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Abstract. The purpose of this study is to discuss some problems which arise in heat or mass 

transfer in complex channels, with special reference to the spacer-filled channels adopted in 

membrane processes. Among the issues addressed are the consistent definition of local and mean 

heat or mass transfer coefficients; the influence of the wall boundary conditions; the influence of 

one-side versus two-side heat/mass transfer. Most of the results discussed were obtained by finite 

volume CFD simulations concerning heat transfer in Membrane Distillation or mass transfer in 

Electrodialysis and Reverse Electrodialysis, but many of the conclusions apply also to different 

processes involving geometrically complex channels. 

1. Heat and mass transfer in spacer-filled channels 

Membrane processes offer examples of heat or mass transfer in plane channels bearing mixing 

promoters of more or less tortuous geometry, aimed at reducing temperature or concentration 

polarization phenomena thus improving the process performance [1, 2]. Promoters usually consist of 

polymeric filaments and play also the role of spacers, keeping a fixed distance between the opposite 

channel walls. For example, the top row in Figure 1 shows real spacers made of overlapped (a) or 

woven (b) filaments. The bottom row shows corresponding unit cells (computational domains). 

 

http://creativecommons.org/licenses/by/3.0


2

1234567890

35th UIT Heat Transfer Conference (UIT2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 923 (2017) 012053  doi :10.1088/1742-6596/923/1/012053

Figure 1. Lattice (top row) and unit cells (bottom row) of spacer-filled channels. (a) overlapped; (b) woven. 

 

 

CFD simulations of spacer-filled channels for membrane processes started to appear in the 

literature since the year 2001 and have been presented at an increasing rate since then. Hitsov et al. 

[3], Fimbres-Wehis and Wiley [4], Karabelas et al. [5] and La Cerva et al. [6] have presented reviews 

addressing a number of issues in the modeling of such channels.  

The present paper aims to complement the above reviews, by discussing a number of aspects not 

sufficiently clarified so far. The main issues addressed here are: 

- the consistent definition of local and mean heat or mass transfer coefficients;  

- the influence of the wall boundary conditions;  

- the influence of one-side versus two-side heat/mass transfer. 

Most of the results that follow make reference to the spacer geometry Diamond_90 in Figure 1(a), 

consisting of identical overlapping cylindrical filaments with an intrinsic angle =90° and different 

flow attack angles  and Reynolds numbers Re.  

The problem is described by the continuity, Navier-Stokes and scalar transport equations for a 

constant-property fluid. For simplicity, in the following the transported scalar will be assumed to be 

the specific enthalpy cpT; obvious changes apply in the case of mass transport. 

In order to simulate fully developed flow and thermal fields by simply applying periodicity 

conditions at the opposite faces, “true” pressure p
*
 and temperature T

*
 are replaced by their periodic 

components p, T such that 

*

s
p p p s   (1) 

*

s
T T T s   (2) 

in which s is the distance along the streamwise (main flow) direction while ps and Ts are the large-

scale gradients of pressure and temperature, respectively, in the same direction. Note that ps is always 

negative while Ts is positive for a heated fluid and negative for a cooled fluid. 

In the simulations, the pressure gradient ps is imposed while the flow rate and thus the bulk flow 

Reynolds number Re follow as results of the simulation.  

As regards the large-scale temperature gradient, a heat balance yields Ts=q/(cpUV) in which U is 

the mean “void channel” velocity in the direction s, V is the volume of the unit cell and q is the 

thermal power entering the fluid from the walls of the same cell. Both q and U are evaluated as parts 

of the solution during the course of the simulation.  

Substituting eqs. (1)-(2) for p
*
 and T

*
 in the standard steady-state momentum and energy 

equations, after some manipulation one obtains the following governing equations (written in 

Cartesian tensor notation): 

0
j

j

u

x
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
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 (4) 

p j s

j j j

c u T uT q

x x x V U




  
 

  

 (5) 

in which us is the component of the local velocity along the direction s.  

Translational periodic boundary conditions were now adopted for all variables at the opposite 

faces of the computational domain. No slip conditions (ui=0) were imposed at the top and bottom 

walls and on the filaments’ surface. As regards the thermal boundary conditions, the filaments were 

assumed to be adiabatic (q”=0), while at either one or both the walls different thermal boundary 

conditions were imposed, as will be discussed below. 
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All simulations were conducted by the ANSYS-CFX
®
 code. The code uses a finite volume 

approach and a co-located (non-staggered) grid layout, such that the control volumes are identical for 

all transport equations. A coupled solver is adopted, in which the hydrodynamic equations for the 

three velocity components and pressure are treated as a single large system. A Multi-grid (MG) 

accelerated Incomplete Lower Upper (ILU) factorization technique is adopted for solving the discrete 

system of linearized equations.  

In the present simulations, the “high resolution” (higher order upwind) interpolation scheme was 

used for the advection terms. Further numerical methods and computational details have been 

discussed elsewhere [7, 8]. 

 

2 Definition of local or averaged heat / mass transfer coefficients 

2.1 Local coefficients 

Making reference, for the purpose of clarity, to heat transfer, the most common definition of the 

local heat transfer coefficient is: 

 

"

w

b w

q
h

T T





 (6) 

In Eq. (6) q
”

w is the local wall heat flux (assumed to be positive for a cooled fluid), Tw is the local wall 

temperature and Tb is the bulk temperature, usually defined as: 

 d / d
b p s p s

A A

T c T u A c u A     (7) 

A being the cross sectional area of the channel. Often  and cp can be treated as constant properties. 

Note that Tb remains a function of s. When the computational domain is a single repetitive unit of a 

large lattice (unit cell approach) it may be preferable to define the bulk temperature by replacing the 

area integrals in Eq. (7) with volume integrals taken over a whole unit cell. Yet another alternative is 

to replace the bulk temperature in the definition (6) of h with a different reference value, e.g. the 

fluid’s temperature at the channel midplane [9] or the fluid’s inlet temperature [10]. 

In the case of mass transfer, temperature is replaced by concentration and h is replaced by a mass 

transfer coefficient k (in m s
-1

). 

The problem with the above definition of h or k is that, in complex geometries involving flow 

recirculation, the iso-surface T=Tb (or C=Cb) may intersect the channel walls; in this case, h (k) 

diverges on the line Tb=Tw (Cb=Cw) and becomes negative inside this line. An example is reported in 

Figure 2, obtained by post-processing the results of a three-dimensional CFD simulation. It shows the 

iso-surface T=Tb (bulk temperature) for an overlapped spacer with P/H=4, =0°, Re42 and two-side 

heat transfer with uniform imposed wall heat flux. Even in the absence of singularities, the simple fact 

that the iso-surface T=Tb (or C=Cb) approaches the wall closely may give rise to abnormal and 

unphysically large values of h or k. This kind of distribution is rather common, especially for imposed 

flux (2
nd

 type) or mixed (3
rd

 type) boundary conditions, two-side heat / mass transfer, high Reynolds 

numbers and high Prandtl / Schmidt numbers. The only condition in which singularities cannot occur 

is that of imposed wall temperature or concentration (1
st
 type, or Dirichlet). 
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Figure 2. Iso-surface T=Tb (bulk temperature) for an overlapped spacer with P/H=4, =0°, Re42 and two-side 

heat transfer with uniform imposed wall heat flux. 

 

 

2.2 Average coefficients 

In most papers dealing with heat or mass transfer in spacer-filled channels [9, 11, 12, 13], the 

average transfer coefficient is simply defined as the area average 

 
"

(1 )
1 1

d d
w

b wS S

q
h h h S S

S S T T

  


   (8) 

where S may be the whole active transfer surface or a sub-region of it (e.g., one of two active channel 

walls). Obvious modifications apply if mass transfer is considered.  

The problem with this definition is that, if the local h (or K) is singular or attains unphysical 

values (for the reasons discussed just above), also its average h (or K) will be affected by this 

behavior. A preferable definition of the averages, which does not suffer from this problem, is [7, 8] 

 

"

( 2 ) w

b w

q

h

T T





 (9) 

in which q
”

w and Tw are surface averages of q
”

w or Tw over the surface of interest (e.g., one or both 

walls). Obvious modifications apply in the case of mass transfer. Dimensionless numbers Nu
(1)

, Nu
(2)

 

or Sh
(1)

, Sh
(2)

 can be obtained from the above definitions by choosing a suitable length scale. 

Nu
(1)

 and Nu
(2)

 coincide when a uniform wall temperature is imposed, while they differ when a 

uniform wall heat flux or a wall thermal resistance are imposed. In fact, one can write: 

 

"
"

(1 ) ( 2 )

N u c o n s t a n t , N u c o n s t a n t
w

w

b w b w

qq

T T

   

 

 (10) 

in which Tbw = Tb – Tw. When Tw is imposed,

 

Tbw is a constant (say, Tbw
0
) and one has 

 
"

(1 ) ( 2 )

0
N u N u c o n s t a n t

w

b w

q

T

  



 (11) 

On the contrary, when a uniform heat flux is imposed, q
”

w is a constant (say, q
”

w
0
) and one has 

 (1 ) " 0 ( 2 ) " 0
1 1

N u c o n s t a n t N u c o n s t a n t
w w

b w b w

q q

T T

    

 

 (12) 
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since the average of the reciprocal is not the reciprocal of the average. 

The difference between the two definitions is illustrated in Figure 3, which reports average 

Nusselt and Sherwood numbers, computed by using definitions (8) and (9) for the average heat (mass) 

transfer coefficients and 2H as the length scale. They are reported as functions of the Reynolds 

number for an overlapped spacer with P/H=4, =45° and two-side heat / mass transfer. The values 4 

and 600 were assumed for the Prandtl and Schmidt numbers Pr and Sc, respectively, and 3
rd

 type 

boundary conditions were imposed at the walls. It can be observed that Nu
(2)

 and Sh
(2)

 are always 

lower than Nu
(1)

 and Sh
(1)

, and that the difference increases with Re. Note also that the difference 

between Sh
(1)

 and Sh
(2)

 (Sc=600) is larger than that between Nu
(1)

 and Nu
(2)

 (Pr=4). 

 
Article_issues_Figure_6    l /H =4  =45°

1

10
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1000

1 10 100 1000
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N
u

, 
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Nu
(1)

Nu
(2)

 

Figure 3. Average Nusselt and Sherwood numbers, computed by definitions (1) and (2), as functions of the 

Reynolds number for an overlapped spacer with l/H=4, flow attack angle =45°, two-side heat / mass transfer 

and 3
rd

 type boundary conditions (Prandtl number Pr=4, Schmidt number Sc=600).  

 

 

3 Influence of the boundary conditions at the walls 

The different boundary conditions that can be imposed at a wall for a scalar transport equation are 

schematically illustrated in Figure 4. For the purpose of clarity, reference is made to temperature and 

heat transfer; obvious modifications apply if concentration and mass transfer are considered instead. 

The different BC’s can be regarded as particular cases of the most general 3
rd

 type condition : 

 TwText = rext q”w (13) 

in which Tw is the wall temperature; Text is the temperature of some external medium; rext is the 

interposed thermal resistance per unit wall area, inclusive of the conductive resistance of the 

membrane and (if appropriate) of the convective resistance on the opposite fluid flow; and q”w is the 

wall heat flux. This is made clear by writing 

 "

1 /

b e x t

w

e x t

T T
q

r h






 (14) 

in which h is the convective heat transfer coefficient. Case (a) is obtained for rext«1/h and approaches 

uniform wall temperature (1
st
 type, or Dirichlet) conditions; case (b) applies to a generic condition; 

case (c) is obtained for rext»1/h, and approaches uniform heat flux (2
nd

 type, or Neumann) conditions. 
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Figure 4. Thermal boundary conditions at a wall obtained as particular cases of the general 3
rd

 type condition for 

different values of the ratio between the wall thermal resistance rext and the convective heat transfer resistance 

1/h. (a) Case rext«1/h, approaching uniform wall temperature (1
st
 type, or Dirichlet) conditions; (b) generic case 

(rext1/h); (c) case rext»1/h, approaching uniform heat flux (2
nd

 type, or Neumann) conditions. 

 

 

The thermal resistance rext can be made dimensionless as R=rextf/, in which f is the thermal 

conductivity of the fluid and  is the channel’s half-height (other choices of the reference length are, of 

course, possible). Accurate solutions for the Nusselt number under any prescribed value of R can be 

obtained for the case of a (void, or spacerless) plane channel, as described in detail in the Appendix. 

Figure A.1 therein reports the Nusselt number (based on the hydraulic diameter 2H of the void 

channel) as a function of R both for two-side and one-side heat transfer. The limiting conditions R0 

(uniform wall temperature) and R (uniform wall heat flux) are also reported. It can be observed 

that thermal boundary conditions affect the Nusselt number to a significant extent, and that Nu is 

always increasing with R both for one-side and for two-side transfer. 

In a real spacer-filled channel for membrane processes, the actual boundary conditions will be, in 

general, of some intermediate type, with an external resistance rext and an external temperature Text that 

will depend on the specific process. For example, in Direct Contact Membrane Distillation rext may 

represent the thermal resistance of the membrane itself in series with the condensation thermal 

resistance on the permeate side, and Text will be the condensing temperature. In numerical simulations, 

most authors imposed at the walls either a uniform temperature / concentration [11] or a uniform heat / 

mass flux [14, 15, 16]. Tamburini et al. [7] simulated their own experiments on Membrane 

Distillation, conducted under one-sided heat transfer (see also following Section), by imposing the 

mixed (3
rd

 type) boundary condition of Eq. (7) with rext=0.00625 m
2
K/W (corresponding to R=0.75 for 

the geometry investigated) at one of the walls (active, top wall), the opposite wall being adiabatic. 

Only Shakaib et al. [10] explicitly simulated both the hot and the cold fluid, thermally coupled through 

a membrane of prescribed thickness and thermal conductivity.  

In the present work, in order to study how the Nusselt number in a spacer-filled channel is 

affected by the thermal resistance, simulations were repeated for different geometric configurations 

and Reynolds numbers letting R vary between 0 and 100. Figure 5 shows the behavior of the averages 

Nu
(1)

 and Nu
(2)

 as functions of R for one-side heat transfer, =45° and P/H=4, Re42 (graph a) or 

P/H=2, Re126 (graph b). 

The more reliable of the two averages, i.e., Nu
(2)

, decreases monotonically with R in both cases; 

the highest values of Nu
(2)

 are attained for R=0 (isothermal wall conditions) and the lowest for R. 

Note that this behavior is opposite to that reported in the Appendix for the case of a spacerless 

channel, where Nu increases monotonically with R and thus is larger for an imposed uniform wall heat 

flux than for an imposed uniform wall temperature. This is not surprising since spacer-filled channels 

exhibit a strong and complex non-uniformity of heat transfer rates over the active wall surface of each 

unit cell, whereas a spacerless plane channel exhibits only a large-scale longitudinal variation of wall 

temperature and/or heat flux. 
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Figure 5. Dependence of the average Nusselt numbers Nu
(1)

 and Nu
(2)

 on the dimensionless wall resistance R for 

one-side heat transfer in a spacer-filled channel (overlapped, =45°). (a) P/H=4, Re42; (b) P/H=2, Re126. 

Broken lines are the theoretical values of Nu in a plane (spacerless) channel for R0 (red) and R (blue). 

 

 

For P/H=4, =0°, Re42 and one-side heat transfer, Figure 6 shows the influence of thermal 

boundary conditions on the local distributions of wall temperature (top row), local Nusselt number 

(middle row) and heat flux (bottom row). The left column is for R=0 (uniform wall temperature); the 

central column is for R=0.75 (mixed, or 3
rd

 type boundary condition); finally, the right column is for 

R (uniform wall heat flux).  

 

 

Figure 6. Computed top wall distributions for P/H=4, =0°, Re42, one-side heat transfer and different thermal 

boundary conditions: R=0, or uniform wall temperature (left), R=0.75, or general 3
rd

 type boundary conditions 

(centre), and R, or uniform wall heat flux (right). Top row: temperature; middle row: heat transfer 

coefficient; bottom row: heat flux.  
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Figure 6 shows that the choice of the thermal boundary conditions at the wall affects the local 

distributions of thermal quantities even more than it affects average quantities such as Nu
(2)

. 

Therefore, in studies discussing the wall distributions of thermal quantities, and even more so in 

studies comparing experimental and predicted results for the same quantities, a realistic choice of the 

thermal boundary conditions appears to be crucial. 

Needless to say, the above considerations can be adapted to mass transfer by a suitable change of 

notation, provided realistic values are adopted for the membrane resistance to mass transfer. 

 

4 One-side against two-side heat / mass transfer 

A fluid-filled channel can be subjected to different types of heat or mass transfer on the two sides, 

as sketched in Figure 7 for the case of heat transfer. Case (a) is heat transfer from one-side with the 

opposite side wall adiabatic. Case (b) is two-side asymmetric heat transfer with heat inflow from one 

side and outflow from the opposite side. Finally, case (c) is two-side symmetric heat transfer with heat 

inflow or outflow from both sides. Indicative bulk and wall temperatures are also shown in the figures; 

of course, in all cases the sign of Tw-Tb is arbitrary. 

 

Figure 7. Possible heat transfer arrangements in membrane processes. (a) one-side heat transfer with one 

adiabatic wall; (b) two-side asymmetric heat transfer with heat inflow from one side and outflow from the 

opposite side; (c) two-side symmetric heat transfer with heat inflow or outflow from both sides. Representative 

temperature profiles and bulk and wall values of T are shown. 

 

 

In the case of Membrane Distillation (MD), case (a) (one-side heat transfer) is usually realized in 

laboratory-scale experimental rigs [7, 17, 18] or small-scale, plate-and-frame, MD equipment [19, 20] 

because it is simpler to build and allows an easier experimental characterization of temperatures and 

heat fluxes. 

Case (b) (heat inflow from one side of the channel, outflow from the opposite side) is found, for 

example, in the Memsys modules adopted in Vacuum Multi Effect Membrane Distillation (V-

MEMD) [21], in which the generic stage is powered by the condensation heat from a previous stage, 

thus saving the thermal energy that otherwise should be provided from the outside. One side of each 

channel is provided with a microporous membrane allowing the passage of vapor, while the other side 

is a thin polypropylene sheet, on the outside of which the vapor from the previous stage condenses. 

Most commercial MD plant usually exhibit outwards (though not necessarily symmetric) heat and 

mass transfer from both sides of the feed channels, case (c). An example are the spiral wound modules 

developed at the Fraunhofer Institute [22], in which the hot (feed) channel is placed between two 

membranes followed by two condensate channels, two conductive walls and two cooling channels, 

and the whole arrangement is then spirally wound to achieve compactness and reduce heat losses. The 

feed channel is usually provided with a spacer (not shown). 

Among computational studies of membrane processes, both the one-side configuration (a) [7, 10, 

14, 23, 24] and the two-side, symmetric configuration (c) [11, 9, 13] have been considered. 
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For the case of a spacerless plane channel subjected to hydrodynamically and thermally fully 

developed flow, the difference in the Nusselt numbers for one-side and two-side heat transfer is 

illustrated in Figure A.1. It can be observed that two-side heat transfer yields Nusselt numbers higher 

by a factor 1.5 with respect to one-side transfer for any given dimensionless thermal resistance R. 

Therefore, switching from one-side to two-side heat transfer causes an increase of the total heat 

exchanged by about three times. 

The physical interpretation of the increase in the Nusselt number on a given wall (say, the top 

wall) caused by the occurrence of symmetric heat transfer also on the opposite wall (say, the bottom 

wall) rests on the observation that switching from one-side to two-side heat transfer moves the 

adiabatic condition T/y=0 at the bottom wall to a formally identical symmetry condition T/y=0 at 

the midplane, thus halving the actual distance between bulk fluid and wall. Since velocity profiles are 

not affected by thermal boundary conditions, the increase in Nu is not twofold but 1.5 times. 

For spacer-filled channels, the behavior of the Nusselt number is more complex but follows the 

same general trend. For example, Figure 8 compares Nu
(2)

 on both walls in two-side heat transfer with 

Nu
(2)

 on the single active (top) wall in one-side heat transfer for an overlapped spacer having P/H=2 

and =0° (a) or 45° (b). Note that the second definition of the average Nusselt number was used in 

order to obtain more regular and meaningful results. Note also that for = 45°, graph (b), the values of 

Nu
(2)

 on the two walls are identical for symmetry reasons and, of course, coincide also with their 

average. It can be observed that, for =0° (main flow aligned with the spacer filaments adjacent to the 

top wall), the Nusselt number in the case of heat transfer from the top wall only exhibits a completely 

different behavior than either the top- or the bottom-wall Nu in two-side heat transfer; in particular, it 

exhibits a large plateau which shrinks considerably in two-side transfer.  

 

Overlapped, l /H =2,  =0°
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N
u

(2
)

two-side, bottom

two-side, top

two-side, average

one-side
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 (a) (b) 

Figure 8. Comparison of one- and two-side heat transfer in an overlapped spacer filled channel for P/H=2. The 

values of Nu
(2)

 on the top and bottom walls and of their average in two-side heat transfer are reported as 

functions of the Reynolds number along with the values of Nu
(2)

 on the only active wall (top wall) in one-side 

heat transfer. (a) =0°; (b) = 45°. Note that in this latter case one has Nu
(2)

top = Nu
(2)

bottom. 

 

 

Once averaged between top and bottom walls, the two-side Nusselt number is lower than the 

single Nu
(2)

 obtained in one-side transfer for Re<180, but becomes up to 15% higher for larger values 

of the Reynolds number. For the flow attack angle of 45°, the trends of the two curves are similar but 

the two-side Nusselt number is 1.151.35 times higher than the one-side Nusselt number at all Re, so 

that the overall thermal power exchanged for any bulk to wall temperature difference is from 2.3 to 2.7 

times larger (of course, the heat transferred per unit membrane area is only 1.151.35 times larger). 
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From these results it can be concluded that: 

- in Membrane Distillation, two-side heat and mass transfer should be preferred as it generally 

provides larger heat transfer rates per unit membrane surface area at the Reynolds numbers 

(>200) expected in practical applications;  

- experimental and computational results obtained for one-side transfer cannot be extended to two-

side transfer, because not only the absolute values of the average Nusselt number, but also its 

trend with Re and other parameters, may differ significantly, and the relative performance 

ranking of the various configurations examined may be altered. 

 

 

5 Conclusions 

The main objective of the present paper was to clarify a number of issues arising in the study of 

fluid flow and heat/mass transfer in membrane processes involving flat, spacer-filled, channels (either 

plane or spirally wound). Other designs, including dead-end arrangements and tubular or hollow-fiber 

membranes, raise different problems which were not discussed here. The conclusions reached were 

based on many years’ experience with Membrane Distillation and Reverse Electrodialysis, but many 

of them can be extended to other membrane processes as well. The results of the study can be 

summarized as follows: 

- In regard to the definition of local heat or mass transfer coefficients, the definition based on the 

local heat / mass flux and on the difference between the local temperature or concentration at the 

wall and the corresponding bulk values, i.e. h=q
”

w/(Tb-Tw) or k=jw/(Cb-Cw), remains the most 

commonly adopted, but we have shown that these quantities may become singular or negative at 

some points of the wall in complex geometries. For this and other reasons, the definition of the 

average coefficients as surface averages h
(1)

=h, k
(1)

=k (definition 1) should be avoided, and the 

alternative averages h
(2)

=q
”

w/(Tb-Tw), k
(2)

=jw/(Cb-Cw) (definition 2), which do not suffer 

from singularities, are preferable both in computational and in experimental work. 

- In regard to the choice of temperature or concentration boundary conditions at the walls 

representing the fluid-membrane interfaces in CFD simulations, we have shown that it may have 

a significant impact on the computed Nusselt or Sherwood numbers, especially in laminar flow. 

Therefore, experimental data ought to be compared only with CFD results based on a realistic 

description of the actual boundary conditions, rather than with idealized cases based on uniform 

temperature / concentration (Dirichlet) or uniform heat / mass flux (Neumann) conditions. For 

design purposes, it is preferable to use convection coefficients based on generalized (3
rd

 type) 

boundary conditions with some intermediate value of the wall heat / mass transfer resistance. 

- In regard to the comparison between one-side and two-side heat or mass transfer, this choice has 

a dramatic impact on the corresponding coefficients: these may be up to 30% higher in a two-side 

configuration, yielding correspondingly higher heat or mass fluxes per unit membrane area. 

Experimental or computational results obtained for one-side transfer should not be extended to 

two-side transfer, because not only the values of the average Nusselt / Sherwood numbers, but 

also their dependence on Re and other parameters, may differ significantly, and the relative 

performance ranking of different configurations may be altered. 
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Appendix: Nusselt number in parallel channel flow for different thermal boundary conditions 

Although, in the present paper, the attention is focused on complex, spacer-filled channels (which can 

only be studied by means of fully three-dimensional numerical simulations), in order to appreciate the 

influence of thermal boundary conditions on heat transfer it is instructive to consider a simpler, 

essentially one-dimensional, problem (plane Poiseuille flow) since it leads to ordinary differential 

equations which can be solved to a very high accuracy. The mathematical treatment and the results 

obtained can easily be adapted also to mass transfer with obvious changes. 

Consider the steady, hydrodynamically and thermally fully developed flow of a constant-property 

fluid in a plane channel of half-thickness . Let x be the streamwise direction and y the cross stream 

one, with y=0 at the midplane, and let u(y) be the velocity along x, U its average, T(x, y) the 

temperature and =/(cp)

 

the thermal diffusivity. 

Consider first the case of symmetric two-side cooling, which can be characterized by a symmetry 

condition at the midplane and a general (3
rd

 type) boundary conditions at one wall: 
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T being a uniform external temperature and r an interposed thermal resistance. Let =T-T and 
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2
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 (A.2) 

its bulk value. The following dimensionless variables can be introduced 

 (A.3) 

 

The Poiseuille velocity distribution and the energy balance equation can be written 
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The assumption of thermally fully developed flow implies  

=b(x) (y) (A.6) 

so that Eq. (A.5) can be written 
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 (A.7) 

Following the method of separation of variables, Eq. (A.7) splits into the two distinct equations 
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in which the constant –B
2
 must be negative because, for example, b>0 implies db/d< 0 (cooled 

fluid). By substituting the velocity profile of Eq. (A.4) into Eq. (A.8) one obtains 
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This is a non-integrable ODE with non-constant coefficients which can easily be solved 

numerically. The boundary conditions for  are derived from eqs. (A.4) and (A.6): 

2

0

0 ; (1) B R
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
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 
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 
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 (A.11) 

in which R=r/ (dimensionless thermal resistance). The following condition must also be satisfied: 
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which is derived from the enthalpy balance: 
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Conceptually, Eq. (A.10) for (), with B.C.'s (A.11), must be solved numerically for each 

generic B
2
, and B

2
 has to be varied so as to satisfy Eq. (A.12). A simple iterative procedure was 

implemented in Fortran to perform this calculation. After convergence, the heat transfer coefficient is 
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which can be made dimensionless as a Nusselt number Nu=h(4/ (based on the channel hydraulic 

diameter 4). From the above equations and definitions it follows that 
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N u
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

 (A.15) 

Note that a different value of Nu and a different profile () are computed for each choice of the 

dimensionless thermal resistance R. Note also that the Dirichlet and Neumann conditions are obtained 

as limiting cases for R=0 and R, respectively. The function Nu(R) is represented in Figure A.1 by 

the “Two-side” line. 

Consider now the case of one-side cooling, i.e. cooling from one wall with the opposite wall 

adiabatic. The thermal boundary conditions (A.1) are replaced by 
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and their dimensionless counterparts (A.11) are replaced by  
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while all other equations and definitions remain unchanged. The solution for Nu is reported in Figure 

A.1 as the “One-side” line. Note the lower levels of Nu with respect to the “Two-side” case. 
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Nusselt number in a plane channel for different R
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Figure A.1 Nusselt number in a plane channel as a function of the dimensionless thermal resistance R. 


