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Abstract

Generic software architectures aim to support re-use of components, focusing of research
and development effort, and evaluation and comparison of approaches. In the field of
natural language processing, generic frameworks for understanding have been successfully
deployed to meet all of these aims, but nothing comparable yet exists for generation. The
nature of the task itself, and the current methodologies available to research it, seem
to make it more difficult to reach the necessary level of consensus to support generic
proposals. Recent work has made progress towards establishing a generic framework for
generation at the functional level, but left open the issue of actual implementation. In
this paper, we discuss the requirements for such an implementation layer for generation
systems, drawing on two initial attempts to implement it. We argue that it is possible
and useful to distinguish “functional architecture” from “implementation architecture”
for generation systems.

1 The Case for a Generic Software Architecture for NLG

Most natural language generation (NLG) systems have some kind of modular struc-

ture. The individual modules may differ in complex ways, according to whether they

are based on symbolic or statistical models, what particular linguistic theories they

embrace and so on. Ideally, such modules could be reused in other NLG systems.

This would avoid duplication of work, allow realistic research specialisation and

allow empirical comparison of different approaches. Examples of ideas that might

give rise to reusable modules include:
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A program for generating referring expressions based on statistical analy-

sis of a significant corpus of human-written text (Cheng et al. 2001)

A surface realiser based on one of the most comprehensive generation grammars

of English (Elhadad and Robin 1992)

A text planner using stochastic search (Mellish et al. 1998) or constraint satis-

faction (Power 2000)

Although conceptually such modules could work together in one system (re-

searchers at the international NLG meetings are basically speaking the same lan-

guage at some level), in practice it is far from easy to build an NLG system using

the best modules around. This is because today’s modules are written in different

programming languages, assume different representations for data, are described in

terms of theory-dependent terminology and are designed to run in many different

overall NLG architectures. In fact, many important ideas are not even made avail-

able in software form, simply because there is no obvious single way to package

such software so as to be useful to others.

An agreed NLG software architecture would provide a framework for building

modules that were compatible and facilities to aid in the construction, operation and

evaluation of modular NLG systems. Although such software architectures exist for

tasks in natural language understanding (NLU) (e.g. GATE (Cunningham, Wilks,

and Gaizauskas 1996)), there is as yet nothing similar for generation. There are

success stories of reuse of NLG modules (usually involving realisation components

such as MUMBLE (McDonald 1981), FUF/Surge (Elhadad and Robin 1992) and

REALPRO (Lavoie and Rambow 1997)), though often the reuse involves a lot of

work and fails to fully exploit strengths. There are also examples of mature and

complex software systems for building NLG systems which have been used for

multiple projects (e.g. KPML (Bateman 1997)), but these require one to embrace

a particular theoretical outlook and express one’s whole system in terms of it. We

do not believe that the NLG field is mature enough yet to opt for a single linguistic

theory or programming strategy to take precedence at the expense of other ideas1.

It is important to recognise that existing architectural proposals for natural lan-

guage processing (NLP) tasks fall into two broad kinds. The first kind primarily

provides a functional specification of the underlying data representations and/or

module definitions. Those architectures aimed at supporting the annotation of cor-

pora (for instance, ATLAS (Laprun et al. 2002), the Linguistic Annotation Frame-

work (Ide and Romary 2004) and the Text Encoding Initiative are of this nature, as

are the “generic architectures” for information extraction (Hobbs 1993) or question-

answering (Hirschman and Gaizauskas 2001) systems. We shall refer to such pro-

posals as functional architectures. The second kind of architecture provides direct

support for the development of software systems by providing underlying software

services, such as optimised data storage, inter-process communication facilities and

a repertoire of control structures (Cunningham, Wilks, and Gaizauskas 1996; Brew

1 We do not believe this for NLU either, but the nature of the understanding task, and
the dependence of the dominant methodology on training from pre-existing test sets,
induces greater alignment of approaches than seems to have occurred for NLG to date.
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et al. 2000; Bayer et al. 2001; Herzog et al. 2004). We shall refer to such archi-

tectures as implementation architectures. Implementation architectures necessarily

presuppose some (often quite small) degree of functional specification, and hence

some functional architecture. The combination of functional and implementation

architectures into a single framework is what we take to be a software architecture

(although we acknowledge that not all software architectures make such a clean

internal distinction).

This distinction is relevant here, because while no viable complete software archi-

tecture exists for NLG, there has been recent progress on a functional architecture

for NLG, notably the RAGS proposal (Cahill et al. 2001b; Mellish et al. 2004).

RAGS establishes inter alia some quite demanding requirements for the implemen-

tation layer, but provides no proposal for it. This paper concentrates on the question

of what an implementation architecture for NLG could and should be like.

2 The Scope of an NLG Software Architecture

A candidate ‘generic’ NLG software architecture has to be broadly compatible with

most work in the field and attractive to enough researchers that it will be used. In

the end, the architecture will survive only if on the one hand researchers contribute

good-quality modules in a form compatible with it and on the other hand other

researchers actually reuse these modules using it. It is important, therefore, to

limit what the architecture tries to do, in order not to stray beyond this fragile

“consensus”. There is a tradeoff here between the number of potential users and

the amount of support it can give. The more theory-dependent the architecture is,

the fewer the people that can benefit from it, but the more it can help those people.

So what do current NLG researchers agree and not agree on? Some of the things

on which there doesn’t seem to be a consensus include:

The individual modules making up an NLG system. Just about every NLG

system divides the task differently. The different modules proposed do not

even seem to group consistently into larger components (Cahill and Reape

1999).

How the modules are organised and controlled. There have been a number

of different architectures used (De Smedt et al. 1996). Often a pipeline archi-

tecture is used (Reiter 1994), though it is well-known that there are funda-

mental problems with such an architecture (Danlos 1984).

The input to NLG. Because of the range of applications considered, different

NLG systems do not agree about the original conceptual input (e.g. on the

amount of linguistically-relevant structure it has) or the role of goals or user

models in the generation process (Evans et al. 2002).

The absence of agreement about what modules are involved in NLG means that a

generally useful software architecture must allow people to define their own modules

in a flexible way. Hopefully, the most useful modules will become widely used and

hence achieve prominence, but it should be the users that make this happen, not

the software architecture. Similarly a useful architecture should allow people to
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“plug together” modules in many ways. It should not legislate unnecessarily on the

overall control regime. Finally, the problem of saying something general about the

input of NLG means that the architecture can make few assumptions about this.

¿From the above, one might take the view that the only useful generic software

architecture for NLG would be something like a programming language. Such a

conclusion would, however, be overly pessimistic. Although NLG systems all have

unique problems because of idiosyncrasies in their input, all of them have to produce

broadly the same kind of output, i.e. natural language. All NLG systems have

to represent their output at various levels, and many NLG modules are defined

primarily in terms of the manipulations they perform on linguistic representations

of some kind. A wide range of linguistic theories have been used as the basis of NLG

systems’ representations, but underneath the differences, there are often striking

similarities — for example many semantic representation schemes are basically

versions of the Predicate Calculus — and in general distinctions between syntax,

semantics, rhetoric etc. are widely agreed. It is on the representation of linguistic

data that NLG systems agree most, and this is the most promising aspect of NLG

to be built into and supported by a software architecture.

Similarly, although the overall picture of modules and their relationship to each

other in actual systems is confused, researchers are strongly wedded to the exis-

tence of particular functionalities within the NLG process, such as text structuring,

referring expression generation or lexical choice. This fact may also provide some

leverage in the development of a software architecture for NLG. The problem is that

these functionalities do not seem to map into localised processing in a clean way —

there is no clear mapping from logical functions to actual modules in implemented

systems. But an architecture that allows some flexibility in this mapping, for exam-

ple by separating the logical grouping of code implementing particular functionality

from its deployment during the generation process, may be better able to support

re-use of functional components.

3 A Functional Architecture for NLG

It is interesting how the above arguments about the scope of a software architecture

for NLG recapitulate similar arguments made to motivate the GATE architecture

for NLU (Cunningham, Wilks, and Gaizauskas 1996). The success of GATE is due

to a large extent to the fact that it has not tried to do too much. Yet it supports key

aspects of current NLU research methodology (corpus storage, annotation, evalua-

tion) that all researchers must face to some extent. To put it another way, GATE

combines a lightweight functional architecture, whose focus is on data interchange,

with a powerful implementation architecture. A similar approach applied to NLG

might have similar success. The key differences appear to be:

• The range and complexity of data structures presupposed by NLG systems.

• The subtleties of interaction between module and control structure.

The GATE functional architecture is based on an underlying theory of the na-

ture of the data involved, as embodied in the TIPSTER architecture (Grishman
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1995). TIPSTER specifies the relevant attributes of stored text and the kinds of

annotations that can be attached to it. This “backbone” (honoured by the GATE

implementations) is then the basis for individual researchers defining their own

modules in a compatible way — the functional architecture requires modules to

be indivisible processing units but does not constrain their organisation relative

to each other. It is then the GATE user who chooses from the available modules

and decides how to plug the chosen modules together in a specific order. If such

a functional model existed for NLG, it could be the basis for a similar sort of

architecture.

The RAGS architecture (Cahill et al. 2001b; Mellish et al. 2004) is an initial

attempt to be such a functional architecture specification. It defines abstractly six

levels of linguistic representation relevant to NLG (conceptual, document, rhetori-

cal, semantic, syntactic and quote2), together with an underlying model, the “Ob-

jects and Arrows” model, to support data manipulation3. It also identifies seven

functional modules which make up the core of an NLG application (lexicalisation,

aggregation, rhetorical structuring, referring expression generation, ordering, seg-

mentation and coherence maintenance (Cahill and Reape 1999)), but specifies no

control constraints, not even that each module is indivisible.

The advantages of RAGS are that:

• It is based on substantial work attempting to understand current practice in

NLG.

• It is very general, allowing for instance for the definition of datasets that mix

the different levels of representation, provide partial information, use (acyclic)

non-tree-shaped structures, etc.

• The data proposal is precisely defined and includes an XML “interchange

format” for data.

On the other hand, RAGS is still relatively untried by the NLG community

as a whole. It is also relatively complex, and as a functional architecture it lacks

implementation-level detail. The rest of this paper assumes that something like

RAGS will be needed for an NLG functional architecture, though it may well have to

differ from RAGS in significant ways. The discussion will attempt to be independent

of particular details of RAGS (though the two prototype implementations described

are both based on RAGS).

2 Quote representations are used to allow data to include pieces of fixed material which
can be incorporated unchanged in the generator’s output.

3 The Objects and Arrows model is a formal definition of a well-formed RAGS dataset
(what it can and cannot express; what distinctions are meaningful and what distinctions
are not). It describes possible data of the six linguistic types in terms of a common low-
level representation as directed acyclic graphs. Implementations following RAGS can
represent this graph structure directly or they can use any other data format that
preserves the relevant distinctions.
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4 Choices for an Implementation Architecture

One possible approach to developing an NLG software architecture would be to take

an architecture for NLU and “simply” replace the functional architecture by one

developed with generation in mind. For instance, one could take GATE and reim-

plement the central database to store datasets in the manner suggested by RAGS

instead of TIPSTER. Or one could take the idea of cascaded XML transducers sug-

gested by the LT XML framework (Brew et al. 2000) and require that the format

of XML transduced be that specified by RAGS. This latter approach gains some

support from the existing examples of modular NLG systems that are implemented

using XML pipelines (e.g. using XSLT) (Wilcock 2001; Seki 2001; Barrutieta et al.

2002). However, such an approach risks losing functionality in the NLG functional

model (if it is not supported by the NLU implementation model) and limits the

support provided by the implementation model to a NLU-oriented view of what

may be useful.

Alternatively, instead of adapting an NLU architecture, one could devise a com-

pletely new architecture of some kind. In order to see what kind of architecture

would be most useful, it is necessary to have a better understanding of NLG and

current NLG practice than is probably readily available. The following are some

features that an NLG implementation architecture could be expected to support in

applications. According to one’s conclusions about the importance of these, differ-

ent architectures may be suggested. The best implementation architecture for NLG

will support a combination of features which takes into account that an architecture

that is unnecessarily general may also be one that is unnecessarily hard to use.

Non-determinism. NLG is a search problem. NLG modules themselves may or

may not implement searches and may or may not wish to produce several

answers. The architecture can choose to support modules producing multi-

ple alternative results (non-determinism), or it can choose to require unique

results (determinism). As an extreme case, “overgeneration” approaches to

NLG require the production and storage of a very large number of alterna-

tives (Langkilde and Knight 1998; Langkilde-Geary 2002). The NLG systems

cited above that use XML pipelines are deterministic, and this is reflected in

their use of XML. If the XML represents a sequential structure (a bit like a

text) then alternatives tend to give rise to overlapping elements. These can’t

be represented in a single XML document, though they can be handled using

stand-off annotation or a chart-like database as in GATE. NLG has to be able

to generate alternative results, if only to achieve stylistic goals that cannot be

checked until the surface is reached (Reiter 2000), and so simple uses of XML

and XSLT are not theoretically adequate for all NLG tasks. The RAGS data

model is able to represent alternatives, but the result is increased complexity,

and it remains to be seen how practical transformations based, say, on XSLT

are for this use of XML.

Non-monotonicity. Within one particular generation alternative, an architecture

can require that over time the system only ever adds information about this

alternative (monotonic), or it could also permit changes and deletions of infor-
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mation (non-monotonic). Many NLG systems have components that repeat-

edly revise and optimise structures to be generated (e.g. performing types

of aggregation), and indeed some NLG systems are fundamentally based on

the notion of revision (which is inherently non-monotonic) (Robin and McK-

eown 1996). On the other hand, GATE assumes that NLU happens through

a monotonic accumulation of information about the text. A monotonic NLG

architecture is possible if revision processes in an NLG system can be in-

ternalised within individual modules, or if there is a fixed number of revision

stages (each with its own separate representation). Alternatively, the approach

taken in RAGS is to allow revisions to be represented explicitly in an evolv-

ing dataset (Mellish et al. 2000), This provides another way of doing NLG in

a monotonic architecture, though at the expense of complexity in the data

representation.

Eclecticism. An NLG system builder may want to make use of modules that

make alternative (even incompatible) representation assumptions in different

parts of the system. For instance, representation of syntactic structures may

be necessary for both a referring expression generation module and a sur-

face realisation module, but the two desired modules may do this in different

ways. The system may be able to handle this by building multiple representa-

tions and/or translating between different representations. The architecture

can support this kind of eclecticism by allowing the two kinds of syntactic

representation to be kept separate and to have separate roles in the system

as a whole. Or it can make this sort of activity difficult by forcing global

consistency of the representations.

Flexibility of roles. The modules of an NLG system play particular roles within

the system as a whole. The calling pattern of the modules (when they are

called and what for) reflects this. An architecture can support very flexible

roles (exactly when a module is called is determined at runtime according

to the particular circumstances prevailing), or it can be very inflexible (the

sequence of calls is laid down in advance). The need for flexible roles has been

argued by those NLG researchers who doubt the adequacy of pipelines for

NLG (Danlos 1984) and those who have used blackboards of various kinds

(Wanner and Hovy 1996; Rubinoff 1992; Nirenburg et al. 1989). One argu-

ment is that making the decisions to produce an optimal text requires different

sources of information to be taken into account in unpredictable orders (or

suffers severe efficiency problems). Another argument is that language is re-

cursive in structure and that the calling patterns will reflect this. For instance,

text planning may take place before referring expression generation, but re-

ferring expression generation (if it decides to introduce a relative clause) will

need to invoke more text planning and recursively more referring expression

generation. The depth of this process cannot be predicted in advance, and so

some flexibility has to be left in the pattern of module invocation.

Parallelism. For real-time NLG, one might require an architecture to support par-

allelism where different NLG tasks are more or less independent. Indeed, one

might rely on this in a multi-engine approach that tries out different possible
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approaches and takes the first answer available or the best answer, such as

VERBMOBIL (Wahlster 2001). Certain kinds of models of human language

production may also require support for parallelism (De Smedt 1994).

Central controllability. In a modular system, each module may be largely in

control of its own operation and deciding when it communicates with other

modules. On the other hand, there will be at least some element of central

control, in that the system as a whole has to start up and close down (al-

though in web- or grid-based approaches, modules may exists independently

as persistent services). Central controllability here refers to the ability of some

central process to impose a complex algorithm on the operation of the mod-

ules (rather than there being a fixed algorithm). This might be implemented

via a dedicated control module of some kind. An architecture will be thought

of as supporting central controllability if it is possible to “program” it so as

to produce behaviour such as global backtracking or constraint satisfaction.

In a centrally controlled system, the individual modules need have little idea of

how and when they are to be used, or of the significance of their results. On the

other hand, in an architecture which is not centrally controllable, the overall

behaviour will emerge from that of the individual modules with no central

conductor. The possibility to have central controllability is motivated if one

might want to implement NLG based on, for instance, constraint-satisfaction

algorithms (Beale et al. 1998).

Modules with state. Some NLG modules probably are not naturally thought of

in terms of “one shot” operations that are performed independently. Such

modules require a notion of internal state that is maintained between invoca-

tions. For example, a lexical choice module might want to maintain a memory

of previous words used in order to achieve elegant variation. A referring ex-

pression generation module might want to maintain its own internal model of

the discourse and to generate referring expressions in sequential activations,

one phrase at a time, rather than to be provided with a complete discourse

to work on. Although there are ways to work around this, XSLT pipelines do

not naturally allow modules to maintain internal state.

Complex modules. Some NLG modules may wish to bring together multiple

functionalities in a single unit. For example, lexical choice takes place in two

distinct phases in many NLG systems (early lexicalisation of semantic pred-

icates and late lexicalisation as syntactic structure is built up – see (Cahill

1999)), but may be implemented by a single logical module, which maintains

state across all the lexicalisation decisions of the system, whenever they are

needed.

The choice of a software architecture also depends on the set of services it is to

provide. It is unclear at present whether an NLG system needs fundamentally dif-

ferent services from NLU. Certainly some aspects are likely to be broadly similar

– tracing of system operation, data import/export, corpus-based evaluation and

statistical analysis and visualisation of results, for instance.
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5 Two Prototype Implementation Architectures

In this section we briefly present two prototype implementation architectures for

NLG that have arisen from the RAGS project. Both of these are still only research

prototypes (and in particular have hardly addressed user interface issues), but they

have been used to construct non-trivial NLG systems. Both architectures in fact

make use of the RAGS data model, but both could easily be adapted to handle

data according to another agreed data model with a similar nature to RAGS.

5.1 RAGSOCKS

5.1.1 Basic Mechanisms

The RAGSOCKS architecture implements a method of indirect point-to-point com-

munication between software modules which makes use of a central server to process

all communications. In some ways, this makes it similar to the DARPA Communica-

tor architecture (Bayer et al. 2001), a distributed hub-and-spoke architecture based

on message passing. However, whereas in Communicator the hub is a programmable

resource that runs a tailored script to control the overall message traffic, in RAG-

SOCKS the central “hub” is supposed to be invisible, modules communicating as if

they had direct access to one another. The presence of the central server limits the

knowledge that modules need to have of one another. This makes it easy to unplug

a module and plug in a replacement. The underlying communication mechanism

is sockets, which connect modules running concurrently, on the same machine or

on different machines connected by a network. Code for the central server and to

support the writing of RAGSOCKS modules in Java, LISP and Prolog is freely

available from the RAGS website http://www.itri.brighton.ac.uk/rags/.

5.1.2 Module Conception

Each RAGSOCKS module has a name, the process name, which identifies its role

in the overall system and it also has names for (any number of, unidirectional)

logical communication channels that it will use. It needs to have no knowledge of

the names or whereabouts of other modules. A module sends and receives RAGS

representations via the central server (identifying itself by its process name and

specifying the relevant logical communication channel) using facilities in its own

programming language (Prolog, Java or LISP). It is assumed that the module is

representing RAGS-compatible data in either one of the native programming lan-

guage formats supported or in some other native format that it can translate into

one of the supported formats. The actual communication of data is done via sock-

ets, using XML as an interchange language, with the translation to and from XML

happening invisibly. The communication model is a simple one – the sender sends a

complete set of RAGS representations into the channel as its half of the transaction

(sending data cannot be interleaved with other processing). These can be represen-

tations of any size or type, as long as they are legal RAGS representations. The

sender need not wait for the data to be received before then doing something else
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(which could include sending data in a new transaction). The receiver, on deciding

that it is time for an input, hangs until all the data has been transferred and then

is able to process that data. If data has been sent in several different transactions,

the receiver will get the first set when it first looks, the second set when it next

looks, etc. It needs to know when to look for input data (for instance, when it has

nothing else to do).

5.1.3 Central Control

A single configuration file describes the desired configuration of modules, indicating

how the communication channels are plugged together (“process A’s channel with

name NA plugs into process B’s channel with name NB”). The configuration file

is interpreted by the central server to allow the actual communication to happen.

The server does not need to know the nature of the actual modules – any process

can connect to the server, claiming a process name that is present in the config-

uration file, and it can then use the logical channels associated with that process.

Of course, the person constructing the configuration file has to know enough about

the modules to ensure that output channels are connected to input channels, that

the types of information provided at an output correspond to what is required at

the corresponding input and that any synchronisation requirements between the

communications are met by the modules (e.g. “whenever module A gets an input

on channel 1, it produces an output on either channel 2 or channel 3”).

The central server has no control over the operation of the modules, which are

started up and closed down by the user independently of it.

5.1.4 Services

The existence of a central server through which all communications pass means that

there is a straightforward way to watch what is happening in the system. The server

provides a display which shows the state of play for all the connections listed in the

configuration file. This indicates by colours which modules are waiting for input,

which are producing output and what communication is currently taking place via

the server. Because the display can change quickly, one has the option to temporarily

“freeze” the system (i.e. the server, which means that no new communications can

be initiated; the modules will continue running until they need the server) and then

let it continue again. If one is interested in a particular connection in the system,

it is possible via the server’s display panel to initiate tracing, which means that all

traffic along the connection is displayed in a dedicated window (in raw XML form).

A connection can also be reset (if there is an error) via the display. The only direct

global user control is over the server and its connections, though the user also starts

and stops the modules and may interact with them individually in whatever ways

they allow.

Just as a module can send and receive RAGS representations via logical channels

connected to other modules, facilities are provided so that they can be loaded and

stored from disc files. This must, however, be programmed within the individual
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Fig. 1. The architecture of a RAGSOCKS system

modules, and there is no special support for the organisation of offline data, batch

processing of multiple datasets or collation of results.

5.1.5 Example System

RAGSOCKS has been used to implement a simple reconstruction of the ILEX

system (O’Donnell et al. 2001) using some pre-existing generation components.

The architecture of this system is shown in figure 1. Dashed lines indicate the

communication channels between modules. All of these in fact go via the central

server, which is not shown. The following briefly describes the modules and their

interaction.

client - A central module implemented in LISP that communicates with the other

modules (which essentially act as servers) as required. This module has logical

channels for output to the other modules (tokb, toplanner, torealiser,

torefexpr) and for input from the other modules (fromkb, fromplanner,

fromrealiser, fromrefexpr).

kb - The domain knowledge base required for content determination and certain

linguistic decisions (in fact, a reformulation of the ILEX knowledge base as a

Prolog database). This acts a server implementing the RAGS API for knowl-

edge bases, with logical channels in (for queries) and out (for responses).

planner - A text planner that assembles a set of facts and possible rhetorical

relations into an overall text plan (in fact, a Prolog implementation of a

stochastic text planner (Mellish et al. 1998)). This has logical channels in

and out.

realiser - A surface realiser for mixed syntactic and semantic representations which

returns strings ready for output (in fact, the LISP implementation of the

FUF/Surge system (Elhadad and Robin 1992)). Again with logical channels

in and out.
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refexpr - A module for generating referring expressions (various possibilities have

been implemented in LISP and Java). This module also needs to access the

kb module. It has logical channels in and out (for the main input/output),

as well as kbin and kbout (for the communications with the KB).

In this case, RAGSOCKS has been used to implement a Communicator-like sys-

tem, where client is the hub, performing some generation tasks (e.g. content de-

termination) and orchestrating the operation of the other main modules (planner,

realiser and refexpr). However, refexpr, as well as client, has direct access to

the knowledge base module, which diverges from the hub-and-spoke pattern.

5.2 OASYS

5.2.1 Basic Mechanisms

OASYS (“Object and Arrows SYStem”) provides a blackboard architecture sup-

porting event-driven activation of software modules. A “blackboard” is a monoton-

ically increasing set of data items, and the principal event type is publication of

data items on a blackboard. Multiple blackboards are supported to allow shared

or private communication between modules. Modules are implemented as event

handlers, registering interest in particular event patterns with the central OASYS

server, and processing event instances as they occur, generally resulting in new pub-

lication events which other modules may respond to. In general, modules need have

no knowledge of other modules – their interfaces can be defined solely in terms of the

events they respond to and produce. However, OASYS does provide mechanisms for

modules to communicate more directly: as well as “publish” events, OASYS sup-

ports “lifecycle” events, indicating when component modules start up or terminate,

and “synthetic” events, containing arbitrary content negotiated between modules4

An application is constructed and coordinated by the central server. Modules are

“plumbed together” using one or more blackboards, then each is sent an “initialise”

(lifecycle) event. The server then enters an event processing loop until all generated

events have been dispatched, and then the application exits. The current imple-

mentation runs as a single Prolog process, although the architecture is potentially

extendable to multi-process/multi-language scenarios.

5.2.2 Module Conception

Individual modules are implemented as event handlers, that is, code to process each

single event as it occurs. Initially, a module is registered to receive just lifecycle

events. It is guaranteed to receive an “initialise” event before anything else and will

typically handle this by registering interest in “publish” and “synthetic” events it is

4 Synthetic events have no meaning to the OASYS server – it merely receives them and
dispatches them to any module which has registered interest in them. They can be used
by cooperating modules to pass messages which do not correspond to creation of new
blackboard data or module lifecycle events.
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interested in. In addition, each module has a name and a type which other modules

can use to locate a particular component of a system, and private global state data

which the OASYS server maintains between calls to the module handler.

There is no formal requirement that modules have any particular functionality

or even that they do just one thing - in principle a single module could service

multiple kinds of events. Module granularity and functionality is a matter for the

user community of OASYS modules, not a requirement of OASYS itself.

Modules run asynchronously and independently: the only guarantee the system

offers is that a module will receive events it is interested in only once, and in the

same order as the events were generated. There is no guarantee that another module

will or will not have run beforehand, nor that another module may or may not have

processed exactly the same event. All such coordination is achieved by explicit

cooperation between modules. For example, one way to implement a strict pipeline

is using lifecycle events: module N in the pipeline is activated by the “terminate”

event of module N − 1.

OASYS blackboards are strictly monotonically increasing: it is only possible to

add information to a blackboard, and the only way to do so is via a “publish” event.

Thus items in a blackboard are ground terms (so that they cannot be further in-

stantiated indirectly, i.e. without explicit publication), and cannot be changed or

removed once added. A module which wishes to “revise” a data structure must use

additional meta-data protocols to indicate the relationship between the original and

the revised version in the blackboard, which the other modules in the application

must respect when accessing the data. The OASYS implementation provides spe-

cific support for this using the RAGS “Objects and Arrows” representation, which

includes “revised-to” arrows to represent changes, but other approaches are also

possible.

5.2.3 Central Control

In an OASYS-based application, the central OASYS server module is firmly “in

control”: the application is built by registering modules (event handlers) with the

server, and then control passes to the OASYS mainloop and stays there, typically

until the application completes (i.e. no further events are generated). The server

creates and manages blackboards; registers modules, and events they are interested

in; generates lifecycle events; dispatches events to relevant module handlers and

receives back new events to be processed; and handles error conditions. However,

the support for module configuration and event dispatching is completely generic,

declarative and essentially non-deterministic (although the actual Prolog imple-

mentation will follow its usual deterministic depth-first backtracking search). This

allows for maximum flexibility over control at the application level, but with the

inevitable overhead that modules which want to impose control constraints need to

know more about each other and agree protocols for doing so. The OASYS imple-

mentation provides additional support functions to achieve this, such as a utility

to construct a simple pipeline architecture, and libraries to interface correctly to

“Objects and Arrows” data representations in the blackboard. In principal, the
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OASYS server module could be replaced with a variant using a different control

strategy, but the underlying assumption in OASYS is that control at this level is

not important.

5.2.4 Services

As with RAGSOCKS, the central server architecture readily supports centralised

monitoring of system activity. Indeed it is possible to monitor event activity entirely

transparently, by adding a module interested in every event that occurs. In addition

the use of declarative blackboards makes it possible to consider off-line storage of

system state, for example using an XML representation. This allows snapshots

of system activity to be stored and examined, and the creation of complex test

environments for individual modules.

However, because the central server is so neutral with regard to control issues,

centralised management of processing is not possible without the explicit coop-

eration of modules, except at a very crude stop/go level. For example adding a

module which seeks to pause another module when a particular event occurs may

not succeed, as there is no way of knowing which of the two modules will run first.

5.2.5 Example System

TEXT

EXPRESSIONS

REFERRING

DOCUMENT

LEXICON

RENDERER

LINGO

OASYS

PICTURE

LIBRARY

LEXICAL

CHOICESELECTION

MEDIUM

SENTENCE

FINALISER

FLO
RHETORICAL 

ORACLE PLANNER

Fig. 2. The architecture of the RICHES system

OASYS has been used in the construction of the RICHES generator (Cahill et

al. 2001a). The architecture of RICHES is shown in figure 2. Here the dashed lines

indicate flow of information between the individual modules and the OASYS server,

using a single shared blackboard. The solid arrows indicate approximately flow of

control between modules. The following briefly describes the modules and their

interaction – see (Cahill et al. 2001a) for further information.
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Rhetorical Oracle - The input to the system, a rhetorical structure, is simply

accessed from a data file and published to initialise the OASYS database.

Media Selection - As soon as the rhetorical representation becomes available,

this module examines it and decides whether parts can be illustrated. If so,

it creates document structure elements to link in the pictures.

Document Planner - The Document Planner, based on the iconoclast text

planner (Power 2000) takes the rhetorical representation, and produces a doc-

ument structure. This module is pipelined after Media Selection, so it can take

account of any picture elements already on the blackboard.

Lexical Choice - Lexical choice happens in two stages, both handled by a single

logical module. In the first stage, lexical items are chosen for each predicate

specified by the document structure. This fixes the basic syntactic structure

of the proposition, and provides enough information for the Renderer and

Sentence Planner to start processing. The second phase of lexical choice is

interleaved with Referring Expression generation, lexicalising noun-phrases as

they are generated. As each whole sentence is completed, the Lexical Choice

module passes it on to FLO for final realisation.

Referring Expressions - The Referring Expression module adds information on

the form of each noun phrase, deciding whether it should be a pronoun, a

definite noun phrase or an indefinite noun phrase.

Sentence Finaliser - The Sentence Finaliser completes the high level sentential

organisation combining the lexicalised predicates and noun phrases according

to the specified rhetorical and document structure specifications.

Finalise Lexical Output (FLO) - FLO provides an interface between the RAGS

representation on the blackboard and the external sentence realiser, LinGo

(Carroll et al. 1999),

Renderer - The Renderer puts the concrete document together. Guided by the

document structure, it produces HTML formatting for the text and posi-

tions and references the pictures. Individual sentences are produced for it by

LinGO, via the FLO interface, asynchronously.

This example demonstrates a range of different control strategies — an initial

three-stage pipeline is followed a complex set of interactions between modules build-

ing different parts of the final output document. It would be possible to impose more

control structure on the architecture, for example the Renderer could in this exam-

ple run after everything else has finished, but we note that (a) this is an additional

constraint, not a simplification (b) more complex generators might require earlier

rendering, for example in order to include document deixis (reference to page or

section numbers etc.).

6 Discussion and Open Issues

RAGSOCKS and OASYS are just two of many possible generic implementation ar-

chitectures for supporting the building of NLG systems. In this section, we compare

them and reflect on wider issues that they raise.
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6.1 Comparison of Prototypes

Table 1 presents a comparison of RAGSOCKS and OASYS according to the features

previously identified. For reference, the capabilities of XSLT pipelines have also

been included in the table. In the table, “Y” indicates a feature supported, “N”

XSLT pipelines RAGSOCKS OASYS

Non-determinism Maybe Y Y
Non-monotonicity Y Y S

Eclecticism Y Y S
Role flexibility N Some Y

Parallelism N Y N
Central Controllability N N Some

Modules with state N Y Y
Complex modules N N Y

Table 1. Comparison of Features Supported by Architectures

a feature not supported and “S” a feature not directly supported but which can

be simulated. The sequence XSLT pipelines – RAGSOCKS – OASYS is in order of

increasing complexity, where each member of the sequence can in principle simulate

the behaviour of its predecessors. Thus a choice between these architectures is really

a decision about the tradeoff between ease of use (simplicity) and flexibility.

Interestingly, although both RAGSOCKS and OASYS support non-determinism,

neither architecture has used this significantly in the systems discussed. It remains

to be seen how these will cope with large-scale non-determinism, and indeed this

may require special support well beyond what these implementations currently offer.

For non-monotonicity and eclecticism, RAGSOCKS gives direct support. OASYS

also supports these via its meta-data protocols and multiple blackboards, though

these facilities make the architecture complex and lose something of the elegance

of the basic model.

XSLT pipelines offer no flexibility in the roles of the modules – the exact sequence

of operations must be specified in advance. In RAGSOCKS, a module will, however,

be called (by giving it an input) when it is needed at runtime. This means that the

number of times a module is called can vary, for instance. However, it has to be

called via a request from another module and has to yield results as expected by

that module. In OASYS, on the other hand, a module runs when it wants to and

produces the kinds of results it decides. Although this only works well when there

are some conventions about how material will appear in the blackboard, nevertheless

it seems to represent the ultimate in role flexibility.

Parallelism is not supported by the current OASYS implementation, though there

is nothing in the model to prevent an implementation using genuine parallelism

(indeed, in some ways this would be more faithful to the underlying model than

the current implementation, which imposes arbitrary serialisation on an essentially

non-deterministic dispatching algorithm).



Natural Language Generation 17

OASYS is the only one of these architectures that has significant central con-

trollability. The range of possible control options is very large, though the modules

definitely have to cooperate in any centrally-imposed control strategy. The manner

of “programming” central control may be somewhat unfamiliar to many users, and

in the current OASYS implementation, the assumption is that control at this level

is not required.

6.2 What is a module?

The three different architectures differ in the notion of “module” that they support

and assume. In an XSLT pipeline, a module is a process that is called exactly once,

has a single input and output and is responsible for acting over the whole of the text

to be generated. In RAGSOCKS and OASYS, however, a module can have internal

state and be invoked a variable number of times during generation. Thus a module

can act to deal with just a local part of the generation process. In addition OASYS

modules can implement multiple functions, with no formal requirement that they

are related to each other at all. This allows OASYS to support applications where

the functional and control modules do not correlate elegantly (cf. the discussion at

the end of section 2 above). An OASYS module is responsible for knowing when it

needs to be activated (which events to register interest in), whereas a RAGSOCKS

module is responsible for producing an appropriate result when it is activated.

XSLT modules have a responsibility to retain information from previous modules

that will be needed later. RAGSOCKS modules have no such obligation, whereas

OASYS modules have no choice but to leave what other modules have placed in

the blackboard (monotonicity).

It follows from the above that the definitions of modules are likely to look very

different in the different architectures. Indeed, the architecture adopted may have

a significant impact on the way one sets about creating modules (i.e. what modules

one thinks of and what their scope is). These observations suggest that there is

no architecture that does not limit to some extent what one considers natural or

possible, although in general, the more powerful architectures can simulate the less

powerful ones with sufficient effort.

6.3 The Central Server

Both RAGSOCKS and OASYS make use of central servers, and indeed this fea-

ture is probably essential for the kinds of services one would like to have provided

(e.g. tracing, state saving, overall control). However, they take radically different

views of the activeness of the server. The RAGSOCKS server is essentially a pas-

sive telephone exchange, whereas the OASYS server has key control over the data

available to the modules (which means that it is constantly consulted) and can to

some extent impose global control strategies.

A key decision in choosing an architecture seems to be how active the central

server should be. Having an active server lessens the amount the programmer needs
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to worry about control within the modules. The modules then become more like

declarative rules, whose operation is separately scheduled.

6.4 Roles of Data

The OASYS use of a shared, monotonic, blackboard is very similar in spirit to

the central database in GATE. Assuming that only a single blackboard is used,

an OASYS module is then accessing the current description of the state of the

generation process. XSLT pipelines take a similar view, although the current state

is passed from module to module, rather than being shared. The RAGSOCKS

approach, however, allows new information to be created and discarded on the fly.

It takes a more anarchic view that data structures exist purely for the convenience

of allowing pairs of modules to communicate (hence eclecticism) and that they need

have no further significance.

In the end, the choice of an architecture then implies a view about how “or-

ganised” the NLG process is. Are the modules indeed cooperating on fleshing out

the true picture (OASYS), or does generation emerge as a result of more complex

interactions or even competition?

6.5 “Plug and play”

A crucial role of a generic software architecture is to support the plugging in of

alternative versions of a module. “Plug and play” will however only happen signif-

icantly if in practice different researchers end up defining compatible versions of a

particular module, even when they perhaps disagree about other modules or about

the order of execution of modules. To support this, the architecture must:

• have a sufficiently general notion of module that modules can be implemented

independently of the exact context in which they are to be used,

• minimise the extent to which the programmer of a module needs to worry

about context beyond the immediate focus of the module.

Whether this can be achieved depends to a large extent on the underlying data

model, which we do not consider here. There may also be a tradeoff between these

two goals – an architecture with a very general notion of module may be harder to

program modules for.

Let us consider first the issue of module generality. An XSLT pipeline module

is designed to be run at a particular point in a pipeline. It must be aware of all

the information produced previously in order to preserve it or alter it as necessary

for subsequent stages of the pipeline. Its definition may thus be very specific to its

position in the pipeline, which means that someone else would have to be working

with a near identical pipeline in order to come up with an alternative version

of the module. A RAGSOCKS module, on the other hand, is defined in terms

of the inputs it is given and the outputs it produces. It only needs to consider

information that is part of these, which makes it independent of manipulations

of data that are not its primary business. This should increase the chance that
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someone else may want to define a module with exactly the same specification. But

how can one be sure that other modules will indeed package up exactly the right

data (all at once) to provide its inputs and that other modules will exist that can

make sense of the particular combinations of structures that are in its outputs?

A module will only be reusable if other systems provide these contexts correctly.

Finally, an OASYS module does not rely on its input all at once and can produce

its output incrementally as its input appears. If written well, it can act effectively

in many situations, regardless of exactly how or when the necessary information

appears. There are some constraints on the context. For instance there should be no

deadlocks possible in the blackboard and the scheduling of modules should be fair.

These are, however, probably relatively frequently satisfied and cheaply checked.

To what extent does the module programmer have to worry about context in the

different architectures? In an XSLT pipeline, a module definition must necessarily

be concerned with the preservation/updating of the relevant context, and the pro-

grammer must deal with this explicitly. In RAGSOCKS, however, a module is only

responsible for producing its specified output. Irrelevant contextual information can

be excluded from its input or can simply be ignored by the module. Thus the mod-

ule programmer hardly needs to be concerned about what else is going on in the

generation process. The situation in OASYS is more variable. If a module produces

output in batches, when complete inputs are available, then the situation is similar

to that in RAGSOCKS. However, if the output is to be produced incrementally

then the module programmer must explicitly cater for variations in the order in

which the input may become available. This could potentially be complex. Thus

there is a programming overhead associated with the extra generality that OASYS

brings (if it is used).

The above discussion suggests that OASYS may be the most promising of the ar-

chitectures discussed in terms of allowing for the reuse and comparison of modules

in a way that is compatible with NLG practice. Paradoxically, however, OASYS is

also the architecture that deviates most obviously from mainstream software engi-

neering paradigms used in current NLG. And the extra generality over RAGSOCKS

is bought at the expense of some programming and data management complexity.

Just as RAGS offers a functional architecture for NLG but only through the effort

of abstracting away from some current practice, OASYS may offer a similar trade-

off of implementation benefits if implementors make the effort to work in a more

general setting.

7 Conclusions and further work

In this paper we have sought to make a distinction between functional and imple-

mentation aspects of generic software architecture proposals, in particular in the

context of NLG. We have done so in part as an attempt to take the RAGS pro-

posal for an NLG architecture one step closer to a complete software architecture,

and in part as a way of thinking about software architectures more generally. The

NLG scenario is challenging for any notion of a generic software architecture, be-

cause of the complexity of the task and the corresponding range of existing work to
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take into consideration. The partial functional characterisation of NLG offered by

RAGS provides a foundation to think about implementation issues somewhat inde-

pendently and we contend that this is useful: explicit separation of the functional

and implementation structure of architectures is a valuable aid to developing and

understanding complex tasks such as NLG. By comparing different implementation

approaches we can gain a better understanding of the tradeoffs between simplic-

ity and re-usability, and gain insight into the best ways to conceive of functional

module definition and its relationship to implementation in general.

Future directions for this work can be considered at both the specific and gen-

eral levels. The RAGSOCKS implementation for RAGS is available on the RAGS

website, together with a range of support interfaces. Public release of OASYS is an-

ticipated soon, together with additional support to promote take-up in the context

of RAGS. Together, these resources will help take the RAGS initiative forward to

a stage where a range of re-usable modules, created by a range of practioners, are

available for the NLG community, and the fine details of a generic architecture be-

come more evident. More generally, we believe that the overall framework we have

described here has wider applicability to other NLP tasks, perhaps based broadly on

the RAGS analysis, and more generally to other complex and ‘intelligent’ systems.
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