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Abstract— We apply theA∗ algorithm to guide a diagrammatic
theorem proving tool. The algorithm requires a heuristic function,
which provides a metric on the search space. In this paper we
present a collection of metrics between two spider diagrams. We
combine these metrics to give a heuristic function that provides
a lower bound on the length of a shortest proof from one spider
diagram to another, using a collection of sound reasoning rules.
We compare the effectiveness of our approach with a breadth-
first search for proofs.

I. I NTRODUCTION

Simple diagrammatic systems that inspired spider diagrams
are Venn and Euler diagrams. In Venn diagrams all possible
intersections between contours must occur and shading is used
to represent the empty set. Diagramd1 in Fig. 1 is a Venn
diagram. Venn-Peirce diagrams [11] extend the Venn diagram
notation, using additional syntax to represent non-empty sets.
Euler diagrams exploit topological properties of enclosure,
exclusion and intersection to represent subsets, disjoint sets
and set intersection respectively. Spider diagrams [4], [7], [8],
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Fig. 1. A Venn diagram and a spider diagram.

[10] are based on Euler diagrams.Spidersare used to represent
the existence of elements andshadingis used to place upper
bounds on the cardinalities of sets. A spider is drawn as a
collection of dots joined by lines. The spider diagramd2 in
Fig. 1 expresses the statement “no mice are cats or dogs, no
dogs are cats, there is a cat and there is something that is
either a mouse or a dog”. Sound and complete reasoning rules
for spider diagram systems have been given [7], [8], [10].

As argued in [3], it is important for automated diagram-
matic reasoning systems to produce proofs that are easy to
understand by humans. For this reason, our ambition is to
produce diagrammatic proofs using diagram transformations
instead of converting to first order logic and using existing
theorem provers. An existing theorem prover for spider dia-
grams successfully writes proofs [2], but they can be long and
unwieldy. In [3], we presented a new approach to proof writing
in diagrammatic systems, which is guaranteed to find shortest

proofs and can be extended to incorporate other readability
criteria. We applied theA∗ algorithm and developed an admis-
sible heuristic function to guide automatic proof construction.
However, the work presented in [3] was limited to the simple
case of so-called unitary spider diagrams. Here, we extend
that work to the significantly more challenging general case
of so-called compound spider diagrams.

II. SPIDER DIAGRAMS

We now informally introduce the spider diagram system.

A. Syntax and semantics of spider diagrams

In this section, we will give an informal description of the
syntax and semantics of spider diagrams. Details and formal
definitions can be found in [8]. Acontour is a labelled closed
curve in the diagram used to denote a set. Theboundary
rectangle is an unlabelled rectangle that bounds the diagram
and denotes the universal set. Azone, roughly speaking, is a
bounded area in the diagram having no other bounded area
contained within it. A zone can be described by the set of
labels of the contours that contain it and the set of labels of the
contours that exclude it. A zone denotes a set by intersection
and difference of the sets denoted by the contours. Aregion
is a set of zones.

A spider is a tree with nodes, calledfeet, placed in different
zones. A spidertouches a zone if one of its feet appears
in that zone. The set of zones a spider touches is called its
habitat. A spider denotes the existence of an element in the
set represented by its habitat. Distinct spiders represent the
existence of distinct elements. A zone can beshaded. In the
set represented by a shaded zone, all of the elements are
represented by spiders. So, a shaded zone with no spiders
in it represents an empty set. Aunitary diagram is a
finite collection of contours (with distinct labels), shading and
spiders properly contained by a boundary rectangle.

The unitary diagramd2 in Fig. 1 contains three contours
and five zones, of which one is shaded. There are two spiders.
The spider with one foot inhabits the zone inside (the contour
labelled)Cats, but outsideDogs andMice. The other spider
inhabits the region which consists of the zone insideMice
and the zone insideDogs but outsideCats.

Unitary diagrams form the building blocks ofcompound
diagrams. To enable us to present negated, disjunctive and
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conjunctive information between unitary diagrams, we use
connectives:¬, t andu. If D1 and D2 are spider diagrams
then so are¬D1 (“not D1”), D1 t D2 (“D1 or D2”) and
D1uD2 (“D1 andD2”). The semantics of compound diagrams
extend those of unitary diagrams in the obvious way.

B. Reasoning with spider diagrams

We now give informal descriptions of the sound but not a
complete set of reasoning rules for spider diagrams. For formal
descriptions see [8].
Add contour. A new contour can be added to a unitary
diagram. Each zone is split into two zones (one inside and
one outside the new contour) and shading is preserved. Each
spider foot is replaced by a connected pair of feet, one in each
of the two new zones. For example, in Fig. 2,d2 is obtained
from d1 by adding a contour. This rule is reversible and we
will refer to its reverse asDelete contour.
Add shaded zone.A new, shaded zone can be added to a
unitary diagram. This rule is reversible and we will refer to
its reverse asDelete shaded zone. For example, in Fig. 2,
diagramd3 is obtained fromd2 by deleting a shaded zone.
Erase shading.Shading can be erased from any zone in a
unitary diagram.
Delete spider. A spider whose habitat is completely non-
shaded can be deleted from a unitary diagram.
Add spider foot. In a unitary diagram, a foot can be added
to a spider in a zone it does not yet touch.
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Fig. 2. Applications of “add contour” and “delete shaded zone”.

All of the remaining diagrammatic rules are reversible.
Split spider. A unitary diagramd containing a spiders whose
habitat has a partition into non-empty regionsr1 and r2 can
be replaced byd1td2, whered1 andd2 are copies ofd except
that the habitat ofs is reduced tor1 in d1 and r2 in d2. For
instance, diagramd in Fig. 3 has a spider with two feet. We
can split this spider into two parts, givingd1 t d2.

d d 1 d 2
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Fig. 3. An application of rule “split spider”.

Excluded Middle. A unitary diagramd with a non-shaded
zonez can be replaced byd1td2, whered1 andd2 are copies
of d except thatz is shaded ind1 and contains an additional
spider ind2. For instance, d in Fig. 4 has a non-shaded zone
B−C. Applying excluded middle to this zone yieldsd1td2.
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Fig. 4. An application of rule “excluded middle”.

An α-diagram is a diagram in which each spider has
exactly one foot. Two unitaryα-diagrams with (essentially) the
same zone set are incontradiction if a zone is shaded in one
diagram and contains more spiders in the other. For example,
in figure 4, the diagramsd1 andd2 are in contradiction because
B − C is shaded and contains no spiders ind1 but contains
one spider ind2.
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Fig. 5. An application of rule “Combining”.

Combining. A compound diagram consisting of the conjunc-
tion of two non-contradictoryα-diagramsd1 and d2 whose
zone sets are the same can be combined into a single unitary
diagram,d3, with the same zone set. The number of spiders
in any zone ind3 is the maximum number of spiders in that
zone ind1 andd2, and a zone is shaded ind3 if it is shaded
in either d1 or d2. For example, diagramd1 u d2 in Fig. 5
can be replaced byd3. We note here that due to the non-
deterministic nature of the reverse of this rule, we have not
included the reverse in our implementation.

There are also reasoning rules that have analogies in logic.
We include in our set of rulesIdempotency (for example,
D ` D u D), De Morgan’s laws, Involution (¬¬D ≡` D)
and Distributivity . All of these rules are reversible. We also
include theAbsorption rules which state thatD1u (D1tD2)
can be replaced byD1 andD1 t (D1 uD2) can be replaced
by D1. Whilst the reverses of the absorption rules are sound,
due to the non-deterministic nature of the reverses these have
not been included in our implementation.

If D1 can be transformed intoD2 by a reversible rule,
then any occurrence ofD1 in a compound diagram can be
replaced byD2. If D1 can be transformed intoD2 by a non-
reversible rule, then any occurrence ofD1 in a compound
diagram can be replaced byD2, provided the occurrence of
D1 being replaced is ‘inside an even number of not’s’. For
example, in the diagram¬((D1 u D3) t (D4 u ¬D1)) the
first occurrence ofD1 is not inside an even number of not’s,
but the second is. We say that diagramsD2 is obtainable
from diagramD1, denotedD1 ` D2, if and only if there is a
sequence of diagrams〈D1, D2, ..., Dm〉 such thatD1 = D1,
Dm = D2 and, for eachk where1 ≤ k < m, Dk can be
transformed intoDk+1 by a single application of one of the
reasoning rules. Such a sequence of diagrams is called aproof
from premise D1 to conclusionD2.



III. A* APPLIED TO PROOF WRITING

To construct a proof, a rule needs to be applied to the
premise diagram, followed by another rule to the resulting
diagram, and so on, until the conclusion diagram is reached.
At any stage, multiple rules might be applicable. The problem
of deciding which rule to apply is an example of a more
general class of so-called search problems, for which various
algorithms have been developed (see [9] for an overview).A∗

is a well known search algorithm [5].
A∗ stores an ordered sequence of proof attempts. Initially,

this sequence only contains a zero length proof attempt,
namely the premise diagram. Repeatedly,A∗ removes the first
proof attempt from the sequence and considers it. If the last
diagram of the proof attempt is the conclusion diagram, then
an optimal proof has been found. Otherwise, it constructs
additional proof attempts, by extending the proof attempt
under consideration, applying rules wherever possible to the
last diagram.

The effectiveness ofA∗ and the definition of “optimal” is
dependent upon the ordering imposed on the proof attempt
sequence. The ordering is derived from the sum of two
functions. One function, called theheuristic, estimates how
far the last diagram in the proof attempt is from the conclusion
diagram. The other, called thecost, calculates how costly it
has been to reach the last diagram from the premise diagram.
The new proof attempts are inserted into the sequence, ordered
according to the cost plus heuristic.A∗ always finds the
solution with the lowest cost, if one exists, provided the
heuristic used isadmissible[1]. A heuristic is admissible if it
is optimistic, which means that it never overestimates the cost
of getting from a premise diagram to a conclusion diagram. We
define all rules to have a cost equal to one, which means that
any admissible heuristic gives a lower bound on the number of
proof steps needed in order to reach the conclusion diagram.

The amount of memory and time needed byA∗ depends
heavily on the quality of the heuristic used. For instance, a
heuristic that is the constant function zero is admissible, but
will result in a breadth-first search of the state space, giving
long and impractical searches. The better the heuristic (in the
sense of accurately predicting the lowest cost of a proof), the
less memory and time are needed for the search.

IV. T HE HEURISTIC FUNCTION

To define the heuristic function, we capture differences
between the premise diagram and the conclusion diagram to
give an estimate of the length of a shortest proof. In [3],
we proposed several metrics to capture differences between
two unitary diagrams, focussing on the difference in contour
sets, zone sets, shaded zone sets, and spiders. These metrics
were combined to provide a heuristic function for unitary
diagrams. We will use similar metrics to judge the similarity
between compound diagrams, in addition to new metrics to
capture differences in the structure of a compound diagram.
First, we must determine what we mean by the contour set of
a compound diagram (and similarly for zones, etc). Perhaps
surprisingly, the most useful approach is not the obvious one:

to take the union of the sets of contours of the unitary parts.
We now illustrate why this naive approach is not useful.
Suppose we were to take the union of the contour sets of
a diagram’s unitary components as a measure of the contours
in that diagram and to define the cardinality of the symmetric
difference of the contour sets forD1 and D2 as our contour
difference metric betweenD1 andD2. Such a metric should
be good at guiding applications of the Add Contour and
Delete Contour rules. AssumeD1 u (D1 tD2) is our premise
diagram, andD1 our conclusion diagram. The diagramD1

could have a vastly different contour set toD2 (and, therefore,
to D1 u (D1 t D2)). Using the absorption rule, the premise
diagram can be changed into the conclusion diagram in one
step. Hence, for admissibility to hold, the heuristic must be at
most 1 but the cardinality of the symmetric difference of the
contour sets may be much larger than 1. We would have to cap
the metric at 1, and this would will lead to a weak heuristic
when we need to apply the Add/Delete Contour rules many
times. Therefore, we will not use a simple union.

Actually, we would prefer a contour measure to be invariant
under all the logic rules, and only to reflect the need for
applications of the Add and Delete Contour rules. Each
measure is designed to be invariant under many rules (if
we apply a rule then the measure remains unchanged) and
variant under few rules (if we apply a rule then the measure
changes). So, we would prefer a measure of the contour set of
D1u(D1tD2) to be the same as that ofD1. We would like to
defineContours(D1 uD2) andContours(D1 tD2) in such
a way as to achieve this. There are two obvious operations
which can be done on sets: union and intersection. If we
defineContours(D1uD2) as the union ofContours(D1) and
Contours(D2), andContours(D1 tD2) as the intersection
of Contours(D1) andContours(D2), then:

Contours(D1 u (D1 tD2)) =
Contours(D1) ∪ Contours(D1 tD2) =
Contours(D1) ∪ (Contours(D1) ∩ Contours(D2)) =

Contours(D1).

A similar result can be achieved by performing these
operations the other way around (i.e., using intersection for
conjunction, and union for disjunction). We will call the con-
tour set obtained using the first definitionm1 (m for measure),
and the contour set obtained using the second definitionm2.
Both definitions are required because we have explicit negation
of diagrams in our system. To make sure the contour sets are
invariant under involution (and De Morgan’s laws) we use
m1(¬D1) = m2(D1) (and similarly,m2(¬D1) = m1(D1)).

A similar approach can be taken to define measures for
zones, shaded zones and spiders. To avoid repetition and show
invariance under the logic rules, in the next section we will
generalize this approach.

A. Building a set of independent metrics

To define our metrics, we first define various measures on
diagrams. As discussed previously, a useful measure of the



contours in a diagram should be invariant under the logic rules
but variant under the Add/Delete Contour rules in order to steer
the proof writer towards applying the Add/Delete Contour
rules when they are required.

In this section, we describe generic measures and show
how these are invariant under logic rules. Intuition about these
generic measures may be gained by comparing them with the
specific example at the beginning of this section.

If D is a diagram, define a pair of measuresm1(D)
and m2(D) recursively using families ofn-ary functions
with domain Xn (X will be determined by the context)
g1,n : Xn → X and g2,n : Xn → X (where mi(D) ∈ X).
For instance, in the example for contours given above,g1,n

takes the union ofn sets andg2,n takes the intersection of
sets. We start by defining

mi(¬D) = mj(D)

(i 6= j) which ensures thatm1 and m2 are invariant under
involution. For example,

m1(¬¬D) = m2(¬D) = m1(D).

We extend the definition as follows:

mi(D1 u ... uDn) = gi,n(mi(D1), ...,mi(Dn))

mi(D1 t ... tDn) = gj,n(mi(D1), ..., mi(Dn))

wherej 6= i.
By observing the subscriptsi and j, we can see that these

definitions already guarantee that the measuresm1 and m2

are invariant under De Morgan’s laws. For example

m1(¬(D1 tD2)) = m2(D1 tD2)
= g1(m2(D1), m2(D2))
= g1(m1(¬D1),m1(¬(D2))
= m1(¬D1 u ¬D2).

To ensure invariance under commutativity and
associativity, we require functions which satisfy

gi,3(x, y, z) = gi,2(x, gi,2(y, z))
and gi,2(x, y) = gi,2(y, x),
for variables x, y and z. Provided that

gi,2(x, gj,2(y, z)) = gj,2(gi,2(x, y), gi,2(x, z)),
we have invariance under distributivity laws. Finally,
consider the absorption laws. For invariance, we need

gi,2(x, gj,2(x, y)) = gi,1(x).
This set of conditions on then-ary functions g1,n and

g2,n are provided by the choicesg1,n = max, g2,n = min
on numerical parameters andg1,n = ∪, g2,n = ∩ on set
parameters. For example, for invariance under distributivity,
we havemax(x, min(y, z)) = min(max(x, y),max(x, z)),
for integersx, y, z.

Of course, this recursive definition of measuresm1 andm2

is incomplete without specification of a base case which de-
finesmi(d) whered is a unitary diagram. Derivingmi(d) from
the contours of the unitary diagram, for example, provides a
pair of measuresm1 andm2 which are invariant under all the

logic rules, but which are variant under the reasoning rules
Add Contour and Delete Contour.

In the following section, for each pair of measures, we will
assume that the above recursive definition holds unless stated,
and give only information about base cases. We also state how
to combine the measuresm1 andm2 to get a contribution to
the heuristic function betweenD1 andD2.

B. Measure and metric definitions

1) Contours: Here we define two measures which are
invariant under all logic rules but variant under the Add
Contour and Delete Contour rules. These measures will be
used to detect differences in the contour sets. The definition
follows recursively as in section IV-A, withn-ary functions
g1,n = ∪ and g2,n = ∩. The base cases are provided by
m1(d) = m2(d) = {the labels of the contours ofd}, whered
is unitary. Note thatm1(D) = m2(D) holds for unitaryD, but
need not hold for compoundD. That is, the measuresm1 and
m2 are not equal. For example, in Fig. 6,m1(d1) = m2(d1) =
{A}, m1(¬(d2 u d3)) = ∅ andm2(¬(d2 u d3)) = {A,B, C}.
If there is a contour label inmi(D2) but not inmi(D1) then
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Fig. 6. Illustrating the measures.

we need to apply a reasoning rule to add that contour toD1.
Moreover, for eachC ∈ mi(D2)−mi(D1) we need to apply
a reasoning rule to addC when we transformD1 into D2.
That is, we need to add at least|mi(D2)−mi(D1)| contours
to D1. Define for diagramsD1, D2, i ∈ {1, 2}:

AddCi(D1, D2) = |mi(D2)−mi(D1)|

RemCi(D1, D2) = |mi(D1)−mi(D2)|.
Combine these to give

CDiffi(D1, D2) = AddCi(D1, D2) + RemCi(D1, D2).

Finally, thecontour difference metric between diagramsD1

andD2 is defined to be

CM(D1, D2) = max{CDiff1(D1, D2), CDiff2(D1, D2)}
For the diagrams in Fig. 6,CM(d1ud3, d4) = max{2, 2} = 2
and CM(¬d1, d1 u d3 u d4) = max{2, 1} = 2. We take the
maximum because, for example, one application of the Add
Contour rule can contribute to bothCDiff1 andCDiff2 (we
cannot take the sumCDiff1 +CDiff2). For example, if we
introduceB to diagramd4 in Fig. 6, yielding diagramd′4 in
Fig. 7 thenCM(d4, d

′
4) = max{1, 1} = 1. The sum1 + 1

would not provide a lower bound on the length of a shortest
proof from d4 to d′4.



2) Zones: We will define metrics that detect differences in
the zone sets, usingg1,n = ∪ andg2,n = ∩. The base cases are
provided bym1(d) = m2(d) = {the zones ofd} whered is
unitary. Note, again, thatm1(D) = m2(D) holds for unitary
D, but need not hold for compoundD. This will also be the
case for the remaining measures we define with one exception.
Before calculating the zone metrics for the heuristic function,
we need to ensure that the unitary components of the premise
and conclusion diagrams have the same contour sets. It has
been argued in [3] why this is needed for unitary diagrams,
and the same reasoning applies for compound diagrams. We
apply the Add Contour rule to all unitary components of
D1 to make a new diagram,CForm(D1, D2), in which
each unitary diagram includes all contour labels fromD1

and D2 (this being the union of the sets of contour labels
of their unitary components). Similarly, we make a new
diagramCForm(D2, D1) by applying the Add Contour rule
to D2. For example, in Fig. 6,CForm(d1 u ¬(d2 t d3), d4)
is d′1 u ¬(d′2 t d′3), shown in Fig. 7, obtained by adding
contours to each unitary componentd1, d2 andd3. Similarly,
CForm(d4, d1 u ¬(d2 t d3)) is d′4. Define for diagramsD1,
D2, i ∈ {1, 2}:

AddZi(D1, D2) =





1 if mi(CForm(D2, D1)) *
mi(CForm(D1, D2))

0 otherwise

RemZi(D1, D2) =





1 if mi(CForm(D1, D2)) *
mi(CForm(D2, D1))

0 otherwise.

The capping ofAddZi, andRemZi is similar to the capping

d ' 1 d ' 2 d ' 3 d ' 4

A B

C

A B

C

A B

C
A

C B

Fig. 7. Contour forms.

applied toAddZone and RemZone in the case of unitary
diagrams [3]. This is due to the fact that a single application
of either Add Shaded Zone or Delete Shaded Zone toD1

can change the zone set inCForm(D1, D2) by more than
one zone. For example, in Fig. 8, we can add one zone to
d1, giving d3 but CForm(d1, d2) has two fewer zones than
CForm(d3, d2). We define two metrics (that we will use to
define the zone difference metric) between diagramsD1 and
D2 to be

AddZ(D1, D2) = max{AddZ1(D1, D2), AddZ2(D1, D2)}
RemZ(D1, D2) = max{RemZ1(D1, D2), RemZ2(D1, D2)}.
The reason for taking the maximum (as opposed to the sum)
is that, for example, applying the rule Delete Shaded Zone can
affect bothAddZ1 andAddZ2 simultaneously (and similarly,
RemZ1 andRemZ2). We define thezone difference metric

A B

A B A C

d 1 d 2

A B

C

A B

C

d 3

C F o r m ( d 1 , d 2 )

C F o r m ( d 3 , d 2 )
Fig. 8. Illustrating the zone measure capping.

ZM(D1, D2) = AddZ(D1, D2) + RemZ(D1, D2).
As an example, in Fig. 6,ZM(d1u¬(d2td3), d4) = 1+1 = 2.

3) Shading: We will now define metrics that
detect differences in the shading, usingg1,n = ∪
and g2,n = ∩. The base cases are provided by
m1(d) = m2(d) = {the shaded zones ofd} where d is
unitary. Before calculating the shaded zone difference metric
for the heuristic function, we need to ensure that the unitary
components of the premise and conclusion diagrams have
the same zone sets. It has been argued in [3] why this is
needed for unitary diagrams, and the same reasoning applies
for compound diagrams. We take the unitary components
of diagram CForm(Di, Dj) and add shaded zones until
they are in Venn form (every possible zone is present, given
the contour label set), givingV enn(CForm(Di, Dj)).
Shown in Fig. 9 are the unitary components of

V enn(CForm(d1 u ¬(d2 t d3), d4) = d′′1 u ¬(d′′2 t d3)
and V enn(CForm(d4, d1 u ¬(d2 t d3)) = d′′4 , where
d1, d2, d3 andd4 are in Fig. 6. Define for diagramsD1, D2,

d ' ' 1 d ' ' 2 d ' ' 3 d ' ' 4
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Fig. 9. Venn forms.

i ∈ {1, 2}:

AddShi(D1, D2) =





1 if mi(V enn(CForm(D2, D1)))
* mi(V enn(CForm(D1, D2)))

0 otherwise

RemShi(D1, D2) =





1 if mi(V enn(CForm(D1, D2)))
* mi(V enn(CForm(D2, D1)))

0 otherwise.

We define two metrics (that we will use to define the shading
difference metric) between diagramsD1 andD2 to be:

AddSh(D1, D2) = max{AddSh1(D1, D2), AddSh2(D1, D2)}
RemSh(D1, D2) =

max{RemSh1(D1, D2), RemSh2(D1, D2)}.



We combine these to give theshading difference metric
ShM(D1, D2) = AddSh(D1, D2) + RemSh(D1, D2).

For example,ShM(d1 u ¬(d2 t d3), d4) = 1 + 1 = 2, where
d1, d2, d3 andd4 are in Fig. 6.

4) Spiders: We now define metrics which detect differences
in the spiders, usingg1,n = ∪ and g2,n = ∩. The base cases
are provided bym1(d) = m2(d) = Sp(d) where

Sp(d) = {(i, r) : 1 ≤ i ≤ n wheren is the number of

spiders whose habitat is the regionr in d},
andd is unitary. For example, in Fig. 6,
m1(d1) = {(1, {A}), (2, {A,U −A}), (1, {A,U −A})}.

Informally, then, a spider is a pair,(i, r) and i indicates that
(i, r) is the ith spider inhabitingr. The setm1(d1) includes
one such pair for each spider ind1. So, if there are no spiders
inhabitingr in d1 then this is represented by the absence of any
element inm1(d1). Define for diagramsD1, D2, i ∈ {1, 2}:

AddSpi(D1, D2) = |mi(CForm(D2, D1))−
mi(CForm(D1, D2))|

RemSpi(D1, D2) = |mi(CForm(D1, D2))−
mi(CForm(D2, D1))|.

We define two metrics (that we will use to define the spider
difference metric) between diagramsD1 andD2 to be:

AddSp(D1, D2) = max{AddSp1(D1, D2), AddSp2(D1, D2)}

RemSp(D1, D2) =
max{RemSp1(D1, D2), RemSp2(D1, D2)}.

Note here that, for example, a single application of the
Excluded Middle rule can impact bothAddSp and RemSp.
Moreover, the rule Split Spider can introduce two new spiders.
Thus we define thespider difference metric

SpM(D1, D2) = max{AddSp(D1, D2), RemSp(D1, D2)}/2.

For example,SpM(d1 u¬(d2 t d3), d4) = max(0, 4)/2 = 2,
whered1, d2, d3 andd4 are in Fig. 6.

5) Connectives: In this section we define metrics which
detect differences in the connectives, usingg1,n = max and
g2,n = min. The base cases are provided by, for unitaryd,

m1(d) = m2(d) = 0.

For these measures we over-ride part of the generic definition
of the measures. As usual, use

mi(D1 u ... uDn) = gi(mi(D1), ..., mi(Dn))

mi(D1 t ... tDn) = gj(mi(D1), ..., mi(Dn))

(where j 6= i) but, where possible, over-ride this definition
with, for i = 1, 2

mi(d1 uD2 u ... uDn) = 1 + mi(D2... uDn)

whered1 is a unitary diagram. One effect of this is to contrast
m1(d1) = 0 with m1(d1 u d1) = 1. Application of the idem-
potency rules can increase or decrease these measures, almost
doubling or halving their value. For this reason, we uselog2 to
create measures which count potential rule applications. Other
rules, such as Excluded Middle, can increase the measures
from 0 to 1.

The two metrics (that we will use to define the connective
difference measure) between diagramsD1 andD2 are defined
to be, fori = 1, 2, in the case whenmi(D1),mi(D2) > 0

CnnMi(D1, D2) = |log2(mi(D1))− log2(mi(D2))|,
and in the case whenmi(D1) = 0 andmi(D2) > 0

CnnMi(D1, D2) = 1 + log2(mi(D2)),

and in the case whenmi(D1) > 0 andmi(D2) = 0

CnnMi(D1, D2) = 1 + log2(mi(D1)),

otherwise we define

CnnMi(D1, D2) = 0.

A single application of an idempotency rule can affect both
CnnM1 andCnnM2 simultaneously, so to prevent multiple-
counting of these rule applications, the contribution to the
heuristic function is the maximum ofCnnM1 and CnnM2.
We define theconnective difference metricto be

CnnM(D1, D2) = max{CnnM1(D1, D2), CnnM2(D1, D2)}.
For example,CnnM(d1 u ¬(d2 t d3), d4) = max(2, 0) = 2.

6) Not metric: In this section we define measures which
detect differences in the numbers of ‘nots’, usingg1,n = max
andg2,n = min. The base cases are provided by, for unitary
d, m1(d) = 0 and m2(d) = 1. For these measures we over-
ride part of the generic definition of the measures. Instead of
mi(¬D) = mj(D) we define, for non-unitary diagramsD

mi(¬D) = 1 + mj(D).

One effect of this is to contrastm2(¬¬d) = 2 with m2(d) = 0.
Application of the involution rule can increase or decrease
these measures by 2. For this reason, we use half their value
before we evaluate their contribution to the heuristic function.

Define thenot difference metric between diagramsD1 and
D2 to be

NM(D1, D2) =
max

{
|m1(D1)−m1(D2)|,
|m2(D1)−m2(D2)|

}

2

For example,NM(d1 u ¬(d2 t d3), d4) = 1. The reason for
taking the maximum is that, for example, the excluded middle
rule can impactm1 and m2 simultaneously. The reason for
dividing by two is that a single application of the involution
rule can increasem1 andm2 by two (and its reverse subtract
two).



C. Compound heuristic

Define thecompound diagram heuristic, H, betweenD1

andD2 to be the sum

H(D1, D2) = CM(D1, D2) + ZM(D1, D2) + NM(D1, D2)

+max{ShM(D1, D2), SpM(D1, D2), CnnM(D1, D2)}.
Note that we take the maximum of the shading metric, spider
metric and connective metric because, for example, a single
application of one of the rules Excluded Middle and Split
Spider can affect all these measures simultaneously.

We generated a random sample of 500,000 pairs of diagrams
for which the heuristic function was optimistic. We conjecture
that the heuristic function is admissible.

V. I MPLEMENTATION AND EVALUATION

We have implemented this heuristic search as part of a
spider diagram reasoning tool. The search can either stop when
a proof is found, or seek the set of all optimal proofs. The ap-
plication keeps a record of the number of proof attempts stored
during the search. An initial comparison of the effectiveness of
the heuristic was conducted by building random proofs (within
small but arbitrary limits on complexity) and searching for the
proofs using a breadth first search (zero heuristic) as compared
to the heuristic outlined in this paper. The benefits gained are
assessed by considering the data set of ratios (number of proof
attempts with our heuristic)/(number of proof attempts with
breath first search).

The number of proof attempts with the zero heuristic ranged
from 34 to 443,000, and with our heuristic, ranged from 15 to
270,000. We collected data for 178 random proofs. The ratio
of numbers of proof attempts ranged from 1 (where the zero
heuristic searches the same space as our heuristic) to 0.004
(where our heuristic vastly reduces the search space size). The
median ratio was 0.184, an 81.6% reduction in the size of
the search space. More spectacular results were obtained for
longer proofs. Further work is needed to establish why, in
some cases, our heuristic gives no saving in the size of the
search space.

VI. CONCLUSION

In this paper, we have demonstrated how a heuristicA∗

approach can be used to automatically generate shortest proofs
in a spider diagram reasoning system. We regard this as an
important step towards generating readable proofs. Our work
can be extended in a number of ways. The cost element of the
evaluation function can be altered to incorporate factors that
impact readability. For example:

• Comprehension of rules. There may be a difference in
how difficult each rule is to understand. We can model a
difference in the relative difficulty of rules by assigning
different costs. Currently, we are conducting an exper-
iment to determine the relative understandability of the
rules.

• Drawability of diagrams. As discussed in [6] not all
diagrams are drawable, subject to some well-formed

conditions. We can increase the cost of a rule application
if the resulting diagram is not drawable.

Another extension of this work is to include further rea-
soning rules. The rule set in this paper forms part of a
sound and complete set. However, enlarging the collection
of reasoning rules available to the heuristic proof writer may
affect the admissability of the heuristic function. Moreover,
using additional rules enlarges the search space. Even if the
heuristic function is admissible with the addition of a further
reasoning rule, it may be the case that the heuristic function
becomes less effective because the search space is larger.
However, the benefit of adding further rules is that there will
be more cases where proofs can be found: ifD1 ² D2 and all
proofs fromD1 to D2 require a rule that we have excluded
then, currently, no proof will be found.

In addition to its use for automatic theorem proving, our
heuristic function can also be used to support interactive proof
writing. It can advise the user on the probable implications of
applying a rule (for example “Adding contourB will decrease
the contour difference measure, so might be a good idea”).
Possible applications of rules could be annotated with their
impact on the heuristic value. The user could collaborate with
the tool to solve complex problems.
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