
Learning Grammars for Noun Phrase Extraction by Partition Search

Anja Belz

ITRI
University of Brighton

Lewes Road
Brighton BN2 4GJ, UK

Anja.Belz@itri.brighton.ac.uk

Abstract
This paper describes an application of Grammar Learning by Partition Search to noun phrase extraction, an essential task in information
extraction and many other NLP applications. Grammar Learning by Partition Search is a general method for automatically constructing
grammars for a range of parsing tasks; it constructs an optimised probabilistic context-free grammar by searching a space of nonterminal
set partitions, looking for a partition that maximises parsing performance and minimises grammar size. The idea is that the considerable
time and cost involved in building new grammars can be avoided if instead existing grammars can be automatically adapted to new
parsing tasks and new domains. This paper presents results for applying Partition Search to the tasks of (i) identifying flat NP chunks,
and (ii) identifying all NPs in a text. For NP chunking, Partition Search improves a general baseline result by 12.7%, and a method-
specific baseline by 2.2%. For NP identification, Partition Search improves the general baseline by 21.45%, and the method-specific
one by 3.48%. Even though the grammars are nonlexicalised, results for NP identification closely match the best existing results for
lexicalised approaches.

1. Introduction
Grammar Learning by Partition Search is a computa-

tional learning method that constructs probabilistic gram-
mars optimised for a given parsing task. Its main practical
application is the adaptation of grammars to new tasks, in
particular the adaptation of conventional, “deep” grammars
to the shallow parsing tasks involved in many NLP applica-
tions. The parsing tasks investigated in this paper are NP
identification and NP chunking both of which involve the
detection of NP boundaries, a task which is fundamental
to information extraction and retrieval, text summarisation,
document classification, and other applications.
The ability to automatically adapt an existing grammar

to a new parsing task saves time and expense. Furthermore,
adapting deep grammars to shallow parsing tasks has a spe-
cific advantage. Existing approaches to NP extraction are
mostly completely flat. They do not carry out any struc-
tural analysis above the level of the chunks and phrases
they are meant to detect. Using Partition Search to adapt
deep grammars for shallow parsing permits those parts of
deeper structural analysis to be retained that are useful for
the detection of more shallow components.
The remainder of this paper is organised in two main

sections. Section 2. describes Grammar Learning by Parti-
tion Search. Section 3. reports experiments and results for
NP identification and NP chunking.

2. Learning PCFGs by Partition Search
Partition Search Grammar Learning starts from the idea

that new context-free grammars can be created from old
simply by modifying the nonterminal sets, merging and
splitting subsets of nonterminals. For example, for certain
parsing tasks it is useful to split a single verb phrase cat-
egory into verb phrases that are headed by a modal verb
and those that are not, whereas for other parsing tasks, the

added grammar complexity is avoidable. In another con-
text, it may not be necessary to distinguish noun phrases in
subject position from first objects and second objects, mak-
ing it possible to merge the three categories into one.
The usefulness of such split and merge operations can

be objectively measured by their effect on a grammar’s size
(number of rules and nonterminals) and performance (pars-
ing accuracy on a given task). Grammar Learning by Par-
tition Search automatically tries out different combinations
of merge and split operations and therefore can automati-
cally optimise a grammar’s size and performance.

2.1. Preliminary definitions

Definition 1 Set Partition
A partition of a nonempty set is a subset of
such that is not an element of and each element of
is in one and only one set in .

The partition of where all elements are singleton sets
is called the trivial partition of .

Definition 2 Probabilistic Context-Free Grammar
A Probabilistic Context-Free Grammar (PCFG) is a 4-
tuple , where is a set of terminal
symbols, is a set of nonterminal symbols,

is a set
of start symbols with associated probabilities summing
to one, and is a
set of rules with associated probabilities. Each rule
is of the form , where is a nonterminal, and
is a string of terminals and nonterminals. For each

nonterminal , the values of all ) sum to one,
or: .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Brighton Research Portal

https://core.ac.uk/display/188247013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2.2. Generalising and Specialising PCFGs through
Nonterminal Set Operations

2.2.1. Nonterminal merging
Consider two PCFGs and :

NNS, DET, NN, VBD, JJ
S, NP-SUBJ, VP, NP-OBJ
S
S -> NP-SUBJ VP
NP-SUBJ -> NNS
NP-SUBJ -> DET NN
VP -> VBD NP-OBJ
NP-OBJ -> NNS
NP-OBJ -> DET JJ NNS

NNS, DET, NN, VBD, JJ
S, NP, VP
S
S -> NP VP
NP -> NNS
NP -> DET NN
VP -> VBD NP
NP -> DET JJ NNS

Intuitively, to derive from , the two nonterminals
NP-SUBJ and NP-OBJ are merged into a single new nonter-
minal NP. This merge results in two rules from becom-
ing identical in : both NP-SUBJ -> NNS and NP-OBJ
-> NNS become NP -> NNS. One way of determining the
probability of the new rule NP -> NNS is to sum the prob-
abilities of the old rules and renormalise by the number of
nonterminals that are being merged1. In the above example
therefore NP -> NNS 2.
An alternative would be to reestimate the new gram-

mar on some corpus, but this is not appropriate in the cur-
rent context: merge operations are used in a search pro-
cess (see below), and it would be expensive to reestimate
each new candidate grammar derived by a merge. It is bet-
ter to use any available training data to estimate the orig-
inal grammar’s probabilities, then the probabilities of all
derived grammars can simply be calculated as described
above without expensive corpus reestimation.
The new grammar derived from an old grammar

by merging nonterminals in is a generalisation of : the
language of , or , is a superset of the language of
, or . E.g., det jj nns vbd det jj nns is in

but not in . The set of parses assigned to a
sentence by differs from the set of parses assigned to
by . The probabilities of parses for can change, and so
can the probability ranking of the parses, i.e. the most likely
parse for under may be different from the most likely
parse for under . Finally, has the same number of
rules as or fewer.

1Reestimating the probabilities on the training corpus would
of course produce identical results.

2Renormalisation is necessary because the probabilities of all
rules expanding the same nonterminal sum to one, therefore the
probabilities of all rules expanding a new nonterminal resulting
from merging old nonterminals will sum to .

2.2.2. Nonterminal splitting

Deriving a new PCFG from an old one by splitting
nonterminals in the old PCFG is not quite the exact reverse
of deriving a new PCFG by merging nonterminals. The
difference lies in determining probabilities for new rules.
Consider the following grammars and :

NNS, DET, NN, VBD, JJ
S, NP, VP
S
S -> NP VP
NP -> NNS
NP -> DET NN
VP -> VBD NP
NP -> DET JJ NNS

NNS, DET, NN, VBD, JJ
S, NP-SUBJ, VP, NP-OBJ
S
S -> NP-SUBJ VP
S -> NP-OBJ VP
NP-SUBJ -> NNS
NP-SUBJ -> DET NN
NP-SUBJ -> DET JJ NNS
VP -> VBD NP-SUBJ
VP -> VBD NP-OBJ
NP-OBJ -> NNS
NP-OBJ -> DET NN
NP-OBJ -> DET JJ NNS

To derive from , the single nonterminal NP is split
into two nonterminals NP-SUBJ and NP-OBJ. This split re-
sults in several new rules. For example, for the old rule NP
-> NNS, there now are two new rules NP-SUBJ -> NNS
and NP-OBJ -> NNS. One possibility for determining the
new rule probabilities is to redistribute the old probability
mass evenly among them, i.e. NP -> NNS NP-
SUBJ -> NNS NP-SUBJ -> NNS . However, then
there would be no benefit at all from performing such a
split: the resulting grammarwould be larger, the most likely
parses remain unchanged, and for each parse under
that contains a nonterminal participating in a split opera-
tion, there would be at least two equally likely parses under
.

The new probabilities cannot be calculated directly
from . The redistribution of the probability mass has to
be motivated from a knowledge source outside of . One
way to proceed is to estimate the new rule probabilities
on the original corpus — provided that it contains the
information on the basis of which a split operation was
performed in extractable form. For the current example, a
corpus in which objects and subjects are annotated could
be used to estimate the probabilities of the rules in , and
might yield the following result (which reflects the fact that
in English, the NP in a sentence NP VP is usually a subject,
whereas the NP in a VP consisting of a verb followed by an
NP is an object):



NNS, DET, NN, VBD, JJ
S, NP-SUBJ, VP, NP-OBJ
S
S -> NP-SUBJ VP
S -> NP-OBJ VP
NP-SUBJ -> NNS
NP-SUBJ -> DET NN
NP-SUBJ -> DET JJ NNS
VP -> VBD NP-SUBJ
VP -> VBD NP-OBJ
NP-OBJ -> NNS
NP-OBJ -> DET NN
NP-OBJ -> DET JJ NNS

With rules of zero probability removed, is identical
to the original grammar in the example in the previous
section.

2.3. Partition Search
A PCFG together with nonterminal merge and split op-

erations defines a space of derived grammars which can be
searched for a new PCFG that optimises some given objec-
tive function. The disadvantage of this search space is that
it is infinite, and each split operation requires the reestima-
tion of rule probabilities from a training corpus, making it
computationally much more expensive than a merge opera-
tion.
However, there is a simple way to make the search space

finite, and at the same time to make split operations redun-
dant. The resulting method, Grammar Learning by Parti-
tion Search, is summarised in this section (Partition Search
is described in more detail, including formal definitions and
algorithmic details, in Belz (2002)).

2.3.1. PCFG Partitioning
An arbitrary number of merges can be represented by a

partition of the set of nonterminals. For the example pre-
sented in Section 2.2.1. above, the partition of the nonter-
minal set in that corresponds to the nonterminal set

in is S , NP-SBJ, NP-OBJ , VP . The
original grammar together with a partition of its nonter-
minal set fully specifies the new grammar : the new rules
and probabilities, and the entire new grammar can be de-
rived from the partition together with the original grammar
. The process of obtaining a new grammar , given a

base grammar and a partition of the nonterminal set
of will be called PCFG Partitioning3.

2.3.2. Search space
The search space for Grammar Learning by Partition

Search can be made finite and searchable entirely by merge
operations (grammar partitions).
Making the search space finite: The number of merge

operations that can be applied to a nonterminal set is finite,

3The concept of context-free grammar partitioning in this pa-
per is not directly related to that in (Korenjak, 1969; Weng and
Stolcke, 1995), and later publications by Weng et al. In these
previous approaches, a non-probabilistic CFG’s set of rules is par-
titioned into subsets of rules. The partition is drawn along a spe-
cific nonterminal , which serves as an interface through which
the subsets of rules (hence, subgrammars) can communicate after
partition (one grammar calling the other).

because after some finite number of merges there remains
only one nonterminal. On the other hand, the number of
split operations that can sensibly be applied to a nontermi-
nal NT has an upper bound in the number of different termi-
nals strings dominated by NT in a corpus of evidence (e.g.
the corpus the PCFG was trained on). For example, when
splitting the nonterminal NP into subjects and objects, there
would be no point in creating more new nonterminals than
the number of different subjects and objects found in the
corpus.
Given these (generous) bounds, there is a finite num-

ber of distinct grammars derivable from the original gram-
mar by different combinations of merge and split opera-
tions. This forms the basic space of candidate solutions for
Grammar Learning by Partition Search.
Making the search space searchable by grammar

partitioning only: Imposing an upper limit on the number
and kind of split operations permitted not only makes the
search space finite but also makes it possible to directly de-
rive this maximally split nonterminal set (Max Set). Once
the Max Set has been defined, the single grammar corre-
sponding to it— themaximally split Grammar (MaxGram-
mar)— can be derived and retrained on the training corpus.
The set of points in the search space corresponds to the

set of partitions of the Max Set. Search for an optimal
grammar can thus be carried out directly in the partition
space of the Max Grammar.
Structuring the search space: The finite search space

can be given hierarchical structure as shown in Figure 1
for an example of a very simple base nonterminal set NP,
VP, PP , and a corpus which contains three different NPs,
three different VPs and two different PPs.
At the top of the graph is the Max Set. The sets at the

next level down (level 7) are created by merging pairs of
nonterminals in the Max Set, and so on for subsequent lev-
els. At the bottom is the maximally merged nonterminal set
(Min Set) consisting of a single nonterminal NT. The sets
at the level immediately above it can be created by splitting
NT in different ways. The sets at level 2 are created from
those at level 1 by splitting one of their elements. The orig-
inal nonterminal set ends up somewhere in between the top
and bottom (at level 3 in this example).
While this search space definition results in a finite

search space and obviates the need for the expensive split
operation, the space will still be vast for all but trivial cor-
pora. In Section 3.3. below, alternative ways for defining
theMax Set are described that result in much smaller search
spaces.

2.3.3. Search task and evaluation function
The input to the Partition Search procedure consists of

a base grammar , a base training corpus , and a task-
specific training corpus . and are used to create
the Max Grammar . The search task can then be defined
as follows:

Given the maximally split PCFG ,
a data set of sentences , and a set of target parses
for , find a partition of that derives a grammar

, such that is minimised,
and is maximised, where scores the
performance of on as compared to .



NT{ }

{NP−1,NP−2,NP−3,VP−1,VP−2,VP−3,PP−1 PP−2}

{NP,VP!PP } { NP!VP, PP}

8

7

6

5

4

3

2

1

{NP−1,NP−2,NP−3,VP−1,VP−2,VP−3,,NP−3,VP−1,VP−2,VP−3,PP−1,PP−2}NP!12{ PP!12}

{NP, VP, PP}

Figure 1: Simple example of a partition search space.

The size of the nonterminal set and hence of the gram-
mar decreases from the top to the bottom of the search
space. Therefore, if the partition space is searched top-
down, grammar size is minimised automatically and does
not need to be assessed explicitly.
In the current implementation, the evaluation function
simply calculates the F-Score achieved by a candidate

grammar on as compared to . The F-Score is ob-
tained by combining the standard PARSEVAL evaluation
metrics Precision and Recall4 as follows:

.
An existing parser5 was used to obtain Viterbi parses. If

the parser failed to find a complete parse for a sentence, a
simple grammar extension method was used to obtain par-
tial parses instead (based on Schmid and Schulte im Walde
(2000, p. 728)).

2.3.4. Search algorithm
Since each point in the search space can be accessed di-

rectly by applying the corresponding nonterminal set parti-
tion to the Max Grammar, the search space can be searched
in any direction by any search method using partitions to
represent candidate grammars.
In the current implementation, a variant of beam search

is used to search the partition space top down. A list of the
current best candidate partitions is maintained (initialised

to the Max Set). For each of the current best partitions a
random subset of size of its children in the hierarchy is
generated and evaluated. From the union of current best
partitions and the newly generated candidate partitions, the
best elements are selected and form the new current best

set. This process is iterated until either no new partitions
can be generated that are better than their parents, or the

4I used the evalb program by Sekine and Collins
(http://cs.nyu.edu/cs/projects/proteus/evalb/)
to obtain Precision and Recall figures.

5LoPar (Schmid, 2000) in its non-head-lexicalised mode.
Available from http://www.ims.uni-stuttgart.de/
projekte/gramotron/SOFTWARE/LoPar-en.html.

lowest level of the partition tree is reached. In each iteration
the size of the nonterminal set (partition) decreases by one.
The size of the search space grows exponentially with

the size of the Max Set. However, the complexity of the
Partition Search algorithm is only , because only up
to partitions are evaluated in each of up to iterations6.

3. Learning NP Extraction Grammars
3.1. Data and Parsing Tasks
Sections 15–18 of WSJC were used for deriving the base

grammar and as the base training corpus, and different ran-
domly selected subsets of Section 1 from the same corpus
were used as task-specific training corpora during search.
Section 20 was used for final performance tests.
Results are reported in this paper for the following two

parsing tasks. In NP identification the task is to identify
in the input sentence all noun phrases7, nested and other-
wise, that are given in the corresponding WSJC parse. NP
chunking was first defined by (Abney, 1991), and involves
the identification of flat noun phrase chunks. Target parses
were derived from WSJC parses by an existing conversion
procedure8.
The Brill Tagger was used for POS tagging testing data,

and achieved an average accuracy of 97.5% (as evaluated
by evalb).

3.2. Base grammar
A simple treebank grammar9 was derived from Sec-

tions 15–18 of the WSJ corpus by the following procedure:
1. Iteratively edit the corpus by deleting (i) brackets and labels
that correspond to empty category expansions; (ii) brackets

6As before, is the number of current best candidate solutions,
is the width of the beam, and is the size of the Max Set.
7Corresponding to the WSJC categories NP, NX, WHNP and

NAC.
8Devised by Erik Tjong Kim Sang for the TMR project Learn-

ing Computational Grammars.
9The term was coined by Charniak (1996).



and labels containing a single constituent that is not labelled
with a POS-tag; (iii) cross-indexation tags; (iv) brackets that
become empty through a deletion.

2. Convert each remaining bracketting in the corpus into the
corresponding production rule.

3. Collect sets of terminals , nonterminals and start sym-
bols from the corpus. Probabilities for rules
are calculated from the rule frequencies by Maximum
Likelihood Estimation: .

This procedure creates the base grammar BARE which
has rules and nonterminals.

3.3. Restricting the search space further
The simple method described in Section 2.3.2. for defin-

ing the maximally split nonterminal set (Max Set) tends to
result in vast search spaces. Using parent node (PN) infor-
mation to create the Max Set is much more restrictive and
linguistically motivated. The Max Grammar PN used in the
experiments reported below can be seen as making use of
Local Structural Context (Belz, 2001): the independence
assumptions inherent in PCFGs are weakened by making
the rules’ expansion probabilities dependent on part of their
immediate structural context (here, its parent node). To ob-
tain the grammar PN, the base grammar’s nonterminal set is
maximally split on the basis of the parent node under which
rules are found in the base training corpus10. Several previ-
ous investigations have demonstrated improvement in pars-
ing results due to the inclusion of parent node information
(Charniak and Carroll, 1994; Johnson, 1998; Verdú-Mas et
al., 2000).
Another possibility is to use the base grammar BARE

itself as the Max Grammar. This is a very restrictive search
space definition and amounts to an attempt to optimise the
base grammar in terms of its size and its performance on
a given task without adding any information. Results are
given below for both BARE and PN as Max Grammars.
In the current implementation of the algorithm, the

search space is reduced further by avoiding duplicate par-
titions, and by only allowing merges of nonterminals that
have the same phrase prefix NP-*, VP-* etc.
The Max Grammars end up having sets of nonterminals

that differ from the bracket labels used in the WSJC: while
the phrase categories (e.g. NP) are the same, the tags (e.g.
*-S, *-3) on the phrase category labels may differ. In the
evaluation, all labels starting with the same phrase category
prefix are considered equivalent.

3.4. NP chunking results
Baseline Results. Base grammar BARE (see Sec-

tion 3.2. achieves an F-Score of on the NP chunking
task. This baseline result compares as follows with existing
results:

NP chunking
Chunk Tag Baseline 79.99
Grammar BARE 88.25
Current Best: nonlexicalised 90.12

lexicalised 93.25 (93.86)

10The parent node of a phrase is the category of the phrase that
immediately contains it.

The chunk tag baseline F-Score is the standard base-
line for the NP chunking task and is obtained by tagging
each POS tag in a sentence with the label of the phrase that
it most frequently appears in, and converting these phrase
tags into labelled brackettings (Nerbonne et al., 2001, p.
102). The best nonlexicalised result was achieved with
the decision-tree learner C5.0 (Tjong Kim Sang et al.,
2000), and the current overall best result for NP chunk-
ing is for memory-based learning and a lexicalised chunker
(Tjong Kim Sang et al., 2000)11.
Table 1 shows results for Partition Search applied to

the NP chunking task. The first column shows the Max
Grammar used in a given batch of experiments. The sec-
ond column indicates the type of result, where the Max
Grammar result is the F-Score, grammar size and number
of nonterminals of theMaxGrammar itself, and the remain-
ing results are the average and single best results achieved
by Partition Search. The third and fourth columns show
the number of iterations and evaluations carried out before
search stopped. Columns 5–8 show details of the final so-
lution grammars: column 5 shows the evaluation score on
the training data, column 6 the overall F-Score on the test-
ing data, column 7 the size, and the last column gives the
number of nonterminals.
The best result (boldface) was an F-Score of 90.24%

(compared to the base result of 88.25%), and 95 nontermi-
nals (147 in the base grammar), while the number of rules
increased from 10,118 to 11,972. This result improves the
general baseline by 12.7% and the performance by gram-
mar BARE by 2.2%. It also outperforms the best existing
result of 90.12% for nonlexicalised NP chunking by a small
margin.

3.5. NP identification results
Baseline Results. Base grammar BARE achieves an F-

Score of on the NP identification task. This baseline
result compares as follows with existing results:

NP identification
Chunk Tag Baseline 67.56
Grammar BARE 79.29
Current Best: nonlexicalised 80.15

lexicalised 83.79

All results in this table (except for that for grammar
BARE) are reported in Nerbonne et al. (2001, p. 103). The
task definition used there was slightly different in that it
omitted two minor NP categories (WSJC brackets labelled
NAC and NX). The slightly different task definition has only
a very small effect on F-Scores, so the above results are
comparable. The chunk tag baseline F-Score was again ob-
tained by tagging each POS tag in a sentence with the label
of the phrase that it most frequently appears in. The best
lexicalised result was achieved with a cascade of memory-
based learners. The same paper also included two results
for nonlexicalised NP identification.
Table 2 (same format as Table 1) contains results for

Partition Search and the NP identification task. The small-
est nonterminal set had 63 nonterminals (147 in the base

11Nerbonne et al. (2001) report a slightly better result of
achieved by combining seven different learning systems.



Max Grammar Iter. Eval. F-Score F-Score Size Nonterms
(subset) (WSJC S 1) (rules)

BARE Max Grammar result: 88.25 10,118 147
Average: 116.8 2,749.6 89.64 88.57 7,849.6 32.2
Best (size): 119 2,806 89.79 88.51 7,541 30
Best (F-score): 114 2,674 87.93 88.70 7,777 35

PN Max Grammar result: 89.86 16,480 970
Average: 526 13,007.75 94.85 89.83 14,538.25 446
Best (size and F-score): 877 21,822 93.85 90.24 11,972 95

Table 1: Partition tree search results for NP chunking task, WSJC Section 1 (averaged over 5 runs, variable parameters:
, , ).

Max Grammar Iter. Eval. F-Score F-Score Size Nonterms
(subset) (WSJC S 1) (rules)

BARE Max Grammar result: 79.29 10,118 147
Average 111.4 2,629 87.831 79.10 8,655 37.6
Best (size): 113 2,679 86.144 78.9 8,374 36
Best (F-score): 114 2,694 90.246 79.51 8,541 41

PN Max Grammar result: 82.01 16,480 970
Average: 852.6 21,051 91.2098 81.41308 13,202.8 119.4
Best (size): 909 22,474 91.881 80.9830 12,513 63
Best (F-score): 658 16,286 89.572 82.0503 15,305 314

Table 2: Partition tree search results for NP identification task, WSJC Section 1 (averaged over 5 runs, variable parameters:
, , ).

grammar). The best result (boldface) was an F-Score of
82.05% (base result was 79.29%), while the number of
rules increased from 10,118 to 15,305. This improves the
general baseline by 21.45% and grammar BARE by 3.48%.
It also outperforms the other two results for nonlexicalised
NP chunking by a significant margin, and even comes close
to the best lexicalised result (83.79%).

3.6. General comments
Partition Search is able to reduce grammar size by

merging groups of nonterminals (hence groups of rules)
that do not need to be distinguished for a given task. It
is able to improve parsing performance firstly by grammar
generalisation (partitioned grammars parse a superset of the
sentences parsed by the base grammar), and secondly by
reranking parse probabilities (the most likely parse for a
sentence under a partitioned grammar can differ from its
most likely parse under the base grammar).
The margins of improvement over baseline results were

bigger for the NP identification task than for NP chunking.
The results reported here for NP chunking are no match for
the best lexicalised results, whereas the results for NP ident-
fication come close to the best lexicalised results. This in-
dicates that the two characteristics that most distinguish the
grammars used here from other approaches — some non-
shallow structural analysis and parent node information —
are more helpful for NP identification.
Preliminary tests revealed that results were surprisingly

constant over different combinations of variable parameter
values, although training subset size of less then 50 meant
unpredictable results for the complete WSJC Section 1. For
a random subset of size 50 and above, there is an almost

complete correspondence between subset F-Score and Sec-
tion 1 F-Score, i.e. higher subset F-Score almost always
means higher Section 1 F-Score.
The results presented in the previous section also show

what happens if Partition Search is used as a grammar com-
pression method (when existing grammars are used as Max
Grammars). In Table 1, for example, when applied to the
base grammar BARE (four top rows), it maximally reduces
the number of nonterminals from 147 to 30 and the num-
ber of rules from to , while the
overall F-Score. The size reductions on the PN grammar
are even bigger: 970 nonterminals down to 95, and
rules down to , again with a slight improvement in
the F-Score (even though on average, the F-Score remained
about the same). Unlike other grammar compression meth-
ods (Charniak, 1996; Krotov et al., 2000), Partition Search
achieves lossless compression, in the sense that the com-
pressed grammars are guaranteed to be able to parse all of
the sentences parsed by the original grammar.
Compared to other approaches using parent node infor-

mation (Charniak and Carroll, 1994; Johnson, 1998; Verdú-
Mas et al., 2000), the approach presented here has the ad-
vantage of being able to select a subset of all parent node
information on the basis of its usefulness for a given pars-
ing task. This saves on grammar complexity, hence parsing
cost.

3.7. Nonterminal distinctions preserved/eliminated
The base grammar BARE has 26 different phrase cate-

gory prefixes (S, NP, etc.). The additional tags encoding
grammatical function and parent node information results
in much larger numbers of nonterminals. One of the aims



of partition search is to reduce this number, preserving only
useful distinctions. This section looks at nonterminal dis-
tinctions that were preserved and eliminated for each task
and grammar.

3.7.1. Base grammar BARE (functional tags only)
Twelve of the 26 phrase categories are not annotated

with functional tags in the WSJC. The remaining 14 phrase
categories have between 2 and 28 grammatical function
subcategories12.
In the BARE grammar, more nonterminals were merged

on average in the NP chunking task (32.2 remaining) than in
the NP identification task (37.6 remaining). This is as might
be expected since the NP identification task looks the more
complex.
Results for NP chunking show a very strong tendency to

merge the subcategories of all phrase categories except for
two: NP and PP. With only the rare exception, the distinc-
tion between different grammatical functions is eliminated
for the other 12 out of 14 phrase categories. By contrast,
for NP, between 2 and 5 different categories remain (aver-
age 2.8), and for PP, between 2 and 4 remain (average 3.6).
This implies that for NP chunking only the different gram-
matical functions of NPs and PPs are useful.
Results for NP identification show a tendency to

perserve distinctions among the subcategories of SBAR, NP
and PP and to a lesser extent among those of ADVP and
ADJP. Other distinctions tend to be eliminated. All subcat-
egories of SBARQ, NX, NAC, INTJ and FRAG are always
merged, UCP and SINV nearly always.

3.7.2. Grammar PN (parent node tags)
The PN grammar has 970 phrase subcategories for the

26 basic phrase categories of which only those with the
largest numbers of subcategories are examined here: NP
(173), PP (173), ADVP (118), S (76), and VP (62).
Surprisingly, far fewer nonterminals were merged on

average in the NP chunking task (446 remaining) than in
the NP identification task (only 119.4 remaining).
In both tasks, althoughmore so in the NP chunking task,

the strongest tendency was that far more NP subcategories
were preserved than any other.
In the NP identification task, the different NAC and

NX subcategories were always merged into a single one,
whereas in the NP chunking task, at least 4 different NAC
and 3 different NX subcategories remained.
In both tasks equally, ADVP and PP distinctions were

mostly eliminated. The same goes for VP distinctions al-
though VPs with parent node S, SBAR and VP had a higher
tendency to remain unmerged.
These results indicate that by far themost important par-

ent node information for both NP identification and chunk-
ing are the parent nodes of the NPs themselves. More de-
tailed analysis of merge sets would be needed to see what
exactly this means.

12ADJP: 6, ADVP: 18, FRAG: 2, INTJ: 2, NAC: 4, NP: 23, NX:
2, PP: 28, S: 14, SBAR: 20, SBARQ: 3, SINV: 2, UCP: 8, VP: 3.

4. Conclusions and Further Research
Grammar Learning by Partition Search was shown to

be an efficient method for constructing PCFGs optimised
for a given parsing task. In the nonlexicalised applications
reported in this paper, the performance of the base gram-
mar was improved by up to 3.48%. This corresponds to an
improvement of up to 21.45% over the standard baseline.
The result for NP chunking is slightly better than the best
existing result for nonlexicalised NP chunking, whereas the
result for NP identification closely matches the best existing
result for lexicalised NP identification.
Partition Search can also be used to simply reduce

grammar size, if an existing grammar is used as the Max
Grammar. In the experiments reported in this paper, Parti-
tion Search reduced the size of nonterminal sets by up to
93.5%, and the size of rule sets by up to 27.4%. Compared
to other grammar compression techniques, it has the advan-
tage of being lossless.
Further research will look at additionally incorporating

lexicalisation, other search methods, and other variable pa-
rameter combinations.

5. Acknowledgements
The research reported in this paper was in part funded

under the European Union’s TMR programme (Grant No.
ERBFMRXCT980237).

6. References
Steven Abney. 1991. Parsing by chunks. In R. Berwick,
S. Abney, and C. Tenny, editors, Principle-Based
Parsing, pages 257–278. Kluwer Academic Publishers,
Boston.

A. Belz. 2001. Optimising corpus-derived probabilistic
grammars. In Proceedings of Corpus Linguistics 2001,
pages 46–57.

A. Belz. 2002. Grammar learning by partition search. In
Proceedings of LREC Workshop on Event Modelling for
Multilingual Document Linking.

Eugene Charniak and Glenn Carroll. 1994. Context-
sensitive statistics for improved grammatical language
models. Technical Report CS-94-07, Department of
Computer Science, Brown University.

Eugene Charniak. 1996. Tree-bank grammars. Techni-
cal Report CS-96-02, Department of Computer Science,
Brown University.

Mark Johnson. 1998. PCFG models of linguistic tree
representations. Computational Linguistics, 24(4):613–
632.

A. J. Korenjak. 1969. A practical method for constructing
LR(k) processors. Communications of the ACM, 12(11).

A. Krotov, M. Hepple, R. Gaizauskas, and Y. Wilks. 2000.
Evaluating two methods for treebank grammar com-
paction. Natural Language Engineering, 5(4):377–394.

J. Nerbonne, A. Belz, N. Cancedda, Hervé Déjean, J. Ham-
merton, R. Koeling, S. Konstantopoulos, M. Osborne,
F. Thollard, and E. Tjong Kim Sang. 2001. Learn-
ing computational grammars. In Proceedings of CoNLL
2001, pages 97–104.



H. Schmid and S. Schulte ImWalde. 2000. Robust German
noun chunking with a probabilistic context-free gram-
mar. In Proceedings of COLING 2000, pages 726–732.

H. Schmid. 2000. LoPar: Design and implementation.
Bericht des Sonderforschungsbereiches “Sprachtheo-
retische Grundlagen für die Computerlinguistik” 149,
Institute for Computational Linguistics, University of
Stuttgart.

E. Tjong Kim Sang, W. Daelemans, H. Déjean, R. Koeling,
Y. Krymolowski, V. Punyakanok, and D. Roth. 2000.
Applying system combination to base noun phrase iden-
tification. In Proceedings of COLING 2000, pages 857–
863.

Jose Luis Verdú-Mas, Jorge Calera-Rubio, and Rafael C.
Carrasco. 2000. A comparison of PCFG models. In
Proceedings of CoNLL-2000 and LLL-2000, pages 123–
125.

F. L. Weng and A. Stolcke. 1995. Partitioning grammars
and composing parsers. In Proceedings of the 4th Inter-
national Workshop on Parsing Technologies.


