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ABSTRACT

We consider a two-dimensional fluid exposed to Kolmogorov’s forcing cos(ny) and heated from above. The stabilizing effects
of temperature are taken into account using the Boussinesq approximation. The fluid with no temperature stratification has
been widely studied and, although relying on strong simplifications, it is considered an important tool for the theoretical and
experimental study of transition to turbulence. In this paper, we are interested in the set of transitions leading the temperature

stratified fluid from the laminar solution [U ∝
(

cos(ny), 0
)

, T ∝ y] to more complex states until the onset of chaotic states. We

will consider Reynolds numbers 0 < Re ≤ 30, while the Richardson numbers shall be kept in the regime of weak stratifications
(Ri ≤ 5 × 10−3). We shall first review the non-stratified Kolmogorov flow and find a new period-tripling bifurcation as the precursor
of chaotic states. Introducing the stabilizing temperature gradient, we shall observe that higher Re are required to trigger instabil-
ities. More importantly, we shall see new states and phenomena: the newly discovered period-tripling bifurcation is supercritical
or subcritical according to Ri; more period-tripling and doubling bifurcations may depart from this new state; strong enough
stratifications trigger new regions of chaotic solutions and, on the drifting solution branch, non-chaotic bursting solutions.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5081105

I. INTRODUCTION

We study the route to chaos of the Kolmogorov flow
under the effect of density gradients. The Kolmogorov flow
is a two-dimensional incompressible viscous flow on the torus
(x, y) = [0, 2π/α] × [0, 2π] driven by the streamwisemonochro-
matic force (n3 cosny, 0), with α being the aspect ratio of the
torus. It was introduced by Kolmogorov in 19591 as a toy-
model capable of easing the mathematical difficulties of the
full Navier-Stokes equations but still possessing the turbu-
lent regimes typical of the Navier-Stokes solutions. The non-
stratified Kolmogorov problem has been extensively studied
in both laminar and turbulent regimes. In a pioneering paper,2

flows on the domain R ×
[
0, 2π

]
were studied and the possi-

ble destabilization of the laminar solution (U, 0) = (n cosnz, 0)

was shown. On the contrary, when the period number and the
aspect ratio are both equal to 1 (n = α = 1), the global sta-
bility of the laminar state holds for each forcing amplitude.3

When α < 1, the stability of the secondary state has been stud-
ied by weakly non-linear methods.4,5 The non-linear dynamics
for higher Reynolds (Re) numbers has been investigated via
numerical simulation6–9 showing the emergence of complex
time-dependent structures. The appearance of these states
was also described by a finite dimensional dynamical system
approach10–13 and by multiple-scale analysis.4 It is clear that
the quantities n and α are crucial parameters of the system
as they determine the structure of the base solution and the
wavelengths admissible for the domain. In this paper, as we
shall see later, we shall make the simplest possible choice, i.e.,
n = 2 and α = 1.
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One of the features of the classical Kolmogorov model
is the ability to coalesce small scale structures to the largest
scale available to the physical system. For this reason, the
model has been used to understand coalescence effects
observed in many fields of fluid dynamics. For example, Kol-
mogorov’s model has been applied in geophysical fluid dynam-
ics to study the stability of finite-amplitude Rossby waves
in the atmosphere14 or three-jet zonal flows on a rotat-
ing sphere15 or to see whether baroclinic instabilities might
cascade into easterly flows of planetary-scale.16 The model
was also reproduced in laboratory showing the effect of
drag forces on the linear stability of the laminar solution.17

This external effect may be removed using immiscible mul-
tilayer fluids18 or soap films.19 We also mention the fact
that, to mimic and study the stability of zonal jets along the
tropopause, the Kolmogorov flow, in a laboratory experiment,
has been induced on a spherical surface.20

The stratified counterpart of the Kolmogorov flow, which
is the subject of our analysis, has been reproduced in labo-
ratory experiments in the limit of weak21 as well as strong22

stratifications. In the former case, experiments show the crit-
ical Reynolds number for the linear instability of the laminar
flow to increase with the Richardson (Ri) number; in the limit
of Ri ≪ 1, and accounting for the wall friction effects, the pre-
diction of theory matches with experimental observations. In
the latter case of strong stratification, the wall friction is irrel-
evant for the linear stability of the laminar solution. This has
been observed also by solving the eigenvalue problem of the
stratified Kolmogorov model affected by a linear drag.23,24

Concerning the non-stratified Kolmogorov flow, different
parameter setups have been considered: the domain aspect
ratio,25 the inclination of the force,10 and its periodicity.26

In the space of π-rotation invariant solutions, the effect
of the aspect ratio (α < 1) on the bifurcation cascade has
been studied.27 Without this symmetry restriction, in the low
Reynolds number range (Re < 30), and fixing α = 1 and n=2,
the bifurcation diagram has been constructed via symme-
try group analysis, while chaotic states have been analyzed
via Karhunen-Loève expansions.6 The stability of a three-jet
zonal flow (n = 3/2) imposed on a rotating sphere is investi-
gated for various Reynolds numbers and rotation rates show-
ing a complex bifurcation structure, whereas non-rotational
induced chaos at high Re is effectively mimicked by a low-
dimensional space of steady and steady-traveling solutions.15

For fluids affected by external forcing inclined with respect
to the axes and period n > 1, the appearance of time depen-
dent solutions was also described in terms of finite dimen-
sional dynamical systems.10 For fully developed turbulence,
recurrent unstable solutions are extracted from the fluid
motion in order to mimic the possible turbulent trajectories of
the flow.28

On the other hand, in the density stratified Kolmogorov
flow, the bifurcations leading to chaotic states have not been
studied. In this paper, we shall be interested in the bifurca-
tions that occur at low Reynolds numbers (Re/Rec < 21), when
the Kolmogorov flow is induced in a fluid where the strat-
ification has a stabilizing effect: the density decreases with
height. Therefore the main topic of this paper is the set of

bifurcations leading from laminar solutions toward weakly
chaotic states.

We shall describe the base density profile as a linear func-
tion decreasing from the bottom to the top of the fluid. More
specifically, we shall fix our model to the configuration6 α = 1
and n = 2. This model has geophysical application related to
the stability of internal gravity waves with finite amplitude11

and vertical shear flows,29 whilst in the limit of low Péclet
numbers it is relevant for astrophysical systems.30 We recall
the fact that the primary bifurcation, in the limit of very weak
density gradients, has been investigated using linear stabil-
ity analysis.31 Weakly non-linear theory leads to the Cahn-
Hilliard equation and shows the effect of the stratification as a
regulator of the inverse energy cascade.

The first part of the paper is devoted to a review of the
bifurcation diagram of the non-stratified flow. In the second
part of the paper, we shall consider the influence of temper-
ature stratification on the bifurcation diagram, in the range
of small Richardson numbers. By linear stability analysis, the
laminar state is globally stable if the Richardson number is
above a threshold, which for our system is Ri = 4. In the region
Ri< 4, the influence of temperature gradients on the transi-
tions leading to chaotic attractors has not been extensively
investigated yet. In the range of Richardson number values
0 ≤ Ri < 4, we have analyzed the dynamics of the system in the
case of weak stratification, with the main interest of the paper
being the onset of new features triggered by the stratification.
In particular, we have focused in the range 0 < Ri ≤ 5 × 10−3.
When the stratification values are Ri ≤ 10−4, our analysis has
revealed no significant change with respect to the case Ri = 0;
see also Ref. 32. On the contrary, when 10−3 ≤ Ri ≤ 5 × 10−3, we
shall observe new transitions and new interesting phenomena.
Moreover a preliminary investigation at Ri = 10−2 or higher has
revealed the emergence of completely new dynamic behaviors
with characteristics that make it difficult for comparison with
the non-stratified Kolmogorov flow. We therefore believe that
the physics at Ri > 0.005 deserves a separate analysis to be left
to future investigations.

For the non-stratified flow, we will show the presence
of a period-tripling bifurcation that went unnoticed in pre-
vious studies and use the Lyapunov exponent analysis to
prove the chaotic nature of a further bifurcation departing
from the period-tripled state. This bifurcation is a rare tran-
sition toward chaotic states in fluid dynamical systems, even
though it can be found in other fields. It is a common fea-
ture in directly modulated diode lasers,33,34 and the process
of period n-tupling is a feature of the Toda oscillator.35 In the
field of fluid dynamics, it has been observed (together with
period-doubling and quintupling) in the Rayleigh-Bénard con-
vection36 and in sinusoidally varying volumetric flow induced
in curved tubes.37 Moreover non-linear mode interactions
produce period-tripling flutters in transonic flows.38 It is not
clear whether a route to chaos could be driven by a period-
tripling cascade as in the period-doubling Feigenbaum sce-
nario. However period tripling has been observed as a “win-
dow” in the Feigenbaum route to chaos where, for a range of
the control parameters, the system reaches a periodic motion
from a more chaotic state.33

Phys. Fluids 31, 024106 (2019); doi: 10.1063/1.5081105 31, 024106-2

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

For the stratified Kolmogorov flow, we shall compare the
bifurcations to the non-stratified scenario and analyze the
new transitions allowed by introducing the temperature gra-
dient. Besides the obvious observation that higher Reynolds
numbers are required to trigger the instabilities, we shall see
that, by increasing the temperature gradient, a richer variety
of states leads eventually to the chaotic attractors.

The outline of the paper is as follows: In Sec. II, we
state the problem under investigation. The 2D incompressible
Navier-Stokes equations and the energy conservation equa-
tion are presented; the Boussinesq approximation is intro-
duced leading to the PDE system (8) and (9); and finally the
numerical algorithm we use to solve it is briefly described. In
Sec. III, we give a detailed review of the non-stratified Kol-
mogorov flow, elucidating the states corresponding to each
bifurcation in the low Reynolds number range Re ≤ 30 and
presenting a newly observed period-tripling bifurcation. In
Sec. IV, we present our numerical results and show that
besides an overall stabilizing effect, some states are stable in
smaller regions of the parameters and instabilities can lead to
new states as non-chaotic bursting and cascades of period-
doublings and triplings. Finally, in Sec. V, we draw some con-
clusions and suggest possible future directions of research,
also in other flow regimes.

II. FORMULATION

We consider the incompressible Navier-Stokes flow on
the plane (x, y) with a gravity field −g along the cross-stream
direction y. To account for temperature variations, we use
conservation of energy. The resulting system, written under
the Boussinesq approximation, is

∂u∗

∂t∗
+u∗ ·∇∗u∗ + 1

ρr
∇∗p∗ = ν∆∗u∗−gρ − ρ0

ρr
ŷ+γn3 cos(2πny∗/Ly)x̂,

(1)

∇∗ · u∗ = 0, (2)

∂T∗

∂t∗
+ u∗ · ∇∗T∗ = κT∆∗T∗, (3)

where the star is for physical quantities. The velocity field is
u∗ = (u∗, v∗), p∗ is the pressure scalar field, and ρ is the density
of the fluid. The parameters γ and n represent the magnitude
and the wavenumber of the external force, respectively. The
material parameters are ν, the kinematic viscosity, and κT, the
thermal conductivity. The scalar and vector fields are defined
on the doubly periodic domain (x∗, y∗) ∈ D∗ = [0,Lx] × [0,Ly],
while α = Ly/Lx defines the aspect ratio.

We consider the effects of a stabilizing temperature
gradient: the fluid is cold (Tb) at the bottom and warm
at the top (Tt); thus, ∆T = Tt − Tb > 0. We assume that
the basic temperature profile over the length Ly is given
by the linear interpolation T∗0(y

∗) = Tb + ∆T y
∗/Ly; pertur-

bations from the basic profile are denoted by θ(x∗, y∗, t∗)
so that the perturbed temperature profile is T∗(x∗, y∗, t∗)
= T∗0(y

∗) + ∆T θ(x∗, y∗, t)/2π. The Boussinesq approximation,
adopted in this paper, relies on two assumptions: first,
the linear relationship between density and temperature:

ρ(T∗) = ρr
{

1 − β(T∗ − Tr)
}

, where Tr and ρr are the reference
temperature and the density, β is the thermal expansion coef-
ficient, and the basic density profile is given by ρ0(y

∗) = ρ(T∗0);
second, on neglecting density variations induced by tempera-
ture, except in the buoyancy term.

The equations are nondimensionalized using L =
Ly
2π as

the lengthscale, T = 1
ν

(

Ly
2π

)2
as the time scale, U = γ

ν

(

Ly
2π

)2

as the reference velocity, and P = ρrγ
Ly
2π as a reference

pressure. The above equations can therefore be rewritten in
non-dimensional form as

∂u

∂t
+ Reu · ∇u + ∇p = ∆u + RiRe θŷ + n3 cos(ny)x̂, (4)

∇ · u = 0, (5)

∂θ

∂t
+ Reu · ∇θ = ∆θ

Pr
− Re v, (6)

defined on the doubly periodic domain D ≔ [0, 2π]
× [0, 2πLy/Lx], where the nondimensional parameters

Re =
UL

ν
=

γ

ν2

(

Ly

2π

)3

,

Ri =
gβ∆TL

2πU2
=

gβ∆T
2π

(

ν

γ

)2 (2π

Ly

)3

, Pr =
ν

κT

(7)

are, respectively, the Reynolds number, the Richardson
number, and the Prandtl number. Since the fluid is two-
dimensional and solenoidal, we can adopt the vorticity-stream
function formulation. Recalling that the vorticity is defined as
ω = ∇ × u and that the stream function Ψ is related to the
velocity by u = (u, v) = (Ψy, −Ψx), one can find Ψ in terms of the
vorticity by solving the Poisson problem ω = −∆Ψ. Taking the
curl of (4), we get

∂∆ψ

∂t
− Re J(Ψ,∆Ψ) = ∆2ψ − RiRe θx, (8)

∂θ

∂t
− Re J(Ψ, θ) = ∆θ

Pr
+ Reψx, (9)

where J(a, b) = axby − aybx. To write the above system, we
have used the decomposition Ψ(x, y, t) = sinny + ψ(x, y, t), with
ψ(x, y, t) being the deviation of the stream function from the
laminar state. Here we follow6 and fix the period of the exter-
nal force n = 2 and choose the aspect ratio α = 1. We set
throughout the paper the Pr number to be 1 so that momen-
tum and thermal diffusivity have the same amplitude (some
discussion for larger Pr is given in the conclusion).

We solve numerically Eqs. (8) and (9) with a classical
fully de-aliased Fourier-Fourier pseudospectral code39 with a
second-order semi-implicit time integrator. Time-integration
is based on a second-order Runge-Kutta algorithm where the
discretization of the linear part is of the Crank-Nicolson type.
De-aliasing is performed with the usual 2/3 rule. The spa-
tial resolution adopted here is Nx = Ny = 64, whilst the time
step is ∆t = 0.001. We have always tested grid-independence
of our results using higher resolutions Nx = Ny = 128 or even
Nx = Ny = 256. The resolution Nx = Ny = 256 (with

Phys. Fluids 31, 024106 (2019); doi: 10.1063/1.5081105 31, 024106-3

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

grid-independence tested usingNx =Ny = 512) turned out to be
necessary for some simulations of the high Re or Pr regimes,
reported and briefly discussed in the Conclusion.

The bifurcation parameter is the Reynolds number, whilst
the Richardson number is kept fixed to some particular values
(Ri = 0, 10−4, 10−3, 5 × 10−3). For relatively high Re (typical Re
larger than 21), chaotic solutions will arise and we shall detect
transitions to chaos by computing the Lyapunov exponents.

We shall construct the bifurcation diagram using the
L2-norm of X = (ψ,θ)T defined as

‖X‖22 = ‖ψ ‖22 + ‖θ ‖22, (10)

where

‖ψ ‖22 =
Nx/2
∑

j=−Nx/2+1

Ny/2
∑

l=−Ny/2+1

|ψ̂j,l |2, ‖θ ‖22 =
Nx/2
∑

j=−Nx/2+1

Ny/2
∑

l=−Ny/2+1

|θ̂j,l |2,

(11)

where ψ̂j,l and θ̂j,l are the Fourier coefficients of ψ and θ,
respectively.

Since the study of the sign of Lyapunov exponents is
an effective diagnostic tool for chaotic systems, we compute
them across supposed bifurcations to chaotic states. The idea
is to consider a trajectory of the solution of a dynamical sys-
tem, perturb it of an infinitesimal amount, and measure in
time how this perturbation evolves. It is in the definition of
chaotic states that infinitely near trajectories diverge even-
tually; therefore, we measure the growth or decay of these
small perturbations. Given an initial value X0 in the phase

space, its evolution is given by Xn+1 = f(Xn). If the vector δX
( j)
n

is a small perturbation from Xn in the jth direction, we find
that

δX
( j)
n = DfXn−1δX

( j)
n−1 = DfnX0

δX
( j)
0
. (12)

This is the vector that we keep measure of and defines the
Lyapunov exponent spectrum {λ1, λ2, . . . , λm }, where λ1 ≥ λ2
≥ · · · ≥ λm and

± λj = lim
n→±∞

1

|n | log ‖Df
n
X0
δX

( j)
0
‖
2
. (13)

The associated perturbation vector in Xn, δX
( j)
n , is the Lya-

punov vector which point toward the direction j where the
perturbation grows at a λj rate. The algorithm to extract these
values40 takes a post-transient initial condition X0 and a ball of

initial perturbations δX
( j)
0

and evolves the former by using the
pseudospectral code we presented in the previous paragraph
and the latter using their linearized instance.

To get a better understanding of the phenomenology we
shall observe, we find it useful to monitor the time evolution of
the kinetic energy EK, the potential energy EP, the enstrophy
E, the palinstrophy P, the kinetic energy injection rate F, the
potential energy dissipation rate Eθ , and the energy exchange
rate X defined as

EK =
1

2
‖u‖22 , EP =

1

2
Ri‖θ ‖22 , E = ‖ω ‖22 , P = ‖∇ω ‖22 ,

Eθ =
Ri

Pr
‖∇θ ‖22 , F = n3〈cos(ny),u〉, X = −RiRe〈θ, v〉,

where
〈

f, g
〉

≔
1
|D| ∫

D

fgdxdy and ‖ · ‖22 = 〈·, ·〉. One can write the

following equations for the evolution of the kinetic energy, of
the potential energy, and of the enstrophy:

dEK(t)

dt
= −E(t) +F(t) −X(t), (14)

dEP(t)

dt
= −Eθ (t) +X(t), (15)

dE(t)

dt
= −2P(t) + 2n4〈ω, sin(ny)〉 + 2RiRe〈ω, θx〉. (16)

The inflow of energy F, due to the external forc-
ing, increases kinetic energy which, besides being dissipated
by vortical structures, can now be transferred to potential
energy; in fact, for all the configurations we shall encounter
(the only exception is reported in the Conclusions), we
shall see that the energy exchange rate X is always pos-
itive, meaning that the energy always flows from kinetic
to potential. Potential energy is dissipated by temperature
gradients.

Enstrophy and palinstrophy growth phases are main indi-
cators of the formation and of the rearrangement of vortical
structures in the flow. Generation of vorticity is accompanied
by the growth in the enstrophy distribution,41–46 while the
rearrangement of the existing structures can lead to phases
of increasing palinstrophy (the so-called mixing events47,48).
In all our simulations, including the stratified case, peaks of
P are always indicators of the strengthening of the dipolar
structures in the flow: this will be discussed and shown in
several cases along the paper. The efficiency of the exchange
between kinetic and potential energy [i.e., the exchange factor
X in (14) and (15)] depends on the strength of stratification Ri
combined with the Reynolds number Re. Similarly (16) shows
how stratification (again combined with Re) can drive enstro-
phy production (or enstrophy destruction, depending on the
alignment between the vorticity and the horizontal tempera-
ture gradient). This gives a qualitative explanation why a weak
stratification and moderate-low Re numbers can hardly influ-
ence the flow evolution as compared with the non-stratified
case: this is the case we shall observe for Ri = 10−4 and Re< 30.
On the other hand, even a moderately higher stratification,
e.g., Ri ≥ 10−3, can lead to significant enstrophy and palinstro-
phy growth and therefore to formation of new structures and
to their rearrangement. It is also interesting to notice how, in
all our numerical experiments, the time evolution of enstro-
phy is positively correlated to the time evolution of palin-
strophy: the strengthening (or the weakening) of the vortical
structures inevitably leads to stronger vorticity gradients and
therefore to larger (or smaller) palinstrophy. On the contrary,
the time evolution of potential energy is negatively correlated
to the time evolution of enstrophy; this means that enstro-
phy (and palinstrophy) growth phases are accompanied by the
occurrence of strong temperature gradients (the only possible
mechanism of potential energy dissipation). The system, after
the occurrence of a phase of energy accumulation, tends to
use both energy dissipation mechanisms, i.e., the enstrophy E
and the thermal dissipation Eθ .
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The range of the parameters considered in this paper typ-
ically includes some laboratory flows. For example, Pr ≈ 1 is
characteristic of gases at room temperature, while the range
of Re and Ri considered here represents flows contained in
tanks of few centimeters in size and with temperature gradi-
ent of few degrees; for example, one could consider air (with
Pr ≈ 0.7, ν ≈ 1.5 × 10−1 cm2/s, and β ≈ 3 × 10−3 ◦C−1), in a tank
of size Lx = Ly ≈ 2.7 cm, subject to the forcing γ ≈ 10 cm/s2 and
to a temperature gradient ∆T ≈ 1.0 ◦C: this setting would result
in Ri ≈ 5 × 10−3 and Re ≈ 40.

Passing to flows at the geophysical scale, in the lower
atmosphere Ly ≈ 100 m, there have been cases reported49 of
thermal inversion where the competing effects of the wind-
shear and of the temperature gradient result in Ri ranging
from 0 up to 2; in these cases, Re however is obviously very
high and outside the range considered in this paper.

III. KOLMOGOROV FLOW

The non-stratified Kolmogorov flow is an important
model that has been used to investigate transition and turbu-
lent phenomena in the Navier-Stokes equations. In this sec-
tion, we summarize the sequence of bifurcations of the non-
stratified Kolmogorov flow6 that leads the laminar solution to
chaotic states.

Here we also mention that we have found one of the oscil-
latory states to undergo a period-tripling bifurcation. This is

a transition which went unnoticed in previous studies and
which will be analyzed in more detail in this section. The solu-
tions of the Kolmogorov flow for Re ≤ 30 are schematically
reported in panel (a) of Fig. 1 [panels (b) and (c) are magnifica-
tions of panel (a)], where we show their bifurcation diagram.
We control the solutions by the Reynolds number and track
them by ‖ψ ‖2. When ψ is time dependent, we report a suitable
time average of ‖ψ ‖2.

We recall2 that on a horizontally unbounded domain

(α =0), the Kolmogorov flow loses its stability at Reunbc =

√
2.

For the case analyzed in this paper, α = 1 and n = 2,
through the Galerkin projection, a 5-dimensional dynamical
system was derived,6 whose linear stability analysis shows
that the critical value of the bifurcation parameter rises to
Rec = 5/

√
6.

The bifurcation diagram, reported in Fig. 1, shows two
main branches: the first one originates from a drifting bifur-
cation, and we shall denote the states on this branch as
Di; the second one connects with the main steady solution
(we shall denote the states on this branch as Si), and it is
unstable till the state S1 where it regains its stability. More
specifically in Fig. 1, one can recognize the following main
states:

1. For Re < Rec = 5/
√
6, a sinusoidal shear velocity pro-

file, commonly referred to as the Kolmogorov flow, with
the same shape of the external force. We name this point

FIG. 1. (a) The full bifurcation diagram for the non-stratified
Kolmogorov flow. On the horizontal axis is the Reynolds
number, while on the vertical axis we report the L2-norm
of the stream function. Panels (b) and (c) are magnifica-
tions of relevant parts of the bifurcation diagram. In panel
(a), the solid bold line denotes the steady state solution
departing from the primary bifurcation of the laminar state,
while in panel (b) it denotes the solution appearing through
hysteresis from the drifting state in S1. Red filled squares
stand for the first and second drifting states, and red empty
squares stand for oscillatory drifting states which become
chaotic through intermittency (red asterisks). Black empty
circles stand for the Hopf bifurcation of the steady state, and
black filled circles stand for the gluing process of the Hopf
solutions. Black inverted triangles stand for stable glued
states. Blue stars stand for the period-tripled state, and blue
crosses stand for its chaotic bifurcation.
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FIG. 2. In panel (a), we report the time evolution of ‖ψ ‖2 toward the stationary or periodic state; (b) the magnification of (a) in the time interval 25 ≤ t ≤ 30. The different
curves are associated with the first steady state at Re = 2.5, first drifting state at Re = 12, second steady state at Re = 15.4, periodic orbit at Re = 16.95, glued periodic orbit
at Re = 21, second drifting state at Re = 21.2, period-tripled state at Re = 21.3557, and oscillating drifting state at Re = 24.

P1 and indicate its corresponding parameter value by

Re(P1,Ri = 0) = 5/
√
6.

2. For Re > Rec, the laminar state bifurcates toward a sta-
tionary pattern (denoted, in Fig. 1, with a solid bold line)
consisting in vortex cores of alternating sign forming ver-
tical dipolar structures. In panel (a) of Fig. 2, we show, for
different Re, typical time evolutions of the L2-norm ‖ψ ‖2
of a random perturbation of the laminar state. The curve
at Re = 2.5 represents the stabilization toward the above
described stationary pattern.

3. When the Reynolds number increases, in D1, at a param-
eter value of Re(D1, 0) = 8.3, the solution bifurcates to
a stable drifting state [denoted, in Fig. 1, with (red filled
squares)]. This state is characterized by a uniform (in time
and space) horizontal motion of the vorticity configura-
tion. In panel (a) of Fig. 2, we report, at Re = 12, the typical
time evolution of ‖ψ ‖2.

4. The drifting state loses its stability at Re(D2, 0) = 15.8,
and the system shows a hysteretic transition toward a
branch of steady solutions. Following this branch back-
ward, one finds that it forms at Re(S1, 0) = 15.2. Moreover
the symmetries of the governing equations6 allow four
different steady solutions (all of them represented by the
same branch in the ‖ψ ‖L2 bifurcation diagram), reported
in Fig. 3 for Re = 15.8. The symmetries linking the four
states are the π-vertical shift t2(ψ(x, y)) = ψ(x, y + π)
(one thus obtains states 3 and 4 from 1 and 2, respec-
tively) and the transformation TπRψ(x, y) = −ψ(x + π,−y),
withTπψ(x, y) = ψ(x + π, y) being the shift of π along the
x-direction and Rψ(x, y) = −ψ(x,−y); this transformation
links 2 and 4 to 1 and 3, respectively. These states are
characterized by horizontal sinusoidally shaped stripes
of alternating positive and negative vorticity: however,

one of these stripes is differentiated by the presence
of a strong and large vortex (negative for states 1 and
3 and positive for states 2 and 4), which squeezes all

FIG. 3. The vorticity field for the four steady states when Re = 15.8. Bold red
lines are contour levels of the palinstrophy distribution highlighting the maxima.
(a) Steady state 1, Re = 15.8. (b) Steady state 2, Re = 15.8. (c) Steady state 3,
Re = 15.8. (d) Steady state 4, Re = 15.8.
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surrounding vortical structures giving rise to zones of
strong vorticity gradients (dipoles) where most of the
dissipation occurs; in Fig. 3, contour levels of palinstro-
phy distribution, identifying the maxima, are shown in
bold red lines.
In panel (a) of Fig. 4, using the phase space of the mode
ψ̂0,1, we represent all four states. Here we anticipate that,
for all the subsequent Reynolds numbers until chaos, the
dynamics will revolve around these four states, or states
that are deformations of them: we shall in fact see oscil-
lations close to each state, periodic transitions between
them, until orbits that are the result of transitions, and
oscillations of chaotic characteristics.

5. When Re(S2, 0) = 16.4, four simultaneous Hopf bifur-
cations appear. The resulting oscillatory solutions cor-
respond, in the physical space, to localized oscillations
of the vortex cores with a null mean drift velocity. In
panels (a) and (b) of Fig. 2, one can see, at Re = 16.95,
periodic oscillations of the L2-norm of ψ. In panels (a)
and (b) of Fig. 4, we report, in the phase space of the
mode ψ̂0,1, four periodic orbits encircling the steady state
solutions.

6. When 16.96 < Re < 17.3 (in Fig. 1, between S3 and S4),
the solution switches randomly between these orbits.
The merging (gluing) of the orbits has not stabilized yet.
The physical behavior of the fluid during this process
is a transition between states that are deformations of
the four steady solutions represented in Fig. 3, therefore
giving rise to an apparent vertical and horizontal motions

of the vortical structure switching randomly its direction
(see Fig. 2). The transition phenomenon is clearly visible
in the phase space, see panel (c) of Fig. 4, and is called
gluing bifurcation.

7. At point S4, when Re = 17.3, the merging stabilizes, the
random switching disappears, and the system settles to a
periodic oscillation with a bulk vertical drift (both upward
and downward motion solutions are allowed) and null
horizontal mean velocity. The vertical drift is detectable
from the phase portrait of ψ̂0,1 in panel (d) of Fig. 4 when
Re = 17.4 and in panel (e) when Re = 21.3.

For higher Re, two branches are present each one lead-
ing to chaotic states. We shall describe these two different
branches separately.

A. Route to chaos in the upper branch

The upper branch, which has already been described in
detail,6 is characterized by drifting and oscillating solutions
[denoted, in panel (c) of Fig. 1, with the red solid squares
between points D3 and D4] that eventually become chaotic;
this route is characterized by the features typical of the
Pomeau-Manneville scenario, where transition to chaos is due
to intermittency.

(a) In D3, at Re(D3, 0) = 17.8, one can observe the appear-
ance of coexisting (with the periodic orbit we denoted
with black inverted triangles) stable drifting states.
These states have the same symmetries and properties
observed between D1 and D2.

FIG. 4. Phase portraits and trajectories of
(

Re(ψ̂0,1), Im(ψ̂0,1)
)

on the branch with horizontally steady solutions. From (a) to (f), the Reynolds number is Re = 15.8/16.42,

16.96, 16.98, 17.4, 21.3, 21.8. In (a), the black bold points stand for the four steady states when Re = 15.8, while the closed curves stand for the four Hopf states when
Re = 16.42.
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(b) In D4, at Re(D4, 0) = 22, the four traveling solutions
bifurcate simultaneously to a drift-and-oscillate state.
In Fig. 2, we plot the L2-norm of ψ for the drifting
and drift-and-oscillate solutions, at Re = 21.2 and 24,
respectively.

(c) When Re > 25.7, after D5, the flow becomes chaotic
(as one can see with a Lyapunov exponent analy-
sis40,50) via intermittent bursts between unstable recur-
rent motions.

B. Route to chaos in the lower branch

The route to chaos in the lower branch departing from
the steady states, on the other hand, has not been exten-
sively studied, and we shall therefore give a more detailed
description, especially for the new outcoming states.

The lower branch begins with solutions that, in panel (c) of
Fig. 1, are denoted by black inverted triangles. Between points
S4 and S5, as we already mentioned, these solutions trans-
late vertically while pulsating. Subsequent bifurcations are the
following:

(A) At Re = 21.35, in S5, the state (black inverted trian-
gles) loses its stability through a bifurcation that was
left unnoticed in the previous literature: it is a period-
tripling bifurcation. In panel (f) of Fig. 4, the period-
tripling of the phase portrait is evident. The presence
of this bifurcation is also visible in the time spectrum
αν (t) of ‖ψ ‖2, where it appears an excited frequency ν̄3T
which is 1/3 of the frequency ν̄gH of the glued state. This
excited mode is shown in Fig. 5(b) when Re = 21.946. In
panels (a) and (b) of Fig. 2, we can see, at Re = 21.3557,
‖ψ ‖2 for the period-tripled state, while, on the right side
of Fig. 6, we report the oscillation period T of all the
periodic states (notice the presence of a gap for 16.96
≤ Re ≤ 17.3 because of the random switching related

to the gluing bifurcation). At Re(S5, 0) = 21.35, one can
see the jump related to period-tripling in both ‖ψ ‖2 and
physical solution.

A typical behavior of the flow is depicted in Fig. 7, pan-
els (a) to (f ), where, for Re = 21.6, we show the contours of the
vorticity during a whole period of ‖ψ ‖2 starting from t = 30.86.
The various times correspond to the extrema of the palin-
strophy, see panel (g), when vorticity gradients are at their
peaks or to their lowest. Notice how the vorticity field passes
through states that are still reminiscent of the steady states
reported in Fig. 3: At t = 30.86, one can recognize the struc-
ture of the steady state 3, while subsequent maxima of palin-
strophy are similar to the other steady states (in the order:
2 → 1 → 4). During the time evolution, the fluid experiences
various rearrangements of the large eddies, with a strength-
ening and weakening of the dipolar structures which are faster
compared to the glued state case. From t = 30.86 to t=31.87,
the negative core of vorticity initially centered close to
≈(2, 5.7) weakens, while the positive core in ≈(5.1, 3.8) becomes
stronger. This core reaches its maximum intensity at t ≈ 31.95,
whenP has another peak, and forms the dipolar-like structure
together with the negative core below it and visible in (c). In
the same panel, the contour levels of the maximum palinstro-
phy distribution are shown in bold red, and they are localized
in the middle of the dipolar structures. The other relevant
region of high palinstrophy is in correspondence with another
dipolar structure made of a negative core and a smaller pos-
itive core. The subsequent phase of decreasing P and E up
to t ≈ 32.4 is characterized by the weakening of these cores.
From t = 32.47 up to t = 33.61, P increases its value up to its
maximum, and the periodic structure composed by the posi-
tive and negative cores centered in ≈(5.2, 7.3) and ≈(5.9, 5.8) is
visible in (f). All phases of increasing/decreasing P and E are
therefore a signature of the rearrangement of paired vorticity

FIG. 5. (a) Time evolution of ‖ψ ‖2 for the chaotic state when Re = 21.946, Ri = 0. In the inset, the time evolution is shown for a time interval when the period-doubling
appears, and we superpose the time evolution of ‖ψ ‖2 for the period-tripling state (dashed-dotted red line) when Re = 21.94. (b) Time spectrum, in lin-log scale, of ‖ψ ‖2
for the chaotic state when Re = 21.946, Ri = 0. Superposed the time spectrum of the window between t = 160 and t = 250 (green), the time spectrum for the period-tripling
state (red) when Re = 21.946, and the glued state (blue) when Re = 21.33.
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FIG. 6. The left panel reports the behavior of the Lyapunov exponents λ1 > λ2 > λ3 (marked, respectively, with black empty circles, blue empty squares, red inverted
triangles) as functions of Re in the lower branch of the bifurcation diagram [see panel (c) of Fig. 1]. The right panel reports the oscillation period T(Re) for horizontally steady
solutions. We compute it from ‖ψ ‖2 (black empty circles) and from the physical solution (red empty squares).

cores of opposite sign. We also notice that the growth ofP and
E is generally anticipated by the growth of the kinetic energy
input rateF, as one can see in panel (g): the growth ofF leads

to a momentaneous accumulation of kinetic energy (in regions
where the vorticity cores strengthen), which is then dissipated
by the consequent high gradients.

FIG. 7. [(a)–(f)] The vorticity field for
Re = 21.6, period-tripled state, at differ-
ent times corresponding to the peaks of
the palinstrophy. Bold red lines are con-
tour levels of the palinstrophy distribu-
tion highlighting the maxima. (g) Time
evolution of energy EK , enstrophy E,
palinstrophy P, and energy growth rate
F (all quantities are rescaled with their
maxima: maxEK = 0.3453,max E
= 1.5450,maxP = 6.2675,maxF
= 1.5500).
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(B) Finally, at Re(S6, 0) = 21.945, the period-tripled state
loses its stability and the system settles to a chaotic
regime, denoted by (blue stars) in Fig. 1. We have com-
puted the Lyapunov exponents on this branch, and in
panel (a) of Fig. 6, we show the three largest expo-
nents for Re across S6. We see that after Re = 21.945
one of the exponents becomes positive indicating the
solution to be chaotic. The description of the flow
evolution in terms of P growth phases is very simi-
lar to the one performed for the period tripled state,
although in this caseP (and also Ek,E,F) varies in a non-
regular way, and the differences between the maxima
and the minima of P are larger than those in the previ-
ous tripled state. This means that the dipolar structures
pass more rapidly between phases of stronger and lower
intensity.

Despite this chaotic behavior in the solution, we notice
that for Re slightly above Re(S6, 0) the chaotic regime is
actually characterized by the presence of regular behavior in
specific time windows. In particular, a period doubling state
alternates in time with a chaotic state. This can be deduced
from the time evolution of ‖ψ ‖2 for Re = 21.946 in Fig. 5(a)
where, in the window 150 / t / 300, the solution under-
goes a period doubling of the previous period-tripled state:
in (b), the time spectrum of ‖ψ ‖2 in this window shows the
presence of an excited mode in correspondence with a fre-
quency which is half of the frequency ν̂3T of the period-tripled
state.

However, period-doubling alternates randomly with
phases of chaos. In Fig. 5(b), the appearance of time frequen-
cies in the whole spectrum is another signature of the system
chaotic behavior, Fig. 5(a).

As we shall see in the weak stratification case (Ri = 0.001),
the transition to the chaotic regime in this branch is more reg-
ular, in the sense that, after the period tripling, a sequence

of other period doubling/tripling bifurcations appears before
the chaotic state formation.

IV. WEAKLY STRATIFIED KOLMOGOROV FLOW

In Secs. III A and III B, we have reviewed the set of
transitions leading the Kolmogorov flow to chaotic states.
In this section, we shall introduce a temperature gradient
across the vertical y direction. We shall see that the intro-
duction of stratification leads to the appearance of a vari-
ety of states not present in the non-stratified fluid. We shall
present our results, first fixing the value of Ri and then inves-
tigating the dynamics of the transitions for 0 < Re < 30. In
this paper, we shall give a detailed account only for values
of 0 < Ri ≤ 5 × 10−3, as for higher Ri preliminary inspec-
tions showed new dynamics that we believe deserve a separate
analysis.

When the stratification values are Ri ≤ 10−4, our simu-
lations have revealed no significant change with respect to
the case Ri = 0. In fact, when Ri ≤ 10−4, the presence of the
temperature gradient does not change neither the bifurca-
tion points nor the qualitative characteristics of the states
that we have seen for the non-stratified fluid; the effect of
the stratification reveals itself only from the fact that some
of the bifurcation points are slightly shifted in the Reynolds
number. To be more precise: the bifurcation points P1, D1,
D2, and S1, appearing in the bifurcation diagram at low Re,
remain the same (or, at least, their shift is not noticeable),
while the bifurcation points appearing for larger Re are slightly
shifted. In Table I, the bifurcation points of the non-stratified
and the stratified flows are compared. For Ri ≤ 10−4, one can
see that the bifurcation points are very similar: the most rel-
evant features are as follows: first, the overall tendency of the
temperature gradient to reduce the range of values in which
the horizontal drifting solutions exist (the intervals D1D2 and

TABLE I. Bifurcation points of the non-stratified and stratified (Ri = 10−4, 10−3 and 5 × 10−3) Kolmogorov flow.

Ri = 0 Ri = 10−4 Ri = 10−3 Ri = 5 × 10−3

P1 5/
√
6 . . . 2.055 ± 0.005 2.058 ± 0.005

D1 8.3 . . . 8.43 ± 0.03 8.85 ± 0.05
D2 15.8 . . . 15.35 ± 0.05 13.65 ± 0.05
D3 17.8 17.87 ± 0.02 18.45 ± 0.05 21.1915 ± 0.0005
D4 22 21.9 ± 0.1 22.03 ± 0.03 23.85 ± 0.05
D5 25.7 25.68 ± 0.01 25.055 ± 0.005 25.155 ± 0.005
S1 15.2 . . . 14.7 ± 0.1 13.55 ± 0.05
S2 16.4 16.32 ± 0.02 15.95 ± 0.05 14.15 ± 0.05
S3 16.96 16.91 ± 0.01 16.49 ± 0.01 14.15 ± 0.05
S4 17.3 17.25 ± 0.05 17.31 ± 0.01 14.743 ± 0.003
S4c 17.3 17.25 ± 0.05 17.31 ± 0.01 15.33 ± 0.01
S4c′ 17.3 17.25 ± 0.05 17.31 ± 0.01 19.13 ± 0.03
S4′ 17.3 17.25 ± 0.05 22.3995 ± 0.0005 21.65 ± 0.05
S4′′ 17.3 17.25 ± 0.05 22.3995 ± 0.0005 23.73 ± 0.03
S5 21.35 21.43 ± 0.01 21.9555 ± 0.0005 24.4045 ± 0.0005
S6′ 21.35 21.43 ± 0.01 22.2835 ± 0.0005 24.623 ± 0.003
S6′′ 21.35 21.43 ± 0.01 22.3245 ± 0.0005 24.658 ± 0.002
S6′′′ 21.35 21.43 ± 0.01 22.3335 ± 0.0005 24.6665 ± 0.0005
S6 21.945 21.985 ± 0.005 22.3365 ± 0.0005 24.6685 ± 0.0005
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FIG. 8. Bifurcation diagram of the stratified Kolmogorov flow when Ri = 10−3 and
Pr = 1. The panels are progressive magnifications of the diagram. The points
are the temporal mean of ‖X ‖2 [defined in (10)] for each numerical solution.
Refer Fig. 1 for symbol legend. Here black asterisks denote the chaotic transi-
tion of the glued state. The subcritical period-tripling bifurcation is denoted with
blue empty circles. Blue inverted triangles, blue crosses, and blue empty squares
denote the period-doubling bifurcations, and the blue asterisk denotes its chaotic
bifurcation.

D3D4) and second to advance the appearance of the steady,
oscillating, and glued-oscillating solutions.

When Ri = 10−3, we can observe the same tendency of
reducing the region where the horizontal drift exists, with
the tendency to force toward a steady solution (from D1
to S1). However, when the steady solution disappears, new

transitions and new interesting phenomena are observed; this
will be the subject of Sec. IV A.

A. Steady and drifting states for Ri = 0.001

When we induce a temperature stratification such that
Ri = 10−3, the route to chaos is modified by the appearance of
new states. From Fig. 8, we see that the overall structure of the
bifurcations and the states typical of the non-stratified Kol-
mogorov flow are left unchanged; however, we shall see how
the route to chaos departing from the steady solution has now
a more complex structure. Looking at Table I, one sees that, as
we expect from the stabilizing nature of the temperature gra-

dient, the laminar state bifurcates for Re larger than 5/
√
6; the

newly formed steady state, see Fig. 9, has the same structure
that we have seen for the non-stratified fluid: two superposed
dipoles along the vertical direction. Solutions belonging to
this branch have the symmetries6 TπS(ψ(x, y), θ(x, y)) = (ψ(−x
+ π,−y + π/2), θ(−x + π,−y + π/2)), TπR(ψ(x, y), θ(x, y)) = (−ψ(x
+ π,−y),−θ(x + π,−y)), and t2(ψ(x, y), θ(x, y)) = (ψ(x, y + π), θ(x, y
+ π)), whereS(ψ(x, y), θ(x, y)) = (ψ(−x,−y+π/2),−θ(−x,−y+π/2))
represents the combination of a reflection in the (x, y)-plane
with the vertical shift of half of the wavelength of the forcing
function; R(ψ(x, y), θ(x, y)) = (−ψ(x,−y),−θ(x,−y)) is the rota-
tion of π in the (y, ψ, θ)-plane; and finally t2(ψ(x, y), θ(x, y))
= (ψ(x, y + π), θ(x, y + π)) and Tπ (ψ(x, y), θ(x, y)) = (ψ(x + π, y), θ(x
+ π, y)) are, respectively, the vertical and horizontal shifts of
π. The right panel of Fig. 9 shows the temperature variations
from the linear temperature gradient. The highest and low-
est temperature deviations appear to be concentrated in the
circulating region between the vortices.

The steady state loses its stability in D1 (from which the
drifting state branch departs) for a Re which is higher com-
pared to the non-stratified fluid, i.e., Re(D1, 10−3) > Re(D1, 0).
One can see that the basic mechanism of this drift bifurca-
tion is a subharmonic instability, which occurs when the sec-
ond harmonic of the basic pattern is not damped enough.51

The presence of the stratification, which adds a further
damping mechanism to the fluid viscosity, is able to postpone

FIG. 9. Steady state solution when
Re = 8.4, Ri = 10−3, and Pr = 1. Vorticity
is in the left panel and temperature vari-
ations on the right.

Phys. Fluids 31, 024106 (2019); doi: 10.1063/1.5081105 31, 024106-11

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 10. Time evolution of the drifting state where Re = 12, Ri = 10−3, and Pr = 1. Panels (a) and (b) are for vorticity and temperature, respectively. Over a period length,
these are snapshots taken at t = 430, 445, 462. Real and imaginary parts of the mode (1, 0) are shown in panel (c) for both stream function and temperature.

the appearance of this bifurcation. This implies that when Re
is slightly above Re(D1, 10−3), the drifting is much faster for
the non-stratified flow. On the other hand, once the drift-
ing behavior has already established, the additional nonlin-
ear subharmonic interactions with the temperature are able
to make faster the drifting behavior. In fact, at Re = 12 well
after the drifting bifurcation, computing the period TRi=10−3

of the drifting state D1, one finds that stratification makes

it smaller so that the drift is significantly faster for higher
Ri. For instance, at Re = 12, TRi=5×10−3 ≈ 49,TRi=10−3 ≈ 55,
TRi=0 ≈ 60.

In panel (c) of Fig. 10, we show the phase portrait in the
complex plane of the Fourier modes ψ̂1,0 (which is the subhar-

monic of the main pattern) and θ̂1,0. We can see the oscillatory
behavior of the components around the origin which is typical
of the drifting behavior.51 The drifting structure can be seen

FIG. 11. Oscillating drifting solution when
Re = 22.35, Ri = 10−3, and Pr = 1. Phase
portraits of modes k = (1, 0), (1, 1), and
(0, 1): the axes are the real and imagi-

nary parts of ψ̂k for the top panels and

θ̂k for the bottom panels.
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in panels (a) and (b) where, for Re = 12, we show the vorticity
and the temperature, respectively, at times t = 430, t = 445, and
t = 462.

In the non-stratified fluid, the drifting state branch
becomes unstable in the window Re(D2, 0) < Re < Re(D3, 0);
for Ri = 10−3, this region becomes significantly broader; see
Table I. From Re(D3, 10−3), the drifting state regains its stabil-
ity. It maintains the same symmetries as before the bifurca-
tion D2 and in D4 undergoes a Hopf bifurcation. In Fig. 11, we
can see how the oscillatory behavior mixes with the drifting
behavior: there is a vertical oscillation due to mode (0, 1); the

mode (1, 0) behaves as for the purely drifting solution describ-
ing a circle centered in the origin, while mode (1, 1) oscillates
while drifting. We recall that for purely drifting solutions the
mode (0, 1) has a constant value, while the phase portrait of
(1, 0) is a circle.

The final bifurcation we observe on this branch is toward
a chaotic attractor in D5, where the drifting-and-oscillating
state, in presence of stratification, is destabilized earlier:
Re(D5, 10−3) < Re(D5, 0). The chaotic state presents the
intermittent feature typical of the non-stratified Kolmogorov
flow.

FIG. 12. Time evolution of the Hopf state when Re = 16.3, Ri = 10−3, and Pr = 1. Contour plots in panels (b) and (e) are the vorticity and temperature. Times are related to the
first maximum of the palinstrophy in (i). The dotted black line in (b) denotes the elliptic trajectory described by the center of the positive core. Bold red curves denote the contour
levels of the highest palinstrophy distribution. Panels (a) and (c) report the temporal position of the vorticity extrema, while panels (f) and (h) are for temperature: red dots

denote maxima and blue dots denote minima positions. The phase portrait of the real and imaginary parts of ψ̂k and θ̂k for k = (1, 0), (0, 1) is shown, respectively, in panels (d)
and (g). (i) Time evolution of kinetic energy EK , enstrophy E, palinstrophyP, kinetic energy growth rateF, potential energy EP , and exchange rateX (all quantities are rescaled
with their maximum: maxEK = 0.3763,max E = 1.6756,maxP = 6.7523,maxF = 1.6896,maxEP = 0.0032,maxX = 0.0173,max Eθ = 0.0178).
Multimedia view: https://doi.org/10.1063/1.5081105.1
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B. Hopf bifurcation, glued states, and period-tripling
for Ri = 0.001

Now we consider the steady state that becomes stable
in S1 (see Fig. 8). The main differences introduced by strat-
ification are on this branch and on its transitions. For this
increased Richardson number, as mentioned above, the sta-
bility region of the drifting branch shrinks. On the other hand,
the size of the stability region of the steady branch is left
unchanged, but the appearance of S1 is significantly antici-
pated by stratification, while the steady state bifurcates for
Re(S2, 10−3) < Re(S2, 0). After this, it follows the series of
periodic orbit bifurcations similar to what we have seen for
the non-stratified fluid. In the following, we describe (i) the

flow for Re = 16.3 following the Hopf bifurcation at S2 for
Re(S2, 10−3) ≈ 15.95, (ii) a gluing bifurcation at Re = 16.9, and
(iii) a glued periodic orbit for Re = 21.96.

The Hopf states present localized oscillations which are
shown in Fig. 12 (Multimedia view). In panels (a) and (c) [in pan-
els (f) and (h)] is reported the temporal position of the extrema
of the means for vorticity (for temperature), while the con-
tour plots are in panel (b) for vorticity and in panel (e) for
temperature. Oscillations can be deduced from the physical
trajectories of the streamwise and spanwise components of
the extrema over a whole time period. The period TRi of the
Hopf states is larger as compared to the non-stratified case
(for instance, TRi=10−3 ≈ 6.6,TRi=10−4 ≈ 5.25,TRi=0 ≈ 4.65 for
Re = 16.42), which is an effect of the increased dissipation. The

FIG. 13. Time evolution of the gluing periodic orbit when Re = 16.9, Ri = 10−3, and Pr = 1. Contour plots represent vorticity solutions in panel (b) and temperature in panel
(e). The temporal position of the extrema of the mean fields is reported in (a) and (c) for vorticity and (f) and (h) for temperature. Red dots stand for maxima, and blue dots

stand for minima. The phase portrait of the real and imaginary parts of ψ̂k and θ̂k for k = (1, 0), (0, 1) is shown, respectively, in (d) and (g). In panels (i) and ( j), there are the

trajectories of the real (solid black line) and imaginary (dashed red line) parts of ψ̂0,1 and θ̂0,1.
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FIG. 14. [(a)–(e)] The vorticity ω and [(f)–(j)] the temperature variation θ , for the gluing periodic orbit when Re = 16.9 and Ri = 10−3. Times are related to relevant peaks of
palinstrophy [signed with arrows in (k)]. (k) Time evolution of kinetic energy EK , enstrophy E, palinstrophy P, kinetic energy growth rate F, potential energy EP , and exchange
rate X (all quantities are rescaled with their maximum: maxEK = 0.3759,max E = 1.6576,maxP = 6.6682,maxF = 1.6688,maxEP = 0.0035,maxX
= 0.0182,max Eθ = 0.0181). Multimedia view: https://doi.org/10.1063/1.5081105.2

FIG. 15. Glued-state solution when Re = 21.96, Ri = 10−3, and Pr = 1. Contour plots are (b) vorticity and (e) temperature. The time-evolution for the vertical and horizontal
extrema are reported in (a) and (c) for vorticity and in panels (f) and (h) for temperature. Red dots stand for maxima, and blue dots stand for minima. The phase portrait of

the real and imaginary parts of ψ̂k and θ̂k for k = (1, 0), (0, 1) are shown, respectively, in (d) and (g).
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oscillating behavior is also evident from the phase plots in pan-
els (d) and (g), where the modes (1, 0) and (0, 1) are localized
in the phase plane for both stream function and temperature
variations, and they follow trajectories that do not embed the
origin. The typical structure of the vorticity [closely resem-
bling the field seen in Fig. 3(b)] and temperature is shown in
panels (b) and (e), with a main positive vortex core centered
in ≈(2.2, 4) which traces in time a small elliptic trajectory,
the dotted black curve in figure, with a horizontal semi-axis
larger than the vertical. When this core reaches the higher and

lower positions, see panel (a), it squeezes the smaller cores of
opposite sign placed above on the left and below on the right,
increasing the vorticity gradients and hence the palinstrophy
of the flow; see panel (i). The relevant palinstrophy distribu-
tion contour levels are shown with the red curves, well visible
between the above and below of the center of the positive
core.

The oscillating states lose their stability through a gluing-
bifurcation that occurs between S3 and S4; see Fig. 13. These
states are characterized by an oscillating behavior of the

FIG. 16. Drift-and-oscillating solution when Re = 22.287, Ri = 10−3, and Pr = 1. Contour plots are (b) vorticity and (e) temperature. The temporal position of the extrema of
the means are reported in (a) and (c) for vorticity and (f) and (h) for temperature. Red dots stand for maxima, and blue dots stand for minima. The phase portrait of the real

and imaginary parts of ψ̂k and θ̂k for k = (1, 0), (0, 1) is shown, respectively, in (d) and (g). Panels (i) and ( j) show the trajectories of the real and imaginary parts of mode
(1, 0) for the stream function and temperature over a drifting period.
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FIG. 17. [(a)–(e)] The vorticity ω and [(f)–( j)] the temperature variation θ , for the drift-and-oscillating solution when Re = 22.287 and Ri = 10−3 at various time. (k) Time
evolution of kinetic energy EK , enstrophy E, palinstrophy P, kinetic energy growth rate F, potential energy EP , and exchange rate X (all quantities are rescaled with their
maximum: maxEK = 0.3420,max E = 1.5258,maxP = 6.2159,maxF = 1.5563,maxEP = 0.0034,maxX = 0.0228). Times are related to relevant peaks
of palinstrophy, signed with arrows in (k). Multimedia view: https://doi.org/10.1063/1.5081105.3

solution with alternating phases of strengthening and weak-
ening of the vortical cores. These states present also a very
slow drift superposed to a faster horizontal oscillation. These
aspects can be inferred from the extrema trajectories of the
main vortex cores and temperature variation in panels (c) and
(f). Panels (d) and (g) show the above drifting motions with the
phase portraits of the modes ψ̂1,0 and θ̂0,1 embedding the ori-
gin. Strengthening and weakening of the cores are correlated
to increasing and decreasing phases of EK, E, and P, simi-
lar to the previous lower Re cases; however, the excursions
of the energies and of dissipations are now much more pro-
nounced [compare panel (k) of Fig. 14 (Multimedia view) with
panel (i) of Fig. 12]; this is probably due to the fact that now the
solution has to pass close to the four steady states and there-
fore has to go through intense phases of vortex reorganiza-
tion. Vorticity and temperature evolution is reported in Fig. 14
(Multimedia view). From the evolution of the energy exchange
rate X, one can also observe how the transfer from kinetic to
potential energy is less sustained during the phases of vortex
core strengthening, as the larger part of the energy is used
to reinforce the vorticity field. However one can observe that
the transfer from kinetic to potential energy is always positive

FIG. 18. Oscillation period (T) of the horizontally steady solutions versus the
Reynolds number. Red empty squares stand for Ri = 0 and black empty circles
for Ri = 10−3.

Phys. Fluids 31, 024106 (2019); doi: 10.1063/1.5081105 31, 024106-17

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 19. Bifurcation diagram of the stratified Kolmogorov
flow when Ri = 5 × 10−3 and Pr = 1. The insets are pro-
gressive magnifications of the diagram. The points are the
temporal mean of ‖X ‖2 [defined in (10)] for each numerical
solution. Refer Fig. 1 for symbol legend. The blue branch
contains period-tripled and period-doubled states.

and how the phases of sustained transfer are followed by an
increase in thermal dissipation.

For the non-stratified fluid, after S4, the gluing process
reaches a stable limit cycle which bifurcates supercritically
in S5 toward the period-tripled state. On the contrary, in the
stratified case, the bifurcation in S5 is subcritical and the glued
state coexists with the period-tripled state branch until S4′.

In Fig. 15, we show solutions for Re = 21.96, slightly after
the period-tripling bifurcation S5 but still on the branch of the
glued state. The glued state persists until Re(S4′, 10−3) = 22.38,
where it reaches a chaotic state. When at S5 the period-tripled
state appears, the overall dynamics of the solution is similar to
the glued solution, except that the cycle repeats itself after
three times of the original period.

C. Transition to chaos for Ri = 0.001

The bifurcations departing from the period-tripled state
branch [shown in panel (e) of Fig. 8] are one of the main dif-
ferences from the non-stratified fluid: the transition toward
the chaotic regime (which occurs between S5 and chaotic
bifurcation in S6) occurs more slowly and has a richer
structure.

In fact, the period-tripled state undergoes, in S6′, a
period-doubling bifurcation which is followed by two subse-
quent period-doubling bifurcations (in S6′′ and S6′′′). After this
bifurcation, finally, the branch reaches the chaotic regime,
which sets in at Re(S6, 10−3) ≈ 22.33 > Re(S6, 0) ≈ 21.92.

FIG. 20. Chaotic window inside the glued-state branch when Ri = 0.005. In panel
(a), there are the three largest Lyapunov exponents λ1, λ2, and λ3 for solutions
before and after the boundaries (marked as vertical dashed lines) of the chaotic
window. In panels (b) and (c), we show the phase portrait in the plane of the
vorticity and temperature’s L2-norm. The black lines are for the solutions inside
the chaotic window, and the green thick lines are for the stable solutions out-
side this region. In (b), we show norms for Re = 15.2 and 15.4. In (c), Re = 19
and 19.6.
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FIG. 21. In the four panels (a)–(d) we report the time spectra and (in the insets) the phase portraits of the solutions near the bifurcation to chaos S4′′ of the period-doubling
solution. The Reynolds numbers are Re = 23.7, 23.75, 23.78, and 23.95. In green we superpose the period-doubled solution of panel (a) as a reference.

As we can see in panels (d) and (g) of Fig. 16, the vertical wave
vector (0, 1) keeps the dynamics of the period-tripled state: it
encloses the origin three times before repeating itself.

Before the bifurcation S6′, the horizontal mode (1, 0)
has a localized oscillation similar to those visible in panels
(d) and (g) of Fig. 15. After the bifurcation in S6′, an over-
all horizontal drift superposes to the oscillation; indeed, the
resulting phase portrait is a periodic oscillation around a cir-
cle centered in the origin—see panels (d) and (g) of Fig. 16.
The (rightward) drift can be barely observed in Fig. 17 (Mul-
timedia view) where vorticity and temperature variation are
shown along with the energy evolutions. The horizontal drift
has a long time periodicity which is not evident from the
L2 − norm of the system. In Fig. 18, we show the oscilla-
tion period T of the norm for periodic orbits belonging to
the steady branch as a function of Re. We can clearly see the
broadening of the steady state branch due to the stabilizing
temperature stratification. As pointed out by the arrows, we
see also the chain of period-tripling and three period-doubling
bifurcations.

FIG. 22. Lyapunov exponents across the transition to chaos in S6 which is marked
as a vertical dashed line. In the figure, are shown the three strongest exponents,
and in the inset, we show the phase portrait in the (‖ψ ‖2, ‖θ‖2)-plane of the
solution before (Re = 24.6675) and after (Re = 24.6695) S6.
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D. Ri = 0.005

We now consider a higher Richardson number which is
the highest value we consider in this work. Surveying simu-
lations at Ri = 0.01 show a number of states not ascribable to
the common Kolmogorov route to chaos, so we pick Ri = 0.005
which possesses the main structure of the non-stratified case
but also introduces important variations to the route to chaos.
Compared to the non-stratified fluid, the set of transitions
has significant differences, but these mostly affect the branch
departing from the steady states. In Fig. 19, we show the bifur-
cation diagram where we find bifurcations P1, D1, D2, S1, and
S2 to be still present but shifted in the Reynolds number. The
main differences lie in the gluing process, in the stability of the
resulting glued state, in its bifurcation and subsequent route
to chaos, and in the bifurcation point D3 of the horizontal
drifting state branch.

As we may infer from Table I and Fig. 19, the first
transitions are slightly shifted by stratification—larger Re are
required to destabilize the laminar solution. The drifting state
branch, lying between D1 and D2, has been shifted to higher Re
and shortened in length, while the steady state branch depart-
ing from S1 appears at lower Re. We recall that for smaller
Ri, the four steady state solutions undergo a Hopf bifurcation
in S2, while a gluing bifurcation appears in S3 to finally set-
tle to two periodic orbits in S4. When Ri = 0.005, the gluing
process between S3 and S4 is suppressed [see panel (b) of

Fig. 19]—the four Hopf solutions abruptly merge to two glued
states. From the same panel, we observe a completely new
bifurcation in S4c. The glued state loses its stability, the solu-
tion becomes chaotic, and then the flow recovers its stability
in S4′c. We show in panel (a) of Fig. 20 the Lyapunov expo-
nents of this chaotic window along this branch. We show
the three largest exponents as a function of the Reynolds
number and observe that λi ≤ 0 everywhere except inside
the window, where the largest exponent (λ1) becomes posi-
tive, proving that these states are chaotic. In panels (b) and
(c), we show the norm ‖ψ ‖2 versus ‖θ ‖2 near the bound-
aries of the chaotic window where the stable solution is
the green thick line and the chaotic solution is the black
line.

When the glued state regains its stability in S4′c, it persists
until S4′ where it shows another difference to the less strat-
ified counterparts. Instead of bifurcating through a period-
tripling, as in the previous cases, it shows a period-doubling
bifurcation as we see in the inset of panel (a) in Fig. 21. This

state persists until S4′′ where it becomes chaotic as we can
see in panels (b)–(d) on the same figure. Together with the
phase portraits, we show the time spectra of ‖X‖2 highlighting
the enrichment of frequencies as Re grows. The green lines
in panels (b)–(d) mark the case of the stable period-doubled
solution. As we see in panel (b), more subharmonics appear
and when we look at (c) we see that the spectra have a lot

FIG. 23. Time evolution of ‖X ‖2 is shown for solutions on
the drifting branch. Solutions refer to (a) Re = 21.187, (b)
Re = 21.194, (c) Re = 25.14, (d) Re = 25.18. In (b), there is
the drifting solution and in (a) its bursting precursor. In (c),
there is the oscillating drift solution and in (d) the intermit-
tent bursting solution. In panel (e) we report the Lyapunov
exponents λ1 > λ2 > λ3 (marked, respectively, with blue,
red, and green empty circles) as functions of Re.
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of noise with the main frequencies of the stable solution still
present. In the final case (d), the noise becomes predomi-
nant and most of the characteristic frequencies have been
suppressed.

In Fig. 19, especially in panel (d), we see that the chaotic
solutions coming from the period-doubled state disappear
until a period-tripled state becomes stable in S5. This branch
is shown in panel (e) of Fig. 19 and is characterized by three
subsequent period-doubling bifurcations in S6′, S6′′, and S6′′′.
The last stable solution is a period 24th-tupling and is shown
in the inset of Fig. 22 as a green line. In S6, this state loses its
stability and becomes chaotic, as is proved by the Lyapunov
exponents in the same figure.

Now we consider the branch of the horizontal drifting
solutions. The density stratification is finally strong enough

to affect the bifurcation points of this branch; in particular,
a new state before the bifurcation point D3 becomes accessi-
ble. The bifurcation of the four traveling solutions (that from
D3 lead to the intermittent bursting states) are shifted by
the increase in the stratification as we can see from Table I.
The difference lies in the appearance, before D3, of a stable
branch of bursting solutions, whose L2-norm for Re = 21.187
is shown in panel (a) of Fig. 23, while in Fig. 24 one can see
the contour plots of the vorticity and the temperature [see
contour evolution in Fig. 25 (Multimedia view)]. In Fig. 24, are
reported the phase portraits of the real and imaginary parts
of ψ̂k and θ̂k for k = (1, 0), (0, 1) [respectively, in panels (d) and
(g)] and, in panels (i) and ( j), at the bursting time, a spike in
the time evolution of the Fourier modes is visible. This behav-
ior is described in Ref. 52 in terms of symmetry breaking of

FIG. 24. Stable bursting states when Re = 21.187, Ri = 0.005, and Pr = 1. Contour plots are (b) vorticity and (e) temperature. The temporal position of the extrema of the
means is reported in (a) and (c) for vorticity and (f) and (h) for temperature. Red dots stand for maxima, and blue dots stand for minima. The phase portrait of the real and

imaginary parts of ψ̂k and θ̂k for k = (1, 0), (0, 1) is shown, respectively, in (d) and (g). Panels (i) and ( j) show the trajectories of the real and imaginary parts of mode (1, 0)
and the imaginary part of mode (0, 1) for the stream function and temperature in a bursting state.
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FIG. 25. [(a)–(d)] The vorticity ω and [(e)–(h)] the temperature variation θ , for the stable bursting states when Re = 21.187 and Ri = 0.005 at various times. (i) Time
evolution of kinetic energy EK , enstrophy E, palinstrophy P, kinetic energy growth rate F, potential energy EP , and exchange rate X (all quantities are rescaled with
their maximum: maxEK = 0.3403,max E = 1.5809,maxP = 6.8061,maxF = 1.6986,maxEP = 0.0389,maxX = 0.1891). Multimedia views:
https://doi.org/10.1063/1.5081105.4; https://doi.org/10.1063/1.5081105.5

heteroclinic excursion between spatially organized states,
which in this case are drifting states. This branch, which we
have been unable to detect for lower Ri, is made of solu-
tions that periodically jump between the four drifting states.
In Fig. 25 (Multimedia view), this jump can be observed in the
time range 429 / t / 430, when the vorticity field undergoes
major rearrangement of the main cores. Notice also how, after
a slow build up of the kinetic energy, the jump is charac-
terized by a sudden transfer to potential energy that is then
immediately dissipated.

For higher Re, the switching between these states is pre-
vented; see panel (b) of Fig. 23, and in D4, a transition to peri-
odic orbits occurs, as we can see in panel (c) of Fig. 23. The
subsequent bifurcation to the bursting solution, also present
in less stratified fluid, is proved to be chaotic by the Lyapunov

exponent analysis. In panel (e) of Fig. 23, we show the three
larger Lyapunov exponents where one of them becomes posi-
tive after D5 (marked as a dashed vertical line).

V. CONCLUSIONS

From the linear stability Richardson number criterion, it
is well known that above a threshold—for our system, it is Ri
= 4—the laminar state is globally stable. In the region Ri < 4,
the influence of temperature gradients on the transitions
leading to chaotic attractors has not been extensively inves-
tigated yet. In this wide range of Richardson number values,
we have analyzed the non-stratified fluid and the dynam-
ics of the system in the presence of a weak stratification (Ri
≤ 5 × 10−3). We have obtained a refined understanding of
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the route to chaos when Ri = 0, and we have studied the
differences introduced by the stabilizing temperature gradient
on the route to chaotic regimes.

The Kolmogorov flow can be considered a theoreti-
cal laboratory where, in the last decades, researchers have
attempted to get some understanding of the mechanisms of
transition phenomena and of fully developed turbulence. One
of the underlying ideas is that the attempt to rationalize chaos
might give some insight into developed turbulence,28 and in
this sense, periodic or recurrent solutions might play a piv-
otal role. In this paper, we have seen that, in one of the
simplest possible settings one can encounter (square domain
[0, 2π]2, Kolmogorov forcing with n = 2, and no stratification
Ri = 0), a period tripling bifurcation (previously unnoticed)
plays a crucial role in an abrupt transition to chaos. The intro-
duction of stratification makes this transition more regular:
the period tripling is followed by a sequence of period dou-
bling bifurcations leading, through a typical Feigenbaum sce-
nario, to chaotic solutions. The chaotic states arising from this
route are represented by irregular weakening and strength-
ening of dipolar structures, a feature which is clearly visible in

the irregular behavior of the energy and vorticity dissipations
of the flow (respectively, enstrophy and palinstrophy).

New interesting differences are present for Ri = 0.005,
which is the highest stratification we have considered. In fact,
the gluing process of the four Hopf solutions is suppressed
while, immediately after the appearance of the glued state, a
chaotic window is observed.

We have also observed an overall tendency of the temper-
ature gradient tomake horizontal drifting solutions less stable,
in the sense that the region of their existence is, in Re terms,
smaller. Moreover, in the drifting branch, we have found a new
bursting solution, which appears before the horizontally drift-
ing state regains its stability in D3. In general, all the extreme
events encountered in our analysis, e.g., the bursting solutions
or the abrupt transitions between symmetric configurations,
are characterized, in terms of energy balance, first by an accu-
mulation of kinetic energy in the form of strengthening of
the vortex cores and then by strong dissipation of this kinetic
energy either directly (through viscosity) or through transfor-
mation in thermal energy and subsequent dissipation via heat
diffusion.

FIG. 26. [(a)–(c)] The vorticity ω and
[(d)–(f)] the temperature variation θ for
the chaotic state when Re = 800, Ri

= 0.001, Pr = 1. (g) Time evolution of
kinetic energy EK and potential energy
EP (all quantities are rescaled with their
maximum: max EK = 0.2366 and max
EP = 0.0254). (h) Time evolution of the
energy exchange rate X (not scaled).
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Several problems have been neglected by our analysis
and suggest themselves as possible topics of future inves-
tigations; here we mention few of them. In this paper, we
have chosen to restrict ourselves to weak stratification so
that the main focus has been to understand how the pres-
ence of stratification modifies the solutions one encounter
in the classical Ri = 0 case. Some surveying simulations with
Ri > 0.005 have revealed completely new states, and there
is plenty to explore in the region 0.005 < Ri < 4, which is
also interesting from the physical point of view, e.g., because
geophysical flows mostly belong to this class. One would
expect that by increasing the Ri, potential energy and kinetic
energy become the same order of magnitude, the fact that
the energy introduced by the external forcing can be more
easily buffered (and, after a threshold is passed, then sud-
denly released) and can make more likely bursting solutions
or subcritical transitions. How this would modify the route
to chaos is completely open and will be the subject of future
work.

Other restrictions that we have adopted are to consider a
domain with an aspect ratio α = 1 and the Kolmogorov forcing
with n = 2; clearly a more complex setting would lead to flows
with an even richer structure, and also this we believe is worth
being investigated; just as an example, it would be interesting
to see how stratification modifies the behavior of the local-
ized chaotic structures that one encounter in flows over large
domains.25

Finally, a challenging topic would be to see how and
whether the chaotic structures we have described in this
paper evolve into fully developed turbulent structures with
increasing Reynolds numbers. Some simulations performed
up to Re = O(103) seem to suggest that the flow recurrently
visits some of the coherent structures we have encountered
in the present paper, and it would be interesting to confirm
(or disprove) this and see if this could be of some use in the
description of turbulent flows.13,28,39,53,54 In Fig. 26, we show
three snapshots of the flow at Re = 800, Ri = 0.001, Pr = 1.
For this high Re, small-scale vortical structures appear with
sharper variations in the vorticity field; however, these struc-
tures recurrently coalesce to more coherent patterns, some
of them being already observed in the low Re regime: in pan-
els (a) and (c) of Fig. 26, we can recognize vortical structures
similar to the steady state reported in Fig. 3(a). In panels (b)
and (e), a typical cat’s eye pattern is visible in vorticity and
temperature variation. The overall evolution is globally chaotic
with rapid variation in kinetic and potential energy [see panel
(g)]. This high Re regime is characterized by an energy bal-
ance which is totally in contrast to that observed for the low
Re regime analyzed throughout the paper: in fact the conver-
sion from potential to kinetic energy is now clearly present, as
shown in panel (h). We also mention that it would be inter-
esting to see whether, for the stratified case, the unimodal
solutions55 encountered in the classical Kolmogorov flow
persist.

FIG. 27. (a) The vorticity ω and [(b) and (c)] the temperature variation θ , for the drifting state when Re = 4, Ri = 0.001, and Pr = 500 at various time. (d) Time evolution of
kinetic energy EK , potential energy EP , and exchange rate X (all quantities are rescaled with their maximum: maxEK = 0.7221,maxEP = 1.0270,maxX = 0.0275).
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When Re ≫ 1, the vorticity equation becomes singu-
larly perturbed and vorticity layers are expected to appear. If
moreover Pr = O(1), the system is in the large Péclet number
(Pe = Re·Pr) regime and, being also the equation for the tem-
perature singularly perturbed,31 thermal internal layers will
develop; in Fig. 26, one can in fact observe sharp transition
regions, both in temperature and vorticity field. For large
Pr and Re = O(1), a different behavior is however observed:
sharp transitions appear in temperature field only, whereas
smoother behavior is seen in the vorticity field. In Fig. 27,
the case Pr = 500, Re = 4, Ri = 0.001 is shown; the flow sets
to a horizontally drifting state where the vorticity has the
same structure of the state shown in Fig. 10(a), whereas a
checkboard-like pattern appears in the temperature variation
[panel (d)] with very strong gradients. These behaviors are
very similar to those reported in Ref. 31, where the same Pe
regime was analyzed. For large Pr, we expect a highly complex
transition scenario, whose analysis is left to future work.
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APPENDIX: RICHARDSON LINEAR STABILITY
CRITERION

For completeness in this section, we mention how to
study the linear instability of a horizontal wave perturbation
[ψ, θ] = [ψ̂, θ̂] exp[ik(x − ct)] induced on the laminar state
Ψ0 = sinny and θ0 = y. More details can be found in Refs. 31
and 56. The main purpose is to provide the Richardson num-
ber stability criterion under our non-dimensional parameter
setups. The eigenvalue problem is

(

d2

dy2
− k2

)2

ψ̂ − ik
(

nRe cos ny − c
)

(

d2

dy2
− k2

)

ψ̂

−n3ikReψ̂ cos ny − ikReRi θ̂ = 0, (A1)

1

Pr

(

d2

dy2
− k2

)

θ̂ − ik
(

nRe cos ny − c
)

θ̂ + ikReψ̂ = 0. (A2)

We look for the marginal stability curve when c = 0. In the
inviscid limit, we find the Taylor-Goldstein equations

d2ψ̂

dy2
+

(

n2 − k2 + Ri

n2 cos2 ny

)

ψ̂ = 0. (A3)

To solve this differential equation, we write (A3) as the product
of two operators,

LL
†
=

[
d2

dy2
+ n2 − k2 + Ri

n2 cos2 ny

]
, (A4)

where the linear differential operators are L ≡ d
dy

+ a tan ny

and L
† ≡ d

dy
− a tan ny. The parameters a and Ri depend on k

according to

a2 = n2 − k2, Ri = n3
√

n2 − k2 − n2
(

n2 − k2
)

. (A5)

From the last equation, we can easily observe that the

Richardson number has a maximum when kc = n
√
3/2 and

Ri(kc) = n4/4; thus, the Richardson number stability criterion
is Ri < 4 for our model setup n = 2.
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