
Appendices for Automated Theorem Proving
in Euler Diagram Systems

Gem Stapleton1 Judith Masthoff 2 Jean Flower1

Andrew Fish1 Jane Southern1

Technical Report VMG.06.2

1Visual Modelling Group, University of Brighton,
Brighton, UK

{g.e.stapleton,andrew.fish,j.f.southern}@brighton.ac.uk
2University of Aberdeen, Aberdeen, UK.

jmasthoff@csd.abdn.ac.uk

1 Introduction

This report is a series of appendices to accompany the paper Automated
Theorem Proving in Euler Diagram Systems. Here we include some details
omitted from that paper and some additional discussions that may be of
interest.

In appendix A, we give an overview of the A∗ search algorithm in the con-
text of theorem proving. We establish the expressiveness of Euler diagrams
in appendix B. A complete worked example showing how to calculate the
restrictive heuristic is given in appendix C. The proofs of the three theorems
given in the paper are included in appendix D. The notion of clutter in Euler
diagrams and how our proof writing rules steer Edith towards proofs con-
taining diagrams with low ‘clutter scores’ is covered in appendix E. Details
on how we generated proof tasks to evaluate Edith are given in appendix F.
Finally, much of our evaluation is presented in appendix G, although the
main results are included in the paper.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Brighton Research Portal

https://core.ac.uk/display/188246846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Theorem Proving Using A*

Given a proof task (d0, dn), the A∗ algorithm generates and stores a sequence
of proof attempts. Initially, this sequence contains only a zero length proof
attempt, namely 〈d0〉. Repeatedly, A∗ removes the first proof attempt, P ,
from the sequence. If the last diagram in P is dn, then a proof has been
found. Otherwise, additional proof attempts are constructed by extending
P , applying reasoning rules wherever possible to the last diagram in P . This
creates many new proof attempts, each 1 longer than P , that are inserted
into the stored sequence of proof attempts. The place in which they are
inserted is derived from the sum of two functions, explained below.

One function, called the heuristic, estimates ‘how far’ the last diagram
in the proof attempt is from the conclusion diagram. The other, called the
cost, calculates ‘how costly’ it has been to reach the last diagram from the
premise diagram. We define the cost of applying each reasoning rule to be 1.
So, the cost of a proof attempt is precisely the length of the proof attempt.
New proof attempts are inserted into the sequence, ordered in such a way
that P1 is before P2 if P1 has cost plus heuristic less than this sum for P2.

d 0

d 1

d 2 d 3

d n

3

2

Figure 1: The sorting rule.

Example 1 In figure 1 there is an illustration of the type of search tree
that A∗ could generate. The diagram d1 is 1 step away from the premise d0,
whereas d3 is 2 steps away. It has been estimated, by a heuristic function,
that d1 is 3 steps away from the conclusion dn whereas d3 is estimated to be 2
steps away from dn. Both proof attempts, P1 = 〈d0, d1〉 and P2 = 〈d0, d2, d3〉,
have cost plus heuristic equal to 4. If P1 is ordered before P2 by A∗ then P1

would be selected for extension before P2. However, it seems reasonable to
expect that a proof will be found more quickly by extending proof attempt
P2 since it is estimated to be only 2 steps away from a complete proof of dn

from d0.

Suppose two distinct proof attempts P1 = 〈d0, ..., di〉 and P2 = 〈d0, ..., dj〉
are generated by A∗ when attempting to construct a proof of dn from d1. A
sorting rule is incorporated into A∗ as follows. If

cost(P1) + heuristic(di, dn) = cost(P2) + heuristic(dj, dn)

2

then whenever heuristic(di, dn) < heuristic(dj, dn), P1 is ordered before P2.
So, if the cost plus the heuristic is the same for two proof attempts then we
order them according to the heuristic values. Thus, the sorting rule ensures
that if P1 and P2 have the same cost plus heuristic value then we extend
the proof attempt that we believe to be closer to a complete proof of the
conclusion before extending the other proof attempt.

If di = dj then exactly one of P1 and P2 is stored by A∗. The proof attempt
stored is the one with the lowest cost. In other words, P1 is stored only if
cost(P1) ≤ cost(P2), otherwise P2 is stored. Currently in our implementation,
if cost(P1) = cost(P2) then the choice of which is stored by A∗ is arbitrary.

The A∗ algorithm always finds a solution with the lowest cost, if a so-
lution exists, provided the heuristic used is admissible [3]. A heuristic is
admissible if it never overestimates the cost of getting from any diagram
to the conclusion diagram. A search algorithm that is guaranteed to find a
path with the lowest cost is called admissible. Here, because each rule has
cost 1, an admissible heuristic will provide a lower bound on the length of a
shortest proof.

A.1 Why A*?

There are many reasons for choosing to utilize the A∗ search algorithm when
searching for an Euler diagram proof even if other algorithms may perform
better from some perspectives. The performance of an algorithm can be
measured in many ways, for example, time taken, space used and, specifically
related to theorem proving, the lengths of the proofs produced. Moreover,
in this setting, performance can also be measured in terms of the readability
and accessibility of the resulting proofs. The length of a proof is an aspect
of readability. Whilst shortest proofs are not necessarily the most readable,
a short proof is desirable [2].

Using A∗ allows us to be certain, given the admissibility of the heuristic,
that a shortest proof will be found. This is one reason, but certainly not
the only reason, that A∗ is a good choice. A further reason for choosing A∗

is because of its flexible nature: it is very easy to adapt A∗ to incorporate
user likes and dislikes, for example, by altering the cost function. Making
some rules ‘more costly’ than others will allow Edith to produce proofs that
minimise the number of rule applications which individual users find hard to
understand, or simply dislike using. Thus Edith can be easily adapted to suit
individual user preference, enhancing the readability and accessibility of the
resulting proofs. In other words, A* can be tailored to suit user preference.

Further advantages of the flexible nature of A∗ include the ability to
steer Edith away from proofs that involve diagrams which Edith cannot au-

3

tomatically draw and, instead, presents at the abstract level. Again, the
cost function can be altered to incorporate such functionality by making rule
applications that result in undrawable diagrams more expensive.

The heuristics presented in the paper are still admissible when an in-
creased cost function is used, so all of the theoretical results remain valid
with these extensions. Since an aim of diagrammatic reasoning is to make
proof reading (and writing) easier for non-expert users, such adaptations of
the cost function have the potential to be important.

Hence, when considering performance more broadly than just considering
time taken and space used, A∗ is a reasonable choice of search algorithm.

B The Expressiveness of Euler Diagrams

Here we establish the expressiveness of Euler diagrams in terms of Monadic
First Order Logic (MFOL). For example, the shading in d1, figure 2, expresses
that B − A = ∅ and corresponds to the universally quantified formula

∀x¬(B(x) ∧ ¬A(x)).

The fact that C is disjoint from A ∪B is captured by

∀x¬(
(C(x) ∧ (A(x) ∨B(x))

)
.

The diagram d1 is equivalent to the conjunction of these two MFOL sentences.

d 1

A

C

B

Figure 2: Converting Euler Diagrams into MFOL.

We seek a systematic way of classifying a fragment of MFOL that cor-
responds precisely to Euler diagrams. We note that Euler diagrams make
statements about the emptiness of sets and nothing more. All of the ele-
ments in the universal set must lie in the sets represented by non-shaded
zones. Thus, d1 above is also equivalent to

∀x(
(A(x) ∧ ¬B(x) ∧ ¬C(x)) ∨ (A(x) ∧B(x) ∧ ¬C(x))∨

(¬A(x) ∧ ¬B(x) ∧ C(x)) ∨ (¬A(x) ∧ ¬B(x) ∧ ¬C(x))
)
.

4

Definition 1 Let f be a formula of MFOL, whose predicate symbols are
drawn from L, the contour labels used in Euler diagrams. Then f is in the
Euler diagram fragment of MFOL if and only if f is satisfiable and of
the form ∀x g where the formula g contains no quantifiers and the only (free)
variable in g is x.

Lemma 1 The Euler diagram logic is equivalent in expressive power to the
Euler fragment of MFOL.

C Calculating the Restrictive Euler Diagram

Heuristic

In this appendix, we calculate the value of the restrictive heuristic func-
tion EH1(d1, d2) which is the sum of six difference measures for a par-
ticular example. Consider the proof task (d1, d2) where d1 and d2 are in
figure 3. Calculating the two contour difference measures is our starting

d 1

A B

d 2

AC

Figure 3: A proof task.

point. Since L(d2) − L(d1) = {C}, the add contour difference measure is
AddContour(d1, d2) = 1. For the remove contour difference measure, we
observe that RemContour(d1, d2) = 1 also, since L(d1)− L(d2) = {B}.

Now comes the more challenging task of computing the zone difference
measures. First, we must create the contour forms of d1 and d2. These can
be seen in figure 4 and are obtained by applying the restrictive add contour
rule; C is added to d1 and B is added to d2 thus equalizing their contour label
sets. The set ZtoAdd(d1, d2) contains all of the zones that are in CF (d2, d1)
that are not in CF (d1, d2). In this particular example, we have

ZtoAdd(d1, d2) = {(A,B,C}, ∅)}.

Similarly,
ZtoRem(d1, d2) = {({A}, {B,C})}.

5

C F (d 1 , d 2)

A B

C F (d 2 , d 1)

AC
B

C

Figure 4: Contour forms.

Secondly, we identify the changeable zones of d1 given d2. These zones are
those which are either missing or shaded in CF (d1, d2), with the exception
of the outside zone (which is neither missing nor, in this example, shaded).
Therefore

ChZ(d1, d2) = {({A,B}, {C}), ({A,B, C}, ∅), ({A}, {B, C}), ({A,C}, {B})}.

In order to compute the zone difference measures we need to find the span
of the set ChZ(d1, d2) given d = CF (d1, d2). The span consists of the set of
all zonal regions in d that are subsets of ChZ(d1, d2). Whilst there are nine
such zonal regions (as we will see), zones in ChZ(d1, d2) immediately give
rise to four of these zonal regions, namely

〈{A,B}, {C}, d〉, 〈{A,B,C}, ∅, d〉, 〈{A}, {B,C}, d〉, 〈{A,C}, {B}, d〉.

We can uses these four zonal regions to generate the remaining elements of
Span(ChZ(d1, d2)) using the combining rule

〈P ∪ {L}, Q, d〉 ∪ 〈P,Q ∪ {L}, d〉 = 〈P, Q, d〉

where L is some label not in P ∪ Q (corresponding to the algebra of splits
in [6]) as follows. We can take the union of 〈{A,B, C}, ∅, d〉 and 〈{A,B}, {C}, d〉
to give 〈{A,B}, ∅, d〉; this zonal region is shaded in d3, figure 5. Similarly we

d 3

A B

d 4

A B

d 5

A B

d 6

A B

Figure 5: Computing spans.

6

have

〈{A,B}, {C}, d〉 ∪ 〈{A}, {B,C}, d〉 = 〈{A}, {C}, d〉
〈{A,B, C}, ∅, d〉 ∪ 〈{A,C}, {B}, d〉 = 〈{A,C}, ∅, d〉
〈{A,C}, {B}, d〉 ∪ 〈{A}, {B,C}, d〉 = 〈{A}, {B}, d〉

which are shaded in d4, d5 and d6 respectively. Observing that a zonal region,
〈P, Q, d〉 contains 2n zones, where n = |L(d) − (P ∪ Q)|, we do not need to
seek zonal regions containing three zones. Having found zonal regions that
contain either one zone or two zones, our next step is to take unions of zonal
regions that contain two zones each, giving zonal regions that contain four
zones each:

〈{A,B}, ∅, d〉 ∪ 〈{A}, {B}, d〉 = 〈{A}, ∅, d〉
〈{A,C}, ∅, d〉 ∪ 〈{A}, {C}, d〉 = 〈{A}, ∅, d〉.

Continuing this process, we now determine whether we can combine zonal
regions containing four zones each to give zonal regions containing eight zones
each. We have only one zonal region containing four zones, so there is no
zonal region containing eight zones in Span(ChZ(d1, d2)). Thus we have
created all of the zonal regions in Span(ChZ(d1, d2)):

Span(ChZ(d1, d2)) = {〈{A,B}, {C}, d〉, 〈{A,B,C}, ∅, d〉, 〈{A}, {B, C}, d〉,
〈{A, C}, {B}, d〉, 〈{A,B}, ∅, d〉, 〈{A}, {C}, d〉,
〈{A, C}, ∅, d〉, 〈{A}, {B}, d〉, 〈{A}, ∅, d〉}.

A general algorithm to compute the span of a set of zones is given at the end
of this section.

Having obtained ZtoAdd(d1, d2) = {(A,B,C}, ∅)}, ZtoRem(d1, d2) =
{({A}, {B,C})} and Span(ChZ(d1, d2)), we are in a position to compute
the zone difference measures. In this particular example, each difference
measure takes the value of 1 since, for the add zone difference measure,
ZtoAdd(d1, d2) = {(A,B, C}, ∅)} is covered by {〈(A, B, C}, ∅, d〉} and, for
the remove zone difference measure, ZtoRem(d1, d2) = {({A}, {B,C})} is
covered by {〈{A}, {B, C}, d〉}.

The next step in our example is to compute the shading difference mea-
sures. The first stage is to create the Venn forms of CF (d1, d2) and CF (d2, d1).
This is done by adding shaded zones to the contour forms. To CF (d1, d2), we
can add the missing zone ({A,B}, {C}) giving d7 in figure 6. Next, add the
missing zone ({A,B,C}, ∅) to d7 giving V enn(CF (d1, d2)). A similar process
for CF (d2, d1) can be seen in figure 7. Using the Venn forms, we establish

7

d 7

A B

C
V e n n (C F (d 1 , d 2))

A B

C

Figure 6: Obtaining the Venn form of CF (d1, d2).

d 8

AC
B AC

B

V e n n (C F (d 2 , d 1))

Figure 7: Obtaining the Venn form of CF (d2, d1).

ShdtoAdd(d1, d2) = ∅ and ShdtoRem(d1, d2) = {({A,C}, {B}), ({A,B,C}, ∅)}.
Clearly AddShading(d1, d2) = 0 because there is no shading to be added.
To compute RemShading(d1, d2), we need to find Span(ShdtoRem(d1, d2)).
Following the same process as above to find a span, we obtain

Span(ShdtoRem(d1, d2)) = {〈{A,C}, {B}, d〉, 〈{A,B,C}, ∅, d〉, 〈{A,C}, ∅, d〉}.
Therefore, RemShading(d1, d2) = 1, since ShdtoRem(d1, d2) is covered by
{〈{A,C}, ∅, d〉}.

The restrictive heuristic is the sum of the six difference measures, so

EH1(d1, d2) = 1 + 1 + 1 + 1 + 0 + 1 = 5.

Hence a shortest proof of d2 from d1 is at least 5 steps long (in this example,
a shortest proof requires exactly 5 steps).

In general, the task of computing covering numbers is analogous to the
graph theoretic problem of computing a dominating number, a well-known
NP-hard problem [5].

Definition 2 Let G be a bipartite graph with partite sets U and V . Let X
be a subset of V . Set X is said to dominate U if and only if each vertex in
U is adjacent to some vertex in X. The cardinality of a smallest such X is
called the dominating number for U in G.

In our case, we can take the set of zones to be covered as U and the
set Span(ChZ(d1, d2)) as V . There is an edge between zone z ∈ U and

8

zonal region zr ∈ V if and only if z ∈ zr, giving a bipartite graph G. The
dominating number for U in G is then the same as the covering number for
U with respect to V = Span(ChZ(d1, d2)).

In general, to compute Span(ChZ(d1, d2)) given diagrams d1 and d2,
apply the following algorithm (where we denote CF (d1, d2) by d):

Step 1 If ChZ(d1, d2) = ∅ then Span(ChZ(d1, d2)) = ∅ and terminate. Oth-
erwise proceed to step 2.

Step 2 Set i = 1 and create a list

CompSpani = (〈P1,i, Q1,i, d〉, ..., 〈Pm,i, Qm,i, d〉)

where ChZ(d1, d2) = {(P1, Q1), ..., (Pm, Qm)} and, for each n where
1 ≤ n ≤ m,

〈Pn,i, Qn,i, d〉 = {(Pn, Qn)}.
This gives the zonal regions arising from the zones in ChZ(d1, d2).

Step 3 Set j = 1, k = 2, l = 1 and CompSpani+1 = ().

Step 4 Determine whether the combining rule can be applied to 〈Pj,i, Qj,i, d〉
and 〈Pk,i, Qk,i, d〉. If the rule can be applied then add their union, called
〈Pl,i+1, Ql,i+1, d〉, to the end of the list CompSpani+1 and increment
both l and k by 1. Otherwise, increment only k by 1.

Step 5 If k is less than or equal to the length of CompSpani then return to
step 4. Otherwise increment j by 1.

Step 6 If j is less than the length of CompSpani then set k = j +1 and return
to step 4. Otherwise proceed to step 7.

Step 7 If CompSpani+1 is not the empty list then increment i by 1 and return
to step 3. Otherwise, the elements of Span(ChZ(d1, d2)) are precisely
those zonal regions that occur in any of the CompSpani lists created
above and we terminate.

Of course, there is a proof obligation that the given algorithm does indeed
compute Span(ChZ(d1, d2)). Clearly, any zonal region that occurs in any of
the CompSpani lists is an element of Span(ChZ(d1, d2)) since it is created
by taking unions of zonal regions that originate from zones in ChZ(d1, d2)
(a more formal argument would proceed by induction on i). Conversely,
let 〈P,Q, d〉 be an element of Span(ChZ(d1, d2)). If 〈P, Q, d〉 contains just a
single zone then 〈P, Q, d〉 is in CompSpan1 and, we note, |L(d)−(P∪Q)| = 0.

9

Assume that, if |L(d)−(P∪Q)| = k then 〈P, Q, d〉 is in the list CompSpank+1.
Suppose that 〈P, Q, d〉 satisfies |L(d)− (P ∪Q)| = k +1. Choose some label,
L say, in L(d)− (P ∪Q). Then

〈P, Q, d〉 = 〈P ∪ {L}, Q, d〉 ∪ 〈P, Q ∪ {L}, d〉.

By assumption, 〈P ∪ {L}, Q, d〉 and 〈P,Q∪ {L}, d〉 are in CompSpank+1. It
is then clear that 〈P,Q, d〉 is in CompSpank+2, as required.

D Proofs of Theorems 1,2 and 3

The lemma below is used in the proof of theorem 1.

Lemma 2 Let d1 and d2 be Euler diagrams. If EH1(d1, d2) = ∞ then
AddShading(d1, d2) = ∞.

Proof Suppose that EH1(d1, d2) = ∞. Then either the add shading or the
remove zone difference measure is infinite. Suppose that the remove zone
difference measure is infinite. Then there is a zone, z say, in ZtoRem(d1, d2)
that is not in ChZ(d1, d2). This means that z is not shaded in CF (d1, d2) and,
therefore, not shaded in V enn(CF (d1, d2)). Now, since z is in RemZ(d1, d2),
it must be that z is missing from the diagram CF (d2, d1). Therefore, z is
shaded in V enn(CF (d2, d1)), so the add shading difference measure is also
infinite.

Theorem 1 Let d1 and d2 be Euler diagrams. Then EH1(d1, d2) = ∞ if and
only if d1 6` d2.

Proof Suppose that EH1(d1, d2) = ∞, so AddShading(d1, d2) = ∞. There-
fore there is a zone that is shaded in V enn(CF (d2, d1)) but not shaded in
V enn(CF (d1, d2)). Choose such a zone, z. It can be shown that V enn(CF (d1, d2))
is semantically equivalent to d1 and V enn(CF (d2, d1)) is semantically equiva-
lent to d2. Now, in any model for V enn(CF (d2, d1)), the shaded zone z repre-
sents the empty set. It is simple to construct a model for V enn(CF (d1, d2))
in which z does not represent the empty set because z is not shaded in
V enn(CF (d1, d2)). Therefore

V enn(CF (d1, d2)) 6² V enn(CF (d2, d1)).

If follows that d1 6² d2. By soundness d1 6` d2. Hence, if EH1(d1, d2) = ∞
then d1 6` d2.

10

Conversely, suppose that d1 6` d2. Then, by completeness, d1 6² d2. There-
fore

V enn(CF (d1, d2)) 6² V enn(CF (d2, d1)).

Thus there is a model, m, for V enn(CF (d1, d2)) that is not a model for
V enn(CF (d2, d1)). Choose such a model. Since there are no missing zones in
V enn(CF (d2, d1)), the only way m fails to be a model for V enn(CF (d2, d1))
is because there exists a zone, z say, that is shaded in V enn(CF (d2, d1)) but
does not represent the empty set. Choose such a zone, z. Since m is a model
for V enn(CF (d1, d2)) it follows that z is not shaded in V enn(CF (d1, d2)).
Therefore AddShading(d1, d2) = ∞. Hence, EH1(d1, d2) = ∞ if and only if
d1 6` d2

Theorem 2 The heuristic function for the restrictive Euler diagram system
is admissible. That is, for all Euler diagrams d1 and d2, EH1(d1, d2) provides
a lower bound on the length of a shortest proof of d2 from d1.

Proof The proof is by induction on the shortest proof length. For the base
case, we consider proofs of length n = 0. In this case, the premise d0 is also
the conclusion and it is trivial that EH1(d0, d0) = 0. Hence the base case
holds.

Assume that, for all Euler diagrams d0 and dk with shortest proof length
n = k of dk from d0, EH1(d0, dk) ≤ k.

Let d0 and dk+1 be Euler diagrams with shortest proof length k + 1
of dk+1 from d0. Choose a shortest proof, say 〈d0, d1, d2, ..., dk+1〉. Then
〈d1, d2, ..., dk, dk+1〉 is a shortest proof of dk+1 from d1 and has length k,
see figure 8. By assumption EH1(d1, dk+1) ≤ k. We want to show that

d 0 d n

k1 d 1

k + 1

Figure 8: The proof strategy for theorem 2.

EH1(d0, dk+1) ≤ k+1. If we can show that EH1(d0, dk+1) ≤ EH1(d1, dk+1)+1
then, since we know EH1(d1, dk+1) ≤ k it will follow that EH1(d0, dk+1) ≤
k + 1. There are five rules that could have been applied to d0 giving d1. The
strategy is to consider each of the rules in turn and consider how applying the
rule affects the values of the difference measures. We include the case when
the remove shading from a zone rule has been applied to d0, removing the
shading from the zone (a, b). The remaining cases are more straightforward.

11

When we apply the remove shading from a zone rule to d0 giving d1 we do
not change the contour label set, that is L(d0) = L(d1) and we immediately
have the following relationships between three of the difference measures:

(a) AddContour(d0, dk+1) = AddContour(d1, dk+1),

(b) RemContour(d0, dk+1) = RemContour(d1, dk+1) and

(c) AddShading(d0, dk+1) = AddShading(d1, dk+1) = 0 (by theorem 1).

Furthermore, because the zone sets of d0 and d1 are identical (we have only
removed shading), their contour forms with respect to dk+1 also have identical
zones sets. Therefore

ZtoAdd(d0, dk+1) = ZtoAdd(d1, dk+1) (1).

Since shading has been erased from d0 to give d1, the shaded zones in
CF (d1, dk+1) form a proper subset of those which are shaded in CF (d0, dk+1).
Furthermore, since the zones sets of the contour forms are identical, the con-
tour forms also have the same missing zone sets. Therefore, the changeable
zone sets satisfy

ChZ(d1, dk+1) ⊂ ChZ(d0, dk+1),

which implies that every zonal region which is a subset of ChZ(d1, dk+1) is
also a subset of ChZ(d0, dk+1), in other words

Span(ChZ(d1, dk+1)) ⊂ Span(ChZ(d0, dk+1)) (2).

Choose a set of zonal regions, ZR say, satisfying

ZR ⊆ Span(ChZ(d1, dk+1))

which is a smallest covering of ZtoAdd(d1, dk+1), given
Span(ChZ(d1, dk+1)). By (1), ZR is also a covering of ZtoAdd(d0, dk+1).
By (2)

ZR ⊆ Span(ChZ(d0, dk+1)).

Hence, given Span(ChZ(d0, dk+1)), either ZR is a smallest covering of

ZtoAdd(d0, dk+1)

or there is a smaller covering and we deduce that

AddZone(d0, dk+1) ≤ AddZone(d1, dk+1).

12

Similarly,
RemZone(d0, dk+1) ≤ RemZone(d1, dk+1).

Finally, we consider the remove shading measure. Now, because every zone
that is shaded in CF (d1, dk+1) is also shaded in CF (d0, dk+1) and we have
applied the remove shading rule to d0 giving d1 we deduce that

ShdtoRem(d1, dk+1) ⊂ ShdtoRem(d0, dk+1).

Recall that shading was removed from the zone (a, b) in d0 to give d1. The
zones in the region

R = ShdtoRem(d0, dk+1)− ShdtoRem(d1, dk+1) (3)

are precisely those which are shaded in V enn(CF (d0, dk+1)) but not shaded
in V enn(CF (d1, dk+1)) and arise from the shading being removed from (a, b).
The region R is, therefore, a zonal region given a and b. More formally, R is
the zonal region 〈a, b, V enn(CF (d1, dk+1))〉. Therefore, by (3)

ShdtoRem(d1, dk+1)∪〈a, b, V enn(CF (d1, dk+1))〉 = ShdtoRem(d0, dk+1) (4).

Choose a set of zonal regions, ZR say, satisfying

ZR ⊆ Span(ShdtoRem(d1, dk+1))

which is a smallest covering of ShdtoRem(d1, dk+1). By (4),

ZR ∪ {〈a, b, V enn(CF (d0, dk+1))〉}
covers ShdtoRem(d0, dk+1). Hence we require at most one more zonal region
to cover ShdtoRem(d0, dk+1) than to cover ShdtoRem(d1, dk+1), that is

RemShading(d0, dk+1) ≤ RemShading(d1, dk+1) + 1.

We have shown that the difference measures between d0 and dk+1 are either
the same or are smaller than those between d1 and dk+1 with the exception
of the remove shading measure which can be at most 1 bigger. Therefore,
since the heuristic function is the sum of these measures, EH1(d0, dk+1) ≤
EH1(d1, dk+1) + 1. No matter which rule was applied to d0 to give d1, it can
be shown that

EH1(d0, dk+1) ≤ EH1(d1, dk+1) + 1

≤ k + 1

Hence EH1(d1, d2) is admissible.

13

Theorem 3 The heuristic function for the relaxed Euler diagram system is
admissible. That is, for all Euler diagrams d1 and d2, EH2(d1, d2) provides
a lower bound on the length of a shortest proof of d2 from d1.

Proof Following the strategy of theorem 2, the proof is by induction on
the shortest proof length. For the base case, we consider proofs of length
n = 0. In this case, the premise d0 is also the conclusion and it is trivial that
EH2(d0, d0) = 0. Hence the base case holds.

Assume that, for all Euler diagrams d0 and dk with shortest proof length
n = k of dk from d0, EH2(d0, dk) ≤ k.

Let d0 and dk+1 be Euler diagrams with shortest proof length k + 1
of dk+1 from d0. Choose a shortest proof, say 〈d0, d1, d2, ..., dk+1〉. Then
〈d1, d2, ..., dk, dk+1〉 is a shortest proof of dk+1 from d1 and has length k.

By assumption EH2(d1, dk+1) ≤ k. We want to show that EH2(d0, dk+1) ≤
k + 1. There are five relaxed rules that could have been applied to d0 giving
d1. The strategy is to consider each of the rules in turn and consider how
applying the rule affects the values of the relaxed difference measures. We
include the case when the relaxed remove a contour rule has been applied to
d0, removing the contour c. The remaining cases are more straightforward.

When we apply the relaxed remove a contour rule to d0 removing c to
give d1, the contour label set is changed and L(d0) = L(d1)∪ {c}. There are
two subcases to consider: either c is in L(dk+1) or it is not.

Firstly, suppose that c 6∈ L(dk+1). Then we immediately have the follow-
ing relationships between three of the difference measures:

(a) AddContour(d0, dk+1) = AddContour(d1, dk+1),

(b) RemContour(d0, dk+1)− 1 = RemContour(d1, dk+1) and

(c) AddShading(d0, dk+1) = AddShading(d1, dk+1) = 0 (by theorem 1).

It is obvious that RelCF (d0, dk+1) = RelCF (d1, dk+1) and RelCF (dk+1, d0) =
RelCF (dk+1, d1) so

(a) AddRegion(d0, dk+1) = AddRegion(d1, dk+1),

(b) RemRegion(d0, dk+1) = RemRegion(d1, dk+1) and

(c) RelRemShading(d0, dk+1) = RelRemShading(d1, dk+1)

Hence, in the case where c 6∈ L(dk+1), we see that the sum of the difference
measures between d0 and dk+1 is exactly one more than the sum between d1

and dk+1. It immediately follows that EH2(d0, dk+1) ≤ EH2(d1, dk+1) + 1.

14

Alternatively, in the more challenging case, c ∈ L(dk+1). Then we im-
mediately have the following relationships between three of the difference
measures:

(a) AddContour(d0, dk+1) + 1 = AddContour(d1, dk+1),

(b) RemContour(d0, dk+1) = RemContour(d1, dk+1) and

(c) AddShading(d0, dk+1) = AddShading(d1, dk+1) = 0 (by theorem 1).

The remaining three measures can only take the values of 0 or 1. Thus the
only way EH2(d0, dk+1)) ≤ EH2(d1, dk+1) + 1 can fail to hold is when

AddRegion(d1, dk+1) = RemRegion(d1, dk+1) = RelRemShading(d1, dk+1) = 0

and

AddRegion(d0, dk+1) = RemRegion(d0, dk+1) = RelRemShading(d0, dk+1) = 1.

We therefore only need to consider this scenario, from which we deduce that
the sum of the difference measures between d0 and dk+1 is

AddContour(d0, dk+1) + RemContour(d0, dk+1) + 3 (1)

The shortest proof 〈d0, d1, d2, ..., dk+1〉 involves adding each contour that
contributes to AddContour(d0, dk+1), and removing each contour that con-
tributes to RemContour(d0, dk+1); this gives

AddContour(d0, dk+1) + RemContour(d0, dk+1)

steps. Furthermore, the first step of this shortest proof removes c and, be-
cause c is in L(dk+1), a further proof step must add c. Therefore, the length,
k + 1, of this shortest proof satisfies

k + 1 ≥ AddContour(d0, dk+1) + RemContour(d0, dk+1) + 2.

We observe that the only way (1) is not less than or equal to k + 1 is when

k + 1 = AddContour(d0, dk+1) + RemContour(d0, dk+1) + 2 (2).

Therefore, we assume that (2) is, indeed, the case. It is then obvious that
the proof 〈d0, d1, d2, ..., dk+1〉 uses only add and remove contour rules.

Recall that EH2(d0, dk+1) is either (1) or one less than (1) (when we
are in the ‘contour correctable’ case). For EH2(d0, dk+1) to provide a lower
bound on shortest proof length, EH2(d0, dk+1) must be one less than (1)

15

and, therefore, satisfy EH2(d0, dk+1) = k + 1. Now EH2(d0, dk+1) = k + 1
when RelCF (d0, dk+1) is contour correctable given RelCF (dk+1, d0). To
show we are in the contour correctable case, we must find a contour, l
say, in RelCF (d0, dk+1) whose removal from, and subsequent addition to,
RelCF (d0, dk+1) results in RelCF (dk+1, d0). We will show that taking l = c
establishes that the contour correctable relation holds.

Removing c from RelCF (d0, dk+1) yields RelCF (d1, dk+1). We know that
RelCF (d1, dk+1) = RelCF (dk+1, d1) since there are no region differences and
no shading differences between these two contour forms (the four measures
relevant to these differences all have value 0 from d1 to dk+1 by assumption).
Thus we must show that it is possible to add c to RelCF (dk+1, d1) in order
to obtain RelCF (dk+1, d0), illustrated by

RelCF (dk+1, d0)
add c←−−− RelCF (dk+1, d1)

contour correctable

x
∥∥∥

RelCF (d0, dk+1) −−−−−→
remove c

RelCF (d1, dk+1)

Now RelCF (dk+1, d1) is obtained from RelCF (dk+1, d0) by removing c. If we
can show that removing c from RelCF (dk+1, d0) does not lose any shading
then we are able to add c to RelCF (dk+1, d1) obtaining RelCF (dk+1, d0). So,
we show that RelCF (dk+1, d0) is semantically equivalent to RelCF (dk+1, d1)
since the only way this can fail to be the case is when shading is lost on the
removal of c from RelCF (dk+1, d0). It is straightforward to show that remov-
ing c from RelCF (dk+1, d0) preserves information if and only if removing c
from dk+1 preserves information. Thus we prove that removing c from dk+1

preserves information.
The proof 〈d0, d1, d2, ..., dk+1〉 can be transformed into another proof,

〈d0, ..., d
′
k, dk+1〉 say, where the contour c is added to d′k giving dk+1 by com-

muting the applications of the add and remove contour rules. Removing c
from dk+1 yields d′k, showing dk+1 ` d′k and d′k ` dk+1. Hence this removal
of c from dk+1 preserves information. Therefore RelCF (dk+1, d0) is semanti-
cally equivalent to RelCF (dk+1, d0) with c removed. Hence RelCF (d0, dk+1)
is contour correctable given RelCF (dk+1, d0) and we deduce that

EH2(d0, dk+1) = AddContour(d0, dk+1)+RemContour(d0, dk+1)+2 = k+1.

Thus we have shown that if the relaxed remove contour rule is applied to
d0 giving d1 then EH2(d0, dk+1) provides a lower bound on proof length.
No matter which rule was applied to d0 to give d1, it can be shown that
EH2(d0, dk+1) provides a lower bound on proof length. Hence EH2(d1, d2) is
admissible.

16

E Clutter in Euler Diagrams

If our automatically generated proofs are to be readable then the individual
diagrams must be readable. An aspect of the readability of a diagram is re-
lated to the conciseness of information representation. In first order predicate
logic, for example, the sentence

∀x¬A(x) (a)

is semantically equivalent to

∀x (¬A(x) ∧B(x)) ∨ (¬A(x) ∧ ¬B(x)) (b).

Sentence (a) is more concise and easier to read than sentence (b). Moreover,
sentence (b) could be considered cluttered. In [8], the amount of clutter in
Euler diagrams is measured using a clutter score. A clutter score called the
contour score for a diagram, d, is defined in [9] to be

CS(d) =
∑

(a,b)∈Z(d)

|a|.

In [8] various other measure of clutter are also defined but empirical data
shows that contour scoring best matches users’ perceptions of clutter [9].
Contour scoring provides an indication of the conciseness of information rep-
resentation: if it is possible to apply a sequence of information preserving
reasoning rules to d1 giving a diagram with a lower contour score then the
information in d1 is not represented as concisely as possible.

d 1

BA

d 2

BA

C

Figure 9: Clutter in Euler diagrams.

Example 2 In figure 9, d1 and d2 have contour scores CS(d1) = 2 and
CS(d2) = 7. The diagrams d1 and d2 are semantically equivalent. In fact,
d1 can be obtained from d2 by applying the restrictive remove contour rule.
The information in d2 can be represented more concisely, by d1 for example.

17

When contours are added to a diagram, the contour score increases. In the
restrictive case, for example, for any d1 and d2, if d2 is obtained from d1 by
applying the add contour rule then

CS(d2) = 2× CS(d1) + |Z(d1)|.

Both of our proof writing rules bias Edith towards proofs that contain dia-
grams with lower clutter scores.

F Generating Proof Tasks

In this section, we explain how the proof tasks were generated, trying to
ensure randomness. Regardless of the reasoning system used, Edith can im-
mediately check whether a proof exists, because the heuristic function takes
the value of infinity whenever no proof exists (this follows from theorem 1).
Hence it is not interesting, from the point of view of our analysis, to feed proof
tasks to Edith in cases where there is no proof. Therefore, the proof tasks
that we generate ensure that the premise semantically entails the conclusion.
The premise, d1, was randomly generated as follows.

1. Randomly choose the number, ncontours, of contours that will be
present in d1.

2. Generate a random set of contour labels with cardinality n contours.
This is L(d1).

3. The outside zone, (∅, L(d1)), must be in d1 and is either shaded or
non-shaded with equal probability.

4. The zones that could be in d1, in addition to (∅, L(d1)), are those in
V Z(d1)− {(∅, L(d1))}. Each of the zones in V Z(d1)− {(∅, L(d1))} are
either

(a) in d1 and non-shaded,

(b) in d1 and shaded or

(c) not in d1.

Each possibility is equally likely and decided on a zone by zone basis.
The set of zones deemed to be in d1 is denoted by Z.

5. Finally, the zone set Z must be checked to see whether it satisfies
the condition that there is at least one zone inside each contour. If a

18

contour label, l, has no zones inside then remove l from the contour
label set and adjust the zones accordingly. In other words, for each
(a, b) ∈ Z, replace (a, b) with (a− {l}, b− {l}). Repeat this process as
often as needed.

Step 5 in the algorithm above ensures that each contour in d1 contains at
least one zone. Furthermore, step 5 ensures that we do not attempt to create
a diagram, only to discover that it is not well-formed and have to discard it.
There are many subsets of V Z(d1) that are not zone sets for any diagram.
It is hoped that step 5 will save time when generating proof tasks.

To generate the conclusion, d2, we generate a random number of contour
labels and then a random set of contour labels in the same way as we did for
d1. We want d1 to semantically entail d2, so some zones must be present in
d2. For example, if the premise diagram is d1 in figure 10 and d2 is to have
contour labels L(d2) = {A,B, C} then d2 must contain the zones that are
not shaded in d1. As such, when generating the conclusion diagram for our

d 1

A

C

B

Figure 10: A randomly generated premise.

proof task, we first determine which zones must be present and non-shaded,
given L(d2) and the premise diagram. The remaining zones in V Z(d2) may
be present and non-shaded, present and shaded, or not present in d2. These
choices are given equal probability. Again, the resulting set of zones, Z,
deemed to be present in d2 is checked to see if it satisfies the condition that
there is at least one zone inside each contour. If necessary, step 5 in the above
algorithm (used to create the final zone set for d1) is applied to Z until each
contour contains at least one zone.

G Evaluation

G.1 Analysis of Time

G.1.1 Exploratory Data Analysis

Scatter plots can be seen in figure 11 that enable us to compare pairwise the
times taken by Edith when using different reasoning systems. In each case,

19

data points below the y = x line are when the reasoning system on the y axis
is faster than that on the x axis and vice versa for the data points above the
line.

l o g (r e s _ t + 1)

log
(re

lzr_
t+

1)

876543210

8
7
6
5
4
3
2
1
0

S c a t t e r p l o t o f l o g (r e l z r _ t + 1) v s l o g (r e s _ t + 1)S c a t t e r p l o t o f l o g (R e l Z R t i m e) v s l o g (R e s t i m e)

log
(Re

lZR
 tim

e)

l o g (R e s t i m e) l o g (r e l z r _ t + 1)

log
(re

l_t
+1

)

876543210

8
7
6
5
4
3
2
1
0

S c a t t e r p l o t o f l o g (r e l _ t + 1) v s l o g (r e l z r _ t + 1)S c a t t e r p l o t o f l o g (R e l t i m e) v s l o g (R e l Z R t i m e)

l o g (R e l Z R t i m e)

log
(Re

l tim
e)

l o g (r e s _ t + 1)

log
(re

l_t
+1

)

876543210

8
7
6
5
4
3
2
1
0

S c a t t e r p l o t o f l o g (r e l _ t + 1) v s l o g (r e s _ t + 1)S c a t t e r p l o t o f l o g (R e l t i m e) v s l o g (R e s t i m e)

log
(Re

l tim
e)

l o g (R e s t i m e) l o g (r e s z r _ t + 1)

log
(re

lzr
_t+

1)

876543210

8
7
6
5
4
3
2
1
0

S c a t t e r p l o t o f l o g (r e l z r _ t + 1) v s l o g (r e s z r _ t + 1)S c a t t e r p l o t o f l o g (R e l Z R t i m e) v s l o g (R e s Z R t i m e)

l o g (R e s Z R t i m e)

log
(Re

lZR
 tim

e)

Figure 11: Scatter plots comparing time taken.

Res Faster No Difference ResZR Faster
N = 234 N = 257 N = 509

Measure Q1 Median Q3 Q1 Median Q3 Q1 Median Q3
AddC 0 1 2 0 1 2 0 0 2
RemC 0 1 2 0 1 1 0 1 2
AddZ 0 1 2 0 0 1 1 2 2
RemZ 0 0 1 0 0 0 0 0 1
RemSh 0 0 1 0 0 1 0 1 1

Table 1: Difference measure values for Res vs Res ZR.

Summary statistics for the difference measures can be used to give an
indication of the characteristics of the proof tasks for which one reasoning
system is a better choice than another. Table 1 shows the median, upper
and lower quartile values of the difference measures when Edith was faster
using Res than ResZR and vice versa, with N being the number of times that
Edith was faster using the associated system. Studying row 3, for example,
the statistics suggest that Edith is likely to be faster using ResZR than Res
when many zones need to be added. Tables 2 to 6 show values for the other
five pairwise comparisons.

20

RelZR Faster No Difference Res Faster
N = 489 N = 212 N = 299

Measure Q1 Median Q3 Q1 Median Q3 Q1 Median Q3
AddC 0 0 1 0 1 2 1 1 2
RemC 1 2 2 0 1 1 0 0 0
AddZ 1 2 3 0 0 0 0 1 2
RemZ 0 0 1 0 0 0 0 1 1
RemSh 0 0 1 0 0 1 1 1 1

Table 2: Difference measure values for Res vs RelZR.

Rel Faster No Difference Res Faster
N = 527 N = 224 N = 249

Measure Q1 Median Q3 Q1 Median Q3 Q1 Median Q3
AddC 0 0 1 0 1 2 1 1 2
RemC 0 1 2 0 1 1 0 0 1
AddZ 1 2 3 0 0 1 0 1 1
RemZ 0 0 1 0 0 0 0 1 1
RemSh 0 0 1 0 0 1 1 1 1

Table 3: Difference measure values for Rel vs Res.

Rel Faster No Difference ResZR Faster
N = 458 N = 204 N = 338

Measure Q1 Median Q3 Q1 Median Q3 Q1 Median Q3
AddC 0 0 1 0 1 2 0 1 2
RemC 1 2 2 0 1 1 0 0 0
AddZ 1 2 3 0 0 1 0 1 2
RemZ 0 0 1 0 0 0 0 1 1
RemSh 0 0 1 0 0 1 1 1 1

Table 4: Difference measure values for Rel vs ResZR.

G.1.2 Which is Fastest?

For each pair of reasoning systems, given a proof task we can estimate
the probability that Edith will be faster with one than the other. Let
Pt(R1, R2, d1, d2) denote the probability that Edith will be faster at finding
a proof using reasoning system R1 than using R2 given proof task (d1, d2).

21

RelZR Faster No Difference Rel Faster
N = 407 N = 264 N = 329

Measure Q1 Median Q3 Q1 Median Q3 Q1 Median Q3
AddC 0 0 1 0 1 1 0 1 2
RemC 1 1 2 0 1 2 0 0 0
AddZ 1 2 3 0 0 1 0 1 2
RemZ 0 0 1 0 0 0 0 1 1
RemSh 0 0 1 0 0 1 1 1 1

Table 5: Difference measure values for RelZR vs Rel.

RelZR Faster No Difference ResZR Faster
N = 474 N = 198 N = 328

Measure Q1 Median Q3 Q1 Median Q3 Q1 Median Q3
AddC 0 0 1 0 1 2 0 1 2
RemC 1 2 2 0 1 1 0 0 0
AddZ 1 2 3 0 0 0 0 1 2
RemZ 0 0 0 0 0 0 0 1 1
RemSh 0 0 1 0 0 1 1 1 1

Table 6: Difference measure values for RelZR vs ResZR.

We fit a log odds ratio model of the form

ln
(

P̂t(R1,R2,d1,d2)

1−P̂t(R1,R2,d1,d2)

)
= β0 + β1AddContour(d1, d2)+

β2RemContour(d1, d2)+
β3AddZone(d1, d2)+
β4RemZone(d1, d2)+
β5RemShading(d1, d2)

where ln
(

P̂t(R1,R2,d1,d2)

1−P̂t(R1,R2,d1,d2)

)
estimates ln

(
Pt(R1,R2,d1,d2)

1−Pt(R1,R2,d1,d2)

)
. If βi = 0 then the

associated measure is not significant. For the Rel and ResZR system the
fitted model is

ln
(

P̂t(Rel,ResZR,d1,d2)

1−P̂t(Rel,ResZR,d1,d2)

)
= −2.6377

+0.3604AddContour(d1, d2)
+1.3870RemContour(d1, d2)
+0.5506AddZone(d1, d2)
+0.3179RemZone(d1, d2)

Table 7 shows some estimated probabilities (to 2 d.p.) given various values of
the difference measures (because the remove shading measure is not included

22

in the model, it has no effect on our estimated probability, so is not in
the table) which we now discuss. Suppose we have a proof task, (d1, d2),

Measures

AddC RemC AddZ RemZ P̂t(Rel, ResZR, d1, d2)
0 4 4 0 0.99
0 4 0 0 0.95
4 0 0 0 0.23
4 0 0 6 0.67
0 0 2 3 0.36
0 0 4 4 0.70

Table 7: Estimated probabilities.

where we need to remove four contours from d1 to obtain d2, so RemC =
RemContour(d1, d2) = 4. It is likely that, using ResZR, some zones will
need to be added before contours can be removed, so the add zone measure,
AddZ, is unlikely to be zero. In such cases, we might expect Edith to perform
better using Rel than ResZR because it can remove the contours without first
adding the zones. Row 1 of table 7 shows that this is, indeed, likely to be
the case. Reducing the value of AddZ does not have much impact on the
probability, see row 2 for an example.

If all we have to do is add contours to d1 in order to obtain d2 then
we might expect Edith to perform no worse using ResZR than Rel because,
unlike the restrictive add contour rule, there are potentially many ways of
adding a contour using the relaxed add contour rule; row 3 shows an example
situation providing evidence to support this intuition. However, once we need
to start removing zones, too, we might expect Rel to perform better than
ResZR: the relaxed add contour rule can be applied in such a way that it is
equivalent to an application of the restrictive add contour rule followed by
subsequent applications of the remove zone rule; row 4 provides evidence to
support this intuition.

If there are zones to be added and zones to be removed from d1 then the
highly explosive nature of the add region and remove region rules (in the
sense that as the number of missing zones and shaded zones increases, the
number of ways in which these rules can be applied explodes) may mean that
ResZR is a better choice. Row 5 shows that in relatively simple cases, ResZR
is likely to be no worse a choice than Rel, whereas row 6 shows that when
we detect many zone differences, the explosive nature of the region rules is
likely to outweigh the cost of producing longer search trees (that is, Rel is
likely to be a better choice than ResZR).

23

As a way of evaluating our model, we calculated the probability of Rel
being faster than ResZR using a new data set of 500 proof tasks with cut-
off time of 10 minutes; this cut-off time was deemed sufficient because most
proof tasks were solved very quickly in our 1000 data set. We plotted these
probabilities against the time differences, where the times are in milliseconds;
this is the lefthand plot in figure 12 whereas the righthand plot restricts the
y-axis to between ±300 milliseconds. The plots illustrate that the prediction
of the best reasoning system to use is usually correct; most points with
probability of less than 0.5 are above the x-axis (i.e. ResZR was faster) and
most points with probability of more than 0.5 are below the x-axis (i.e. Rel
was faster). Indeed, typically the bigger the time difference the further away
from 0.5 the probability becomes.

P (r e l f . t . r e s z r)

rel
 t -

 re
szr

 t

1 . 00 . 80 . 60 . 40 . 20 . 0

1 0 0 0 0 0
0

- 1 0 0 0 0 0
- 2 0 0 0 0 0
- 3 0 0 0 0 0
- 4 0 0 0 0 0
- 5 0 0 0 0 0
- 6 0 0 0 0 0

S c a t t e r p l o t o f r e l t - r e s z r t v s P (r e l f . t . r e s z r)P l o t o f t i m e d i f f e r e n c e v s P (R e l , R e s Z R , d 1 , d 2)

P (R e l , R e s Z R , d 1 , d 2)

Rel
 tim

e -
Res

ZR
 tim

e

P (r e l f . t . r e s z r)

rel
 t -

 re
szr

 t

1 . 00 . 80 . 60 . 40 . 20 . 0

3 0 0

2 0 0

1 0 0

0

- 1 0 0

- 2 0 0

- 3 0 0

S c a t t e r p l o t o f r e l t - r e s z r t v s P (r e l f . t . r e s z r)Z o o m e d P l o t

P (R e l , R e s Z R , d 1 , d 2)

Rel
 tim

e -
Res

ZR
 tim

e

Figure 12: Plots showing time differences against probabilities.

For the remaining five log odds ratio models, table 8 summarizes the
coefficients (βi’s) of the restrictive difference measures with a dash indicating
that a variable is not significant (and, therefore, not included in the model).

β0 AddC RemC AddZ RemZ RemSh
(ResZR, Res) -1.8561 0.2293 – 0.9104 0.7745 0.4366
(RelZR, Res) -2.7737 0.2819 1.5874 0.8389 0.2663 –
(Rel, Res) -2.5726 0.2868 0.3438 1.0553 0.7226 –
(RelZR, Rel) -2.7340 0.3219 1.0726 0.5300 – 0.5818
(RelZR, ResZR) -3.0138 0.2827 2.0047 0.6475 0.2768 –

Table 8: Coefficients for the log odds models.

These models can be used to estimate the probability that Edith will be
faster using one reasoning system than another given the measure values. The
coefficients of the difference measures are all positive. It follows that the odds
of R1 being faster than R2 increase as the values of the difference measures

24

increase. From this we deduce that P̂t(R1, R2, d1, d2) increases as the values
of the difference measures increase (although the increased P̂t(R1, R2, d1, d2)
could be less than 1

2
; if P̂t(R1, R2, d1, d2) < 1

2
then a substantial increase in

the measure values may be required before it is greater than 1
2
); that is, the

probability that Edith is faster using R1 than R2 increases as the complexity
of the proof task increases.

Each of the models above has a negative constant term; from this, it
follows that the odds favour R2 when the measure values are small; equiva-
lently, P̂t(R1, R2, d1, d2) < 1

2
. Indeed, in the cases where the coefficient for a

measure is small, the measure value may need to be large for the probability
that Edith is faster using R1 than R2 to be greater than 1

2
.

Plots showing time difference against probability, produced using the new
data set containing 500 proof tasks, can be seen in figures 13 to 17.

P (r e s z r f . t . r e s)

res
zr

t-r
es

t

1 . 00 . 90 . 80 . 70 . 60 . 50 . 40 . 30 . 20 . 1

5 0 0 0 0 0

2 5 0 0 0 0

0

- 2 5 0 0 0 0

- 5 0 0 0 0 0

S c a t t e r p l o t o f r e s z r t - r e s t v s P (r e s z r f . t . r e s)P l o t o f t i m e d i f f e r e n c e v s P (R e s Z R , R e s , d 1 , d 2)

Res
ZR

 tim
e -

Res
 tim

e

P (R e s Z R , R e s , d 1 , d 2) P (r e s z r f . t . r e s)

res
zr

t-r
es

t

1 . 00 . 90 . 80 . 70 . 60 . 50 . 40 . 30 . 20 . 1

3 0 0

2 0 0

1 0 0

0

- 1 0 0

- 2 0 0

- 3 0 0

S c a t t e r p l o t o f r e s z r t - r e s t v s P (r e s z r f . t . r e s)Z o o m e d P l o t

P (R e s Z R , R e s , d 1 , d 2)

Res
ZR

 tim
e -

Res
 tim

e

Figure 13: Plots showing time differences against probabilities for ResZR
and Res.

P (r e l z r f . t . r e s)

rel
zr

t-r
es

t

1 . 00 . 80 . 60 . 40 . 20 . 0

3 0 0

2 0 0

1 0 0

0

- 1 0 0

- 2 0 0

- 3 0 0

S c a t t e r p l o t o f r e l z r t - r e s t v s P (r e l z r f . t . r e s)Z o o m e d P l o t

P (R e l Z R , R e s , d 1 , d 2)

Rel
 ZR

 tim
e -

Res
 tim

e

P (r e l z r f . t . r e s)

rel
zr

t-r
es

t

1 . 00 . 80 . 60 . 40 . 20 . 0

7 5 0 0 0 0

5 0 0 0 0 0

2 5 0 0 0 0

0

- 2 5 0 0 0 0

- 5 0 0 0 0 0

S c a t t e r p l o t o f r e l z r t - r e s t v s P (r e l z r f . t . r e s)P l o t o f t i m e d i f f e r e n c e v s P (R e l Z R , R e s , d 1 , d 2)

Rel
 ZR

 tim
e -

Res
 tim

e

P (R e l Z R , R e s , d 1 , d 2)

Figure 14: Plots showing time differences against probabilities for RelZR and
Res.

G.2 Analysis of Space

As a measure of space efficiency, we can use the size of the search tree gen-
erated by Edith; we counted the number of nodes in the tree (that is, the
number of diagrams created when attempting to solve a proof task).

25

P (r e l f . t . r e s)

rel
 t-r

es
t

1 . 00 . 80 . 60 . 40 . 20 . 0

1 0 0 0 0 0
0

- 1 0 0 0 0 0
- 2 0 0 0 0 0
- 3 0 0 0 0 0
- 4 0 0 0 0 0
- 5 0 0 0 0 0
- 6 0 0 0 0 0

S c a t t e r p l o t o f r e l t - r e s t v s P (r e l f . t . r e s)P l o t o f t i m e d i f f e r e n c e v s P (R e l , R e s , d 1 , d 2)

P (R e l , R e s , d 1 , d 2)

Rel
 tim

e -
Res

 tim
e

P (r e l f . t . r e s)

rel
 t-r

es
t

0 . 90 . 80 . 70 . 60 . 50 . 40 . 30 . 20 . 10 . 0

3 0 0

2 0 0

1 0 0

0

- 1 0 0

- 2 0 0

- 3 0 0

S c a t t e r p l o t o f r e l t - r e s t v s P (r e l f . t . r e s)Z o o m e d P l o t

P (R e l , R e s , d 1 , d 2)

Rel
 tim

e -
Res

 tim
e

Figure 15: Plots showing time differences against probabilities for Rel and
Res.

P (r e l z r f . t . r e l)

rel
zr

t-r
el t

1 . 00 . 80 . 60 . 40 . 20 . 0

3 0 0

2 0 0

1 0 0

0

- 1 0 0

- 2 0 0

- 3 0 0

S c a t t e r p l o t o f r e l z r t - r e l t v s P (r e l z r f . t . r e l)

P (r e l z r f . t . r e l)

rel
zr

t-r
el t

1 . 00 . 80 . 60 . 40 . 20 . 0

6 0 0 0 0 0

5 0 0 0 0 0

4 0 0 0 0 0

3 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

0

S c a t t e r p l o t o f r e l z r t - r e l t v s P (r e l z r f . t . r e l)

P (R e l Z R , R e l , d 1 , d 2)P (R e l Z R , R e l , d 1 , d 2)

Z o o m e d P l o t P l o t o f t i m e d i f f e r e n c e v s P (R e l Z R , R e l , d 1 , d 2)

Rel
 ZR

 tim
e -

Rel
 tim

e

Rel
 ZR

 tim
e -

Rel
 tim

e

Figure 16: Plots showing time differences against probabilities for RelZR and
Rel.

P (r e l z r f . t . r e s z r)

rel
zr

t -
res

zr
t

1 . 00 . 80 . 60 . 40 . 20 . 0

6 0 0 0 0 0

5 0 0 0 0 0

4 0 0 0 0 0

3 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

0

S c a t t e r p l o t o f r e l z r t - r e s z r t v s P (r e l z r f . t . r e s z r)P l o t o f t i m e d i f f e r e n c e v s P (R e l Z R , R e s Z R , d 1 , d 2)

P (R e l Z R , R e s Z R , d 1 , d 2)

Rel
 ZR

 tim
e -

Res
ZR

P (r e l z r f . t . r e s z r)

rel
zr

t -r
esz

r t

1 . 00 . 80 . 60 . 40 . 20 . 0

3 0 0

2 0 0

1 0 0

0

- 1 0 0

- 2 0 0

- 3 0 0

S c a t t e r p l o t o f r e l z r t - r e s z r t v s P (r e l z r f . t . r e s z r)Z o o m e d P l o t

P (R e l Z R , R e s Z R , d 1 , d 2)

Rel
 ZR

 tim
e -

Res
ZR

Figure 17: Plots showing time differences against probabilities for RelZR and
ResZR.

G.2.1 Exploratory Data Analysis

Scatter plots can be seen in figure 18 that enable us to compare pairwise
the sizes of the search trees generated by Edith when using different rea-
soning systems. We have plotted the logs of the sizes of the search trees,
log(Reasoning system STS). In each case, data points below the y = x line
are when the reasoning system on the y axis has a smaller associated search
tree than that on the x axis and vice versa for the data points above the line.

Summary statistics for the difference measures can be used to give an
indication of the characteristics of the proof tasks for which one reasoning

26

l o g (r e s - h i t)

log
(re

szr
-hi

t)

76543210

7
6
5
4
3
2
1
0

S c a t t e r p l o t o f l o g (r e s z r - h i t) v s l o g (r e s - h i t)S c a t t e r p l o t o f l o g (R e s Z R S T S) v s l o g (R e s S T S)
log

(Re
sZR

 ST
S)

l o g (R e s S T S) l o g (r e s z r - h i t)

log
(re

l-h
it)

76543210

7
6
5
4
3
2
1
0

S c a t t e r p l o t o f l o g (r e l - h i t) v s l o g (r e s z r - h i t)

l o g (R e s Z R S T S)

log
(Re

l ST
S)

S c a t t e r p l o t o f l o g (R e l S T S) v s l o g (R e s Z R S T S)

l o g (r e s - h i t)

log
(re

lzr-
hit

)

76543210

7
6
5
4
3
2
1
0

S c a t t e r p l o t o f l o g (r e l z r - h i t) v s l o g (r e s - h i t)S c a t t e r p l o t o f l o g (R e l Z R S T S) v s l o g (R e s S T S)

log
(Re

lZR
 ST

S)

l o g (R e s S T S) l o g (r e l z r - h i t)

log
(re

l-h
it)

76543210

7
6
5
4
3
2
1
0

S c a t t e r p l o t o f l o g (r e l - h i t) v s l o g (r e l z r - h i t)S c a t t e r p l o t o f l o g (R e l S T S) v s l o g (R e l Z R S T S)

l o g (R e l Z R S T S)

log
(Re

l ST
S)

l o g (r e s z r - h i t)

log
(re

lzr-
hit

)

76543210

7
6
5
4
3
2
1
0

S c a t t e r p l o t o f l o g (r e l z r - h i t) v s l o g (r e s z r - h i t)

log
(Re

lZR
 ST

S)

l o g (R e s Z R S T S)

S c a t t e r p l o t o f l o g (R e l Z R S T S) v s l o g (R e s Z R S T S)

l o g (r e s - h i t)

log
(re

l-h
it)

76543210

7
6
5
4
3
2
1
0

S c a t t e r p l o t o f l o g (r e l - h i t) v s l o g (r e s - h i t)S c a t t e r p l o t o f l o g (R e l S T S) v s l o g (R e s S T S)

l o g (R e s S T S)

log
(Re

l ST
S)

Figure 18: Scatter plots comparing the sizes of the search trees.

Res Smaller No Difference ResZR Smaller
N = 328 N = 198 N = 474

Measure Q1 Median Q3 Q1 Median Q3 Q1 Median Q3
AddC 0 1 2 1 1 2 0 0 1
RemC 0 1 2 0 1 1 0 1 2
AddZ 0 1 2 0 0 0 1 2 3
RemZ 0 0 1 0 0 0 0 0 1
RemSh 0 1 1 0 0 0 0 1 1

Table 9: Difference measure values for Res vs ResZR.

system is a better choice than another in terms of the size of the search tree.
These can be seen in tables 9 to 14.

Table 15 summarizes the descriptive statistics for the number of vertices
in the search tree created when finding a shortest proof using each reasoning
system. For example, using Res the search tree contained between 1 vertex

27

RelZR Smaller No Difference Res Smaller
N = 553 N = 153 N = 294

Measure Q1 Median Q3 Q1 Median Q3 Q1 Median Q3
AddC 0 0 1 1 2 3 0 1 2
RemC 1 1 2 0 0 1 0 0 0
AddZ 1 2 2 0 0 0 0 1 2
RemZ 0 0 1 0 0 0 0 1 1
RemSh 0 0 1 0 0 0 1 1 1

Table 10: Difference measure values for RelZR vs Res.

Rel Smaller No Difference Res Smaller
N = 541 N = 34 N = 425

Measure Q1 Median Q3 Q1 Median Q3 Q1 Median Q3
AddC 0 0 1 1 1 1 1 1 2
RemC 0 1 2 0 0 1 0 0 1
AddZ 1 2 3 0 0 1 0 0 1
RemZ 0 0 1 0 0 0 0 0 1
RemSh 0 0 1 0 0 0 0 1 1

Table 11: Difference measure values for Rel vs Res.

Rel Smaller No Difference ResZR Smaller
N = 477 N = 36 N = 487

Measure Q1 Median Q3 Q1 Median Q3 Q1 Median Q3
AddC 0 0 1 1 1 1 0 1 2
RemC 1 1 2 0 0 1 0 0 1
AddZ 1 2 2 0 0 1 0 0 2
RemZ 0 0 1 0 0 0 0 0 1
RemSh 0 0 1 0 0 0 0 1 1

Table 12: Difference measure values for Rel vs ResZR.

and nearly 1 million vertices, with the middle half of the proof tasks being
solved when creating between 13 and 771 vertices. The Q3 column shows
that 3

4
of the search trees contained fewer than 800 vertices, regardless of the

reasoning system used. As well as taking the shortest time in most cases,
using RelZR Edith usually created smaller search trees than with the other
systems (Q3 is smallest for RelZR), but was the only system with which Edith
created search trees containing more than 1 million vertices. Edith can also

28

RelZR Smaller No Difference Rel Smaller
N = 694 N = 58 N = 248

Measure Q1 Median Q3 Q1 Median Q3 Q1 Median Q3
AddC 0 1 1 0 0 1 0 1 2
RemC 0 1 2 0 1 1 0 0 0
AddZ 0 1 2 0 0 1 0 1 2
RemZ 0 0 0 0 0 0 1 1 2
RemSh 0 0 1 0 0 0 1 1 1

Table 13: Difference measure values for RelZR vs Rel.

RelZR Smaller No Difference ResZR Smaller
N = 542 N = 167 N = 291

Measure Q1 Median Q3 Q1 Median Q3 Q1 Median Q3
AddC 0 0 1 1 2 3 0 1 2
RemC 1 2 2 0 0 1 0 0 0
AddZ 1 2 2 0 0 0 0 1 2
RemZ 0 0 1 0 0 0 0 1 1
RemSh 0 0 1 0 0 0 1 1 1

Table 14: Difference measure values for RelZR vs ResZR.

Min Q1 Median Q3 Max
Res 1 13 63 771 902969

ResZR 1 14 65 233 99956
RelZR 1 9 29 114 2759995

Rel 1 14 47 231 51045

Table 15: Descriptive statistics for space used.

create very large search trees using Res, seen by its maximum search tree
size, whereas Edith never created a search tree containing more than 100,000
vertices when using ResZR and Rel.

G.2.2 Which Has The Smallest Search Tree?

Given a proof task, (d1, d2), we would like to know whether Edith will create a
smaller search tree using Rel than when using ResZR. Let Ps(Rel, ResZR, d1, d2)
denote the probability that Edith will create a smaller search tree using rea-
soning system Rel than using ResZR given (d1, d2). We fitted a log odds

29

ratio model, where P̂s(Rel, ResZR, d1, d2) estimates Ps(Rel, ResZR, d1, d2):

ln
(

P̂s(Rel,ResZR,d1,d2)

1−P̂s(Rel,ResZR,d1,d2)

)
= −2.2308

+0.8901RemContour(d1, d2)
+0.8349AddZone(d1, d2)
+1.2143RemZone(d1, d2)
−0.7925AddZone(d1, d2)×RemZone(d1, d2)
+0.7362RemContour(d1, d2)×RemZone(d1, d2)

(the add contour measure was not significant, but there were three significant
interactions included in the model) which had goodness of fit measure 1.03.

Since the coefficients of the measure values are not all of the same sign,
we cannot interpret the model as easily as in the time taken case. Table 16
shows some estimated probabilities (to 2 d.p.) given various values of the
difference measures which we now discuss.

Measures

AddZ RemZ P̂s(Rel, ResZR, d1, d2) P̂t(Rel, ResZR, d1, d2)
1 0 0.09 0.11
2 4 0.17 0.43
3 4 0.08 0.57
4 4 0.04 0.70

Table 16: Estimated probabilities.

Suppose we have a proof task, (d1, d2), where the add zone measure is
1 and other measures are all zero (row 1 of the table); all we need to do
is add zones. Then we would expect ResZR to be no worse a choice in
terms of space and time (see row 1). If we increase both the add zone and
remove zone measure values then, in terms of the size of the search tree,
ResZR remains the most likely best choice in terms of space (see rows 2 –
4). However, although initially Edith is much more likely to be faster using
ResZR than Rel, as these two measures increase this fails to be the case, with
Rel becoming faster; our notion of best choice differs between time and the
size of the search tree.

The scatter plots in figure 19, created using the 500 data set show that
the model is reasonably good.

For the remaining five log odds ratio models, table 17 summarizes the
coefficients (βi’s) of the restrictive difference measures with a dash indicating
that a variable is not significant (and, therefore, not included in the model).

30

P (r e l z r m . e . t . r e s z r)

rel
zr

hit
 - r

esz
r h

it

1 . 00 . 80 . 60 . 40 . 20 . 0

5 0 0 0

2 5 0 0

0

- 2 5 0 0

- 5 0 0 0

S c a t t e r p l o t o f r e l z r h i t - r e s z r h i t v s P (r e l z r m . e . t . r e s z r)

P (r e l m . e . t . r e s z r)

rel
 hit

 - r
esz

r h
it

1 . 00 . 80 . 60 . 40 . 20 . 0

1 0 0 0 0 0

0

- 1 0 0 0 0 0

- 2 0 0 0 0 0

- 3 0 0 0 0 0

S c a t t e r p l o t o f r e l h i t - r e s z r h i t v s P (r e l m . e . t . r e s z r)

Rel
 ST

S -
 Re

sZR
 ST

S
P l o t o f s p a c e d i f f e r e n c e v s P (R e l , R e s Z R , d 1 , d 2)

P (R e l , R e s Z R , d 1 , d 2)

Z o o m e d P l o t

P (R e l , R e s Z R , d 1 , d 2)

Rel
 ST

S -
 Re

sZR
 ST

S

Figure 19: Plots showing size of search tree differences against probabilities.

β0 AddC RemC AddZ RemZ RemSh
(ResZR, Res) -2.0342 – – 0.9063 0.7584 0.8798
(RelZR, Res) -1.8600 -0.2512 1.9806 0.4178 0.6818 –
(Rel, Res) -1.9721 – 0.6842 1.1281 1.1182 -0.4953
(RelZR, Rel) 0.5546 – 1.8902 -0.4292 -0.7161 –
(RelZR, ResZR) -2.5406 – 2.4667 0.4001 0.7613 –

Table 17: Coefficients for the log odds models.

These models can be used to estimate the probability that Edith will
create a smaller search tree using one reasoning systems than another.

Plots showing differences between the sizes of the search trees against
probability, produced using a new data set containing 500 proof tasks, can
be seen in figures 20 to 24.

P (r e s z r m . e . t . r e s)

res
zr

hit
-re

s h
it

1 . 00 . 80 . 60 . 40 . 20 . 0

2 0 0 0 0 0

1 0 0 0 0 0

0

- 1 0 0 0 0 0

- 2 0 0 0 0 0

- 3 0 0 0 0 0

S c a t t e r p l o t o f r e s z r h i t - r e s h i t v s P (r e s z r m . e . t . r e s)P l o t o f s p a c e d i f f e r e n c e v s P (R e s Z R , R e s , d 1 , d 2)

P (R e s Z R , R e s , d 1 , d 2)

Res
ZR

 ST
S -

 Re
s S

TS

P (r e s z r m . e . t . r e s)

res
zr

hit
-re

s h
it

1 . 00 . 80 . 60 . 40 . 20 . 0

5 0 0 0

2 5 0 0

0

- 2 5 0 0

- 5 0 0 0

S c a t t e r p l o t o f r e s z r h i t - r e s h i t v s P (r e s z r m . e . t . r e s)Z o o m e d P l o t

P (R e s Z R , R e s , d 1 , d 2)

Res
ZR

 ST
S -

 Re
s S

TS

Figure 20: Plots showing size of search tree differences against probabilities
for ResZR and Res.

G.3 Using Heuristics

In order to establish that our heuristics bring benefits over a breadth first
search, we generated a random sample of 500 proof tasks. For each task and

31

P (r e l z r m . e . t . r e s)

rel
zr

hit
 - r

es
hit

1 . 00 . 80 . 60 . 40 . 20 . 0

3 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

0

- 1 0 0 0 0 0

- 2 0 0 0 0 0

S c a t t e r p l o t o f r e l z r h i t - r e s h i t v s P (r e l z r m . e . t . r e s)

P (r e l z r m . e . t . r e s)

rel
zr

hit
 - r

es
hit

1 . 00 . 80 . 60 . 40 . 20 . 0

5 0 0 0

2 5 0 0

0

- 2 5 0 0

- 5 0 0 0

S c a t t e r p l o t o f r e l z r h i t - r e s h i t v s P (r e l z r m . e . t . r e s)P l o t o f s p a c e d i f f e r e n c e v s P (R e l Z R , R e s , d 1 , d 2) Z o o m e d P l o t

P (R e l Z R , R e s , d 1 , d 2)P (R e l Z R , R e s , d 1 , d 2)

Rel
ZR

 ST
S -

 Re
s S

TS

Rel
ZR

 ST
S -

 Re
s S

TS

Figure 21: Plots showing size of search tree differences against probabilities
for RelZR and Res.

P (r e l m . e . t . r e s)

rel
 hit

 - r
es

hit

1 . 00 . 80 . 60 . 40 . 20 . 0

5 0 0 0 0
0

- 5 0 0 0 0
- 1 0 0 0 0 0
- 1 5 0 0 0 0
- 2 0 0 0 0 0
- 2 5 0 0 0 0
- 3 0 0 0 0 0

S c a t t e r p l o t o f r e l h i t - r e s h i t v s P (r e l m . e . t . r e s)

P (r e l m . e . t . r e s)

rel
 hit

 - r
es

hit

1 . 00 . 80 . 60 . 40 . 20 . 0

5 0 0

2 5 0

0

- 2 5 0

- 5 0 0

S c a t t e r p l o t o f r e l h i t - r e s h i t v s P (r e l m . e . t . r e s)P l o t o f s p a c e d i f f e r e n c e v s P (R e l , R e s , d 1 , d 2) Z o o m e d P l o t

P (R e l , R e s , d 1 , d 2) P (R e l , R e s , d 1 , d 2)

Rel
 ST

S -
 Re

s S
TS

Rel
 ST

S -
 Re

s S
TS

Figure 22: Plots showing size of search tree differences against probabilities
for Rel and Res.

P (r e l z r m . e . t . r e l)

rel
zr

hit
 - r

el h
it

1 . 00 . 80 . 60 . 40 . 20 . 0

3 5 0 0 0 0
3 0 0 0 0 0
2 5 0 0 0 0
2 0 0 0 0 0
1 5 0 0 0 0
1 0 0 0 0 0
5 0 0 0 0

0

S c a t t e r p l o t o f r e l z r h i t - r e l h i t v s P (r e l z r m . e . t . r e l)

P (r e l z r m . e . t . r e l)

rel
zr

hit
 - r

el h
it

1 . 00 . 80 . 60 . 40 . 20 . 0

5 0 0

2 5 0

0

- 2 5 0

- 5 0 0

S c a t t e r p l o t o f r e l z r h i t - r e l h i t v s P (r e l z r m . e . t . r e l)P l o t o f s p a c e d i f f e r e n c e v s P (R e l Z R , R e l , d 1 , d 2) Z o o m e d P l o t

P (R e l Z R , R e l , d 1 , d 2) P (R e l Z R , R e l , d 1 , d 2)

Rel
ZR

 ST
S -

 Re
l ST

S

Rel
ZR

 ST
S -

 Re
l ST

S

Figure 23: Plots showing size of search tree differences against probabilities
for RelZR and Rel.

each rule set, we asked Edith to find a proof using the heuristic and a proof
using a breadth first search. However, we decided to stop Edith searching
whenever no proof had been found after ten minutes; this cut-off time was
deemed sufficient since most proofs in the 1000 sample were found much more
quickly than this.

Table 18 shows the descriptive statistics for each reasoning system where
we have computed the time differences: time (in milliseconds) taken with a
breadth first search minus time taken using the heuristic. Min is the min-
imum time difference, Q1 is the 25th percentile, Q3 is the 75th percentile

32

P (r e l z r m . e . t . r e s z r)

rel
zr

hit
 - r

esz
r h

it

1 . 00 . 80 . 60 . 40 . 20 . 0

5 0 0

2 5 0

0

- 2 5 0

- 5 0 0

S c a t t e r p l o t o f r e l z r h i t - r e s z r h i t v s P (r e l z r m . e . t . r e s z r)

P (r e l z r m . e . t . r e s z r)

rel
zr

hit
 - r

esz
r h

it

1 . 00 . 80 . 60 . 40 . 20 . 0

3 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

0

- 1 0 0 0 0 0

S c a t t e r p l o t o f r e l z r h i t - r e s z r h i t v s P (r e l z r m . e . t . r e s z r) Z o o m e d P l o t

P (R e l Z R , R e s Z R , d 1 , d 2) P (R e l Z R , R e s Z R , d 1 , d 2)

P l o t o f s p a c e d i f f e r e n c e v s P (R e l Z R , R e s Z R , d 1 , d 2)
Rel

ZR
 ST

S -
 Re

sZR
 ST

S

Rel
ZR

 ST
S -

 Re
sZR

 ST
S

Figure 24: Plots showing size of search tree differences against probabilities
for RelZR and ResZR.

and Max is the maximum time difference. For example, using Res, Edith
was mostly faster using the heuristic than when conducting a breadth first
search, with the median time difference being 235 milliseconds. The maxi-
mum time differences are all very high with Res being 599922, for example.
The maximum differences all occurred when Edith failed to find a proof using
a breadth first search. With the cut-off time of 10 minutes being 600000 mil-
liseconds, these maximum time differences illustrate that sometimes a proof
was found almost instantly using the heuristic but was not found when con-
ducting a breadth first search; as an illustration, 599922 = 600000− 78, so a
proof was found in 78 milliseconds using Res with the heuristic but timed out
using a breadth first search. Clearly, this indicates that using a heuristic can
bring massive time savings. Table 19 shows similar values for the differences
between the sizes of the search trees generated, where the size is the num-
ber of vertices. The three systems that have negative minimums virtually
always had smaller search trees when using the heuristic; Res had a negative
difference twice, ResZR once and RelZR three times.

Min Q1 Median Q3 Max
Res -46 0 235 226703 599922

ResZR -31 0 243 291754 599890
RelZR -234 0 15 531 599062

Rel -172 0 16 7089 599907

Table 18: Descriptive statistics for the time differences.

Acknowledgements Andrew Fish and Gem Stapleton were partially sup-
ported by EPSRC grants GR/R63516 and GR/R63509 for the Reasoning
with Diagrams project and EP/E011160 for the Visualization with Euler Di-
agrams project. Gem Stapleton is supported by a Leverhulme Trust Early

33

Min Q1 Median Q3 Max
Res -35501 9 1170 139994 304954

ResZR -72488 10 1535 235625 391200
RelZR -63792 0 165 4519 485106

Rel 0 0 235 20465 689868

Table 19: Descriptive statistics for the search tree size differences.

Career Fellowship. We thank John Taylor and John Howse for helpful com-
ments on an earlier draft of this paper.

References

[1] Alexoudi, M., C. Zinn, and A. Bundy. English Summaries of Mathe-
matical Proofs. In Workshop on Computer-supported mathematical theory
development at the International Joint Conference on Automated Reason-
ing, pages 49–60, 2004.

[2] Bundy, A. A Very Mathematical Dilemma. In Computer Journal,
49(4):480–486, 2006.

[3] Dechter, R. and J. Pearl. Generalized Best-First Search Strategies and the
Optimality of A∗. Journal of the Association for Computing Machinery,
32(3):505–536, 1985.

[4] Flower, J. and J. Howse. Generating Euler Diagrams. In International
Conference on the Theory and Application of Diagrams, LNAI 2317, pages
61–75, Georgia, USA, April 2002. Springer-Verlag.

[5] Fomin, F., D. Kratsch, and G. Woeginger. Exact (Exponential) Al-
gorithms for the Dominating Set Problem. In Proceedings of the 30th
Workshop on Graph Theoretic Concepts in Computer Science, LNCS 3353,
pages 245–256. Springer-Verlag, 2004.

[6] Howse, J., G. Stapleton, J. Flower, and J. Taylor. Corresponding Re-
gions in Euler Diagrams. In International Conference on the Theory and
Application of Diagrams, LNAI 2317, pages 146–160, Georgia, USA, April
2002b. Springer-Verlag.

[7] Howse, J., G. Stapleton, and J. Taylor. Spider Diagrams. LMS J. Com-
putation and Mathematics, 8:145–194, 2005b.

34

[8] John, C. Measuring and Reducing Clutter in Euler Diagrams. In Euler
Diagrams Workshop, vol. 134 ENTCS, pages 103–126, Brighton, Elsevier,
2005.

[9] John, C. and A. Fish and J. Howse and J. Taylor Exploring the Notion of
Clutter in Euler Diagrams. In Proceedings of 4th International Conference
on the Theory and Application of Diagrams, Springer, to appear June 2006.

[10] Rodgers, P., P. Mutton, and J. Flower. Dynamic Euler Diagram Draw-
ing. In IEEE Symposium on Visual Languages and Human Centric Com-
puting, pages 147–156, Rome, September 2004. IEEE Computer Society
Press.

[11] Stapleton, G. J. Masthoff, J. Flower, A. Fish and J. Southern. Auto-
mated Theorem Proving in Euler Diagram Systems. Submitted to Journal
of Automated Reasoning, 2006.

[12] Swoboda, N. Implementing Euler/Venn Reasoning Systems, In M. An-
derson, B. Meyer and P. Oliver, editors, Diagrammatic Representation and
Reasoning, pages 371–386. Springer-Verlag, 2001.

35

