
Two Visualizations of OCL: A Comparison

Andrew Fish1, John Howse1, Gabriele Taentzer2 and Jessica Winkelmann2

1 Visual Modelling Group
University of Brighton

Brighton, UK
2 Computer Science Department

Technical University of Berlin
Berlin, Germany

Abstract. We compare two visualizations of OCL, VisualOCL and Con-

straint Diagrams, and establish some of their benefits and weaknesses.
These two notations were designed to fit in to the diagrammatic mod-
elling paradigm. We introduce a simple case study, with constraints writ-
ten in both natural language and OCL, and visualize these constraints
using VisualOCL and Constraint Diagrams. Using a set of criteria which
is based on cognitive, syntactic and semantic questions, we compare the
notations, with reference to the sample constraints.

Keywords: Visual Formalisms, Constraint Languages, Diagrammatic Rep-
resentations.

1 Introduction

Although UML [OMG04] is accepted as a standard modelling language for de-
signing and documenting software and systems, there are still wide differences as
to the use of its sublanguages. In particular, OCL [OMG03] is still of limited use
even in organizations which extensively employ some form of UML diagrams. The
reasons for this are various, but they can often be traced back to the difficulty of
integrating a purely textual language like OCL into the diagrammatic paradigm.
Two diagrammatic languages for expressing logical constraints in object-oriented
modelling have been developed: Constraint Diagrams and VisualOCL.

VisualOCL was developed in [BKPPT01,KTW02] as a visualization of OCL
and is meant as an alternative to the textual OCL. VisualOCL follows the UML
notation as far as possible. This makes a direct integration of OCL in UML
easier. Like OCL, VisualOCL is a formal, typed and object-oriented language.

Constraint Diagrams were introduced in [Ken97] as a visual notation for
expressing logical constraints in an object-oriented system. They may be used
as a modelling notation in their own right [HS05] and are independent of the
UML and OCL. However, they can be used in the context of the UML as an
alternative to (or a visualization of) the OCL. The basic diagrams have been
fully formalized [FFH05], but a complete modelling framework involving the
notation is still under development.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Brighton Research Portal

https://core.ac.uk/display/188247065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This comparison began with a small competition between the developers of
Constraint Diagrams and VisualOCL. Each group selected a number of sam-
ple OCL constraints which were either nicely visualizable (in their opinion) us-
ing their own approach or demonstrated interesting properties of the notations.
These constraints were exchanged and visualized by the other group. The most
significant examples (which led to interesting statements of comparisons) are
presented as OCL constraints as part of a case study in section 2.

A visualization of these constraints using Constraint Diagrams and in Vi-
sualOCL are presented in sections 3 and 4. These sections also serve for an
introduction into both OCL visualizations. We ensured semantic equivalence
(“informational equivalence” [LS87]) of the constraints by starting with a natu-
ral language description and translating that into an OCL expression and then
into both visualizations.

The visualizations are compared in section 5. In order to conduct the compar-
ison we present a collection of criteria which reflect different cognitive dimensions
as well as other criteria obtained from cognitive science [BG00,CLS01,LS87,Shi04].

A summary of the main benefits and weaknesses of the two notations that
have been observed, together with possible improvements for both of the nota-
tions is given in section 6.

2 Running example

This section introduces some simple examples of OCL constraints. OCL is a
textual language which is used to describe additional constraints about objects in
a UML model. The class diagram in Fig. 1 provides the context for the examples.
Each example is presented in natural language and in OCL.

 Engine

maxPower: Real

engine

Person

isUnemployed: Boolean

firstname: String

lastname: String

isMarried:Boolean

isMale:Boolean

Car

owner

Company

name: String

Job

salary: Integer

manager

employee

wife

husband

child

parent

managedCompanies

employer

0..*

0..*
0..*

0..*

1

2
 0..1

0..1

1

1

1

1

Fig. 1. Class Diagram Example

2

1. Each person has a different first name from last name:
context Person inv differentNames: self.firstname <> self.lastname

2. Unemployed people drive small cars and employed people drive big cars:
context Person def:

let carSize : Real = self.car.engine.maxPower in

if (self.isUnemployed = true)

then carSize < 1.0 else carSize >= 1.0

3. There is a company with no female married employees:
context Company inv: allInstances()->exists(c |

c.employee->select(p | p.isFemale and p.isMarried)->isEmpty())

4. Married men have a wife and no husband:
context Person inv MarriedMen:

(self.isMarried=true and self.isMale=true) implies

(self.husband->isEmpty() and self.wife->notEmpty() and

self.wife.isMale=false and self.wife.isMarried=true)

5. There is a company whose manager isn’t allowed to work for anyone else,
but may have more than one job for the company. Furthermore, all jobs of
the company not held by the manager are poorly paid:
context Company inv: allInstances()->exists(c |

c.job->includesAll(c.manager.job) and c.manager.job->notEmpty()

and c.job->diff(c.manager.job)->forall(j:Job |j.salary<10000))

3 Constraint Diagrams

We present a short introduction to Constraint Diagrams using the constraints
presented in section 2. Some of the constraints are not translated literally from
the OCL, but expressed in a different (but semantically equivalent) manner,
which either seems more natural in the notation, or it demonstrates certain
properties of the notation (such as facilities for conjoining diagrams).

*

P e r s o n
f i r s t n a m e

l a s t n a m e
p

s

t

* p s t

S t r i n g

Fig. 2. Invariant 1: Each person has a different first name from last name.

The class Person is modelled by a (rectangular) contour (representing a set).
We have adopted the convention to use rectangles for classes, although this is
not essential.

3

The attributes firstname and lastname are modelled using arrows (rep-
resenting relations) in Fig. 2. The asterisk labelled p corresponds to “for all
p:Person”. Quantification here is explicit, and there is no notion of self (al-
though this could easily be added if one wished; for example one could write self
instead of p in Fig. 2).

The two dots labelled s and t denote the existence of two distinct elements.
The reading tree beneath the outer box provides the order in which to read the
quantifiers in the diagram. Thus the diagram is read as “every person has a
firstname and a different lastname”.

The reading tree (below the constraint diagram) provides a partial ordering
on the quantifiers (p, s, t in Fig. 2) in the diagram, thus giving a unique inter-
pretation. Note that these trees could be replaced by an alternative method for
ordering, such as using the numbering convention in the UML’s collaboration
diagrams. In Fig. 2 we include explicitly the information that s and t are ob-
jects of class String; this is a convention adopted in this paper for constraint
diagrams – the rectangle labelled String could be omitted from the diagram as
this information is available from the class diagram.

*

P e r s o n
c a r

c
p

* p c

e
e n g i n e m a x P o w e r

c a r S i z e

d e f : c a r S i z e

s

e s

C a r E n g i n e R e a l

Fig. 3. Definition: carsize

P e r s o n

* s < 1u

U n e m p l o y e d
c a r S i z e

* su

R e a l
P e r s o n

* t > = 1e

E m p l o y e d
c a r S i z e

* te

R e a l
a n d

Fig. 4. Inv 2: Unemployed people drive small cars and employed people drive big cars

Navigation along associations is also modelled using arrows (again represent-
ing relations) as in Fig. 3. Thus arrows are used precisely when the dot notation is
used in the OCL. Fig. 3 demonstrates a definition: carSize is defined by equating
the two navigation expressions sourced on p.

The “if A then B else C” expression in Invariant 2 is equivalent to “if A
then B” and “if not A then C”. This alternative representation enables us to
demonstrate that one can conjoin two diagrams (see Fig. 4).

4

States and boolean attributes are represented as sets in Constraint Diagrams.
Thus in Fig. 4 the contour Unemployed represents the set of persons satisfying
isUnemployed = true; similarly, the contour Employed represents the set of
persons satisfying isUnemployed = false.

Labels can include simple arithmetic information (this is another convention
adopted here for ease of use). For example, in Fig. 4, the label s is annotated
with < 1 to indicate that the carSize of an unemployed person is less than one.

C o m p a n y
e m p l o y e e

c
F e m a l e

M a r r i e d

c

P e r s o n

Fig. 5. Invariant 3: There is a company with no female married employees

The contours labelled Female and Married in Fig. 5 represent states and
the unlabelled contour represents the set of employees of the company c. The
shading in this diagram indicates that there are no elements in the intersection
of these three sets – thus there are no married women employed by this company.

*

M a l e M a r r i e d

w i f eh u s b a n d
p w

p w*

P e r s o n

Fig. 6. Invariant 4: Married men have a wife and no husbands

In Fig. 6, p:Person is quantified over the set of all married men. The shading
indicates that p has no husband. The arrow labelled wife indicates that p has
exactly one wife who is not male (since the married woman, w, is the whole of
the relational image of the married man, p, under the relation wife).

5

C o m p a n y
m a n a g e r

c

P e r s o n

m

b

*j s < 1 0 0 0 0

j o b j o b

s a l a r y

J o b

j s*

m bc

I n t e g e r

Fig. 7. Invariant 5: Hard-up company

Fig. 7 demonstrates that complex invariants can be built quite neatly. The
set c.manager.job is contained in the set c.job, indicating that all of company
c’s manager’s jobs are jobs in c. The branching in the reading tree determines
the scope of the quantifiers. The dot b indicates that the manager has at least
one job; while j is a universal quantifier whose navigation expression indicates
that all jobs, except the managers, have a salary of less than 10000.

The core notation has been formalized [FFH05], but a complete modelling
framework involving the notation is still under development. Thus many of the
notions in OCL (such as explicit notation for bags, sequences, tuples and op-
eration pre- and post-conditions) have not yet been formalized in Constraint
Diagrams (although many of these notions can be modelled within Constraint
Diagrams). For example, sequences and bags can already be modelled in the
(formal) core notation using relations, but shortcuts such as labelling a contour
Bag(X) to indicate a bag and not a set have not been fixed yet. Constraint Di-
agrams can be used as a modelling notation in their own right [HS05] (where
a suggested convention for pre- and post- conditions was adopted) and were
developed independently of the UML.

4 VisualOCL

In this section a short introduction to VisualOCL is given using the examples
presented in section 2. VisualOCL is a visualization of the whole of OCL 2.0
version 1.5. The present version 1.6 contains some new concepts, such as derived
or body constraints that have not yet been integrated in VisualOCL.

VisualOCL follows the UML notation and its graphical representation as
far as possible. VisualOCL is a formal, typed and object-oriented language. New
data types and operations such as collections and operations like forall, select and
union are represented by simple but meaningful graphics. Logical expressions

6

are denoted as Peircian graphs using nested boxes to express disjunctions and
conjunctions.

An OCL constraint is visualized as a rounded rectangle with two sections, the
context section and the body section. The context section contains the keyword
context followed by the type name of the model element (mostly a class or
method) of the constraint followed by the kind of the constraint e.g. inv, pre,
post or def (see Fig. 8 for example). Thus, the context is specified as in OCL.
In the body section the body of the constraint is visualized. If the body is a
navigation expression, it may have a condition section which contains textual
sub conditions of the constraint declared, using variables defined in the body. If
there is a condition section, it is separated from the rest of the body by a dashed
line (see Fig. 9 for example).

The variable self is used like in OCL and is always an instance of the type of
the context. If available, the navigation starts at this instance. The visualization
of an object corresponds to that in UML collaboration diagrams. The attribute
value of an object can be referred to by a variable. This is useful if it is to be
compared with other attribute values, for example.

In Fig. 8 the variable y refers to the firstname of a person. The lastname is
compared with the firstname. They have to be different for each person.

context Person inv differentNames:

self:Person

firstname = y

lastname <> y

Fig. 8. Invariant 1: Each person has a different first name from last name

Object navigation is also visualized as in UML collaboration diagrams. For
navigation, the role name of the opposite association end is used. In the case of
unambiguous navigation, the role name can be left out. This is exactly the case
if there exists only one association between the classes. The navigation result
is the set of objects at the opposite end of a link and its multiplicity is defined
by the corresponding association in the class diagram. The navigation on any
associations always starts at object self if it exists, or at the context object
defined otherwise. If there is only one object of the context type, this can also
be used as starting point. Navigations can end at objects, association classes,
attribute values, and method or operation calls.

Above we described navigation expressions, now we continue with several
other kinds of VisualOCL expressions. A let expression defines a variable which
can be used in a constraint after its definition. It is depicted by two frames, a
let frame and an in frame (see Fig. 9 for example). The let frame contains the
visualized definition of the variables. There is a separate frame for each variable
where the name of the variable is depicted in the upper left corner and below the

7

definition of the variable value follows. Inside the in frame a normal constraint is
described which uses the variables defined above. A let expression is only known
in the constraint in which it was defined.

The If-Then-Else frame contains three sections (see Fig. 9 for example).
While the If section has to be a boolean expression, each of the other two sections
can contain any VisualOCL expression. Two objects in different VisualOCL
expressions are identical if they have the same name.

context Person inv:

self: Person
 : Car

let

carSize: Real

: Engine

maxPower = carSize
 engine

self: Person

 isUnemployed = true

if

then
 else

carSize < 1.0
 carSize >= 1.0

in

Fig. 9. Inv 2: Unemployed people drive small cars and employed people drive big cars

Collections, like sets, bags and sequences, are predefined types in OCL. The
collection type is an abstract type with three concrete subtypes: Set, Bag and
Sequence. These types are visualized as follows:

Set: Bag: Sequence:

Collections have a large number of predefined operations, simple operations
such as isEmpty and notEmpty, a large variety of set operations like includes
and diff, or iterator operations like select, forall and exists. Simple operations
are directly annotated at the collections. The visualization of set and iterator
operations is more complex. For example, operation exists checks if a constraint
is satisfied for at least one element in a collection. It has one iterator and an
exists frame in which the property of the exists operation is visualized. The exists
operation returns a Boolean value. On the right of the frame the ∃-operator and
the iterator are depicted (see Fig. 10). Operation select specifies a subset of a
collection. In Fig. 10 a shortcut of a select operation is shown. If the value over
which is iterated is just an attribute of a collection element, then the shortcut for
iterator operations can be used. On the right of the collection representation, the
operator name is depicted. An unlabelled arrow targets the resulting collection.

An implies expression is visualized in an implies frame. Anything above or
left of the keyword implies describes the premise. When this premise is true,
it implies the conclusion denoted right or below of implies. Both sections may

8

c

:Company

context Company inv:

c: Company

isIn
 :Person

isMarried=true

isFemale=true

employee

select

:Person
 = 0

Fig. 10. Invariant 3: There is a company with no female married employees

contain any boolean expression. Note that the conclusion part of the implies
operation in Fig. 11 contains a navigation expression where three subexpressions
are combined by and.

context Person inv MarriedMen:

:Person

:Person

self: Person

isMarried = true
isMale = true

self:Person :Person

:Person

self: Person

isMarried = true
isMale = true

husband

wife

wife

= 0

implies
= 0

Fig. 11. Invariant 4: Married man have a wife and no husband

The difference between two sets results in a new set. This is represented
by an arrow labelled by diff(set2) from the origin set to the resulting set. The
expression includesAll(collection2) returns true if all elements of collection2 are
elements of the collection. Operation forall checks an expression for all elements
of a collection and returns a boolean. In Fig. 12 a shortcut of a forall operation is
shown. On the right of the collection, the ∀-operator is depicted. The navigation
to association classes is again visualized as in UML collaboration diagrams.

A constraint can be composed from previously defined constraints. The con-
straints inside the frame are referred to by their names, thus the constraints
used have to be defined first. In Fig. 13 invariants 1 and 4 are combined by and.
Constraints can be combined by any logical operator described earlier.

9

context Company inv:

: Company

: Job

salary < 10000

manager
 : Person
c: Company

: Person

i: Job
 j: Job

: Company

includesAll(j)
 i: Job

diff(j)

c

<> 0

isIn

Fig. 12. Invariant 5: Hard-up Company

context Person inv:

differentNames MarriedMan

Fig. 13. Combining Constraints

5 Comparison of visualizations

We informally compare our visualizations by using criteria which reflect various
notions from cognitive science [CLS01,LS87,Shi04] including cognitive dimen-
sions [BG00].

5.1 Criteria for comparison

We will compare the two visualizations using the following list of criteria below.
Structural comparisons (of logical concepts and object-oriented concepts) will
occur whilst addressing these criteria.

Expressiveness: How are the syntax and semantics defined and what is the ex-
pressiveness (the informational content [LS87]) of the visualizations?

Effectiveness of expression:

1. Diagrammaticity: Where do the notations lie on the continuum between
sentential and diagrammatic representations?

2. Compactness: How much information can be represented in a small space?
Does this compactness lead to forcing the expression of extra pieces of in-
formation which do not semantically follow from the specified constraint
(specificity [Shi04])?

10

3. Ease of expression: What sorts of expression are particularly difficult or easy
to understand?

Information Retrieval

1. Reading: How does one read (or interpret) the diagram?
2. Reasoning: How easy is it to deduce (non-trivial) consequential information

from the diagrams?
3. Combining: How easy is it to combine information from different places?

This is related to meaning derivation properties [Shi04] – the capacity to
express semantic content not defined in the basic semantic conventions, but
derivable from them.

Learning Barrier: How much will a user have to learn and to be able to use the
notation?

Tools: What tool support is currently available and what facilities do they have?

5.2 The comparison

Expressiveness: The formalization of Constraint Diagrams is still underway. The
core notation has been given formal semantics (defined via an explicit mapping
to predicate logic in [FFH05]). The general framework (including the set up for
pre- and post-conditions) has not been formalised yet, although suggestions have
been published [HS05]. There has been no attempt, yet, to integrate some of the
concepts, such as messages, involved in OCL.

VisualOCL is a visualization of the whole OCL 2.0 version 1.5. Its syntax is
precisely defined either by metamodels or by graph transformations [Win05]. The
metamodel of VisualOCL is closely related to that of OCL, thus any semantics
for OCL can be easily adapted to VisualOCL. At present, version 1.6 is available
and contains some new concepts such as derived or body constraints. It would
be very easy to extend VisualOCL to this version.

Since the Constraint Diagram notation does not yet have the syntax built
in to deal with some concepts of the OCL, we cannot precisely compare the
informational content of the notations.

Effectiveness of expression:

1. Diagrammaticity :
Constraint Diagrams have been defined to be as diagrammatic as possible,
keeping text minimal. VisualOCL representations contain more text than
Constraint Diagrams, since they need extra text for the context declaration,
collection operations and attributes. For example, in the Constraint Dia-
gram in Fig. 4, s and t label distinct diagrammatic elements and therefore
represent distinct objects, whereas in the VisualOCL constraint in Fig. 8,
the attributes are shown to be different by reference to textual labels and
the <> symbol. Thus Constraint Diagrams are more diagrammatic than
VisualOCL.

11

2. Compactness and Ease of expression:
Object sets and set operations (such as set intersection and difference, shown
in Fig. 7) are compactly and intuitively represented using Constraint Dia-
grams, since they are based on Euler diagrams. Whereas in VisualOCL, sets
are represented by cascading boxes and thus set operations (such as set dif-
ference in Fig. 12) are not visualized as intuitively. For example, in Fig. 12,
the label j:Job refers to a set of jobs (and not a single job as one might
expect) which is then used by the operator in diff(j). Set membership is
represented spatially in Constraint Diagrams (as in Fig. 5), whilst the isIn
operator is used in VisualOCL (as in Fig. 10).

In both notations, navigation expressions along associations are easy
to follow as well as being compact (see Figs. 3, 6, 9 and 11). From these fig-
ures, one can also see that in Constraint Diagrams attributes can be accessed
in the same manner as associations (see Fig. 3), whereas in VisualOCL, at-
tribute values are even more compact because the attributes are written
textually (see Figure 9).

Quantifiers are represented in a compact, diagrammatic way in Con-
straint Diagrams (see Fig. 5) and in a compact textual way for VisualOCL
(see Fig. 10).

States are represented by attribute values in VisualOCL. In Con-
straint Diagrams, boolean attributes may be represented as sets containing
the objects for which the attribute is true and another for which the attribute
is false (see Fig. 5).

Different languages have different ways of most naturally representing
constraints. There are often different ways to represent the same informa-
tion and in Constraint Diagrams it often seems more natural not to literally
translate the constraint, but to re-represent it as a semantically equivalent
OCL statement first. For example, the “implies” from Fig. 11 is made im-
plicit in Fig. 6, and the “if–then–else” structure of Fig. 9 has been converted
in Fig. 4. This re-representation [CLS01] of the constraints may make the
diagrams more difficult to understand from the specified OCL, due to the
extra work involved in the internal (or mental) representation. However, this
is a separate issue from comparing the external representations (the nota-
tions on paper; see [Heg04] for relationships between internal and external
representations). Thus, one should also display the alternative, semantically
equivalent version of the OCL for each such re-representation of a constraint
(we do not do this for space reasons), in order to compare the external
representations only. Compare the diagrams in Fig. 4 with the natural lan-
guage (or an alternative translation into OCL) and it becomes less difficult
to comprehend. In contrast, the VisualOCL is a more literal visualisation of
OCL and thus re-representation of constraints is not required in translating
between OCL and VisualOCL.

Information Retrieval

1. Reading: A common problem in diagrammatic systems is the lack of inher-
ent ordering of expressions. One measure for computational efficiency of a

12

representation [LS87] is the amount of searching and memory required in a
problem solving task (such as inferring information from the diagram).

In order to read Constraint Diagrams, one needs to match up the
labels of the quantifiers in the diagrams to those in the reading trees under-
neath (thus some searching is required). Similarly, matching up operators in
VisualOCL (as in Fig. 10) such as select and exists require time to search
and memory storage. The adjacency of the attributes reduces the cognitive
load in matching up these labels in Fig. 8.

Using the information that sets may be partitioned according to their
different states may be a hard mental operation. For example, p:Person in
Fig. 3 may be either u:Unemployed or e:Employed in Fig. 4.

2. Reasoning: Another important factor in a diagram’s effectiveness (in repre-
senting information) is the operations available to the user for recognizing
relevant information and for drawing inferences (consequential pieces of in-
formation) from that information [LS87].

A formal reasoning system for Constraint Diagrams is being devel-
oped [FF04]. Such a system enables a user to perform operations (such as
simple editing tasks like adding and deleting syntax) and to be told if such
operations are sound (give rise to semantic entailment). Thus a user can
have access to powerful operations, without the need to store them in their
memory [CLS01], thus reducing the mental effort required to extract infor-
mation. Reasoning rules are also imaginable for VisualOCL, on the basis of
graph transformation rules, but these have not been developed yet.

On a simpler level, one may consider what can be deduced from a
diagram with little cognitive effort (the free-rides of the notations [Shi04]).
For Constraint Diagrams, set containment properties (such as A ⊆ B ⊆ C ⇒

A ⊆ C) are free rides, using the topological qualities of the diagrammatic
representations. For both notations, conjunction within the diagrams also
comes for free.

3. Combining: VisualOCL supports two features for combining subconstraints:
As known from UML, objects can be named and same names mean identical
objects which might be visualized several times in one constraint. Moreover,
subconstraints can be named and referred to by name in other constraints
(see Fig. 13). Combining Constraint Diagrams has been shown in Fig. 4; a
similar method of naming constraints and reusing them could be adopted
for them as well.

Learning Barrier: Constraint Diagrams use fewer syntactic elements than Visu-
alOCL. Obviously, VisualOCL is much closer in nature and structure to OCL
and uses UML notation as far as possible, so it should be easy to learn for those
who already know OCL and UML. People who are familiar with Euler diagrams
will be accustomed to the basis of Constraint Diagrams.

Expert users of a system often have access to powerful operations which
enable complex deductions. This access enables them to use the system much
more effectively than novice users. The reasoning rules developed for Constraint
Diagrams provide access to such operations and thus remove some of the bias

13

towards expert users being able to use the system much more effectively than
novices.

Tools: Tools for Constraint Diagrams are currently under construction by the
Universities of Brighton and Kent [RWD05,VMG05]. These tools will have fa-
cilities for: drawing, editing, reasoning and translating between Constraint Di-
agrams and other notations, such as OCL and predicate logic. For VisualOCL
a visual editor was developed as an Eclipse plug-in [Vis04] which captures all
of the main concepts of VisualOCL. The user can draw and edit a VisualOCL
constraint and translate it into a semantically equivalent OCL constraint using
the included OCL converter.

6 Conclusion

We have compared two visualizations of OCL by using them to visualize simple
constraints written initially in natural language and OCL. The notations were
compared using a set of criteria drawn from cognitive science. This comparison
provided an understanding of some of the benefits and weaknesses of the two
notations. It will be useful to take the advantages and disadvantages of these
notations into account whilst improving these notations (or whilst developing
new notations). This will prove especially useful for the Constraint Diagram
notation, whose development is still underway.

One interesting point is that Constraint Diagrams seem to be more useful for
expressing lots of information in a compact manner with the downside that some
simple expressions become harder to express (the diagrams appear cluttered).
This is in contrast to VisualOCL, which is closer to the “what you see is what
you get” paradigm.

As a visualization of OCL, VisualOCL has an advantage over Constraint
Diagrams, whereas Constraint Diagrams is a more diagrammatic alternative to
the OCL. Moreover, Constraint Diagrams can be used as a modelling notation,
removing the need to consult a class diagram for example.

Improvements to the Constraint Diagram notation could be made by adopt-
ing some of the conventions in place in VisualOCL, such as the logical structures
(if–then–else boxes), being less strict about the need to be diagrammatic (such
as allowing attributes to be written textually rather than forcing navigation)
and developing more explicit notation to express the notions within OCL.

The main recommendations for improving VisualOCL are to adopt a bet-
ter means of representing set operations (perhaps extending the notation to
incorporate some of the facilities of Euler diagrams) and to develop reasoning
mechanisms.

We hope that the reader will agree that, even before the suggested improve-
ments are implemented, both VisualOCL and Constraint Diagrams (which both
fit into the diagrammatic paradigm of the UML) are attractive alternatives to
the textual OCL .

14

References

[BG00] A. Blackwell and T. Green. A cognitive dimensions questionnaire optimised
for users. In Proceedings of 12th Workshop on the Psychology of Programming

Interest Group, pages 137–154, 2000.
[BKPPT01] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. A Visualiza-

tion of OCL using Collaborations. In M. Gogolla and C. Kobryn, editors,
UML 2001 – The Unified Modeling Language, LNCS 2185, pages 257 – 271.
Springer, 2001.

[CLS01] P. Cheng, R. Lowe, and M. Scaife. Cognitive science approaches to un-
derstanding diagrammatic representations. Artificial Intelligence Review,
15(16):79–94, 2001.

[FF04] A. Fish and J. Flower. Investigating reasoning with constraint diagrams. In
Visual Language and Formal Methods, ENTCS, pages 53–67, Rome, Italy,
2004. Elsevier.

[FFH05] A. Fish, J. Flower, and J. Howse. The semantics of augmented constraint
diagrams. Journal of Visual Languages and Computing, to appear, 2005.

[Heg04] M. Hegarty. Diagrams in the mind and in the world: Relations between in-
ternal and external visualizations. In Proceedings of 3rd International Con-

ference, Diagrams 2004, Cambridge, UK, LNAI 2980, pages 1–13. Springer-
Verlag, 2004.

[HS05] J. Howse and S. Schuman. Precise visual modelling. SoSym, to appear, 2005.
[Ken97] S. Kent. Constraint diagrams: Visualizing invariants in object oriented mod-

elling. In Proceedings of OOPSLA97, pages 327–341. ACM Press, October
1997.

[KTW02] C. Kiesner, G. Taentzer, and J. Winkelmann. Visual OCL: A Visual Notation
of the Object Constraint Language. Technical Report 2002/23, Technical
University of Berlin, 2002.

[LS87] J. Larkin and H. Simon. Why a diagram is (sometimes) worth ten thousand
words. Journal of Cognitive Science, 11:65–99, 1987.

[OMG03] OMG. OCL 2.0 specification, revision 1.6. Available from
http://www.omg.org, 2003.

[OMG04] OMG. UML 2.0 specification. Available from http://www.omg.org, 2004.
[RWD05] Reasoning with Diagrams. http://www.cs.kent.ac.uk/projects/rwd/, 2005.
[Shi04] A. Shimojima. Inferential and expressive capacities of graphical represen-

tations: Survey and some generalizations. In Proceedings of 3rd Interna-

tional Conference, Diagrams 2004, Cambridge, UK, LNAI 2980, pages 18–21.
Springer-Verlag, 2004.

[Vis04] VisualOCL: Editor plugin for Eclipse. http://tfs.cs.tu-berlin.de/vocl/, 2004.
[VMG05] Visual Modelling Group. http://www.it.bton.ac.uk/research/vmg, 2005.
[Win05] Jessica Winkelmann. Specification of VisualOCL: A Visualisation of the

Object Constraint Language. Master’s thesis, TU Berlin, 2005. (in German).

15

