to our informants, the embrace of Scrum’s flexibility
and responsiveness to customer demands has not been balanced with honesty communicating
the trade-offs that this flexibility entails. The failure to fulfil unrealistic commitments at the
high degree of quality expected by the publisher has only increased tensions and the feeling
of constant panic in the studio.

The Studio had reorganised the project recently before we conducted the interviews with the
aim of addressing these problems and increase team morale through a firmer adherence to the
principles of Scrum. For example, Scrum teams have been redefined in order to reduce
interdependencies between them, and focus more strongly on feature implementation
including developers from different disciplines (previously they were very much organised
functionally). The discipline leads have been designated Scrum Leaders in different areas and
given training in the methodology. Higher management has met the publishers in order to
agree a redefined scope for the project. The perception in the studio is that this management
layer will ensure that the publisher is aware of the resource implications of future changes in
the scope of the game from now on, leaving developers able to concentrate on the
implementation of features in the product backlog.

Although some of our interviewees report that this shift has started bringing benefits to studio
morale almost immediately, there are doubts about its applicability in certain areas. For
example, one of the lead artists mentions his concerns about the extent to which self-
organising teams can develop a coherent visual style for a game. Another informant is sceptic
about the applicability of the Scrum model to the implementation of monolithic architectures.
According to him, Scrum is based on self-organising teams working in parallel with as few
interdependencies as possible, something that cannot be easily achieved in the case of non-
decomposable systems such as video games.

 13

The creation of multi-disciplinary teams can also become a potential source of tensions when
adopted in a functionally organised structure: one of the worries that recur during our
interviews has to do with discipline lead accountability over work undertaken by developers
nominally subordinated to her but working in a Scrum Team outside hers. Again, this
particular problem appears as a consequence of the need to implement the Scrum system on
top of a pre-existing organisational structure initially established for a different development
methodology.

c) Discussion

Our fieldwork highlights several issues that influence the outcomes of the implementation of
Agile techniques for video game development:

First, our evidence shows that although Agile practices work well when adopted by small
teams, scaling them in order to tackle larger and more ambitious projects presents important
challenges. The Agile paradigm advocates team independence and empowerment, but this
independence needs to be balanced with co-ordination when several teams are working on
interdependent tasks, or integrated components. The prescriptions of Agile seem to assume
the existence of one team developing a product in close contact with the customer. The
presence of several teams raises the need for communication between them unless the system
being developed is perfectly decomposable, something very uncommon in the case of video
game artefacts. Determining product backlog owners internally, and making sure that
information regarding changes in feature priorities and delivery schedule does not seem a
trivial task and could expected to raise important governance challenges.

The strategy adopted by Studio B addresses these issues by applying Agile techniques in a
very circumscribed area of development, and managing its interfaces with the rest of the team
through the creation of an internal product backlog managed by the project lead designer.

This highlights a second finding of our fieldwork: the majority of our informants report that
the Agile approach is particularly well suited to address uncertainty in innovative or
exploratory projects. Its incremental, organic development strategy makes it possible to
discover slowly the sort of game that needs to be created and reduces the risk of investing too
many resources in the upfront design of an architecture that is found to be unsuitable when its
components are integrated at a late stage of development. On the other hand, informants in
Studio C state that Scrum’s focus on game play and ‘finding the fun’ can lead to the neglect
of a game’s ‘visual pay-off’, and the delivery of a finished and polished product, which are
key for publishers and market success.

The Agile approach challenges some basic rules that have historically regulated the
interaction between video game studios and their publishers, particularly the traditional
emphasis on (apparent) predictability codified in milestone deliverables requiring upfront
planning and specification of development tasks. The fuzzy Agile approach, based on the
delivery of key functionalities, with constant adjustment of scope in order to adapt to changes
in the development conditions, and the ‘carrying of features’ over between development
cycles depending on the circumstances might seem difficult to digest for certain publishers.
The essential tension between delivering set-on-stone milestone requirements and the
exploratory developmental approach favoured by Agile are illustrated in the case of Studio C.

 14

4- Conclusions

The previous discussion illuminates some of the key challenges faced by video game studios
as they strive for the right balance between predictability and flexibility in a highly
competitive environment. The prescriptions of the Agile paradigm place a strong emphasis on
achieving the former, in order to promote creativity and innovation without losing focus of
customer needs. Although this approach has important advantages illustrated by the
successful example of Studio A, our research also shows boundary conditions that might
constrain its benefits, and even be detrimental for a project. The extent to which the Agile
approach can be used in order to implement large scale projects requiring co-ordination
between teams without incurring in the sort of managerial overhead that it initially purports
to avoid constitutes a potential limitation for its application. This finding seems to support
Frederick Brooks predictions about the future of software engineering: there are good
practices that can be adopted in order to improve the efficiency of software processes, but no
silver bullet to solve them definitely (Brooks 1995) .

Additionally, the apparent vagueness of Agile approaches regarding the delivery of a finished
product with a pre-defined set of a features at a particular moment of time, and on an agreed
budget limits its acceptability for customers. Although there is a perception of the problems
of trying to predict the evolution of innovative projects with large lead times, following
traditional methods with clearly established implementation plan seems to be a step in the
right direction towards achieving those goals (Parnas and Clements 1986). On the other hand,
Agile seems to eschew them altogether. This has led to the emergence of hybrid approaches
which try to splice traditional scheduling and Agile development practices (Keith 2007) in
order to reach a balance between the embrace of change required by the uncertain conditions
in which video game development is undertaken, and the need to predict when (and for how
much) will the product be delivered.

This trade-off can be transposed to the conceptual discussion in (Tsoukas and Chia 2002)
regarding managerial approaches to the understanding of organisational change. It seems
clear that the practices advocated by proponents of Agile constitute an inadvertent answer to
Tsoukas and Chia’s question regarding ‘what must organisation(s) be like if change is
constitutive of reality’. Software practitioners have reached, through processes of
experimentation in a production context, organisational solutions based on bottom-up
emergent structures that favour a multiplicity of interactions (through iterations) both internal
and external analogous to those discussed by Tsoukas and Chia, lending empirical support to
their contentions. Conway’s Law implies that these emergent organisational structures should
be able to evolve (and evolve along) product architectures more adaptive to changes in the
environment, and responsive to the surprises and downfalls faced during development
processes strongly characterised by uncertainty. They might also facilitate processes of
learning necessary in order to react to architectural innovations (Henderson and Clark 1990),
some of which are discussed, in the context of video game development, in Sapsed, Mateos-
Garcia and Grantham (forthcoming).

The emphasis on change, flexibility and structural emergence advocated by the Agile
approach needs to be balanced with an acceptance of the fact that stability can in some cases
be a goal that organisations should strive for. This appears so in institutional contexts where
product delivery date and feature set inform promotional strategies and constitute key
parameters in contractual negotiations, and also in production environments where the co-
ordination of activities between different teams of functions will be very difficult to achieve

 15

without a certain degree of stability and predictability in their performance. While the former
barrier to the acceptance of Agile Practices identified in our empirical context is being
challenged by proponents of the approach who argue that its success at delivering high
quality products on time and budget will eventually lead to a shift in perceptions both inside
studios (where many still remain sceptical about its applicability) and publishers, the latter
limitation seems to be intrinsic to the technological and informational conditions where video
game development unfolds. It might require the identification of interdependencies between
product components through upfront planning, and the co-ordination of team through top-
down management practices in principle antithetical to the principles held by the Agile
Paradigm.

Accepting that a nuanced approach to the implementation of Agile practices might be
necessary, particularly in the case of large projects, and that the interactions with external
parties such as publishers or contractors need to be managed carefully in order to avoid the
emergence of dysfunctional processes such as those described in the case of Studio C has
methodological implications: it would seem that in some cases the methodological shift that
Tsoukas and Chia advocate is necessary in order to attain a fuller understanding of processes
of organisational becoming, and associated dynamics of creativity and innovation might
inform the design of structures and practices aimed at restraining them more efficiently.

 16

Table 1- The Agile response to problems in software development

Problem Agile response
Relevant practices

(Scrum)
Relevant practices

(Extreme Programming)
Relevant practices

(common)

Plans are disrupted by
emergent problems and

unpredicted dependencies

Engage in constant iterations of the
product from the onset of the

development, organise the work in small
teams in order to identify dependencies

rapidly.

Sprints, daily scrum
meetings.

Incremental design,
frequent automated testing,
weekly development cycles

and daily builds, pair
programming

small cross-functional
teams, open working

environment

Plans are disrupted by
changes in the environment

The feature list is flexible and subject to
change depending on feedback from the

product iterations and new market
information.

Product Backlog Stories, customer
involvement

There is conflict between the
goals and incentives of
different stakeholders

Development is carried out by small
teams whose members engage in

constant communication, code is owned
collectively and testing is not separated

from implementation. Development
team is insulated from external

pressures by the management team.

Product Owner role, daily
scrum meetings,

Pair programming, shared
code

Small cross-functional
teams

Trade off between
routinisation and creativity

Team self-organisation, Features are
prioritised, while the emphasis on the

delivery of functionality keeps the team
focussed.

Team definition of sprint
targets, Product backlog,

Shared code, stories, test-
first programming,

customer involvement.

 17

References

Beck, K. and C. Andres (2005). Extreme Programming Explained. Boston, Addison-Wesley.

Beck, K., M. Beedle, et al. (2001). Manifesto for Agile Software Develpment.

Boehm, B. and R. Ross (1989). "Theory-W Software Project Management: Principles and
Examples." IEEE Transactions on Software Engineering 15(7): 902-916.

Brooks, F. (1995). The Mythical Man Month. Chicago, Addison-Wesley.

Caves, R. E. (2002). Creative Industries: contracts between art and commerce. Cambridge,
Mass., Harvard University Pres.

Computerworld (2007). Extreme Programming Inventor talks about agile development.
ComputerWorld.

Conway, M. (1968). "How do Committees Invent?" Datamation April 1998.

Cusumano, M. (2006). Fast & Flexible Software Development. M. S. S. o. Business.

Cusumano, M. and R. Selby (1995). Microsoft secrets : how the world's most powerful
software company creates technology, shapes markets, and manages people. New York, Free
Press.

Cusumano, M. and D. Yoffie (1998). Competing on Internet Time: lessons from Netscape
and its battle with Microsoft. New York, Free Press.

Dijkstra, E. (1972). "The Humble Programmer." Communications of the ACM 10: 859-866.

Grantham, A. and R. Kaplinski (2005). "Getting the Measure of the Electronic Games
Industry: Developers and the Management of Innovation." International Journal of
Innovation Management 9(2): 183-213.

Henderson, R. M. and K. C. Clark (1990). "Architectural Innovation: The Reconfiguration of
Existing Product Technologies and the Failure of Established Firms." Administrative Science
Quarterly 35: 9-30.

Hobday, M. and T. Brady (2000). "A fast method for analysing and improving complex
software processes." R&D Management 30(1).

Hyman, P. (2007). "For Better or Worse: A Quality of Life Update." Game Developer
Magazine(June/July 2007).

Keith, C. (2007) Scrum and Long Term Project Planning for Video Games. Gamasutra
Volume, DOI:

McGuire, R. (2006). Paper Burns: Game Design With Agile Methodologies. Gamasutra.

 18

Norman, D. (1988). The Design of Everyday Things. London, MIT Press.

Parnas, D. and P. Clements (1986). "A Rational Design Process: How And Why To Fake It."
IEEE Transactions on Software Engineering SE-12(2): 251-257.

Paulk, M., B. Curtis, et al. (1993). "The Capability Maturity Model for Software." from
http://www.sei.cmu.edu/pub/documents/93.reports/pdf/tr24.93.pdf.

Royce, W. (1970). Managing the Development of Large Software Systems. Proceedings of
IEEE WESCON.

Schwaber, K. and M. Beedle (2002). Agile Software Development with Scrum. Upper Saddle
River, NJ., Prentice Hall.

Somerville, I. (2006). Software Engineering. London, Pearson Education.

Tsoukas, H. and R. Chia (2002). "On Organizational Becoming: Rethinking Organizational
Change." Organization Science 13(5): 572-582.

