
 

 

This manuscript was accepted for publication in Perception & Psychophysics 
on March 24, 2008. The copyright is held by Psychonomic Society 
Publications. This document may not exactly correspond to the final published 
version. Psychonomic Society Publications disclaims any responsibility or 
liability for errors in this manuscript. 
 

http://dx.doi.org/10.3758/PP.70.7.1217 

On the dynamic information underlying visual anticipation skill 

Huys, R. 1, Smeeton, N.J. 2, 3, Hodges, N.J.4, Beek, P.J.5, and Williams, A.M.2 

1 Université de la Méditerranée, France 

2 Liverpool John Moores University, UK 

3 University of Brighton, Chelsea School, UK 

4 University of British Columbia, Canada 

5 Research Institute Move, VU University Amsterdam, The Netherlands 

Running head: dynamic information for anticipation (P607) 

 

Corresponding author:  

Raoul Huys, PhD 

UMR 6233 Institut des Sciences du Mouvement "Etienne-Jules Marey" 

Université de la Méditerranée 

Faculté des Sciences du Sport, CP 910 

163 av. de Luminy F-13288 Marseille cedex 09 (FRANCE) 

Phone: +33 (0)491 17 22 01 

Fax: +33 (0)491 17 22 52 

email: raoul.huys@univmed.fr 



Dynamic information for anticipation 

 2

Abstract  

What information underwrites visual anticipation skill in dynamic sport situations? We 

examined this question based on the premise that the optical information used for anticipation 

resides in the dynamic motion structures, or modes, inherent in the observed kinematic 

patterns. In Experiment 1, we analyzed whole-body movements of tennis shots to different 

directions and distances by means of principal component analysis. The shots differed in the 

few modes that captured most of the variance, especially as a function of shot direction. In 

Experiments 2 and 3, skilled and less skilled tennis players were asked to anticipate the 

direction of simulated shots on the basis of kinematic patterns in which only the constituent 

dynamic structures were manipulated. The results indicated that players predicted shot 

direction by picking up the information contained in multiple low-dimensional dynamic 

modes, suggesting that anticipation skill (in tennis) entails the extraction of this dynamic 

information from high-dimensional displays. 

 

Key Words: coordination dynamics, information, expertise, anticipation, biological motion 

perception 
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On the dynamic information underlying visual anticipation skill 

 Biological motion patterns contain information about the agent’s identity, emotion, 

and intentions. For instance, people can tell the gender of someone walking in the absence of 

obvious cues (Troje, 2002). Emotions like anger, disgust, fear, happiness, and sadness are 

readily gleaned from bodily movements (Dittrich, Troscianko, Lea, & Morgan, 1996). 

Similarly, skilled tennis and squash players can accurately predict where an opponent will 

play the ball before it is actually hit (Abernethy, 1990; Williams, Ward, Knowles, & 

Smeeton, 2002). In these latter examples, well-trained individuals (i.e., domain-specific 

experts) are more proficient in ‘reading’ the relevant information from an unfolding action 

than novice observers. This skill-specific feature is particularly well documented for racket 

sports (cf. Smeeton, Williams, Hodges, & Ward, 2005; Williams, Davids, & Williams, 1999). 

 In racket sports such as tennis, squash, and badminton, expert players are typically 

faster and/or more accurate in predicting the outcome of an opponent’s action (e.g., the 

direction and/or depth of a serve) than less skilled players (Abernethy, 1990; Abernethy & 

Russell, 1987; Williams et al., 2002). Participants are usually presented with video clips 

showing the execution of strokes performed by an opponent. The clip is then stopped at 

particular time points during the unfolding action and participants are invited to indicate the 

outcome of the action, such as the stroke direction and/or depth, or the ball or shuttlecock’s 

future landing position. To investigate the importance of certain time windows and/or body 

parts for anticipation, researchers have used temporal and/or spatial occlusion paradigms as 

well as eye movement registration techniques (for reviews, see Williams & Ericsson, 2005; 

Williams et al., 1999).  

Abernethy and Russell (1987) examined the anticipation accuracy of novice and 

expert players who were presented with a series of video clips of badminton strokes that were 

edited such that increasing portions of the event were visible or that different body parts of 
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the opponent were occluded. In trials in which clips of the full shot were shown, participants’ 

eye movements were recorded. The experts were able to use information arising earlier in the 

action than novices and anticipation performance deteriorated when the arm or arm and 

racket were occluded. Since the visual search strategies of both skill groups did not differ, the 

authors concluded that perceptual skill is based on the ability to make full use of the available 

information. These results have been corroborated by other researchers, confirming that 

experts are able to pick up and use information arising earlier in an action sequence than 

novices (cf. Abernethy, 1990; Abernethy, Gill, Parks, & Packer, 2001; Ward, Williams, & 

Bennett, 2002). Moreover, unlike novices who rely primarily on arm and racket movement, 

experts pick up more information from proximal body regions such as the hips and shoulders 

(cf. Ward et al., 2002; Williams et al., 2002). 

 Although researchers have revealed ‘when’ and ‘where’ information can be picked up 

to facilitate anticipation, the methods employed for this purpose were ill-suited to uncover 

’what’ information performers may use. Anticipation is only possible if one or more invariant 

features exist that differentiate between competing actions, be they squash strokes or passing 

shots in tennis. Previously, researchers have suggested that dynamic features, rather than 

anatomical or physical ones, form the informational basis underlying the perception of 

biological motion (Runeson & Frykholm, 1983; Troje, 2002; Westhoff & Troje, 2007). The 

detailed investigation of (dis)similarities in the dynamics of different actions such as squash 

or tennis shots varying in depth and direction is therefore a prerequisite for coming to terms 

with the perceptual basis of visual anticipation skills, an endeavor that, to the best of our 

knowledge, has not been pursued to date (but see Troje, 2002, and Haken, 2000, 2004, for 

similar approaches to event recognition, and pattern recognition, respectively). In the present 

research we identify the dynamic structures underlying the execution of distinct tennis shots 

using the Karhunen-Loève expansion, also referred to as principal component analysis 
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(PCA). In this context it should be noted that, while the term ‘dynamics’ is used in classical 

mechanics in reference to the causal relation between forces and the resulting motion, i.e., as 

synonym for ‘kinetics’, we use it to refer more broadly to all time-evolving phenomena, 

including time-dependent motion structures (cf. Newell, Liu & Mayer-Kress, 2001; Strogatz, 

1994). After having identified the dynamic structures of interest, we examine the significance 

of these structures for visual anticipation skill in two experiments. Before introducing our 

specific expectations with regards to the outcome of these experiments, we briefly discuss 

previous insights into the information used for biological motion perception and anticipation 

as well as recent methodological advances in uncovering this information. 

 

The Perception of Biological Motion 

 Swedish researchers (see Johansson, 1973, 1976; Runeson, 1977/1983, Runeson & 

Frykholm, 1981, 1983) undertook the initial attempts at pinpointing the information used in 

biological motion perception. In a series of experiments, naïve observers were shown humans 

performing actions in point-light display (PLD) format. Points of lights were presented 

corresponding to the location of anatomical landmarks on the body (e.g., shoulders, elbows, 

and hips) against a homogenous dark background. When viewing moving point-light images, 

observers were able to recognize actions like walking (Johansson, 1973, 1976) or lifting a 

weight (Runeson & Frykholm, 1981, 1983), as well as an actor’s gender and the intention to 

obscure the weight of a lifted object (Runeson & Frykholm, 1983).  

 PLD’s have subsequently been used to examine anticipation in sport. Ward and 

colleagues (2002) studied the ability of experienced and less experienced tennis players to 

anticipate an opponent’s intentions from normal film as well as PLDs. The experienced 

players anticipated quicker and more accurately than the less experienced players. Although 

performance deteriorated when participants viewed PLD’s relative to film, both groups still 
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performed above chance level and the experienced participants maintained their superiority 

over less experienced counterparts (see also Abernethy et al., 2001). In a similar vein, Shim, 

Carlton, Chow, and Chae (2005) examined anticipation accuracy as a function of skill and 

display type, using a live model, filmed images, and PLDs. They reported that response 

accuracy was above chance levels in all display conditions. However, a significant interaction 

between skill and display type indicated that the experts’ response accuracy decreased when 

viewing a PLD compared to film and ‘live model’ presentation modes, whereas, surprisingly, 

the reverse picture was observed in the novice group who improved (moderately) when 

moving from ‘live model’ to film and then PLDs, respectively. In fact, the skill difference 

was no longer significant under the later condition. The authors suggested that the skilled 

players, in contrast to the novices, were able to extract contextual information, or “subtle 

visual clues”, from the ‘live model’ and film-based displays in addition to the relative motion 

presented in the PLDs, and that this surplus information was used in an additive fashion (cf. 

Bruno & Cutting, 1988).  

 While the findings from these studies suggest that the temporal structure inherent in 

the execution of tennis shots informs observers about the ball’s future landing position before 

it is actually hit, they do not address the question of how information is embodied in the 

motion patterns. This issue was tackled in the context of gender recognition by Troje (2002), 

who used PCA to decompose male and female walking patterns into four rhythmical 

components that together captured more than 98% of the variance of the original 45-

dimensional time-series. These four components were used to classify and synthesize ‘male’ 

and ‘female’ walking patterns. Troje invited participants to judge the gender of walkers that 

were simulated using dynamic information, motion-mediated (structural) information (e.g., 

hip-shoulder ratio) or both, and found that the dynamics of the motion was more informative 

for gender classification than the motion-mediated structural cues. The combination of 



Dynamic information for anticipation 

 7

dynamic and structural information did not improve performance relative to dynamic 

information only. 

 In the present paper, we used PCA to examine whole-body movements in three 

(Cartesian) directions of different passing shots in tennis. Our aims were two-fold. First, we 

wanted to identify potential differences in the dynamic structures (coordination patterns) 

underlying the execution of different passing shots. Second, we wished to verify the 

importance of these structures for anticipation by manipulating their availability to observers. 

In the first, preliminary part of this paper, we present the results of the PCA on different 

passing shots in tennis, followed by a discussion culminating in specific predictions regarding 

the dynamics that could be critical for the anticipation of these shots. In the second part of the 

paper, we present two experiments that were designed and conducted to test the predictions 

derived from the PCA. 

Experiment 1 

 The execution of a specific action varies between individuals as well as within an 

individual across attempts (cf. Bernstein, 1967; Kelso, 1995; Scholz & Schöner, 1999). It 

seems reasonable to expect that in the execution of tennis shots body areas that supposedly 

contribute relatively little to passing accuracy will exhibit a larger variability across trials 

than the end-effector and mechanically linked areas (i.e., the shoulder-arm-racket linkage). 

Similarly, body areas that move consistently from one shot to the next (for similar directions 

and distances) are more likely to be relevant for anticipation than those that do not. Findings 

from eye movement research support this line of reasoning; when attempting to anticipate 

tennis shots novices typically focus on the arm and racket, while experts additionally focus 

on the more proximal shoulder and hip areas (Ward et al., 2002; Williams et al., 2002).  

 In this first, preparatory study, we used PCA to identify systematic (dis)similarities in 

coordination patterns across different passing shots in tennis (in particular, inside out and 
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cross-court shots to short and deep targets, see Figure 1). Similarities across different shots 

are expected to manifest themselves via similar eigenvector coefficients, while structural 

dissimilarities between these shots (e.g., consistent distinct hip-shoulder coordination for 

shots to different directions) can be expected to be revealed in consistent differential 

eigenvector coefficients. Uncorrelated dissimilarities across shots (e.g., varying knee-ankle 

coordination across shots to the same direction) are expected to present themselves as 

variable eigenvector coefficients, above all in the (higher) modes accounting for only small 

portions of the variance. We used PCA to separate the structural features of passing shots 

from the inherent random features (cf. Daffertshofer, Lamoth, Meijer, & Beek, 2005), 

resulting in a characteristic description of the passing shots.  

 We expected the similarities in each combination of inside-out and cross-court shots 

to short and deep targets to be greater than the dissimilarities; the amount of variance 

associated with executing any passing shot is in all likelihood considerably larger than that 

associated with shot-specific adjustments. For example, in all these shots the torso rotates to 

support the arm and racket swing up to ball contact. Playing the ball to a particular place 

probably requires relatively small adjustment of this motion. Therefore, we did not expect to 

find shot-specific modes, but rather that a few modes would effectively describe all shots. We 

expected that consistent differential contributions from the time-series to the modes 

(represented in the eigenvector coefficients) would differentiate shot types. Moreover, we 

expected to find consistent differences between shot types predominantly in the racket, right 

arm, shoulder, and hip linkage. Finally, we expected fewer dynamic differences in shot 

distance than in shot direction, because variations in shot distance may well be achieved by 

means of a scaling of the dynamics. 

Method 

Participants 
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 Six tennis players (two male, four female) between 15 and 18 years of age (M = 18.0, 

SD = 1.1) participated. All were right-handed, played competitively at a national level (mean 

national rating = 4.75, SD = 1.40 [1.1 and 10.2 are the highest and lowest rating within the 

Lawn Tennis Association (LTA) rating system in the U.K, respectively]), and had played on 

average 158.3 (SD = 43.2) tournament matches in the last year. Participants gave their 

informed consent prior to taking part in all three experiments and each one was conducted in 

accordance with the ethical guidelines of the lead institution. 

-------------------------------------- 

Please insert Figure 1 about here 

--------------------------------------- 

Apparatus  

 Four different targets were constructed in the laboratory (see Figure 1) in order to 

simulate passing shots directed to the right and left side of a tennis court (respectively called 

‘inside-out’ (IO) and ‘cross-court’ shots (CC) in tennis terminology). The lower and upper 

parts of these targets were to simulate short (S) and deep (D) shots (i.e., near and far areas of 

a tennis court, respectively). The targets, which were 0.40 m × 1.00 m (height × width) large, 

were placed such that the midpoints of the lower (higher) pair were 1.20 m (1.60 m) above 

ground level, 2.50 m apart from each other. This set-up resulted in an accurate representation 

of a tennis court. While, in principle, shots directed to the deep (short) target may in reality 

resulted in a short (deep) shot, observation of the participants’ performance as well as their 

self-reported performance evaluations suggested that this was not the case. The participants’ 

start position was a distance of 6 m from the targets, at the midpoint of, and perpendicular to, 

the mid-line between the targets. In order to standardize ball trajectories prior to the shot, the 

ball was projected towards the participant using a runway, located between the targets at a 

vertical distance of 2.50 m above the floor. 
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Whole body three-dimensional displacement data were recorded at 240 Hz (spatial 

accuracy ≤ 1 mm) by means of an infrared motion capture system (Qualisys, Sweden), which 

consisted of six cameras positioned at 45°, 90°, 135°, 225°, 270°, and 335°, respectively, to 

the transverse plane of the player’s start position. Spherical retroflective markers (width 15 

mm) were placed on the left and right shoulder, elbow, wrist, hip, knee, ankle, and toe, as 

well as on the top, bottom, left, and right side of the racket face, the ball, and two reference 

points situated on the floor in line with the start position 3.5 m apart. The displacement data 

of the markers that were attached to the body (14) and racket (4) were used for further 

analysis (see also Figure 4-6). In addition, a Panasonic S-VHS video recorder (model NV-

MS5, Panasonic U.K. Ltd, United Kingdom) was placed about 3 m behind the start position 

and faced forwards so as to record the targets. 

Procedure  

 Prior to the experimental trials, each participant practiced several shots to familiarize 

her/himself with the task environment. Each participant performed 10 forehand strokes to 

each of the four targets. At the start of a trial, the participant placed her/himself at the start 

position. Next, the experimenter indicated verbally the target to be aimed at (IOS, IOD, CCS, 

or CCD), after which the ball was projected towards the participant and struck using a 

conventional tennis racket after it had bounced once on the floor.  

Data Analysis  

 For each participant and condition the four trials were selected in which the target was 

hit at a distance closest to its extreme corner (i.e., the upper left [right] corner for a deep 

cross-court [inside-out] shot and the lower left [right] corner for a short cross-court [inside-

out] shot). The number of trials we could analyze was limited to four due to the available 

computational capabilities; the inclusion of a fifth trial resulted in a state vector that was too 

large to allow for computing its covariance matrix. For each trial, the start and end-point were 
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defined as the initiation of right wrist backward movement (in the y-direction) and the 

moment of racket-ball contact, respectively. Each trial’s duration (Tt) was determined, and 

each time-series’ standard deviation (TSSD) computed. The latter provided an indication of the 

scaling of the trajectory (and its higher derivates) of the time-series in question. Since we 

were interested in the scaling features of shots in situ, we did not ‘normalize’ these standard 

deviations with respect to shot depth. 

 We examined the tennis shot executions in terms of the Karhunen/Loève expansion, 

also referred to as PCA, which is an unbiased statistical method to identify low-dimensional 

components in high-dimensional motion patterns (cf. Daffertshofer et al., 2005; Haken, 

1996). In particular, unlike the standard statistical application of PCA based on the 

covariance matrix of scalar values which contains no information about events as they unfold 

in time, we used PCA to compute the covariance matrix across time-series, such that a time 

evolution is associated with each eigenvector (mode). In brief, the general aim of PCA is to 

effectively approximate an N-dimensional dataset with fewer dimensions M. To do so for an 

arbitrary set of time-series q(t) := [q1(t), q2(t), q3(t),… qN(t)]T⋅ ek (where ek represents the kth 

basis-vector for k = 1...N; t = t0…T) one chooses a different set of vectors {vk} to obtain 
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The vectors vk are assumed to be orthogonal, that is, independent. Algebraically, this 

procedure is realized by diagonalization of the data’s covariance matrix. The eigenvalues λk 

of the covariance matrix (after being rescaled such that their sum equals one) reflect the 

amount of variance covered by the corresponding eigenvector vk. The N coefficients of each 
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corresponding eigenvector vk = v k
i (i = 1…N) reflect the degree to which each of the time-

series i contributed to vk, in other words, the degree to which they share a specific time 

evolution. The eigenvectors, or principal components vk are often referred to as modes (cf. 

Haken, 2000), which we will do here also. Finally, the time evolutions ξk(t) (generally 

referred to as projections) of each mode vk can be obtained by the scalar product  

ξk(t) = vk⋅  q(t).      (3) 

In order to examine whether shots to different directions can be distinguished on the 

basis of shot specific modes, the time-series of each trial for each participant and condition 

were re-sampled to the mean length of all time-series, mean subtracted, normalized to unit 

variance, and combined into an N-dimensional state vector q(t) (N = 4 [trials] × 54 [time-

series] = 216; t = tstart … tball contact). Each mode’s projection ξk(t) was established (see 

equation 3), and for modes 1, 2, and 3 the covariance (normalized to the interval [-1,1]) 

between corresponding projections was computed. To anticipate, this analysis indicated that 

shots to different directions were not differentiated by shot specific modes (see below PCA: 

Shot Comparisons across Participants). Therefore, a new N-dimensional state vector q(t) was 

constructed, this time including all mean subtracted and normalized time-series from all 

participants (N = 6 [participants] × 4 [conditions] × 4 [trials] × 54 [time-series] = 5184; t = 

tstart … tball contact), which was also subjected to PCA, and the projections ξk(t) were computed 

next. Recall, each eigenvector kiv (i = 1…N) contains N eigenvector coefficients i 

corresponding to different marker locations in the x-, y-, and z-direction from short and deep 

inside-out and cross-court shots. These coefficients were analyzed for modes k = 1…5 in 

terms of marker location, (Cartesian) direction, shot direction, and shot distance. 

 The trial duration (Tt), time-series’ standard deviation (TSSD), and the eigenvector 

coefficients k
iv corresponding to the marker locations in the x-, y-, and z-direction of the first 

five modes were subjected to a two-way analysis of variance (ANOVA) with shot direction 
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(2) and shot distance (2) as within-participant factors. We refrained from subjecting the time-

series’ standard deviation to a four-way analysis of variance with movement direction and 

marker location as we were interested in potential effects of shot direction and shot distance. 

Whenever the sphericity assumption was violated, the degrees of freedom were adjusted 

using the Huynh-Feldt correction and reported accordingly. Effect sizes were calculated as 

partial eta squared values (ηp
2). 

Results 

Trial Duration 

 No significant effects were found for trial duration; mean and standard deviation 

across trails were 1.46±0.12 s.  

Time-series’ Standard Deviation (TSSD) 

 There was a significant main effect for shot distance (F(1, 5) = 6.75, p < .05, ηp
2 = 

.57); the TSSD of the deep shots exceeded that of the short shots (mean±SD 4.94±4.22 mm, 

and 4.87±4.22 mm, for deep and short shots, respectively). In addition, there was a significant 

effect for shot direction (F(1, 5) = 47.98, p < .01, ηp
2 = .90); the TSSD was larger for the cross-

court shots than for the inside-out shots (mean±SD 5.02±4.38 mm versus 4.79±4.05 mm). 

PCA: Shot Comparisons across Participants 

 The PCA conducted on the four trials for each condition per participant revealed that 

the first three modes captured roughly 90% of all the variance in each 216-dimensional data 

set. The corresponding eigenvalue spectra were very similar (see Figure 2). 

-------------------------------------- 

Please insert Figure 2 about here 

--------------------------------------- 

 For each shot condition, the covariance between the projections ξk(t) corresponding to 

each participant for the first three modes hinted at a high degree of similarity among 
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participants for each condition. The covariance between the projections was sometimes 

negative in some participants. In these cases, the sign of most corresponding eigenvector 

coefficients differed, indicating that the trajectories of the majority of the corresponding time-

series were very similar. We therefore report the absolute value of the covariance. The mean 

(absolute value) of the covariance across participants was close to one, while the standard 

deviations were low (see Table 1). Furthermore, the degree of similarity of the projections of 

the different conditions was similarly high; the mean (absolute value) of the covariance 

across participants between the projections of the different shots (i.e., IOS, IOD, CCS, and 

CCD) was close to one, while the corresponding standard deviations were close to zero (see 

Table 2). These results indicated a high degree of similarity between the shots at the level of 

the most prominent modes. Potential differences between shot conditions should therefore 

reside in a differential contribution from the anatomical landmarks and/or racket. 

Consequently, instead of analyzing the corresponding eigenvectors, we conducted a separate 

PCA in which the time-series of all conditions and participants were included.  

-------------------------------------- 

Please insert Table 1 & 2 about here 

--------------------------------------- 

PCA: All Trials – General Observations 

 PCA showed that the entire data set could effectively be described by a few modes; 

the cumulative sum of the first five eigenvalues λk represented 52.6%, 77.6%, 89.3%, 93.6%, 

and 96.2% of all the variance in the data set, respectively. The corresponding projections (i.e., 

time evolutions, ξk(t); see equation 3) are shown in Figure 3.  

-------------------------------------- 

Please insert Figure 3 about here 

--------------------------------------- 
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 To determine the contribution to specific modes from the various marker locations, 

we calculated the mean absolute value of the eigenvector coefficients v k
i for k = 1…5 (see 

equation 1) across participants and conditions. Similarly, to address the variability of these 

contributions, we calculated the standard deviation of the signed value of the eigenvector 

coefficients. The results of these analyses are depicted in Figures 4 and 5, respectively. The  

differences in magnitude of the eigenvector coefficients were small in the 1st mode (at least 

for the x- and y-direction) and became more pronounced in higher modes. In particular, 

anatomically localized and (Cartesian) direction-specific contributions were found in the 

dominant modes, although less so in the first. In addition, while the contribution of the 

shoulder-arm-racket linkage was substantial for the first three modes, this contribution was 

markedly smaller for the 4th and 5th mode. In general, the mean magnitude of the eigenvector 

coefficients across marker locations decreased monotonically from modes 1 to 5 while their 

averaged standard deviation increased. In other words, the variance (from different marker 

locations) within modes was distributed less homogeneously the higher the mode. 

-------------------------------------- 

Please insert Figure 4 & 5 about here 

--------------------------------------- 

PCA: All Trials – Comparison between Shots 

 In view of the large number of statistical analyses undertaken (18 Marker Locations × 

3 Movement Directions × 5 Modes = 216 ANOVA’s), we abstained from reporting all the F-, 

p- and ηp
2-values in the text; these are reported in Appendix A1-A5. Marker locations for 

which a significant effect for shot direction was found are indicated for modes 1 to 5 in 

Figure 6, which only represents variations in shot direction as few significant differences in 

shot distance were observed. More specifically, significant differences in shot direction 

versus distance were found in 13 vs. 0, 11 vs. 3, 10 vs. 1, 4 vs. 3, and 12 vs. 2 analyses, for 
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modes 1 up to 5, respectively. Below, we only discuss significant differences in shot 

direction. 

-------------------------------------- 

Please insert Figure 6 about here 

--------------------------------------- 

As can be seen in Figure 6, characteristic differences between shot directions (in terms of 

dynamic structures and Cartesian directions) across participants were repeatedly found in 

terms of differential eigenvector coefficients. The observed differences were predominantly, 

but not exclusively, present in the x-direction (i.e., the medio-lateral direction). Although 

these differences were predominantly found in the right side of the body, specifically in the 

shoulder-racket linkage, across (the first five) modes and directions, significant differences in 

eigenvector coefficients occurred all over the body (and racket).  

Discussion 

 We examined different types of tennis shots in terms of their dynamic modes using 

PCA, as well as their scaling properties (as quantified by the standard deviations of the time-

series). We found that five principal modes captured more than 96% of the variance in the 

data, which was distributed unevenly across the body and racket. Furthermore, the variability 

of corresponding eigenvector coefficients was unevenly distributed across the different body 

areas (including the racket) and was larger for the higher modes. These results indicate that 

tennis shots can be given a compact description, and suggest that their execution might be 

governed by a low-dimensional control structure. Although this finding as such is not new 

(see Huys, Daffertshofer, & Beek, 2004; Post, Daffertshofer, & Beek, 2000), it has, as far as 

we know, never been reported for a whole-body, complex discrete task. 

 As expected, neither shot direction or shot depth was characterized by a unique 

structure. However, clear shot-direction, and to a much lesser extent, shot-distance, 
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differences were evident in the eigenvector coefficients of the various modes. Such 

differences occurred across modes all over the body (including the racket), although they 

were most pronounced in the x-direction, particularly at the right side of the body and the 

racket (for a representation of differences in shot direction across the first three modes, see 

Figure 8) The latter observation is consistent with previous research suggesting that racket, 

racket-holding-arm, shoulders and hips are important for anticipation, albeit in a skill-

dependent fashion (see Ward et al., 2002; Williams et al., 2002). The present results indicate 

that the information contained in those regions is largely confined to the x-direction. In 

addition, we found shot-direction specific differences in the hips and shoulders in all 

directions, and in anatomical locations that were not identified as potentially informative 

regions in previous studies, such as the left arm and right leg (in the y- and z-direction). The 

scaling of shot dynamics, quantified by the time-series’ standard deviations, distinguished the 

inside-out shots from the cross-court shots as well as the short from the deep shots. That is, 

differences in shot direction were found in the shot dynamics as well as its scaling. In 

contrast, differences in shot depth were rarely apparent in the shot dynamics as such, but its 

scaling was larger in the deep shots than in the short shots. Shot depth, at least in the present 

context, appears to be controlled primarily by a scaling of the dynamics and less so by 

coordinative dynamic adjustments in shot execution. It should be noted, however, that the 

differential effect onto the dynamics of shot direction and distance may be due to differences 

in their respective target discrimination, even though the scaling results contradict this 

suggestion. Following our premise that anticipation is based on dynamic information, these 

results suggest that the direction of tennis passing shots is easier to anticipate than their depth. 

 In sum, a similar low-dimensional dynamic structure captures the execution of tennis 

passing shots to distinct directions and of different depth. Differences between shots arose 

locally (i.e., they were found in varying contributions of different body and racket locations 
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to these dynamics), but mainly so for shot direction. In contrast, the scaling of the dynamics 

was distinct for both shot directions and distances.  

Experiment 2 

  In Experiment 1, we found that a few modes allowed for an economical description 

of forehand tennis shots, and that subtle differences in these modes could distinguish shot 

direction, but not shot depth. However, any description of a system in fewer dimensions than 

the original represents by definition an approximation. Therefore, we conducted a second 

experiment aimed at identifying the minimal dimensionality of forehand tennis shots 

allowing for undisrupted anticipation of shot direction (i.e., with an accuracy level similar to 

that of ‘real’ shots). In other words, we sought to find the most efficient representation of the 

shots from a perceptual perspective. Moreover, we wished to examine whether anticipation 

skill interacted with the perceptually most efficient representation of the shots. To achieve 

this aim, we simulated tennis shots that were constructed from the original data as well as 

shots that were constructed by cumulatively including five principal modes. Subsequently, 

skilled and less skilled tennis players were requested to observe the simulations and judge 

shot direction. In contrast to other researchers (e.g., Ward et al. 2002; Williams et al., 2002), 

we examined anticipation performance only in terms of accuracy because we wanted 

participants to look at the entire simulation rather than allowing them to control viewing time, 

thereby eliminating a potential confound. 

 We expected anticipation accuracy not to be affected when most of the variance of the 

shots was incorporated in the simulations, that is, when minimally the first three modes 

(accounting for approximately 90% of the variance) were included. Moreover, as the addition 

of more modes hardly changed the shot dynamics (they accounted for only a small amount of 

the variance) we expected anticipation performance to improve only marginally at best, and 

only in skilled participants as they are able to pick up and use ‘subtle cues’ (Shim et al., 2005; 
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Ward et al., 2002). Generally, we expected skilled participants to demonstrate superior 

performance compared to their less skilled counterparts (cf. Shim et al., 2005; Ward et al., 

2002).  

Method 

Participants 

 Twelve moderately skilled participants (mean age = 34.0 years, SD = 11.6) who had 

played regular tennis at school, albeit at a recreational level, and who had never received 

professional tennis coaching and did not play in tennis tournaments, and thirteen skilled 

participants (mean age = 26.6 years, SD = 11.1) who all competed at a national level (mean 

LTA rating = 4.78, SD=2.67) and played on average 134 tournament games per annum 

volunteered to participate.  

Apparatus and Stimulus Production  

 Stick-figure simulations of tennis shots were generated using Matlab (Matlab 6.5, the 

Mathworks). The simulations were based on one single inside-out and cross-court shot from 

two participants and were saved in Audio Video Interleave (AVI) format. These shots were 

selected because the corresponding eigenvectors of the first three modes most closely 

resembled the shot-specific mean eigenvectors (as determined in Experiment 1) of those 

modes (in terms of least mean squares). In contrast, using shot deliveries from a single player 

would run the risk of contaminating anticipation on the ‘original’ shots by introducing player-

specific motion patterns, using multiple players would inevitably result in simulations with 

larger deviations from the shot-specific mean eigenvector in terms of least mean squares. 

Simulations of shots in both directions were made from ‘original’ data (MC) and from data 

containing modes 1 up to 5 via cumulative addition of these modes, referred to as M1, M1-2, 

M1-3, M1-4 and M1-5, respectively. For the latter five conditions, data q(t) for the simulations 

were generated by computing the product of the time evolutions as well as the corresponding 
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eigenvectors of these modes (i.e., q(t) = ξk(t) ⋅ k
iv , for k = 1 to 5, and i = 1…54; see also 

equation 1). Thus, for each condition a 54-dimensional vector q(t) was obtained that 

represented the dynamics corresponding to the 18 marker locations in 3 Cartesian directions. 

The data’s ‘real-world’ coordinates were then obtained by multiplying each (marker’s) time-

series qi(t) with its corresponding marker-specific mean standard deviation (averaged across 

shot-directions) and adding its (original) mean. To clarify, the so-obtained stick figures were 

structurally the same as that of the original shots while the dynamic differences relative to the 

original shots were larger the fewer modes were included. This procedure resulted in 12 

experimental conditions (6 Modes × 2 Players). The frame rate for the simulations was 30 

Hz. We re-sampled the corresponding time-series of the selected shots to a multiple of 30, 

while minimizing changes in the number of samples. Note that the time-series that were used 

for the simulations were first normalized to unit variance and subsequently, rescaled 

according to the corresponding mean standard deviation (across shot directions) so as to 

eliminate any possible information in the simulations as regards to shot direction due to 

scaling. The stick figures were presented in black against a white background. 

 The clips were imported into Adobe Premier 6.0 (Washington, US) on a notebook 

computer (Sony, Tokyo, Japan) with a 15-inch screen. The size of the simulated ‘players’ 

was approximately 12 cm × 14 cm (height × width). The trials were edited such that they 

were preceded by a 1-s presentation of a white background with a centrally placed black dot, 

followed by a 1-s presentation of the white background alone. Subsequently, the simulated 

shot was presented, which lasted for approximately 1.5 seconds. After presentation, a white 

background was shown for 3 s during which the participants had to indicate verbally whether 

the presentation shown entailed a shot to their left side (i.e., inside-out) or to their right side 

(i.e., cross-court). The trials were randomized and presented in four blocks of 30 trials. A 
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practice test tape of 20 trials was constructed in a similar manner in which ‘original’ (MC) 

inside-out and cross-court shots were presented 10 times in a blocked fashion. 

Procedure 

 Participants viewed the laptop onto which the trials were presented at a distance of 

about 0.5 m while seated. The center of the display was approximately at eye height. 

Participants were told that they would be shown tennis shots where the ball was played either 

inside-out or cross-court. They were told to imagine themselves being located at the center of 

a tennis court at the middle of the baseline and that the to-be-anticipated shots were delivered 

from the same position on the opponent’s side of the court. They were also told that the shots 

were delivered by a (headless) stick figure, that the clips lasted up to the moment of ball-

racket contact, and that no ball would be presented. Participants were notified that each trial 

was preceded by a white screen onto which a small black dot was projected, which was 

visible for 1 s, after which the screen would be totally white for 1 s, followed by the 

simulation. Participants were requested to verbally indicate the direction of each shot (left or 

right) after the simulation had finished. Each simulation was presented 5 times, resulting in a 

total of 120 trials. Before the experiment proper, participants were shown 10 examples of 

‘original’ shots (MC) to each direction in blocks of 5 shots. The direction of these shots was 

indicated before their presentation. The simulations were presented in blocks of 30 trials, 

followed by a short break. The entire experiment lasted about 20 minutes. 

Data Analysis 

 We determined the number of correct answers (c) for each experimental condition. In 

order to minimize the corresponding distribution’s deviation from normality, we 

subsequently transformed this number using Bartlett’s modified arcsine transformation (i.e., 

p′ = ( ) ( ) ( )( )360 / 2 arcsin 3/8 / 3/ 4c nπ + + ) with n being the number of trials (Bartlett, 

1937, in Zar, 1996). These scores were analyzed using a mixed design ANOVA with player 
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and mode as within-participant factors and skill as a between-participant factor. We used a 

contrast analysis to follow up any significant main effect for mode (the only main effect with 

more than two levels). We report and graph the untransformed means and standard deviations 

that were calculated from the original data. 

 

Results 

 The accuracy of anticipating the original shots was similar to that reported in previous 

studies (approximately 75% across skill groups; see Ward et al., 2002; Williams et al. 2002), 

which validates our stick figure simulations. The anticipation of shots delivered by players 1 

and 2 did not differ significantly (F(1,24) = 0.002, p = .961, ηp
2 < .001). There was, however, 

a significant Player × Mode interaction (F(5,120) = 8.374, p < .001, ηp
2 = .259), which 

revealed that the shot delivery of the ‘original’ presentation (MC) of player 1 was anticipated 

better than that of player 2, while the reverse was the case when the first four modes (M1-4) 

were included in the simulation. 

 As expected, a significant group effect (F(1,24) = 14.272, p < .005, ηp
2 = .373) was 

observed; the skilled players anticipated more accurately than their less skilled counterparts 

(mean±SD 77.1%±15.6 versus 66.6%±14.2, respectively). There was also a significant effect 

for mode (F(4.651,111.621) = 31.403, p < .001, ηp
2 = .567; mean±SD 76.9%±13.0, 

56.7%±15.9, 61.0%±9.4, 80.2%±13.1, 78.1%±9.1, and 80.6%±14.9, for MC, M1, M1-2, M1-3, 

M1-4, and M1-5, respectively). Contrast analysis indicated that the presentations of shots 

containing mode 1 (M1) and mode 1 to 2 (M1-2) were anticipated less accurately than the 

presentations of the original shots (MC). In addition, there was a tendency for the shots 

containing modes 1 up to 5 (M1-5) to be anticipated more accurately than the original shots (p 

= .051). The Group × Mode interaction just failed to reach significance (F(4.651,111.621) = 
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2.240, p = .060, ηp
2 = .085), although only the less skilled tended to perform better when 

three, four or five modes were included compared to the original shots (see Figure 7).  

 Visual inspection of the data suggested that when presenting only mode 1 (M1) the 

less skilled performed at chance level, in contrast to the skilled players. Therefore, we 

performed a one-sample t-test for each group–mode combination to examine whether 

performance was significantly above chance level (i.e., 50% correct). These analyses 

confirmed our impression that when only mode 1 was presented the less skilled performed at 

chance level; in all other cases, performance was significantly better than chance (α = .05). 

-------------------------------------- 

Please insert Figure 7 about here 

--------------------------------------- 

Discussion 

 We examined the ability of skilled and less skilled tennis players to anticipate 

simulated shots whose dynamics were either unmodified (i.e., ‘original’ shots) or were 

constructed by cumulatively including modes 1 up to 5 as a function of skill. The shots 

performed by two players from Experiment 1 served as data for the simulations. 

 As expected, anticipation was, on average, unaffected by the player factor. The 

significant Player × Mode interaction, however, indicated that anticipation performance of the 

original shot was player dependent, which may be readily explained in terms of 

idiosyncrasies in technique. Also, anticipation of shots delivered by player 1 when including 

the first four modes was worse than those delivered by player 2. In order to examine this 

effect, we further analyzed the eigenvectors corresponding to the fourth and fifth mode in 

terms of their least squares differences from the mean eigenvector (see also the Method 

section). It appeared that, for mode 4, the least squares difference of the shot delivered by 

player 1 was larger than that of player 2, which may explain the decreased response accuracy 
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in the corresponding condition. In our opinion, this small deviation did not interfere with the 

primary aim of the experiment, which was to establish the extent to which the information 

content of the simulations could be reduced without affecting anticipation performance 

relative to ‘original’ shots.  

As regards this objective, we found strong evidence that simulating shot deliveries 

based on the first mode (M1) and first two modes (M1-2) negatively affected anticipation 

performance, while simulations created by including the first three, four or five modes 

(corresponding to approximately 90% of the variance in the shot deliveries or more) had no 

detrimental effect on performance. The implications of these results are two-fold. First, the 

information for judging shot direction resides in, or is condensed into, a limited number of 

orthogonal (i.e., independent) structures or modes, and is therefore identifiable. This finding 

indicates that a low dimensional, compact representation of tennis shots is not only optimal 

from a mathematical point of view but also most informative in terms of perception. Second, 

the results of Experiment 1 indicated that across the first three modes significant dynamic 

differences between shot directions occurred at almost all body areas (including the racket). 

That is, information regarding shot direction may, in principle, be gleaned from all parts of 

the body. Furthermore, anticipation performance tended to be better, albeit only slightly, 

when modes 1 to 5 (M1-5) were simulated than when the original shots were presented. This 

tendency suggests that the information contained in the higher modes (as present in the 

original shots) may negatively impact anticipation performance relative to the apparent 

informational optimal representation (i.e., M1-5), at least in the present context, probably 

because the additional variance (information) is primarily non-specific to shot direction, 

representing for instance trial-to-trial variability, thus hampering rather than improving 

anticipation performance. Further research is required to examine this issue in more detail. 
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 In line with previous research, the skilled players were more accurate in their 

anticipation judgments than their less skilled counterparts (cf. Abernethy, 1990; Shim et al., 

2005; Williams et al., 2002). In addition, we found evidence that the skilled players, unlike 

the less skilled participants, were able to use the information present in mode 1, and that the 

novices tended to respond more accurately when modes 3, 4, and 5 (M1-3, M1-4, M1-5) were 

present compared with the original shots (MC). These findings suggest that experts are able to 

pick-up and use dynamic information of a lower dimension than less skilled players and that 

only the performance of the latter deteriorates when information that is largely non-specific 

to shot direction (as available in the high-dimensional original shots) is present. The skilled 

players appear to have learned to perceptually identify the dynamic invariants that indicate 

shot direction to a greater degree than less skilled participants, and as such are less vulnerable 

to random variability across shot executions. Furthermore, the performance of less skilled 

players can be optimized by presenting them with low (i.e., three) dimensional dynamic 

information, a finding that may have important consequences for training perceptual skill. 

In sum, information that facilitates the anticipation of shot direction is in large part 

dynamic and resides in a few independent structures. Skilled players are able to identify and 

use these informational dynamics to a greater extent than less skilled participants. The ability 

to pick up low-dimensional information may render perception reliable and robust. 

Experiment 3 

 In Experiment 2 we examined whether low dimensional dynamic information allows 

for anticipating shot direction by presenting skilled and less skilled tennis players with 

simulated shots that we had generated by combining the most important modes identified in 

Experiment 1. We found that only three structures (modes) contained all the information 

necessary for anticipation at a level similar to that observed for the original shots. 

Unfortunately, the methodology adopted did not allow us to identify exactly which dynamic 
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structures were used for anticipation. Moreover, increasing the number of structures for the 

simulations increased the variance accounted for as regards shot representation. In the present 

experiment, we attempted to pinpoint which dynamic structures allow for anticipation of shot 

direction as a function of skill level. We generated stimuli in which only one or a 

combination of structures contained information about shot direction while information in the 

remaining structures was eliminated. As such, the amount of variance of the shot simulations 

(i.e., representations) was kept nearly constant. In addition to a control condition, in which 

the unmodified mean eigenvectors were used (see the Method section), we generated 

simulations in which the eigenvectors corresponding to the following modes remained 

unmodified (i.e., contained shot directional differences): modes 1 up to 5 presented 

separately, the combination of modes 1 and 2, modes 1 and 3, modes 2 and 3, modes 6 and 7 

and modes 8 up to 20. The latter two conditions were included to examine if the higher 

modes contained information that can be used at all by observers. We hypothesized that the 

more variance a mode or combination of modes contained, the more it would allow for 

anticipation performance. Furthermore, although we did not expect any single mode to allow 

for anticipation at the level observed for the control condition, we expected at least the first 

three modes individually to allow for anticipation above chance level, at least for the experts: 

after all, the results of Experiment 1 revealed that these modes contained quite some variance 

and clearly revealed shot direction specific differences in terms of the eigenvectors. We also 

expected that, regardless of skill level, the combination of modes 1 and 3 would contain 

sufficient information to allow for undistorted anticipation performance, because in 

Experiment 2 the inclusion of modes 1 to 3 allowed for accurate performance while adding 

mode 2 to mode 1 hardly impacted performance.  

 Pilot work indicated that presenting all the conditions to participants was too 

strenuous: the tested participants complained about fatigue and, more importantly, fading 
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attention and motivation during the test (even though breaks were provided). Therefore, we 

decided to split the experiment into two parts, A and B. 

Participants 

 Fourteen less skilled participants (mean age = 39.9 years, SD = 11.7), who had played 

tennis recreationally at school, who had never received any professional tennis coaching and 

did not play in tennis tournaments, and fourteen skilled participants (mean age = 22.1 years, 

SD = 4.5), who had competed at a national level (mean LTA rating = 2.98, SD = 1.65) and 

played on average 175 games annually (SD = 43), volunteered to participate in part A. In part 

B, fourteen less skilled participants (mean age = 38.3 years, SD = 10.8), who had played 

tennis recreationally at school level, had never received any professional tennis coaching and 

did not play in tennis tournaments, and fourteen skilled participants (mean age = 26.8 years, 

SD = 11.4), who competed at a national level (mean LTA rating = 3.40, SD = 2.18) and 

played on average 153 games annually (SD = 69), volunteered to participate. 

Apparatus and Stimulus Production 

 The simulations were generated in a manner similar to Experiment 2. However, in 

contrast to Experiment 2, the data for the simulations were based on the mean eigenvectors as 

determined in Experiment 1 (i.e., for each coefficient v k
i  [k = 1…54; i = 1…54], the mean 

across participants and trials for each shot direction were computed). Differences in 

eigenvector coefficients in shot distance were averaged out for each mode. For the time-series 

corresponding to the marker locations of each participant, we calculated the mean and 

standard deviation across shot distance and direction. These means and standard deviations 

were used to obtain data with ‘real’ spatial properties and simultaneously eliminate the 

potential impact on anticipation of the shots’ spatial properties (see Experiment 1). For the 

simulations, means and standard deviations of two participants were selected that had the 

smallest sum of squares between the across-participant averages of the time-series’ standard 
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deviations and their own. In all the simulations, 54 modes (capturing more than 99% of the 

entire variance in the data set) were used. For each shot direction, simulations were made of 

‘original’ shots, in which the shot differences that were present in the eigenvectors were 

preserved, and shots in which only a single mode or a combination of modes maintained shot 

differences (as present in the corresponding eigenvectors) while shot differences in all other 

modes were averaged out. Specifically, in constructing the data as q(t) = ξk(t) ⋅ v k
i , k = 1 to 54, 

and i = 1…54 (see equation 1), we used v k
i = v ( )

k
IO i

 and v ( )
k

XC i
 for the modes in which shot 

differences were preserved, while shot differences were averaged out using v k
i = (v ( )

k
IO i

+ 

v ( )
k

XC i
)/2 (for i = 1…54) for the other modes (the subscript IO and XC refer to the inside-out 

and cross-court shot, respectively). The same procedure as in Experiment 2 was used to 

obtain data with ‘real-world’ coordinates and to ensure that the stick figures were structurally 

the same as that of the original shots. The following (combination of) modes were chosen: 

mode 1 (M1), 2 (M2), 3 (M3), 4 (M4), and 5 (M5), modes 1 and 2 (M1+2), modes 1 and 3 

(M1+3), modes 2 and 3 (M2+3), modes 6 and 7 (M6+7), and modes 8 up to 20 (M8-20). For the 

last condition, our motivation for going up to mode 20, instead of a lower or higher mode, 

was that in this manner the amount of variance accounted for in this condition was almost 

equal to that of the combination of modes 6 and 7 (M6+7). For instance, in condition M3, as 

always, all 54 modes were used, but only the (shot direction-specific mean of the) 

eigenvector coefficients corresponding to mode 3 were used without alteration, while the 

eigenvector coefficients of the other modes (i.e., modes 1-2 and modes 4-54) were averaged 

across shot direction and thus contained no shot differences (and as such no information that 

could be used for anticipation). The conditions MC, M2, M5, M1+2, M1+3, and M2+3 were used 

in part A, whereas the conditions MC, M1, M3, M4, M6+7, and M8-20 were used in part B.  
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Procedure 

 The procedure was the same as in Experiment 2. 

Data Analysis 

 As in Experiment 2, we determined the percentage of correct answers for each 

experimental condition and subjected these percentages to Bartlett’s modified arcsine 

transformation (Bartlett, 1937, in Zar, 1996). These scores were analyzed using a mixed 

design ANOVA with player and mode as within-participant factors and skill as a between-

participant factor. We used Bonferroni-corrected pair-wise comparisons to locate the 

origin(s) of a potential significant main effect for mode. We report and graph the 

untransformed means and standard deviations calculated form the original data. 

Results  

Part A 

 We found a significant effect for player (F(1,26) = 15.652, p = .001, ηp
2 = .376), 

which indicated that the response accuracy was higher for player 1 than for player 2 

(mean±SD 65.8%±15.6 versus 60.0%±16.5, for player 1 and player 2, respectively). 

Unexpectedly, no significant effect of skill was found, even though on average the skilled 

players (mean±SD 64.4%±16.1) responded more accurately than the less skilled players 

(mean±SD 61.4%±16.4). Importantly, there was a significant effect for mode (F(5,130) = 

6.208, p = .000, ηp
2 = .193; mean±SD 70.2%±19.9, 61.8%±11.2, 57.3%±10.8, 60.2%±13.4, 

63.9%±11.7, and 64.1%±13.0, for MC, M2, M5, M1+2, M1+3, and M2+3, respectively). The pair-

wise comparisons showed that anticipation accuracy in the control condition (MC) and the 

conditions with modes 1 and 3 (M1+3) as well as with modes 2 and 3 (M2+3) did not differ 

significantly, and that a tendency for a lack of differences was present as regards mode 2 

(M2). The accuracy in these three conditions differed significantly from the other conditions 

(i.e., M5 and M1+2) which, in turn, did not significantly differ from each other. Furthermore, 
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anticipation accuracy in each condition (i.e., MC, M2, M5, M1+2, M1+3, and M2+3) was above 

chance level (at α = .05).  

Part B 

 As in part A, there was a main effect for player (F(1,24) = 6.612, p = .017, ηp
2 = .216; 

mean±SD 65.5%±17.5 versus 59.3%±16.3, for player 1 and 2, respectively). The effect for 

skill did not reach significance, although the skilled group (mean±SD 63.5%±17.2) responded 

more accurately than less skilled players (mean±SD 61.4%±17.1). The effect for mode was 

significant (F(5,120) = 7.947, p = .000, ηp
2 = .249; mean±SD 73.1%±16.6, 57.9%±10.6, 

63.1%±13.3, 59.0%±10.7, 59.8%±12.5, and 61.3%±13.2, for MC, M1, M3, M4, M6+7, and M8-

20, respectively). The pair-wise comparisons showed that anticipation in the control condition 

(MC) differed from all other conditions (M1, M3, M4, M6+7, and M8-20), while the latter did not 

differ significantly from each other. The anticipation accuracy in each condition (i.e., MC, M1, 

M3, M4, M6+7, and M8-20) was above chance level (at α = .05). 

 The observation that a combination of higher modes (i.e., modes 6-7, and modes 8-

20) allowed for response accuracy above chance level came as a surprise. Therefore, we 

further analyzed the eigenvectors obtained in Experiment 1 in terms of shot direction and 

depth. We performed ANOVA’s with shot direction (2) and shot distance (2) as within-

participant factors for modes 6 to 10 for each marker locations (18) and direction (3; see also 

Experiment 1). Although the number of significant observations as regards shot direction 

decreased with increasing mode, this effect did not disappear. 

 In sum, the results of Experiment 3A and B indicated that all (combinations of) modes 

tested allowed for anticipation above chance level. However, anticipation accuracy did not 

significantly deteriorate relative to the control condition except for the linear addition of 

mode 1 and 3 (M2+3) and mode 2 and 3 (M2+3). 

Discussion 
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 The aim of the present experiment was to identify the mode(s) facilitating 

anticipation. In both parts (A and B) we found an unexpected significant effect for player. 

Recall that the simulations were based on the mean eigenvectors and projections found in 

Experiment 1 and that means and standard deviations from two players were averaged across 

trials shot direction and distance. The only differences between the simulations corresponding 

to these players were in terms of the scaling of the dynamics (i.e., the time-series standard 

deviations). This scaling may have affected the extent to which observers were able to pick 

up and use the dynamic information contained in the displays. This find would be consistent 

with that of Pollick, Fidopiastis, and Braden’s (2001) who reported that the categorization of 

tennis stroke styles can be improved when the strokes are spatially exaggerated, at least for 

some styles.  

Unexpectedly, we found no significant effect of skill. However, it should be realized 

that in the present experiment, in which shot direction differences were eliminated by 

including modes, the amount of shot direction specific variance relative to the entire amount 

of variance was lower than in Experiment 2, in which we displayed modes with shot direction 

differences present. This effect may have diminished skill differences and contributed to the 

lack of a significant skill effect. Regardless, we found that no single dynamic structure 

contained sufficient information to allow for anticipation that was not different from the 

control condition, but that the combination of modes 1 and 3 (M1+3) and modes 2 and 3 

(M2+3) did. The information content of the combination of modes 1 and 2 (M1+2), however, 

appeared to be insufficient to facilitate effective anticipation. These results suggest that the 

informational value of the dynamics is not ‘simply’ a matter of the amount of variance 

accounted for by the dynamics. The linear addition of directional information contained in 

modes 1 and 3 as well as in modes 2 and 3 structures the high-dimensional motion pattern so 

as to render it sufficiently informational to allow for accurate anticipation.  
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 The response accuracy was significantly above chance level in each condition. 

Although we had anticipated this result for the first three modes, we were somewhat 

surprised to find it for the higher modes. The additional analysis of the eigenvectors, 

however, indicated that differences in shot direction were present at least up to the 10th mode. 

Notwithstanding the small amount of variance covered by the higher modes, shot specific 

differences in these modes can be picked up and used (at least when only these differences 

are present). It appears that, even though at the cost of accuracy, the visual system is sensitive 

and flexible in picking up the information contained in those modes when constrained in a 

specific manner. Indications of such perceptual sensitivity and flexibility have been hinted at 

in previous research. For instance, while evidence suggests that in three-ball cascade juggling 

the zenith of the ball trajectories is the most informative part of the trajectory to sustain 

juggling, other portions of the trajectories are sufficiently informative to enable effective 

performance (cf. Huys & Beek, 2002; Huys et al., 2004; Van Santvoord & Beek, 1994). Also, 

people are able to detect small differences in trajectory forms of oscillators, including 

asymmetry and symmetrical peakening or flattening - changes that may be indicative of 

biological movement (Muchisky & Bingham, 2002). In sum, although each tested mode or 

combination of modes allowed for anticipation above chance, only the linear combination of 

directional information in modes 1 and 3 as well as in modes 2 and 3 allowed for statistically 

undisturbed anticipation.  

 In Experiment 1, we showed that a few modes accounted for most of the variance 

underlying tennis shot executions, and that the variance, its variability across shots, and the 

shot-direction specific dynamic differences were distributed heterogeneously across the body 

and racket in a mode-specific manner. Experiments 2 and 3 suggested that the information 

underpinning anticipation of tennis shot direction resides in the first three modes. That is, we 

can localize and quantify the perceptually relevant dynamic differences between both shot 
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directions throughout their execution. To that aim, we constructed an inside-out and cross-

court shot based on the first three principal modes by computing the product of the time 

evolutions and the eigenvectors of mode 1 to 3, i.e., q(t) = ξk(t) ⋅ v k
i , for k = 1 to 3, and i = 

1…54 (see also equation 1). For each marker (18) we calculated the root mean squared 

difference (RMS) between the inside-out and cross-court shot as a function of time according 

to ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 2 2

io xc io xc io xcRMS t x t x t y t y t z t z t= − + − + −  (the subscripts io and 

xc indicate the inside-out and cross-court shot, respectively) and determined its mean in five 

consecutive time windows, each with a duration of 20% of the (normalized) shot (see Figure 

8 upper panel). Importantly, the so-obtained RMS represents a difference score in terms of 

the structure of the trajectories, not in terms of ‘real-world’ coordinates. To further visualize 

the results (see Figure 8, lower panel), we computed the corresponding ‘real-world’ 

coordinates (by multiplying each marker’s time-series qi(t) with its corresponding standard 

deviation and adding its mean; see also above) and plotted ‘snapshots’ of the inside-out and 

cross-court shot at the middle of each time window. Two observations are apparent from 

Figure 8 (upper panel). First, at the beginning of the shots differences in the time evolutions 

prevail in the right lower body and the right hip and elbow. While decreasing in the middle 

part of shot execution, the dynamic shot differences start to increase at the right side of the 

body to then spread across the entire body towards ball contact (at t = T) , although a slight 

right side dominance remains. Second, regardless of the heterogeneous distribution in space 

and time, differences in shot direction are to some degree present across the entire body and 

racket throughout the entire shot. These results are roughly in line with those of previous 

research involving the recording of eye movement data; expert observers typically adopt a 

proximal to distal visual scanning path (i.e., from the hips and shoulders to the arm and 

racket, respectively). At the same time, however, it appears that only a limited selection of 
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areas in which shot-direction differences are present are gazed at, assuming that optical 

information pick-up can be equated with gaze direction (Williams et al., 1999). 

-------------------------------------- 

Please insert Figure 8 about here 

--------------------------------------- 

General Discussion 

In the present paper we examined the dynamic structure of different tennis shots as 

well as any shot-specific differences. We found that tennis shots could be effectively 

approximated by a few dynamic structures. Following this preliminary analysis, we examined 

whether the information contained in these structures could be picked up and used to 

anticipate shot direction by skilled and less skilled tennis players in two experiments. We 

discovered that a low dimensional (three-dimensional) representation of the shots allowed for 

undisturbed anticipation, and that the information underlying anticipation performance is not 

contained in a single dynamic structure, but in a linear combination of these three structures. 

In the following, we discuss the theoretical implications of these results for understanding the 

control of complex motor skills, the perception of biological motion, and anticipation skill. 

We interpret the findings from the perspective of coordination dynamics, which we therefore 

briefly address first. 

Macroscopic Structures and Information 

 Coordination dynamics has its conceptual and methodological roots in Haken’s 

synergetics (Haken, 1977, 1996), which is, broadly speaking, concerned with qualitative 

changes in complex open systems (i.e., with the spontaneous formation and hence 

characterization of spatial, temporal, and functional patterns around phase transitions). 

Complex open systems that are far from thermal equilibrium may organize themselves by 

forming coherent, ordered spatial and temporal patterns and/or structures due to the weakly 
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nonlinear interactions among their numerous modes. Although the occurrence of such 

patterns reflects the emergence of co-variation among modes at the microscopic level, the 

resulting macroscopic patterns may be described by a small number of so-called macroscopic 

structures or order parameters. In other words, a high-dimensional system may be 

summarized by a few order parameters that capture the system’s state, implying a huge 

reduction of information. 

In the study of coordinated human movement it is well established that the relative 

phase between two oscillating limbs represents, or has the characteristics of, an order 

parameter (cf., Haken, Kelso & Bunz, 1985; Kelso, 1981, 1984, 1995). Less well established, 

but most relevant for our present purposes, is the conjecture that the visual recognition of 

dynamic patterns may proceed through the extraction of macroscopic motion structures like 

the modes vk distilled by the Karhunen/Loève expansion, precisely because those modes 

represent the low-dimensional information contained in dynamic patterns (cf. Haken, 1996, 

2000, 2004). In Haken’s own words, “The modes […] contain all the information needed for 

the reconstruction of the pattern. The coefficients with the largest λj contain most of the 

information about the pattern vector q. […] all the discriminatory information must be carried 

by the coefficients ξj…” (Haken, 2000, p.158). In the present context the coefficients ξj are 

dynamic, that is, time-varying, ξj =ξk(t) (see also Haken, 2000; Haken, Kelso, Fuchs, & 

Pandya, 1990). Although principal components or modes can not and should not be equated 

with order parameters, as the latter are intrinsically linked to qualitative changes in pattern 

formation (i.e., to phase transitions), PCA and related techniques provide a convenient tool 

for identifying and testing the presence of order parameters around phase transitions because, 

in principle, they allow one to capture the information reduction that is inherent to order 

parameters. 

The Control of Tennis Shots 
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 A recurrent theme in motor control research is Bernstein’s so-called degrees of 

freedom problem (cf. Bernstein, 1967; Turvey, 1990) – the problem of how the numerous 

elements that are involved in the execution of an action are controlled. A solution to this 

problem has been sought in terms of synergies, or coordinative structures, which, from the 

perspective of coordination dynamics, are viewed as coherent macroscopic spatio-temporal 

patterns generated under non-equilibrium constraints in open systems (Kugler, Kelso, & 

Turvey, 1980). In the present study, we found that three structures accounted for almost 90% 

of the variance, implying that the dynamic structure underlying passing shots is low 

dimensional. However, there were no indications that different shot types (in terms of 

distance and direction) were executed in a qualitatively different manner: no single 

orthogonal (i.e., independent) mode was uniquely associated with a specific shot type.  

 The variability of the eigenvector coefficients was distributed unevenly across 

different body areas and trials, suggesting that certain muscular-skeletal linkages are 

controlled to a greater extent, or at least more consistently so, than others. In addition, the 

average covariance between the projections of the first three modes of a specific shot 

condition was close to one (see Experiment 1), which hints at a large degree of similarity in 

the control structure underlying tennis-shot execution across trials within participants. It 

appears that the synergies or coordinative structures governing tennis strokes are low-

dimensional temporal organizations with a high degree of similarity in their global structure 

even though the degree to which their constituent modes are controlled across performances 

is distributed heterogeneously. 

Dynamic Structures Underlying Anticipation 

 In Experiments 2 and 3 we examined the extent to which observers are able to pick up 

and use the information contained in the modes identified in Experiment 1. We found that 

several dynamic structures are informative. Participants were able to pick up and use those 



Dynamic information for anticipation 

 37

low-dimensional structures for anticipation, albeit that only the presentation of specific, linear 

combinations of structures allowed for accurate performance. The high accuracy scores in 

Experiment 2 when presenting three, four or five modes, but not less, indicated that dynamic 

information sufficed to attain high performance levels in anticipating shot direction. In 

Experiment 3, we found that the response accuracy based on linear addition of modes 1 and 3 

(M1+3) as well as modes 2 and 3 (M2+3), but not modes 1 and 2 (M1+2), did not differ 

significantly from the control condition (MC). In addition, we found that shot differences in 

the higher modes allowed for anticipation above chance level, but only if the information in 

the most important modes was eliminated (compare Experiments 2 and 3). In combination, 

these results indicated that, although the representations of tennis shots needed to account for 

a large portion of the variance (roughly 90%) in order to allow for accurate anticipation, not 

only the amount of variance accounted for mattered, but also their structure as determined by 

the specific combination of orthogonal modes.  

 Having identified the dynamic structures underlying the anticipation of shot direction, 

what can we say about the corresponding information? Focusing on modes 1 to 3, we found 

corresponding variance across the entire body, little to moderate trial-to-trial variability 

(relative to that in mode 4 and higher), and consistent shot-direction differences at all 

locations, even though the distribution of these modes was heterogeneous (see Figures 4, 5, 

and 6, respectively). These observations are reflected in the RMS shot differences 

corresponding to the linear addition of the first three modes (see Figure 8). Associated with 

each mode is a specifically structured variance (see Figure 3) that is distributed unevenly 

across the various body areas and racket (represented by the eigenvector coefficients). 

Importantly, in each context-specific action, the structured variance and the eigenvector 

coefficients’ distribution are two sides of the same coin; they constrain each other such that 

neither can be altered without affecting the other. 
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 The perceptual importance of the variance structure has been shown empirically by 

Troje (2002; see also Westhoff & Troje, 2007) and (indirectly by) Johansson (1973). Troje 

used PCA in his study of gait-mediated gender recognition. He showed that the third mode, 

which was oscillating at twice the frequency of the first two modes, was more important for 

gait-mediated gender recognition than the second mode, even though the latter was associated 

with greater variance). In a similar vein, Johansson (1973) found that subtracting or adding a 

common motion mode did not affect the observers’ recognition of walking. In our view this 

was the case because the structures carrying the information for walking were structurally 

unaltered by these manipulations. In the present case, given that all contributing body and 

racket areas share the three perceptually-relevant time evolutions to a varying degree 

indicates that shot-direction specific invariance resides in the spatio-temporal relations that 

are defined via the linear addition of the first three modes across the corresponding areas (see 

Figure 8, upper panel). While dynamic differences are distributed unevenly in space and time, 

their omnipresence suggests that attempts to strictly localize the information underlying shot 

direction anticipation are inherently arbitrary. However, this does not necessarily imply that 

observers pick up and use the information from all possible locations. 

 Overall, the present results, like those of Troje (2002; Westhoff & Troje, 2007), 

support the premise that the macroscopic structures that summarize a system’s state are 

informational. A few structures captured most of the tennis shot execution’s variance. It 

appeared that the shot-direction specific differences inherent in the linear combination of the 

first three structures carried the information needed to allow for undisturbed shot-direction 

anticipation. Following Haken (2000), we conjecture that these macroscopic coordinative 

structures are readily observable from the kinematics and constitute informational quantities 

precisely because they capture the system’s state. That is, pattern recognition is based on the 

variable(s) that (phenomenologically) capture(s) coordination patterns.  
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Perceptual Expertise in Anticipation 

 To date, most researchers have relied on spatial/temporal occlusion methods and eye 

movement recordings to uncover the mechanisms mediating skill differences in this type of 

task (cf. Abernethy & Russell, 1987; Ward et al., 2002; Williams et al., 2002). The findings 

from this body of work suggest that expertise reveals itself in the ability to pick up and use 

information that is generated earlier in the unfolding action (typically generated at body areas 

proximal to the end-effector) as well as in an increased ability to pick up and make full use of 

the available information. These results have often been (re-)phrased in terms of experts 

being able to pick-up ‘subtle cues’ (cf. Shim et al., 2005; Ward et al., 2002). While the 

present results extend and refine some previous suggestions, they contradict others. Our work 

strongly suggests that ‘subtle cues’ may readily be substituted with low-dimensional dynamic 

information. What distinguished the skilled from less skilled players in Experiment 2 was not 

the ability to pick up the available information, but rather to pick up the relevant low 

dimensional (i.e., invariant) information. In fact, when available, the surplus (i.e., high-

dimensional) information present in the optical array was not used in an additive fashion (cf. 

Bruno & Cutting, 1988). While the present statistical results do not allow any firm 

conclusions, they suggest that additional (high-dimensional) information tended to lead the 

less skilled players astray. By hypothesis, the less skilled players may have not (yet) acquired 

or refined the ability to pick-up the invariance in the complex high-dimensional motion 

patterns that underwrites perceptual expertise in anticipation.  

 In the above regard, it has been suggested in the area of motor control that learning 

involves a reduction in the dimensionality of the dynamic structure underlying the execution 

of actions (cf. Haken, 1996; Huys et al., 2004; Mitra, Amazeen, & Turvey, 1998), although it 

should be emphasized that the implicit assumption that a reduced dimensionality necessarily 

implies reduced control is open to criticism (cf. Longstaff & Heath, 2003; Newell & 
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Vaillancourt, 2001). The present results suggest – or at least are compatible with the 

understanding – that becoming skilled at perceiving biological motion patterns may involve a 

reduction of information of the kind suggested in synergetics. In fact, previous research on 

tennis shot anticipation suggests that experts visually scan a significantly larger part of the 

opponent’s unfolding action, referred to as a more ‘holistic’ visual search approach, than non-

experts (Ward et al., 2002; Williams et al., 2002). Since shot-direction specific invariance is 

distributed across the entire body, it might be that the more ‘holistic’ search serves to pick up 

the invariance to a fuller extent than non-experts do. In sum, the present results suggest that 

learning to anticipate, and maybe in a broader sense, to perceive biological motion, involves 

distinguishing the low-dimensional dynamics (i.e., invariance) in high-dimensional displays. 

Concluding Remarks 

 In the present paper we showed that the execution of tennis shots is based on a low-

dimensional dynamic structure, and that these dynamics inform observers about shot 

direction. Coordination dynamics constitutes an appealing theoretical framework to account 

for this finding because it views and treats pattern production and pattern recognition as two 

sides of the same coin. Theoretical interpretations aside, the present results readily instigate a 

variety of intriguing research questions of both basic and applied significance that could be 

fruitfully addressed within the current methodological framework. For instance, could 

perceptual learning be facilitated through the use of low-dimensional displays or maybe by 

caricaturing actions through exaggeration of the dynamics? Also, the dynamic structure is 

defined over whole-body movements, which suggests, but does not dictate, that observers use 

‘globally’ rather than ‘locally’ defined dynamics. The present methodology allows for a 

thorough investigation of the issue of ‘local’ versus ‘global’ perception in anticipation (cf. 

Haken, 2004; Watanabe & Kikuchi, 2006). Finally, in the present study we used PCA to 

decompose the movement data into a smaller set, assuming implicitly a correspondence with 



Dynamic information for anticipation 

 41

the perceptual system’s functioning at some level. Although this approach worked well, there 

is no a priori reason to assume that pattern recognition should be organized linearly according 

to maximization of variance along orthogonal modes; a variety of other, linear as well as non-

linear, reduction methods may obtain a better correspondence. This example only highlights 

the fact that much work remains to be done using the theoretical and methodological 

framework adopted in this paper to unravel how individuals anticipate and perceive 

biological motion. 
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Appendix: Tables A1-A2.  

Table A1. F-, p- and η2 values for significant effects of shot direction of the eigenvector coefficients for mode 1 to 5. The marker location is 

denoted by its first two letters; the superscript denotes the body side/racket part (L = left, R = right, T = top, B = bottom); the subscript denotes 

movement direction (x, y, z). 

m
od

e 
1  RA B

x  EL R
x  SHR

x  RAL
x  RAR

x  ANL
y  TOL

y  WRR
x  RAT

x  HI L
x  HI R

x  TOR
y  ANR

z  

F(1,5) 70.754 56.073 32.094 23.104 21.814 20.529 20.365 18.541 11.986 10.136 9.742 7.021 6.981 
p < .001 < .005 < .005 < .01 < .01 < .01 < .01 < .01 < .05 < .05 < .05 < .05 < .05 
η

2 0.934 0.918 0.865 0.822 0.814 0.804 0.803 0.788 0.706 0.670 0.661 0.584 0.583 

m
o

de
 2

  SHR
x  HI R

x  WRL
y  EL R

x  TOR
x  ANR

x  SHL
z  HI L

z  HI R
y  KN R

x  EL L
y  

F(1,5) 59.886 29.082 13.318 12.092 11.663 11.632 9.522 9.367 9.367 9.214 9.067 
p < .005 < .005 < .05 < .05 < .05 < .05 < .05 < .05 < .05 < .05 < .05 
η

2 0.923 0.853 0.727 0.707 0.700 0.699 0.656 0.652 0.652 0.648 0.645 

m
od

e 
3  SHR

x  RAL
y  RAT

x  RAB
y  WRR

x  RAR
x  RAR

y  RAT
y  ANR

x  RAL
x  

F(1,5) 47.794 21.557 18.969 18.823 18.541 13.460 13.166 13.029 8.981 7.000 
p < .005 < .01 < .01 < .01 < .01 < .05 < .05 < .05 < .05 < .05 
η

2 0.905 0.812 0.791 0.790 0.788 0.729 0.725 0.723 0.642 0.583 

m
o

de
 4

  SHL
x  EL R

y  WRL
x  EL L

x  

F(1,5) 18.516 17.907 15.769 7.859 
p < .01 < .01 < .05 < .05 
η

2 0.787 0.782 0.759 0.611 

m
od

e 
5  RAT

x  HI R
y  RAR

x  RAL
x  SHL

y  HI R
z  RAB

x  SHL
x  SHL

z  ANR
z  WRL

x  KN R
z  

F(1,5) 28.137 19.664 16.116 15.187 14.284 13.921 10.916 9.949 8.975 8.714 8.440 7.626 
p < .005 < .01 < .05 < .05 < .05 < .05 < .05 < .05 < .05 < .05 < .05 < .05 
η

2 0.849 0.797 0.763 0.752 0.741 0.736 0.686 0.666 0.642 0.635 0.628 0.604 



Table A2. F-, p- and η2 values for significant effect of shot distance and shot direction by shot 

distance interactions of the eigenvector coefficients for mode 1 to 5 (see also Table A1). 

 

  Shot Distance Shot Direction  x Shot Distance 

m
od

e 
1     KN L

y  

F(1,5)    8.382 
p    < .05 
η

2    0.626 

m
od

e 
2  HI L

z  HI R
y  ANL

z  RAB
x  

F(1,5) 11.035 11.035 10.215 9.921 
p < .05 < .05 < .05 < .05 
η

2 0.688 0.688 0.671 0.665 

m
o

de
 3

  TOR
y     

F(1,5) 15.712    
p < .05    
η

2 0.759    

m
od

e 
4  WRR

y  RAT
x   KN R

z  

F(1,5) 7.404 7.146  10.084 
p < .05 < .05  < .05 
η

2 0.597 0.588  0.669 

m
od

e 
5

  EL L
y    RAT

x  

F(1,5) 13.275   6.646 
p < .05   <.05 
η

2 0.726   0.571 
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Table 1. The mean and standard deviation of the (absolute value of the) covariance between 

the corresponding projections ξ(t)k of the shots across participants for the first three modes. 

(Each entry corresponds to the 15 pair-wise comparisons between the six participants.) 

 
 
 
 
 

 

 IOS IOD CCS CCD 
mode 1 .97±.03 .96±.04 .94±.06 .97±.03 
mode 2 .94±.04 .91±.05 .91±.06 .95±.03 
mode 3 .93±.03 .94±.03 .93±.04 .96±.02 
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Table 2. The mean and standard deviation of the (absolute value of the) covariance between 

the projections ξ(t)k of the short (S) and deep (D) inside-out (IO) and cross-court shots (CC) 

across participants for the first three modes. (Each entry corresponds to six pair-wise 

comparisons.) 

 
 mode1 mode 2 mode 3 
 IOD CCS CCD IOD CCS CCD IOD CCS CCD 

IOS .99±.02 .97±.03 .99±.01 .97±.02 .96±.03 .99±.01 .97±.01 .97±.02 .95±.04 
IOD  .98±.02 .99±.01  .96±.02 .98±.01  .96±.02 .98±.01 
CCS   .98±.02   .96±.02   .96±.02 



Figure Captions 
 
Figure 1. Plan view (left panel) and three dimensional view (right panel) of the experimental 

set-up. CC = crosscourt, IO = inside-out, S = short, D = deep. 

 

Figure 2. Eigenvalue spectra for the first ten modes for each condition for all participants 

(p1…p6). For each participant, the first, second, third, and fourth row represent the IOS, 

IOD, CCS, and CCD condition, respectively. 

 

Figure 3. Projections (ξk) corresponding to the first 5 modes of the PCA when all trials were 

included. Time is indicated on the horizontal axes as a percentage of the entire action (see 

text. The position on the vertical axis has been shifted for visualization purposes.) 

 

Figure 4. Stick figures indicating the mean across participants and trials of the (absolute) 

magnitude of the eigenvector coefficients at each anatomical location for mode 1 to 5 in the 

x-, y-, and z-direction (left, middle and right column, respectively; see text). The marker size 

corresponds to the (absolute) magnitude. 

 

Figure 5. Stick figures indicating the standard deviation across participants and trials of the 

(real) value of the eigenvector coefficients at each anatomical location for mode 1 to 5 in the 

x-, y-, and z-direction (left, middle and right column, respectively; see text). The marker size 

corresponds to the (absolute) magnitude. 

 

Figure 6. Stick figures representing the results of the statistical analysis for shot direction (see 

text). Black markers represent locations for which a significant difference between shot 

direction was found at the α = .05 level. Circles indicate that the (absolute) value of the mean 
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eigenvector coefficients of the inside-out shot was larger than that of the cross-court shot, 

whereas the reverse is the case for the squares. Row 1 to 5 represent the results for mode 1 to 

5; the left, middle and right column represent the results for the x-, y-, and z-direction, 

respectively. 

 

Figure 7. Response accuracy as a function of skill level and ‘information content’ (i.e., the 

number of modes included in the simulations). 

 

Figure 8. The stick figures in the upper row represent the root mean square difference (RMS) 

between the time evolutions of the inside-out and cross-court shot as a function of marker 

location and (normalized) time (see text). The marker size corresponds to the RMS. Each 

panel represents the RMS in a time window of 1/5 of the entire shot duration (T); time 

increases from the left to right panel. The stick figures in the lower row represent ‘snapshots’ 

of the inside-out shot (black) and cross-court shot (grey) at 10%, 30%, 50%, 70%, and 90% 

of the (normalized) time (i.e., in the middle of the corresponding time windows ; see text).  
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4.  
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Figure 5.  
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Figure 6.  
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Figure 7.  
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Figure 8 
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