Generating Proofs with Spider Diagrams Using
Heuristics

Jean Flower, Judith Masthoff and Gem Stapleton
Visual Modelling Group
University of Brighton
Brighton, UK
Email: {j.a.flower,judith.masthoff,g.e.stapletg@brighton.ac.uk

Abstract—We apply the A* algorithm to guide a diagrammatic proofs and can be extended to incorporate other readability
theorem proving tool. The algorithm requires a heuristic function,  criteria. We applied thel* algorithm and developed an admis-
which provides a metric on the search space. In this paper we gjpja heyristic function to guide automatic proof construction.

present a collection of metrics between two spider diagrams. We H th K ted in I3 limited to the simol
combine these metrics to give a heuristic function that provides owever, the work presented in [3] was limited to the simple

a lower bound on the length of a shortest proof from one spider case of so-called unitary spider diagrams. Here, we extend
diagram to another, using a collection of sound reasoning rules. that work to the significantly more challenging general case
We compare the effectiveness of our approach with a breadth- of so-called compound spider diagrams.
first search for proofs.

Il. SPIDER DIAGRAMS

. INTRODUCTION ) . : .
Simple diagrammatic systems that inspired spider diagramsWe now informally introduce the spider diagram system.

are Venn and Euler diagrams. In Venn diagrams all possitle Syntax and semantics of spider diagrams
intersections between contours must occur and shading is useld . . T . .
n this section, we will give an informal description of the

to_ represent the empty_ set. Diagram in Fig. 11s a Ve_nn syntax and semantics of spider diagrams. Details and formal
diagram. Venn-Peirce diagrams [11] extend the Venn diagrapm,. ... . .
. . h efinitions can be found in [8]. Aontour is a labelled closed

notation, using additional syntax to represent non-empty sets. . .
. . . . curve in the diagram used to denote a set. Doendary
Euler diagrams exploit topological properties of enclosure : .

; . . . . .~ rectangleis an unlabelled rectangle that bounds the diagram
exclusion and intersection to represent subsets, disjoint sets

. . . . . nd denotes the universal set.zAne roughly speaking, is a
and set intersection respectively. Spider diagrams [4], [7], [@bunded area in the diagram having ng(l) gthgr bougded area

y — o contained within it. A zone can be described by the set of
Y s N labels of the contours that contain it and the set of labels of the

Dogs
@éi@ contours that exclude it. A zone denotes a set by intersection

c and difference of the sets denoted by the contoursedion
d, d, is a set of zones.
Fig. 1. A Venn diagram and a spider diagram. A spider is a tree with nodes, callddet, placed in different

zones. A spidertouches a zone if one of its feet appears
[10] are based on Euler diagran®pidersare used to representin that zone. The set of zones a spider touches is called its
the existence of elements astadingis used to place upper habitat. A spider denotes the existence of an element in the
bounds on the cardinalities of sets. A spider is drawn assat represented by its habitat. Distinct spiders represent the
collection of dots joined by lines. The spider diagramin existence of distinct elements. A zone candtaded In the
Fig. 1 expresses the statement “no mice are cats or dogs,seb represented by a shaded zone, all of the elements are
dogs are cats, there is a cat and there is something thatepresented by spiders. So, a shaded zone with no spiders
either a mouse or a dog”. Sound and complete reasoning rulesit represents an empty set. Anitary diagram is a
for spider diagram systems have been given [7], [8], [10]. finite collection of contours (with distinct labels), shading and

As argued in [3], it is important for automated diagramspiders properly contained by a boundary rectangle.

matic reasoning systems to produce proofs that are easy tdhe unitary diagrami, in Fig. 1 contains three contours
understand by humans. For this reason, our ambition is dod five zones, of which one is shaded. There are two spiders.
produce diagrammatic proofs using diagram transformatiombe spider with one foot inhabits the zone inside (the contour
instead of converting to first order logic and using existinabelled)Cats, but outsideDogs and Mice. The other spider
theorem provers. An existing theorem prover for spider dighabits the region which consists of the zone insidéce
grams successfully writes proofs [2], but they can be long aadd the zone insid®ogs but outsideCats.
unwieldy. In [3], we presented a new approach to proof writing Unitary diagrams form the building blocks @bmpound
in diagrammatic systems, which is guaranteed to find shorte&grams. To enable us to present negated, disjunctive and
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conjunctive information between unitary diagrams, we use A4 B 4 Bl 4 B
connectives—, LI andn. If D, and D, are spider diagrams F
then so are-D; (“not D:"), Dy U Dy (“D; or Dy") and

d

DiMDs (* Dy andD5"). The semantics of compound diagrams a 4
extend those of unitary diagrams in the obvious way.

Fig. 4. An application of rule “excluded middle”.
B. Reasoning with spider diagrams

We now give informal descriptions of the sound but not a An a-diagram is a diagram in which each spider has

comp!etg set of reasoning rules for spider diagrams. For fOm@Jactly one foot. Two unitaryg-diagrams with (essentially) the
descriptions see [8]. . same zone set are gontradiction if a zone is shaded in one
Add contour. A new contour can be added to a unitaryjizgram and contains more spiders in the other. For example,

diagram. Each zone is split into two zones (one inside aqy re 4, the diagramé; andd. are in contradiction because
one outside the new contour) and shading is preserved. Eggh" C is shaded and contains no spidersdinbut contains
spider foot is replaced by a connected pair of feet, one in ea&t;e spider inds.

of the two new zones. For example, in Fig.43, is obtained
from d; by adding a contour. This rule is reversible and we &

will refer to its reverse a®elete contour A B |4 B A AR
Add shaded zone.A new, shaded zone can be added to a @ @ F @
unitary diagram. This rule is reversible and we will refer to
its reverse adelete shaded zoneFor example, in Fig. 2, d, 4 d
diagramds is obtained fromd, by deleting a shaded zone. Fig. 5. An application of rule “Combining”.
Erase shading.Shading can be erased from any zone in a
unitary diagram. Combining. A compound diagram consisting of the conjunc-
Delete spider. A spider whose habitat is completely nontion of two non-contradictoryn-diagramsd; and d, whose
shaded can be deleted from a unitary diagram. zone sets are the same can be combined into a single unitary
Add spider foot. In a unitary diagram, a foot can be addediagram,ds, with the same zone set. The number of spiders
to a spider in a zone it does not yet touch. in any zone inds is the maximum number of spiders in that
zone ind; andds, and a zone is shaded ify if it is shaded
A A B in either d,; or d,. For example, diagram; M ds in Fig. 5
can be replaced byi;. We note here that due to the non-
° I— I— deterministic nature of the reverse of this rule, we have not
included the reverse in our implementation.
, . There are also reasoning rules that have analogies in logic.
d, 2 3

We include in our set of rulesdempotency (for example,
Fig. 2. Applications of “add contour” and “delete shaded zone”. D = DT D), De Morgan’s laws Involution (——D = D)
and Distributivity . All of these rules are reversible. We also
All of the remaining diagrammatic rules are reversible. include theAbsorption rules which state thab, (D, L Dz)
Split spider. A unitary diagramd containing a spides whose can be replaced by, and D, U (D; 1 D;) can be replaced
habitat has a partition into non-empty regionsandr, can by Di. Whilst the reverses of the absorption rules are sound,
be replaced byl Lidy, whered; andd, are copies ofl except due to the non-deterministic nature of the reverses these have
that the habitat of is reduced tay in d; andr in do. For ot been included in our implementation. _
instance, diagrand in Fig. 3 has a spider with two feet. We If D1 can be transformed intd), by a reversible rule,
can split this spider into two parts, giving U d. then any occurrence ab; in a compound diagram can be
replaced byD,. If D; can be transformed int®, by a non-
reversible rule, then any occurrence bf in a compound

A Sy A B _ _
diagram can be replaced by, provided the occurrence of
k D; being replaced is ‘inside an even number of not’s’. For
L]
d d, d,

example, in the diagram((Dy, M D3) U (D4 M —Dy)) the
first occurrence ofD; is not inside an even number of not’s,
Fig. 3. An application of rule “split spider”. but the second is. We say that diagrals is obtainable

from diagramD,, denotedD; - Ds, if and only if there is a
Excluded Middle. A unitary diagramd with a non-shaded sequence of diagram@?, D?, ..., D™) such thatD! = Dy,
zonez can be replaced by, Lid,, whered; andd, are copies D™ = D, and, for eachk wherel < k < m, D* can be
of d except thatz is shaded ind; and contains an additional transformed intoD*+! by a single application of one of the
spider ind,. For instance, d in Fig. 4 has a non-shaded zomeasoning rules. Such a sequence of diagrams is cafheoof
B —C. Applying excluded middle to this zone yields LId,. from premise D, to conclusion Ds.




[1l. A* APPLIED TO PROOF WRITING to take the union of the sets of contours of the unitary parts.

To construct a proof, a rule needs to be applied to thge now illustrate why this naive approach is not useful.
premise diagram, followed by another rule to the resultinrGuppose we were to take the union of the contour sets of
diagram, and so on, until the conclusion diagram is reachegdiagram’s unitary components as a measure of the contours
At any stage, multiple rules might be applicable. The problein that diagram and to define the cardinality of the symmetric
of deciding which rule to apply is an example of a moreifference of the contour sets fdp; and D, as our contour
general class of so-called search problems, for which variogi¢ference metric betweef,; and D,. Such a metric should
algorithms have been developed (see [9] for an overvie\Ww). be good at guiding applications of the Add Contour and
is a well known search algorithm [5]. Delete Contour rules. Assunie, M (D, U D) is our premise

A* stores an ordered sequence of proof attempts. Initialjiagram, andD; our conclusion diagram. The diagram,;
this sequence only contains a zero length proof attemptuld have a vastly different contour setfa (and, therefore,
namely the premise diagram. Repeatedly,removes the first to D; 1 (D; U D5)). Using the absorption rule, the premise
proof attempt from the sequence and considers it. If the lafiigram can be changed into the conclusion diagram in one
diagram of the proof attempt is the conclusion diagram, th&tep. Hence, for admissibility to hold, the heuristic must be at
an optimal proof has been found. Otherwise, it construatsost 1 but the cardinality of the symmetric difference of the
additional proof attempts, by extending the proof attempgbntour sets may be much larger than 1. We would have to cap
under consideration, applying rules wherever possible to ttiee metric at 1, and this would will lead to a weak heuristic
last diagram. when we need to apply the Add/Delete Contour rules many

The effectiveness ofl* and the definition of “optimal” is times. Therefore, we will not use a simple union.
dependent upon the ordering imposed on the proof attemptctually, we would prefer a contour measure to be invariant
sequence. The ordering is derived from the sum of twmder all the logic rules, and only to reflect the need for
functions. One function, called thieeuristic, estimates how applications of the Add and Delete Contour rules. Each
far the last diagram in the proof attempt is from the conclusianeasure is designed to be invariant under many rules (if
diagram. The other, called theost calculates how costly it we apply a rule then the measure remains unchanged) and
has been to reach the last diagram from the premise diagramwiant under few rules (if we apply a rule then the measure
The new proof attempts are inserted into the sequence, ordechdnges). So, we would prefer a measure of the contour set of
according to the cost plus heuristiel* always finds the D;M(D;L D-) to be the same as that 6f;. We would like to
solution with the lowest cost, if one exists, provided theefineContours(D; M Ds) andContours(D; L Ds) in such
heuristic used imdmissible[1]. A heuristic is admissible if it a way as to achieve this. There are two obvious operations
is optimistic, which means that it never overestimates the coshich can be done on sets: union and intersection. If we
of getting from a premise diagram to a conclusion diagram. VefineContours(D;MD3) as the union o€ ontours(D;) and
define all rules to have a cost equal to one, which means tli&dntours(Ds), and Contours(D; Ul Ds) as the intersection
any admissible heuristic gives a lower bound on the numberaff Contours(D;) and Contours(Ds), then:
proof steps needed in order to reach the conclusion diagram.

The amount of memory and time needed 4y depends Contours(Dy M (D1 U Dy)) =
heavily on the quality of the heuristic used. For instance, a Contours(D;) U Contours(D; U Dy) =
h(_aurlstlc that is the constant function zero is adm|55|ble_, put Contours(D;) U (Contours(Dy) N Contours(Ds)) =
will result in a breadth-first search of the state space, giving
long and impractical searches. The better the heuristic (in the Contours(Dy).

sense of accurately predicting the lowest cost of a proof), thea similar result can be achieved by performing these
less memory and time are needed for the search. operations the other way around (i.e., using intersection for
conjunction, and union for disjunction). We will call the con-
tour set obtained using the first definition, (m for measure),

To define the heuristic function, we capture differencesnd the contour set obtained using the second definition
between the premise diagram and the conclusion diagramgéth definitions are required because we have explicit negation
give an estimate of the length of a shortest proof. In [3bf diagrams in our system. To make sure the contour sets are
we proposed several metrics to capture differences betwegyariant under involution (and De Morgan’'s laws) we use
two unitary diagrams, focussing on the difference in contows, (—~D;) = my(Dy) (and similarly,mq(=D;1) = my(Dy)).
sets, zone sets, shaded zone sets, and spiders. These metrigssimilar approach can be taken to define measures for
were combined to provide a heuristic function for unitaryones, shaded zones and spiders. To avoid repetition and show

diagrams. We will use similar metrics to judge the similarityhvariance under the logic rules, in the next section we will
between compound diagrams, in addition to new metrics g@neralize this approach.

capture differences in the structure of a compound diagram. ) _

First, we must determine what we mean by the contour set/df Building a set of independent metrics

a compound diagram (and similarly for zones, etc). PerhapsTo define our metrics, we first define various measures on
surprisingly, the most useful approach is not the obvious ordiagrams. As discussed previously, a useful measure of the

IV. THE HEURISTIC FUNCTION



contours in a diagram should be invariant under the logic rullesgic rules, but which are variant under the reasoning rules
but variant under the Add/Delete Contour rules in order to ste&dd Contour and Delete Contour.
the proof writer towards applying the Add/Delete Contour In the following section, for each pair of measures, we will
rules when they are required. assume that the above recursive definition holds unless stated,
In this section, we describe generic measures and shamd give only information about base cases. We also state how
how these are invariant under logic rules. Intuition about thege combine the measures; andm. to get a contribution to
generic measures may be gained by comparing them with the heuristic function betweeb; and D.
specific example at the beginning of this section.
If D is a diagram, define a pair of measures (D) B. Measure and metric definitions

and my(D) recursively using families ofn-ary functions 1y contours Here we define two measures which are
with domain X" (X will be determined by the context)nyariant under all logic rules but variant under the Add
gin: X" — X andgy,: X" — X (wherem;(D) € X).  contour and Delete Contour rules. These measures will be
For instance, in the example for contours given abane, | seq to detect differences in the contour sets. The definition
takes the union oh sets andg, , takes the intersection of o105 recursively as in section IV-A, with-ary functions
sets. We start by defining gin = U andgs, = N. The base cases are provided by
m;(~D) = m;(D) ?”“(d) = mg(d) = {the labels of the contours mf} whered
is unitary. Note thain, (D) = my (D) holds for unitaryD, but
(i # j) which ensures thatn; and my are invariant under need not hold for compount. That is, the measures; and
involution. For example, ms are not equal. For example, in Fig.i6, (d1) = ma(d;) =
o o A,m1—‘d2ﬂd3 :(bandmg_‘dgﬂdz; = A,B,O.
m1 (D) = ma (D) = m (D). i{f tr};ere ifs a(l cont032 label imni(D(Q)(but not)i)n mf(Dl) thgn
We extend the definition as follows:

(D1 1111 D) = gin (mi(D1), ooy mi (Do) 4 4 C B®‘
mi<D1|_|...|_|Dn) :gj,n(ml(Dl),,ml(Dn)) @ ®®

. d d d; d,
wherej # i. : 2
By observing the subscriptsand j, we can see that these Fig. 6. lllustrating the measures.
definitions already guarantee that the measungsand m
are invariant under De Morgan’s laws. For example we need to apply a reasoning rule to add that contoubto
Moreover, for eactC' € m;(D2) —m;(D;) we need to apply
mi(=(D1UDy)) = mz(DiUDsy) a reasoning rule to add when we transformD; into D,.
= g1(m2(D1),m2(D2)) That is, we need to add at ledst; (D) — m;(D;)| contours
= gi(m1(=Dy),mi(~(Dy)) to D,. Define for diagrams,, D», i € {1,2}:
m1(=Dy N=Dy). AddC;(Dy, Dy) = |mi(D2) — mi(Dy))|
To ensure invariance under commutativity and
associativity, we require functions which satisfy RemCy(Dy, D) = [mi(D1) —mi(Ds)|.
9i3(2 Y, 2) = gi2(2, 9i2(y, 2)) Combine these to give
and 9i2(x,y) = gi2(y, ),

for ~variables =z, 'y and 2. Provided that CDiff,(D,,D,) = AddC;(Dy, Dy) + RemC;i(Dy, Dy).
9i2(@, 9;2(y, 2)) = 952(9i2(2,y), gi,2(x, 2)), . . ) .
we have invariance under distributivity laws. FinallyFinally, thecontour difference metric between diagram®,
consider the absorption laws. For invariance, we ne@dD; is defined to be
9i2(2, gj2(x,y)) = gi1 ().

This set of conditions on thex-ary functionsg;, an
g2.n are p.I’OVIded by the choices,, = maz, go,n = min  porhe diagrams in Fig. &' M (d,Mds, dy) = maz{2,2} = 2
on numerical parameters and,, = U, g2, = N ON Set 5.4 CM(~dy,dy NMdsMNdy) = mazx{2,1} = 2. We take the
parameters. For example, for invariance under d'St”bUt'V'%aximum because, for example, one application of the Add
we havemaz(z, min(y, 2)) = min(maz(z,y),maz(z,2)),  contour rule can contribute to boDi f f; andCDif f (we
for integersz, y, 2. _ - cannot take the sur@'Dif f; + C'Dif f,). For example, if we

Of course, this recursive definition of measures andms introduce B to diagramd, in Fig. 6, yielding diagram, in
is incomplete without specification of a base case which d ig. 7 thenCM(dy, &) = maz{1 1'} — 1. The sumli 1
finesm;(d) whered is a unitary diagram. Deriving:(d) fror_n would not provide a lower bound on the length of a shortest
the contours of the unitary diagram, for example, prowdequoof from d, to d!
pair of measures; andms which are invariant under all the 4

d CM(D1,Dz) = max{CDif fi(D1,D2), CDif fa(D1, D2)}



2) Zones We will define metrics that detect differences in
the zone sets, using , = U andgs ,, = N. The base cases are
provided bym;(d) = ms(d) = {the zones ofi} whered is

00

0d

S

unitary. Note, again, thati (D) = mo(D) holds for unitary : CForm(d,.d,) 4

D, but need not hold for compoun®. This will also be the B A B

case for the remaining measures we define with one exception. @

Before calculating the zone metrics for the heuristic function, o

we need to ensure that the unitary components of the premise d, CForm(dyd,)

and conclusion diagrams have the same contour sets. It has Fig. 8. lllustrating the zone measure capping.

been argued in [3] why this is needed for unitary diagrams,
and the same reasoning applies for compound diagrams. We
apply the Add Contour rule to all unitary components of
D, to make a new diagram{' Form(D1, Ds), in which
each unitary diagram includes all contour labels frdm
and D (this being the union of the sets of contour labels

of their unitary components). Similarly, we make a new 3) Shading

We

will

now

define

metrics

ZM(Dy, Dy) = AddZ (D, D3) + RemZ (D1, D).
As an example, in Fig. 67 M (dyM—(d2Ud3),ds) = 141 = 2.

that

diagramC Form(Dy, Dy) by applying the Add Contour rule detect differences in the shading, using, = U

to D,. For example, in Fig. 6CForm(d, M=(dy U ds),ds) and g2, = N. The base cases are provided by
is d) M —(dy L d}), shown in Fig. 7, obtained by addingmi(d) = ma(d) = {the shaded zones aff where d is
contours to each unitary componeht d, andds. Similarly, unitary. Before calculating the shaded zone difference metric
CForm(dy,d; M —(dy Udg)) is d). Define for diagramsD,, for the heuristic function, we need to ensure that the unitary
Ds, i€ {1,2}: components of the premise and conclusion diagrams have
the same zone sets. It has been argued in [3] why this is
needed for unitary diagrams, and the same reasoning applies
for compound diagrams. We take the unitary components
of diagram CForm(D;,D;) and add shaded zones until
they are in Venn form (every possible zone is present, given
the contour label set), givingVenn(CForm(D;, D;)).
Shown in Fig. 9 are the wunitary components of
Venn(CForm(dy M—(de Uds),ds) = df M —(dy Uds)
and Venn(CForm(ds,d; M =(dy U d3)) = dj, where

1 if mi(CForm(Ds,Dy)) ¢
m;(C Form(D1, D3))
0 otherwise

1 if m;(CForm(Dy,D5)) ¢
m;(CForm(Dsy, Dy))
0 otherwise.

AddZ;(Dy, Dy) = {

RemZi(Dl, DQ) = {

The capping ofAddZ;, and RemZ; is similar to the capping

di,ds,ds andd, are in Fig. 6. Define for diagramB;, D-,

A B A B A B C
A4 B A B A B C
g o| | X ‘9) Y
d', d’, d’y d, C C C "‘
Fig. 7. Contour forms. d”, " ", a,

applied to AddZone and RemZone in the case of unitary
diagrams [3]. This is due to the fact that a single application

of either Add Shaded Zone or Delete Shaded Zoné)io ; ¢ {1,2}:

can change the zone set @Form(Dy, D2) by more than

one zone. For example, in Fig. 8, we can add one zone to
dy, giving ds but CForm(d;,ds) has two fewer zones than
CForm(ds,ds). We define two metrics (that we will use to

AddSh;(Dy, Dy) =

Fig. 9. Venn forms.

if m;(Venn(CForm(Dz,Dy)))
¢ m;(Venn(CForm(Dy, D2)))

1
0 otherwise

define the zone difference metric) between diagrdmsand 1 if my(Venn(CForm(D1, Ds)))
D, to be RemSh;(Dy,Ds) = ¢ mi(Venn(CForm(Ds, Dy)))
0 otherwise.

AddZ(Dl, Dg) = ma:z:{Adle (Dl, Dg), AddZQ (Dl, Dg)}

RemZ(Dy, Ds) = maz{RemZ; (D1, D3), RemZo(Dy, D;)}. We define two metrics (that we will use to define the shading
difference metric) between diagraniy and D, to be:
The reason for taking the maximum (as opposed to the sum)

is that, for example, applying the rule Delete Shaded Zone cAAdSh(D1, D2) = maz{AddShi (D1, D2), AddSha(D1, Do)}
affect bothAddZ, and AddZ, simultaneously (and similarly, _
RemZ, and RemZ,). We define thezone difference metric RemSh(D1, D2) =

maz{RemShy (D1, D2), RemShs(D1, Dy)}.



We combine these to give thehading difference metric whered; is a unitary diagram. One effect of this is to contrast
ShM(Dy, Ds) = AddSh(Dy, Do) + RemSh(Dy, Ds). m1(dy) = 0 with mq(d; Mdy) = 1. Application of the idem-

potency rules can increase or decrease these measures, almost

doubling or halving their value. For this reason, we lgg to

create measures which count potential rule applications. Other
4) Spiders We now define metrics which detect differencegules, such as Excluded Middle, can increase the measures

in the spiders, using,;,, = U andg,,, = N. The base casesfrom 0 to 1.

are provided bym;(d) = ma(d) = Sp(d) where The two metrics (that we will use to define the connective

difference measure) between diagrabsand D, are defined

to be, fori = 1,2, in the case whem; (D7), m;(D2) > 0

For example ShM (d; M —(d2 U ds),ds) =141 =2, where
dl,dg,dg andd, are in Flg 6.

Sp(d) = {(é,r) : 1 <i < n wheren is the number of

spiders whose habitat is the regiornin d},

andd is unitary. For example, in Fig. 6, CrnnMi(Dy, D2) = [loga(mi(Dh)) — loga(mi(D2))l,

mi(di) = {(1,{4}), (2,{4,U - A}),(1,{A, U = A})}.  and in the case whem,(D;) = 0 andm;(Ds) > 0
Informally, then, a spider is a paifi, ) and: indicates that
(i,r) is theit" spider inhabitingr. The setm(d;) includes CnnM;(Dy, D2) =1+ loga(mi(D2)),
one such pair for each spider dh. So, if there are no spiders
inhabitingr in d; then this is represented by the absence of a
element inm4(d,). Define for diagram®,, Do, i € {1, 2}: CnnM;(D1, Do) = 1+ logs(mi(D1)),

r%r/wd in the case whem,;(D;) > 0 andm,;(D3) =0

AddSp;(Dy, D2) = |m;(CForm(Da, Dy))— otherwise we define

m;(CForm(D1, Ds))] CnnM;(D1,D3) =0
nnivi;(Jy, Uz) = U.

RemSp;(D1, D2) = [m;(CForm(D1, D2))— A single application of an idempotency rule can affect both
m;(CForm(Ds, D1))]. CnnM; and CnnMsy simultaneously, so to prevent multiple-

counting of these rule applications, the contribution to the

Heuristic function is the maximum a'nnM; and CnnMs.

We define theconnective difference metricto be

We define two metrics (that we will use to define the spid
difference metric) between diagraniy and D, to be:

AddSp(D1, Dy) = max{AddSp: (D1, D2), AddSp2 (D1, D2)} CrnM(Ds, Ds) = maz{CnnMi(Ds, Dy), CnnMa(Dr, D)}

RemSp(Dy,Dy) = For example CnnM (d M —(dy U d3),ds) = maz(2,0) = 2.
maz{RemSp1 (D1, D3), RemSpy (D1, D3)}. 6) Not metric In this section we define measures which

detect differences in the numbers of ‘nots’, using, = max

Note here that, for example, a single application of thg,q,, — min. The base cases are provided by, for unitary
Excluded Middle rule can impact botAddSp and RemSp. d, m1(d) = 0 andma(d) = 1. For these measures we over-

Moreover, the rule Split Spider can introduce two new spidefgge part of the generic definition of the measures. Instead of
Thus we define thepider difference metric mi(~D) = m;(D) we define, for non-unitary diagranis

SpM (D1, D2) = max{AddSp(D1, D2), RemSp(D1, D2)}/2.
\,FV%L?ZZTSS5fﬁ%d;4ﬂarédfnuﬁf§.)’gf‘) maz(0,4)/2 =2, One effect of this is to contrast; (——d) = 2 with my(d) = 0.
) ) ) ) ) . Application of the involution rule can increase or decrease
5) Connectives In this section we define metrics whichyese measures by 2. For this reason, we use half their value
detect differences in the connectives, using, = maz and  pefore we evaluate their contribution to the heuristic function.
g2.n = min. The base cases are provided by, for unitdry Define thenot difference metric between diagram®; and

mi (d) = mg(d) =0. D5 to be

mi(~D) = 1+ m;(D).

For these measures we over-ride part of the generic definition
of the measures. As usual, use

mi(Dl M...Mn Dn) = gt(ml(Dl), 7TN,L(D,L))

[m1(D1) —ma(Dz)], }
\mz(Dl)Q—mz(Dz)\

NM(D;y,D3) = {

For example, N M (d; M —(d2 U ds),ds) = 1. The reason for
mi(Dy U...U Dy) = gj(mi(D1),...,mi(Dy)) taking the maximum is that, for example, the excluded middle
(where j # i) but, where possible, over-ride this definitionmk.a can impactn, and ma smultangou_sly. The reason for
with. for i — 1.2 dividing by two is that a single application of the involution
' ’ rule can increasen; andmsy by two (and its reverse subtract

mi(dlﬂDgﬂ...ﬂDn) = 1+m,(D2|_|D7,) tWO)



C. Compound heuristic conditions. We can increase the cost of a rule application

Define thecompound diagram heuristic, H, betweenD, if the resulting diagram is not drawable.
and D, to be the sum Another extension of this work is to include further rea-

soning rules. The rule set in this paper forms part of a

H(D1,D2) = CM(D1, D2) + ZM(Dy, D2) + NM(D1, D2) - gnd’ and complete set. However, enlarging the collection

+maz{ShM (D1, Ds), SpM(D;, D3),CnnM (D1, D2)}.  of reasoning rules available to the heuristic proof writer may

gﬁect the admissability of the heuristic function. Moreover,
ing additional rules enlarges the search space. Even if the

euristic function is admissible with the addition of a further
reasoning rule, it may be the case that the heuristic function
aEfscomes less effective because the search space is larger.

Note that we take the maximum of the shading metric, spid
metric and connective metric because, for example, a sin
application of one of the rules Excluded Middle and Spl
Spider can affect all these measures simultaneously.

We generated a random sample of 500,000 pairs of diagr
for which the heuristic function was optimistic. We conjectur
that the heuristic function is admissible.

owever, the benefit of adding further rules is that there will
e more cases where proofs can be found{if= D, and all
proofs from D, to D, require a rule that we have excluded
V. IMPLEMENTATION AND EVALUATION then, currently, no proof will be found.
. . - In addition to its use for automatic theorem proving, our
We have implemented this heuristic search as part of,a . . . . .

) . . . héuristic function can also be used to support interactive proof
spider diagram reasoning tool. The search can either stop wher}. | dvise th h bable implicai f
a proof is found, or seek the set of all optimal proofs. The aV\{rI ng. t can advise the user on .t © probabie Imp ications o

P ' ' %Bplylng a rule (for example “Adding contou will decrease

plication keeps a record of the number of proof attempts storﬁ}e contour difference measure, so might be a good idea’).

during th_e _search. An initial comparison of the eﬁectlvene_ss Bossible applications of rules could be annotated with their
the heuristic was conducted by building random proofs (within

. o : : Impact on the heuristic value. The user could collaborate with
small but arbitrary limits on complexity) and searching for thﬁ1
. ! L tool to solve complex problems.

proofs using a breadth first search (zero heuristic) as compare%
to the heuristic outlined in this paper. The benefits gained adéknowledgment Gem Stapleton thanks the UK EPSRC
assessed by considering the data set of ratios (number of priggfsupport under grant number 01800274. Jean Flower was
attempts with our heuristic)/(number of proof attempts witpartially supported by the UK EPSRC grant GR/R63516.
breath first search). Thanks also to Andrew Fish for his comments on earlier drafts

The number of proof attempts with the zero heuristic rangéd this paper.
from 34 to 443,000, and with our heuristic, ranged from 15 to
270,000. We collected data for 178 random proofs. The ratio
of numbers of proof attempts ranged from 1 (where the zel) R. Dechter, and J. Pearl. Generalized best-first search strategies and the

. - optimality of A*. Journal of the Association for Computing Machinery,

heuristic searches the same space as our heuristic) to 0.0043 3 pages 505-536. 1985.
(where our heuristic vastly reduces the search space size). The). Flower, and G. Stapleton. Automated Theorem Proving with Spider

; ; 0 ; ; ; Diagrams. In proceedings of Computing: The Australasian Theory
median ratio was 0.184, an 81.6% reduction in the size of Symposium (CATS 04), pages 116-132, ENTCS, Science Direct, 2004,

the search space. More spec_tacular results were Obtained_[:fPU. Flower, and J. Masthoff, and G. Stapleton. Generating Readable Proofs:
longer proofs. Further work is needed to establish why, in A Heuristic Approach to Theorem Proving with Spider Diagrams. In

ot ; ; ; ; proceedings of Diagrams 2004, pages 166-181, Springer-Verlag, 2004.
some cases, our heuristic gives no saving in the size of ?ZFJ Gil, and J. Howse, and S. Kent. Formalising spider diagrams. In

search space. Proceedings of IEEE Symposium on Visual Languages (VL9jes
130-137. IEEE Computer Society Press, 1999.
VI. CONCLUSION [5] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic
. . determination of minimum cost pathslEEE Transactions on System
In this paper, we have demonstrated how a heuridtic Science and Cybernetic, 2, pages 100-107, 1968.

approach can be used to automatically generate shortest prdﬁif% Flower, 2<’:1(;1(<J1|2J. Howsg-1 %engraymg E\l;lelr Dlaz%rS\SWS- Proceedings of
. . . . . iagrams , pages 61-75, Springer-Verlag,
!n a splder dlagram reasoning _SyStem' We regard this as a?l Howse, F. Molina, and J. Taylor. SD2: A sound and complete
important step towards generating readable proofs. Our work diagrammatic reasoning system. Rioc. IEEE Symposium on Visual
can be extended in a number of ways. The cost element of theLanguages (VL2000)EEE Computer Society Press, 2000.

evaluation function can be altered to incorporate factors tH8k ivggmie;rfmmf’é?n'}‘s."’t‘)?i‘é,ft'ol"."gg’gkﬁjsaes;zmr;']";’hzggfer diagrams.
impact readability. For example: [9] G.F. Luger. Artificial intelligence: Structures and strategies for complex
¢ Comp_re,henSion of rulgs. There may be a difference {b] plr:(.)?\}I%Ti]n;s;\(.)glenfs;o'r:]?r]ugrt\t\]/itidg((t)gr.](ft\e(:jd{?ggn\—,\liisilr?gdziggrzémmatic systems
how difficult each rule is to understand. We can model a " php thesis, University of Brighton, 2001.
difference in the relative difficulty of rules by assignindg11] S.-J. Shin.The Logical Status of Diagram&amb. Uni. Press, 1994.
different costs. Currently, we are conducting an exper-
iment to determine the relative understandability of the
rules.
« Drawability of diagrams. As discussed in [6] not all

diagrams are drawable, subject to some well-formed
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