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Abstract.
The paper discusses recent progress in the development of a combined analytical, asymptotic

and numerical approach to modelling of heating and evaporation of fuel droplets and ignition
of a fuel vapour/ air mixture. This includes a new approach to combined analytical and
numerical modelling of droplet heating and evaporation by convection and radiation from
the surrounding hot gas. The relatively small contribution of thermal radiation to droplet
heating and evaporation allows us to take it into account using a simplified model, which
does not consider the variation of radiation absorption inside droplets. The results of the
analysis of the simplified problem of heating and evaporation of fuel droplets and ignition of fuel
vapour/ air mixture based on the asymptotic method of integral manifolds are discussed. The
semi-transparency of droplets was taken into account in this analysis, and a simplified model
for droplet heat-up was used. The results of investigations of the effect of the temperature
gradient inside fuel droplets on droplet evaporation, break-up and the ignition of fuel vapour/
air mixture based on a new zero-dimensional code are reviewed. The convection heating of
droplets is described in this code based on a combined analytical and numerical approach.
A new decomposition technique for a system of ordinary differential equations, based on the
geometrical version of the integral manifold method is discussed. This is based on comparing
the values of the right hand sides of these equations, leading to the separation of the equations
into ‘fast’ and ‘slow’ variables. The hierarchy of the decomposition is allowed to vary with time.
The application of this technique to analyse the explosion of a polydisperse spray of diesel fuel
is presented. It is pointed out that this approach has clear advantages from the point of view
of accuracy and CPU efficiency when compared with the conventional approach widely used in
CFD codes.

1. Introduction
The problems of droplet heating, evaporation and ignition of fuel vapour/ air mixture have
been widely discussed in the literature [1] - [10]. However, the models used in most practical
engineering applications tend to be rather simple. This is due to the fact that droplet heating and
evaporation have to be modelled alongside the effects of turbulence, combustion, droplet break-
up and related phenomena in realistic 3D enclosures. Hence, finding a compromise between
the complexity of the models and their computational efficiency is the essential precondition for
successful modelling. In a series of our recent papers [11] - [25] an attempt was made to develop
simplified models for droplet heating, evaporation and ignition of fuel vapour/air mixture;
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the sophisticated underlying physics was described using relatively simple mathematical tools
(analytical solutions and asymptotic analysis). Some of these models, including those taking
into account the effects of temperature gradient inside droplets, recirculation inside them and
their radiative heating, were implemented into numerical codes focused on simulating droplet
heating, evaporation and ignition of fuel vapour /air mixture [21, 23]. This work effectively
focused on the development of a combined analytical, asymptotic and numerical approach to
modelling of the whole process. Although the work in this direction is far from complete, some
progress has been made. The main objective of this paper is to present a brief overview of the
relevant results reported in [11] - [25].

The main equations and approximations used for the numerical analysis of the problem are
summarised in Section 2. The new approach to combined analytical and numerical modelling of
droplet heating and evaporation is discussed in Section 3. In Section 4 the results of asymptotic
analysis of heating and evaporation of fuel droplets and the ignition of fuel vapour/ air mixture
are discussed. The combined analytical and numerical analysis of these processes is discussed
in Section 5. The analyses of the same processes based on combined asymptotic and numerical
approaches are discussed in Section 6. The main results of the paper are summarised in Section
7.

2. Basic equations for spray modelling
Numerical spray modelling is traditionally based on the Lagrangian approach coupled with the
Eulerian representation of the gas phase. This permits the decomposition of complicated and
highly nonlinear systems of PDEs, describing interactions between computational cells, and the
systems of ODEs that govern processes in individual computational cells, including liquid/gas
phase exchange and chemical kinetics. The systems of ODEs are usually integrated using much
shorter time steps δt than the global time steps used for calculating the gas phase ∆t. In this
section, basic ODEs used for modelling droplet heating, evaporation and combustion will be
summarised [21]. These equations will be presented in their general form, following [4, 5, 9].
A number of processes, including droplet dynamics, break-up and coalescence, and the effects
of temperature gradient inside droplets will be ignored at this stage. These will be discussed
briefly later in Sections 3 and 5. Also, equations will be presented for stationary droplets. The
generalization of these equations for moving droplets is discussed in a number of papers and
books, including [5, 9].

Droplet mass
As shown in [5], the equation for a stationary droplet mass md can be written as:

dmd

dt
= −4π

kgRd

cpF
ln(1 + BT ), (1)

where
BT =

cpF (Tg − Ts)
Leff

is the temperature Spalding number, and

Leff = L(Ts) + QL/

(
dmd

dt

)
,

where L is the specific latent heat of vaporization, QL is the heat spent on droplet heating, kg is
the average gas thermal conductivity, Rd is the droplet radius, cpF is the specific heat capacity
of fuel vapour, and t is time.



An alternative form of the equation for md can be written as [4, 9]:

dmd

dt
= −4πρtotalDgRd ln(1 + BM ), (2)

where Dg is the binary diffusion coefficient for fuel vapour in the ambient gas, ρtotal is the total
gas density, BM = (Yfs − Yf∞)/(1 − Yfs) is the Spalding mass number, Yfs and Yf∞ are the
mass fractions of fuel vapour near the droplet surface and in the ambient gas respectively. The
expression for Yfs can be written as:

Yfs =

[
1 +

(
p

pFs
− 1

)
Ma

Mf

]−1

,

where p and pFs are the ambient pressure and the pressure of saturated fuel vapour near the
surface of droplets respectively; Ma and Mf are molar masses of air and fuel; pFs can be
calculated from the Clausius–Clapeyron equation, see [4]:

pFs = exp
[
af − bf

Ts − 43

]
, (3)

where af and bf are constants to be specified for specific fuels, Ts is the surface temperature of
fuel droplets in K; pFs given by Equation (3) is in kPa. In many applications it is assumed that
Le=1, and the temperature dependence of liquid density, gas thermal conductivity and viscosity
is ignored. The values af = 15.5274 and bf = 5383.59 are recommended for diesel fuel [4].

Droplet temperature
Following [5, 11, 15] we can write the equation for the stationary droplet temperature as:

mdcl
dTd

dt
= 4πR2

dh(Tg − Td)− ṁdL + 4πR2
dσQaθ

4
R, (4)

where
Nu =

2hRd

kg
= 2

ln(1 + BT )
BT

.

Here θR is the radiative temperature, as calculated from the P-1 model (θR = Text (external
temperature) for optically thick gases and θR = Tg for optically thin gases), Qa is the average
absorption efficiency factor, which can be calculated from the equation [11, 15]:

Qa = ar Rbr
d , (5)

where ar and br are polynomials in θR (explicit expressions for several types of diesel fuel are
given in [15]), cl is the liquid specific heat capacity. L depends on temperature in the general
case.

In Equations (4) and (5) the effects of temperature gradient and the distribution of thermal
radiation inside droplets are ignored. These will be discussed later in Section 3. Equations (1)
(or (2)) and (4), written for individual droplets, are applied to describe droplet parcels, following
the conventional approach widely used in computational fluid dynamics codes.



Fuel vapour density
The equation for fuel vapour density (ρfv) follows directly from the conservation of fuel vapour:

αg
dρfv

dt
= −αgCT +

[∑

i

ṁdi

/
V

]
, (6)

where αg is the volume fraction of gas assumed equal to 1 in most cases, the summation is
assumed over all droplets in volume V, Qf is the heat released per unit mass of burnt fuel
vapour (in J/kg), and CT is the chemical term describing fuel depletion (in kg/(m3s) ).

Following [26] the expression for the rate of reaction is

kcr = A[fuel]a[O2]b exp [−E/(BT )] ,

where kcr has units of mole/(cm3·s), while the concentrations of fuel [fuel] and oxygen [O2] has
units of mole/cm3. The values of these coefficients given for C10H22 are the closest to those of
n-dodecane (C12H26) (the closest approximation for diesel fuel) [26]:

A = 3.8× 1011 1
s

(
mole
cm3

)1−a−b

= 2.137× 109 1
s

(
kmole
m3

)1−a−b

;

E = 30
kcal
mole

= 1.255× 108 J
kmole

; a = 0.25; b = 1.5.

Using A in units of 1
s

(
mole
cm3

)1−a−b
and E in units of J

kmole , we can write:

CT = A M−1.5
O2

M0.75
f ρ0.25

fv ρ1.5
O2

exp [−E/(BT )] ,

where MO2 = 32 kg/kmol, and Mf = 170 kg/kmol are molar masses of oxygen and fuel
respectively in kg/kmole, ρO2 is the density of oxygen.

In the case of diesel engines, CT is usually calculated based on the so called Shell model
[27, 28, 29].

Density of oxygen
We assume that the fuel is n-dodecane. A single step global reaction for n-dodecane combustion
can be written as:

C12H26 + 18.5O2 =⇒ 12CO2 + 13H20.

Hence the equation for the density of oxygen is

dρO2

dt
= −18.5

MO2

Mf
CT = −3.48235 CT. (7)

A useful characteristic, widely used as a measure of reactivity of the fuel vapour /air mixture,
is the equivalence ratio:

ϕ =
Fuel/Air

(Fuel/Air)stoich

=
Fuel/Oxygen

(Fuel/Oxygen)stoich

=
18.5× 32

170
ρfv

ρO2

=
3.48ρfv

ρO2

,

where (Fuel/Air)stoich is the stoichiometric ratio of the densities of fuel and air.



Gas temperature
The condition of energy balance leads us to the following equation for the gas temperature:

cmixρmix
dTg

dt
= αgQfCT−

[∑

i

mdicl
dTdi

dt
+

∑

i

ṁdiL +
∑

i

ṁdicpF (Tg − Tdi)

]/
V, (8)

where the summation is performed over all droplets in the volume V [21].

3. Heating of droplets
As already mentioned, in most practical engineering applications in CFD (Computational
Fluid Dynamics) codes only rather simple models for droplet heating have been used. These
models have been based on the assumption that the thermal conductivity of liquid is infinitely
high and the temperature gradients inside droplets can be ignored (see e.g. [30, 29, 31]).
These assumptions were used for deriving Equation (4). This simplification of the model was
required due to the reasons discussed in the Introduction. Bertoli and Migliaccio [32] were
perhaps the first who drew attention to the fact that the accuracy of CFD computations of
heating, evaporation and combustion of diesel fuel sprays could be substantially increased if the
assumption of infinitely high thermal conductivity of liquid is relaxed. They suggested that the
numerical solution of the heat conduction equation inside the droplets is added to the solution of
other equations in a CFD code. Although this approach is expected to increase the accuracy of
CFD predictions, the additional computational cost might be too high for practical applications.

An alternative approach to taking into account the effects of finite thermal conductivity and
recirculation inside droplets has been suggested in [12]. This model is based on the parabolic
approximation of the temperature profiles inside the droplets. This approximation does not
satisfy the heat conduction equation with appropriate boundary conditions, but satisfies the
equation of thermal balance at the droplet surfaces. Comparison with numerical solutions of
the transient problem for moving droplets shows the applicability of this approximation to
modelling the heating and evaporation processes of fuel droplets in diesel engines. The simplicity
of the model makes it particularly convenient for implementation into multidimensional CFD
codes to replace the abovementioned model of isothermal droplets. Preliminary results of the
implementation of the simplified version of this model into a research version of the CFD code
VECTIS of Ricardo Consulting Engineers was demonstrated in [33].

Instead of solving the heat conduction equation numerically inside a droplet, or using a
simplified model based on the parabolic approximation, one could think about the development
of a numerical code based on the analytical solutions of this equation. A number of analytical
solutions have been obtained and discussed in [34]–[37] and [18]. In most cases these analytical
solutions have been presented in the form of convergent series.

The finite liquid thermal conductivity models were generalised to take into account the
internal recirculation inside droplets. This was achieved by replacing the thermal conductivity
of the liquid kl by the so called effective thermal conductivity keff = χkl, where the coefficient
χ varies from about 1 (at droplet Peclet number Ped = RedPrd < 10) to 2.72 (at Ped > 500). It
can be approximated as [5] χ = 1.86 + 0.86 tanh [2.225 log10 (Ped/30)] . The values of transport
coefficients in Ped are taken for the liquid fuel, the relative velocity of droplets is taken for the
calculation of Red. This model can predict the droplet average surface temperature, but not the
distribution of temperature inside droplets. In our case, however, we are primarily interested in
the accurate prediction of the former temperature, which controls droplet evaporation. Hence,
the applicability of this model can be justified.

In the rest of this section the analytical solution of the heat transfer problem inside a droplet
and its implementation into a numerical code will be discussed based on the results reported in
[18, 19].



Assuming that droplet heating is spherically symmetric, the transient heat conduction
equation inside this droplet can be written as [34]:

clρl
∂T

∂t
= kl

(
∂2T

∂R2
+

2
R

∂T

∂R

)
+ P1(R), (9)

where ρl is the liquid density, T = T (R, t) is the droplet temperature, R is the distance from
the centre of the droplet and P1(R) is the power generated in unit volume inside the droplet
due to external radiation. While cl, ρl and kl are assumed to be constant for the analytical
solution of Equation (9), their variations with temperature and time were accounted for when
the analytical solutions were incorporated into the numerical code.

Assuming that the droplet is heated by convection from the surrounding gas, and cooled due
to evaporation, the energy balance equation at the droplet surface can be written as:

h(Tg − Ts) = −ρlLṘd + kl
∂T

∂R

∣∣∣∣
R=Rd

, (10)

where h = h(t) is the convection heat transfer coefficient (time dependent in the general case), Rd

is the droplet’s radius, Tg is the gas ambient temperature, Ts is the droplet’s surface temperature,
L is the specific heat of evaporation. We took into account that Ṙd < 0. Equation (10)
can be considered as the boundary condition for Equation (9) at R = Rd. This needs to be
complemented by the boundary condition at R = 0:

∂T

∂R

∣∣∣∣
R=0

= 0.

The initial condition is taken in the form: T (t = 0) = T0(R).
The radiation term was given in two forms. Firstly, following [14] we can write:

P1(R) =
3π

Rd

∫ λ2

λ1

w(r, λ)QaBλ(Text)dλ, (11)

where r = R/Rd, Bλ(Text) = C1/
[
πλ5 [exp (C2/(λText))− 1]

]
, C1 = 3.742 × 108 Wµm4

m2 , C2 =
1.439× 104 µm ·K, λ is the wavelength in µm, Text is the external temperature responsible for
radiative heating which is assumed to be constant, and Qa is the efficiency factor of absorption.
The required approximation for Qa depends on the specific application of the model. If this
application is focused on the problem of heating and evaporation of diesel fuel droplets it can
be approximated by [14, 38]:

Qa =
4n

(n + 1)2
[1− exp(−2aλRd)] ,

where aλ is the liquid fuel absorption coefficient, n is the refractive index of liquid diesel fuel.
We note that aλ is related to the index of absorption κλ by κλ = aλλ/(4π), and w(r, λ) is
the normalised spectral power of radiation per unit volume absorbed inside the droplet. The
following equations were used for w [14]:

w(r, λ) =
[1− µ∗Θ (r − 1/n)]

(
r2 + γ

)

[0.6 (1− µ5
c)− µ3

c/n2] + γ (1− µ3
c)

, (12)

where γ = (1.5/τ2
0 )− (0.6/n2), µ∗ =

√
1−

(
1
nr

)2
, µc =

√
1−

(
1
n

)2
, τ0 = aλRd = 4πκRd/λ,

Θ(x) =
{

0 when x < 0
1 when x ≥ 0 ,



or

w(τ) =
ξ2τ3

0

3
exp [−ξ (τ0 − τ)]

τ0(ξτ0 − 2) + (2/ξ) [1− exp (−ξτ0)]
, (13)

where τ = aλR, ξ = 2/(1 + µc). Equation (12) was used when τ0 < n
√

2.5, otherwise Equation
(13) was used. λ1 and λ2 describe the spectral range of thermal radiation which contributes to
droplet heating.

If we ignore the distribution of thermal radiation absorption inside droplets then a much
simpler approach can be used, as suggested in [11, 15]. This is based on Equation (5) and can
be written in the form:

P1(R) = 3× 106arσRbr−1
d(µm)θ

4
R, (14)

where the radiation losses from the droplets were ignored. The expressions for the coefficients
ar and br in this formula for a typical automotive diesel fuel (low sulphur ESSO AF1313 diesel
fuel) in the range of external temperatures 1000 – 3000 K were obtained from [15].

Equation (11) is certainly more accurate than (14), but its application requires much more
CPU time than application of (14). Most of the CPU time is actually spent on calculating
the integral over λ in (11). The most accurate calculation of this integral is based on all
experimentally measured values of the absorption coefficient aλ (4111 points) [19]. As follows
from the analysis of [19], the reduction of the number of these points to just 58, allows us to
reduce CPU time by almost two orders of magnitude with the introduction of an error of less
than 10%. This error can be tolerated in most cases. The analysis of [14] was based on the
results of measurements of λ in the ranges 0.5 – 1.1 µm and 2.0 – 6.0 µm, while the results
reported in [18, 19] were based on the measurements in the range 0.2 – 6.0 µm.

Equation (10) can be rearranged to:

Teff − Ts =
kl

hRd

∂T

∂r

∣∣∣∣
r=1

, (15)

where:

Teff = Tg +
ρlLṘd

h
.

Equation (15) is complemented by the boundary condition at R = 0 and the initial condition
mentioned above. The value of Ṙd is controlled by fuel vapour diffusion from the droplet surface.
For stationary droplets it can be found from Equation (1) or (2).

Equations (9) and (1) (or (2)) for droplets were complemented by the equations for a droplet
trajectory, the temperature of the gas phase (Tg) (Equation (8)), fuel vapour density (ρfv)
(Equation (6)) and oxygen density (Equation (7)) within the Lagrangian spray model [23]. This
system of ODEs of the Lagrangian model equations can be coupled with the solution of PDE
of the Eulerian gas model. This is the conventional way of modelling spray/gas interaction in a
CFD framework. The focus of this section, however, will be on Equations (9) and (2) only. The
evaporation model used in our analysis is similar to the one used in most CFD codes. It is based
on the assumption that fuel vapour in the vicinity of fuel droplet surface is always saturated.
More rigorous analysis of droplet evaporation would require a kinetic approach which is beyond
the scope of this paper (see [16, 39]).

In the case when the convection heat transfer coefficient h(t) = const, the solution of Equation
(9) with Rd = const and the corresponding boundary and initial conditions, as discussed above,
is [18]:

T (r, t) =
1
r

∞∑

n=1

{
pn

κλ2
n

+ exp
[
−κλ2

nt
] (

qn − pn

κλ2
n

)
− sinλn

|| vn ||2 λ2
n

µ0(0) exp
[
−κλ2

nt
]
−



− sinλn

|| vn ||2 λ2
n

∫ t

0

dµ0(τ)
dτ

exp
[
−κλ2

n(t− τ)
]
dτ

}
sinλnr + Teff(t), (16)

where:

µ0(t) =
hTeff(t)Rd

kl
, h0 = (hRd/kl)− 1, || vn ||2= 1

2

(
1 +

h0

h2
0 + λ2

n

)
κ =

kl

clρlR
2
d

,

pn =
1

|| vn ||2
∫ 1

0
P̃ (r)vn(r)dr, qn =

1
|| vn ||2

∫ 1

0
T̃0(r)vn(r)dr,

P̃ (r) = rP (r), T̃0(r) = rT0(R), vn(r) = sinλnr (n = 1, 2, ...),

where the positive eigenvalues λn, numbered in ascending order (n = 1, 2, ...), are found from
the eigenvalue equation:

λ cosλ + h0 sinλ = 0.

If T0(r) is twice differentiable, then the series in (16) converges absolutely and uniformly for all
t ≥ 0 and r ≡ R/Rd ∈ [0, 1].

Equation (9) was also analysed in the case of almost constant h and arbitrary h [18], but
the results turned out to be of limited practical importance for implementation into CFD codes
[19].

In the limiting case when µ0 = const, P (r) = 0, Ṙd = 0, Teff = Tg = const and kl → ∞
Equation (16) reduces to [37]:

T (t) ≡ Td(t) = Ts(t) = Tg + (Ts0 − Tg) exp
(
− 3ht

clρlRd

)
. (17)

Note that the value of T (t) ≡ Td(t) does not depend on r. The same equation could be obtained
directly from the energy balance equation at the surface of the droplet, assuming that there is
no temperature gradient inside.

A comparison of the performance of the above schemes in numerical codes for parameters
relevant to diesel engines will be briefly summarised. Full details can be found in [19]. The
initial droplet radius was taken equal to 10 µm, and its initial temperature equal to 300 K. The
droplet swelling and the temperature dependence of kl are taken into account. The effect of
droplet break-up was not taken into account. It was assumed that the droplet relative velocity
reduces from 0.45 m/s to zero over 1 ms – the situation relevant to diesel engines when air
entrainment by a fuel spray is taken into account. Several algorithms describing the heating
and evaporation of these droplets were studied. These included: the algorithm based on the
analytical solution (16); the numerical solution of the discretised Equation (9); the performance
of the numerical algorithm based on the parabolic temperature profile model; and the numerical
algorithm based on the assumption that there is no temperature gradient inside the droplet
(Equation (17)). It was assumed that Tg = 1000 K; droplets were allowed to evaporate and
swell.

It follows from the analysis in [19] that the predictions of the numerical solution of the
discretised Equation (9) and the numerical calculations using the analytical solution for h =
const almost coincide for both the surface temperature and droplet radius when the time step
was taken small enough (10−6 s). For the numerical solution of Equation (9), 1000 nodes along
the droplet radius were used. Both these solutions differed noticeably from the predictions of the
model based on the assumption of no temperature gradient inside the droplet. The predictions
of the parabolic model were between these solutions. This means that from the point of view
of accuracy the numerical solution of the discretised Equation (9) and the solution based on
the algorithms using the solution for h = const were practically identical and superior to the



Figure 1. Plots of errors and CPU times from calculation of evaporation time versus time.
The errors were calculated relative to the prediction of the numerical solution of the discretised
heat conduction equation with ∆t = 10−6 s and using 1000 nodes along the droplet radius (for
the numerical solution of Equation (9)). The plots of errors are presented for the numerical
algorithm based on the analytical solution for h =const (curves 1) and numerical solution of
the discretised heat conduction equation (curves 2). Plots of CPU times are presented for the
algorithm based on the analytical solution for h =const (curves 3) and numerical solution of
the discretised heat conduction equation (curves 4). The effects of radiation are not taken into
account [19].

numerical solutions based on the parabolic temperature profile model and the model with no
temperature gradient inside the droplet.

The plots of errors and CPU times versus time step ∆t for the numerical algorithm based on
the analytical solution for h =const and numerical solution of the discretised heat conduction
equation are shown in Fig. 1 [19]. 100 nodes along the radius were considered for the latter
solution to provide calculations with relative errors of less than about 0.5%. The calculations
for the parabolic temperature profile model and the numerical solution based on the assumption
that there is no temperature gradient inside the droplet were performed using the adaptive time
step. The errors from these calculations relative to the prediction of the numerical solution of
the discretised heat conduction equation were 1.2% and 3.6% respectively [19]. All errors were
calculated relative to the prediction of the numerical solution of the discretized heat conduction
equation with 1000 nodes along the droplet radius and time step ∆t = 0.001 ms. As follows
from Fig. 1, the errors from calculations based on the algorithm using the analytical solution
for h = const were consistently lower when compared with the errors from calculations based
on the numerical solution of the discretised heat transfer equation for ∆t > 0.01 ms. At smaller
∆t these errors were close to zero for both solutions. This can be related to the fact that the
numerical solution of the discretised heat conduction equation is based on the assumption that
non-linear terms can, with respect to the time step, be ignored, while the algorithms using the
analytical solution for h = const implicitly retain these terms.

Thus it can be concluded that Solution (16) is the most efficient for implementation into
numerical codes [19]. Initially, this solution was applied at the first time step, using the initial
distribution of temperature inside the droplet. The results of the analytical solution over this
time step were used as the initial condition for the second time step etc. This approach was



compared with approaches based on the numerical solution of the discretised heat conduction
equation (Equation (9)), those based on the assumption that there is no temperature gradient
inside the droplet, and those based on the assumption that the temperature distribution inside
the droplet has a parabolic profile. All these approaches were applied to the numerical modelling
of fuel droplet heating and evaporation in conditions relevant to diesel engines, but without
taking into account the effects of droplet break-up. The algorithm based on the analytical
solution for constant h was shown to be more effective (from the point of view of the balance of
accuracy and CPU time requirement) than the approach based on the numerical solution of the
discretised heat conduction equation inside the droplet, and more accurate than the solution
based on the parabolic temperature profile model. The relatively small contribution of thermal
radiation to droplet heating and evaporation allowed the authors of [19] to describe it using a
simplified model, which takes into account their semi-transparency, but does not consider the
spatial variations of radiation absorption inside droplets (Equation (14)).

4. Heating, evaporation and ignition of fuel droplets: asymptotic analysis
The previous section was primarily focused on the analysis of enhanced models for droplet
heating. The general problem of heating and evaporation of droplets and ignition of fuel
vapour/air mixture is based on the analysis of Equations (1) (or (2)), (4), (6), (7) and (8).
Semenov [40] was perhaps the first to develop the basic theory of the phenomenon of thermal
explosion, based on the solution of the simplified version of these equations. Since that time
more and more complicated models have been suggested (see e.g. [7, 8]). They have been
incorporated into various CFD packages and allowed to take into account heat and mass transfer
and combustion processes in the mixture of gas and fuel droplets in a self-consistent way [30] –
[31]. This approach, however, is not particularly helpful in aiding understanding of the relative
contribution of various processes. An alternative approach to the problem is to analyze the
equations in some limiting cases. This cannot replace CFD methods but can complement them.
For example, the geometrical asymptotic method of integral manifolds can be used [41]. This
method was successfully applied to modeling self-ignition problems [42] – [45]. In [30] it was
applied to the specific problem of modeling the ignition process in diesel engines. These authors
attempted to combine the asymptotic approach, based on the integral manifold method, and
CFD simulations of the process, based on the CFD package VECTIS. The asymptotic analysis
in this paper [30] took into account both convective and radiative heating of droplets, but it
was assumed that the droplet temperature was constant (heat-up period was completed). The
radiative heating model used was based on the assumption that fuel droplets are grey opaque
spheres. Also, the chemical reaction term, used in the asymptotic model, was assumed in the one-
step Arrhenius form. The latter might be a serious oversimplification as the combustion process
in diesel engines involves hundreds of species and chemical reactions (see discussion in [29]). The
analysis of these is beyond the capacity of most CFD codes and a number of reduced mechanisms
were suggested [46] – [48]. One mechanism widely used in CFD codes is the so-called Shell model
[27]. In [30] an attempt was made to approximate the contribution of the reduced chemistry,
described by the Shell model, in the enthalpy equation in the Arrhenius form with the time-
dependent pre-exponential factor A(t). However, this had limited success as the function A(t)
implicitly depended on fuel vapour and oxygen concentrations. The main argument supporting
the application of the Arrhenius form of the chemical term was that the physical ignition delay for
average sized droplets in diesel engines (due to heating and evaporation of droplets) is generally
longer than the chemical ignition delay (due to chemical reactions [29]). The analysis of [24] was
focused on further development of the model used in [30]. Firstly, the assumption that droplets
are opaque gray spheres was replaced by a more realistic assumption that droplets are semi-
transparent spheres with the average absorption efficiency factor approximated by a simplified
version of Equation (5), assuming that the gas is optically thick (radiation temperature is equal



to gas temperature). Secondly, the process of droplet heat-up was taken into account using a
simplified model. Thirdly, the equations were investigated for a wide range of parameters typical
of diesel engines (not just average values as done in [30]). As in [30] the analysis was restricted
to the case when the Spalding numbers BM and BT are well below 1. No deficiency of oxygen
was not taken into account (Equation (7) was not considered). The remaining Equations (1) (or
(2)) , (4), (6) and (8) were written in the following simplified forms [24]:

dmd

dt
= −4πR2

d

L
(qc + qr) (1− ζ(Td)) , (18)

mdcl
dTd

dt
= 4πR2

d (qc + qr) ζ(Td), (19)

αg
dcf

dt
= −cfαgA exp

(
− E

RuTg

)
+

4πR2
dnd

MfL
(qc + qr) (1− ζ(Td)) , (20)

cpgρgαg
dTg

dt
= cfαgQfMfA exp

(
− E

RuTg

)
− 4πR2

dnd (qc + qr) , (21)

where cf is the molar concentration of fuel vapour, Mf is the molar mass of fuel vapour (note
that ρfv = cfMf ), qc and qr are convective and radiative heat fluxes, nd is the number of droplets
per unit volume (a monodisperse spray was considered), Ru is the universal gas constant, E is
the activation energy in J/kmol. The parameter ζ(Td) takes into account the fraction of heat
supplied from the gas which is spent on droplet heating. Following [49] it was taken in the form
[24]:

ζ(Td) =
Tb − Td

Tb − Td0
, (22)

where Td0 is the initial droplet temperature, Tb is the boiling temperature (ζ(Td0) = 1; ζ(Tb) =
0).

As in [30], the asymptotic analysis of Equations (18) – (22) reported in [24] was based on
method of integral manifolds. The focus of [24] was on the initial stage of the thermal explosion.
Two main dynamical scenarios, depending on the initial concentration of the fuel droplets, were
identified. These corresponded to two zones in the combustion chamber: the far zone (far from
the droplet injector), where the initial droplet concentration is low, and the near zone (close to
the droplet injector), where the initial droplet concentration is high. Note that the immediate
vicinity of the nozzle, where liquid jet has not yet disintegrated into droplets, was beyond the
scope of the analysis of [24].

In agreement with predictions of CFD calculations it was pointed out that the time of small
(radii less or equal to 5 µm) droplet heating and evaporation in the far zone is smaller than
the chemical ignition delay of the fuel vapor/air mixture [24]. Also, in agreement with CFD
predictions, the total ignition delay was shown to decrease with increase of the initial gas
temperature. In the near zone for large (radii greater or equal to 50 µm) droplets the process
was shown to start with the fast initial gas cooling and slight heating of droplets. This was
followed by a relatively slow heating of gas due to the chemical reaction and further droplet
heating. The total ignition delay in the near zone was shown to be larger than in the far
zone. It was expected that before a thermal explosion in the near zone takes place, the droplets
breakup and are removed from this zone. Also, the whole process was shown to be likely affected
by the explosion in the far zone [24]. In an optically thick gas the effects of thermal radiation
were shown to be negligible for small droplets but were shown to be noticeable for large droplets.
Some generalizations of the analysis of [24] were reported in [22]. These include the investigation
of the effects of thermal radiation in optically thin gas, and the analysis was performed over a
wide range of parameters.



5. Heating, evaporation and ignition of fuel droplets: combined analytical and
numerical analysis
The results discussed in Section 3 refer to ‘one way’ heating of droplets by the surrounding
gas. They cannot be used directly as predictive tools for studies of heating, evaporation and
ignition of realistic fuel droplets. The analysis reported in [23] is focused on further development
of the model described in Section 3, its testing and application to modelling the processes of
heating, evaporation, ignition and break-up of diesel fuel droplets. In contrast to [19], the effect
of droplet velocities, and the heating and evaporation on the surrounding gas were taken into
account (coupled solutions). The surrounding gas was accelerated by the movement of the
droplets. Then the gas was cooled with accompanying heating and evaporation of droplets. The
fuel vapour was allowed to diffuse through the gas culminating in ignition of the fuel vapour/
air mixture. These effects were expected to be accelerated significantly via droplet break-up [50]
– [52]. The ignition process was modelled based on the Shell model mentioned above . The new
model for droplet heating, described in Section 3, was implemented into a zero dimensional code
in which all values of the gas parameters (velocity, temperature, fuel vapour concentration etc)
are assumed to be homogeneous [23]. This conforms with the usual assumptions made in CFD
codes regarding the individual cells.

Naturally, while the main focus of [23] was on the effects produced by the temperature
gradients in droplets, a number of important processes were beyond its scope. These included
the effects of real gases [53], near critical and supercritical droplet heating [54, 55], and analysis
of droplet collision and coalescence [56, 57].

The predictions of the code developed in [23] were validated against experimental data
published by Belardini et al [58], Nomura et al [59], and Tanabe et al [60]. In what follows
a comparison between the experimental data reported in [59] and the predictions of the model
will be discussed based on [23]. These data were obtained for suspended n−heptane droplets in
a nitrogen atmosphere at pressures in the range between 0.1 and 1 MPa and temperatures in the
range 400 K and 800 K. Initial droplet radii varied from 0.3 mm to 0.35 mm. The experiments
were performed under microgravity conditions. The experimentally observed values of (Rd/Rd0)2

versus t for pressure 0.1 MPa, initial gas temperatures 471 K, 555 K, 648 K, 741 K, and the
initial droplet radii equal to 0.3 mm, are shown in Fig. 2. Also, the results of calculations based
on the effective thermal conductivity (ETC) model, discussed earlier, and the infinite thermal
conductivity (ITC) model (based on Equations (4) and (17)) for the same values of parameters
are shown [23]. The physical properties of n-heptane used in the calculations are given in [23].

As follows from Fig. 2, both ITC and ETC models show good agreement with experimental
data. For Tg0 = 471 K and Tg0 = 555 K the predictions of the models practically coincide.
At higher temperatures, however, the predictions of the ETC model are in marginally better
agreement with experimental data, compared with the ITC model, as expected. At lower
initial gas temperatures, droplets evaporate more slowly and the temperature inside droplets
has sufficient time to become almost homogeneous. Hence, the evaporation times predicted by
the ETC and ITC models are close [23].

Fig. 3 illustrates the effect of a ETC model on the total ignition delay time at various
initial gas temperatures in the presence of bag and stripping break-ups [23]. The initial droplet
diameter and velocity are assumed equal to 50 µm and 50 m/s respectively. Symbols in the figure
indicate the values of initial gas temperatures for which calculations of the evaporation time were
performed. The Shell model with Af4 = 3× 106 was used. As can be seen from this figure, the
ignition delay decreases with increasing Tg. The strong influence of the temperature gradient
inside droplets on droplet break-up, evaporation and the ignition of evaporated fuel/ air mixture,
allowed the authors of [23] to recommend that this effect be taken into account in computational
fluid dynamics codes designed to model fluid dynamics, heat transfer and combustion processes
in internal combustion engines. So far this effect has been almost universally ignored, the only



Figure 2. The values of (Rd/Rd0)2 for evaporating n-heptane droplets versus time for the
initial pressure of 0.1 MPa, as measured by Nomura et al [59], and the results of calculations
based on the ITC and the ETC models implemented into the zero-dimensional code. The values
of the initial gas temperatures 471 K, 555 K, 647 K and 741 K are indicated near the plots. The
effects of radiation were taken into account based on Equation (14) [23].

Figure 3. The plots of the total ignition delay versus Tg in the presence of the break-up for
droplets with initial diameter and velocity equal to 50 µm and 50 m/s respectively, calculated
using the ITC and the ETC models implemented into the zero-dimensional code. Symbols
indicate the values of gas temperature for which the ignition delay times were calculated [23].



exception, to the best of our knowledge, being paper [32].
To summarise the results reported in [23], in the absence of break-up the influence of

temperature gradient on droplet evaporation in realistic diesel engine conditions was shown to
be generally small (1 – 3 %). In the presence of the break-up process, however, the temperature
gradient inside droplets could lead to a significant decrease in the evaporation time under the
same conditions. This was attributed to the fact that the effect of the temperature gradient
inside droplets leads to a substantial increase in droplet surface temperature at the initial stages
of its heating. This increase, in turn, leads to a decrease in droplet surface tension and a decrease
in the threshold radii at which break-up occurs, assuming that bag and stripping break-ups are
the dominant mechanisms of droplet break-up. Even in the absence of break-up, the effect
of temperature gradient inside droplets was shown to lead to a noticeable (up to about 20%)
decrease of the total ignition delay time (comprising the physical and chemical ignition delays).
In the presence of break-up, this effect is enhanced substantially, leading to more than the halving
of the total ignition delay. This reduction of the total ignition delay time was understood to
be due to the combined effect of the influence of increased droplet surface temperature on the
chemical ignition delay, and the influence of this temperature on droplet evaporation (in the
presence of break-up processes). It was recommended that the effects of temperature gradient
inside droplets be taken into account in CFD codes describing droplet break-up and evaporation
processes, and the ignition of the evaporated fuel/ air mixture.

6. Heating, evaporation and ignition of fuel droplets: combined asymptotic and
numerical analysis
Although the numerical analysis of the problem of heating and evaporation of droplets and
ignition of fuel vapour/air mixture based on Equations (1), (4), (6), (7) and (8) is widely used
in engineering application, the difficulties and limitations of this analysis are well known. In
realistic engineering application when thousands of droplet parcels can be calculated in each
computational cell the number of equations solved could reach several thousands (and the
number of computational cells can reach millions). Hence, the direct solution of this system
using available ODEs solvers is not feasible. Following widely used practice in CFD codes, this
system of equations is decomposed into subsystems which are solved sequentially. When each
of these subsystems is solved, the remaining variables are assumed to have constant values over
the time step. This approach is widely referred to as the operator splitting technique (see [61]).
Following [21] this approach is called the ‘fixed decomposition approach’. One of the main
problems with this approach is the choice of the time step over which the ODEs are solved.
This choice would be easy if the characteristic time scales of all equations involved had the
same order of magnitude. Unfortunately, in realistic applications this is practically never the
case, and the system of ODEs under consideration is stiff. If, in this situation, we choose the
time scale equal to the shortest time scale in the system, then we waste computer resources by
calculation of equations where the values of variables remain practically constant over this time
scale. If, however, a time scale longer than the shortest time scale is chosen then the accuracy
of the calculations could be compromised.

Further discussion of this problem and ways to overcome it is based on the analysis reported
in [21]. As noticed in [21], to overcome this problem the multi-scale nature of ODEs needs to
be investigated before any attempt to solve them is made. This idea could be prompted by
the approaches used in [62] for the analysis of the processes in CO2 lasers and the one used
in [63] for the analysis of equations describing the autoignition of diesel fuel (the Shell model).
Before solving a system of five stiff ODEs describing five temperatures in these lasers, the
characteristic time-scales of these equations were analysed [62]. It was shown that two of these
equations describe rather rapid relaxation of two temperatures to the third one. This allowed
the authors of [62] to replace the system of 5 stiff equations by a system of 3 non-stiff equations



without any significant loss of accuracy. The approach used in [63] was different from that used
in [62]. However, both methods result in the reduction of the number of ODEs to be solved, and
elimination of the stiffness of the system of equations. In mathematical terms, in both papers
the dimension of the ODE system was reduced. In other words, the system was decomposed
into lower dimension subsystems.

A similar system decomposition into lower dimension subsystems has been used in
constructing reduced chemical mechanisms based on Intrinsic Low-Dimensional Manifolds
(ILDM) (e.g. [64] - [66]) and Computational Singular Perturbation (CSP) (e.g. [67] - [71]). There
are many similarities between these methods. They are based on a rigorous scale separation such
that ‘fast’ and ‘slow’ subspaces of the chemical source term are defined and mechanisms of much
reduced stiffness are constructed. These approaches, however, were developed with a view to
modelling chemical kinetics. Their generalization to other problems has not been considered, to
the best of our knowledge.

A useful analytical tool for the analysis of stiff systems of ODEs, used for the modelling of
spray heating, evaporation and ignition, could be based on the geometrical asymptotic approach
to singularly perturbed systems. Its application to the asymptotic analysis of the processes of
heating and evaporation of fuel droplets and ignition of fuel vapour/ air mixture was discussed
in Section 4.

These approaches to the decomposition of systems of ODEs were developed and investigated
with a view to their application to rather special problems, and were based on a number of
assumptions. These include fixing the decomposition over the whole period of the process, and
not allowing its hierarchy to change with time. The underlying philosophy of these approaches,
however, seems to have relevance to a wide range of physical and engineering problems including
spray modelling in general CFD codes. The development of a fairly general new method of
decomposition of a system of ODEs, allowing a change in the nature of the decomposition with
time (dynamic decomposition), was the main objective of the research reported in [21].

As in the original integral manifold method, the formal approach to the decomposition of
the system of ODEs used in [21] is based on the division of system variables into ‘fast’ and
‘slow’. This leads to the division of this system onto ‘fast’ and ‘slow’ subsystems. In contrast
to the original version of the integral manifold method, however, linearised variations of slow
variables during the time evolution of the fast variables were taken into account in the first order
approximation to the fast manifold. The utility of this division depends on whether the ‘fast’
subsystem has a lower dimension than the ‘slow’ subsystem. The procedure can be iterative and
result in a hierarchical division of the original system. For example the ‘slow’ subsystem can,
in its turn, be subdivided into ‘slow’ and ‘very slow’ subsystems. The proposed procedure was
initially focused on the simplest possible subdivision of the original system into two subsystems,
and applied to spray combustion modelling. Note that ‘fast’ – ‘slow’ decompositions in this case
could be different for different phase space regions and for different time intervals.

This new method was applied to simulate polydisperse spray heating, evaporation and ignition
based on Equations (1), (4), (6), (7) and (8) [21]. The model was chosen to be simple, but capable
nevertheless of capturing the essential features of the process. Three droplets with initial radii
5 µm, 9 µm and 13 µm respectively were considered. The initial temperatures of all droplets
was taken to be 400 K. The gas temperature was taken to be 880 K. The gas volume was chosen
such that if the droplets were fully evaporated without combustion then the equivalence ratio
of fuel vapour/air mixture was equal to 4. This is the situation typical of diesel engines in the
vicinity of the nozzle. The initial density of oxygen was taken to be equal to 2.73 kg/m3 (this
corresponds to air pressure equal to 3 MPa). The initial mass fraction of fuel was taken to
be zero. These values of the parameters can be considered as an approximation to the actual
conditions in diesel engines.

Once the smaller droplets had evaporated, the number of equations was reduced. These



Figure 4. Plots of gas temperature versus time, calculated using the first approach (fixed
decomposition) (dashed), second approach (coupled solution of the full system of equations)
(solid), and the third approach (dynamic decomposition) (dotted). Plots ‘1’, ‘2’ and ‘3’ refer to
calculations based on the time steps 10−4 s, 5× 10−5 s and 10−5 s respectively. The gas volume
is chosen such that if the droplets are fully evaporated without combustion then the equivalence
ratio of fuel vapour/air mixture is equal to 4 [21].

coupled equations were solved using three approaches [21]. Firstly, following a widely used
practice in CFD codes, the system of equations was divided into subsystems which were solved
sequentially. Secondly, these equations were solved rigorously using the DLSODAR stiff solver
from ODEPACK developed in the Lawrence Livermore National Laboratory. This means that
all equations were solved simultaneously. The third approach was based on decomposing the
original system following the procedure described above.

The time evolution of gas temperature calculated using the three approaches, is shown in
Fig. 4 [21]. As follows from Fig. 4, the first approach appears to be very sensitive to the time
step. If the time step 10−4 s was chosen then the predicted total ignition delay is almost four
times longer than the one predicted based on the second approach (coupled solution of the whole
system). If the time step is decreased to 5× 10−5 s and 10−5 s then calculations using the first
method appear to be more accurate than in the case when this time step is equal to 10−4 s, but
still the accuracy of computations is hardly acceptable for practical applications. Even for a
rather small time step, 10−5 s, the predicted total ignition delay is more than 20% greater than
predicted by the rigorous coupled solution of this system of equations (second approach). The
application of the third approach to the solution of this system gives a rather different picture.
Even in the case of the largest time step (10−4 s) the error in calculations of the total ignition
time delay is just 13%. In the case of smaller time steps, the time delay predicted by solving
the decomposed system almost coincides with the one obtained by rigorously solving the whole



system with possible errors not exceeding 2%. Essentially the same conclusion regarding the
benefits of the third approach based on the decomposition of the original system of equations
follows for other variables.

7. Conclusions
Recent progress in the development of a combined analytical, asymptotic and numerical approach
to modelling of heating and evaporation of fuel droplets and ignition of fuel vapour/ air mixture
has been discussed. This includes modelling of droplet heating and evaporation by convection
and radiation from the surrounding hot gas based on a combined analytical and numerical
approaches, as suggested in [19]. The finite thermal conductivity of droplets and recirculation
in them were taken into account. These approaches are based on the incorporation of analytical
solutions of the heat conduction equation inside the droplets (constant or almost constant
convection heat transfer coefficient h) or replacement of the numerical solution of this equation
by the numerical solution of the integral equation (arbitrary h). It was shown that the solution
based on the assumption of constant h is most computer efficient for implementation into
numerical codes. This solution was applied to the first time step, using the initial distribution
of temperature inside the droplet. The results of the analytical solution over this time step
were used as the initial condition for the second time step etc. This approach was applied to
conditions relevant to diesel engines. It was shown to be more effective than approaches based on
the numerical solution of the discretised heat conduction equation inside the droplet, and more
accurate than solutions based on the parabolic temperature profile model. It was shown that
the contribution of thermal radiation to droplet heating and evaporation could be taken it into
account using a simplified model, which does not consider the variation of radiation absorption
inside droplets [19, 20, 25].

The results of the analysis of the simplified problem of heating and evaporation of diesel fuel
droplets and ignition of fuel vapour/ air mixture based on the asymptotic method of integral
manifolds have been discussed based on [24]. The semi-transparency of droplets was taken
into account, and a simplified model for droplet heat-up was used. The results were applied
to the modelling of thermal explosion in diesel engines. Two distinct dynamical situations
were considered, depending on the initial parameters. These are ‘far zone’ (small initial liquid
volume fraction and small droplet radii) and ‘near zone’ (large initial liquid volume fraction and
large droplet radii). The conditions of the first zone are typical for the areas in the combustion
chamber which are far from the fuel injectors, while the conditions of the second zone are typical
for the areas in the combustion chamber which are relatively close to the fuel injectors. It was
pointed out that small droplet heating and evaporation time in the far zone is smaller than the
chemical ignition delay of the fuel vapor/air mixture. The total ignition delay decreased with
increasing initial gas temperature. In the near zone for large droplets, the process was shown to
start with the initial gas cooling and slight heating of droplets. This was followed by a relatively
slow heating of gas due to the chemical reaction, and further droplet heating. The total ignition
delay in the near zone was shown to be larger than in the far zone. It was expected that before
thermal explosion in the near zone takes place, the droplets break-up and are removed from this
zone.

The results of investigation of the effect of the temperature gradient inside fuel droplets
on droplet evaporation, break-up and the ignition of fuel vapour/ air mixture based on a new
zero-dimensional code are reviewed based on [23]. This code takes into account the coupling
between the liquid and gas phases and describes the autoignition process based on the eight
step chain branching reaction scheme (the Shell model). The effect of temperature gradient
inside droplets was investigated by comparing the ‘effective thermal conductivity’ model and
the ‘infinite thermal conductivity’ model, both of which have been implemented in this code.
The predictions of the code were validated against available experimental data. It was pointed



out that in the absence of break-up, the influence of the temperature gradient in droplets on
droplet evaporation in a realistic diesel engine environment is generally small. In the presence
of the break-up process, however, the temperature gradient inside the droplets can lead to a
significant decrease in evaporation time. Even in the absence of break-up, the effect of the
temperature gradient inside the droplets was shown to lead to a noticeable decrease in the total
ignition delay. In the presence of break-up this effect was shown to be substantially enhanced.
It was recommended that the effect of the temperature gradient inside the droplets is taken into
account in CFD codes describing droplet break-up and evaporation processes, and the ignition
of the evaporated fuel/ air mixture [23].

A new decomposition technique for a system of ODEs, based on the geometrical version of
the integral manifold method has been discussed based on [21]. This was based on comparing
the values of the right hand sides of ODEs, leading to the separation of the equations into
‘fast’ and ‘slow’ variables. The hierarchy of the decomposition was allowed to vary with time.
Equations for fast variables were solved by a stiff ODE system solver with the slow variables
taken at the beginning of the time step. The solution of the equations for the slow variables was
presented in a simplified form, assuming a linearised variation of these variables for the known
time evolution of the fast variables. This can be considered as the first order approximation for
the fast manifold. This technique was applied to analyse the explosion of a polydisperse spray
of diesel fuel. Clear advantages were demonstrated from the point of view of accuracy and CPU
efficiency when compared with the conventional approach widely used in CFD codes [21].

Acknowledgments
Acknowledgements The author is grateful to his colleagues and former research students W
Abdelghaffar, B Abramzon, V Bykov, L Dombrovski, G Feng, I Goldfarb, V Gol’dshtein, M
Heikal, P Krutitskii, A Kryukov, V Levashov, S Meikle, S Mikhalovsky, E Sazhina and A
Zinoviev in collaboration with whom the results of the original research presented in this review
were obtained.

References

[1] Clift R, Grace J R and Weber M E 1978 Bubbles, Drops and Particles (New York: Academic Press)
[2] Faeth G M 1983 Evaporation and combustion of sprays Progress in Energy and Combustion Science 9 1
[3] Kuo K-K 1996 Principles of Combustion (New York, Chichester: John Wiley & Sons)
[4] Lefebvre A H 1989 Atomization and Sprays (Bristol PA: Taylor & Francis)
[5] Abramzon B and Sirignano W A 1989 Droplet vaporization model for spray combustion calculations Int. J.

of Heat and Mass Tran. 32 1605
[6] Aggarwal S K 1998 A review of spray ignition phenomena: present status and future research Progress in

Energy and Combustion Science 24 565
[7] Griffiths J F and Barnard J A 1995 Flame and Combustion (Blackie Academic & Professional)
[8] Borman G L and Ragland K W 1998 Combustion Engineering (New York: McGraw-Hill)
[9] Sirignano W A 1999 Fluid Dynamics and Transport of Droplets and Sprays (Cambridge: Cambridge

University Press)
[10] Michaelides E E 2003 Hydrodynamic force and heat/mass transfer from particles, bubbles, and drops – the

Freeman scholar lecture ASME J. Fluid Engineering 125 209
[11] Dombrovsky L A, Sazhin S S, Sazhina E M, Feng G, Heikal M R, Bardsley M E A and Mikhalovsky S V

2001 Heating and evaporation of semi-transparent diesel fuel droplets in the presence of thermal radiation
Fuel 80 1535

[12] Dombrovsky L A and Sazhin S S 2003 A parabolic temperature profile model for heating of droplets ASME
J. Heat Transfer 125 535

[13] Dombrovsky L A and Sazhin S S 2003 A simplified non-isothermal model for droplet heating and evaporation
Int. Communications in Heat and Mass Transfer 30 787

[14] Dombrovsky L A and Sazhin S S 2003 Absorption of thermal radiation in a semi-transparent spherical
droplet: a simplified model Int. J. of Heat and Fluid Flow 24 919



[15] Sazhin S S, Abdelghaffar W A, Sazhina E M, Mikhalovsky S V, Meikle S T and Bai C 2004 Radiative heating
of semi-transparent diesel fuel droplets ASME J. Heat Transfer 126 105 Erratum 126 490

[16] Kryukov A P, Levashov V Yu and Sazhin S S 2004 Evaporation of diesel fuel droplets: kinetic versus
hydrodynamic models Int. J. of Heat Mass Transfer 47 2541

[17] Dombrovsky L A and Sazhin S S 2004 Absorption of external thermal radiation in asymmetrically illuminated
droplets J. Quantitative Spectroscopy and Radiation Transfer 87 119

[18] Sazhin S S, Krutitskii P A, Abdelghaffar W A, Mikhalovsky S V, Meikle S T and Heikal M R 2004 Transient
heating of diesel fuel droplets Int. J. of Heat Mass Transfer 47 3327

[19] Sazhin S S, Krutitskii P A, Abdelghaffar W A, Sazhina E M and Heikal M R 2004 Transient heating of droplets
(Electronic Materials) ed Celata G P et al Proc. 3rd Int. Symposium on Two-Phase Flow Modelling and
Experimentation’ (Pisa) paper bja01

[20] Abramzon B and Sazhin S S 2005 Droplet vaporization model in the presence of thermal radiation
International J Heat Mass Transfer 48 (in press)

[21] Bykov V, Goldfarb I, Goldshtein V, Sazhin S S and Sazhina E M 2004 System decomposition technique:
application to spray modelling in CFD codes 20th Annual Symposium of the Israeli Section of the
Combustion Institute. Book of Abstracts (Beer-Sheva, Israel) (Beer-Sheva: Ben-Gurion University) p 16

[22] Goldfarb I, Goldshtein V, Katz D and Sazhin S S 2004 Effect of thermal radiation on thermal explosion in
a hot gas containing cold fuel droplets 20th Annual Symposium of the Israeli Section of the Combustion
Institute. Book of Abstracts (Beer-Sheva, Israel) (Beer-Sheva: Ben-Gurion University) p 45

[23] Sazhin S S, Abdelghaffar W A, Sazhina E M and Heikal M R 2005 Models for droplet transient heating:
effects on droplet evaporation, ignition, and break-up Int J Thermal Science (in press)

[24] Goldfarb I, Sazhin S and Zinoviev A 2005 Delayed thermal explosion in flammable gas containing fuel
droplets: asymptotic analysis Int J Engineering Mathematics (in press)

[25] Abramzon B and Sazhin S S 2005 Convective vaporization of a fuel droplet with thermal radiation absorption
Fuel (in press)

[26] Westbrook C K and Dryer F L 1981 Simplified reaction mechanism for the oxidation of hydrocarbon fuels
in flames Combustion Science and Technology 27 31

[27] Halstead M R, Kirsch L J and Quinn C P 1977 The autoignition of hydrocarbon fuels at high temperatures
and pressures – fitting of a mathematical model Combustion and Flame 30 45

[28] Sazhina E M, Sazhin S S, Heikal M R and Marooney C 1999 The Shell autoignition model: application to
gasoline and Diesel fuels Fuel 78 389

[29] Sazhina E M, Sazhin S S, Heikal M R, Babushok V I and Johns R 2000 A detailed modelling of the spray
ignition process in Diesel engines Combustion Science and Technology 160 317

[30] Sazhin S S, Feng G, Heikal M R, Goldfarb I, Goldshtein V and Kuzmenko G 2001 Thermal ignition analysis
of a monodisperse spray with radiation Combustion and Flame 124 684

[31] Utyuzhnikov S V 2002 Numerical modelling of combustion of fuel-droplet- vapour releases in the atmosphere
Flow, Turbulence and Combustion 68 137

[32] Bertoli C and Migliaccio M 1999 A finite conductivity model for diesel spray evaporation computations Int.
J. of Heat and Fluid Flow 20 552

[33] Sazhin S S, Dombrovsky L A, Krutitskii P A, Sazhina E M and Heikal M R 2002 Analytical and numerical
modelling of convective and radiative heating of fuel droplets in diesel engines Proc. 12th Int. Heat Transfer
Conference (Grenoble) vol 1 (Paris: Editions scientifique et medicale Elsevier SAS ) pp 699-704

[34] Carslaw H S and Jaeger J C 1986 Conduction of Heat in Solids (Oxford: Clarendon Press)
[35] Luikov A V 1968 Analytical Heat Transfer Theory (New York: Academic Press)
[36] Kartashov E M 2001 Analytical Methods in the Heat Transfer Theory in Solids (Moscow: Vysshaya Shkola)

(in Russian)
[37] Sazhin S S and Krutitskii P A 2003 A conduction model for transient heating of fuel droplets Proc. 3d Int.

Congress of Int. Society for Analysis, Applications and Computations (Berlin) vol 2, ed H G W Begehre
et al (Singapore: World Scientific) pp 1231-9

[38] Dombrovsky L A, Sazhin S S, Mikhalovsky S V, Wood R and Heikal M R 2003 Spectral properties of diesel
fuel droplets Fuel 82 15

[39] Ben-Dor G, Elperin T and Krasovitov B 2003 Numerical analysis of the effects of temperature and
concentration jumps on transient evaporation of moderately large (0.01 ≤ Kn ≤ 0.3) droplets in non-
isothermal multicomponent gaseous mixture Heat and Mass Transfer 39 157

[40] Semenov N N 1928 Zur Theorie des Verbrennungsprozesses Z. Phys. Chem 48 571
[41] Gol’dshtein V and Sobolev V 1992 Integral Manifolds in Chemical Kinetics and Combustion (Singularity

Theory and Some Problems of Functional Analysis 2 vol 153) ed S Gindikin (AMS Translations) pp 73-92
[42] McIntosh A C, Gol’dshtein V, Goldfarb I and Zinoviev A 1998 Thermal explosion in a combustible gas

containing fuel droplets Combustion Theory and Modelling 2 153



[43] Goldfarb I, Gol’dshtein V, Kuzmenko G and Sazhin S S 1999 Thermal radiation effect on thermal explosion
in gas containing fuel droplets Combustion Theory and Modelling 3 769

[44] Goldfarb I, Gol’dshtein V, Grenberg B J and Kuzmenko G 2000 Thermal radiation effect on thermal explosion
in gas containing fuel droplets Combustion Theory and Modelling 4 289

[45] Bykov V, Goldfarb I, Gol’dshtein V and Greenberg J B 2002 Thermal explosion in a hot gas mixture with
fuel droplets: a two reactants model Combustion Theory and Modelling 2 153
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