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Dynamic information for anticipation

Abstract

What information underwrites visual anticipationillskn dynamic sport situations? We
examined this question based on the premise thaggtical information used for anticipation
resides in the dynamic motion structures, or modaserent in the observed kinematic
patterns. In Experiment 1, we analyzed whole-bodywements of tennis shots to different
directions and distances by means of principal aorept analysis. The shots differed in the
few modes that captured most of the variance, ésheas a function of shot direction. In
Experiments 2 and 3, skilled and less skilled terplayers were asked to anticipate the
direction of simulated shots on the basis of kinggngatterns in which only the constituent
dynamic structures were manipulated. The resultécated that players predicted shot
direction by picking up the information contained multiple low-dimensional dynamic
modes, suggesting that anticipation skill (in teprentails the extraction of this dynamic

information from high-dimensional displays.

Key Words: coordination dynamics, information, estjse, anticipation, biological motion
perception
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Dynamic information for anticipation

On the dynamic information underlying visual argation skill

Biological motion patterns contain information abahe agent’s identity, emotion,
and intentions. For instance, people can tell gredgr of someone walking in the absence of
obvious cues (Troje, 2002). Emotions like angesgdst, fear, happiness, and sadness are
readily gleaned from bodily movements (Dittrich,o3cianko, Lea, & Morgan, 1996).
Similarly, skilled tennis and squash players cacueately predict where an opponent will
play the ball before it is actually hit (Aberneth$990; Williams, Ward, Knowles, &
Smeeton, 2002). In these latter examples, welhdiindividuals (i.e., domain-specific
experts) are more proficient in ‘reading’ the relevinformation from an unfolding action
than novice observers. This skill-specific featisrgparticularly well documented for racket
sports (cf. Smeeton, Williams, Hodges, & Ward, 2004liams, Davids, & Williams, 1999).

In racket sports such as tennis, squash, and b&mimiexpert players are typically
faster and/or more accurate in predicting the au&®f an opponent’'s action (e.g., the
direction and/or depth of a serve) than less skipayers (Abernethy, 1990; Abernethy &
Russell, 1987; Williams et al., 2002). Participaate usually presented with video clips
showing the execution of strokes performed by apoopnt. The clip is then stopped at
particular time points during the unfolding actiand participants are invited to indicate the
outcome of the action, such as the stroke direaimaor depth, or the ball or shuttlecock’s
future landing position. To investigate the impada of certain time windows and/or body
parts for anticipation, researchers have used teahpmd/or spatial occlusion paradigms as
well as eye movement registration techniques @oremws, see Williams & Ericsson, 2005;
Williams et al., 1999).

Abernethy and Russell (1987) examined the antidpaaccuracy of novice and
expert players who were presented with a seri@gleb clips of badminton strokes that were

edited such that increasing portions of the evesrewisible or that different body parts of
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the opponent were occluded. In trials in which<lgh the full shot were shown, participants’
eye movements were recorded. The experts werd@hbke information arising earlier in the
action than novices and anticipation performancterdegated when the arm or arm and
racket were occluded. Since the visual searchegjied of both skill groups did not differ, the
authors concluded that perceptual skill is basetherability to make full use of the available
information. These results have been corroboratedther researchers, confirming that
experts are able to pick up and use informatiosiragi earlier in an action sequence than
novices (cf. Abernethy, 1990; Abernethy, Gill, Par& Packer, 2001; Ward, Williams, &
Bennett, 2002). Moreover, unlike novices who relyrarily on arm and racket movement,
experts pick up more information from proximal badgions such as the hips and shoulders
(cf. Wardet al., 2002; Williams et al., 2002).

Although researchers have revealed ‘when’ and re/hieformation can be picked up
to facilitate anticipation, the methods employed thus purpose were ill-suited to uncover
'what’ information performers may use. Anticipati@only possible if one or more invariant
features exist that differentiate between compedictipns, be they squash strokes or passing
shots in tennis. Previously, researchers have stegjghat dynamic features, rather than
anatomical or physical ones, form the informatiobakis underlying the perception of
biological motion (Runeson & Frykholm, 1983; Trop)02; Westhoff & Troje, 2007). The
detailed investigation of (dis)similarities in tdgnamics of different actions such as squash
or tennis shots varying in depth and directiorhiré¢fore a prerequisite for coming to terms
with the perceptual basis of visual anticipationllskan endeavor that, to the best of our
knowledge, has not been pursued to date (but sge, 2002, and Haken, 2000, 2004, for
similar approaches to event recognition, and pattecognition, respectively). In the present
research we identify the dynamic structures undeglyhe execution of distinct tennis shots

using the Karhunen-Loéve expansion, also refercedad principal component analysis



Dynamic information for anticipation

(PCA). In this context it should be noted that, l&tthe term ‘dynamics’ is used in classical
mechanics in reference to the causal relation iviierces and the resulting motion, i.e., as
synonym for ‘kinetics’, we use it to refer more &dby to all time-evolving phenomena,
including time-dependent motion structures (cf. MBwLiu & Mayer-Kress, 2001; Strogatz,
1994). After having identified the dynamic struesiof interest, we examine the significance
of these structures for visual anticipation skilltivo experiments. Before introducing our
specific expectations with regards to the outcorhéhese experiments, we briefly discuss
previous insights into the information used forlbgical motion perception and anticipation

as well as recent methodological advances in umgayéhis information.

The Perception of Biological Motion

Swedish researchers (see Johansson, 1973, 197Wéséty 1977/1983, Runeson &
Frykholm, 1981, 1983) undertook the initial attempt pinpointing the information used in
biological motion perception. In a series of expennts, naive observers were shown humans
performing actions in point-light display (PLD) foat. Points of lights were presented
corresponding to the location of anatomical landwam the body (e.g., shoulders, elbows,
and hips) against a homogenous dark backgroundnWieging moving point-light images,
observers were able to recognize actions like wglKJohansson, 1973, 1976) or lifting a
weight (Runeson & Frykholm, 1981, 1983), as welhasactor's gender and the intention to
obscure the weight of a lifted object (Runeson &olm, 1983).

PLD’s have subsequently been used to examinei@atiien in sport. Ward and
colleagues (2002) studied the ability of experiehaed less experienced tennis players to
anticipate an opponent’s intentions from normamfias well as PLDs. The experienced
players anticipated quicker and more accurately tha less experienced players. Although

performance deteriorated when participants vieweD'® relative to film, both groups still
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performed above chance level and the experiencdttipants maintained their superiority
over less experienced counterparts (see also Atgree al., 2001). In a similar vein, Shim,
Carlton, Chow, and Chae (2005) examined anticipasiccuracy as a function of skill and
display type, using a live model, filmed imagesd &LDs. They reported that response
accuracy was above chance levels in all displagitions. However, a significant interaction
between skill and display type indicated that thpegts’ response accuracy decreased when
viewing a PLD compared to film and ‘live model’ pentation modes, whereas, surprisingly,
the reverse picture was observed in the novice ggwwho improved (moderately) when
moving from ‘live model’ to film and then PLDs, pectively. In fact, the skill difference
was no longer significant under the later conditidbhe authors suggested that the skilled
players, in contrast to the novices, were ablextoaet contextual information, or “subtle
visual clues”, from the ‘live model’ and film-basedsplays in addition to the relative motion
presented in the PLDs, and that this surplus indtion was used in an additive fashion (cf.
Bruno & Cutting, 1988).

While the findings from these studies suggest thattemporal structure inherent in
the execution of tennis shots informs observersiatie ball’s future landing position before
it is actually hit, they do not address the questid how information is embodied in the
motion patterns. This issue was tackled in theexdrf gender recognition by Troje (2002),
who used PCA to decompose male and female walkattenms into four rhythmical
components that together captured more than 98%hefvariance of the original 45-
dimensional time-series. These four components weeel to classify and synthesize ‘male’
and ‘female’ walking patterns. Troje invited paip@nts to judge the gender of walkers that
were simulated using dynamic information, motiondm&d (structural) information (e.g.,
hip-shoulder ratio) or both, and found that theaiyics of the motion was more informative

for gender classification than the motion-mediatductural cues. The combination of
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dynamic and structural information did not improperformance relative to dynamic
information only.

In the present paper, we used PCA to examine whmdly movements in three
(Cartesian) directions of different passing shatsennis. Our aims were two-fold. First, we
wanted to identify potential differences in the dgmc structures (coordination patterns)
underlying the execution of different passing shd@econd, we wished to verify the
importance of these structures for anticipatiomianipulating their availability to observers.
In the first, preliminary part of this paper, weepent the results of the PCA on different
passing shots in tennis, followed by a discussidmmating in specific predictions regarding
the dynamics that could be critical for the antitipn of these shots. In the second part of the
paper, we present two experiments that were designd conducted to test the predictions
derived from the PCA.

Experiment 1

The execution of a specific action varies betwewhviduals as well as within an
individual across attempts (cf. Bernstein, 1967|skg 1995; Scholz & Schoner, 1999). It
seems reasonable to expect that in the executid@nois shots body areas that supposedly
contribute relatively little to passing accuracyllveixhibit a larger variability across trials
than the end-effector and mechanically linked afgas the shoulder-arm-racket linkage).
Similarly, body areas that move consistently frome ghot to the next (for similar directions
and distances) are more likely to be relevant ficgation than those that do not. Findings
from eye movement research support this line ofamimg; when attempting to anticipate
tennis shots novices typically focus on the arm muket, while experts additionally focus
on the more proximal shoulder and hip areas (Waad. ,€2002; Williams et al., 2002).

In this first, preparatory study, we used PCAdenitify systematic (dis)similarities in

coordination patterns across different passingsshottennis (in particular, inside out and
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cross-court shots to short and deep targets, sgeeFil). Similarities across different shots
are expected to manifest themselves via similaereigctor coefficients, while structural
dissimilarities between these shots (e.g., comgistigstinct hip-shoulder coordination for
shots to different directions) can be expected éorévealed in consistent differential
eigenvector coefficients. Uncorrelated dissimilagtacross shots (e.g., varying knee-ankle
coordination across shots to the same directior) expected to present themselves as
variable eigenvector coefficients, above all in thigher) modes accounting for only small
portions of the variance. We used PCA to sepatsestructural features of passing shots
from the inherent random features (cf. Daffertsholeamoth, Meijer, & Beek, 2005),
resulting in a characteristic description of thegiag shots.

We expected the similarities in each combinatibmside-out and cross-court shots
to short and deep targets to be greater than tbandlarities; the amount of variance
associated with executing any passing shot islitikelihood considerably larger than that
associated with shot-specific adjustments. For gkanin all these shots the torso rotates to
support the arm and racket swing up to ball conttztying the ball to a particular place
probably requires relatively small adjustment a$ tmotion. Therefore, we did not expect to
find shot-specific modes, but rather that a few esodould effectively describe all shots. We
expected that consistent differential contributiolmiem the time-series to the modes
(represented in the eigenvector coefficients) wadifferentiate shot types. Moreover, we
expected to find consistent differences between tsipes predominantly in the racket, right
arm, shoulder, and hip linkage. Finally, we expéctewer dynamic differences in shot
distance than in shot direction, because variatiorghot distance may well be achieved by
means of a scaling of the dynamics.

Method

Participants
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Six tennis players (two male, four female) betw&Brand 18 years of ag®l (= 18.0,
SD = 1.1) participated. All were right-handed, playsanpetitively at a national level (mean
national rating = 4.755D = 1.40 [1.1 and 10.2 are the highest and lowestgavithin the
Lawn Tennis Association (LTA) rating system in ek, respectively]), and had played on
average 158.39D = 43.2) tournament matches in the last year. ¢hpaints gave their
informed consent prior to taking part in all thesgeriments and each one was conducted in

accordance with the ethical guidelines of the leattution.

Please insert Figure 1 about here

Apparatus

Four different targets were constructed in theolatory (see Figure 1) in order to
simulate passing shots directed to the right aficside of a tennis court (respectively called
‘inside-out’ (I0) and ‘cross-court’ shots (CC) iannis terminology). The lower and upper
parts of these targets were to simulate shorti§8)deep (D) shots (i.e., near and far areas of
a tennis court, respectively). The targets, whielnen0.40 m x 1.00 m (height x width) large,
were placed such that the midpoints of the loweghr) pair were 1.20 m (1.60 m) above
ground level, 2.50 m apart from each other. Thisugeresulted in an accurate representation
of a tennis courtWhile, in principle, shots directed to the deepofshtarget may in reality
resulted in a short (deep) shot, observation ofpdnicipants’ performance as well as their
self-reported performance evaluations suggestddtisgmwas not the case. The participants’
start position was a distance of 6 m from the tis;ge the midpoint of, and perpendicular to,
the mid-line between the targets. In order to saadide ball trajectories prior to the shot, the
ball was projected towards the participant usingiravay, located between the targets at a

vertical distance of 2.50 m above the floor.
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Whole body three-dimensional displacement data weo®rded at 240 Hz (spatial
accuracy< 1 mm) by means of an infrared motion capture sygt@ualisys, Sweden), which
consisted of six cameras positioned at 45°, 9087,1325°, 270°, and 335°, respectively, to
the transverse plane of the player’s start positBpherical retroflective markers (width 15
mm) were placed on the left and right shoulderpwlbwrist, hip, knee, ankle, and toe, as
well as on the top, bottom, left, and right sidetled racket face, the ball, and two reference
points situated on the floor in line with the staoisition 3.5 m apart. The displacement data
of the markers that were attached to the body éht) racket (4) were used for further
analysis (see also Figure 4-6). In addition, a Pama S-VHS video recorder (model NV-
MS5, Panasonic U.K. Ltd, United Kingdom) was placed a®wm behind the start position
and faced forwards so as to record the targets.

Procedure

Prior to the experimental trials, each particippirsicticed several shots to familiarize
her/himself with the task environment. Each pagptaait performed 10 forehand strokes to
each of the four targets. At the start of a trie& participant placed her/himself at the start
position. Next, the experimenter indicated verb#ily target to be aimed at (I0S, 10D, CCS,
or CCD), after which the ball was projected towathlle participant and struck using a
conventional tennis racket after it had bouncedancthe floor.
Data Analysis

For each participant and condition the four triaése selected in which the target was
hit at a distance closest to its extreme corner, (ihe upper left [right] corner for a deep
cross-court [inside-out] shot and the lower lefghit] corner for a short cross-court [inside-
out] shot). The number of trials we could analyzgsvlimited to four due to the available
computational capabilities; the inclusion of affiftial resulted in a state vector that was too

large to allow for computing its covariance matfxor each trial, the start and end-point were

1C
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defined as the initiation of right wrist backwardovement (in they-direction) and the
moment of racket-ball contact, respectively. Ea@dl’'s duration ;) was determined, and
each time-series’ standard deviati@it{p) computed. The latter provided an indication & th
scaling of the trajectory (and its higher derivateSthe time-series in question. Since we
were interested in the scaling features of shotstin we did not ‘normalize’ these standard
deviations with respect to shot depth.

We examined the tennis shot executions in ternthefKarhunen/Loéve expansion,
also referred to as PCA, which is an unbiasedssitzdl method to identify low-dimensional
components in high-dimensional motion patterns Réffertshofer et al., 2005; Haken,
1996). In particular, unlike the standard statti@pplication of PCA based on the
covariance matrix of scalar values which contaimsniormation about events as they unfold
in time, we used PCA to compute the covariance imatross time-series, such that a time
evolution is associated with each eigenvector (rhodebrief, the general aim of PCA is to
effectively approximate aN-dimensional dataset with fewer dimensidtsTo do so for an
arbitrary set of time-seriag(t) := [qu(t), %(t), ga(t),... on(t)] LE (Where€® represents thi"

basis-vector fok = 1..N; t =t,...T) one chooses a different set of vector§ {o obtain

M <N

q(t) = ; '3 ('[)Vk . (1)

The appropriate choice of the vectarss found by minimizing the least square error

_—j{ MiNEk (t) det:min. 2)

The vectorsV* are assumed to be orthogonal, that is, independdgebraically, this
procedure is realized by diagonalization of theadatovariance matrix. The eigenvaluks
of the covariance matrix (after being rescaled stinat their sum equals one) reflect the

amount of variance covered by the correspondingreigcton*. TheN coefficients of each
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corresponding eigenvectef = vi(i = 1..N) reflect the degree to which each of the time-

seriesi contributed tov¥, in other words, the degree to which they shaspecific time
evolution. The eigenvectors, or principal composefitare often referred to as modes (cf.
Haken, 2000), which we will do here also. Finaltile time evolutions&(t) (generally
referred to as projections) of each metiean be obtained by the scalar product

&(t) =V L q(t). 3)

In order to examine whether shots to differentatiosns can be distinguished on the
basis of shot specific modes, the time-series oheral for each participant and condition
were re-sampled to the mean length of all timeesenmean subtracted, normalized to unit
variance, and combined into &kdimensional state vecta(t) (N = 4 [trials] x 54 [time-
series] = 216t = tsart ... thall contac)- EACh mode’s projectiod(t) was established (see
equation 3), and for modes 1, 2, and 3 the covesignormalized to the interval [-1,1])
between corresponding projections was computedarif@ipate, this analysis indicated that
shots to different directions were not differerdhty shot specific modes (see belB@A:
Shot Comparisons across ParticipanfSherefore, a neW-dimensional state vectgft) was
constructed, this time including all mean subtrdcéand normalized time-series from all
participants ll = 6 [participants] x 4 [conditions] x 4 [trials] 34 [time-series] = 5184; =
tstart --- thall contac), Which was also subjected to PCA, and the prigesté(t) were computed

next. Recall, each eigenvector(i = 1..N) contains N eigenvector coefficients

corresponding to different marker locations in xhey-, andz-direction from short and deep
inside-out and cross-court shots. These coeffisievere analyzed for modés= 1...5 in
terms of marker location, (Cartesian) directiorgtadirection, and shot distance.

The trial duration Ty), time-series’ standard deviatio®$p), and the eigenvector
coefficients v* corresponding to the marker locations in ¥aey-, andz-direction of the first

five modes were subjected to a two-way analysigasiance (ANOVA) with shot direction
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(2) and shot distance (2) as within-participantdes: We refrained from subjecting the time-
series’ standard deviation to a four-way analydisasiance with movement direction and
marker location as we were interested in poteefi@cts of shot direction and shot distance.
Whenever the sphericity assumption was violated, dbgrees of freedom were adjusted
using the Huynh-Feldt correction and reported atiogly. Effect sizes were calculated as
partial eta squared valuergsp;().
Results
Trial Duration

No significant effects were found for trial dumti mean and standard deviation
across trails were 1.46+0.12 s.
Time-series’ Standard Deviation (Jsp

There was a significant main effect for shot dis@ E(1, 5) = 6.75,p < .05, /7p2 =
.57); theTSsp of the deep shots exceeded that of the short ghwanSD 4.94+4.22 mm,
and 4.87+4.22 mm, for deep and short shots, reispggt In addition, there was a significant
effect for shot directionH(1, 5) = 47.98p < .01,/7p2 =.90); theTSpwas larger for the cross-
court shots than for the inside-out shots (m&in5.02+4.38 mm versus 4.79+4.05 mm).
PCA: Shot Comparisons across Participants

The PCA conducted on the four trials for each doodper participant revealed that
the first three modes captured roughly 90% ofl&l variance in each 216-dimensional data

set. The corresponding eigenvalue spectra weresienjar (see Figure 2).

Please insert Figure 2 about here

For each shot condition, the covariance betweermthjections(t) corresponding to

each participant for the first three modes hintédaahigh degree of similarity among
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participants for each condition. The covariancewieen the projections was sometimes
negative in some participants. In these casessgitie of most corresponding eigenvector
coefficients differed, indicating that the trajedés of the majority of the corresponding time-
series were very similar. We therefore report theobute value of the covariance. The mean
(absolute value) of the covariance across partitgppavas close to one, while the standard
deviations were loWsee Table 1). Furthermore, the degree of simyjlarfitthe projections of
the different conditions was similarly high; the ane(absolute value) of the covariance
across participants between the projections ofdifferent shots (i.e., I0S, 10D, CCS, and
CCD) was close to one, while the correspondingdstethdeviations were close to zero (see
Table 2). These results indicated a high degresnofarity between the shots at the level of
the most prominent modes. Potential differencesvéemn shot conditions should therefore
reside in a differential contribution from the amaical landmarks and/or racket.
Consequently, instead of analyzing the correspandigenvectors, we conducted a separate

PCA in which the time-series of all conditions gradticipants were included.

Please insert Table 1 & 2 about here

PCA: All Trials — General Observations

PCA showed that the entire data set could effelstibe described by a few modes;
the cumulative sum of the first five eigenvalugsepresented 52.6%, 77.6%, 89.3%, 93.6%,
and 96.2% of all the variance in the data set,aesgely. The corresponding projections (i.e.,

time evolutions{(t); see equation 3) are shown in Figure 3.

Please insert Figure 3 about here
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To determine the contribution to specific modesrirthe various marker locations,
we calculated the mean absolute value of the eagtow coefficients/! for k = 1...5 (see

equation 1) across participants and conditions.il&ily, to address the variability of these
contributions, we calculated the standard deviatibrihe signed value of the eigenvector
coefficients. The results of these analyses aréctiabin Figures 4 and 5, respectively. The
differences in magnitude of the eigenvector cogffits were small in the®'Imode (at least
for the x- and y-direction) and became more pronounced in highedesolIn particular,
anatomically localized and (Cartesian) directioresfic contributions were found in the
dominant modes, although less so in the first. dditeoon, while the contribution of the
shoulder-arm-racket linkage was substantial forfitet three modes, this contribution was
markedly smaller for the"4and %' mode. In general, the mean magnitude of the eiEov
coefficients across marker locations decreased toaiwally from modes 1 to 5 while their
averaged standard deviation increased. In othedsydhe variance (from different marker

locations) within modes was distributed less homegeisly the higher the mode.

Please insert Figure 4 & 5 about here

PCA: All Trials — Comparison between Shots

In view of the large number of statistical anafysedertaken (18 Marker Locatiors
3 Movement Directions 5 Modes = 216 ANOVA's), we abstained from repagtail theF-,
p- and /7p2—values in the text; these are reported in ApperdixA5. Marker locations for
which a significant effect for shot direction wasuhd are indicated for modes 1 to 5 in
Figure 6, which only represents variations in sficdction as few significant differences in
shot distance were observed. More specificallynigant differences in shot direction

versus distance were found in 13 vs. 0, 11 vs03ysl 1, 4 vs. 3, and 12 vs. 2 analyses, for
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modes 1 up to 5, respectively. Below, we only dsscsignificant differences in shot

direction.

Please insert Figure 6 about here

As can be seen in Figure 6, characteristic diffeesnbetween shot directions (in terms of
dynamic structures and Cartesian directions) acpasticipants were repeatedly found in
terms of differential eigenvector coefficients. Toleserved differences were predominantly,
but not exclusively, present in thedirection (i.e., the medio-lateral direction). Bdiugh
these differences were predominantly found in tgketrside of the body, specifically in the
shoulder-racket linkage, across (the first five)de® and directions, significant differences in
eigenvector coefficients occurred all over the baiyd racket).
Discussion

We examined different types of tennis shots im&of their dynamic modes using
PCA, as well as their scaling properties (as qtiadtby the standard deviations of the time-
series). We found that five principal modes camtumeore than 96% of the variance in the
data, which was distributed unevenly across they laodl racket. Furthermore, the variability
of corresponding eigenvector coefficients was ungvdistributed across the different body
areas (including the racket) and was larger forhigher modes. These results indicate that
tennis shots can be given a compact descriptiom,saiggest that their execution might be
governed by a low-dimensional control structurethdligh this finding as such is not new
(see Huys, Daffertshofer, & Beek, 2004; Post, Dédfeofer, & Beek, 2000), it has, as far as
we know, never been reported for a whole-body, dergiscrete task.

As expected, neither shot direction or shot dep#s characterized by a unique

structure. However, clear shot-direction, and tomach lesser extent, shot-distance,
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differences were evident in the eigenvector coeffits of the various modes. Such
differences occurred across modes all over the Hoojyuding the racket), although they
were most pronounced in thedirection, particularly at the right side of thedy and the
racket (for a representation of differences in ghictction across the first three modes, see
Figure 8) The latter observation is consistent wpitvious research suggesting that racket,
racket-holding-arm, shoulders and hips are imporfan anticipation, albeit in a skill-
dependent fashion (see Ward et al., 2002; Williatnal., 2002). The present results indicate
that the information contained in those regiondaigely confined to the«-direction. In
addition, we found shot-direction specific diffecels in the hips and shoulders in all
directions, and in anatomical locations that weo¢ identified as potentially informative
regions in previous studies, such as the left arthraght leg (in the/- andz-direction). The
scaling of shot dynamics, quantified by the timgese standard deviations, distinguished the
inside-out shots from the cross-court shots as aslhe short from the deep shots. That is,
differences in shot direction were found in the tsgnamics as well as its scaling. In
contrast, differences in shot depth were rarelyaagpt in the shot dynamics as such, but its
scaling was larger in the deep shots than in thet sihots. Shot depth, at least in the present
context, appears to be controlled primarily by aliag of the dynamics and less so by
coordinative dynamic adjustments in shot executloshould be noted, however, that the
differential effect onto the dynamics of shot direc and distance may be due to differences
in their respective target discrimination, evenutjo the scaling results contradict this
suggestion. Following our premise that anticipati®ibased on dynamic information, these
results suggest that the direction of tennis pgssiots is easier to anticipate than their depth.
In sum, a similar low-dimensional dynamic strueteaptures the execution of tennis
passing shots to distinct directions and of differdepth. Differences between shots arose

locally (i.e., they were found in varying contrimrts of different body and racket locations
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to these dynamics), but mainly so for shot directiom contrast, the scaling of the dynamics
was distinct for both shot directions and distances
Experiment 2

In Experiment 1, we found that a few modes alldvi@ an economical description
of forehand tennis shots, and that subtle diffezeno these modes could distinguish shot
direction, but not shot depth. However, any desicrpof a system in fewer dimensions than
the original represents by definition an approxiorat Therefore, we conducted a second
experiment aimed at identifying the minimal dimemsility of forehand tennis shots
allowing for undisrupted anticipation of shot ditiea (i.e., with an accuracy level similar to
that of ‘real’ shots). In other words, we soughfitml the most efficient representation of the
shots from a perceptual perspective. Moreover, \ghed to examine whether anticipation
skill interacted with the perceptually most effitiaepresentation of the shots. To achieve
this aim, we simulated tennis shots that were coostd from the original data as well as
shots that were constructed by cumulatively inclgdiive principal modes. Subsequently,
skilled and less skilled tennis players were retpge$o observe the simulations and judge
shot direction. In contrast to other researchers,(8/ard et al. 2002; Williams et al., 2002),
we examined anticipation performance only in terofsaccuracy because we wanted
participants to look at the entire simulation rattie@n allowing them to control viewing time,
thereby eliminating a potential confound.

We expected anticipation accuracy not to be affbethen most of the variance of the
shots was incorporated in the simulations, thatwisen minimally the first three modes
(accounting for approximately 90% of the varianeeye included. Moreover, as the addition
of more modes hardly changed the shot dynamicy ébeounted for only a small amount of
the variance) we expected anticipation performaondenprove only marginally at best, and

only in skilled participants as they are able wkpip and use ‘subtle cues’ (Shim et al., 2005;
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Ward et al., 2002). Generally, we expected skilpsdticipants to demonstrate superior
performance compared to their less skilled couarsp(cf. Shim et al., 2005; Ward et al.,
2002).
Method
Participants

Twelve moderately skilled participants (mean agé4-0 yearsSD = 11.6) who had
played regular tennis at school, albeit at a remeal level, and who had never received
professional tennis coaching and did not play imnite tournaments, and thirteen skilled
participants (mean age = 26.6 ye&B,= 11.1) who all competed at a national level (mean
LTA rating = 4.78, SD=2.67) and played on avera@d lournament games per annum
volunteered to participate.
Apparatusand Stimulus Production

Stick-figure simulations of tennis shots were gated using Matlab (Matlab 6.5, the
Mathworks). The simulations were based on one siimgdide-out and cross-court shot from
two participants and were saved in Audio Video rieteve (AVI) format. These shots were
selected because the corresponding eigenvectoiheoffirst three modes most closely
resembled the shot-specific mean eigenvectors ¢asrrdined in Experiment 1) of those
modes (in terms of least mean squares). In contrastg shot deliveries from a single player
would run the risk of contaminating anticipationtbe ‘original’ shots by introducing player-
specific motion patterns, using multiple playersulgoinevitably result in simulations with
larger deviations from the shot-specific mean egetor in terms of least mean squares.
Simulations of shots in both directions were maaenf ‘original’ data Mc) and from data
containing modes 1 up to 5 via cumulative additdrthese modes, referred to g, M.,
M3, M14 andMi.s, respectively. For the latter five conditions, algft) for the simulations

were generated by computing the product of the grwutions as well as the corresponding
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eigenvectors of these modes (i@{t) = &)Lv\, fork = 1 to 5, and = 1...54; see also

equation 1). Thus, for each condition a 54-dimemsiovector g(t) was obtained that
represented the dynamics corresponding to the XBembkocations in 3 Cartesian directions.
The data’s ‘real-world’ coordinates were then atal by multiplying each (marker’s) time-
seriesq;(t) with its corresponding marker-specific mean sgadddeviation (averaged across
shot-directions) and adding its (original) mean.clarify, the so-obtained stick figures were
structurally the same as that of the original sidtde the dynamic differences relative to the
original shots were larger the fewer modes werduded. This procedure resulted in 12
experimental conditions (6 Modes x 2 Players). Thene rate for the simulations was 30
Hz. We re-sampled the corresponding time-serieth®fselected shots to a multiple of 30,
while minimizing changes in the number of sampidste that the time-series that were used
for the simulations were first normalized to uniariance and subsequently, rescaled
according to the corresponding mean standard dewigacross shot directions) so as to
eliminate any possible information in the simulatioas regards to shot direction due to
scaling. The stick figures were presented in big&inst a white background.

The clips were imported into Adobe Premier 6.0 $Alagton, US) on a notebook
computer (Sony, Tokyo, Japan) with a 15-inch scrddre size of the simulated ‘players’
was approximately 12 cm 14 cm (heightx width). The trials were edited such that they
were preceded by a 1-s presentation of a whitedgraakd with a centrally placed black dot,
followed by a 1-s presentation of the white backga alone. Subsequently, the simulated
shot was presented, which lasted for approximatedyseconds. After presentation, a white
background was shown for 3 s during which the piints had to indicate verbally whether
the presentation shown entailed a shot to theirside (i.e., inside-out) or to their right side

(i.e., cross-court). The trials were randomized presented in four blocks of 30 trials. A
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practice test tape of 20 trials was constructed similar manner in which ‘original’Mc)
inside-out and cross-court shots were presentdonB3 in a blocked fashion.
Procedure

Participants viewed the laptop onto which thelgriere presented at a distance of
about 0.5 m while seated. The center of the displag approximately at eye height.
Participants were told that they would be showmigshots where the ball was played either
inside-out or cross-court. They were told to imagihemselves being located at the center of
a tennis court at the middle of the baseline aatlttie to-be-anticipated shots were delivered
from the same position on the opponent’s side efciburt. They were also told that the shots
were delivered by a (headless) stick figure, that ¢lips lasted up to the moment of ball-
racket contact, and that no ball would be preseRadicipants were notified that each trial
was preceded by a white screen onto which a sntetkbdot was projected, which was
visible for 1 s, after which the screen would béalty white for 1 s, followed by the
simulation. Participants were requested to verhallycate the direction of each shot (left or
right) after the simulation had finished. Each demion was presented 5 times, resulting in a
total of 120 trials. Before the experiment propearticipants were shown 10 examples of
‘original’ shots (Mc) to each direction in blocks of 5 shots. The dimtof these shots was
indicated before their presentation. The simulaiarere presented in blocks of 30 trials,
followed by a short break. The entire experimestdd about 20 minutes.
Data Analysis

We determined the number of correct answey$of each experimental condition. In
order to minimize the corresponding distributiontdeviation from normality, we

subsequently transformed this number using Badletbdified arcsine transformation (i.e.,

p' = (360/2n) arcsitﬁ\/(c+ 3/B (n+ 3/)4)) with n being the number of trials (Bartlett,

1937, in Zar, 1996). These scores were analyzed)wsimixed design ANOVA with player
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and mode as within-participant factors and skillaalsetween-participant factor. We used a
contrast analysis to follow up any significant maffect for mode (the only main effect with
more than two levels). We report and graph theamsfiormed means and standard deviations

that were calculated from the original data.

Results

The accuracy of anticipating the original shots wamilar to that reported in previous
studies (approximately 75% across skill groups;Weed et al., 2002; Williams et al. 2002),
which validates our stick figure simulations. Thdiapation of shots delivered by players 1
and 2 did not differ significantly=(1,24) = 0.002p = .961,/7p2 <.001). There was, however,
a significant Playerx Mode interaction K(5,120) = 8.374p < .001, /7p2 = .259), which
revealed that the shot delivery of the ‘originalepentationNlc) of player 1 was anticipated
better than that of player 2, while the reverse Whascase when the first four modés, ()
were included in the simulation.

As expected, a significant group effeE(1,24) = 14.272p < .005,/7p2 = .373) was
observed; the skilled players anticipated more i&tely than their less skilled counterparts
(meanSD 77.1%+15.6 versus 66.6%+14.2, respectively). Theas also a significant effect
for mode F(4.651,111.621) = 31.403) < .001, /7p2 = .567; mean%D 76.9%=13.0,
56.7%+15.9, 61.0%+9.4, 80.2%+13.1, 78.1%+9.1, add®+14.9, forMc, M1, M1.2, My.3,
Mi.4, and Mys, respectively). Contrast analysis indicated the presentations of shots
containing mode 1M;) and mode 1 to 2Mi») were anticipated less accurately than the
presentations of the original shotsld). In addition, there was a tendency for the shots
containing modes 1 up to M(.s) to be anticipated more accurately than the oaigsmots |

= .051). The Groupx Mode interaction just failed to reach significar{E¢4.651,111.621) =
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2.240,p = .060,/7p2 = .085), although only the less skilled tendedgpésform better when
three, four or five modes were included compareith¢ooriginal shots (see Figure 7).

Visual inspection of the data suggested that wiresenting only mode 1M) the
less skilled performed at chance level, in conttasthe skilled players. Therefore, we
performed a one-sampletest for each group—mode combination to examinestidr
performance was significantly above chance leved.,(i50% correct). These analyses
confirmed our impression that when only mode 1 pr@sented the less skilled performed at

chance level; in all other cases, performance vgsfisantly better than chancer & .05).

Please insert Figure 7 about here

Discussion

We examined the ability of skilled and less skilleennis players to anticipate
simulated shots whose dynamics were either unneatifi.e., ‘original’ shots) or were
constructed by cumulatively including modes 1 up5tas a function of skill. The shots
performed by two players from Experiment 1 servedata for the simulations.

As expected, anticipation was, on average, un&fiedy the player factor. The
significant Playerx Mode interaction, however, indicated that antidgaperformance of the
original shot was player dependent, which may badilg explained in terms of
idiosyncrasies in technique. Also, anticipatiorsbbts delivered by player 1 when including
the first four modes was worse than those delivdnggblayer 2. In order to examine this
effect, we further analyzed the eigenvectors cpoading to the fourth and fifth mode in
terms of their least squares differences from tleEammeigenvector (see also thtethod
section). It appeared that, for mode 4, the legstes difference of the shot delivered by

player 1 was larger than that of player 2, whicly meplain the decreased response accuracy
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in the corresponding condition. In our opinionstemall deviation did not interfere with the
primary aim of the experiment, which was to estblihe extent to which the information
content of the simulations could be reduced withafiecting anticipation performance
relative to ‘original’ shots.

As regards this objective, we found strong evidetina¢ simulating shot deliveries
based on the first modeM{) and first two modesMi.,) negatively affected anticipation
performance, while simulations created by includihg first three, four or five modes
(corresponding to approximately 90% of the variaimcéhe shot deliveries or more) had no
detrimental effect on performance. The implicatiefighese results are two-fold. First, the
information for judging shot direction resides or,is condensed into, a limited number of
orthogonal (i.e., independent) structures or moded, is therefore identifiable. This finding
indicates that a low dimensional, compact repredrmt of tennis shots is not only optimal
from a mathematical point of view but also mosbmifative in terms of perception. Second,
the results of Experiment 1 indicated that acrbssfirst three modes significant dynamic
differences between shot directions occurred absirall body areas (including the racket).
That is, information regarding shot direction may principle, be gleaned from all parts of
the body. Furthermore, anticipation performancedéghto be better, albeit only slightly,
when modes 1 to 91.5) were simulated than when the original shots veesented. This
tendency suggests that the information containethén higher modes (as present in the
original shots) may negatively impact anticipatiparformance relative to the apparent
informational optimal representation (i.&vl;.s), at least in the present context, probably
because the additional variance (information) isnprily non-specific to shot direction,
representing for instance trial-to-trial varialyilitthus hampering rather than improving

anticipation performance. Further research is reguio examine this issue in more detail.
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In line with previous research, the skilled playavere more accurate in their
anticipation judgments than their less skilled degparts (cf. Abernethy, 1990; Shim e, al
2005; Williams et al., 2002). In addition, we fouadidence that the skilled players, unlike
the less skilled participants, were able to userf@mation present in mode 1, and that the
novices tended to respond more accurately when sn8dd, and 5M;.3, M1.4, M1.5) were
present compared with the original shdik). These findings suggest that experts are able to
pick-up and use dynamic information of a lower disien than less skilled players and that
only the performance of the latter deteriorates wimdormation that is largely non-specific
to shot direction (as available in the high-dimenal original shots) is present. The skilled
players appear to have learned to perceptuallytifgethe dynamic invariants that indicate
shot direction to a greater degree than less diiléticipants, and as such are less vulnerable
to random variability across shot executions. Femtiore, the performance of less skilled
players can be optimized by presenting them with (@e., three) dimensional dynamic
information, a finding that may have important aegisences for training perceptual skill.

In sum, information that facilitates the anticipati of shot direction is in large part
dynamic and resides in a few independent struct@kiied players are able to identify and
use these informational dynamics to a greater extem less skilled participants. The ability
to pick up low-dimensional information may rendergeption reliable and robust.

Experiment 3

In Experiment 2 we examined whether low dimendialymamic information allows
for anticipating shot direction by presenting gdland less skilled tennis players with
simulated shots that we had generated by combihi@gnost important modes identified in
Experiment 1. We found that only three structun@®des) contained all the information
necessary for anticipation at a level similar tattltobserved for the original shots.

Unfortunately, the methodology adopted did notwalles to identify exactly which dynamic
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structures were used for anticipation. Moreovecreasing the number of structures for the
simulations increased the variance accounted foegerds shot representation. In the present
experiment, we attempted to pinpoint which dynastiactures allow for anticipation of shot
direction as a function of skill level. We genedatstimuli in which only one or a
combination of structures contained informationwtshot direction while information in the
remaining structures was eliminated. As such, theumt of variance of the shot simulations
(i.e., representations) was kept nearly constanaddition to a control condition, in which
the unmodified mean eigenvectors were used (seeMbihod section), we generated
simulations in which the eigenvectors correspondiogthe following modes remained
unmodified (i.e., contained shot directional diffieces): modes 1 up to 5 presented
separately, the combination of modes 1 and 2, mbdesl 3, modes 2 and 3, modes 6 and 7
and modes 8 up to 20. The latter two conditionsewiacluded to examine if the higher
modes contained information that can be used diyatibservers. We hypothesized that the
more variance a mode or combination of modes coedhithe more it would allow for
anticipation performance. Furthermore, althoughdigenot expect any single mode to allow
for anticipation at the level observed for the cohtondition, we expected at least the first
three modes individually to allow for anticipatiabove chance level, at least for the experts:
after all, the results of Experiment 1 revealed thase modes contained quite some variance
and clearly revealed shot direction specific défeses in terms of the eigenvectors. We also
expected that, regardless of skill level, the coration of modes 1 and 3 would contain
sufficient information to allow for undistorted &mipation performance, because in
Experiment 2 the inclusion of modes 1 to 3 alloiedaccurate performance while adding
mode 2 to mode 1 hardly impacted performance.

Pilot work indicated that presenting all the caiwdis to participants was too

strenuous: the tested participants complained afadigue and, more importantly, fading
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attention and motivation during the test (even tiobreaks were provided). Therefore, we
decided to split the experiment into two parts,ndl 8.
Participants

Fourteen less skilled participants (mean age ¢ $8arsSD= 11.7), who had played
tennis recreationally at school, who had neverivecdeany professional tennis coaching and
did not play in tennis tournaments, and fourteaheskparticipants (mean age = 22.1 years,
SD = 4.5), who had competed at a national level (m€eBA rating = 2.98,SD = 1.65) and
played on average 175 games annu&@ € 43), volunteered to participate in part A. Irrtpa
B, fourteen less skilled participants (mean age8=3 3iears,SD = 10.8), who had played
tennis recreationally at school level, had neveeireed any professional tennis coaching and
did not play in tennis tournaments, and fourteaheskparticipants (mean age = 26.8 years,
SD = 11.4), who competed at a national level (mear lrdting = 3.40,SD = 2.18) and
played on average 153 games annu&@y € 69), volunteered to participate.
Apparatusand Stimulus Production

The simulations were generated in a manner sindldExperiment 2. However, in

contrast to Experiment 2, the data for the simalegtiwere based on the mean eigenvectors as
determined in Experiment 1 (i.e., for each coefiitiv [k = 1...54;i = 1...54], the mean

across participants and trials for each shot doactwere computed). Differences in
eigenvector coefficients in shot distance were ayed out for each mode. For the time-series
corresponding to the marker locations of each g@pent, we calculated the mean and
standard deviation across shot distance and direclihese means and standard deviations
were used to obtain data with ‘real’ spatial projsr and simultaneously eliminate the
potential impact on anticipation of the shots’ sgdaproperties (see Experiment 1). For the
simulations, means and standard deviations of tarigipants were selected that had the

smallest sum of squares between the across-paricgverages of the time-series’ standard
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deviations and their own. In all the simulationd,fodes (capturing more than 99% of the
entire variance in the data set) were used. Fdr shet direction, simulations were made of
‘original’ shots, in which the shot differences tthaere present in the eigenvectors were
preserved, and shots in which only a single mode @ymbination of modes maintained shot

differences (as present in the corresponding emeovs) while shot differences in all other

modes were averaged out. Specifically, in constigthe data ag(t) = &(t) Lv¥, k= 1 to 54,

andi = 1...54 (see equation 1), we uset= v(lo)_k andv(xc)f< for the modes in which shot
differences were preserved, while shot differeneese averaged out using‘= (v(,0)5+

V(XC):‘ )/2 (fori = 1...54) for the other modes (the subscliptandXC refer to the inside-out

and cross-court shot, respectively). The same duoeeas in Experiment 2 was used to
obtain data with ‘real-world’ coordinates and tsere that the stick figures were structurally
the same as that of the original shots. The folhawicombination of) modes were chosen:
mode 1 M1), 2 M), 3 M3), 4 M4), and 5 Ms), modes 1 and 2M;+,), modes 1 and 3
(M1.3), modes 2 and 3M>.3), modes 6 and Me.7), and modes 8 up to 2M§ ,q). For the
last condition, our motivation for going up to mo2@, instead of a lower or higher mode,
was that in this manner the amount of variance @aea for in this condition was almost
equal to that of the combination of modes 6 antd.). For instance, in conditioNls, as
always, all 54 modes were used, but only the (sfiotction-specific mean of the)
eigenvector coefficients corresponding to mode 3ewssed without alteration, while the
eigenvector coefficients of the other modes (mdes 1-2 and modes 4-54) were averaged
across shot direction and thus contained no sffi@reinces (and as such no information that
could be used for anticipation). The conditidig, My, Ms, M1+2, M1.3, andM,.3 were used

in part A, whereas the conditioMg, M1, M3, M4, Mg.7, andMg_o Were used in part B.
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Procedure

The procedure was the same as in Experiment 2.
Data Analysis

As in Experiment 2, we determined the percentafe&oorect answers for each
experimental condition and subjected these pergestao Bartlett's modified arcsine
transformation (Bartlett, 1937, in Zar, 1996). Thexores were analyzed using a mixed
design ANOVA with player and mode as within-pagimt factors and skill as a between-
participant factor. We used Bonferroni-correctedr-pase comparisons to locate the
origin(s) of a potential significant main effectrfonode. We report and graph the
untransformed means and standard deviations ctddularm the original data.
Results
Part A

We found a significant effect for playef((,26) = 15.652p = .001,/7p2 = .376),
which indicated that the response accuracy wasehigor player 1 than for player 2
(meansSD 65.8%+15.6 versus 60.0%+16.5, for player 1 andyesla2, respectively).
Unexpectedly, no significant effect of skill wasufal, even though on average the skilled
players (mean®D 64.4%z+16.1) responded more accurately than the $&dled players
(meansSD 61.4%+16.4). Importantly, there was a significeffiect for mode F(5,130) =
6.208,p = .000,7," = .193; mean$D 70.2%2x19.9, 61.8%+11.2, 57.3%210.8, 60.2%+13.4,
63.9%+11.7, and 64.1%+13.0, fblc, M2, Ms, M1.12, M1+3, andM,.3, respectively). The pair-
wise comparisons showed that anticipation accumde control conditionMc) and the
conditions with modes 1 and ®1{.3) as well as with modes 2 and B43) did not differ
significantly, and that a tendency for a lack offetences was present as regards mode 2
(M2). The accuracy in these three conditions diffesigghificantly from the other conditions

(i.e., Ms andM3.,) which, in turn, did not significantly differ froraach other. Furthermore,
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anticipation accuracy in each condition (iMg, M2, Ms, M1.2, M1+3, andMz.3) was above
chance level (atr = .05).
Part B

As in part A, there was a main effect for playefl(24) = 6.612p = .017,/7p2 =.216;
meansD 65.5%+17.5 versus 59.3%+16.3, for player 1 ande8pectively). The effect for
skill did not reach significance, although the lgkilgroup (mean3D 63.5%+17.2) responded
more accurately than less skilled players (m&n$1.4%+17.1). The effect for mode was
significant §(5,120) = 7.947p = .000, /7p2 = .249; mean$D 73.1%+16.6, 57.9%+10.6,
63.1%+13.3, 59.0%+10.7, 59.8%+12.5, and 61.3%z+182Mc, M1, M3, M4, Mg.7, and Msg.

20, respectively). The pair-wise comparisons shovirad @nticipation in the control condition
(Mc) differed from all other conditionsVv;, M3, M4, Mg.+7, andMs.,g), while the latter did not
differ significantly from each other. The anticijpat accuracy in each condition (i.8¢, My,
Ms, M4, Me+7, andMg_,) was above chance level @t .05).

The observation that a combination of higher mo@es, modes 6-7, and modes 8-
20) allowed for response accuracy above chancd t@mme as a surprise. Therefore, we
further analyzed the eigenvectors obtained in Hrpant 1 in terms of shot direction and
depth. We performed ANOVA's with shot direction (@hd shot distance (2) as within-
participant factors for modes 6 to 10 for each reat&cations (18) and direction (3; see also
Experiment 1). Although the number of significarfdservations as regards shot direction
decreased with increasing mode, this effect diddiszppear.

In sum, the results of Experiment 3A and B inddckthat all (combinations of) modes
tested allowed for anticipation above chance leMelwever, anticipation accuracy did not
significantly deteriorate relative to the contrandition except for the linear addition of
mode 1 and 3M2+3) and mode 2 and 3/.3).

Discussion
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The aim of the present experiment was to identiiy mode(s) facilitating
anticipation. In both parts (A and B) we found arexpected significant effect for player.
Recall that the simulations were based on the neégenvectors and projections found in
Experiment 1 and that means and standard deviatiomstwo players were averaged across
trials shot direction and distance. The only défezes between the simulations corresponding
to these players were in terms of the scaling efdignamics (i.e., the time-series standard
deviations). This scaling may have affected themixto which observers were able to pick
up and use the dynamic information contained indisplays. This find would be consistent
with that of Pollick, Fidopiastis, and Braden’s (4) who reported that the categorization of
tennis stroke styles can be improved when the str@ite spatially exaggerated, at least for
some styles.

Unexpectedly, we found no significant effect ofliskilowever, it should be realized
that in the present experiment, in which shot dioec differences were eliminated by
including modes, the amount of shot direction dpeeariance relative to the entire amount
of variance was lower than in Experiment 2, in vahiee displayed modes with shot direction
differences present. This effect may have dimirdssidll differences and contributed to the
lack of a significant skill effect. Regardless, fand that no single dynamic structure
contained sufficient information to allow for anfpiation that was not different from the
control condition, but that the combination of mede and 3 Nl;.3) and modes 2 and 3
(M2.3) did. The information content of the combinatidnneodes 1 and 2M+,), however,
appeared to be insufficient to facilitate effectaaticipation. These results suggest that the
informational value of the dynamics is not ‘simplg’ matter of the amount of variance
accounted for by the dynamics. The linear additdrirectional information contained in
modes 1 and 3 as well as in modes 2 and 3 strsctineehigh-dimensional motion pattern so

as to render it sufficiently informational to alldar accurate anticipation.
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The response accuracy was significantly above azhdavel in each condition.
Although we had anticipated this result for thestfithree modes, we were somewhat
surprised to find it for the higher modes. The #ddal analysis of the eigenvectors,
however, indicated that differences in shot di@ctivere present at least up to th& htode.
Notwithstanding the small amount of variance codelg the higher modes, shot specific
differences in these modes can be picked up amd (@deast when only these differences
are present). It appears that, even though atdasteof accuracy, the visual system is sensitive
and flexible in picking up the information contaihan those modes when constrained in a
specific manner. Indications of such perceptuasiseity and flexibility have been hinted at
in previous research. For instance, while evidenggests that in three-ball cascade juggling
the zenith of the ball trajectories is the mosbinfative part of the trajectory to sustain
juggling, other portions of the trajectories ardfisiently informative to enable effective
performance (cf. Huys & Beek, 2002; Huys et alQ£20v/an Santvoord & Beek, 1994). Also,
people are able to detect small differences inettayy forms of oscillators, including
asymmetry and symmetrical peakening or flatteninchanges that may be indicative of
biological movement (Muchisky & Bingham, 2002). $am, although each tested mode or
combination of modes allowed for anticipation abotance, only the linear combination of
directional information in modes 1 and 3 as wellrasodes 2 and 3 allowed for statistically
undisturbed anticipation.

In Experiment 1, we showed that a few modes adeoufor most of the variance
underlying tennis shot executions, and that théawae, its variability across shots, and the
shot-direction specific dynamic differences wergtributed heterogeneously across the body
and racket in a mode-specific manner. Experimerasi® 3 suggested that the information
underpinning anticipation of tennis shot directresides in the first three modes. That is, we

can localize and quantify the perceptually relevdyriamic differences between both shot
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directions throughout their execution. To that awe, constructed an inside-out and cross-

court shot based on the first three principal mogsomputing the product of the time

evolutions and the eigenvectors of mode 1 to 3,d(® = &{t)wv, fork =1 to 3, and =

1...54 (see also equation 1). For each marker (18)caleulated the root mean squared

difference RMS between the inside-out and cross-court shotfasion of time according

o RMS()= (6 (1= £ +(x ()= %) +( 2} 20 ) (the subseriptso and

xc indicate the inside-out and cross-court shot,e@etyely) and determined its mean in five
consecutive time windows, each with a duration @¥%2of the (normalized) shot (see Figure
8 upper panel). Importantly, the so-obtained RM@esents a difference score in terms of
the structure of the trajectories, not in termsredl-world’ coordinates. To further visualize
the results (see Figure 8, lower panel), we contputee corresponding ‘real-world’
coordinates (by multiplying each marker’s time-seqi(t) with its corresponding standard
deviation and adding its mean; see also abovepbotted ‘snapshots’ of the inside-out and
cross-court shot at the middle of each time winddwo observations are apparent from
Figure 8 (upper panel). First, at the beginninghef shots differences in the time evolutions
prevail in the right lower body and the right hipdaelbow. While decreasing in the middle
part of shot execution, the dynamic shot differsnstrt to increase at the right side of the
body to then spread across the entire body towaaitiscontact (at = T) , although a slight
right side dominance remains. Second, regardlesiseoheterogeneous distribution in space
and time, differences in shot direction are to salegree present across the entire body and
racket throughout the entire shot. These resulisranghly in line with those of previous
research involving the recording of eye movemernéa;dexpert observers typically adopt a
proximal to distal visual scanning path (i.e., frahe hips and shoulders to the arm and

racket, respectively). At the same time, howeveappears that only a limited selection of
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areas in which shot-direction differences are presee gazed at, assuming that optical

information pick-up can be equated with gaze dioecfWilliams et al., 1999).

Please insert Figure 8 about here

General Discussion

In the present paper we examined the dynamic stiaif different tennis shots as
well as any shot-specific differences. We foundt ttennis shots could be effectively
approximated by a few dynamic structures. Follovtimnig preliminary analysis, we examined
whether the information contained in these strestucould be picked up and used to
anticipate shot direction by skilled and less skiltennis players in two experiments. We
discovered that a low dimensional (three-dimend)amgpresentation of the shots allowed for
undisturbed anticipation, and that the informatimaerlying anticipation performance is not
contained in a single dynamic structure, but imadr combination of these three structures.
In the following, we discuss the theoretical imptions of these results for understanding the
control of complex motor skills, the perceptiontblogical motion, and anticipation skill.
We interpret the findings from the perspective @brination dynamics, which we therefore
briefly address first.
Macroscopic Structures and Information

Coordination dynamics has its conceptual and nuetlogical roots in Haken's
synergetics (Haken, 1977, 1996), which is, broagpgaking, concerned with qualitative
changes in complex open systems (i.e., with thentspeous formation and hence
characterization of spatial, temporal, and funaiopatterns around phase transitions).
Complex open systems that are far from thermalliéguim may organize themselves by

forming coherent, ordered spatial and temporalepast and/or structures due to the weakly
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nonlinear interactions among their numerous moddtough the occurrence of such
patterns reflects the emergence of co-variationrgrnoodes at the microscopic level, the
resulting macroscopic patterns may be describeal $iyall number of so-called macroscopic
structures or order parameters. In other words, igh-timensional system may be
summarized by a few order parameters that captwesystem’s state, implying a huge
reduction of information.

In the study of coordinated human movement it il wstablished that the relative
phase between two oscillating limbs representshas the characteristics of, an order
parameter (cf., Haken, Kelso & Bunz, 1985; Kelsag1l, 1984, 1995). Less well established,
but most relevant for our present purposes, isctiigecture that the visual recognition of
dynamic patterns may proceed through the extracfamacroscopic motion structures like
the modes/ distilled by the Karhunen/Loéve expansion, prdyidgecause those modes
represent the low-dimensional information contaiimedynamic patterns (cf. Haken, 1996,
2000, 2004). In Haken’s own words, “The modes [.oftain all the information needed for
the reconstruction of the pattern. The coefficientth the largestf; contain most of the
information about the pattern vectpr|...] all the discriminatory information must berdad
by the coefficients§...” (Haken, 2000, p.158). In the present contextdbefficientsé are
dynamic, that is, time-varyingé =¢&(t) (see also Haken, 2000; Haken, Kelso, Fuchs, &
Pandya, 1990). Although principal components or @sociin not and should not be equated
with order parameters, as the latter are intritlyidenked to qualitative changes in pattern
formation (i.e., to phase transitions), PCA andted techniques provide a convenient tool
for identifying and testing the presence of ordemameters around phase transitions because,
in principle, they allow one to capture the infotioa reduction that is inherent to order
parameters.

The Control of Tennis Shots
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A recurrent theme in motor control research isnBegin's so-called degrees of
freedom problem (cf. Bernstein, 1967; Turvey, 1990he problem of how the numerous
elements that are involved in the execution of efioa are controlled. A solution to this
problem has been sought in terms of synergiespordinative structures, which, from the
perspective of coordination dynamics, are viewead@serent macroscopic spatio-temporal
patterns generated under non-equilibrium consgaintopen systems (Kugler, Kelso, &
Turvey, 1980). In the present study, we found thege structures accounted for almost 90%
of the variance, implying that the dynamic struetwnderlying passing shots is low
dimensional. However, there were no indicationst tthiéferent shot types (in terms of
distance and direction) were executed in a quaditht different manner: no single
orthogonal (i.e., independent) mode was uniquedpa@ated with a specific shot type.

The variability of the eigenvector coefficients svaistributed unevenly across
different body areas and trials, suggesting thatame muscular-skeletal linkages are
controlled to a greater extent, or at least momsistently so, than others. In addition, the
average covariance between the projections of its¢ three modes of a specific shot
condition was close to one (see Experiment 1), vhiots at a large degree of similarity in
the control structure underlying tennis-shot executacross trials within participants. It
appears that the synergies or coordinative strestyoverning tennis strokes are low-
dimensional temporal organizations with a high degof similarity in their global structure
even though the degree to which their constituemtles are controlled across performances
is distributed heterogeneously.

Dynamic Structures Underlying Anticipation

In Experiments 2 and 3 we examined the extentiichwobservers are able to pick up

and use the information contained in the modestiiikeh in Experiment 1. We found that

several dynamic structures are informative. Paaicis were able to pick up and use those
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low-dimensional structures for anticipation, allibat only the presentation of specific, linear
combinations of structures allowed for accurateégearance. The high accuracy scores in
Experiment 2 when presenting three, four or fivede®) but not less, indicated that dynamic
information sufficed to attain high performance dksvin anticipating shot direction. In
Experiment 3, we found that the response accurasgdon linear addition of modes 1 and 3
(M1+3) as well as modes 2 and Bl43), but not modes 1 and M(.,), did not differ
significantly from the control conditior¢). In addition, we found that shot differences in
the higher modes allowed for anticipation abovencledevel, but only if the information in
the most important modes was eliminated (compamefments 2 and 3). In combination,
these results indicated that, although the reptasens of tennis shots needed to account for
a large portion of the variance (roughly 90%) idearto allow for accurate anticipation, not
only the amount of variance accounted for mattebetialso their structure as determined by
the specific combination of orthogonal modes.

Having identified the dynamic structures undemnythe anticipation of shot direction,
what can we say about the corresponding informatfemcusing on modes 1 to 3, we found
corresponding variance across the entire bodye lith moderate trial-to-trial variability
(relative to that in mode 4 and higher), and cdasis shot-direction differences at all
locations, even though the distribution of theselesowas heterogeneous (see Figures 4, 5,
and 6, respectively). These observations are tefledin the RMS shot differences
corresponding to the linear addition of the fitatee modes (see Figure 8). Associated with
each mode is a specifically structured variance (Sgure 3) that is distributed unevenly
across the various body areas and racket (repszbdit the eigenvector coefficients).
Importantly, in each context-specific action, theustured variance and the eigenvector
coefficients’ distribution are two sides of the ganvoin; they constrain each other such that

neither can be altered without affecting the other.
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The perceptual importance of the variance strechas been shown empirically by
Troje (2002; see also Westhoff & Troje, 2007) amdliectly by) Johansson (1973). Troje
used PCA in his study of gait-mediated gender meitimgp. He showed that the third mode,
which was oscillating at twice the frequency of thist two modes, was more important for
gait-mediated gender recognition than the secondemeven though the latter was associated
with greater variance). In a similar vein, Johansg®73) found that subtracting or adding a
common motion mode did not affect the observersbgaition of walking. In our view this
was the case because the structures carrying themiation for walking were structurally
unaltered by these manipulations. In the presesg,cgiven that all contributing body and
racket areas share the three perceptually-reletiame evolutions to a varying degree
indicates that shot-direction specific invarianesides in the spatio-temporal relations that
are defined via the linear addition of the firgtelh modes across the corresponding areas (see
Figure 8, upper panel). While dynamic differencesdistributed unevenly in space and time,
their omnipresence suggests that attemptdrictly localize the information underlying shot
direction anticipation are inherently arbitrary. wiver, this does not necessarily imply that
observers pick up and use the information fronpadisible locations.

Overall, the present results, like those of Tr(§002; Westhoff & Troje, 2007),
support the premise that the macroscopic structtiras summarize a system’s state are
informational. A few structures captured most of tiennis shot execution’s variance. It
appeared that the shot-direction specific diffeesninherent in the linear combination of the
first three structures carried the information rexedb allow for undisturbed shot-direction
anticipation. Following Haken (2000), we conjectdhat these macroscopic coordinative
structures are readily observable from the kinersadnd constitute informational quantities
precisely because they capture the system’s Jth#d.is, pattern recognition is based on the

variable(s) that (phenomenologically) capture(®rdmation patterns.
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Perceptual Expertise in Anticipation

To date, most researchers have relied on spatigitral occlusion methods and eye
movement recordings to uncover the mechanisms tiregligkill differences in this type of
task (cf. Abernethy & Russell, 1987; Ward et a002; Williams et al., 2002). The findings
from this body of work suggest that expertise révéself in the ability to pick up and use
information that is generated earlier in the unfajdaction (typically generated at body areas
proximal to the end-effector) as well as in an éased ability to pick up and make full use of
the available information. These results have ofteen (re-)phrased in terms of experts
being able to pick-up ‘subtle cues’ (cf. Shim et @&005; Ward et al., 2002). While the
present results extend and refine some previougestions, they contradict others. Our work
strongly suggests that ‘subtle cues’ may readilgddestituted with low-dimensional dynamic
information. What distinguished the skilled fronsdeskilled players in Experiment 2 was not
the ability to pick up the available informationutbrather to pick up the relevant low
dimensional (i.e., invariant) information. In fasthen available, the surplus (i.e., high-
dimensional) information present in the opticabgirwas not used in an additive fashion (cf.
Bruno & Cutting, 1988). While the present statasticdesults do not allow any firm
conclusions, they suggest that additional (highetigional) information tended to lead the
less skilled players astray. By hypothesis, the #dled players may have not (yet) acquired
or refined the ability to pick-up the invariance fime complex high-dimensional motion
patterns that underwrites perceptual expertisaticipation.

In the above regard, it has been suggested iardee of motor control that learning
involves a reduction in the dimensionality of thendmic structure underlying the execution
of actions (cf. Haken, 1996; Huys et al., 2004;r&jiiAmazeen, & Turvey, 1998), although it
should be emphasized that the implicit assumptian & reduced dimensionality necessarily

implies reduced control is open to criticism (cforigstaff & Heath, 2003; Newell &
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Vaillancourt, 2001). The present results suggesir-at least are compatible with the
understanding — that becoming skilled at perceiwingpgical motion patterns may involve a
reduction of information of the kind suggested ymexgetics. In fact, previous research on
tennis shot anticipation suggests that expertsailisscan a significantly larger part of the
opponent’s unfolding action, referred to as a mioodistic’ visual search approach, than non-
experts (Ward et al., 2002; Williams et al., 20@&)ce shot-direction specific invariance is
distributed across the entire body, it might be tha more ‘holistic’ search serves to pick up
the invariance to a fuller extent than non-expddsin sum, the present results suggest that
learning to anticipate, and maybe in a broadereseasperceive biological motion, involves
distinguishing the low-dimensional dynamics (iievariance) in high-dimensional displays.
Concluding Remarks

In the present paper we showed that the execofidennis shots is based on a low-
dimensional dynamic structure, and that these dycsnmform observers about shot
direction. Coordination dynamics constitutes aneatipg theoretical framework to account
for this finding because it views and treats patgnoduction and pattern recognition as two
sides of the same coin. Theoretical interpretataside, the present results readily instigate a
variety of intriguing research questions of botlsibaand applied significance that could be
fruitfully addressed within the current methodotaji framework. For instance, could
perceptual learning be facilitated through the ok@w-dimensional displays or maybe by
caricaturing actions through exaggeration of thaagyics? Also, the dynamic structure is
defined over whole-body movements, which suggésiisdoes not dictate, that observers use
‘globally’ rather than ‘locally’ defined dynamicsihe present methodology allows for a
thorough investigation of the issue of ‘local’ vess'global’ perception in anticipation (cf.
Haken, 2004; Watanabe & Kikuchi, 2006). Finally,thre present study we used PCA to

decompose the movement data into a smaller setmasg implicitly a correspondence with
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the perceptual system’s functioning at some leAkthough this approach worked well, there
is no a priori reason to assume that pattern ratogrshould be organized linearly according
to maximization of variance along orthogonal modesariety of other, linear as well as non-
linear, reduction methods may obtain a better spwadence. This example only highlights
the fact that much work remains to be done using ttieoretical and methodological
framework adopted in this paper to unravel how vittiials anticipate and perceive

biological motion.
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Appendix: Tables A1-A2.

Table Al.F-, p- ands* values for significant effects of shot directiohtlee eigenvector coefficients for mode 1 to 5. Tharker location is

denoted by its first two letters; the superscrignates the body side/racket pdrt<left, R = right, T = top, B = bottom); the subscript denotes

movement directionx( y, z).

“ RA? ELY SHY RA; RAY AN, TO, WR; RA; HIy HIEY TO7 AN}
% F(1,5) 70.754 56.073 32.094 23.104 21.814 20.529 20.3655418 11.986 10.136 9.742 7.021 6.981
£ p <.001 <.005 <.005 <0l <.01 <.01 <0l <.01<.05 <.05 <.05 <.05 <.5
172 0.934 0918 0.865 0.822 0.814 0.804 0.803 0.788 060.7 0.670 0.661 0.584 0.583
~ SHE HIT WR, ELY TOF ANY sSHL HIL  HIJ KNT ELj
% F(1,5) 59.886 29.082 13.318 12.092 11.663 11.632 9.522 679.39.367 9.214 9.067
£ p <005 <.005 <05 <05 <.05 <.05 <05 <.05 .05 <.05 <.05
772 0.923 0.853 0.727 0.707 0.700 0.699 0.656 0.652 520.6 0.648 0.645
™ SHY RA; RA, RA] WRY RAY RA] RA] AN} RA;
S F(1,5) 47.794 21557 18.969 18.823 18541 13460 13.1660293 8981 7.000
o p <.005 <.01 <.01 <.01 <.01 <.05 < .05 <.05 0x <.05
772 0.905 0812 0.7912 0.790 0.788 0.729 0.725 0.723 420.6 0.583
< SHy ELy WR. EL;
S F(15) 18516 17.907 15769 7.859
£ p <0l <01 <.05 <.05
n? 0787 0.782 0.759 0.611
10 RA, HIT RAY RA; SH, HIF RA} SH; SH, AN} WR; KN¥
% F(1,5) 28.137 19.664 16.116 15.187 14.284 13.921 10.9169499. 8975 8.714 8.440 7.626
= p <.005 <.01 <.05 < .05 <.05 <.05 < .05 <.05 0x <.05 <.05 <.05
7° 0849 0797 0763 0752 0741 0736 0686 0.666 420.6 0.635 0.628 0.604



Table A2.F-, p- andy® values for significant effect of shot distance ahdt direction by shot

distance interactions of the eigenvector coeffiiédar mode 1 to 5 (see also Table Al).

Shot Distanc Shot Direction x Shot Distan
- KNy
% F(1,5) 8.382
S p <.05
n? 0.626
~ HIL  HIJ  ANS RA?
% F(1,5) 11.035 11.035 10.21 9.921
g p <.05 <.05 <.05 <.05
7 0.688 0.688  0.671 0.665
o TOS
3 F(15) 15712
= p <.05
n” 0.759
< WR] RA] KN
§ F(1,5) 7.404 7.146 10.084
c p < .05 < .05 <.05
0"’ 0597 0.588 0.669
0 EL, RA
§ F(1,5) 13.275 6.646
= p <.05 <.05
7 0.726 0.571
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Table 1. The mean and standard deviation of theo{ate value of the) covariance between
the corresponding projectiorft)x of the shots across participants for the firse¢hmodes.

(Each entry corresponds to the 15 pair-wise corapas between the six participants.)

I0S I0D CCS CCD

mode 1 .97+.03 .96+.04 .94+.06 .97+.03
mode 2 .94+.04 .91+.05 .91+.06 .95+.03
mode { .93+£.00 .94+.0% .93+.0¢ .96%.0:
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Table 2. The mean and standard deviation of theo{ate value of the) covariance between
the projections(t)x of the short (S) and deep (D) inside-out (I0) amuks-court shots (CC)
across participants for the first three modes. [[Eaatry corresponds to six pair-wise

comparisons.)

model mode 2 mode 3
IOD CCSs CCD IOD CCs CCD IOD CCSs CCD

I0S .99+.02 .97+.03 .99+.01 .97+.02 .96+.03 .99+.01 .97+.01 .97+.02 .95+.04
10D .98+.0z .99+.0] .96+.0z .98+.0] .96+.0z .98+.0]
CCS .98+.02 .96+.02 .96+.02
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Figure Captions
Figure 1. Plan view (left panel) and three dimenaio/iew (right panel) of the experimental

set-up. CC = crosscourt, 10 = inside-out, S = sldrt deep.

Figure 2. Eigenvalue spectra for the first ten nsofte each condition for all participants
(pl...p6). For each participant, the first, secomdxdf and fourth row represent the IOS,

IOD, CCS, and CCD condition, respectively.

Figure 3. Projectionséf) corresponding to the first 5 modes of the PCA nvhb trials were
included. Time is indicated on the horizontal agssa percentage of the entire action (see

text. The position on the vertical axis has beefteshfor visualization purposes.)

Figure 4. Stick figures indicating the mean acrpasticipants and trials of the (absolute)
magnitude of the eigenvector coefficients at eawt@nical location for mode 1 to 5 in the
X-, y-, andz-direction (left, middle and right column, respeety; see text). The marker size

corresponds to the (absolute) magnitude.

Figure 5. Stick figures indicating the standardidi&eon across participants and trials of the
(real) value of the eigenvector coefficients atheanatomical location for mode 1 to 5 in the
x-, y-, andz-direction (left, middle and right column, respeety; see text). The marker size

corresponds to the (absolute) magnitude.

Figure 6. Stick figures representing the resultdhefstatistical analysis for shot direction (see

text). Black markers represent locations for whalsignificant difference between shot

direction was found at thee = .05 level. Circles indicate that the (absolwa)e of the mean
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eigenvector coefficients of the inside-out shot Mager than that of the cross-court shot,
whereas the reverse is the case for the squares1Ro 5 represent the results for mode 1 to
5; the left, middle and right column represent thsults for thex-, y-, and z-direction,

respectively.

Figure 7. Response accuracy as a function of kki#l and ‘information content’ (i.e., the

number of modes included in the simulations).

Figure 8. The stick figures in the upper row repreghe root mean square difference (RMS)
between the time evolutions of the inside-out arass-court shot as a function of marker
location and (normalized) time (see text). The raargize corresponds to the RMS. Each
panel represents the RMS in a time window of 1/3hef entire shot duration (T); time

increases from the left to right panel. The stigkifes in the lower row represent ‘snapshots’
of the inside-out shot (black) and cross-court ggogy) at 10%, 30%, 50%, 70%, and 90%

of the (normalized) time (i.e., in the middle oétborresponding time windows ; see text).
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Figure 2.
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Figure 7.
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Figure 8
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