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Abstract—The problem of estimating the parameters of induc-
tion motor models is considered, using the data measured by
a circuit breaker equipped with industrial sensors. The breaker
acquires three-phase stator voltage and current derivative, which
are used to formulate an optimization-based identification prob-
lem. This setup is novel with respect to the literature, where
voltage and current are used. Several algorithmic aspects and
improvements are discussed. The presented experimental results
indicate that the circuit breaker is able to accurately estimate
the machine parameters. The identified motor models can then
be used for several applications within a smart grid scenario.

Index Terms—Nonlinear Identification, Parameter Estimation,
Induction Motor Identification, Smart Circuit Breakers, Smart
Grid, Smart Switchgear

I. INTRODUCTION

In the smart grid paradigm [1], bi-directional flows of elec-
tricity and information are exploited to improve and automate
grid operation and enable distributed electricity generation.
Self-monitoring, self-healing, and advanced load protection
and monitoring are crucial smart grid functionalities. However,
the realization of these functions requires the installation
and connection of a large number of sensing devices, thus
increasing complexity and costs.
Circuit breakers represent an ideal candidate to alleviate this
problem. Installed in millions across the power grid at all
voltage levels, these devices are designed to last tens of
years. Circuit breakers can provide a distributed network of
sensors and actuators if equipped with sensing, computing
and communication capabilities. Since the breakers are already
connected to the grid, there is no need to install a separate link
to power the sensors and on-board processors. These smart
circuit breakers can then accomplish additional functionalities
with respect to the classical protection one. An example is
the ABB Emax2r breaker, which can also operate as power
manager by selectively disconnecting downstream loads to
control power consumption [2].

In addition to energy management, another function of inter-
est for smart breakers is the identification of suitable models of
the loads, using their electric signature. The identified models
can be used e.g. for load detection and monitoring and to
discriminate between loads with high inrush currents and faults
in the network, as proposed in the patent [3] related to the
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research presented here. In this paper, we explore this func-
tionality by considering an industrial scenario, where the most
common load is represented by electric motors, accounting
for about 69% of the whole electricity consumption of the
industry sector [4]. In particular, three-phase asynchronous
alternating current (AC) induction motors with direct on-line
(DOL) connection are most frequently used and they are
considered here.
The main problem addressed in this paper is to assess whether
the data collected by a commercial circuit breaker can be used
to estimate accurately the parameters of an induction motor’s
model. Our main contribution is to show that indeed this is
possible already now. This claim is supported by extensive
experimental tests, where we compare the results obtained
with a circuit breaker, featuring low-cost industrial sensors,
with those obtained with highly accurate and costly laboratory
sensors.
The identification of an induction machine’s model has been
addressed in the literature using e.g. recursive least-squares
[5], genetic algorithms [6], extended Kalman filtering [7]
or total least-squares plus neurons [8]. In this paper, we
resort to a nonlinear optimization approach, as considered
e.g. in [9], [10], [11], [12], [13]. All these works assume
the availability of stator voltage, current and often also rotor
speed measurements, and they do not treat in detail aspects
like sensitivity of the estimation procedure to initialization,
stability of the estimated parameters with respect to the sam-
pling frequency, and efficiency of the employed optimization
routine. However, these are crucial issues from the point of
view of control system technology implementation. As addi-
tional original contributions, in this paper we use stator voltage
and current derivatives (i.e. the measurements provided by
the circuit breaker) and we present several results concerning
implementation aspects, from explicit gradient computation
in the optimization routine to different numerical integration
techniques. These contributions are also novel with respect to
our recent work [14], in which we considered only forward
Euler integration and we made no attempt to improve the
efficiency of the identification routine. The paper is organized
as follows. Section II introduces the experimental setup that
we built to carry out our tests and the formulation of the
parameter identification problem. Section III presents the
chosen induction machine model and describes the available
measurements. Section IV describes the considered nonlinear
identification approach and the implementation aspects. Ex-
perimental results are discussed in Section V, and conclusions
and future developments in Section VI.
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II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

The layout of the considered experimental setup is shown
in Fig. 1. A picture of the setup, realized at ABB Corporate
Research Center in Poland, is shown in Fig. 2. The network
voltage is 380 VAC phase-to-phase, 50 Hz. Referring to Fig.
1, the system includes the following elements:
• An ABB Emax2r circuit breaker with 800 A (rms) of

nominal current, which measures the three phase voltage
(phase-to-phase measurements) via a resistive divider, and
the three-phase current derivatives via Rogowski coils;

• Two induction motors, M1 and M2, and two contactors
(ABB AF38 series) to connect each motor to the 3-
phase line. Motor M1 is Y-connected, while M2 is ∆-
connected.

• Two sensor boxes, built at ABB Corporate Research
Center Switzerland, equipped with high-cost three-phase
voltage and current sensors based on Hall-effect transduc-
ers, and with a relay to send open/close control signals
to the contactors;

• A Real-Time machine, which logs the data acquired by
the circuit breakers and the sensor boxes, and sends the
open/close commands to the contactors via the sensor
boxes. The Real-Time machine is operated by the testing
personnel via a Human-Machine Interface, to carry out
the desired testing sequences.

Real-Time 
machine

Emax2 Circuit Breaker

Sensor 
Box 1

M1

Contactor 1

M2

Contactor 2

Human-
Machine 
Interface

Power
Signal

Sensor 
Box 2

Fig. 1. Layout of the employed experimental setup.

The main features of the employed motors, sensors, and data
acquisition systems are provided in [15]. The sensor boxes fea-
ture highly accurate transducers: the corresponding measured
data is used as “ground truth” to evaluate the performance
achieved with the data collected by the circuit breaker, which
is the object of study. The experimental tests considered in
this work are direct-on-line motor startups, in which both
contactors are initially open. Then, upon command by the test
personnel, the Real-Time machine sends a triggering signal to
one of the two contactors and acquires the electric signature
of the corresponding motor, as measured both by its sensor
box and by the smart breaker. This testing procedure is well-
motivated by the possibility, in a real-world application, to
carry out several motor startups in the commissioning phase

Fig. 2. Pictures of the experimental setup. Left: induction motors employed
for the tests. Right: Emax2r breaker installed in the electric cabinet of the
testing laboratory.

of a new installation, in order to record the electric signature
of each machine in a controlled way for the sake of parameter
estimation.

Given the batch of data obtained in the start-up tests, our
goal is to identify the parameters of a model of each motor,
where the inputs are the stator voltages, and the measured
outputs are either the stator currents (for sensor box data) or
their derivatives (for circuit breaker data). In particular, we
seek the parameter values that minimize a simulation-error
performance criterion. The cost function is in fact based on
the error between the measured outputs and those computed by
simulating the model from known initial condition (standstill),
applying in open loop the measured input (i.e. voltage) values.
We note that this identification procedure is not meant to be
performed in real-time, differently from observers such as the
extended Kalman filter. Rather, the parameter estimation can
be carried out either by the breaker itself in a low-priority task
in parallel to the standard (high priority) safety functionalities
(e.g. fault detection and intervention curve evaluation), or
by external computation, e.g. through a cloud service. Smart
circuit breakers like the considered one are in fact equipped
with Internet connection. Therefore, there is no strict compu-
tational time limit for the approach presented in this paper.
A sensible application is condition monitoring of the motor
and/or its load: by repeating the identification procedure at
each motor startup, for example, one could identify possible
changes over time of the estimated parameters, which could
then be linked to possible wear of components or changes in
the load connected to the motor.

III. INDUCTION MACHINE MODEL
AND EXPERIMENTAL DATA-SET

We resort to a rather standard dynamical model of three-
phase induction motors (see e.g. [16]), summarized here for
the sake of completeness. In the remainder, t denotes the
continuous time variable, a, b, c the motor phases, s and
r stator and rotor quantities, respectively. We indicate with
vabc,s(t) := [vas(t) vbs(t) vcs(t)]

T the stator voltages, with
iabc,s(t) := [ias(t) ibs(t) ics(t)]

T the stator currents, and
with vabc,r(t) := [var(t) vbr(t) vcr(t)]T and iabc,r(t) :=
[iar(t) ibr(t) icr(t)]T the rotor voltages and currents, respec-
tively. As usual, we transform three-phase quantities into two-
phase ones through a change of variables, which implies the
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choice of a common reference frame (see [16]). Here, we
adopt the stator (i.e. fixed) reference frame. This choice has the
advantage that we can directly compare the model outputs with
the measured stator voltage and current (or current derivative)
provided by the employed sensors. Since the electric machines
at hand are balanced, the use of a static frame results in the
following transformation matrix:

M :=
2

3

 1 cos (− 2
3π) cos ( 2

3π)
0 sin (− 2

3π) sin ( 2
3π)

0.5 0.5 0.5

 .
The matrix M , when multiplied by a three-phase quantity
sabc := [sa sb sc]

T results in a vector sdq0 = [sd sq 0]T , i.e.
with only two independent components, commonly referred
to as the dq-components. In the following, we denote with
sdq the 2-dimensional vectors in dq-components, where we
dropped the zero component for simplicity.
The electrical torque Te(t) and the load torque Tl(t) are
modeled as:

Te(t) =
3Np

4ωe
(ψqr(t)idr(t)− ψdr(t)iqr(t)) (1)

Tl(t) = Tl0 + Tl1 ωr(t) (2)

where ωe is the nominal grid frequency in rad/s, ψ(t) is the
flux per time unit, ωr(t) is the rotor angular speed, Np is the
number of poles of the motor, Jr is the rotor moment of inertia,
and Tl0 and Tl1 are, respectively, a constant load coefficient
and a constant viscous friction coefficient. This load model
is over-parametrized with respect to our experimental setup,
where the constant term is zero and a only a linear viscous term
is present (we discuss the effects of over-parametrization in
the experimental results of Section V). With a straightforward
extension, one can also consider a second-order equation to
model the load, i.e. Tl(t) = Tl0 + Tl1ωr(t) + Tl2ωr(t)2. This
is typical for loads that manipulate a fluid or gas, such as fans
and pumps. The model input is the stator voltage in its dq-
representation, u(t) := [vds(t) vqs(t)]

T ∈ R2, and its state is
the vector x(t) := [ψds(t) ψqs(t) ψdr(t) ψqr(t) ωr(t)]T ∈ R5.
We are now in position to write the model equations (where
ẋ
.
= dx/dt denotes the time derivative):

ẋ(t) = A(ωr(t))x(t) +Bu(t) + β(x(t)) (3)

where

A(ωr(t)) =

ωe


Rs(Xm−Xl)

X2
l

0 RsXm
XlXl

0 0

0
Rs(Xm−Xl)

X2
l

0 RsXm
XlXl

0

RrXm
XlXl

0
Rr(Xm−Xl)

X2
l

−ωr(t)
ωe

0

0 RrXm
XlXl

ωr(t)
ωe

Rr(Xm−Xl)

X2
l

0

0 0 0 0 0

 ;

B =


ωe 0
0 ωe

0 0
0 0
0 0

 ; β(x(t)) =


0
0
0
0

Np

2Jr
(Te(t)− Tl(t))

 .
(4)

In (4), Rs is the stator resistance, Rr is the rotor resistance, Xl

and Xm are respectively the stator (and rotor) reactance and

the magnetizing reactance at the nominal electric frequency.
The output equations depend on the measured quantity, which
can be either the stator current or its derivative (depending
on the considered measuring equipment, see Section II). The
output variables are again transformed in dq-components. We
indicate with ySB(t) the output vector obtained with current
measurements (i.e. from the sensor boxes, see Section II) and
with yCB(t) the one given by current derivative measurements
(i.e. from the circuit breaker). Thus, in the first case we have:

ySB(t) =
1

Xl

[
1− Xm

Xl
0 −Xm

Xl
0 0

0 1− Xm

Xl
0 −Xm

Xl
0

]
︸ ︷︷ ︸

C

x(t).

(5)
If current derivative measurements are considered, we have:

yCB(t) = Cẋ(t). (6)

Equations (1)-(6) provide the continuous time model of the
motor considered in this paper. The vector of parameters
to be identified from experimental data is denoted by p =
[Rs Rr Xl Xm Jr Tl0 Tl1 ]T , p ∈ R7, while the number of
poles Np is assumed known, since it is easily obtained from
the motor nameplate or data-sheet.

The model parameters will be estimated using the collected
data sets, which are described next. We indicate with ts the
sampling period (and with fs = 1/ts the sampling frequency),
with N the total number of samples, and with ·̃ the measured
(i.e. affected by noise) quantities. As regards the sensor boxes,
the voltage data matrix Ṽ SB is given by:

Ṽ SB =

[
ṽds,SB(ts), · · · , ṽds,SB(N ts)
ṽqs,SB(ts), · · · , ṽqs,SB(N ts)

]
,

where ṽds,SB(t), ṽqs,SB(t) are the dq-components of the
stator voltages acquired by the voltage transducers in the
sensor boxes. Similarly, the current data matrix Ĩ is:

Ĩ =

[
ĩds(ts), · · · , ĩds(Nts)
ĩqs(ts), · · · , ĩqs(Nts)

]
.

For the smart circuit breaker we have the voltage data
matrix Ṽ CB , defined like Ṽ SB but containing the mea-
sures ṽds,CB(t), ṽqs,CB(t) acquired by the transducers in the
breaker, and the current derivative data matrix ˜̇I:

˜̇I =

[
˜̇ids(ts), · · · , ˜̇ids(Nts)
˜̇iqs(ts), · · · , ˜̇iqs(Nts)

]
.

IV. IDENTIFICATION PROCEDURE

The parameter identification problem is cast into an off-
line nonlinear least squares estimation, where a batch of data
collected during the motor start-up transient is compared with
the corresponding simulated quantities, obtained by integrating
the model from known initial condition and applying the
acquired stator voltage data. The resulting numerical optimiza-
tion problem takes the general form:

p̂ = arg min tr
p∈P

(J(p)) (7a)

subject to
discrete-time model equations (7b)
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where tr(·) indicates the trace of a matrix, J(p) is a square
cost matrix, and P is a set of admissible parameters, defined
e.g. by box constraints that account for sensible upper and
lower bounds on each component of p, e.g. positivity con-
straints on resistance and reactance values. The constraints
(7b) account for the model equations described in Section III,
suitably discretized in order to numerically integrate them.

In this paper, we consider and compare different alternatives
for the discrete-time model equations in (7b) and for the cost
matrix J(p) in (7a), as detailed in the following sub-sections.

A. Model discretization

The induction motor model has to be discretized for the sake
of numerical integration. Since the measurements coming from
the sensor boxes and the smart circuit breaker are acquired
with sampling period ts, we decided to integrate the model
numerically with a fixed integration step equal to ts. Albeit
not strictly necessary (since one can in principle employ a
smaller integration step and then consider, to compute the
fitting errors, the model outputs at the time instants when the
experimental data have been sampled), this choice simplifies
the identification procedure and its implementation on indus-
trial hardware. We tested the performance and properties of
the estimation algorithm at different sampling rates (and cor-
responding integration steps), using either a well-established
numerical integration technique, the forward Euler method,
or a discretization approach that we called “Input Preview”
method.
Discretizing the state equation (3) with the forward Euler
method yields:

x̂(k+ 1) =
(
I + tsA(ω̂r(k))

)
x̂(k) + tsBu(k) + tsβ(x̂(k)),

(8)
where I is the identity matrix.
On the other hand, the discrete-time expression of (3) obtained
using the Input Preview method is:

x̂(k + 1) =(
I − ts

2
A(ω̂r(k))

)−1((
I +

ts
2
A(ω̂r(k))

)
x̂(k)+

+
ts
2
B
(
u(k + 1) + u(k)

)
+ tsβ(x̂(k))

) (9)

with x̂(0) = 0. This discretization approach is inspired in a
sense by the Tustin method, whose original formulation cannot
be used here due to the model nonlinearity. Still, in the Input
Preview we consider the one-step-ahead input value u(k+ 1),
and the ”forward projection” of the linear part of the system’s
dynamics, given by

(
I − ts

2 A(ωr(k))
)−1

. In the latter matrix
inversion, in principle A(ωr(k+1)) should be used (compare
(4)). However, to retain a computationally efficient solution,
we adopted the approximation ω̂r(k + 1) ' ω̂r(k), which is
reasonable since the rotor speed dynamics are significantly
slower than the electrical time constants of the machine.
As the experimental results presented in Section V show,
the Input Preview method achieves better performance than
the forward Euler one, while still retaining a reasonably
low computational complexity (since it does not require an

iterative numerical solution at each time step, like implicit
integration methods do). Moreover, as discussed in Section
IV-C, both methods allow us to derive an explicit calculation of
parametric sensitivities, which we exploit to compute the cost
function’s gradient and estimate its Hessian. The latter aspect
greatly improves the computational efficiency when solving
the identification problem.

Finally, the model initial condition is x̂(0) = 0, and the
input vector u(k) corresponds to the k−th column of either
matrix Ṽ SB (for sensor box data) or Ṽ CB (for circuit breaker
data). Regarding the output equations, these are equal to the
continuous-time ones, since they are static relationships. Thus,
for stator currents we have:

ŷSB(k) = Cx̂(k), (10)

while for stator current derivatives we have:

ŷCB(k) = C ˙̂x(k), (11)

where ˙̂x(k) = A(ω̂r(k))x̂(k) +Bu(k) +β(x̂(k)). Each one
of the output equations (10) and (11) can be combined with
either (8) or (9) and inserted in the constraints (7b) to obtain
four possible cases, i.e. Euler or Input Preview discretization
and either current or current derivative as measured output. In
the literature, to the best of our knowledge, only the case of
Euler integration and current as output has been considered so
far, while here we explore all four combinations.

B. Cost function definition

The matrix J(p) in (7a) is different depending on whether
current or current derivative data are employed in the fitting
criterion. In case of stator current data (i.e. acquired by the
sensor boxes in our setup), the cost is computed as

JSB(p) =

((
Ĩ − Ŷ (Ṽ SB ,p)

)(
Ĩ − Ŷ (Ṽ SB ,p)

)T)
(12)

where Ŷ (Ṽ SB ,p) := [ŷSB(1), · · · , ŷSB(N)] ∈ R2×N is
a matrix containing the stator current signals in the dq-
components simulated with the motor model (either (8) or
(9)) and the output equation (10), excited by the stator voltage
signal Ṽ SB as input. In the case of stator current derivative
data (i.e. acquired by the breaker), the cost is computed as

JCB(p) =

((
˜̇I − ˆ̇Y (Ṽ CB ,p)

)(
˜̇I − ˆ̇Y (Ṽ CB ,p)

)T)
(13)

where ˆ̇Y (Ṽ CB ,p) := [ŷCB(1), · · · , ŷCB(N)] contains
the simulated stator current derivative signals in the dq-
components, obtained by integrating the motor model with
the output equation (11) and applying the measured voltage
sequence Ṽ CB as input.

C. Algorithmic aspects: explicit gradient computation and
Hessian estimates, parameter initialization

We solve the optimization problem (7) with a constrained
Gauss-Newton algorithm [17], where we compute the gradient
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of the cost function and estimate its Hessian by exploiting the
problem structure. In particular, J(p) can be re-written as

J(p) = F (p)TF (p), (14)

where F (p) ∈ R2N is a vector containing the differences
between the measured outputs (currents or their derivatives)
and the model outputs at each time step. To compute the
Jacobian matrix ∇F (p) of F (p), we differentiate the model
equations with respect to the model parameters, resulting in a
recursive formulation that can be computed together with the
model integration. Such a recursion is described in [15] for
both Euler and Input Preview methods. Then, the gradient of
J(p) is computed as:

∇J (p) = 2∇F (p)TF (p),

and, by considering the Taylor expansion of F (p) truncated
at the first order and inserted in (14), the Hessian of J(p) is
approximated as

∇2
J (p) ' ∇F (p)T∇F (p).

In our experiments, the use of this approach resulted in sig-
nificant computational savings with respect to general-purpose
nonlinear programming solvers, as we mention in Section V.

Another relevant aspect from the point of view of computa-
tional efficiency is the initialization of the optimization routine.
Due to the non-convex nature of the problem, the algorithm
generally converges to a local optimum. The sub-optimality
of the solution and the convergence speed clearly depend on
the initialization of the parameters in the SQP solver. One
possible approach to attain the global optimum is to run
several times the algorithm with different initialization values,
generated randomly within the set P , and then to consider the
estimate providing the smallest cost function value. In Section
V, we analyze how the sensitivity to initialization changes with
different sampling frequencies and discretization methods. A
related problem is the possibility that, during the numerical
optimization, the solver sets parameter values that render
the state and output trajectories unstable. However, these
parameter values are naturally rejected, since they inevitably
produce large errors with respect to the measured data-set used
in the cost function. Since the time horizon of the data is finite
and rather short, numerical divergence problems are not an
issue.

V. EXPERIMENTAL RESULTS

Using the experimental rig described in Section II,
we collected about 100 direct on-line start-up transients
of the 3-phase induction motors. We considered
different sampling frequencies and, for each motor,
we employed the data from one start-up experiment
for the identification, and the data of three additional
experiments for validation. As performance metric, to
compare the different tests, we consider the Normalized
Mean Prediction Error. This is computed as NMPE :=√
tr

((
Ĩ − Ŷ (Ṽ SB , p̂)

)(
Ĩ − Ŷ (Ṽ SB , p̂)

)T)
/tr
(
Ĩ Ĩ

T
)

.

Note that in the NMPE calculation we always compare

the model predictions with the motor current and voltage
measured by the high-quality sensors installed in the sensor
boxes. This means that also the parameters estimated from
the smart breaker data (i.e. using current derivatives as
identification data-set) are then tested by comparing the
resulting simulated currents with the high-quality measures
collected by the sensor boxes. In all the results presented
in the following, we provide the range of NMPE values
obtained in the three validation experiments related to each
specific test case. As regards the set of admissible parameters
P , we selected rather wide ranges for each of the variables
to be estimated, given by non-negative values of p such that
p �

[
100 100 100 500 20 100 0.35

]T
. In all the

tests reported in the following, we employed the SQP solver
based on the constrained Gauss-Newton approach and analytic
computation of the gradient, as described in Section IV-C.
The solver, implemented in MatLab, was able to converge on
average in about 20 iterations and 120 s on a Laptop equipped
with Intel i7 dual-core processor with 2.4 GHz clock speed
and 8 GB of RAM. For a comparison, on the same hardware
a standard optimization routine (MatLab fmincon) took on
average 50 iterations and 2200 s with the same termination
tolerances.
Sensors comparison. To determine whether the data collected
by the industrial voltage and current sensors installed in the
considered commercial circuit breaker are good enough to
identify the model parameters, we compared the results of the
estimation procedure performed using data acquired by the
sensor boxes, which have as maximum sampling frequency
5 kHz, with the results obtained using data measured by the
smart breaker, where we selected a sampling frequency of
4.8 kHz from the available values (see [15] for the sensors’
specifications). In both cases, the discrete-time model is
obtained using the Input Preview method. The results related
to motor M1 are presented in Table I. It can be noted that
the differences between the two parameter estimates and the
resulting NMPE ranges are not significant.

TABLE I
MOTOR M1 - IDENTIFIED PARAMETERS: COMPARISON BETWEEN THE
RESULTS OBTAINED WITH SENSOR BOX DATA AND CIRCUIT BREAKER

DATA.

Sensor box Circuit breaker
Rs 0.48 0.48
Rr 0.20 0.21
Xl 0.29 0.30
Xm 11.92 11.29
Jr 0.26 0.26
Tl0 0 0
Tl1 0.039 0.037

NMPE % 8.115± 0.015 7.865± 0.115

Figs. 3(a) and 3(b) show the comparison between the q
component of the stator current, measured by the sensor box
during a validation experiment, and the signal reconstructed
using the parameters identified from the sensor box data-set
and from the circuit breaker data-set. The fitting is good in
both cases, as expected from the NMPE results of Table I. Figs.
3(c) and 3(d) present the comparison between the q component
of the stator current derivatives, measured by the smart circuit
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Fig. 3. Motor M1 - Validation of the estimated parameters. Comparison between simulated and measured current signals acquired by sensor box (plots
(a) and (b)), and between simulated and measured current derivative signals acquired by the smart circuit breaker (plots (c) and (d)). The plots on the left
pertain to the first part of the transient, while those on the right pertain to a steady speed condition. Solid lines: measured q component of stator current (or
current derivative); dashed lines: simulated q component based on parameters estimated from sensor box data: dotted lines: simulated q component based on
parameters estimated from circuit breaker data.

breaker during the validation experiment, and the current
derivatives reconstructed using the parameters identified from
the two different data-sets described before. Also in this case
the fitting is good and the parameters estimated from the two
different data-sets have a comparable performance.
Table II presents the comparison between the parameters of
motor M2 estimated from sensor box data and from smart
circuit breaker data. The obtained results are fully aligned with
those of motor M1.

These results indicate that it is possible to obtain a good
estimate of the motor parameters also using data acquired
by Rogowski coil sensors of commercial circuit breakers,
where the stator current derivatives are measured in place of
a direct measure of the stator currents. In the remainder of
this section, we investigate more in detail the performance
of the estimation algorithm using the data acquired by the
smart circuit breaker, with different choices of discretization
method and sampling frequency, and we analyze the sensitivity
to parameter initialization and model over-parametrization.
Comparison between discretization methods. We applied
the estimation algorithms derived using the two discretization
methods described in Section IV-A to data-sets acquired by the

TABLE II
MOTOR M2 - IDENTIFIED PARAMETERS: COMPARISON BETWEEN THE
RESULTS OBTAINED WITH SENSOR BOX DATA AND CIRCUIT BREAKER

DATA.

Sensor box Circuit breaker
Rs 1.15 1.12
Rr 0.49 0.49
Xl 0.70 0.71
Xm 33.67 34.48
Jr 0.27 0.28
Tl0 0 0
Tl1 0.035 0.031

NMPE % 8.675± 0.145 9.65± 0.11

circuit breaker with various sampling frequencies. Table III
contains the parameter values identified using one data-set
acquired at fs = 4.8 kHz, and another one at fs = 2.4 kHz.
In the table, we highlight in bold the parameter values that
are clearly different from the best ones, reported previously
in Table I. For the case of data acquired with fs = 4.8
kHz, the results of the estimation procedure based on the two
discretization methods are similar. On the other hand, the data-
set acquired with fs = 2.4 kHz leads to significantly different
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results: the estimates obtained with the forward Euler method
are not consistent with those obtained by the same method at
higher frequency, and the NMPE values are much larger. The
estimates obtained with the Input Preview method appear to
be resilient to lower frequencies, and they are still very close
to the best ones. We analyzed more in detail the sensitivity of

TABLE III
MOTOR M1 - IDENTIFIED PARAMETERS: COMPARISON BETWEEN

DIFFERENT DISCRETIZATION METHODS. WE HIGHLIGHT IN BOLD THE
PARAMETERS THAT ARE SIGNIFICANTLY DIFFERENT FROM THE OPTIMUM

ONES.

Input Preview
4.8 kHz 2.4 kHz

Rs 0.48 0.48
Rr 0.21 0.21
Xl 0.30 0.30
Xm 11.29 11.28
Jr 0.26 0.26
Tl0 0 0
Tl1 0.037 0.037

NMPE % 7.865 ±
0.115

7.875 ±
0.035

Forward Euler
4.8 kHz 2.4 kHz

Rs 0.53 0.55
Rr 0.22 0.24
Xl 0.28 0.26
Xm 2.52 1.45
Jr 0.24 0.19
Tl0 0 13.21
Tl1 0.13 0.20

NMPE % 11.55 ±
0.07

33.025 ±
0.345

the estimation results to the sampling frequency by running
the algorithm on data with fs spacing from 1.2 kHz to 9.6
kHz. An example of the obtained results is depicted in Fig.
4: it is evident that, in the case of forward Euler method,
the identified parameters change sensibly with the sampling
frequency, while, in the Input Preview case, they exhibit a
much lower variability. The reported results further confirm
that the Input Preview method is generally more stable with
respect to variations of the sampling frequency of the measured
data (and size of the integration step), while the forward Euler
estimate diverges at low frequencies.
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Fig. 4. Motor M1 - circuit breaker data, sensitivity to data sampling
frequency. Estimated value of the reactance Xl as a function of the data
sampling frequency: estimation algorithm based on the forward Euler method
(solid line) and on the Input Preview method (dashed).

Sensitivity to parameter initialization. To analyze the sen-
sitivity of the algorithm to initialization, we performed 1000
estimation routines on the same data-set, where we randomly
picked the initial parameter vector p0 with a uniform distribu-
tion over a sub-set of P , given by all the non-negative values of
p0 such that p0 �

[
10 10 10 15 2 1 0.042

]T
. Note

that the value of p that we consider as the global optimum is
inside the described set (compare Table I). We repeated this

analysis considering either 2.4 kHz or 4.8 kHz and, for each
frequency, either forward Euler or Input Preview method. We
considered as acceptable the result when the obtained value
of the cost J(p̂) was inside the interval [Jmin, 1.05 · Jmin],
where Jmin is the minimum cost value across all 1000
tests for the specific combination of sampling frequency and
discretization method. The results are reported in Table IV.

TABLE IV
MOTOR M1 - NUMBER OF ACCEPTABLE ESTIMATION RESULTS FOR

UNIFORMLY DISTRIBUTED RANDOM-GENERATED INITIAL PARAMETERS.

Input Preview Euler
fs = 4.8 kHz 756 over 1000 703 over 1000
fs = 2.4 kHz 159 over 1000 7 over 1000

It is clear that the sensitivity increases as the sampling
frequency decreases, and that the Input Preview method is
generally more resilient to initialization. Fig. 5 illustrates the
distribution of the minimum cost obtained by the estimation
routines in the 1000 trials, normalized by the corresponding
value of Jmin considered as the optimum. These figures show
how often the algorithm reaches the best fitting cost and how
the results are distributed around local minima with different
degrees of sub-optimality. When the estimation algorithm falls
in a sub-optimal local minimum, the corresponding estimated
parameters can be significantly different from the globally
optimum ones, reaching in some cases values that are 3 to
50 times larger than the best ones.
Effects of over-parametrization. In this work we adopted
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Fig. 5. Motor M1 - Convergence analysis of 1000 estimation routines with
randomly generated initial parameters. Identification data measured by the
circuit breaker. Discretization method: (a) Input Preview, (b) Forward Euler.
Sampling frequency: 4.8 kHz (left plots) and 2.4 kHz (right plots).
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a load torque model based on two parameters, i.e. a constant
term and a linear one in the rotor speed. In the experimental
setup, as described in Section II, we know a priori that only the
linear term is different from zero. We thus analyzed how the
estimation results vary if we use a load model with only the
linear term, which corresponds to the actual behavior of our
experimental setup. In Table V we compare the results of the
estimation algorithm applied to data acquired with different
sampling frequencies, in the case of the over-parametrized
load torque model and in the case of linear viscous term only.
From these results, it is clear that the Input Preview method is
sufficiently robust to provide good performance also in case of
over-parametrized load model; on the other hand, we further
confirm that the forward Euler method gives less consistent
results as the sampling frequency decreases, with either load
torque model.

TABLE V
MOTOR M1 - IDENTIFIED PARAMETERS: COMPARISON BETWEEN

DIFFERENT LOAD MODELS. WE HIGHLIGHT IN BOLD THE PARAMETERS
THAT ARE SIGNIFICANTLY DIFFERENT FROM THE OPTIMUM ONES.

Input Preview
4.8 kHz 4.8 kHz 2.4 kHz 2.4 kHz
with Tl0 without Tl0 with Tl0 without Tl0

Rs 0.48 0.48 0.48 0.48
Rr 0.21 0.21 0.21 0.21
Xl 0.30 0.30 0.30 0.30
Xm 11.29 11.29 11.28 11.28
Jr 0.26 0.26 0.26 0.26
Tl0 0 - 0 -
Tl1 0.037 0.037 0.037 0.037

Euler
4.8 kHz 4.8 kHz 2.4 kHz 2.4 kHz
with Tl0 without Tl0 with Tl0 without Tl0

Rs 0.53 0.53 0.55 0.57
Rr 0.22 0.22 0.24 0.22
Xl 0.28 0.28 0.26 0.26
Xm 2.52 2.52 1.45 1.36
Jr 0.24 0.24 0.19 0.2
Tl0 0 - 13.21 -
Tl1 0.13 0.13 0.20 0.24

VI. CONCLUSION AND FUTURE DIRECTIONS

The presented experimental study shows that commercial
circuit breakers can collect data with suitable quality to carry
out an accurate parameter estimation of an induction ma-
chine. Algorithmic aspects have been discussed, and different
variants of the identification algorithm have been compared,
showing the superiority of the Input Preview discretization
method over the forward Euler one. The approach can be
used when stator measurements are available and the supplied
voltage frequency is known, which makes its applicability
difficult in presence of control devices such as a variable
speed drive. This is subject of future research, as well as the
use of the identified models to carry out motor detection and
monitoring tasks, and to provide advanced protection by better
discriminating between faults and motor inrush currents.
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