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Abstract

Geolocation of microblog messages has been largely investigated in the lit-
erature. Many solutions have been proposed that achieve good results at the
city-level. Existing approaches are mainly data-driven (i.e., they rely on a
training phase). However, the development of algorithms for geolocation at
sub-city level is still an open problem also due to the absence of good training
datasets. In this thesis, we investigate the role that external geographic know-
ledge can play in geolocation approaches. We show how di�erent geographical
data sources can be combined with a semantic layer to achieve reasonably
accurate sub-city level geolocation. Moreover, we propose a knowledge-based
method, called Sherloc, to accurately geolocate messages at sub-city level, by
exploiting the presence in the message of toponyms possibly referring to the
speci�c places in the target geographical area. Sherloc exploits the semantics
associated with toponyms contained in gazetteers and embeds them into a
metric space that captures the semantic distance among them. This allows
toponyms to be represented as points and indexed by a spatial access method,
allowing us to identify the semantically closest terms to a microblog message,
that also form a cluster with respect to their spatial locations. In contrast to
state-of-the-art methods, Sherloc requires no prior training, it is not limited
to geolocating on a �xed spatial grid and it experimentally demonstrated its
ability to infer the location at sub-city level with higher accuracy.
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Introduction
������� ��� ���������� Microblog data are being produced at un-
precedented speeds, causing a data deluge that makes their e�cient mining an
overwhelming task. These data represent a valuable source for the extraction
of new types of information patterns and knowledge. Their multifaceted nature
is being exploited to better understand social dynamics and propagation of
information. One of the facets that analysts are interested in exploring is the
semantics behind each message, i.e., what does it refer to? Another one is the
spatial component, i.e., where does it come from? These facets are most of the
times not independent. For example, the thing that a post is referring to most
probably has a location in space and inferring this location has been a very
active research topic over the recent years. This intense interest is mainly due
to the large amount of applications involved. For example, knowledge of the
positions of microblog messages enables the detection of outbreaks of diseases
and emergency situation response. Moreover, microblog message mining has
recently gathered a lot of attention as a viable approach for identifying social
trends and even predicting various physical and social phenomena (Castillo,
����; Gelernter, Ganesh, et al., ����). Other applications also include �ash
mobs, or short-term event recognition.

However, one of the greatest challenges is that they rely on explicitly geot-
agged messages. Explicitly geotagged messages contain a set of coordinates
that indicate where the user was located when the message was sent. Neverthe-
less, for either technical, privacy or energy management reasons (deactivated
location services), a large fraction of the messages do not include any such
spatial coordinates. It is indicative that only a small percentage of microblog
messages (e.g., only �% of Twitter messages (Graham, Hale, and Ga�ney, ����))
is explicitly geotagged. This is a signi�cantly disruptive for a large part of the
proposed methods, as they rely on already geotagged messages in order to
provide accurate insights. Nevertheless, recent research is exploring the path
of inferring these coordinates by analysing the content of the message (e.g., if
it contains names of speci�c places, etc.). To exploit the intuition that users
often mention places that are near to their current location, several approaches
attempt to automatically geolocate nongeotagged messages using their textual
content (Eisenstein, O’Connor, et al., ����; Gelernter, Ganesh, et al., ����;
Hulden, Silfverberg, and Francom, ����; Zhang and Gelernter, ����).

Most of these methods rely on a training phase, during which they construct
language models, in order to probabilistically infer the location of unseen
messages. These types of models can very accurately geolocate microblog
messages at a city level (Eisenstein, Ahmed, and Xing, ����; Hulden, Silfverberg,
and Francom, ����)( but su�er from problems related to text noise for sub-city
level geolocation. This is mainly due to the fact that messages do not only

�



Introduction

contain proper natural language, but they also often contain mis-spellings,
links, etc. As a result, such methods are prone to over�tting noisy data and
as a result fail to identify the �ne-grained features required for sub-city level
geolocation. Moreover, during classi�cation, the �ner-grained the grid used
to geolocate is (i.e., the higher sub-city detail), the higher the number of
classi�cation classes. This situation signi�cantly harms performance. For the
aforementioned reasons, while there has been a lot of recent work in the �eld
(Cheng, Caverlee, and Lee, ����; Eisenstein, Ahmed, and Xing, ����), most
methods presented so far operate best at the city level, i.e., are only able to
infer the city from within which a tweet came.
To alleviate the problem of noise in the data, several methodologies try

to address the problem of geolocating microblog messages by looking at ex-
plicitly mentioned location information in the message content (Gelernter,
Ganesh, et al., ����; Gelernter and Mushegian, ����; Zhang and Gelernter,
����). However, these solutions require large training sets in order to be able
to achieve good results. Such training sets are notoriously di�cult to construct,
not only because pre-processing requires time, but most importantly because
it requires people that are willing to manually label them. Finally, the majority
of those methods relies on authoritative data sources. This is good solution
but, in general authoritative data source does not contains a lot of �ne-grained
information.

��������� ��� ���� ������������ Our intuition is that, to alleviate
these problems, one has to rely on external information sources (Di Rocco,
Bertolotto, Catania, et al., ����). We claim that in order to provide an accurate
sub-city level geolocation pipeline, data-driven methods should be only used
at the �rst stage to reach city-level geolocation. However, as such methods
fail when higher detail is required, external information sources should be
exploited to reach sub-city accuracy. This approach is facilitated by the fact
that there have been a plethora of geographic information sources developed
recently, which are publicly available on the web.

In this thesis, we take a di�erent approach and propose a knowledge-based
method for inferring the location of a microblog message. Our method is com-
plementary to existing research both in the goal (i.e., improving performance
at the sub-city level only) and in the fact that it requires no prior training.
This is because it does not perform prediction relying on annotated data, but
instead, it performs location inference by analyzing the contents of each spe-
ci�c message. To achieve that it utilizes external knowledge in the form of
semantic geospatial data, targeted to a given geographical area of interest.
We propose an algorithm that, relying only on the information contained in
a single message, can infer, with a reasonable accuracy, where this message
came from.

Our approach is based on the following intuitions:

�. People tend to contextualize their messages by providing a semantic
description of geographical objects. For example, a Twitter message like:

�



“ Notre Dame De Paris. A masterpice of architecture and sculp-
ture.”

contains the information about Notre Dame De Paris underlining the
fact that is an important piece of architecture.

�. Attributes of geographical objects, i.e., labels, have an important se-
mantic aspect that characterizes the object itself. For example, Starbucks
is the label of a geographical object that is also a cafeteria.

�. Geographical objects in a target area are often geographically clustered
based on their semantics. For example, in a city, speci�c areas are full of
restaurants or are mainly shopping districts.

�. In a city, in general, speci�c neighborhoods share common names. For
example, Liberty Island in New York City, USA, is the island with the
well known Statue of Liberty. In this island, we have the Statue of Liberty
Museum, the Statue of Liberty café and so on.

�. A target area could be characterized by a speci�c Point of Interest that
is of extraordinary importance for this location. For example, in general,
there is only one important monument in a given neighborhood.

Based on these intuitions, we develop an approach that allows for generic
multi-faceted �ltering to be performed in an e�cient way. The approach
captures di�erent facets that correspond to the semantic and spatial aspects
of microblog data. For the semantic aspect, we use the external knowledge
bases studied and we transform these semantic gazetteers into a metric space,
maintaining their hierarchical structure as one aspect and use location of
their toponyms in the physical world as the second aspect. The structured
semantic dimension is embedded in a metric space and indexed by a spatial
data structure. An e�cient algorithm identi�es the location corresponding to
a message by looking at the semantics of geographical terms in the message
and their respective locations in the physical world.

In this thesis, we start by studying diverse geographic information sources
and their e�ect on geolocation accuracy. Speci�cally, we analyze both semi-
authoritative data sources such as Geonames �, and crowdsourced geographical
data, such as OpenStreetMap � (OSM). Our second intuition is that an additional
semantic level (e.g., an ontology) will allow us to increase the accuracy of
geolocation estimation. While typically authoritative and semi-authoritative
data repositories contain an associated semantic level, this is often not the case
for crowdsourced data (e.g., OSM). For this reason, we examine a semantically
enriched version of OSM, called LinkedGeoData (Stadler et al., ����) (LGD), as
well as an external ontology for conceptualized cities called OpenStreetMap
Facet Ontology (Di Rocco, ����, ����).

�http://geonames.org
�http://openstreetmap.org
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Introduction

F ����� � .� . An example of geolocation inference made by Sherloc.

Our algorithm is called Sherloc �. It takes as input a microblog message
and returns its coordinates at the sub-city level, i.e., with an accuracy which
is within a given percentage of the area covered by the city. In Fig. �.�, we
show an example of a tweet geolocated by Sherloc. The red circle is the area
that represents the inferred location contrasted to the green point that is the
real location of the message. The highlighted light green bounding box is the
target area taken into account.

������������ ������� The experimental evaluation, made on Twitter
datasets, demonstrates that our approach outperforms the state-of-the-art
when working at a sub-city level. We demostrate, by the end of this thesis,
that data-driven approaches on twitter location prediction are not the best
methods to solve sub-city level location prediction problems. Instead, the idea
to use a knowledge-driven method give very good results.

Indeed, through our experimental evaluationwe show that, while knowledge-
based methods have a lower recall, as they exploit the explicit geographical
mentions in the text, they have a much higher precision for the subset of
messages that contain such explicit mentioned terms. Thus, we validate our
intuition that knowledge-based methods can be used as an additional step
after a data-driven pipeline, in order to increase accuracy.

������� �� ������������� The thesis main contributions are:

• The use of geographic data sources combined with a semantic level in
order to structure an external geographical knowledge that describes a
city at �ne-grained level.

�A simple word pun between Sherlock Holmes and location.

�



• The representation of a geographical knowledge using embeddings to
�nd the most similar terms in an easy and e�cient way.

• The de�nition of an algorithm, Sherloc, that exploits semantic geographic
knowledge for geolocating messages inside a target area, thus enabling
geolocation inference for microblog messages without prior training
(knowledge-driven approach).

• The experimental evaluation of Sherloc using di�erent geographic know-
ledge bases, showing that it can achieve a sub-city mean distance error
and accuracy distance error geolocation inference that cannot be obtained
by data-driven algorithms.

������� The thesis is organized as follows:

• In Chapter �, we introduce some preliminaries. In this chapter, we present
all the basic notions useful to understand the thesis. We discuss geospatial
data in general, we de�ne the main terminology involved in the geoloca-
tion �eld. We then introduce the domain of this thesis: microblog data.
At the end of the chapter, we brie�y discuss two relevant techniques
exploited in the thesis: embeddings and clustering.

• In Chapter �, we discuss the state-of-the-art in the two fundamental �elds
dealt by the thesis: geospatial knowledge andmicroblog location inference.
We discuss in detail, the literature on geospatial data and ontologies. Then,
we discuss the state-of-the-art in microblog geolocation inference, with
speci�c reference to Twitter.

• In Chapter �, we formalize the geographic knowledge. We propose a
speci�c format that a body of geographic knowledge must have to be
used as input to our algorithm.

• In Chapter �, we present Sherloc, our proposed algorithm to geolocate
a microblog message. We provide detailed information on every step
of the algorithm motivating every choice and proposing our speci�c
instantiation for every step. Moreover, we propose an extended version of
Sherloc, called Sherloc-DR that uses two di�erent embeddings to represent
the geographic knowledge.

• Chapter � introduces information about datasets, metrics and algorithms
involved in the evaluation. Moreover, in this chapter, we provide details
about the implementation.

• Chapter � contains the evaluation results. We start by evaluating geospa-
tial knowledge. We then evaluate the embeddings. The previous evalu-
ations provide us the best parameters to run Sherloc and Sherloc-DR. We
�nally comparatively evaluate both algorithms in terms of accuracy w.r.t.
a state-of-the-art method.

In the end, Conclusions & Future Work conclude the thesis and provide an
overview on the current limitations and future work directions.
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� Preliminaries

The thesis addresses the problem of geolocation of microblog message using
geographic knowledge. This chapter has the goal to introduce all the prelim-
inaries useful to understand the thesis. We start the discussion focusing on
geospatial data, what they are and how they can be de�ned. Then, we discuss
geolocation and we introduce the de�nitions and the terminology used in
the literature and in the thesis. We provide an overview on microblog data,
the target of our geolocation and we introduce Twitter as the most famous
example of a microblog. We conclude the chapter with an overview of the main
exploited techniques, methods for constructing embeddings for hierarchical
data, and clustering algorithms.

�.� An Overview of GeoSpatial Data

Geospatial data have two components: a spatial component which speci�es
their location in space, and a nonspatial component which speci�es other
characteristics. For instance, for a road these characteristics could include the
road name, the road type, the company in charge of road maintenance, the
tra�c volume, etc. These two types of information (spatial and non-spatial) are
called the geometry and the attributes of the spatial datum under examination,
respectively.
The characteristics of geospatial data and the di�erent sources generating

them, make them very relevant in the Big Data contest. Geospatial data are
principally generated from authoritative institutions. These geographical data
are called authoritative datasets. Nowdays, di�erent types of geographical data
exist, namely crowdsourced datasets (e.g., OpenStreetMap�).

�.�.� Spatial Component: Geometry and Topology

Geometry and topology are speci�c properties of spatial data. Geometry is
concerned with shape (point, line, or region), extension (coordinates de�ning
the point, line, region), position (in a geographic reference system).
Topology studies the rules of relationships between the geometry objects:

point, line and regions, independently of their coordinates (e.g., two entities
intersect, are disjoint, tangent to each other etc.).

Topology is qualitative rather than quantitative (e.g., if two entities intersect,
the shape, extension, and position of the intersection do not matter; if they
are disjoint, the distance separating them does not matter, etc.). Topological
relations are invariant under continuous transformations (we can deform the
�openstreetmap.org
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� Preliminaries

F ����� � .� . An interpretation of the eight relations between two regions with con-
nected boundaries. Source: Egenhofer and Herring, (����).

shape of the two entities while preserving the fact that they intersect, or they
are disjoint).

The most popular model for representing topological relations between two
spatial objects (i.e., two geometries in R2) is the �-Intersection Model (�IM)
(Egenhofer and Franzosa, ����; Egenhofer and Herring, ����).

The �IM is based on a 3 ⇥ 3 intersection matrix de�ned as:

�IM(A,B) =

26666664
A� \ B� A� \ @B A� \ B�
@A \ B� @A \ @B @A \ B�
A� \ B� A� \ @B A� \ B�

37777775
where A and B are two spatial regions and A�, @A and A� are respectively the
interior, boundary and exterior of the region A (it is the same for B).

The dimension of empty sets (;) are denoted as F (false). The dimension of
non-empty sets (¬;) are denoted with the maximum number of dimensions of
the intersection, speci�cally zero for points, � for lines, � for areas. Then, the
domain of the model is 0, 1, 2, F .

If we consider values empty/non-empty for the entries of the matrix, there
are 29 = 512 con�gurations, but some of them are not possible in practice. In
Section �.�.�, we show the common topological relations between two regions
with connected boundaries: disjoint, contains, inside, equal, meet, covers,
coveredBy, and overlap.
Notice that this is just a brief overview of geometry and topology of geo-

spatial data. Detailed information can be found in Egenhofer and Franzosa,
(����) and Egenhofer and Herring, (����). The examples and the summary are
derived from Egenhofer and Herring, (����).
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�.� Geolocation: Meaning and Terminologies

�.�.� NonSpatial Component

The attributes of geospatial data which do not describe the geometrical and
topological aspects of the objects are called non-spatial components. This
component can be in general classi�ed as semi-structured data. It represents
the additional information that we want to associate with geospatial data like
name, type, etc.
In some geographic datasets, this information can be represented in the

form of tags. Each tag has a key and a value. Tags can thus be written as
key=value.

• The key describes a broad class of features (for example, highways or
names).

• The value details the speci�c feature that is generally classi�ed by the
key (e.g., highway=motorway).

In some geographic datasets, there is no �xed list of tags. New tags can
be invented and used as needed. Everybody can come up with a new tag
and add it to new or existing objects. This makes these datasets enormously
�exible, but sometimes also hard to work with. Other geographic datasets
use an ontological level to describe the non-spatial components. In this case,
geographical data has a semantic level to describe their relationships.

�.� Geolocation: Meaning and Terminologies

Geolocation, also called geolocalization or geotagging, is the process of adding
geographical information to various kinds of data such as photos, videos
or documents (Viana, Filho, et al., ����; Viana, Miron, et al., ����). In this
section, we focus on textual data and we provide an overview on the speci�c
geolocation problem studied in this thesis and set the used terminology.

�������� ��� �������� ���������� ����������� Data are said
to be implicitly (or indirectly) geolocated (Hill, ����) when they are not as-
sociated with explicit geospatial references (such as positioning on maps
or spatial/physical coordinates), rather they are referenced by place names,
geocodes, and addresses. The terms highlight the fact that additional steps
are required to identify the locations on maps. Data are said to be explicitly
geolocated if they are associated with a spatial/physical component.
Geolocating by place name is the most common form of referencing a

geographic location and it is an informal means of georeferencing. We use
place names in conversations, correspondence, reporting, and documentation.
Dictionaries of placenames are called gazetteers (Goodchild and Hill, ����).
Gazetteers contain descriptive information about named places, which can
include their geographic locations, types/categories, and other information.

Implicit geographic information has been exploited, for instance, for localiz-
ing news on maps (Teitler et al., ����).
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����������� �� ������� ���� Geolocating data can be in form of
points-of-interest (e.g., hotels or shopping mall) or simply geographical co-
ordinates (latitudes and longitudes).
Focusing on geolocation of text, this consists of toponym recognition and

toponym resolution. Toponym recognition is the process of �nding a word/bag
of words that should be a toponym. The latter, instead, is eliminating the
geo/non-geo ambiguity (e.g., Washington can be a city in the USA or the name
of a person). There are di�erent strategies to do this:

�. �nding names in the text that appear in a gazetteer (Amitay et al., ����;
Grover et al., ����; Lieberman, Samet, and Sankaranarayanan, ����;
Lieberman, Samet, Sankaranarayanan, and Sperling, ����; Samet et al.,
����);

�. using Name Entity Recognition techniques (Moncla et al., ����; Purves
et al., ����; Stokes et al., ����);

�. using a geographic ontology in order to understand the context of the
text (Purves et al., ����; Stokes et al., ����).

In the rest of the thesis, we refer to our approach as a geolocation algorithm
without focusing only on recognition or resolution.

����������� ������������� There are a lot of di�erent terminologies
used in the area. A lot of them share the same meaning or the di�erences are
subtle and di�cult to interpret.

Geolocation is a synonym of geotagging and geolocalization. Georeferencing
is similar but there is a subtle di�erence. Georeferencingmeans that the internal
coordinate system of a map or aerial photo image can be related to a ground
system of geographic coordinates. Geolocation and georeferencing can achieve
the same result: to obtain objects with coordinates and information related
to them. The important di�erence is that geolocation is a post-process on
objects and georeferencing is a process performed during the acquisition phase.
This is why, when we talk about georeferencing, we can subdivide the data
as implicitly/explicitly georeferenced and afterwards as implicitly/explicitly
geotagged.

We highlight that geolocation algorithms are also called location inference
or location prediction algorithms. This terminology helps to highlight the
main goal of geolocation algorithms: prediction. In the next chapter, we refer
to state of the art geolocation approaches as location prediction/inference
algorithms. Notice that prediction and inference are synonyms that we will
use interchangeably.

�.� An Overview of Microblog Data

In this section, we provide an overview of microblog data and, then, we intro-
duce Twitter as the most famous example of it.
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�.� An Overview of Microblog Data

���������� Microblogging is an online broadcast medium that exists as a
speci�c form of blogging. A microblog di�ers from a traditional blog in that its
content is typically smaller in both actual and aggregated �le size. Microblogs
allow users to exchange small elements of content such as short sentences,
individual images, or video links, which may be the major reason for their
popularity. These small messages are sometimes called microposts.

As with traditional blogging, microbloggers post about topics ranging from
the simple, such as “what I’m doing right now”, to the thematic, such as “sports
cars”. Commercial microblogs also exist to promote websites, services, and
products, and to promote collaboration within an organization.

Some microblogging services o�er features such as privacy settings, which
allow users to control who can read their microblogs or alternative ways of
publishing entries besides the web-based interface. These may include text
messaging, instant messaging, E-mail, digital audio or digital video.

The emergence of microblogging services is changing the form people share
information on the web. People often access a social network such as Tumblr
or Twitter to retrieve news, videos, or comments from their friends. In such
systems, a large number of posts or tweets are posted every day. According to
recent statistics� (October ����), there are around ��� million of tweets per
day and around ��� million of active users per month.
Due to the large volume of data available on microblogging sites, it is

natural to consider the automatic methods of information extraction to capture
semantic meaning of entities in the data. For example, in order to extract
the abovementioned three types of information covered in our work (i.e.,
personal, social, and travel information), the most straightforward way is
to treat personal information as attributes of entities, social information as
relationships between entities, travel information as lists of location entities,
and then directly apply traditional information extraction technologies to the
collection of microblog posts. However, this attempt has been proven to be
di�cult and unsuccessful for the following reasons:

• Ungrammatical Sentence. Unlike documents on the web, posts on microb-
logging services are always length-limited. For example, Twitter allows
users to post only ���-character messages. This length-limitation often
leads posts to be noisy and ungrammatical, which makes traditional Nat-
ural Language Processing (NLP) tools such as Part Of Speech (POS) tagger
inappropriate to use.

• Informal Writing. Microblog posts often contain noisy texts such as ab-
breviations, symbols, and misspellings, which consequently brings great
di�culties in analyzing the content and meanings of posts. The sentence
“I don’t knw wht s gona happen” is an example of a message which people
brie�y write in abbreviated form on a microblogging site.

�Source: omnicoreagency.com/twitter-statistics/
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������� �� � �������� ������� Twitter is an American online news
and social networking service on which users post and interact with messages
known as “tweets”. Tweets were originally restricted to ��� characters, but on
November �, ����, this limit was doubled for all languages except Japanese,
Korean, and Chinese. Registered users can post tweets, but those who are
unregistered can only read them. Users access Twitter through its website
interface, through Short Message Service� (SMS) or mobile-device application
software (“app”).
Users may subscribe to other users’ tweets—this is known as “following”

and subscribers are known as “followers”. Individual tweets can be forwarded
by other users to their own feed, a process known as a “retweet”. Users can
also “like” (formerly “favorite”) individual tweets.
As a social network, Twitter revolves around the principle of followers.

When you choose to follow another Twitter user, that user’s tweets appear
in reverse chronological order on your main Twitter page. If you follow ��
people, you’ll see a mix of tweets scrolling down the page: breakfast-cereal
updates, interesting new links, music recommendations, even musings on the
future of education.

Users can group posts together by topic or type by use of hashtags –words or
phrases pre�xed with a “#” sign. Similarly, the “@” sign followed by a username
is used for mentioning or replying to other users. To repost a message from
another Twitter user and share it with one’s own followers, a user can click
the retweet button within the Tweet.
In late ����, the "Twitter Lists" feature was added, making it possible for

users to follow ad-hoc lists of authors instead of individual authors.
The tweets were set to a constrictive ���-character limit for compatibility

with SMS messaging, introducing the shorthand notation and slang commonly
used in SMS messages. The ���-character limit also increased the use of URL
shortening services such as bit.ly, goo.gl, tinyurl.com, tr.im, and other content-
hosting services such as TwitPic, memozu.com, and NotePub to accommodate
multimedia content and text longer than ��� characters. Since June ����, Twitter
has used its own t.co domain for automatic shortening of all URLs posted on
its site, making other link shorteners unnecessary for staying within Twitter’s
��� character limit.

Due to the Twitter structure, we can extract three types of information:

• Content: short and noisy tweets, e.g., “I don’t knw wht s gona happen”.
Tweets have ��� characters length. They can contain everything that
a user wants: mood, events, news, etc. A user can also retweet others
(s)he read. When a user composes a tweet (s)he can include hashtags or
mentions. A mention is noti�ed to another user and it is possible to start
a conversation.

• Network: a massive Twitter network established among users. A user can
follow or be followed by another user. If a userui follows a useruj , we call

�Not available for every country.
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ui the follower anduj the followee. It is important highlight that the follow
relation is undirectional, i.e., if ui follows uj it is not necessary that uj
follows ui . If this happens, they become mutual friends. Di�erently from
other social media, being a friend in Twitter does not imply being a friend
in real life. Some of the users represent o�cial accounts of celebrities or
journals, etc. It also happens that some users are bots.

• Context: rich types of contextual information for both users and tweets.
A tweet is not only a message. It has di�erent metadata attached to it. An
important piece of information is the timestamp. Another one is location
if the device has the GPS enabled. If timestamp always exists, location
depends on the device and privacy settings. Moreover, a user can declare
pro�le information like his/her home, personal website, etc. Therefore,
context information can be summarized as follows: user pro�le inform-
ation (declared home location that it is optional), third-party sources
(Foursquare, Yelp, etc.), timezone, tweet timestamp and location.

In this thesis, we exploit only Twitter content. Notice that state of the art
approaches exploit also the other information. We will discuss this in the next
chapter.

�.� Exploited Techniques

In this section, we provide an overview of the techniques that we use in the
algorithm that we present in Chapter �. We start with an introduction to word
embeddings, which we use for representing geospatial ontologies. We then
discuss clustering algorithms, which are a central part of our geolocation
algorithm.

�.�.� Word Embeddings

Here, we explain word embeddings �rst, and then we de�ne some interesting
state-of-the-art embedding algorithms.

���� ��������� �� ������ ����� ����� Aword embedding, some-
times called word representation, is a collective name for a set of language
models and feature selection methods. Its main goal is to map words into a
low-dimensional continuous space. Conceptually it involves a mathematical
embedding from a space with one dimension per word to a continuous vector
space with a lot of fewer dimensions.
The most used methods to represent text data are Vector Space Models

(VSMs) where a vector is the representation of a document. Information Re-
trieval proposed models to facilitate text categorization (Yang and Pedersen,
����). Then the concept of word embedding using Neural Networks Lan-
guage Models was introduced late in ���� (Xu and Rudnicky, ����). These
approaches belong to the classes of unsupervised learning methods.
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F ����� � .� . Graphical representation of one-hot word vectors model and word
embeddings.

Neural networks take as an input a numeric tensor. Therefore we need to
process raw data transforming them in a tensor. To do so, we can apply three
di�erent techniques:

• Segment text into words, and transform each word into a vector.

• Segment text into characters, and transform each character into a vector.

• Extract n-grams of words or characters and transform each n-gram into
a vector.

In general, the di�erent units that you can choose to break down text are called
tokens and the process is called tokenization.

The easiest way to represent text through a sparse vector is called one-hot
encoding. It consists of associating a unique integer index with every word
and then turning this integer index i into a binary vector of size N (the size of
the vocabulary). The vector contains all zero except for the ith entry, which
contains �.
Another popular and powerful method is word vectors, also called a word

embedding. Vectors obtained with one-hot encoding are binary, sparse and
high-dimensional (same dimensionality of the number of words in the vocabu-
lary). Vectors obtained with a word embedding are low-dimensional �oating-
point vectors, i.e., dense vectors. Word embeddings, unlike the word vectors
obtained with one-hot encoding, are learned from data.

In Figure �.� the di�erence between one-hot encodings and word embedding
is graphically illustrated.

There are two ways to obtain word embeddings:

�. Learning word embeddings jointly with the main task you were trying
to solve, e.g., document classi�cation or sentiment analysis.

�. Loading into your model word embeddings in conjunction with di�erent
machine learning tasks and apply them for the task that you are trying
to solve. This one is called pretrained word embeddings.
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There are multiple pre-trained word embedding vocabularies, which are
ready to be used. Those are well known in the literature and freely available.
We describe the most frequently used.

����� GloVe, coined from Global Vectors, is a model for distributed word
representation. The model is an unsupervised learning algorithm for obtain-
ing vector representations for words. Training is performed on aggregated
global word-word co-occurrence statistics from a corpus, and the resulting
representations showcase interesting linear substructures of the word vector
space. It was developed as an open-source project at Stanford.

�������� Word�vec is a group of related models that are used to produce
word embeddings. These models are shallow, two-layer neural networks that
are trained to reconstruct linguistic contexts of words. Word�vec takes as its
input a large corpus of text and produces a vector space, typically of hundreds
of dimensions, with each unique word in the corpus being assigned a corres-
ponding vector in the space. Word vectors are positioned in the vector space
such that words that share common contexts in the corpus are located in close
proximity to one another in the space.
Word�vec was created by a team of researchers led by Tomas Mikolov at

Google. The algorithm has been subsequently analyzed and explained by other
researchers. Embedding vectors created using the Word�vec algorithm have
advantages compared to earlier algorithms such as latent semantic analysis.

�������� fastText is a library for learning word embeddings and text
classi�cation created by Facebook’s AI Research (FAIR) lab. The model is
an unsupervised learning algorithm for obtaining vector representations for
words. Facebook makes available pre-trained models for ��� languages. Di�er-
ently from word�vec and GloVe, fastText includes the sub-word information.
To have this additional information, they split all words into a bag of n-gram
characters in general in the size of �-�. They aggregate all these sub-words
together to create a whole word as a �nal feature. fastText uses Neural net-
works for word embedding. Details about fastTest can be found in Joulin et al.,
(����).

������������ ��������� Hierarchical embedding algorithm is a spe-
ci�c embedding algorithm used to represent hierarchical data. The algorithm
is presented in Nickel and Kiela, (����). They decide to use hyperbolic geo-
metry to capture hierarchal properties of words, i.e., their semantics. To do
it, they embedded words into a hyperbolic space. In this way, they can use
properties of hyperbolic space to use distance to encode similarity and the
norm of vectors to encode hierarchal relationships.

The end result is that fewer dimensions are needed in order to encode hier-
archal information. They show that the algorithm is a good way to represent
data that have a hierarchical structure, like ontologies.
We will see in more detail the algorithm and how we use it in Chapter �.
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�.�.� Unsupervised Learning: Clustering

The goal of clustering is that of grouping similar objects together. Objects
that are in the same group, called cluster, are grouped by some de�nition of
similarity. Clustering is an unsupervised learning task. In machine learning
there are, classicaly, two paradigms: supervised learning, i.e., we learn from
labels and unsupervised learning, i.e., we learn without labels. In unsupervised
learning, we learn properties or recurrent patterns from unlabeled samples.

Clustering is not a speci�c algorithm but a general task to solve. Algorithms
di�er on how they compute clusters, i.e., how they �nd the space partitions,
and how they e�ciently identify clusters.

Three main di�erent algorithms have been proposed:

• K-means: one of the most intuitive algorithms.

• Hierarchical clustering: an algorithm that proposes as a solution a hier-
archy of clusters for data.

• DBSCAN: a clustering algorithm that has the particularity of handling
“noise” samples.

In the following we brie�y present these three algorithms. As we will discuss
and motivate in Chapter �, among these algorithms DBSCAN is the most
suitable for our context and it will be exploited in the �nal stage of Sherloc.

K ������ ���������� One of the most common clustering algorithms is
K-Means clustering.
Given a set of input data D = {xi }ni=1, with samples represented as d-

dimensional vectors xi 2 Rd (8i = 1, ...,n), the goal of K-means is to partition
the data space into K prede�ned non overlapping groups that contain similar
samples.
One nice property of K-Means clustering is that the clusters will be strict,

spherical in nature, and converge to a solution.
The K-means algorithm starts with random centroids. Then the points are

assigned to the cluster having the nearest centroid. Successively, the centroids
position are updated. At each step the value of centroid changes following a
function that assures the convergence ofK-means. Nevertheless, the algorithm
may converge to a local minimum, achieving a suboptimal solution.

In Figure �.�, an example of an application of this algorithm on �-dimensional
data is shown.

������������ ���������� Hierarchical clustering is a general family
of clustering algorithms that build nested clusters by merging or splitting them
successively. This hierarchy of clusters is represented as a tree (or dendrogram).
The root of the tree is the unique cluster that gathers all the samples, the leaves
being the clusters with only one sample. In general, the merges and splits are
determined in a greedy manner.
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F ����� � .� . An example of k-means result. Source: scikit-learn.org

In data mining and statistics, hierarchical clustering (also called hierarchical
cluster analysis or HCA) is a method of cluster analysis which seeks to build a
hierarchy of clusters. Strategies for hierarchical clustering generally fall into
two types:

• Agglomerative: This is a "bottom-up" approach: each observation starts
in its own cluster, and pairs of clusters are merged as one moves up the
hierarchy.

• Divisive: This is a "top-down" approach: all observations start in one
cluster, and splits are performed recursively as one moves down the
hierarchy.

Figure �.� shows an example of hierarchical clustering using di�erent ag-
glomerative methods.

������ ���������� Density-based spatial clustering of applications
with noise (DBSCAN) is a data clustering algorithm (Ester et al., ����). It is
a density-based clustering algorithm: given a set of points in some space, it
groups together points that are closely packed together (points with nearby
neighbors), marking as outliers points that lie alone in low-density regions
(whose nearest neighbors are too far away). DBSCAN is one of the most
common clustering algorithms and also most cited in scienti�c literature.
For the purpose of DBSCAN clustering, the points are classi�ed as core

points, (density-)reachable points and outliers, as follows:

• A point p is a core point if at least minPts points are within distance � (�
is the maximum radius of the neighborhood from p) of it (including p).
Those points are said to be directly reachable from p.

• A point q is directly reachable from p if point q is within distance � from
point p and p must be a core point.
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F ����� � .� . Example of hierarchical clustering result. Source: scikit-learn.org
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F ����� � .� . Example of DBSCAN clustering. Source: scikit-learn.org

• A point q is reachable from p if there is a path p1, ...,pn with p1 = p and
pn = q, where each pi + 1 is directly reachable from pi (all the points on
the path must be core points, with the possible exception of q).

All points not reachable from any other point are outliers (black points
in Figure �.�). Now if p is a core point, then it forms a cluster together with
all points (core or non-core) that are reachable from it. Each cluster contains
at least one core point; non-core points can be part of a cluster, but they
form its “edge” since they cannot be used to reach more points. DBSCAN can
guarantee that the cluster is not always a circular shape, given the possibility
to individuate streets or geographical features in general.
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� Related Work

In this thesis we propose an approach for location inference from microblog
messages, which relies on semantic geographic gazetteers. For this reason, in
this chapter we discuss work related to both location prediction and geographic
gazetteers.

In detail, we provide an in-depth study of external information that can be
used to serve the task. Such information sources include semantic gazetteers,
which lie at the core of our novel approach. We also present in detail the
geographic data sources chosen to address the problem. Moreover, we provide
an overview of state-of-the-art algorithms for gelocating non geolocalized
tweets. We conclude the chapter with a positioning of our proposed approach
towards the state-of-the-art.

�.� Geospatial Knowledge

The most important novelty of the work presented in this thesis is the use of
external geographical knowledge for sub-city geolocation. Within this context,
in this section, we present the relevant research work on geospatial ontologies.

Since the principal focus of this thesis is geolocation of microblog messages,
discussing and understanding external knowledge semantics is fundamental.
This is because such knowledge bases can be used to augment current geoloca-
tion algorithms. In this section we drill into the details of relevant research
work and identi�ed GeoNames �, LinkedGeoData (Stadler et al., ����) and OSM
facet ontology (Di Rocco, ����, ����) as the three most signi�cant geospatial
ontologies that can be used in order to achieve our goal. Moreover, since the
aim is to do geolocation at sub-city level, we need do have an ontology that
conceptualize or can conceptualize the concept of city. We will see later on that
the di�erent conceptualizations of the city domain produce di�erent results
on sub-city level geolocation algorithms.

�.�.� Geospatial Ontologies

An ontology is de�ned as: “a speci�cation of a conceptualization.” (Gruber,
����). Ontologies have been used for a set of tasks: improving communication
between agents (human or software), reusing data models, developing know-
ledge schemas, etc. All these tasks deal with interoperability issues and can be
applied in di�erent domains.
Ontologies of the geographic world are important to allow the sharing of

geographic data among di�erent communities of users. A geospatial ontology

�geonames.org
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provides a description of geographical entities. A lot of geospatial ontologies
have been de�ned and can be used by di�erent applications. We �rst discuss
some well-known ontologies that we analyze for our work, then we present
speci�c state of the art approaches related to ontologies for gazetteers and
Volunteered Geographic Information (VGI).

We can classify geographic data sources as authoritative and crowdsourced.
One of the most famous examples of a semi-authoritative data source is Geo-
Names, and one famous example of a crowdsourced data source is OSM. While
authoritative data sources are mainly non-open data, we focus our analysis
on open data sources where GeoNames is the most famous data source close
enough to an authoritative data sources since it was born from authoritative
data. GeoNames and OSM are di�erent geographical data sources not only
w.r.t. this classi�cation. GeoNames is structured with its explicit ontology level,
while OSM is not associated with an explicit ontology level, however, it is
possible to extract a sort of semantic information from tags associated with
toponyms. In the state-of-the-art, this problem is largely investigated and it is
possible to attach a semantic level to OSM.
In any case, other knowledge bases exist. Generic knowledge bases can

contain information useful to describe geospatial data or can contain geospatial
data. An example is DBpedia. DBpedia� is a crowd-sourced community e�ort
to extract structured information from Wikipedia and make this information
available on the Web. DBpedia allows you to ask sophisticated queries against
Wikipedia, and to link the di�erent data sets on the Web to Wikipedia data.
The goal is to make it easier for the huge amount of information in Wikipedia
to be used in some new interesting ways. Furthermore, it might be inspired
by new mechanisms for navigating, linking, and improving the encyclopedia
itself. The DBpedia Ontology is a shallow, cross-domain ontology, which
has been manually created based on the most commonly used infoboxes
within Wikipedia. The ontology currently covers ��� classes which form
a subsumption hierarchy and are described by �,��� di�erent properties.

������� ���� �� ���������� ���������� In the geospatial do-
main, there are a lot of approaches that try to use ontologies for semantifying
geographic data (Janowicz and Keßler, ����; Janowicz, Maue, et al., ����). We
hereby analyze research works that involve OSM, the most famous example of
VGI. OSM o�ers an open and easy to use platform that enables contributors to
upload geographic information collected from mobile devices or aerial images.
There is no formal ontology or vocabulary of prede�ned tags that have to be
adopted by the users. For this reason, there exists a lot of work about semanti-
fying OSM. For instance, Baglatzi, Kokla, and Kavouras, (����) shows a way to
bridge the gap between ontological and crowdsourcing practices. To create
this bridge they use an ontological alignment approach. They align OSM tags
to the DOLCE Ultralite top level ontologies(Masolo et al., ����).
There is also an important project called OSMOnto� (Codescu et al., ����).

�http://dbpedia.org/
�It is possible to �nd more information here: http://wiki.openstreetmap.org/wiki/
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F ����� � .� . A model of a semantic gazetteer.

This is an ontology for tags. The purpose of the ontology of tags is to stay as
close as possible to the structure of the OSM �les in order to facilitate database
querying. This means that they do not try to correct any possible conceptual
mistakes in the taxonomy of OSM tags, but rather have it re�ected faithfully
in the structure of the ontology.

Another example of semantic research work on OSM is the OpenStreetMap
Semantic Network� (Ballatore and Bertolotto, ����; Ballatore, Bertolotto, and
Wilson, ����). It is a Semantic Web resource extracted from the OSM Wiki
website, encoded as a SKOS vocabulary �. It contains a machine-readable
representation of OSM tags and several semantic relationships among them.

Beard, (����) introduces an ontology-based gazetteer model for organizing
VGI. The aim of such work is to try to associate VGI contribution to place such
that overtime places may be characterized through these contributions.
Fonseca et al., (����) present an ontology that can be used to classify geo-

graphic elements with respect to not only their geometrical features but also
their attribute values, i.e. their semantic features. In this work, they integ-
rate vector-based GIS (geometrical feature) that imports raster data (attribute
values) or raster-based GIS that imports vector data. The result of this classi-
�cation with an ontology support is a set of images indexed not only by its
semantics but also by its attribute values. In this way, they obtain not only a
static polygon but also a set of semantic features and its corresponding values.
This approach is very useful in cases in which we need to analyze and manage
observations on continuous spatiotemporal data.

Another problem that we have to cope with is language. When we search for
information about something, we usually use a speci�c language. For instance,
we are Italian, so we usually search for information in Italian. But, if we search
“Londra” and not “London”, we would �nd less information in Italian than in
English. There are several approaches designed to solve this kind of problems.
For instance, Laurini, (����) uses ontologies among gazetteers to try to create
a bridge connecting the same concept in di�erent languages. In Figure �.�, we
sketch the model of geographic ontologies.

Notice that, in our problem we need a geographic knowledge that describes

OSMonto
�It is possible to �nd more information here: http://wiki.openstreetmap.org/wiki/
OSM_Semantic_Network

�Simple Knowledge Organization System - http://www.w3.org/2004/02/skos/
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geographic data at �ne-grained level. After this analysis on geospatial know-
ledge in general, we focus the discussion on three ontologies that we consider
as best candidates for this work. The three knowledge bases are: GeoNames,
LinkedGeoData and OSM facet ontology. They are ontologies that describe
geographic data coming from GeoNames itself and OpenStreetMap. In the
following, we describe them in detail.

�.�.� A Semi-Authoritative Data Source and Gazetteer: GeoNames

The GeoNames Ontology makes it possible to add geospatial semantic inform-
ation to the World Wide Web. Over �� million GeoNames toponyms now have
a unique URL with a corresponding RDF web service. Other services describe
the relation between toponyms. The Ontology for GeoNames is available in
OWL.
GeoNames is a geosemantic data source web service. GeoNames contains

over ��,���,��� geographical names corresponding to over �,���,��� unique
features. All features are categorized into one of � feature classes and further
subcategorized into one of ��� feature codes. Each GeoNames feature is rep-
resented as a web resource identi�ed by a stable URI. This URI provides access,
through content negotiation, either to the HTML wiki page, or to an RDF de-
scription of the feature, using elements of GeoNames ontology. This ontology
describes the GeoNames features properties using the web ontology language,
the feature classes, and codes are described in the SKOS language. GeoNames
consists of various locations of all countries. It includes geographical data:
place names in various languages, latitude, longitude, altitude, and class.

The nine classes are represented by alphabetic letters. The classes are:

• A country, state, region, etc.

• H stream, lake, etc.

• L parks, area, etc.

• P village, city, etc.

• R road, railroad

• S sport, building, farm, etc.

• T mountain, hill, rock, etc.

• U undersea

• V forest, heat, etc.

The GeoNames ontology describes point-of-interest and high-level information
as a lake, village, forest, etc. However, the information at �ne-grained level is
not so exhaustive compared to other ontologies, as we will see in detail soon.
In Figure �.� we show the classi�cation of Greater London in GeoNames.

Greater London has class Feature with feature A and a speci�c code ADM�.
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F ����� � .� . Greater London in GeoNames.

We hereby report some other information and examples about the Geo-
Names ontology from the o�cial documentation (geonames.org/ontology/
documentation.html). In the GeoNames Semantic Web we use these URIs
for Berlin:

�. http://sws.geonames.org/2950159/

�. http://sws.geonames.org/2950159/about.rdf

If you want to express the fact that you are living in Berlin you use the �rst
URI, if you want to make a remark about the information GeoNames has about
Berlin then you use the latter.

The GeoNames web server is con�gured to return a ��� redirection response
for a request of the URI for the concept (Item �) and give Item � as the new
location of the document. This is one way how the Technical Architecture
Group (TAG) of theW�C has decided to resolve the ambiguity between concept
and document. The other accepted way to remove the ambiguity is the use of
hashes in the URI.
The Features in the GeoNames Semantic Web are interlinked with each

other. Depending on applicability the following documents are available for a
Feature:

• The children (countries for a continent, administrative subdivisions for a
country, ...). As an example the children of France: http://sws.geonames.
org/3017382/contains.rdf
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• The neighbors (neighboring countries). As an example the neighbors of
France : http://sws.geonames.org/3017382/neighbours.rdf

• Nearby features. Nearby to the Ei�el Tower are Champ deMars, Trocadéro
- Palais de Chaillot, ...: http://sws.geonames.org/6254976/nearby.
rdf

�.�.� Crowdsourced Data Source: OpenStreetMap

OpenStreetMap (OSM) is a collaborative project to create a free editable map
of the world via crowdsourced data.

The basic components of the OSM’s conceptual data model are:

• node: consists of a single point in space de�ned by its latitude, longitude
and node id. A third, optional dimension (altitude) can also be included.

• way: is an ordered list of nodes which usually also has at least one tag or
is included within a relation. A way can have between � and ���� nodes,
although it is possible that faulty ways with zero or a single node exist.

• relation: consists of one or more tags and also an ordered list of one or
more nodes, ways or geographic relationships between other elements. It
is sometimes used to explain how other elements work together.

OSM data can have associated tags that describe the meaning of the particu-
lar element they are attached to. A tag consists of a “Key” and a “Value”. Each
tag describes a speci�c feature of a data element or changesets�. Both Key and
Value are free-format text �elds. The Key describes a broad class of features.
The Value details the speci�c feature that is generally classi�ed by the key.
However, the tagging approach used in OSM is not very well structured and
therefore does not adequately support information retrieval.

Here are a few examples of how keys and values are used in practice:

• highway=residential a tag with a key of “highway” and a value of
“residential” which should be used on a way to indicate a road along
which people live.

• name=Park Avenue a tag for which the value �eld is used to convey the
name of the particular street.

• maxspeed=50 a tag whose value is a numeric speed in km/h (or in miles
per hour if the unit is provided with a su�x “mph”). Metric units are the
default.

In Figure �.� we can see how OSM is structured. In what follows we discuss
the di�erent components in greater detail.
�A changeset consists of a group of changes made by a single user over a short period of
time. One changeset may, for example, include the additions of new elements to OSM, the
addition of new tags to existing elements, changes to tag values of elements, deletion of
tags and also deletion of elements.
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F ����� � .� . OSM components.
Source: https://wiki.openstreetmap.org/w/images/1/15/OSM_
Components.png

���� A node is one of the core elements in the OpenStreetMap data model.
It consists of a single point in space de�ned by its latitude, longitude and node
id. A third, optional dimension (altitude) can also be included: key:ele (i.e.
elevation).

Nodes can be used on their own to de�ne point features. When used in this
way, a node will normally have at least one tag to de�ne its purpose. Nodes
may have multiple tags and/or be part of a relation. For example, a telephone
box may be tagged simply with amenity=telephone, or could also be tagged
with operator=*.

We discuss the structure of Node with an example.

L ������ � .� . An example of node.
<node id="25496583" lat="51.5173639" lon="-0.140043" version="1" changeset="203496"

user="80n" uid="1238" visible="true" timestamp="2007-01-28T11:40:26Z">
<tag k="highway" v="traffic_signals"/>

</node>

The main elements are:

• id: ��-bit integer number � �. Node ids are unique among nodes (however,
a way or a relation can have the same id number as a node.). Editors may
temporarily save node ids as negative to denote ids that have not been
saved yet to the server. Node ids on the server are persistent, meaning
that the assigned id of an existing node will remain unchanged each time
data are added or corrected.

• lat: decimal number � -��.������� and  ��.������� with � decimal
places. Latitude coordinate in degrees (North of the equator is positive)
using the standard WGS�� projection. Some applications may not accept
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latitudes above/below ±85 degrees for some projections.

• lon: decimal number � -���.������� and  ���.������� with � decimal
places. Longitude coordinates in degrees (East of Greenwich is positive)
using the standard WGS�� projection. Note that the geographic poles
will be exactly at latitude ±90 degrees but in that case, the longitude will
be set to an arbitrary value within this range.

• tags: A set of key/value pairs, with a unique key.

��� A way is an ordered list of nodes which usually also has at least one
tag or is included within a Relation. A way can be open or closed. A closed
way is one whose the last node on the way is also the �rst on that way. A
closed way may be interpreted either as a closed polyline, or an area, or both.

There are di�erent types of ways:

• Open way: An open way is a way describing a linear feature which does
not share a �rst and last node. Many roads, streams, and railway lines
are open ways. Sometimes, in these cases, it is important to identify the
direction of a “way” (with an appropriate tag).

• Closed way: A closed way is a way where the last node of the way is
shared with the �rst node with suitable tagging. A closed way that also
has a area=yes tag should be interpreted as an area (but the tag is not
required most of the time).

• Area: An area (also polygon) is an enclosed �lled area of territory de�ned
as a closed way. Most closed ways are considered to be areas even without
a area=yes tag. Some exceptions are: leisure = park and amenity =
school. The �rst de�nes the perimeter of a park and the second de�nes
the outline of a school. For tags which can be used to de�ne close polyline,
it is necessary to also add a area=yes if an area is desired. For instance,
highway = pedestrian + area = yes to de�ne a pedestrian square
or plaza. Areas can also be described using one or more ways which are
associated with a multipolygon relation.

• Combined closed-polyline and area: It is possible for a closed way to
be tagged in a way that it should be interpreted both as a closed-polyline
and as an area.

For instance, a way is:

L ������ � .� . An example of way.
<way id="5090250" visible="true" timestamp="2009-01-19T19:07:25Z" version="8"

changeset="816806" user="Blumpsy" uid="64226">
<nd ref="822403"/>
<nd ref="21533912"/>
<nd ref="821601"/>
<nd ref="21533910"/>
<nd ref="135791608"/>
<nd ref="333725784"/>
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<nd ref="333725781"/>
<nd ref="333725774"/>
<nd ref="333725776"/>
<nd ref="823771"/>
<tag k="highway" v="residential"/>
<tag k="name" v="Clipstone Street"/>
<tag k="oneway" v="yes"/>

</way>

The nodes de�ning the geometry of the way are enumerated in the correct
order and indicated only by reference using their unique identi�er. These
nodes must have been already de�ned with their coordinates.

�������� A relation is one of the core data elements that consists of one or
more tags and also an ordered list of one or more nodes, ways and/or relations
as members. A member of a relation can optionally have a role which describes
the part that a particular feature plays within a relation.

Relations are used to model logical (and usually local) or geographic relation-
ships between objects. They are not designed to bind loosely associated and
widely spread items. It would be inappropriate, for instance, to use a relation
to group ’All footpaths in East Anglia’.

It is recommended to use no more than about ��� members per relation. If
you have to handle more than that amount of members, it is better to create
several relations and combine them with a Super-Relation �. This is because
the more members are stu�ed into a single relation, the harder it is to handle,
the easier it breaks, the easier con�icts can show up and the more resources it
consumes at database and server level.
A role is an optional textual �eld describing the function of a member of

the relation. For example, in North America, role:east indicates that a way
would be posted as East on the directional plate of a route numbering shield.
Or, multipolygon relation, role:inner and role:outer are used to specify
whether a way forms the inner or outer part of that polygon.

There are several types of relation�.
An example of relation is shown in Listing �.�.

L ������ � .� . An example of relation.
<relation id="3503470" visible="true" version="19" changeset="33628327"

timestamp="2015-08-27T19:01:18Z" user="vpettenati" uid="834086">
<member type="way" ref="265375775" role="outer"/>
<member type="way" ref="367867538" role="outer"/>
<member type="way" ref="309967328" role="outer"/>
<member type="way" ref="339565174" role="outer"/>
<member type="way" ref="339565178" role="outer"/>
<member type="way" ref="339565177" role="outer"/>
<member type="way" ref="339565175" role="outer"/>
<member type="way" ref="339565176" role="outer"/>
<member type="way" ref="339565180" role="outer"/>

�We have to admit, anyway, that though “super-relations” is a good concept on paper none of
the many OSM software applications is working with them.

�There are listed http://wiki.openstreetmap.org/wiki/Types_of_relation
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<member type="way" ref="367867539" role="outer"/>
<member type="way" ref="339565173" role="outer"/>
<tag k="allocation:it" v="Il suo territorio si estende per oltre 22.000 ettari

lungo la dorsale appenninica tra l’Emilia-Romagna e la Toscana interessando le
province di Massa-Carrara, Lucca, Reggio Emilia e Parma"/>

<tag k="boundary" v="protected_area"/>
<tag k="governance_type" v="government_managed"/>
<tag k="iucn_level:ref" v="2"/>
<tag k="leisure" v="nature_reserve"/>
<tag k="name" v="Parco nazionale dell’Appennino Tosco-Emiliano"/>
<tag k="operator" v="Ente Parco Nazionale dell’Appennino tosco emiliano"/>
<tag k="protect_class" v="2"/>
<tag k="protection_title:" v="geomorphological"/>
<tag k="ref:EUAP" v="EUAP1158"/>
<tag k="ref:SIC" v="n.a."/>
<tag k="related_law"

v="Decreto del Presidente della Repubblica del 21 maggio del 2001"/>
<tag k="site_ownership" v="national"/>
<tag k="site_status" v="obtained"/>
<tag k="source"

v="http://servizigis.regione.emilia-romagna.it/wms/areeprotette_natura2000"/>
<tag k="type" v="multipolygon"/>
<tag k="WDPA_ID:ref" v="178782"/>
<tag k="wikipedia"

v="it:Parco nazionale dell’Appennino Tosco-Emiliano"/>
</relation>

In Listing �.� there is a multipolygon relation. A multipolygon relation can
have any number of ways in the role outer (the outline) and any number of
ways in the role inner (the holes), and these must somehow form valid rings
to build a multipolygon from.

��� Each tag has only a key and value. Tags are written in OSM document-
ation as key=value.

• The key describes a broad class of features (for example, highways or
names).

• The value details the speci�c feature that was generally classi�ed by the
key (e.g. highway=motorway). If multiple values are needed for one key
the semi-colon value separator may be used in some situations.

OpenStreetMap uses tags to add meaning to geographic objects. There is
no �xed list of tags. New tags can be invented and used as needed. Everybody
can come up with a new tag and add it to new or existing objects. This makes
OpenStreetMap enormously �exible, but sometimes also a bit hard to work
with.

Since OSM has no explicit semantic level associated with it, a lot of re-
searchers studied this problem proposing a di�erent solution. In Chapter �
we have already shown some solutions. Analyzing them, we choose two
representative solutions that we explain in the following. The �rst one is
LinkedGeoData(Stadler et al., ����) (LGD), and the second one is OSM facet
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F ����� � .� . LGD components.
Source: Stadler et al., (����)

ontology, an ontology for OSM that we develope with the aim to have a better
classi�cation of OSM tags conceptualizing the city.

�.�.� OSM-Based Ontologies

Since OSM is a geographic data sources with only an implicit semantic level
obtained with tags, there are solution in literature to add a semantic structure
to OSM. In this thesis, we introduce LinkedGeoData and OSM facet ontology.

������������� Stadler et al., (����) presented an ontology called LinkedGeoData
(LGD) that links OSM information to DBpedia, GeoNames and others ontolo-
gies. LGD uses the comprehensive OpenStreetMap spatial data collection to
create a large spatial knowledge base. It consists of more than � billion nodes
and ��� million ways and the resulting RDF data comprises approximately ��
billion triples. The data is available according to the Linked Data principles
and interlinked with DBpedia and GeoNames.
In Figure �.� we show the LGD components as described by Stadler et al.,

(����). The LGD ontology is derived from OSM tags. An OSM object can have
more than one tag. They consider each tag separately. In some cases, they
split the the key from the related value and both became classes with the
subclass relation between them, e.g., an object with amenity = restaurant
became the instance of lgdo:Restaurant� that is SubClassOf lgdo:Amenity.
In other situations, they give a speci�c class to a set of tags that represent the
same concept, e.g., an object with tags amenity = place_of_worship and
religion = christian became instance of lgdo:Church . In this way, they
create an ontology structure very close to OSM structure. Stadler et al., (����)

�lgdo is the pre�x of LGD ontology resources.
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declare in the research paper that in the �rst release of LGD there were ��
object properties. After a better analysis, they considered useful only � object
properties.

��� ����� �������� The OSM Facet ontology (Di Rocco, ����, ����)
allows us to use the data present in OSM as instances of an ontology. It is
extracted from the non-spatial information from geospatial data in order to
create a classi�cation hierarchy. This ontology aims at classifying geospatial
objects that are relevant in urban contexts, thus, that may appear in a generic
city, trying to avoid, whenever possible, to focus on the speci�cities of a
particular city. For this reasons, the OSM Facet ontology is structured to
represent geographic information on a city using three di�erent facets: Point
of Interest (PoI) facet; geoPolitical facet; geoPhysical facet.
The OSM Faceted Ontology is used to �lter OSM data associating speci�c

classes with tags of OSM objects. It contains �� classes.
First of all, we need to create a class that represents the target domain, i.e.

the core of the ontology on which we implement the facets. The obtained
pattern is shown in Listing �.�.

L ������ � .� . Faceted Ontology pattern in Turtle

# Ob j e c t P r o p e r t i e s
: h a s F a c e t _ i r d f : type owl : Ob j e c t P r op e r t y ;

r d f s : domain : TargetDomainConcept ;
r d f s : range : F a c e t _ i .

: i s P a r t O f r d f : type owl : Ob j e c t P r op e r t y ;
r d f s : domain : TargetDomainConcept ;
r d f s : range : F_iTerm_jTDC .

# C l a s s e s
: F_ iTerm_j r d f : type owl : C l a s s ;

owl : e q u i v a l e n t C l a s s : F_iTerm_jTDC ;
r d f s : subC la s sO f : F a c e t _ i .

: F_iTerm_jTDC r d f : type owl : C l a s s .

: F a c e t _ i r d f : type owl : C l a s s .

: Spec i f i cTDC_x r d f : type owl : C l a s s ;
r d f s : subC la s sO f : TargetDomainConcept

.

: TargetDomainConcept r d f : type owl : C l a s s .

Referring to Listing �.�, we can better explain our ontology:

• TargetDomainConcept is a class that represents a domain;
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• Facet_i is a class that represent a di�erent facets. In our case i = 3 then
we have three di�erent classes.

• SpecificTDC_x is a class to represent a speci�c feature of domain. In
our case, x = 1. This means that we have only one speci�cation of facet
domain.

• F_iTerm_j and F_iTerm_jTDC are equivalent classes and they are re-
spectively subclasses of Facet_i and isPartOf relation of TargetDomainConcept.
In our case represent the �rst child of our facets.

This pattern is useful for each domain in which we can perform a faceted
searching. We use this pattern to implement our ontology.

Based on the introduced pattern, we develop our ontology to classify OSM
tags.

Our TargetDomainConcept is a city. We want to search geographic inform-
ation on a city using the three di�erent facets. In Figure �.� we can see the
root of the ontology: Target Domain and Facets. We have a class City that
represents the target domain. This class is related to the facets through a rela-
tion City -> hasFacet -> *_facet (yellow arrow) and it is related to the
speci�c concept of facets through a relation *_facet -> hasSubClass ->

* -> isPartOf -> City (orange arrow). The �gure also shows subClass
relations between classes (purple arrows).

F ����� � .� . Screen of a part related to City class.

�.� Location Prediction

There are multiple di�erent techniques proposed for extracting implicit geo-
graphic information from social media messages. In this section we investigate
the di�erence between multiple di�erent approaches. We also highlight that
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a strong part of our approach is its ability to be used in combination with
existing techniques, e�ectively improving their geolocation completeness and
correctness. In the surveys (Ajao, Hong, and W. Liu, ����; X. Zheng, Han, and
A. Sun, ����), a general overview of di�erent methods for location inference
can be found.
The complete discussion is based on microblog data, more precisely on

Twitter data. As we presented in Chapter �, Twitter contains three types of
information. All of them can be used to solve various location prediction
problems. We follow the categorization de�ned in (X. Zheng, Han, and A.
Sun, ����) and discuss location prediction based on the di�erent types of
information involved: content, network and context. This is because multiple
data sources can help enrich the available information. However, each di�erent
type of information is involved and used in di�erent instances of the problem.

We identify three di�erent instances of the location prediction problem:

�. home location prediction,

�. user location prediction,

�. tweet location prediction.

Home location prediction is the problem of inferring the location of the home
of a user. For example, looking at the messages of a user, we try to understand
where (s)he came from. User location prediction is the problem related to
understanding where a user currently is. For example, when a user write a
message like: “Lunch with my collegues”, we want to understand that is user
is in lunch-break more probably close to the o�ce. Finally, tweet location
prediction is the problem of inferring the location to which a tweet refers
to. Twitter messages contain a lot of time implicit geographic information
that reveals their position in the world. Processing tweets to �nd the implicit
geographic information is an essential step for applications that need to gather
geographic information to analyze users or events (Imran et al., ����).
The literature is also subdivided in the aforementioned problem instances.

In our opinion, there is no big di�erence between tweet location prediction
and mentioned location prediction. In these two instances, the only di�erence
is the precision with which we geotag. In the following, we discuss these
problem instances and the proposed approaches to address them.

�.�.� Home Location Prediction

Home location prediction is the problem related to predicting the location of
the home of a user.
In case of Twitter, home locations refer to users’ long-term residential

addresses. The home location of a user is relevant for di�erent applications
such as local content recommendation, location-based advertisement, public
health monitoring, public opinion polling, etc. As we will see also for the other
problems, research is very active in this area due to the fact that the home
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�eld on Twitter is optional and often this �eld is empty or noisy. We highlight
that usually the home location is predicted at city-level or state/country level
(Cheng, Caverlee, and Lee, ����; Kinsella, Murdock, and O’Hare, ����; Samet
et al., ����). In fact, the home location may be represented at di�erent levels
of granularity:

• Administrative regions, i.e., countries, states, cities.

• Geographical grids, i.e., the earth is partitioned into cells of equal or
di�erent sizes.

• Geographical coordinates, i.e., homes are represented by their geograph-
ical coordinates. In general, the coordinates are self-reported or converted
from administrative regions or geographical grids by taking the center in
with their fall in.

In the following, we start to discuss the problem based on Twitter informa-
tion used. First, inference based on tweet content, then on Twitter network
and we conclude with Twitter context.

�.�.�.� Inference based on Tweet Content

Approaches that use tweet content to understand where a user came from
can be in general subdivided into two categories: word-centric and location-
centric. The involved techniques are based on probability in both categories.
Word-centric methods estimate the probability of a location l given a wordw
in text message, i.e., p (l |w ). Location-centric methods estimate the probability
of generating a tweet t at a given location l , i.e., p (t |l ).

������������ ������� Word-centric methods aim at identifying and
exploiting words that help predict users’ home locations. Notice that, not all
words are linked to a spatial location. Only words that can be linked with
a spatial location should be involved. We want to highlight that location
information implied by local words should be learned from data before making
predictions.
One of the most important and �rst word-centric approaches is by Back-

strom, Kleinberg, et al., (����). They propose a spatial variation model based
on words. They assume that each word has a spatial location, a frequency in
that location and a dispersion factor. They have shown that the probability
to show a word in that location with a distance d to the spatial location is
proportional to the frequency multiplied by the distance powered by minus of
a dispersion factor, i.e.,

p = Cd��

where C is a constant that represents a spatial location, d is the person’s
distance from that spatial location and � is the exponent that determines
how quickly a frequency of toponym appearance in the data can fall o� away
from the spatial location. More easily, they present a model that speci�es a
one-peak distribution in the spatial location with exponential decay. The work
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of Cheng, Caverlee, and Lee, (����) uses a probabilistic framework to estimate
the city-level coordinates of tweets based on the text message. They do not use
geotags of a single tweet but use the place information �eld extracted from the
user pro�le. They identify words that have a local focus and then model their
geographic distribution, i.e., they build a statistical predictive model. More
precisely, the distribution of a user u’s home location l given his/her tweet
contents S (u) is decomposed as

P (l |u) /
X

w 2S (u )
P (l |w )P (w ).

They present a variation of the model presented in Backstrom, Kleinberg, et al.,
(����) as a smoothed distribution. In their extended work, Cheng, Caverlee,
and Lee, (����) generalized the one-peak model by wave-like smoothing to
allow multi-peaks for word-distribution. Finally, also Ryoo and Moon, (����)
use both the probabilistic approach of Backstrom, Kleinberg, et al., (����) and
of Cheng, Caverlee, and Lee, (����), showing how this approach should be
used in a Korean dataset too and not only in an English one.

���������������� ������� Location-centric methods aim to give
a more central role to locations. To do so, they use classi�cation-based ap-
proaches on location to infer the user’s home location.

Hecht et al., (����) propose a CALGARI score for words, which is similar to
information based measures. They select the top ��,���words with the highest
CALGARI scores as local words. Then, they represent users as ��,���-dim term
frequency vectors and feed them into a multinomial Naive Bayes classi�er.
Calgari is an algorithm that calculates a score for each term present in the
corpus using the following formula:

CALGARI (t ) =
8><>:
0 if users (t ) < MinU
max(P (t |c=C ))

P (t ) if users (t ) � MinU

where t is the input term, users ia a function that calculates the number of
users who have used t at least once,MinU is an input parameter to �lter out
spam, and C is a geographic class, i.e., a state or a country. Mahmud, Nichols,
and Drews, (����) apply a series of heuristic rules to select local words. They
adopt a hierarchical ensemble algorithm to train two-level classi�er ensembles
on the granularity of timezone-city or state-city. They use classi�ers on three
di�erent terms: words, hashtags, and place names. These classi�ers can be
created for any level of granularity for which they have ground truth.
A similar approach can be found in Kinsella, Murdock, and O’Hare, (����).

They model locations from zip code to country level using a probability distri-
bution of terms associated with a location.

�.�.�.� Inference based on Twitter Network

One of the major activities of Twitter users is to establish following-type
relationships and interact with friends. It is argued in the literature that social
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closeness, which is based on friendship, interactions, retweeting, etc., is more
reliable for estimating home location than friendship only. Therefore, it could
be interesting to involve the network in order to infer home location.
In social science the concept of homophily (McPherson, Smith-Lovin, and

Cook, ����) is the tendency of individuals to associate and bond with similar
others, in other words, similar people contact at a higher frequency than
dissimilar ones. A considerable amount of work on home location inference is
based on this concept. A quick intuition maybe that one’s home location is
very likely to be close to his/her friend’s home location. One of the earliest
approaches that used the friendship model to infer location is Backstrom,
E. Sun, and Marlow, (����). This study is conducted on Facebook data but
forms the basis for some other approaches used for Twitter data. The authors
analyze Facebook users with a known home location and their friends. They
�t the probability of two users being friends w.r.t. their home distance with a
following curve:

P (ui ,uj are friends |dist (ui ,uj ) = x ) = a(b + x )�c ,

i.e., the probability of friendship is inversely proportional to home distance
(with c = 1 that is the value with which they obtain a good �t). If they start
only with direct friends, Kong, Z. Liu, and Huang, (����) �nd that rich indirect
friendship on Twitter may be better to indicate o�-line friendship between
two users, and thus their home location proximity.

However, not only friendship is a part of a Twitter network information. We
can have important social-closeness information from mentions, retwitting
and in�uence. Kong, Z. Liu, and Huang, (����) also shown that social close-
ness, or how familiar two users are in real life, is a better indicator of home
proximity. Since mentions is another form of interaction, McGee, Caverlee,
and Cheng, (����) observe that friendship probability w.r.t. home distance on
Twitter roughly satis�es a bimodal distribution (in contrast to the equation
proposed in Backstrom, E. Sun, and Marlow, (����)). By observing mentions
and friendship, they �nd that besides mutual friendship through following,
users’ actions of mentioning and actively chatting with each other also indicate
their home proximity. They also make another interesting observation: if the
followed user has a protected account ��, the two users are geographically
close and local newspaper accounts are close to their followers.
Chandra, Khan, and Muhaya, (����), use a probabilistic framework to es-

timate the city-level Twitter user location. The probabilities are based on the
contents of the tweet messages with the aid of reply-tweet messages generated
from the interaction between di�erent users in the Twitter social network.
Notice that in�uence (i.e., the popularity of a user) also impacts on social

closeness. Di�erently for the other factors, in�uence has a negative impact.
Kwak et al., (����) �nd that users with fewer than ���� mutual friends are
more likely to be geographically close to most of them, in contrast with famous
people like VIP.
��A protected account is an account with no public information. In general, a protected account

is an ordinary person.
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�.�.�.� Inference based on Tweet Context

Tweets have di�erent context information that can come from tweet metadata.
Among them, tweet posting time and self-declared user pro�les like location
and timezone are mainly employed to help to predict home location.
Mahmud, Nichols, and Drews, (����), in the extensions of their previous

work, propose identifying and removing traveling people from training data
to improve the accuracy of home location classi�ers. A user is considered
traveling if any two of his/her tweets were sent from locations with distance
above ��� miles. Moreover, they take into consideration tweet posting time.
Users are viewed as distributions of tweet posting times. Distribution became
a feature in the classi�ers. Efstathiades et al., (����) utilize a probabilistic
approach on geo-tags associated with tweets to estimate user home location.
In general, they observe that during the day users spends a signi�cant amount
of time in two key locations that are work and home. These location appear
always in speci�c time w.r.t. locations that are not so frequent in the user
routine.

�.�.�.� Summary

In order to give a good overview of the state-of-the-art related to home location
prediction, we summarize related work in Table �.�. We notice that in the state-
of-the-art, content, network and context are all commonly used to solve the
problem. All the existing methods are data-driven and use probabilistic and
inference approaches, or in a lot of cases classi�cation, to solve the problem.
This could be considered true for all the di�erent inputs that can be used
with Twitter data. In the research paper of Jurgens et al., (����), we �nd an
experimental comparison of the articles shown in this section. They conducted
the experiments on the same dataset using as ground-truth both self-declared
home location and geo-tags. In this way, they provide a detailed overview of
the methods.
The work presented in this thesis has a di�erent aim w.r.t. home location

prediction. We aim at predicting a location where a tweet originates from. This
is discussed in further details in the discussion section of this chapter.

�.�.� User Location Prediction

User location prediction aims to �nd the location where a user is when (s)he
posts. In literature, we can also �nd the general terminology of tweet location
prediction. Tweet location prediction, in general, means the place from where
a tweet is posted. Tweet location prediction could be ambiguous because it
can refer to user location prediction or mentioned location prediction. If we
look for a user location prediction, we want to have a complete picture of a
user’s mobility (this is in contrast with a home location prediction presented
in Section �.�.�). This means that these types of algorithms are based on the
geo-tags of tweets. We can interpret user location prediction as tweet location
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T���� � .� . Research papers on home location prediction.
Content Network Context

Word-centric Location-centric Friendship Social-closeness -
Backstrom, Kleinberg, et al., (����) X
Cheng, Caverlee, and Lee, (����, ����) X
Ryoo and Moon, (����) X
Hecht et al., (����) X
Mahmud, Nichols, and Drews, (����) X
Kinsella, Murdock, and O’Hare, (����) X
Backstrom, E. Sun, and Marlow, (����) X
Kong, Z. Liu, and Huang, (����) X
McGee, Caverlee, and Cheng, (����) X
Chandra, Khan, and Muhaya, (����) X
Kwak et al., (����) X
Mahmud, Nichols, and Drews, (����) X
Efstathiades et al., (����) X

prediction. In user location prediction we want take care of all the information
of a user is in order to geolocate a tweet.

In this case, we do not have representations based on administrative regions
or grids, but instead, the location is represented as:

• Coordinates;

• Point Of Interest (POI).

In the following, we will not discuss approaches that have as a main focus
messages content. In this section, we cover approaches that are interested
in understanding where a user is and not where (s)he came from or his/her
messages came from. Hence, the approaches reviewed used di�erent inputs
together with the content. Not many approaches tackle this problem.

�.�.�.� Inference based on Twitter Network

In user location prediction the location inference is, in general, �ner than home
location prediction. In home location prediction, we are interested only at the
city where a user came from. In this speci�c problem, instead, researchers need
to add other information to messages in order to exactly understand where a
user is. The general idea is to align friends networks to a user’s messages to en-
rich the available information. Sadilek, Kautz, and Bigham, (����) use as input
the real-time location of a user’s friends and his/her historical location. They
study the correlation between the trajectories of friends and auto-correlation
within one’s trajectory and use it in a dynamic Bayesian network trained on
the location sequence of each user with his/her friend location, considering
time and day as a features.

�.�.�.� Inference based on Tweet Context

In this section, we discuss algorithms that exploit di�erent context information
to geolocate a user. They use self-declared home location, timezone, and
website. Moreover, some approaches also make use for third-party applications
to understand the activity of a user.
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T���� � .� . Research papers on user location prediction.
Network Context

Sadilek, Kautz, and Bigham, (����) X
Schulz, Hadjakos, et al., (����) and Schulz, Mencia, et al., (����) X
Chong and Lim, (����) X
Ikawa, Enoki, and Tatsubori, (����) X

Schulz, Hadjakos, et al., (����) and Schulz, Mencia, et al., (����) propose
a method that relies on a multi-indicator spatial approach to disambiguate
toponyms. The result is an algorithm for determining the location where a
tweet was generated and also the user’s home at a �ne-grained level. They
accumulate tweet location indicators from user pro�les: self-declared home
location, websites, timezone and possible location names mentioned in the
tweets. Using multiple databases, they resolved these indicators to polygon-
shaped administrative areas that they used to produce a spatial distribution of
possible tweet locations of a user.
Chong and Lim, (����) exploit use context information in a di�erent way.

They observe that both venues’ active times and users’ visiting places histories
could help on tweet location prediction. Estimating the probability that a
location is popular in a given time, they propose a smoothed kernel density
estimation method.
Ikawa, Enoki, and Tatsubori, (����) propose a standard machine learning

approach. The learn a location estimation function in order to infer the location
of a new users’ message. In the learning phase they classi�ed messages in
two types: locations messages that represent the current user’s location and
expression messages that represent the current user’ situation.

�.�.�.� Summary

In Table �.�, we summarize the discussed approaches in user location prediction.
Di�erently from the approaches in home location inference, classi�cation-
based methods are not commonly used. We notice that, due to the aim of user
location inference, no methods only use messages content without any other
information. The inference granularity is �ne: the location inference is always
represented as coordinates or Point of Interest. Due to this, some of these
algorithms could be possible candidates for a comparison with our method
but, although Chong and Lim, (����) declare that they �nd the location with a
very small distance error, the evaluation method is not based on standard error
measurement (i.e., kilometers). This speci�c approach is not easy to compare
on, in general, with the majority of state of the art methods.

�.�.� Tweet Location Prediction

It is reported that less than �% of tweets are explicitly geotagged (Graham,
Hale, and Ga�ney, ����). For this reason, a lot of research has been devoted
to the topic of geolocating tweets. To facilitate the discussion, we subdivide
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tweet location prediction approaches into generic tweet location prediction
and mentioned location prediction.
We de�ne generic tweet location prediction as the problem of inferring

the location of a tweet whatever its content. We de�ne mentioned location
prediction as the problem of �nding toponyms mentioned in tweets. These
location predictions can bene�t applications like location recommendation
and disaster and disease analysis. In this thesis, we also present an algorithm
that has the aim to geolocate a microblog message if it contains mentions of
locations or of geographic classes (e.g., restaurant or hotel).
As compared to home location prediction and user location prediction, in

this case the inputs of the approaches are di�erent. The methodologies, in
general, are the same.

�.�.�.� Generic Tweet Location Prediction

Generic tweet location prediction presents several similarities to home location
prediction problems explained before. The critical di�erence is the input:
generic messages instead of messages grouped by users.

��������� ����� �� ����� ������� Due to the similar problem
de�nition, generic tweet location prediction and home location prediction
share the same techniques. As in Section �.�.�, we can subdivide the inference
based on tweet content into:

• word-centric/location-centric (Hulden, Silfverberg, and Francom, ����;
Kinsella, Murdock, and O’Hare, ����; Priedhorsky, Culotta, and Del Valle,
����).

• topicmodel based (Eisenstein, Ahmed, andXing, ����; Eisenstein, O’Connor,
et al., ����; Yuan et al., ����).

Priedhorsky, Culotta, and Del Valle, (����) employ Gaussian mixture models.
They model the spatial usage of not only words but also n-grams. This choice
was motivated by the fact that they want to infer the coordinate of just one
message at a time. Therefore they �nd a solution to increase the quantity and
quality of the information. As an example of the location-centric prediction
model, we cite Kinsella, Murdock, and O’Hare, (����). This is an information
retrieval based solution. They treat both tweets and locations as Dirichlet
smoothed unigram language models. Moreover, some approaches use classi-
�cation methods to geolocate a message. An interesting example is Hulden,
Silfverberg, and Francom, (����). They classify tweets’ text into discretized
cell grids with words as features.

Other approaches use topicmodels to take into account the relations between
topics and classify tweets w.r.t. the topics extracted (Eisenstein, Ahmed, and
Xing, ����; Eisenstein, O’Connor, et al., ����; Yuan et al., ����). A topic model
could integrate di�erent aspects related to locations as latent variables into a
uni�ed model. These methods are also called geo-topic-model-based methods.
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An example of these model can be found in Eisenstein, Ahmed, and Xing,
(����) and Eisenstein, O’Connor, et al., (����). In the �rst work (Eisenstein,
O’Connor, et al., ����), they extend the classical topic models by changing the
conventional topics and produce location variation topics. For example, “NBA”
may be a representative word in “basketball” topic produced by conventional
models. By sampling from a Gaussian distribution centered at the “basketball”
topic vector, the changed “basketball” topic for Boston may also include “Celt-
ics” (a Boston-based team) while slightly changing other word frequencies.
In the second approach (Eisenstein, Ahmed, and Xing, ����), they propose
a Sparse Additive GEnerative model (SAGE). This model supports the idea
of the changed topics presented above, also managing the sparsity problem.
Since these models use not only tweets but also users, these are home location
prediction algorithms. However, we decide to present them here (as also X.
Zheng, Han, and A. Sun, (����) did in their survey) since they are considered
the �rst ones that use a topic model to geolocate tweets and are fundamental
to understand other work on the topic model.

A good example of generic tweet location prediction algorithms that exploit
topic modeling is Yuan et al., (����). They add an intermediate variable to topic
models called regions between users and locations. For example, a user may
have a “work” region and a “home” region, which are Gaussian distributions
centered at her workplace and home address, respectively. Suppose the user is
at her work region and wants to eat, i.e., choosing “eating” from her common
interests. She will pick a restaurant near her workplace and write a tweet
about eating and the work region, tagged with the name of the restaurant.

��������� ����� �� ����� ������� Tweet posting times are indic-
ative of users’ home locations, where a distribution of posting times character-
izes a user. Unlike home locations, for tweet location prediction we only access
a tweet’s posting time rather than a distribution. We cite here again Yuan
et al., (����) since they also use time periods in their model. Paraskevopoulos
and Palpanas, (����) improve the geolocation based on the content similarities
of tweets, as well as their time-evolution characteristics. Cunha, Soares, and
Rodrigues, (����) analyze tweets to �nd a spatiotemporal pattern. They use
data mining to analyze di�erent types of information from tweets: spatial,
temporal, social, and content information.

�.�.�.� Mentioned Location Prediction

In general, mentioned location prediction can involve two sub-tasks:

• Mentioned Location Recognition: extract text fragments in a tweet that
potentially refer to location names.

• Mentioned Location Disambiguation: map recognized location names to
the right entry in a gazetteer.

Notice that, for well-formatted documents (e.g., news) entity recognition,
and disambiguation are extensively studied (Nadeau and Sekine, ����). Of
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course for tweets, there aremore problems related to the nature of themessages.
The messages contain noise and are not always written in natural language.

��������� ����� �� ����� ������� There are many solutions that
involve Name Entity Recognition (NER) in general (X. Liu et al., ����; Ritter,
Clark, Etzioni, et al., ����), however we are mainly interested in discussing
the ones that are speci�c to location entity recognition. These solutions are
characterized by the use of gazetteers, e.g., GeoNames�� or Foursquare��.
Solutions of course exist for long and well-structured text. An example is

Lieberman, Samet, and Sankaranarayanan, (����).
Moreover, Zhang and Gelernter, (����) use similar ideas in their research

work. The use of the hierarchical structure of locations they employ is inter-
esting. They consider parent-child locations pairs, e.g., “Paris” and “France”
should be capital and country if they are used in the same tweet. However, to
have the strongest coherence, they also use in the hierarchy the relation that
can hold between the locations that are not just parent-child-like cities in the
same country, e.g., “Paris” and “Bordeaux”.
Di�erently from Zhang and Gelernter, (����), C. Li and A. Sun, (����) use

disambiguation coherence at user-level rather than at tweet level. They exploit
the idea that mentioned locations in a user’s tweets are generally inside his/her
living city. They �rst identify the city by aggregating candidate locations for
the mentions and then re�ne those candidates with the city.

��������� ����� �� ����� ������� /������� Also in the case of
mentioned location prediction the use of network and contextual information
is essential. We cite two research proposals in this paragraph that are relevant:
Fang and Chang, (����) and Hua, K. Zheng, and Zhou, (����).
Hua, K. Zheng, and Zhou, (����) use the idea that others could in�uence

a user on mentioning a location. If many users in his/her network used to
indicate a place, more probably the user will say it. They adopt an incremental
disambiguation approach. They pre-process a large number of tweets to es-
timate friendship-based user interest for locations. In addition, they also use
the timestamp information of tweets. Fang and Chang, (����) use geo-tags
and timestamp in the disambiguation phase. Both these approaches should be
useful for general entities, not only for locations.

�.�.�.� Summary

In this section we provided a review of the literature on tweets location pre-
diction algorithms. We considered two aspects of the tweets location:

• generic tweet location: even if the tweet does not explicit mention a
location, we can associate a location with it (based on content/network
contest).

��geonames.org
��foursquare.com
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T���� � .� . Rßesearch papers on tweets location prediction.
Content Network Context

Word/Location -centric Topic model based - -
Generic Tweet location inference

Priedhorsky, Culotta, and Del Valle, (����) X
Kinsella, Murdock, and O’Hare, (����) X
Hulden, Silfverberg, and Francom, (����) X
Eisenstein, Ahmed, and Xing, (����) and Eisenstein, O’Connor, et al., (����) X
Yuan et al., (����) X X
Cunha, Soares, and Rodrigues, (����) X
Paraskevopoulos and Palpanas, (����) X

Mentioned location prediction
Zhang and Gelernter, (����) X
C. Li and A. Sun, (����) X
Hua, K. Zheng, and Zhou, (����) X X
Fang and Chang, (����) X X

• mentioned location: if in the tweet is mentioned a location, we attach
that location to it.

These two aspects involved di�erent techniques to infer a location. Moreover,
the ground truth are collected di�erently. In generic tweet location prediction
we use geolocated tweets, in mentioned location prediction we use manually
annotated tweets in order to be sure which one is the toponym appearing
in the tweet. However, also these approaches are data-driven. We can �nd
some approaches that use also external knowledge (Gelernter, Ganesh, et al.,
����; Gelernter and Mushegian, ����; Zhang and Gelernter, ����), in general
in mention location prediction, but it is a plus only.

In Table �.�, we provide a summary of the state of the art.

�.� Discussion

In this chapter we analyzed the state-of-the-art by looking at two di�erent
research directions. First, we discussed various types of geographic knowledge,
in order to provide a good understanding on what types of information we
can use to augment current geolocation algorithms. Second, we provided an
extensive review on Twitter message location inference.

This thesis forms part of the Twitter message location research �eld. How-
ever, since the solution proposed in this thesis is a knowledge-based algorithm,
we discuss the state of the art of geospatial ontologies.

Giving another important point of view, we not only studied geospatial
ontologies based on what they conceptualize but also we studied geospatial
database on the sources from what they are generated. We classify geographic
sources as authoritative and crowdsourced. One of the most popular examples
of a semi-authoritative source is GeoNames, and one famous example of a
crowdsourced data source is OSM. GeoNames is structured with its explicit
ontology level, while OSM is not associated with an explicit ontological level,
however, it is possible to extract semantic information from tags associated
with toponyms. In the state-of-the-art, this problem is largely investigated
and it is possible to attach a semantic level to OSM. Examples of knowledge
obtained by enriching OSMwith this semantic level are LinkedGeoData (Stadler
et al., ����)(LGD) an ontology that links OSM information to DBpedia and
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other ontologies, and OpenStreetMap Facet Ontology (Di Rocco, ����, ����)
an ontology structured on top of OSM for conceptualizing a city.
In regards of geolocation algorithm, we discuss speci�cally Twitter loca-

tion prediction algorithms. It is important to note that various methods exist
(e.g., Zhang and Gelernter, (����)), which investigate the use of explicitly
mentioned location information in microblog messages (see Section �.�.�.�).
However, the extracted information is only used as part of a training pipeline
in order to create labels. An important problem is that such pipelines su�er
from a large pre-processing overhead. Moreover, the majority of those methods
relies on data sources such as GeoNames that do not contain much information
at sub-city level. Finally, such methods rely on manually labeled messages
in order to be trained. When such manually pre-processed datasets are not
available, data-driven methods fail, while a knowledge-based solution could
still be applied.
The proposed classi�cation of location inference algorithms is only one

possible classi�cation. During our study we also concentrated the literature
considering algorithms that geolocate at city-level or algorithms that geolocate
at sub-city level, also called, �ne-grained level. This is another classi�cation
using which we can categorize related work. In general, the majority of the
research work shown in this chapter are city-level algorithms.
However, there exist some research projects that have also tackled the

issue of �ne-grained microblog message geolocation. Gelernter, Ganesh, et
al., (����) and Gelernter and Mushegian, (����) improve the level of detail in
geotagging locations that occur in disaster-related social messages. Using a
dataset containing messages exchanged during the Haiti earthquake of ����
and Japan tsunami of ����, they improve the location identi�cation at the level
of the neighborhood, street, or building.

Paraskevopoulos and Palpanas, (����) improve the geolocalisation based on
the content similarities of tweets, as well as their time-evolution characteristics.

Di�erently, from Gelernter and Mushegian, (����), we want to separate geo-
location from a particular event. In our work, we propose the use of semantic-
ally enriched knowledge, in order to improve the precision of geolocation. To
achieve that, a detailed spatial data source can be used for georeferencing (in
our case, GeoNames and OSM) by means of ontologies.

Other approaches for inferring the �ne-grained location of messages include
C. Li and A. Sun, (����) and G. Li et al., (����). However, they focus mainly on
Points of Interest (and in some cases district) of a particular place. Our aim
is to geolocate also messages related to streets. We highlight also that those
methods rely on a training phase.

In Table �.�, we show some research work classi�ed as city-level geolocation
algorithms or �ne-grained, i.e., sub-city level algorithms.
A complete overview of the article presented in this chapter related to

geolocation is shown in Table �.�.
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� Geographic Knowledge

The discussion in Chapter � pointed out that state-of-the-art methods aremanly
data-driven. Supported by other authors such as Kinsella, Murdock, andO’Hare,
(����), we claim that is very di�cult to reach sub-city level geolocation without
exploiting prior knowledge. Thus, in order to accurately geolocate a microblog
message, our approach exploits terms that refer to objects in the physical
world the tweet may refer to. We will refer to such words of dual (semantic and
spatial) nature as geo-terms. In this thesis, we propose a framework that, using
an external geographical knowledge, can infer the position of a microblog
message. Our framework is composed of two phases: during the �rst, o�ine
phase, we preprocess the external geographical knowledge exploitable by the
geolocation algorithm. In this chapter, we present in detail how we model a
semantic gazetteer in order to obtain the external geographical knowledge.
We �rst introduce the general problem and the idea of the solution that we
propose and then we go in deep on the structure of the external knowledge
that we need.
Appendix A contains a summary of the notions employed in this chapter.

�.� The Role of Geographic Knowledge in Geolocation Algorithms

������� ��������� Given (i) a geographical area of interest, (ii) some
external knowledge in the form of a set of objects located in the area of interest
and their semantic descriptions, (iii) a microblog message originating from
the area of interest mentioning at least one of these objects (referred to as
localizable message) the goal is to infer the coordinates of the location inside
the target area.

To cope with this problem, we propose an algorithm that we call Sherloc �. In
Figure �.�we show a graphical representation of Sherloc steps. These �ve steps
will be discussed in detail in Chapter �. There are two important steps that
involved the geographic knowledge: k-NN identification and Phisycal
locations. More precisely, given a microblog message, Sherloc identi�es the
nearest neighbor terms closest to the message in terms of semantics, i.e., using
the geographic knowledge. After that, Sherloc extracts the physical locations of
semantically similar terms always using the geographic knowledge. Sherloc is
able to infer the location of a messagem without any prior training, exploiting
only an indexed geographical external knowledge that we describe here. Notice
that, these steps involve the geographic knowledge that we describe in this
chapter.

�A simple word pun between Sherlock Holmes and location.
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Clustering

Physical Location

k-NN Identification

Message Cleaning

@user_b60c65d3 Amber 6th 
Ave bet 9th n 10th street

40.6572, -73.9551
loc(m)

Position

6th, Ave, 
9th,10th street

T(m)

Cluster Ranking

F ����� � .� . Sherloc schematic steps.

�.� Formalization of Geographic Knowledge

In this section, we present the formalization of a semantic geographic gazetteer.
Starting from the de�nition of a gazetteer, we discuss the representation of
this type of datasets and their relation with a semantic level, represented by
an ontology.

�.�.� Gazetteers

Dictionaries of placenames are called gazetteers (Goodchild and Hill, ����).
They contain descriptive information about named places (i.e., a toponym)
which can include their geographic locations (i.e., its geometries), types/cat-
egories, and other information. It has, in the most atomic representation, a
simple structure as a set of pairs (top,p) where top is a toponym, and p is the
location of the object denoted by top in the physical world.

De�nition �.�. Given a toponyms top and its physical location p, de�ned as a
pair of coordinates p = (c1, c2), a gazetteer � is de�ned as:

� = {(top,�) |top is a toponym ^ � 2 World}

A more accurate version uses �, that is, the geometry of the object denoted
by top instead of p. Gazetteers can be classi�ed w.r.t. sources that generated
them.

������������� �� ���������� : �������� ��� ��� . Aswe presen-
ted in Section �.�, we can classify geographic data sourced as authoritative
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�.� Formalization of Geographic Knowledge

and crowdsourced. In order to have an analysis as complete as possible, we
select GeoNames as semi-authoritative gazetteer and OSM as crowdsourced
one. Both gazetteers follow the structure that we present here.

�.�.� Semantic Gazetteers

Since we aim at exploiting more information about a geographical object
than just its name, the geographic knowledge we rely on consists of a set of
objects for which we have: (i) names in the form of textual descriptions (i.e.,
strings, also referred to as toponyms) used to refer to the object; (ii) a semantic
description in terms of a category or class to which the object belongs; (iii)
the geometry of the object, i.e., its representation in terms of points, lines, and
polygons.
For example, Saint Stephen Green in Dublin, Ireland, is associated with the

park class and the actual location of the park. Sometimes, a gazetteer organizes
classes of objects into an ontology, in order to formalize the semantic relations
between toponyms and classes and among classes. A gazetteer, in general, since
it has no semantic level, has no inference procedure de�ned: given an assertion,
it can only be considered to be entailed by the gazetteer if this assertion is
explicitly expressed in it. We assume that, given an area, a gazetteer represents
this area at the �ne-grained level and an associated ontology describes the
semantic relations between toponyms in a gazetteer.
More formally, let O be a geographic ontology, where objects are denoted

by (denotedBy relation) strings (toponyms) and are related to classes by the
isInstanceOf relation. Classes are related by the specialization/generalization
isSubClassOf relation within the ontology. Let us now ignore place nodes (that
are thus omitted in the ontology) and relate toponyms with classes directly. We
obtain a graph where nodes are either strings (toponyms) or classes and edges
model relationships among them. We can now de�ne a semantic gazetteer as
follows.

De�nition �.�. Given a gazetteer �, a geographic ontologyO , a semantic gaz-
etteer �(O ) is a set of triples of the form (top, class,�), where (top, �) 2 � and
class 2 O is the class of which an object denoted by top is an instance.

Since we assume a �xed geographic ontologyO , consisting of a set of classes,
a set of textual descriptions, and the relationships among them, in what follows
when no ambiguity arises, we denote �(O ) simply with �.

To get an atomically decomposed representation of our knowledge, we split
each geometry into a set of pairs of coordinates by considering a function �
transforming a geometry into a set of pairs of coordinates of the points that
are used to represent such geometry. Thus, e.g., �(WAY(-�.������� ��.�������,-
�.������� ��.�������, ... ,-�.������� ��.�������)) = {(-�.�������, ��.�������),
(-�.�������, ��.�������), ..., (-�.�������, ��.�������) }

De�nition �.�. Given a geometry �, a �attering function � is:

� : Geom ! 2Coord
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� Geographic Knowledge

� (�) = {c1, ..., cn }
whereGeom is the set of geometry,Coord is the set of coordinates and {c1, ..., cn }
is the set of coordinate of the geometry.

De�nition �.�. Given a semantic gazetteer � and a transforming function �,
an atomic semantic gazetteer G is:

G = {(top, class,p) | (top, class,�) 2 � ^ p 2 � (�)}

������������� �� �������� ���������� : �������� �������� ,
������������� ��� ��� ����� �������� . We can de�ne the struc-
ture of Geonames not as a simple set of pairs but as a set of quadruples (top,
class , lat , lon) where top is a toponym, class is the class of the toponyms it
refers to come from its ontology, and lat and lon are the coordinates of the
toponym.
Therefore, considering (lat , lon) as a point, the structure matches the se-

mantic gazetteer representation.
We can de�ne the structure of OSM not as a simple set of pairs but as a set

of triples (top, ta�s , component ) where top is a toponym, ta�s is a set of tags
associated with top and component is the component that describes top.

The structure of LGD can be seen as a set of triples (top, class , �) where top
is a toponym, class is the class of the toponym (coming from its ontology), and
� is the geometry of the toponym. The triples are constructed using OSM data
where the class associated with a toponym comes from its tags. Therefore, the
structure matches the semantic gazetteer representation.

OSM facet ontology it is only a structure that works on top of OSM, therefore
we create the semantic gazetteer starting from OSM.

Since node is the smaller unit in OSM data representation and relevant
non-spatial tag information is associated with a node, we select from OSM all
the data items that have the representation (top, ta�s,node ). Given a mapping
between tags and classes of the ontology, the tags are matched with the correct
class, in order to obtain the structure of the semantic gazetteer. Notice that,
given a mapping, not every tag has a representation in the ontology, therefore
the ontology on OSM works also as a �lter. Therefore, the structure of OSM
facet ontology is a set of triples (top, class , node) where top is a toponym, class
is a class match with at list one of the tags of top and node is the smaller unit
in the dataset, and it is the geometry representation of top coordinates.

�.�.� From Toponyms to One-grams: Geographic Knowledge

Toponyms are textual representations, i.e., strings that may consist of multiple
terms (i.e., words). To get an atomically decomposed representation of our
knowledge, we split toponyms in one-grams. There are two reasons to choose
an atomically representation of the toponyms:

�. Matching: the idea to use toponyms as one-gram terms enable a fast and
simple matching without requiring NLP techniques.
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�. Semantics: using one-gram terms, we can unify the same terms also if
they represent di�erent geographical objects. This choice can increase
ambiguity but, at the same time, it re�ects the idea that in general in
cities, some neighborhood share common names, e.g., in Liberty Island
in New York City, di�erent geographic objects share the term “Liberty”
as Liberty Statue, Liberty museum, etc.

Therefore we de�ne a function � transforming a string in the set of one-
gram terms it contains. Thus, e.g., �(Saint Stephen Green)= {Saint, Stephen,
Green}. The geographic knowledge that our approach exploits represents an
association among one-gram terms, classes, and geographic points.

De�nition �.�. Given a toponym top, a transforming function � is:
� : Top ! 2T erms

�(top) = {t1, ..., tn }
whereTop is the set of toponyms,Terms is the set of terms and {t1, ..., tn } is the
set of terms of a toponym.

De�nition �.�. Given a atomic semantic gazetteer G, the geographical know-
ledge KG associated with G is

KG = {(t , class,p) | (top, class,p) 2 G ^ t 2 �(top)}
In the following, the set of all possible terms we employ for geolocating

a microblog message consists of one-gram terms obtained from toponyms
and names of classes, coming from the semantic gazetteer. Class information,
indeed, helps in characterizing the object and are thus helpful for geolocating
it.

De�nition �.� (Geo-terms Related to a Geographic Knowledge). Let KG be a
geographic knowledge, the set of geo-terms related toKG isT (KG ) = [2i=1�i (KG )
where �i is the projection function extracting i�th components.

���� �������� , ��� , ��� ��� ����� �������� �� ����������
��������� . In order to transform the semantic gazetteers into geographic
knowledge we preprocess them as follows:

• Geonames structure quite closely matches the semantic gazetteer de�n-
ition we exploit. To obtain KGeonames, we only need to apply function
�.

• LinkedGeoData structure does not match the semantic gazetteer de�nition
we exploit. To obtain KLGD, we need to apply function � on the geometry
and function � on toponyms.

• OSM facet ontology structure quite closely matches the semantic gazetteer
de�nition we exploit. To obtain KOSM, we only need to apply function �.
Since Node is the representation of a point in OSM, for the spatial part,
we already have the correct representation.

For simplicity of notation, in the following, we indicate KGeonames, KLGD and
KOSM with the name of the related geographic data source only.
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�.�.� Semantic Embedding

From the geographic ontology O we can obtain a graph in which nodes
are terms in T (KG ). Edges among class nodes capture isSubClassOf relations
among classes. Edges between one-gram term and class node correspond to the
relations between one-gram terms included in a toponym and the class of the
toponym, i.e., the relation obtained by composing isIntanceO f �denotedB� ��
relations. The semantic distance dT between terms is the length of a path con-
necting the two corresponding nodes in such a graph (Dassereto, ����). Since
a geo-term could be instance of more than one class, the distance dT between
two geo-terms could be or not the shortest path between these two instances.
To be more clear, given I1 isIntanceOf C1^ I1 isIntanceOf C2^ I1 isIntanceOf C3
and I2 isIntanceOf C3, the shortest path between I1 and I2 is � if they are con-
nected from C3, but, in speci�c situations we can know that I1 corresponds to
classC1. Therefore, the distance between I1 and I2 is not the shortest path (see
Figure �.�).

C1 C2 C3

I1 I2

F ����� � .� . An example of distance between I1 and I2.

In order to avoid the problem to understand how to calculate dT and to
avoid the computational problem of computing every path, we propose to
represent a geographic ontology by embedding it on a n�dimensional space.
In order to determine, given a term, its most semantically similar terms,

we embed terms in a metric space with a distance function that captures the
semantic distance among terms, thus maintaining the hierarchical structure of
the ontology.

De�nition �.� (Semantic Embedding Function). Let S be an n-dimensional
metric space (a set of points) and d be a distance function between points in
this space. A semantic embedding function emb is a function emb : T (KG ) !
S such that, given t1, t2, t3, t4 2 T (KG ),dT (t1, t2) � dT (t3, t4) if and only if
d (emb (t1), emb (t2)) � d (emb (t3), emb (t4)). Function emb is invertible and, given
a point s 2 S , the term in T (KG ) corresponding to s is denoted as emb�1 (s ).

���������� ��������� ��� ���������� ���������� We need
to process geospatial data looking at the ontology. Since an ontology is a tree,
or more generally a graph, computing the distance between two objects is not
always an easy problem. In order to address this problem, we represent the
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semantics of geospatial data using embeddings. Speci�cally, in this thesis, we
describe a methodology that involves the use of hierarchical structure embed-
dings. There are three possible cases in which we need to use embeddings to
represent data:

�. when we cannot calculate the distance between two objects because it
is too complicated;

�. when we know the distance between some pairs of objects but not for
all pairs;

�. when we do not know the distance between objects.

In general, text data fall in the third case. In our work, we will consider
textual data with a semantics, therefore our problem fall into the �rst case. In
other words, calculating every path between two objects it too computation-
ally intensive. Alternatively, our work could fall in the second case, i.e., we
cannot be sure that the shortest path is a good distance metric between two
geographical objects.

������������� �� S : �������� ��������� ��� ����� The most
important part of our approach is the representation of semantic space S
related to KG . In order to select the best embedding, we use an algorithm
called Poincaré embedding (Nickel and Kiela, ����), as well as a precomputed
embedding called GloVe (described in Chapter �). We use these two embeddings
alternately since they provide two di�erent representations of the same data,
and they are learned from di�erent training data: Poincaré is trained on KG ,
GloVe is trained on Wikipedia and we �lter the data using KG .
We want to reach the following objective:

�. Precise representation of our geographic knowledge maintaining its
structure,

�. Understand if an embedding can represent the geographic knowledge.

Sincewe require an embedding that can accurately represent distances between
classes and instances� in the ontology, we need an algorithm that maintains
the hierarchical structure of the ontology. Therefore, we embed the semantic
knowledge in a Poincaré ball space, using the algorithm described in Nickel
and Kiela, (����). This non-Euclidean space is suitable for embedding data that
have a hierarchical structure such as ontologies. In this way, we obtain a space
in which classes and instances have a position (x ,� coordinates) and, where
similar semantic objects are near (in terms of distances) to each other.
GloVe is an embedding of words already described in Chapter �. GloVe

is a dictionary that for every word contains the corresponding vector in a
Euclidean space. Since it is not learned on a geographic ontology instead on
Wikipedia, we decide to map the terms that are in our geographic knowledge
�Actually, one-grams included in toponyms denoting instances.
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� Geographic Knowledge

on GloVe and obtain the speci�c representation in the GloVe space. In this way,
we obtain an embedding space of our knowledge learned from Wikipedia. Not
every geo-terms is in GloVe. Therefore we have a subset of our knowledge
represented in the space. We use this representation in order to understand if
a pre-computed space can represent geographic data as well since Wikipedia
also contains geographic information.
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� Sherloc: a Sub-city Level Geolocation
Algorithm
In this chapter, we present the Sherloc algorithm in detail. We start by giving
an overview of the design of the algorithm, also presenting the pseudo-code
of all its components. We then move on to describe each step of the algorithm
in more detail.
Appendix A contains a summary of the notions involved in this chapter.

�.� Overall Approach

In order to give an exaustive overview of the approach proposed in this thesis,
we want to provide an analogy with Information Retrieval (IR) systems. Our
aim is to give a better idea of how Sherloc works and how it is di�erent from
the other approaches in literature that are based on classi�cation techniques.
Following the formal de�nition of an IR model proposed by Baeza-Yates,

Ribeiro-Neto, et al., (����), an IR model is a quadruple (D,Q,F ,R (qi ,dj ))
where:

�. D is a set of documents in the collection,

�. Q is a set of queries, i.e., what in IR are called user information needs,

�. F is a framework for modeling the document representation, the query,
and their relationship,

�. R (di ,qj ) is a ranking function which associates a number with a query
qj 2 Q and a document di 2 D. Such ranking de�nes an ordering among
the documents concerning the query qj .

Our framework, shown in Figure �.�, has strong analogies with the IR system.
More in details:

• D corresponds to G |A, i.e., a pairs of geo-terms and coordinates (see
De�nition �.�).

• Q corresponds to the set T (m), i.e., a bag of geo-terms (see Section �.�).

• F correspond to Sherloc. Sherloc models the semantic gazetteer, as de-
scribed in the previous chapter, the query T (m), as we will see in detail
in the next section, and provides the algorithm to relate documents and
queries that allow to retrieve the best documents (i.e., positions) for a
query (i.e., a tweet).

• R (di ,qj ) corresponds to r f (C ) (see Section �.�).
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� Sherloc: a Sub-city Level Geolocation Algorithm

Notice that, in IR systems, the document representation can be seen as
a triple (d, [t1, ..., tn], [f req1, ..., f reqn]) where d is the document identi�er,
[t1, ..., tn] is the list of terms contained in the documentd and [f req1, ..., f reqn]
is the frequence of the corresponding term in the document. The query q 2 Q
is a list of terms and R (di ,qj ) ranks the documents according to their relevance
for the query. In our case, the document representation is KG |A (see De�ni-
tion �.�). However R ranks clusters and not single points. Our choice is due to
the di�erence in information: we cannot create a set of clusters a priori in a
query independent way since the clustering constructed on the message helps
in the disambiguation phase.
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message is a real Twitter message from one of our evaluation datasets.

In Algorithm �, we present how Sherloc works. As we introduced in Sec-
tion �.�, Sherloc has �ve steps. Comments in the pseudo-code highlight these
�ve steps. The input is a messagem. We �rst of all clean the message keeping
only terms that exist in the geographic knowledge. With the cleaning process,
we obtain a cleaned message T (m) which is a set that only includes the terms
present in KG |A. We call this a geo-message.

Using the geo-message, we compute n k-NN queries, one for each term, on
the semantic space S constructed on KG |A. The new message is a set of points
in S that has a maximum cardinality equal to � (this is given as input to the
algorithm). This part is described in Section �.�. To infer the coordinates of our
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�.� Geo-term Extraction and Semantic Similarity

Algorithm �: Sherloc
Input: maximum number of similar terms � , messagem, semantic space S ,

geographic knowledge KG |A
Result: [lat , lon] coordinates of the messagem
// Step 1: Cleaning

T (m) = cleaning_matching(m);
// Step 2: Nearest neighbors identification

k = �
|T (m) | ;

NN (m) = {};
for t 2 T (m) do

NN (t ) = query(t , S,k ) ; // Find NN on S

NN (m).append (NN (t ));
end
T NN (m) = emb�1 (S,NN (m)) ; // Retrieve closest terms

// Step 3: Physical points extraction

P (m) = points (T NN (m),KG |A);
// Step 4: Clustering

Clusters (m) = clusterin�(P (m));
// Step 5: Ranking and inferred coordinates

dC (m) = max(r f (Clusters (m)));
[lat , lon] = centroid (Con�exHull (dC (m)));
return [lat , lon]

message, in step �, we use the inverse function emb�1 to convert the geographic
terms to their spatial coordinates. This set of points is the input of a clustering
algorithm. The collected clusters are then ranked. The densest cluster is the
cluster that Sherloc identi�es as the cluster of the message. Finally, to geolocate
the message, we compute the convex hull of this cluster. The predicted location
is that of the centroid of this convex hull. This part is described in Section �.�.
In Figure �.�, the whole process is illustrated with an example of a tweet

coming from New York City. In the rest of the chapter, we detail every step of
Sherloc.

�.� Geo-term Extraction and Semantic Similarity

In this section, we describe the message transformation: from the raw message
to the set of most similar geo-terms that enrich our input information. In order
to better understand the whole process, we use a real example to describe all
the phases.

������ ���� Sherloc is an algorithm that exploits external geographic
knowledge in order to infer the coordinates of unseen microblog messages.
Its design goal is to be able to perform this inference with a sub-city level
accuracy. As a result, it operates in a bounding box, which corresponds to the
area of a given city.
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� Sherloc: a Sub-city Level Geolocation Algorithm

We refer to this area as the target area A. It is represented as a rectangular
bounding box with sides parallel to the axes of the chosen reference system.
Such a rectangle is represented by the coordinates of two points, the top-left
and bottom-right corners of the rectangle. Therefore, in the following we will
indicate a target area A with [c1, c2] where ci = (lati , loni ), i = 1, 2.
The bounding box A works as a �lter on the external geographical know-

ledge. The geographic knowledge is de�ned in De�nition �.�, as:

KG = {(t , class,p) | (top, class,p) 2 G ^ t 2 �(top)}

Therefore, we �lter KG w.r.t. a bounding box A as follows:

KG |A = {(t , class,p) | (t , class,p) 2 KG ^ p ⇢ A}

where t is a term that was part of a toponym, class is the class which the term
refers to and p is the point (i.e., coordinates) of the term.

������� �������� Our �rst step involves cleaning the message to keep
only geo-terms, i.e., elements of T (KG ). Therefore, the raw message, contain-
ing n terms, is transformed into a bag of geo-terms, i.e., a multiset, T (m) =
Nt1, ..., tp O , where ti 2 T (KG ) and p  n. The geo-terms are in lower case.
We use the standard cleaning technique on T (m) and KG |A of deleting the
stopwords. A message is then transformed into a bag of semantic points using
the embedding, S (m) = Ns1, ..., sp O where si = emb (ti ) 2 S is the point cor-
responding to term ti , i = 1..p. Notice that S is the semantic space, i.e., the
embedding of our semantic gazetteer, see De�nition �.�.

������� ��������� ������� . While De�nition �.� de�nes functions
emb and emb�1 with terms/points as arguments, we extend them to sets of
terms/points as argument, respectively, in a straightforward way.
Given a term t , its most semantically similar terms are now characterized

regarding nearest neighbors in S .

De�nition �.� (Nearest Neighbors). Let s 2 S , k 2 N and d be the dis-
tance on S , the k nearest neighbors of s , denoted as NNk (s ) = [s1, ..., sk ] are
k points s1, ..., sk 2 S , such that d (s, s1)  ...  d (s, sk ) ^ 8s 0 2 S, s 0 <
[s1, ..., sk ],d (s, s 0) � d (s, sk ).

Given S (m), we retrieve the k nearest neighbors of each point si 2 S (m). k is
not set a priori, rather we rely on a heuristic in order to identify a meaningful
value for it. Sherloc requires as input an integer � that captures the maximum
number of semantic points that can be associated with a message. This allows
us to de�ne the number of similar terms to retrieve for every message in order
to obtain a set with cardinality at most � . The value of k that we use for a given
messagem, such that S (m) = [s1, ..., sp], denoted as k (m) is thus computed as
follows:

k (m) = b�
p
c
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�.� From Semantic Space to Physical Space

The set NN (m) of nearest neighbors for a message m such that S (m) =
[s1, ..., sp] is obtained as

NN (m) = [pi=1{s | s 2 NNk (m) (si ))}.
Note that |NN (m) |  � . Referring to the example in Figure �.�, NN (m) is
formed by the terms semantically “closest” to “�th, Ave, �th, ��th, street” like
Street/Midtown.

Example �.�. We receive as input the messagem: “Hyde Park. Early running �.
#insandreuninlondon Hyde Park Gate. https://t.co/�dkQzvsFR�”. Sherloc identi-
�es T (m) = N“hyde”, “park”, “hyde”, “park”, “gate”O. The elements in T (m) are
then converted in the correspondent points on S , i.e., in Table �.�.

T���� � .� . Position in space S related to KG |A of the terms in T (m).

T (m) S (m)
hyde �.������� -�.������
park �.������� -�.������
hyde �.������� -�.������
park �.������� -�.������
gate �.������� -�.������

At this stage, Sherloc performs a k-NN query on S for every points in S (m)
with the input � value that is divided by |S (m) |, returning the k value. In this
example, Sherloc is running with � = 500. Therefore,k = �

|S (m) | =
500
5 . We obtain

a new set NN (m) with ��� entries with the identi�cation number, i.e., the id of
the term in the space S , of each term “close” to points in S (m), i.e., NN (m) = {
����, ����, ����, ����, ����, ����, ����, ����, ����, ����, ����, ����, ��, ����,
���, ���, ���, ����, ���, ���, ����, ����, ����, ����, ����, ����, ����, ����, ����, ����,
����, ���, ����, ����, ����, ����, ����, ����, ���, ����, ����, ����, ����, ����, ����,
���, ���, ���, ����, ����, ����, ���, ����, ���, ����, ����, ���, ����, ����, ���, ����,
����, ���, ����, ����, ���, ����, ����, ����, ����, ����, ����, ����, ����, ����, ����,
����, ����, ����, ����, ����, ����, ���, ���, ����, ���, ���, ���, ���, ���, ����, ���,
���, ����, ����, ���, ����, ����, ���, ����, ���, ����, ���, ���, ���, ���, ���, ���,
����, ����, ���, ���, ���, ����, ����, ����, ���, ���, ���, ����, ����, ����, ����, ����,
����, ����, ����, ����, ����, ����, ����, ����, ����, ����, ����, ����, ����, ����}.
Note that T (m) is de�ned as a bag. The choice to maintain duplicates in

the message is based on the intuition that if a user sends a message repeating
many times the same information, (s)he wants to remark that information. We
assume that this will retrieve more speci�c and relevant information.

�.� From Semantic Space to Physical Space

In this section, we detail the Sherloc’s steps related to the conversion from
a semantic space to a physical space. We need to de�ne the set of physical
points related to a message. We then describe the clustering technique and
consequently how Sherloc infers the location.
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� Sherloc: a Sub-city Level Geolocation Algorithm

�������� ��������� . So far, we have obtained a set of points NN (m).
We can now associate with each one of the points in this set a pair of physical
coordinates inside the target area A. These coordinates refer to the locations
associated with the terms inT NN (m) = emb�1 (NN (m)) in the physical world.

De�nition �.� (Physical points of a message). The set of physical points of a
messagem is de�ned as a set of points p = (lat, lon) in A obtained as:

P (m) = [t 2T NN (m) {p |(t, class,p) 2 KG |A}

Example �.�. In Example �.�, we obtainedNN (m). Now Sherloc converts the se-
mantic points in NN (m) to their corresponding terms, obtaing T NN (m). Then,
we compute P (m), converting every term in the corresponding physical point,
i.e., coordinates. From NN (m), we take back the term using the ids obtained
T NN (m) = {Arlington,Mans�eld, ..., hostel, Astoria, ...,Wimbledon,Winchester}.
Hence, we obtain P (m) with ��� coordinates from GeoNames.

Notice that |T NN (m) |  |P (m) | because a gazetteer is a dictionary and thus it
is not a function. Therefore, more than one pair of coordinates can be associated
with a toponym. For instance, Starbucks is a toponym corresponding to di�erent
cafeterias with di�erent positions.

���������� . In order to identify a structure within the points in P (m),
we cluster them. We cluster points in P (m), as shown in Figure �.�, where a
cluster (as discussed in Section �.�.�) is a set of points that minimize distances
among points inside the cluster while maximizing distance from points outside
the cluster, based on a distance function (in this speci�c case the Euclidean
distance). In this way, we highlight locations of particular interest based on
the geo-terms contained in the message. Such clusters signify that there is a
high concentration of semantically related elements in speci�c regions of our
target area.
Note that clustering algorithms can produce multiple such clusters. Let

Clusters (m) denote the set of clusters obtained from P (m).

������� ��� �������� �������� . To select the cluster corresponding
to an area which the message has the highest probability to come from, we rank
the clusters in Clusters (m) according to their density, i.e., the ratio between
the number of points in P (m) it contains and its area.

De�nition �.� (Ranking Function). Clusters inClusters (m) are ranked through
a ranking function r f : Clusters ! N de�ned as the density of the cluster, i.e.,
the ratio between the number of points in P (m) belonging to Cl and its area.

The ranking function calculates the density of a cluster.

De�nition �.� (Top-� Cluster). The “best” cluster is determined as the cluster
with the highest density, i.e., dC (m) = C 2 Clusters (m) s.t.

r f (C ) =maxC 02Clusters (m)r f (C
0)
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