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Abstract (since the two circles have disjoint interiors). The diagram
ds is an Euler/Venn diagram [31] and expresses that noth-
Many visual languages based on Euler diagrams have ing is both a fish and a bird (by the use of shading) and there
emerged for expressing relationships between sets. The exis something callegfred that is either a fish or a bird, but
pressive power of these languages varies, but the major-not both. Furthermore;obin is a bird but not a fish. Note
ity are monadic and some include equality. Spider dia- that fred androbin could represent the same individual.
grams are one such language, being equivalent in expres-Euler/Venn diagrams use shading to express the emptiness
sive power to monadic first order logic with equality. Spi- of a set andconstant sequences make statements about
ders are used to represent the existence of elements or spespecific individuals. Finallyds is a spider diagram [16]
cific individuals and distinct spiders represent distinct el- and expresses that something is either a fish or a bird but
ements. Logical connectives are used to join diagrams, not both and there is at least one but at most two elements
increasing the expressiveness of the language. Spider diin the setBirds — Fish (by the use okxistential spiders
agrams that do not incorporate logical connectives are and shading). So, by contrast to Euler/Venn, spider dia-
called unitary diagrams. In this paper we explore gener- grams use shading to place upper bounds on set cardinality
alizations of the spider diagram system. We consider theand spiders place lower bounds on set cardinality. Whilst
effects of these generalizations on the expressiveness of unthe spiders inds represent the existence of elements, spi-
tary spider diagrams and on conciseness. der diagrams useonstant spider make statements about
specific individuals.
Others have introduced diagrammatic logics based on
1 Introduction Venn diagrams which form, essentially, a fragment of the
Euler diagram language. Peirce useesequences to as-
sert non-emptiness and, instead of shadingequences to
assert emptiness [23]. The diagrdmin figure 2 is a Venn-
Peirce diagram and expresses thath — Birds = () or
Birds — Fish # (. This example illustrates a key differ-
ence between the use of shading and the usesefjuences
because the statement made is disjunctive. The diagsam
is a Venn-Il diagram [25] and uses @asequence to express
Fish Birds | | Fish Birds | | Fish Birds that Fish # () and shading to expressirds — Fish = 0.
A Venn-Il does not incorporatesequences.
' The expressiveness of various diagrammatic logics has

been established. The Venn-Il system has been shown to be

Recent times have seen various formal diagrammatic
logics and reasoning systems emerging [6, 13, 17, 25, 26,
31, 33]. Many of these logics are based on the popular and
intuitive Euler diagrams augmented with shading. The dia-
grams in figure 1 are all based on Euler diagrams.

4, 4, d; equivalent in expressive power to monadic first order logic
(without equality) [25]. In monadic first order logic, all of
Figure 1. Various extended Euler diagrams. the predicate symbols are unary and they correspond to con-

tour labels. So, for example, Venn-ll cannot express that
The diagrami; expresses that there are no birds (by the a property holds for a unique individual. Spider diagrams
use of shading) and that nothing is both a fish and a bird properly increase expressiveness over Venn-Il. In [30] it is
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Fish Birds | | Fish Birds guage as well as be important for theoretical reasons (dis-
cussed in section 2). An interesting question arises: is the
unitary spider diagram system as expressive as the full sys-
tem? The answer is, perhaps unfortunately, no. There are
numerous examples of simple statements, as well as com-

d, d, plex statements, that cannot be made by any unitary spider
_ _ _ diagram that can be made by a compound diagram.
Figure 2. Venn-Peirce and Venn-II diagrams. In this paper, we explore deficiencies in the expressive

power of unitary spider diagrams. We generalize the syntax
of spider diagrams, increasing the expressiveness of the uni-
tary system, overcoming some of these deficiencies. These
generalizations give rise to a more flexible system because
there are more ways of expressing a given piece of informa-
tion. As a consequence, it may be that there is a more nat-
hral mapping from a statement a user wishes to make to a
diagram expressing that statement. We give our motivation
for increasing the expressiveness of unitary spider diagrams

shown that the language of spider diagrams (without con-
stant spiders) is equivalent in expressive power to monadic
first order logic with equality and, hence, can express that a
property holds for a unique individual. Furthermore, it has

increase the expressiveness of spider diagrams [28].
Spider diagrams have been used for specifying safety
critical systems [3], visualizing clusters which contain con-

; : U in section 2. In section 3 we give a brief overview of the
cepts from multiple ontologies [14] and for allowing files syntax and semantics of existing spider diagram systems.
to be viewed in multiple directories [4] as well as having

h licati Eurth thev f the basi In sections 4 to 6 we present our generalizations. We give
many other applications. Furihermore, they form the aSISexpressiveness results for the non-generalized and general-

of constraint diagrams, introduced by Kent [18], which are ized unitary fragments in section 7, where expressiveness

d_eS|gnﬁd for: o_bjfctdorlegted SF:EQ'f',[CZF'On [15, 20]. It<ents limitations of the generalized system are discussed and fur-
aim, when he introduced constraint diagrams, was to pro-y .- generalizations are proposed.

vide a user friendly, formal notation that is well suited to
those who like to use diagrams for modelling but shy away o ) .
from the textual languages that are currently on offer for 2 Motivational Discussion
formal specification. The hope is that, by providing suffi-
ciently expressive formal diagrammatic notations, the use There are theoretical reasons for increasing the expres-
of formal methods will be encouraged leading to improved siveness of the unitary system. Firstly, there is interest
software design and, as a result, more reliable software willin automatically generating proofs in spider diagram sys-
be built. tems [11, 22]. Approaches have been developed that pro-
In order for Kent’s vision to be realized, the syntax and duce shortest proofs [8, 9]. These approaches use a heuris-
semantics of constraint diagrams must be formalized (donetic function to guide the theorem prover towards good rea-
in [6]). Furthermore, to enable software engineers to reasonsoning steps, reducing the amount of backtracking required
about their models, it is essential that sound and, where posand, hence, smaller search trees are produced. The heuris-
sible, complete sets of reasoning rules are specified. Twatic function gives a numerical score that provides a lower
sound and complete systems have been developed for fragbound on the length of a shortest proof from the premise
ments of the langauge [26, 27] and sound rules have beerdiagram to the conclusion diagram.
defined for the full notation [5]. It is desirable to develop Defining an accurate heuristic function for the compound
automated theorem provers for the constraint diagram lan-system is challenging, partly due to the tree structure of the
guage, thus providing practical support for software engi- diagrams. Even if an accurate heuristic function can be de-
neers to reason about their models. For example, it mayfined, the size of the search tree can still explode due to an
be necessary to prove that two specifications are equivalenabundance of highly applicable reasoning rules causing the
or that the post-condition of one operation implies the pre- nodes of the search trees to have large out-degrees. One
condition of another. problematic rule is idempotency which can be applied to
The diagrams we have seen so far are all instances ofany diagram: fromi; we can deduce; V d;, for exam-
unitary diagrams Unitary diagrams can be joined using ple. Given the potentially large number of sub-diagrams
logical connectives such asandV. Many diagrammatic  in a compound diagram, it is easy to see that the idempo-
systems have incorporated logical connectives, for exam-tency rule can, sometimes, be applied in many ways. This
ple [5, 16, 25, 26], most of which are sound and com- high applicability makes it hard for the size of the search
plete. Unitary diagrams represent information more con- tree to be controlled. Furthermore, some other highly appli-
cisely than compound diagrams. The ability to express cable rules are non-deterministic, such as the information
statements concisely could enhance the usability of a lan-weakening rule ‘fromd; we can deducé; Vv dy’ and the



*)?—’} In the constraint diagram language it can be difficult, maybe
impossible, to make some first order statements involv-
ing disjunction inside the scope of a universal quantifier;
y see [29] for a discussion of this issue. It may well be that
if the generalizations we propose are incorporated into the
constraint diagram language then the expressiveness of the
Figure 3. A constraint diagram. whole system is increased, not just that of the unitary frag-
ment. Indeed, the task of finding efficient theorem prov-
ing algorithms for constraint diagrams is daunting because
information preserving absorption rule froiy we cande-  these diagrams are highly expressive. The better we under-
duced; A (d1 V dz)’ (in both casesl, is any diagram). This  stand how to control the search for proofs in spider diagram
non-determinism makes implementing theorem provers thatsystems, the more tractable this task becomes for constraint
operate with a complete set of rules for the compound sys-diagrams. The work presented in this paper is an essential
tem a challenging task. By contrast, the rules that exist for pasis for the thorough exploration of theorem proving tech-
unitary diagrams are all deterministic. niques for spider diagram systems, which will allow us to

The effectiveness of the heuristic function can be ana- find highly efficient theorem proving algorithms.
lyzed by comparing the sizes of the search trees generated
by the theorem prover to those generated by conducting a .
breadth first sea?ch. Analysis has shown that restricting the3 Informal Syntax and Semantics
theorem prover to the unitary fragment (without the gener-
alizations presented in this paper) results in a much larger Various systems of spider diagrams have been devel-
percentage reduction in the size of the search tree wheroped, for example [16, 28], and in this section we give an
compared with the compound case [8, 9]. We conjecture informal overview of their syntax and semantics.
that similar results can be observed when comparing the
more expressive unitary system suggested in this paper with 4
the compound system; if this is the case then increasing
the expressiveness of the unitary system will result in more
theorems being provable in a reasonable amount of time.
Given the inherent difficulty of developing efficient auto- C
mated theorem provers, any generalizations that may result
in more effective theorem proving techniques being devel-
oped should be thoroughly investigated.

We note that some people may prefer to use spider di- . ]
agrams that do not include our generalizations. However, A contouris a simple closed plane curve. Each contour
it is simple to translate proofs involving generalized spider IS labelled. Aboundary rectangle properly contains all
diagrams into proofs that involve (non-generalized) spider contours. The boundary rectangle is not a contour and is
diagrams. Thus, if we can develop more efficient theorem Nt labelled. Abasic regionis a maximal, bounded set of
proving techniques for the generalized system then we canP0ints in the plane enclosed by a contour or the boundary
pass on these efficiency savings to the non-generalized systeéctangle. Aregion is defined recursively as follows: any
tem. basic region is a region; if; andr, are regions then the

Secondly, we wish to be able to automate the drawing Union, intersection and difference of andr, are regions
of diagrams (this is essential if we are to present automat-Provided these are non-empty. Zoneis a region having
ically generated proofs to users in a diagrammatic form). N0 other region contained within it. A region #haded
Considerable research has been conducted into the generdf-€ach of its component zones is shaded. The diagram in
tion of Euler diagrams [1, 2, 7, 19, 24, 32] and spider dia- flgure4contgm_s three contours, Ial?ell_edB andC'. There
grams [21]. It can be time consuming to automatically draw IS 0ne zone insidel and two zones insid8. In total there
visually pleasing Euler diagrams; see [10] for related work. are five zones (|_nclud|ng the zone which is outside all three
It is preferable to automatically draw unitary diagrams in- contours) of which two are shaded.
stead of compound diagrams. A spider is a tree with nodes (calleteet) placed in

Finally, the constraint diagram language [6] extends the Zones. The connecting edges (callegs are straight lines.
spider diagram language. The diagram in figure 3 is a con-The feet of a spider are either all squaregastant spidei)

Figure 4. A unitary spider diagram.

straint diagram and expresses or all round (arexistential spider). Each constant spider is
labelled. A spidetouchesa zone if one of its feet is placed
Vo e Ay e U — A(r(z,y) AVz (r(z,2) = y = 2)). in that zone. A spider can touch a zone at most once. In



figure 4 there are three spiders. The constant spider labelledhe compound diagram formed by taking the disjunction of
s has a two zone habitat and, therefore, touches two zones.d; andd; in figure 5. If, instead of labelling each constant
A unitary spider diagram is a single boundary rectan-
gle together with a finite collection of contours, shading and y y y
spiders. No two contours (constant spiders) in the same uni- @ Q . @ = .
tary diagram can have the same contour label (constant spi- !
der label). Unitary spider diagrams can be joined together
using the logical connectives andV to form compound
diagrams. o _ _ _ Figure 5. Labelling constant spider feet.
We now describe, informally, the semantics of spider di-

agrams, see [28, 30] for formal semantics. Contours repre-gpiger we label each constant spider foot (the labels on dis-

sent sets. In our discussion, we will identify contour labels it feet may be the same or different and each label may
with the sets they reprgsgqt. The diagram in figure 4 as-pq sed on multiple spiders), then the unitary diagdgrim
serts thatd and B are disjoint, for example, because the g re 5 expressesis in A or ¢ is outsided, because spider
contours labelledd and 5 do not overlap. Zones and re- o4 represent disjunction, and is more concise thands.
gions in a unitary diagrand also represent sets. The zone  “ap jnteresting point is that, with these generalizations,
inside B but outsideA andC in figure 4 represents the set contradictions can be made by unitary diagrams. For ex-

B (U - (AUC)) whereU is the universal set. A re- ample,d, in figure 5 asserts that # s and is, therefore,
gion represents the union of the sets represented by its conghgatisfiable. The semantics of unitary diagrams contain-

stituent zones. ing these generalized constant spiders are more subtle when

Spiders denote elements in the sets represented by theig, 5y constant spiders are present. Since distinct spiders de-
habitats and the spider type affects the precise meaningp,qe gistinct objects, the diagradn in figure 6 asserts that

Constant spiders denote specific individuals. As with con- ihare are two distinct individuals. one is eithein A or ¢

tour labels, in our informal discussion we will identify  isideA and the other is.. Note thatd, does not imply
constant spider labels with the individuals that they rep- ot ¢ 4 u, s # tnort # u. Without these generaliza-

resent. The diagram in figure 4 expresses that A or tions, any unitary diagram that makes an explicit statement
se B-C. EX|stent|_aI spl_ders _denot_e the existence of el- abouts, ¢ andu would assert that, t andw are pairwise
ements. The two existential spiders in figure 4 denote the jistinct. The diagramé, and non-generalized, \ d; are
emstepce of two distinct eIements,lone in t_he é‘et_the semantically equivalent bt is more concise.

other inC' U (U — (AU B U ()). Since distinct spiders

d, d, d, d,

in a unitary diagram denote distinct elements it follows that

spiders allow us to place lower bounds on set cardinality. 4 n 4 4 -
Shading allows us to place upper bounds on set cardi- @: ®_,

nality. In the set represented by a shaded region, all of the ! " !

elements are denoted by spiders. For example, the shaded 4 Z 7

zone insideC in figure 4 represents a set with at most two i

elements because it is touched by two existential spiders. Figure 6. Interacting spiders.

If D= D;V Dy (D= DiAD5)isacompound diagram
then the semantics @ are the disjunction (conjunction) of
the semantics oD, and D,. Unlike unitary diagrams, not P P P . B
all compound diagrams are satisfiable. . " 7

Spider diagrams are equivalent in expressive power to @ " Q @;
monadic first order logic with equality [28, 30]. The unitary
fragment is less expressive than the full system. Suppose a
statement,S, is made by compound diagram. If there

is no unitary diagram semantically equivalent?dhen we
say thatS cannot be expressetby a unitary diagram.

~n

d, d, d, d,
Figure 7. Multiple label use.

Suppose that we wish to assert that there are two distinct
. . . individuals, one is eithes in A or ¢ outsideA and the other
4  Generalizing Constant Spider Labelling is eithert in A or u outsideA. Without our generalizations,
this can only be expressed (implicitly) by a compound dia-
An example of a statement that cannot be expressed bygram, such a8, Vv ds V ds in figure 7. There is not a direct
any unitary diagram is is in A or t is outsideA where mapping from the statement to the diagram sifceds \Vds
s andt are specific individuals. This can be expressed by explicitly expresses



1. there are two distinct individuals,andt, both in A or

2. there are two distinct individuals, one of whighjs in
A, the othery, is outsideA or

3. there are two distinct individualsandu, both outside
A.

©0| 0| ®

d, d, d, d,

Figure 9. Touching zones many times.

This example shows that in order to make our required state- o o N

ment using the non-generalized syntax, we must first per_element which is the individual or the individualt; more
form some reasoning to convert our statement into an ex-formally A = {s} v.A = {t}. Itis not the case thats
plicitly representable form and then draw a diagram(s). Re- €XPresses # t. The diagrami, expresses is outsideA
laxing the constraint that each constant spider label occursC! 8 1S in A or there is an unspecified elementdnand, in
at most once in any unitary diagram allows us to express our2ddition, nothing else is irl.

required statement naturally and concisely, using

5 Multiple Typed Spiders

A restriction that, up until now, has been placed on spi-
ders is that legs can only join feet of the same type. We
generalize spiders so that feet of different types can be con

nected by legs. Infigure 8, the spiderinasserts that either

Bl°

dl ,

A@@ o @;QB ”Qdi ol

Figure 8. Multiple typed spiders.

sisin A or there is an element outside The diagrami,
expresses thal and B are disjoint and eithes is in A or
there is an element outsideand, in addition, there are no
other elements are outsideandd, is semantically equiva-
lent to non-generalized; v dy V ds. This generalization has
an analogy in Peirce’s system where he allggvsequences
to be joined tw-sequences [23].

6 Generalizing the Placing of Spider’s Feet

7 Expressiveness

All of the generalizations that we have suggested do not
change the basic building blocks of the spider diagram lan-
guage, provided we only use round spider feet (there is no
theoretical reason why constant spider feet must be square).

The basic building blocks of spiders are feet, constant spi-
der labels and legs. We have removed restrictions placed
on how these building blocks can be joined together to
make statements. It is easy to prove that the generaliza-
tions we have proposed increase the expressiveness of the
unitary fragment. It is more interesting to consider how
much we have increased expressiveness with our general-
izations. ldentifying the expressive power of both the non-
generalized and the generalized unitary fragments will es-
tablish this. We identify fragments of Monadic First Order
Logic with equality (MFOLe) equivalent to each of the uni-
tary fragments. We use contour labels as monadic predicate
symbols and constant spider labels as constant symbols in
MFOLe.

In unitary diagrams, we say which set an element be-
longs to by placing a spider in the appropriate region of a
diagram. In MFOLe, we describe the set that an element be-
long to using a formula. For example, the statentam (x)
expresses that there is an element in thedsethich is also
expressed byl in figure 9 because there is an existential
spider placed insidd.

Definition 7.1 Letx be avariable. Aplacement formulan
x is defined inductively. For all monadic predicate symbols,
A, the atomic formul&(z) is a placement formula im. If

In all previous spider diagram systems, spiders are per-P and( are placement formulas in then so arg§ P A @),
mitted to touch any given zone at most once. Indeed, al-(P Vv @) and—P. For all constant symbols, (z = ¢ A P)

lowing spiders to touch a zone, more than once does not
necessarily provide any more information than a single foot

placed inz. For example, the diagramy in figure 9 ex-
presses that there is an elementdiror in A, which is se-

is anextended placement formulan x givenc.

In figure 7, non-generalized, is equivalent to
Jrq Jzg (1’1 =sNA(x1)Nze =t NA(z2) Ny # xQ).

mantically equivalent tal,. The semantics of generalized The structure of the MFOLe sentence above gives a clear
constant spiders with multiple feet placed in a zone are moreindication of the type of MFOLe sentences that can be ex-
interesting. The diagraml asserts thatl contains a single  pressed by non-generalized unitary diagrams. However, in



the particular example abové, does not have any shaded For example, the MFOLe sentence below is expressible, be-

zones. Shading brings with it implicit universal quantifica- ing equivalent to non-generalized in figure 10:

tion and any fragment of MFOLe that corresponds to the

non-generalized unitary system must include the syntax re- %1322 (z1 =5 A A1) A B(2) A2y # 22

quired to place upper bounds on set cardinality. For exam- Vas(—B(x3) Vaos =21 Vaz = 2172)).

ple, in figure 8, non-generalizet] is equivalent to

Theorem 7.1 The non-generalized unitary fragment is

o1 (~A(21) A =B(@1)A equivalent in expressive power to the class of satisfiable ex-
Vo ((A(z2) A —B(z2)) V 22 = 21)). pressible sentences.

The shading inl, corresponds to the universally quantified
sub-formula in the equivalent MFOLe sentence above. In| 4 B 4 B ||4 A
general, any element is either in a set represented by a no
shaded zone or is represented by a spider.

Definition 7.2 Let V' be a finite set of variables and let d, d, d; d,
be a variable not irl/. Let P be a placement formula in.
A bounding formulain = givenV is a formula of the form Figure 10. Expressing sentences.
x(Pv \/ x=y) Our attention now turns to the generalized case. All sen-
yev tences that are expressible by non-generalized unitary dia-

grams are obviously expressible by generalized unitary di-

agrams. The generalizations we have proposed allow more
We are now in a position to define MFOLe sentences disjunctive statements to be made by unitary diagrams. For

that are expressible by our non-generalized unitary systenmexample, in figure 10, generalizetd is equivalent to the

using placement formulas and bounding formulas as our ba-generalized expressible sentence

sis. We recall that non-generalized unitary diagrams are all

satisfiable buExpressibIge sentenqeﬂefinedybelog\]/v, can be o1 (21 = s A A1) V (Blan) A= A1) A

unsatisfiable. However, all satisfiable expressible sentences sz(ﬁB(!EQ) Vg = 331))

are equivalent to some non-generalized unitary diagram. o ) ) )
Definition 7.4 A generalized expressible sententede-

Definition 7.3 An expressible sentencis defined as fol-  fined as follows.
lows.

where an empty disjunction is taken as

1. Any expressible sentence is a generalized expressible
1. The true symbal, is an expressible sentence. sentence.

2. Any bounding formula with no free variables (thatis, 2. Any sentence of the form
the disjunction ovel/ is empty) is an expressible sen-

tence. 3%( N Rin N\ wi#zia /\Q>
3. Any sentence of the form l<izn lsizn—1
is a generalized expressible sentence provided
3%( /\ P A /\ xi?éxi-i-l/\Q)

1<i<n 1<i<n—1 (&) R;isany finite disjunction of placement formulas
in z; or extended placement formulasaipgiven

is an expressible sentence provided some constant,

(a) eachp; is either a placement formula im; or (b) @ is eitherT or a bounding formula givefy’ =
an extended placement formulaapgiven some {z1,...,x,} in SOMe variableg, not in V.
constant,

(b) for eachP; and P; if P, and P; are extended Theorem 7.2 The generalized unitary fragment is equiva-
placementlformulé\s giv;n Consjtalsmdn e- lent in expressive power to the class of generalized express-
“J

spectively ther; = ¢; impliesP; = P; and ible sentences.

(c) Q is either T or a bounding formula givei” = Theorem 7.3 The generalized unitary fragment is more ex-
{z1,...,z,} in some variablez, notinV'. pressive than the non-generalized unitary fragment.



Theorems 7.1 and 7.2 show how our generalizationsabove, will yield some increase in expressiveness but will
have increased the expressiveness of the unitary systemrmot entirely solve the problem. Shading brings with it (im-
Furthermore, they show the type of statements that eaclplicit) universal quantification. To maximize expressiveness
unitary system is capable of expressing, thus highlight- we need to interpret shading and spiders (which have exis-
ing expressive limitations. For example, no generalized tential import) in arbitrary orders which can make defin-
unitary diagram can express either of the two statementsing semantics difficult. It is likely that a dependence anal-
Vo —A(x) VVe-B(z) andVe —A(x) V Jz13xo 21 # xo. ysis would be required, as in the constraint diagram lan-
Peirce’'so-sequences can be imported into spider diagramsguage [6]. We conjecture that such an extension of the uni-
to make the first statement but there is no obvious generaltary fragment will be as expressive as the full system.
ization that allows us to make the latter. The development of reasoning rules is necessary before

A further limitation is that no generalized unitary dia- we can investigate the effect of our generalizations on the
gram can express arbitrary finite lower and upper boundsability of our theorem prover to find proofs. It will be inter-
on any given sewithout also specifying further informa-  esting, and difficult, to provide a complete classification of
tion, exemplified by the example< |A| < 2. Schibdinger the proof tasks where our generalizations are beneficial in
spiders introduced in [12], have round unfilled feet and ex- terms of time taken to find a proof.
press that an element might be present. Including such spi-
ders in the language allows us to expréss< |A| < 2, s
shown byds in figure 10. We can also introduce a new type H
of spider, called &chrodinger constant spidet in order to
express that an individual might be in a particular setdsee 4
in figure 10 which expresse$ C {s}. Schidinger spider st
feet, of either type, can also be joined to other spiders fol-
lowing all of the generalizations presented in the previous
sections.

Figure 11. A generalized constraint diagram.

8 Conclusions and Open Problems The constraint diagram language can be extended by in-
corporating our generalizations. The generalized constraint

In this paper we have explored generalizations of spi- diagram in figure 11 expresses the same as the first order

der diagrams that increase the expressiveness of the unitar{pgic sentence

fragment. By allowing constant spiders’ feet to be labelled, o 4 (,.(;. S)Vr(, ) Ay (r(z,y) = (y = sVy =1)).

for example, we have provided a natural way of making

some simple statements using unitary diagrams. Indeed, allThereading treeabove the diagram informs us that we are

of the extensions we have proposed enhance the spider dito read the asterisk (a universal spider) before the constant

agram system by making it more flexible and notationally spider. It is not obvious wheth@ny non-generalized con-

efficient. We believe that our generalizations will make it straintdiagram can make such a statement. Whilst the exact

easier for people to make certain statements. This is sugexpressive of constraint diagrams is unknown, we believe

gested by the fact that some statements can be explicitlythat our generalizations will lead to an increase in expres-

made by generalized unitary diagrams which can only be siveness of the compound constraint diagram system as well

implicitly made by the non-generalized (compound) sys- as the unitary fragment.

tem. However, the increased complexity of the general-

ized notation may mean that some people find certain gen-AcknowledgementsGem Stapleton is supported a by Lev-

eralized unitary diagrams harder to interpret than semanti-erhulme Trust Early Career Fellowship. Thanks to John

cally equivalent non-generalized compound diagrams. It is Taylor for his comments on earlier drafts of this paper.

straightforward to convert generalized diagrams into non-
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