
On the Descriptional Complexity of a Diagrammatic Notation

Aidan Delaney and Gem Stapleton

Visual Modelling Group,

University of Brighton, UK

{a.j.delaney,g.e.stapleton}@brighton.ac.uk

Abstract

Spider diagrams are a widely studied, visual logic
that are able to make statements about relationships be-
tween sets and their cardinalities. Various meta-level
results for spider diagrams have been established, in-
cluding their soundness, completeness and expressive-
ness. In order to further enhance our understanding of
spider diagrams, we can compare them with other lan-
guages; in the case of this paper we consider star-free
regular languages. We establish relationships between
various fragments of the spider diagram language and
certain well-known subclasses of the star-free regular
class. Utilising these relationships, given any spider
diagram, we provide an upper-bound on the state com-
plexity of minimal deterministic finite automata corre-
sponding to that spider diagram. We further demon-
strate cases where this bound is tight.

1 Introduction

It is widely recognised that diagrams play an impor-
tant role in various areas, including visualizing infor-
mation and reasoning about that information. They
are often useful for conveying (sometimes complex) in-
formation in accessible and intuitive ways. This is one
reason behind the widening perception of the impor-
tance of diagrams. Traditionally in mathematics and
logic, diagrams have been excluded from formal proof
techniques and were considered only as a heuristic aid.
Whilst some people have held the view that diagrams
cannot be formalised, so as to be permitted when rea-
soning formally, it has been shown that this view is
incorrect: Shin devised a sound and complete diagram-
matic logic [19]. Her work is widely regarded as a sem-
inal piece, overturning the view that diagrams could
not yield a formal reasoning system. Thus, diagrams
are now being recognised as a valuable tool that can be
exploited in a logical setting (see [9] for an extensive

discussion on the importance of diagrams in numerous
reasoning contexts).

Since the work of Shin, many other diagrammatic
logics have emerged. One such logic is the widely
studied language of spider diagrams (see, for exam-
ple [3, 7, 8, 12, 20]). With regard to applications of
spider diagrams, they have been used to assist with the
task of identifying component failures in safety critical
hardware designs [1]. They have also been (implicitly)
used for displaying the results of database queries [21],
representing non-hierarchical computer file systems [2],
in a visual semantic web editing environment [10, 24]
and for viewing clusters which contain concepts from
multiple ontologies [5]. In all of these application ar-
eas, there are other languages that could be used in-
stead. It is, therefore, useful if we can compare spider
diagrams to other languages. If we can show that, for
example, spider diagrams offer significant descriptional
savings over another descriptional system then practi-
tioners may choose to represent their specifications in
this more succinct form.

This paper shows that spider diagrams can be used
to define languages from a particular subset of the star-
free regular languages. Sections 2, 3 and 4 consider
preliminaries of spider diagrams, star-free regular lan-
guages and descriptional complexity respectively. Sec-
tion 5 identifies various relationships between spider di-
agrams and star-free regular languages and section 6 in-
vestigates descriptional complexity by providing upper
bounds on the size of a deterministic finite automata
accepting the language generated by a spider diagram.

2 Spider Diagrams

This section will provide a brief overview of the spi-
der diagram syntax presented in [8]. In figure 1 the
spider diagram d1 contains two labelled contours, A
and B. Contours are simple closed curves. The dia-
gram also contains three minimal regions, called zones.
There is one zone inside A, another inside B and the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Brighton Research Portal

https://core.ac.uk/display/188246824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

other zone is outside both A and B. Each zone can
be described by a two-way partition of the contour la-
bel set. The zone inside A can be described as inside
A but outside B and contains two spiders; spiders are
trees whose vertices, called feet, are placed in zones (in
d1, the spiders each consist of a single vertex). Spi-
der diagrams can also contain shading, as in d2 (which
contains three spiders and four zones).

BA

d1

BA

d2

Figure 1. Two spider diagrams.

The syntax is defined at an abstract level. The con-
tour labels in spider diagrams are selected from a finite
set L. A zone is defined to be a pair, (in, out), of
finite disjoint subsets of L. The set in contains the
labels of the contours that the zone is inside whereas
out contains the labels of the contours that the zone
is outside. The set of all zones is denoted Z. To de-
scribe the spiders in a diagram, it is sufficient to say
how many spiders are placed in each region. Thus, the
abstract definition of a spider diagram will specify the
labels used, the zones, the shaded zones and use a set
of spider identifiers to describe the spiders.

Definition 2.1. A unitary spider diagram, d, is a
quadruple 〈L,Z, ShZ, SI〉 where

L = L(d) ⊆ L is a set of contour labels,

Z = Z(d) ⊆ {(a, L − a) : a ⊆ L} is a set of zones,

ShZ ⊆ Z(d) is a set of shaded zones,

SI = SI(d) ⊂ Z
+ × (PZ − {∅}) is a finite set of spi-

der identifiers such that for all (n1, r1), (n2, r2) ∈
SI(d) (r1 = r2 =⇒ n1 = n2).

The symbol ⊥ is also a unitary spider diagram. We
define L(⊥) = Z(⊥) = ShZ(⊥) = SI(⊥) = ∅. If d1

and d2 are spider diagrams then (d1 ∨ d2), (d1 ∧ d2)
and ¬d1 are compound spider diagrams. Given a
unitary diagram, d, a zone (a, b) is said to be missing
if it is in the set {(a, L − a) : a ⊆ L} − Z(d). If d has
no missing zones then d is in Venn form. The set of
spiders in d is defined to be

S(d) = {(i, r) : (n, r) ∈ SI(d) ∧ 1 ≤ i ≤ n}.

For spider (i, r), each zone in r is a foot of (i, r).

So S(d) can be thought of as a bag of spiders gener-
ated by the identifiers.

By convention, we employ a lower-case d with or
without subscripts to denote a unitary spider diagram.
An upper case D with or without subscripts will denote
an arbitrary spider diagram. The usual convention of
omitting brackets where no ambiguity arises is adopted.

Our attention now turns to the semantics. Spider
diagrams make statements about sets (represented by
contours) and their cardinalities (by using spiders and
shading). In figure 1, d1 expresses that A and B are
disjoint, because there are no points interior to both of
the contours. Spiders assert the existence of elements,
so d1 specifies that there are (at least) two elements in
A. The spiders in d2 assert that there are at least three
elements, one of which is in A, another is in A∪B and
the third is in B − A. Shading is used to place upper
bounds on set cardinality. For example, d2 expresses
that the set B−A contains at most two elements, A∩B
contains at most two elements and B contains at most
three elements.

The semantics of spider diagrams are model-based.
An interpretation is a universal set, U , together with
an assignment of a subset of U to each contour
(strictly, to contour labels) which is extended to in-
terpret zones and regions. A zone, (a, b), represents
the set

⋂
l∈a

set(l)∩
⋂
l∈b

(U −set(l)) where set(l) is the set

assigned to constant label l. A set of zones, Z, repre-
sents the set which is the union of the sets represented
by Z’s constituent zones. An interpretation is a model
for unitary diagram d(6=⊥) whenever

1. all of the zones which are missing represent the
empty set,

2. all of the regions represent sets whose cardinality
is at least the number of spiders placed entirely
within that region and

3. all of the entirely shaded regions represent sets
whose cardinality is at most the number of spiders
with a foot in that region.

If d =⊥ then the interpretation is not a model for d
(i.e. ⊥ is a contradiction). The definition of a model
extends to compound diagrams in the obvious (induc-
tive) manner. The semantics are formalised in [20].

The operators ¬ and ∧ are syntactic sugar in the spi-
der diagram language, captured by the following theo-
rem.

Theorem 2.1. The language of spider diagrams is
equivalent in expressive power to the fragment in which
the only operator is ∨.

3 Star-Free Regular Languges

The class of star-free regular languages is the set
of languages which are a subset of the free monoid
over an alphabet Σ including the finite languages which
are closed under finite boolean operations and cate-
nation (catenation is the product operation of the
monoid) [13]. The Straubing-Thérin hierarchy de-
scribes some well studied subclasses of star-free regular
languages. The more well known subclasses being the
class of shuffle-ideal languages and piecewise testable
languages.

A deep result by Schützenberger characterises star-
free languages as those which have an aperiodic syntac-
tic monoid [18]. Alternative characterisations of sub-
sets of star-free languages are given later based on the
shuffle product of languages. The shuffle product of two
languages L1, L2 denoted L1 ⊔ L2 informally takes all
words from L1 and intersperses letters from all words
in L2. More formally, the words in L1 ⊔ L2 are pre-
cisely those of the form w0w1w2 . . . wn where, for some
subset I = {p1, p2, . . . , pm} of {1, . . . , n}

1. wp1
wp2

. . . wpm
∈ L1 where pi < pi+1

2. wq1
wq2

. . . wqn−m
∈ L2 where {q1, . . . , qn−m} =

{1, . . . , n} − I and qi < qi+1.

Considering the shuffle product and boolean oper-
ations of ∪,∩ and ⊂ gives us an immediate insight
into the Straubing-Thérin catenation hierarchy. Level
0 is the set of languages {Σ∗, ∅}. Level 1/2 is the well
known shuffle ideal set, which is the polynomial closure
of Level 0. An alternative characterisation is that lan-
guages of catenation level 1/2 are of the form k ⊔ Σ∗

where k is a finite set of words. Level 1 is defined as
the boolean closure of 1/2. This hierarchy has been
extended by Pin to consider varieties of languages [14].

Spider diagrams are a monadic first order logic with
equality (MOFLe). Therefore we are interested in the
relationship between logics and star-free regular lan-
guages. The main body of literature discussing this
relationship [6, 14, 15, 17, 22] assumes the existence of
an order relation < adjunct to the standard monadic
first order operators of ¬,∨,∧, ⇐⇒ , the quantifiers
∃ and ∀ and predicates of the form Pa(x) which states
that the letter a is at positive position x in word w.
Intuitively, if we do not have an order relation, <, as
in MOFLe then any language corresponding to a for-
mula will be closed under permutation. In other words,
languages of the form, for example, Σ∗AΣ∗B (A comes
before B in every word) do not correspond to languages
arising from formulae in MOFLe. Consequently spider
diagrams do not contain facilities for ordering elements.

4 Descriptional Complexity

Descriptional complexity is concerned with the econ-
omy of representation offered by descriptional sys-
tems [11]. Descriptional systems consist of a set of
finite descriptors which describe each instance of a lan-
guage in a class of a languages [4]. For example, finite
automata are a descriptional system which describe
languages in the class of regular languages (REG).
Other well-known descriptional systems include push-
down automata, linear bounded automata, Turing ma-
chines and spider diagrams.

Economy of representation is computed through the
use of some metric. In the case of automata as descrip-
tional systems, common metrics include the length of
the automaton description or the number of states in
the automaton. Other typical metrics include the num-
ber of productions in a grammar system or a measure
of non-determinism in a system. Rabin and Scott’s [16]
well known result on the state complexity of determin-
istic and non-deterministic finite automata neatly il-
lustrates the utility of such metrics: there exists a non-
deterministic finite automaton with n states where the
minimal deterministic automaton accepting the same
language contains 2n states. By convention, Rabin and
Scott’s result can be stated as (taken from [4])

nFAn
states
−−−−→ dFA≤2n

To draw conclusions on the descriptional complex-
ity of spider diagrams we require a metric, which es-
tablishes their complexity, and a descriptional system
for comparison. We have chosen the number of spi-
ders in a diagram as the metric. This measure is in-
dependent of the actual layout of the diagram and is
directly linked with diagram semantics. We establish
relationships between spider diagrams and a descrip-
tional system for regular languages. More precisely, we
establish a relationship between the number of spiders
in a spider diagram and the number of states in the
minimal deterministic finite automaton which accepts
the same language, thus comparing their descriptional
complexity.

5 Relationships Between Spider Dia-

grams and Star-Free REG

The finite models for a spider diagram can be con-
sidered as giving rise to a star-free REG language. For
example, in figure 2, the diagram d1 has a model with
universal set U = {1, 2}, with A representing the set
{1} and B representing {2}. So, in this model, there
is exactly one element in ({A}, {B}) and exactly one

element in ({B}, {A}) but the model does not specify
any order on these elements. We can think of the zones
as being the letters in a language; with this alphabet,
the word ({A}, {B})({B}, {A}) indicates that there is
an element in ({A}, {B}) which comes before an el-
ement in ({B}, {A}); the word ({B}, {A})({A}, {B})
indicates the existence of the same two elements, but
in the opposite order. Consequently, the information
provided by the two words matches the information
provided by the model. The set of words in a language
corresponding to d1 contains precisely the words that
arise from the finite models for d1 in this way. We
observe that isomorphic models give rise to the same
words. In what follows, we formalise the language of a
spider diagram and establish various relationships be-
tween spider diagrams and some subsets of star-free
REG.

A B

d1

A B

d2

Figure 2. Words for a diagram.

To begin, we note that it can be shown that ev-
ery spider diagram can be transformed into a syntacti-
cally equivalent diagram (see [8] for a set of sound and
complete reasoning rules) involving only disjunctions of
unitary diagrams, D = d1 ∨ ... ∨ dn where each di has
no missing zones and the same zone set. We assume,
without loss of generality, that each di contains all of
the labels in L. Such a disjunction, D, is said to be
in disjunctive Venn form; we call this fragment of
the spider diagram language disjunctive-SD denoted
DSD. There is an algorithm that translates arbitrary
diagrams into disjunctive Venn form (see [8] for the
conversion of diagrams into associated zone diagrams
and adapt the details in the obvious way).

To identify a star-free REG language for an arbi-
trary diagram, D, we can first convert D into disjunc-
tive Venn form and then identify such a language for
this disjunction. Thus, we need only identify a star-free
REG language for each diagram in disjunctive Venn
form. From this point forward all diagrams will be
assumed to be part of the disjunctive fragment DSD.
The approach we adopt is to first identify a language
for each unitary diagram and then extend to the whole
of DSD.

For example, d2 in figure 2 can be translated into
the star-free REG language that has alphabet Z(d2)

and words that contain the letters (breaking into cases
determined by the two-footed spider):

1. ({A}, {B}) (for the two-footed spider) and
({B}, {A}) (for the one-footed spider) but not
({A,B}, ∅) (because of the shading), or

2. ({A,B}, ∅) (for the two-footed spider) and
({B}, {A}) (for the one-footed spider) but not
more than one occurrence of ({A,B}, ∅) (because
of the shading).

In general, the alphabet over which our star-free
REG language is constructed is

Σ = ZL = {(a, b) ∈ Z : a ∪ b = L}

and the language generated by Σ is Σ∗ =
{finite words over ZL}, including the empty word
λ. A letter of the alphabet is simply a zone,
({in1, ..., inn}, {out1, ..., outm}); informally, we may in-
stead write in1...innout1...outm. As a notational con-
venience we may also write letters of a word within
square brackets, thus “[AB][AB]” is a two letter word
containing AB and AB. We define, for unitary diagram
d, Γ(d) = Z(d) − ShZ(d) (recall that Z(d) = ZL), so
Γ(d) ⊆ Σ. Given an arbitrary diagram, D, some words
in Σ∗ correspond to the meaning of the diagram and
the rest do not1.

Definition 5.1. Let w be a word in Σ∗ and d (6=⊥)
be a unitary diagram. The bag (or multi-set) of letters
of which w consists is denoted bag(w). The word w
conforms, to d if and only if there exists an injection,
f : S(d) → bag(w) satisfying

1. f(s) is a foot of s,

2. f is bijective when the image is restricted to the
maximal sub-bag of w whose elements are shaded
zones in d.

For d =⊥, no words in Σ∗ conform to d.

So, w conforms to unitary diagram d 6=⊥ provided,
for each spider, s, in d,

1. each spider in d gives rise to a letter in w by way
of selecting a foot,

2. for each shaded zone, z, the number of occurrences
of z in w is precisely the number of spiders whose
selected foot is z.

1There are two special cases: when D is universally valid, all
of the words in Σ∗ correspond to the meaning of D and when D

is a contradiction none of the words in Σ∗ correspond to D.

To illustrate, in figure 2, the following are examples
of words that conform to d2:

[AB][BA], [BA][AB], [AB][BA],

[BA][AB][AB], [BA][AB][AB], [BA][AB][AB].

The word [AB][AB][BA] does not conform to d2 be-
cause the letter [AB] occurs twice (d2 asserts that the
zone ({A,B}, ∅) contains at most one element).

Definition 5.2. Let d be a unitary diagram. The lan-
guage of d is the set of words in Σ∗ that conform to
d denoted L (d). Let D = d1 ∨ ... ∨ dn be a spider
diagram. The language of D is

⋃
1≤i≤n

L (di).

Definition 5.3. Let d be a unitary diagram. We define
k(d) to be the set of words generated by S(d):

k(d) = {w ∈ Σ∗ : w conforms to d where f is bijective}

(taking f as in definition 5.1). For d =⊥, k(d) = ∅.

Lemma 5.1. For unitary diagram d, L (d) = k(d)⊔Γ∗

where Γ = Γ(d).

Proof. L (d) is of the form Γ∗a1Γ
∗a2Γ

∗ . . . Γ∗a|S(d)|Γ
∗

where a1a2 . . . a|S(d)| ∈ k(d).

Corollary 5.1. Let d be a unitary diagram such that
ShZ(d) = ∅. Then k(d) ⊔ Γ(d)∗ is a shuffle-ideal.

Proof. In this case, Γ(d)∗ = Σ∗.

Let DSDNS be the class of spider diagrams in DSD
that do not contain shading.

Theorem 5.1. Let D = d1 ∨ ...∨ dn ∈ DSDNS . Then
L (D) is a shuffle-ideal.

Proof. L (D) =
⋃

1≤i≤n

L (di) is a shuffle-ideal because

the class of shuffle-ideals is closed under union.

Theorem 5.2. The class
⋃

D∈DSDNS

{L (D)} is a strict

subclass of the class of shuffle-ideal languages.

Proof. By theorem 5.2,
⋃

D∈DSDNS

{L (D)} is a class of

shuffle-ideals. For strictness, we start by observing
that, for each unitary diagram d ∈ DSDNS , the lan-
guage of d is closed under permutation of words. There-
fore, the language of any diagram in DSDNS is closed
under permutation of words. However, the shuffle-ideal
l = {z1z2} ⊔ Σ∗, where z1, z2 ∈ Z(d) are two distinct
zones, is not closed under permutation of words since,
for example, the word z1z2 is in l but z2z1 is not in l.
Consequently, l is not the language of any diagram in
DSDNS .

There are compound diagrams whose languages are
not equal to the language of any unitary diagram, cap-
tured by the following lemma.

Lemma 5.2.

⋃

{d∈DSD:d is unitary}

{L (d)} ⊂
⋃

D∈DSD

{L (D)}.

Proof. (Sketch) Taking D = d1 ∨ d2, where d1 and d2

are shown in figure 3, provides an example of a com-
pound diagram whose language, L (D), is not the lan-
guage for any unitary diagram.

A B

d1

A B

d2

Figure 3. Classes of languages.

Theorem 5.3. The class
⋃

D∈DSD
{L (D)} is a strict

subset of languages of catenation order 3/2.

Proof. (Sketch) From [14] we know that sets of
level 3/2 are finite unions of sets of the form
Γ∗

0a1Γ
∗
1a2Γ

∗
2 . . . ajΓ

∗
j where a1, a2, . . . , aj ∈ Σ and

Γ0,Γ1, . . . ,Γj ⊆ Σ. From lemma 5.1 and lemma 5.2 we
can see that w ∈ L (D) is of a similar, but restricted,
form where Γ0 = Γ1 = . . . = Γj ⊆ Σ.

Corollary 5.2. The set of shuffle-ideal languages is
not a subset of

⋃
D∈DSD

{L (D)}.

Proof. From theorem 5.2 we know that there exists
l such that l /∈

⋃
D∈DSDNS

{L (D)} but is a shuffle-

ideal. The argument extends to show that l /∈⋃
D∈DSD

{L (D)}.

Corollary 5.3. The class
⋃

{d∈DSD:d is unitary}

{L (d)}

is not a subset of the class of shuffle-ideal languages.

Proof. Let d be a unitary diagram in DSD such that
ShZ(d) 6= ∅. Then Γ(d) ⊂ Σ. A simple application
of the TestShuffle [6] to the automaton accepting
L (d) = k(d) ⊔ Γ(d)∗ verifies that

⋃
D∈DSD

{L (D)} con-

tains languages outside the class of shuffle ideal lan-
guages.

The spider diagram in figure 4 illustrates the
relationships between various classes of languages,
established in this section, where DSD denotes
the class

⋃
D∈DSD

{L (D)} and DSDNS denotes
⋃

D∈DSDNS

{L (D)}.

Figure 4. Relationships between languages.

6 The Descriptional Complexity of Spi-

der Diagrams

For any given spider diagram, a regular language
arises from the finite models, as demonstrated in the
previous section. We now provide upper bounds on the
number of states required in the minimal determinis-
tic finite automaton accepting the language that arises
from these models of a spider diagram, and show that
our upper bound is exact in some cases. Given a uni-
tary diagram d we will establish an upper bound on
|k(d)| in terms of the number of spiders in d. When
|k(d)| meets this upper bound, we establish the exact
minimal number of states required in a finite state ma-
chine.

A B

d

Figure 5. Large k(d).

As an illustration, d in figure 5 has

k(d) = {[AB][BA], [BA][AB], [AB][AB], [AB][AB],

[AB][BA], [BA][AB], [AB][AB], [AB][AB]}.

Given that there are two spiders, s1 and s2 say, in d,
each with two feet, the largest number of words that

can be in k(d) is 8: suppose a word, w, has first letter
which arises from s1 and second letter from s2, then
there are 2× 2 = 4 possible choices for w; since k(d) is
closed under permutation of words, every permutation
of w must also be in k(d), giving 4 × 2 = 8 words in
total. Since the two spiders in d are placed in disjoint
regions, every such permutation gives rise to a distinct
word. Hence there are 8 words in k(d).

Lemma 6.1. Given a unitary diagram d

|k(d)| ≤ |S(d)|! ×
∏

(i,r)∈S(d)

|r|.

Given a unitary diagram d with set of words, k(d),
satisfying |k(d)| = |S(d)|!×

∏
(i,r)∈S(d) |r|, we can con-

struct a minimal finite automaton accepting precisely
the words in k(d). If d is entirely shaded, then this
automaton accepts the language of d (since, in such a
case, L (d) = k(d)). Alternatively, the automaton can
be trivially modified (adding loops, removing edges and
possibly removing the sink state) to accept L (d). The
number of states remains the same or reduces by 1 (the
sink state is necessary only when at least one zone is
shaded or d =⊥). For example, considering d in fig-
ure 5, a minimal finite automaton accepting precisely
the words in k(d) is A(k(d)) in figure 6(a). To convert
A(k(d)) to a finite state automaton accepting L (d),
we add loops and remove edges, enlarging the set of
words accepted, in the obvious way (see figure 6(b)).
Given any unitary diagram d we define A(k(d)) to be
the minimal automaton accepting precicely the words
in L (k(d)).

The bold typeface transition label in figure 6(a) rep-
resents two transitions: a transition from the start
state to a state on the letter AB and another tran-
sition between the same two states on the letter AB.
Each tranistion occurs on a letter that arises from a
unique spider foot and is labeled with the appropri-
ate letter. We allow the commonly accepted transition
label shorthand in figure 6 by defining the function
l(si), si = (i, r) ∈ S(d) which returns a label consisting
of the zones in r.

Theorem 6.1. Let d be a unitary diagram with
|k(d)| = |S(d)|! ×

∏
(i,r)∈S(d)

|r|. The minimal complete

automaton accepting precisely the words in k(d) has
2|S(d)| + 1 states.

Proof. (Sketch)We prove this by induction over the size
of S(d). In the base case, seen in figure 7(a), we accept
all one-letter words corresponding to the single spider
s in S(d), |S(d)| = 1. The cases where |S(d)| = 2 and
|S(d)| = 3 are presented in figure 7. We assume that

AB, AB

AB, AB

AB, AB

AB, AB

AB, AB

AB, AB

AB, AB, AB, AB
AB, AB, AB, AB

(a) Automaton accepting k(d)

AB, AB

AB, AB

AB, AB

AB, AB

AB

AB
AB, AB, AB, AB

AB, AB, AB

AB, AB, AB

AB, AB, AB

(b) Automaton accepting L (d)

Figure 6. Constructing a finite state machine.

where |S(d)| = n the size of the automaton is 2n. We
may construct the automaton for the n+1 case by du-
plicating the automaton for the n case and “shifting”
the duplicated structure by one letter. The inductive
step is visible in the examples 7(a) through 7(c). To
complete the automaton we add a sink state qsink as
the target of all missing transitions. The proof of min-
imality is omitted.

Theorem 6.2. Let d be a unitary diagram such that
|k(d)| = |S(d)|!×

∏
(i,r)∈S(d)

|r|. The minimal automaton

accepting L (d) = k(d) ⊔ Γ(d)∗ has exatly 2|S(d)| + 1
states provided Γ(d) ⊂ Σ. Alternatively the minimal
automaton has 2|S(d)| (when Γ(d) = Σ).

Proof. By theorem 6.1 A(k(d)) has 2|S(d)| + 1 states.
Intuitively we remove all transitions from A(k(d)) ei-
ther sourced on or targetted at qsink. We add transi-
tions from each state s of A(k(d)) as follows. Let σ be
a letter not labelling any transition sourced on s. If σ
is not a shaded zone, label a transition from s to itself
with σ. Otherwise, label a transition from s to qsink

with σ.

This construction process is demonstrated in fig-
ure 6.

l(s1)

(a) k(d) where S(d) = {s1}

l(s1)

l(s2)

l(s2)

l(s1)
(b) k(d) where S(d) = {s1, s2}

l(s2)

l(s1)

l(s1)

l(s2)

l(s2)

l(s1)

l(s1)

l(s2)

l(s3)

l(s3)

l(s3)

l(s3)

(c) k(d) where S(d) = {s1, s2, s3}

Figure 7. Constructing an automaton accept-
ing k(d).

Corollary 6.1. Let d be a unitary diagram. The min-
imal automaton accepting L (d) has at most 2|S(d)| +1
states:

dn
spiders,states
−−−−−−−−−→ dFA≤2n+1

Theorem 6.3. Let D = d1 ∨ . . . ∨ dm be a spider dia-
gram. The minimal automaton accepting L (D) has at

most 2

m
P

i=1

|S(di)|
+ 1 states.

D m
P

i=1

|S(di)|

spiders,states
−−−−−−−−−→ dFA

≤2

m
P

i=1
|S(di)|

+1

Proof. By the well known upper-bound [23] for
the union of m deterministic finite state machines

A1,A2, . . . ,Am is of order O(
m∏

i=1

(|Ai|)). This gives us

an upper bound for the size of A(L (D)) where, by
corollary 6.1, A1 accepts L (d1), A2 accepts L (d2) . . .
and Am accepts L (dm).

7 Conclusion

We have established relationships between spider di-
agrams and various subsets of star-free REG (see fig-
ure 4 for a summary). These results show that it is
possible to use spider diagrams to visualise languages
drawn from these various subclasses.

We have also demonstrated economy of representa-
tion offered by spider diagrams over deterministic finite
state machines: in some cases a unitary spider diagram
containing n spiders is equivalent to a finite state ma-
chine containing 2n + 1 states, for example. The in-

tuition behind the economy of representation that spi-
der diagrams bring over deterministic finite state ma-
chines is that, to not specify an order on letters using
deterministic FAs many states are required (ensuring
one path exists from the start state to the final state
for each ordering of the letters) whereas spider dia-
grams achieve this naturally. Deterministic FAs are
more expressive than spider diagrams (partly due to
being able to specify an ordering) but their restrictive
syntax forces us to use many states when we do not
wish to specify any ordering.
Acknowledgement Gem Stapleton is supported by
a Leverhulme Trust Early Career Fellowship and by
UK EPSRC grant EP/E011160/1 for the Visualization
with Euler Diagrams project.

References

[1] R. Clark. Failure mode modular de-composition using
spider diagrams. In Proc. of Euler Diagrams 2004, vol-
ume 134 of Electronic Notes in Theoretical Computer

Science, pages 19–31, 2005.
[2] R. DeChiara, U. Erra, and V. Scarano. VennFS: A

Venn diagram file manager. In Proc. of Information

Visualisation, pages 120–126. IEEE, 2003.
[3] J. Flower, J. Masthoff, and G. Stapleton. Generat-

ing readable proofs: A heuristic approach to theorem
proving with spider diagrams. In Proc. of 3rd Intl.

Conf. on the Theory and Application of Diagrams, vol-
ume 2980 of LNAI, pages 166–181. Springer, 2004.

[4] J. Goldstine, M. Kappes, C. M. Kintala, H. Leung,
A. Malcher, and D. Wotschke. Descriptional complex-
ity of machines with limited resources. J. of Universal

Computer Science, 2002.
[5] P. Hayes, T. Eskridge, R. Saavedra, T. Reichherzer,

M. Mehrotra, and D. Bobrovnikoff. Collaborative
knowledge capture in ontologies. In Proc. 3rd Intl.

Conf. on Knowledge Capture, pages 99–106, 2005.
[6] P.-C. Héam. On shuffle ideals. Theoretical Informatics

Applications, 36:359–384, 2002.
[7] J. Howse, F. Molina, J. Taylor, S. Kent, and J. Gil.

Spider diagrams: A diagrammatic reasoning system.
J. of Visual Languages and Computing, 12(3):299–324,
2001.

[8] J. Howse, G. Stapleton, and J. Taylor. Spider di-
agrams. LMS J. of Computation and Mathematics,
8:145–194, 2005.

[9] J. Larkin and H. Simon. Why a diagram is (some-
times) worth ten thousand words. J. of Cognitive Sci-

ence, 11:65–99, 1987.
[10] J. Lovdahl. Towards a Visual Editing Environment

for the Languages of the Semantic Web. PhD thesis,
Linkoping University, 2002.

[11] A. Meyer and M. Fischer. Economy of description by
automata, grammars, and formal systems. In Proc.

12th Annual Symposium on Switching and Automata

Theory, pages 188–191, 1971.

[12] O. Patrascoiu, S. Thompson, and P. Rodgers.
Tableaux for diagrammatic reasoning. In Proc. 2005

Intl. Workshop on Visual Languages and Computing,
pages 279–286. Knowledge Systems Institute, 2005.

[13] J.-E. Pin. Finite semigroups and recognizable lan-
guages: an introduction. In NATO Advanced Study

Institute: Semigroups, Formal Languages and Groups,
pages 1–32. Kluwer Academic Publishers, 1995.

[14] J.-E. Pin. Syntactic semigroups, pages 679–746.
Springer-Verlag New York, Inc., 1997.

[15] J.-E. Pin and P. Weil. Polynomial closure and unam-
biguous product. Theoretical Computer Science, 30:1–
39, 1997.

[16] M. O. Rabin and D. Scott. Finite automata and their
decision problems. IBM J. of Research Development,
pages 114–125, 1959.

[17] A. Rabinovich. Star free expressions over the reals.
Theor. Comput. Sci., 233(1–2):233–245, 2000.

[18] M. Schtzenberger. On finite monoids having only triv-
ial subgroups. Information and Control, pages 190–
194, 1965.

[19] S.-J. Shin. The Logical Status of Diagrams. Cambridge
University Press, 1994.

[20] G. Stapleton, S. Thompson, J. Howse, and J. Taylor.
The expressiveness of spider diagrams. J. of Logic and

Computation, 14(6):857–880, 2004.
[21] J. Thièvre, M. Viaud, and A. Verroust-Blondet. Using

Euler diagrams in traditional library environments. In
Euler Diagrams 2004, volume 134 of ENTCS, pages
189–202. ENTCS, 2005.

[22] W. Thomas. Languages, automata, and logic, pages
389–455. Springer-Verlag New York, Inc., 1997.

[23] S. Yu. State complexity of regular languages. In IWD-

CAGRS: Proc. Intl. Workshop on Descriptional Com-

plexity of Automata, Grammars and Related Struc-

tures, 1999.
[24] Y. Zhao and J. Lövdahl. A reuse based method of

developing the ontology for e-procurement. In Proc.

Nordic Confernce on Web Services, pages 101–112,
2003.

