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Abstract

Many visual languages based on Euler diagrams have
emerged for expressing relationships between sets. The ex-
pressive power of these languages varies, but the major-
ity are monadic and some include equality. Spider dia-
grams are one such language, being equivalent in expres-
sive power to monadic first order logic with equality. Spi-
ders are used to represent the existence of elements or spe-
cific individuals and distinct spiders represent distinct el-
ements. Logical connectives are used to join diagrams,
increasing the expressiveness of the language. Spider di-
agrams that do not incorporate logical connectives are
called unitary diagrams. In this paper we explore gener-
alizations of the spider diagram system. We consider the
effects of these generalizations on the expressiveness of uni-
tary spider diagrams and on conciseness.

1 Introduction

Recent times have seen various formal diagrammatic
logics and reasoning systems emerging [6, 13, 17, 25, 26,
31, 33]. Many of these logics are based on the popular and
intuitive Euler diagrams augmented with shading. The dia-
grams in figure 1 are all based on Euler diagrams.
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Figure 1. Various extended Euler diagrams.

The diagramd1 expresses that there are no birds (by the
use of shading) and that nothing is both a fish and a bird

(since the two circles have disjoint interiors). The diagram
d2 is an Euler/Venn diagram [31] and expresses that noth-
ing is both a fish and a bird (by the use of shading) and there
is something calledfred that is either a fish or a bird, but
not both. Furthermore,robin is a bird but not a fish. Note
that fred and robin could represent the same individual.
Euler/Venn diagrams use shading to express the emptiness
of a set andconstant sequencesto make statements about
specific individuals. Finally,d3 is a spider diagram [16]
and expresses that something is either a fish or a bird but
not both and there is at least one but at most two elements
in the setBirds − Fish (by the use ofexistential spiders
and shading). So, by contrast to Euler/Venn, spider dia-
grams use shading to place upper bounds on set cardinality
and spiders place lower bounds on set cardinality. Whilst
the spiders ind3 represent the existence of elements, spi-
der diagrams useconstant spidersto make statements about
specific individuals.

Others have introduced diagrammatic logics based on
Venn diagrams which form, essentially, a fragment of the
Euler diagram language. Peirce used⊗-sequences to as-
sert non-emptiness and, instead of shading,o-sequences to
assert emptiness [23]. The diagramd1 in figure 2 is a Venn-
Peirce diagram and expresses thatFish − Birds = ∅ or
Birds − Fish 6= ∅. This example illustrates a key differ-
ence between the use of shading and the use ofo-sequences
because the statement made is disjunctive. The diagramd2

is a Venn-II diagram [25] and uses an⊗-sequence to express
thatFish 6= ∅ and shading to expressBirds − Fish = ∅.
Venn-II does not incorporateo-sequences.

The expressiveness of various diagrammatic logics has
been established. The Venn-II system has been shown to be
equivalent in expressive power to monadic first order logic
(without equality) [25]. In monadic first order logic, all of
the predicate symbols are unary and they correspond to con-
tour labels. So, for example, Venn-II cannot express that
a property holds for a unique individual. Spider diagrams
properly increase expressiveness over Venn-II. In [30] it is
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Figure 2. Venn-Peirce and Venn-II diagrams.

shown that the language of spider diagrams (without con-
stant spiders) is equivalent in expressive power to monadic
first order logic with equality and, hence, can express that a
property holds for a unique individual. Furthermore, it has
been shown that the inclusion of constant spiders does not
increase the expressiveness of spider diagrams [28].

Spider diagrams have been used for specifying safety
critical systems [3], visualizing clusters which contain con-
cepts from multiple ontologies [14] and for allowing files
to be viewed in multiple directories [4] as well as having
many other applications. Furthermore, they form the basis
of constraint diagrams, introduced by Kent [18], which are
designed for object oriented specification [15, 20]. Kent’s
aim, when he introduced constraint diagrams, was to pro-
vide a user friendly, formal notation that is well suited to
those who like to use diagrams for modelling but shy away
from the textual languages that are currently on offer for
formal specification. The hope is that, by providing suffi-
ciently expressive formal diagrammatic notations, the use
of formal methods will be encouraged leading to improved
software design and, as a result, more reliable software will
be built.

In order for Kent’s vision to be realized, the syntax and
semantics of constraint diagrams must be formalized (done
in [6]). Furthermore, to enable software engineers to reason
about their models, it is essential that sound and, where pos-
sible, complete sets of reasoning rules are specified. Two
sound and complete systems have been developed for frag-
ments of the langauge [26, 27] and sound rules have been
defined for the full notation [5]. It is desirable to develop
automated theorem provers for the constraint diagram lan-
guage, thus providing practical support for software engi-
neers to reason about their models. For example, it may
be necessary to prove that two specifications are equivalent
or that the post-condition of one operation implies the pre-
condition of another.

The diagrams we have seen so far are all instances of
unitary diagrams. Unitary diagrams can be joined using
logical connectives such as∧ and∨. Many diagrammatic
systems have incorporated logical connectives, for exam-
ple [5, 16, 25, 26], most of which are sound and com-
plete. Unitary diagrams represent information more con-
cisely than compound diagrams. The ability to express
statements concisely could enhance the usability of a lan-

guage as well as be important for theoretical reasons (dis-
cussed in section 2). An interesting question arises: is the
unitary spider diagram system as expressive as the full sys-
tem? The answer is, perhaps unfortunately, no. There are
numerous examples of simple statements, as well as com-
plex statements, that cannot be made by any unitary spider
diagram that can be made by a compound diagram.

In this paper, we explore deficiencies in the expressive
power of unitary spider diagrams. We generalize the syntax
of spider diagrams, increasing the expressiveness of the uni-
tary system, overcoming some of these deficiencies. These
generalizations give rise to a more flexible system because
there are more ways of expressing a given piece of informa-
tion. As a consequence, it may be that there is a more nat-
ural mapping from a statement a user wishes to make to a
diagram expressing that statement. We give our motivation
for increasing the expressiveness of unitary spider diagrams
in section 2. In section 3 we give a brief overview of the
syntax and semantics of existing spider diagram systems.
In sections 4 to 6 we present our generalizations. We give
expressiveness results for the non-generalized and general-
ized unitary fragments in section 7, where expressiveness
limitations of the generalized system are discussed and fur-
ther generalizations are proposed.

2 Motivational Discussion

There are theoretical reasons for increasing the expres-
siveness of the unitary system. Firstly, there is interest
in automatically generating proofs in spider diagram sys-
tems [11, 22]. Approaches have been developed that pro-
duce shortest proofs [8, 9]. These approaches use a heuris-
tic function to guide the theorem prover towards good rea-
soning steps, reducing the amount of backtracking required
and, hence, smaller search trees are produced. The heuris-
tic function gives a numerical score that provides a lower
bound on the length of a shortest proof from the premise
diagram to the conclusion diagram.

Defining an accurate heuristic function for the compound
system is challenging, partly due to the tree structure of the
diagrams. Even if an accurate heuristic function can be de-
fined, the size of the search tree can still explode due to an
abundance of highly applicable reasoning rules causing the
nodes of the search trees to have large out-degrees. One
problematic rule is idempotency which can be applied to
any diagram: fromd1 we can deduced1 ∨ d1, for exam-
ple. Given the potentially large number of sub-diagrams
in a compound diagram, it is easy to see that the idempo-
tency rule can, sometimes, be applied in many ways. This
high applicability makes it hard for the size of the search
tree to be controlled. Furthermore, some other highly appli-
cable rules are non-deterministic, such as the information
weakening rule ‘fromd1 we can deduced1 ∨ d2’ and the
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Figure 3. A constraint diagram.

information preserving absorption rule ‘fromd1 we can de-
duced1 ∧ (d1 ∨d2)’ (in both casesd2 is any diagram). This
non-determinism makes implementing theorem provers that
operate with a complete set of rules for the compound sys-
tem a challenging task. By contrast, the rules that exist for
unitary diagrams are all deterministic.

The effectiveness of the heuristic function can be ana-
lyzed by comparing the sizes of the search trees generated
by the theorem prover to those generated by conducting a
breadth first search. Analysis has shown that restricting the
theorem prover to the unitary fragment (without the gener-
alizations presented in this paper) results in a much larger
percentage reduction in the size of the search tree when
compared with the compound case [8, 9]. We conjecture
that similar results can be observed when comparing the
more expressive unitary system suggested in this paper with
the compound system; if this is the case then increasing
the expressiveness of the unitary system will result in more
theorems being provable in a reasonable amount of time.
Given the inherent difficulty of developing efficient auto-
mated theorem provers, any generalizations that may result
in more effective theorem proving techniques being devel-
oped should be thoroughly investigated.

We note that some people may prefer to use spider di-
agrams that do not include our generalizations. However,
it is simple to translate proofs involving generalized spider
diagrams into proofs that involve (non-generalized) spider
diagrams. Thus, if we can develop more efficient theorem
proving techniques for the generalized system then we can
pass on these efficiency savings to the non-generalized sys-
tem.

Secondly, we wish to be able to automate the drawing
of diagrams (this is essential if we are to present automat-
ically generated proofs to users in a diagrammatic form).
Considerable research has been conducted into the genera-
tion of Euler diagrams [1, 2, 7, 19, 24, 32] and spider dia-
grams [21]. It can be time consuming to automatically draw
visually pleasing Euler diagrams; see [10] for related work.
It is preferable to automatically draw unitary diagrams in-
stead of compound diagrams.

Finally, the constraint diagram language [6] extends the
spider diagram language. The diagram in figure 3 is a con-
straint diagram and expresses

∀x ∈ A∃y ∈ U −A
(
r(x, y) ∧ ∀z (r(x, z) ⇒ y = z)

)
.

In the constraint diagram language it can be difficult, maybe
impossible, to make some first order statements involv-
ing disjunction inside the scope of a universal quantifier;
see [29] for a discussion of this issue. It may well be that
if the generalizations we propose are incorporated into the
constraint diagram language then the expressiveness of the
whole system is increased, not just that of the unitary frag-
ment. Indeed, the task of finding efficient theorem prov-
ing algorithms for constraint diagrams is daunting because
these diagrams are highly expressive. The better we under-
stand how to control the search for proofs in spider diagram
systems, the more tractable this task becomes for constraint
diagrams. The work presented in this paper is an essential
basis for the thorough exploration of theorem proving tech-
niques for spider diagram systems, which will allow us to
find highly efficient theorem proving algorithms.

3 Informal Syntax and Semantics

Various systems of spider diagrams have been devel-
oped, for example [16, 28], and in this section we give an
informal overview of their syntax and semantics.

A B

C

s

Figure 4. A unitary spider diagram.

A contour is a simple closed plane curve. Each contour
is labelled. Aboundary rectangle properly contains all
contours. The boundary rectangle is not a contour and is
not labelled. Abasic region is a maximal, bounded set of
points in the plane enclosed by a contour or the boundary
rectangle. Aregion is defined recursively as follows: any
basic region is a region; ifr1 andr2 are regions then the
union, intersection and difference ofr1 andr2 are regions
provided these are non-empty. Azone is a region having
no other region contained within it. A region isshaded
if each of its component zones is shaded. The diagram in
figure 4 contains three contours, labelledA, B andC. There
is one zone insideA and two zones insideB. In total there
are five zones (including the zone which is outside all three
contours) of which two are shaded.

A spider is a tree with nodes (calledfeet) placed in
zones. The connecting edges (calledlegs) are straight lines.
The feet of a spider are either all square (aconstant spider)
or all round (anexistential spider). Each constant spider is
labelled. A spidertouchesa zone if one of its feet is placed
in that zone. A spider can touch a zone at most once. In
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figure 4 there are three spiders. The constant spider labelled
s has a two zone habitat and, therefore, touches two zones.

A unitary spider diagram is a single boundary rectan-
gle together with a finite collection of contours, shading and
spiders. No two contours (constant spiders) in the same uni-
tary diagram can have the same contour label (constant spi-
der label). Unitary spider diagrams can be joined together
using the logical connectives∧ and∨ to form compound
diagrams.

We now describe, informally, the semantics of spider di-
agrams, see [28, 30] for formal semantics. Contours repre-
sent sets. In our discussion, we will identify contour labels
with the sets they represent. The diagram in figure 4 as-
serts thatA andB are disjoint, for example, because the
contours labelledA andB do not overlap. Zones and re-
gions in a unitary diagramd also represent sets. The zone
insideB but outsideA andC in figure 4 represents the set
B ∩ (

U − (A ∪ C)
)

whereU is the universal set. A re-
gion represents the union of the sets represented by its con-
stituent zones.

Spiders denote elements in the sets represented by their
habitats and the spider type affects the precise meaning.
Constant spiders denote specific individuals. As with con-
tour labels, in our informal discussion we will identify
constant spider labels with the individuals that they rep-
resent. The diagram in figure 4 expresses thats ∈ A or
s ∈ B − C. Existential spiders denote the existence of el-
ements. The two existential spiders in figure 4 denote the
existence of two distinct elements, one in the setC, the
other inC ∪ (

U − (A ∪ B ∪ C)
)
. Since distinct spiders

in a unitary diagram denote distinct elements it follows that
spiders allow us to place lower bounds on set cardinality.

Shading allows us to place upper bounds on set cardi-
nality. In the set represented by a shaded region, all of the
elements are denoted by spiders. For example, the shaded
zone insideC in figure 4 represents a set with at most two
elements because it is touched by two existential spiders.

If D = D1∨D2 (D = D1∧D2) is a compound diagram
then the semantics ofD are the disjunction (conjunction) of
the semantics ofD1 andD2. Unlike unitary diagrams, not
all compound diagrams are satisfiable.

Spider diagrams are equivalent in expressive power to
monadic first order logic with equality [28, 30]. The unitary
fragment is less expressive than the full system. Suppose a
statement,S, is made by compound diagramD. If there
is no unitary diagram semantically equivalent toD then we
say thatS cannot be expressedby a unitary diagram.

4 Generalizing Constant Spider Labelling

An example of a statement that cannot be expressed by
any unitary diagram iss is in A or t is outsideA where
s andt are specific individuals. This can be expressed by

the compound diagram formed by taking the disjunction of
d1 andd2 in figure 5. If, instead of labelling each constant

A

d 1

s
A

d 2

t
A

d 3

s t

d 4

s s

Figure 5. Labelling constant spider feet.

spider, we label each constant spider foot (the labels on dis-
tinct feet may be the same or different and each label may
be used on multiple spiders), then the unitary diagramd3 in
figure 5 expressess is in A or t is outsideA, because spider
legs represent disjunction, and is more concise thand1∨d2.

An interesting point is that, with these generalizations,
contradictions can be made by unitary diagrams. For ex-
ample,d4 in figure 5 asserts thats 6= s and is, therefore,
unsatisfiable. The semantics of unitary diagrams contain-
ing these generalized constant spiders are more subtle when
many constant spiders are present. Since distinct spiders de-
note distinct objects, the diagramd1 in figure 6 asserts that
there are two distinct individuals, one is eithers in A or t
outsideA and the other isu. Note thatd1 does not imply
that s 6= u, s 6= t nor t 6= u. Without these generaliza-
tions, any unitary diagram that makes an explicit statement
abouts, t andu would assert thats, t andu are pairwise
distinct. The diagramsd1 and non-generalizedd2 ∨ d3 are
semantically equivalent butd1 is more concise.

A

d 1

s t
u u u

A

d 2

s
A

d 3

u
t

Figure 6. Interacting spiders.

A

d 1

s t
A

d 2

us
A

d 3

u
t

d 4

s t
t u

A

Figure 7. Multiple label use.

Suppose that we wish to assert that there are two distinct
individuals, one is eithers in A or t outsideA and the other
is eithert in A or u outsideA. Without our generalizations,
this can only be expressed (implicitly) by a compound dia-
gram, such asd1 ∨ d2 ∨ d3 in figure 7. There is not a direct
mapping from the statement to the diagram sinced1∨d2∨d3

explicitly expresses
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1. there are two distinct individuals,s andt, both inA or

2. there are two distinct individuals, one of which,s, is in
A, the other,u, is outsideA or

3. there are two distinct individuals,t andu, both outside
A.

This example shows that in order to make our required state-
ment using the non-generalized syntax, we must first per-
form some reasoning to convert our statement into an ex-
plicitly representable form and then draw a diagram(s). Re-
laxing the constraint that each constant spider label occurs
at most once in any unitary diagram allows us to express our
required statement naturally and concisely, usingd4.

5 Multiple Typed Spiders

A restriction that, up until now, has been placed on spi-
ders is that legs can only join feet of the same type. We
generalize spiders so that feet of different types can be con-
nected by legs. In figure 8, the spider ind1 asserts that either

A

d 1

s
A

d 2

Bs

A

d 3

Bs
A

d 4

B
A

d 5

B

Figure 8. Multiple typed spiders.

s is in A or there is an element outsideA. The diagramd2

expresses thatA andB are disjoint and eithers is in A or
there is an element outsideA and, in addition, there are no
other elements are outsideA andd2 is semantically equiva-
lent to non-generalizedd3∨d4∨d5. This generalization has
an analogy in Peirce’s system where he allows⊗-sequences
to be joined too-sequences [23].

6 Generalizing the Placing of Spider’s Feet

In all previous spider diagram systems, spiders are per-
mitted to touch any given zone at most once. Indeed, al-
lowing spiders to touch a zone,z, more than once does not
necessarily provide any more information than a single foot
placed inz. For example, the diagramd1 in figure 9 ex-
presses that there is an element inA or in A, which is se-
mantically equivalent tod2. The semantics of generalized
constant spiders with multiple feet placed in a zone are more
interesting. The diagramd3 asserts thatA contains a single

A

d 1

A

d 2

A

d 3 d 4

s
A

s
t t

Figure 9. Touching zones many times.

element which is the individuals or the individualt; more
formally A = {s} ∨ A = {t}. It is not the case thatd3

expressess 6= t. The diagramd4 expressest is outsideA
or s is in A or there is an unspecified element inA and, in
addition, nothing else is inA.

7 Expressiveness

All of the generalizations that we have suggested do not
change the basic building blocks of the spider diagram lan-
guage, provided we only use round spider feet (there is no
theoretical reason why constant spider feet must be square).
The basic building blocks of spiders are feet, constant spi-
der labels and legs. We have removed restrictions placed
on how these building blocks can be joined together to
make statements. It is easy to prove that the generaliza-
tions we have proposed increase the expressiveness of the
unitary fragment. It is more interesting to consider how
much we have increased expressiveness with our general-
izations. Identifying the expressive power of both the non-
generalized and the generalized unitary fragments will es-
tablish this. We identify fragments of Monadic First Order
Logic with equality (MFOLe) equivalent to each of the uni-
tary fragments. We use contour labels as monadic predicate
symbols and constant spider labels as constant symbols in
MFOLe.

In unitary diagrams, we say which set an element be-
longs to by placing a spider in the appropriate region of a
diagram. In MFOLe, we describe the set that an element be-
long to using a formula. For example, the statement∃xA(x)
expresses that there is an element in the setA, which is also
expressed byd2 in figure 9 because there is an existential
spider placed insideA.

Definition 7.1 Letx be a variable. Aplacement formulain
x is defined inductively. For all monadic predicate symbols,
A, the atomic formulaA(x) is a placement formula inx. If
P andQ are placement formulas inx then so are(P ∧Q),
(P ∨Q) and¬P . For all constant symbolsc, (x = c ∧ P )
is anextended placement formulain x givenc.

In figure 7, non-generalizedd1 is equivalent to

∃x1 ∃x2

(
x1 = s ∧A(x1) ∧ x2 = t ∧A(x2) ∧ x1 6= x2

)
.

The structure of the MFOLe sentence above gives a clear
indication of the type of MFOLe sentences that can be ex-
pressed by non-generalized unitary diagrams. However, in
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the particular example above,d1 does not have any shaded
zones. Shading brings with it implicit universal quantifica-
tion and any fragment of MFOLe that corresponds to the
non-generalized unitary system must include the syntax re-
quired to place upper bounds on set cardinality. For exam-
ple, in figure 8, non-generalizedd4 is equivalent to

∃x1

(¬A(x1) ∧ ¬B(x1)∧
∀x2

(
(A(x2) ∧ ¬B(x2)) ∨ x2 = x1

))
.

The shading ind4 corresponds to the universally quantified
sub-formula in the equivalent MFOLe sentence above. In
general, any element is either in a set represented by a non-
shaded zone or is represented by a spider.

Definition 7.2 Let V be a finite set of variables and letx
be a variable not inV . LetP be a placement formula inx.
A bounding formula in x givenV is a formula of the form

∀x(
P ∨

∨

y∈V

x = y
)

where an empty disjunction is taken as⊥.

We are now in a position to define MFOLe sentences
that are expressible by our non-generalized unitary system
using placement formulas and bounding formulas as our ba-
sis. We recall that non-generalized unitary diagrams are all
satisfiable butexpressible sentences, defined below, can be
unsatisfiable. However, all satisfiable expressible sentences
are equivalent to some non-generalized unitary diagram.

Definition 7.3 An expressible sentenceis defined as fol-
lows.

1. The true symbol>, is an expressible sentence.

2. Any bounding formula with no free variables (that is,
the disjunction overV is empty) is an expressible sen-
tence.

3. Any sentence of the form

∃x1...∃xn

( ∧

1≤i≤n

Pi ∧
∧

1≤i≤n−1

xi 6= xi+1 ∧Q

)

is an expressible sentence provided

(a) eachPi is either a placement formula inxi or
an extended placement formula inxi given some
constantc,

(b) for eachPi and Pj if Pi and Pj are extended
placement formulas given constantsci andcj re-
spectively thenci = cj impliesPi = Pj and

(c) Q is either> or a bounding formula givenV =
{x1, ..., xn} in some variable,x, not inV .

For example, the MFOLe sentence below is expressible, be-
ing equivalent to non-generalizedd1 in figure 10:

∃x1∃x2

(
x1 = s ∧A(x1) ∧B(x2) ∧ x1 6= x2∧

∀x3(¬B(x3) ∨ x3 = x1 ∨ x3 = x2)
)
.

Theorem 7.1 The non-generalized unitary fragment is
equivalent in expressive power to the class of satisfiable ex-
pressible sentences.

A

d 1

B
s

A

d 2

B
s s

d 3

A

d 4

A
s

Figure 10. Expressing sentences.

Our attention now turns to the generalized case. All sen-
tences that are expressible by non-generalized unitary dia-
grams are obviously expressible by generalized unitary di-
agrams. The generalizations we have proposed allow more
disjunctive statements to be made by unitary diagrams. For
example, in figure 10, generalizedd2 is equivalent to the
generalized expressible sentence

∃x1

((
(x1 = s ∧A(x1)) ∨ (B(x1) ∧ ¬A(x1))

)∧
∀x2

(¬B(x2) ∨ x2 = x1

))
.

Definition 7.4 A generalized expressible sentenceis de-
fined as follows.

1. Any expressible sentence is a generalized expressible
sentence.

2. Any sentence of the form

∃x1...∃xn

( ∧

1≤i≤n

Ri ∧
∧

1≤i≤n−1

xi 6= xi+1 ∧Q

)

is a generalized expressible sentence provided

(a) Ri is any finite disjunction of placement formulas
in xi or extended placement formulas inxi given
some constantc,

(b) Q is either> or a bounding formula givenV =
{x1, ..., xn} in some variable,x, not inV .

Theorem 7.2 The generalized unitary fragment is equiva-
lent in expressive power to the class of generalized express-
ible sentences.

Theorem 7.3 The generalized unitary fragment is more ex-
pressive than the non-generalized unitary fragment.
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Theorems 7.1 and 7.2 show how our generalizations
have increased the expressiveness of the unitary system.
Furthermore, they show the type of statements that each
unitary system is capable of expressing, thus highlight-
ing expressive limitations. For example, no generalized
unitary diagram can express either of the two statements
∀x¬A(x) ∨ ∀x¬B(x) and∀x¬A(x) ∨ ∃x1∃x2 x1 6= x2.
Peirce’so-sequences can be imported into spider diagrams
to make the first statement but there is no obvious general-
ization that allows us to make the latter.

A further limitation is that no generalized unitary dia-
gram can express arbitrary finite lower and upper bounds
on any given setwithout also specifying further informa-
tion, exemplified by the example0 ≤ |A| ≤ 2. Schr̈odinger
spiders, introduced in [12], have round unfilled feet and ex-
press that an element might be present. Including such spi-
ders in the language allows us to express0 ≤ |A| ≤ 2,
shown byd3 in figure 10. We can also introduce a new type
of spider, called aSchrödinger constant spider, in order to
express that an individual might be in a particular set, seed4

in figure 10 which expressesA ⊆ {s}. Schr̈odinger spider
feet, of either type, can also be joined to other spiders fol-
lowing all of the generalizations presented in the previous
sections.

8 Conclusions and Open Problems

In this paper we have explored generalizations of spi-
der diagrams that increase the expressiveness of the unitary
fragment. By allowing constant spiders’ feet to be labelled,
for example, we have provided a natural way of making
some simple statements using unitary diagrams. Indeed, all
of the extensions we have proposed enhance the spider di-
agram system by making it more flexible and notationally
efficient. We believe that our generalizations will make it
easier for people to make certain statements. This is sug-
gested by the fact that some statements can be explicitly
made by generalized unitary diagrams which can only be
implicitly made by the non-generalized (compound) sys-
tem. However, the increased complexity of the general-
ized notation may mean that some people find certain gen-
eralized unitary diagrams harder to interpret than semanti-
cally equivalent non-generalized compound diagrams. It is
straightforward to convert generalized diagrams into non-
generalized diagrams. With appropriate tool support, such
a conversion can be easily automated. It will be interesting
to establish whether generalized spider diagrams are more
effective, in terms of promoting human task efficiency, than
non-generalized spider diagrams.

A particular challenge faced when attempting to in-
crease the expressiveness of the unitary fragment further is
how best to express disjunctive information that involves
shading. Incorporating Peirce’so-sequences, as discussed

above, will yield some increase in expressiveness but will
not entirely solve the problem. Shading brings with it (im-
plicit) universal quantification. To maximize expressiveness
we need to interpret shading and spiders (which have exis-
tential import) in arbitrary orders which can make defin-
ing semantics difficult. It is likely that a dependence anal-
ysis would be required, as in the constraint diagram lan-
guage [6]. We conjecture that such an extension of the uni-
tary fragment will be as expressive as the full system.

The development of reasoning rules is necessary before
we can investigate the effect of our generalizations on the
ability of our theorem prover to find proofs. It will be inter-
esting, and difficult, to provide a complete classification of
the proof tasks where our generalizations are beneficial in
terms of time taken to find a proof.

A r
x

x

s t

s
t

Figure 11. A generalized constraint diagram.

The constraint diagram language can be extended by in-
corporating our generalizations. The generalized constraint
diagram in figure 11 expresses the same as the first order
logic sentence

∀x ∈ A(r(x, s)∨r(x, t))∧∀y(
r(x, y) ⇒ (y = s∨y = t)

)
.

The reading treeabove the diagram informs us that we are
to read the asterisk (a universal spider) before the constant
spider. It is not obvious whetheranynon-generalized con-
straint diagram can make such a statement. Whilst the exact
expressive of constraint diagrams is unknown, we believe
that our generalizations will lead to an increase in expres-
siveness of the compound constraint diagram system as well
as the unitary fragment.
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