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Abstract: Recently, a displacement-based non-local beam model has been devel-
oped and the relative finite element (FE) formulation with closed-form expres-
sions of the elastic and fractional viscoelastic matrices has also been obtained.
The static and quasi-static response has been already investigated. This work in-
vestigates the stochastic response of the non-local fractional viscoelastic beam,
forced by a Gaussian white noise. In this context, by taking into account the
mass of the beam, the system of coupled fractional differential equations ruling
the beam motion can be decoupled with the method of the fractional order state
variable expansion and statistics of the motion of the beam can be readily found.

1 Introduction
In the last decades, the non-local beam theories have known a great interest. This is due to
their ability to capture the mechanical behavior of beam-like micro- and nanodevices [1] that
avoid computationally expensive (and sometimes prohibitive) molecular simulations; indeed the
behaviour of such micro- and nano-elements can not be reproduced correctly by the classical lo-
cal continuum approach [2].There are several non-local theories available in literature; the most
known is for sure the Eringen’s integral theory [3], successfully applied to Euler-Bernoulli (EB)
model [4]; however there are many other effective theories used to construct non-local beams
model. Although most of the works have been carried out to model the non-locality related to
the pure stiffness, recently a great effort has been dedicated by researchers of the the field to
the modeling of non-local damping effects. Indeed, recent studies demonstrate that non-local
damping effects at microscale are relevant in application like image acquisition via high-speed
atomic force microscopes [5] or frequency measurements of vibrating nanosensors [6]; damp-
ing effects have also been observed as a result of humidity and thermal effects [7] or external
magnetic forces [8]. Applications of non local damping effects at macroscale also exists, see
for examples [9]. In the last years the authors have proposed non-local EB and TM beam mod-
els which treats non-local effects as long-range interactions depending on the relative motion
of nonadjacent volume elements [10–13]. The model is suitable for finite element (FE) imple-
mentation and closed form of the FE formulation can be readily found [13]. Both elastic and
fractional viscoelastic [14–16] long-range interactions have been included in this model [17].
In this paper the model has been further improved by taking into account the mass of the beam.
Indeed this is the only way to evaluate the error in measurement of micro-/nanosensors or the
error committed by micro-/nanoactuators due to environmental noise. In first approximation the



noise is modelled as Gaussian white noise [18, 19]; however the capability of the method is
independent of the input applied to the system. The coupled FE equations of motion with frac-
tional derivative can be decoupled efficiently with the fractional order state variable expansion
[20]; despite the fact that in this paper the application of this method is not the most general,
this approach can be readily applied to more realistic structural systems. It is shown that all the
elements of the power spectral density (PSD) matrix can be obtained in analytical form.

2 Non-local fractional viscoelastic model
In this section the mechanical model of non-local fractional viscoelastic beam is briefly intro-
duced. Firstly, the basic concepts of fractional viscoelasticity are discussed, then the mechanical
model of the non-local beam is introduced; finally, the finite element formulation is derived.

2.1 Fractional viscoelasticity
In this work, the viscoelastic forces are modelled by means of the tools of fractional calculus,
that is a branch of mathematics that study the integro-differential operators of real order and
their applications. In particular, fractional operators appear when power law creep/relaxation
functions are assumed to describe the linear viscoelastic behaviour. Indeed, if we assume the
relaxation function as follows

R(t) =
Cαt−α

Γ(1−α)
(1)

where 0 ≤ α ≤ 1 and Cα are material parameters, while Γ(·) is the Euler gamma function, by
substituting it in the integral form of the Boltzamann superpositon principle we obtain:

F(t) =
∫ t

0
R(t− τ)u̇(τ)dτ =

Cα

Γ(1−α)

∫ t

0
(t− τ)−α u̇(τ)dτ =Cα (0Dα

t u)(t) (2)

where F is the force, u is the displacement and (0Dα
t ·) is the Caputo fractional derivative. Eq.

(2) is related to the case in which a displacement is applied and the resulting force is evaluated.
If the force is applied, the creep function is used in the Boltzmann superpoistion principle
and the inverse relationship of Eq. (2) is obtained as u(t) = C−1

α (0Iα
t F)(t) where (0Iα

t ·) is
the Riemann-Liouville fractional integral. For more information abut fractional calculus and
fractional viscoelasticity see [16].

2.2 Kinematic and local resultant of the beam
As shown in Fig. 1 the bar has an arbitrary cross section with area A, it is referred to an axis x
coincident with centroidal axis; the material of the beam is assumed linearly elastic character-
ized by the Young modulus E.
Under the assumptions of small displacements, the kinematics of the beam can be completely
described by the following:

χ(z) =−dϕ(z)
dz

; γ(z) =
dv(z)

dz
−ϕ(z) (3)

where χ is the curvature, ϕ is the rotation of the transverse section about the x axis, v is the
transverse displacement in y direction and γ is the shear strain. The local resultants are written
as

T (l)
y (z) =

∫
A

τxy(x,y,z)dA = G∗KsAγ(z); M(l)
x (z) =

∫
A

σz(x,y,z)ydA = E∗Ixχ(z) (4)

where T (l)
y is the local shear resultant in y direction, A is the area of the cross section, τxy is

the shear stress, Ks is the shear factor, M(l)
x is th local bending resultant, σz is the local stress



in the z direction, Ix is the moment of inertia about the x axis, E∗ = β1E, G∗ = β1G and β1 is a
dimensionless parameter with values in the range 0÷1, that reduces the amount of local effects.
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Figure 1: Non local beam.

2.3 Long-range forces
The non-local model is constructed under the assumption that non-adjacent bar segment mu-
tually exert long-range viscoelastic forces due to relative motion. More specifically, consider
two nonadjacent bar segment of volume ∆V (xi) and ∆V (ξk) located at the positions z = zi and
z = ζk on the bar axis, respectively; they mutually exert long-range forces and moments as a
consequence of their relative motion measured as pure deformation [21]. The force are supposed
to be self-equilibrated according to the Newton’s third law. The long-range forces are written
as linearly depending on the product of the two volumes and the attenuation function govern-
ing the decay of non-local effects with the relative distance; both purely elastic and fractional
viscoelastic forces, modeled by Caputo’s fractional derivative, are considered. A mechanical
description of the long range interactions is depicted in Fig. 2.
The pure deformations θ and ψ are defined as follows:

q (z ,ξ )φφ i k
-q (z ,ξ )φφ i k

θ>0
ψ>0

q (z ,ξ )φy i k

q (z ,ξ )φy i k

q (z ,ξ )y i k

-q (z ,ξ )y i k

Figure 2: Pure mode of deformation.

θ(zi,ζk) = ϕ(ζk)−ϕ(zi); ψ(zi,ζk, t) =
v(ζk, t)− v(zi, t)

ζk− zi
+ϕ(ζk)+ϕ(zi) (5)

The bending moments mutually exerted by the two volumes ∆V (xi) and ∆V (ξk), due to the pure
bending rotation θ , is given as:

qϕϕ(zi,ζk, t) = rϕϕ(zi,ζk, t)+dϕϕ(zi,ζk, t) (6a)

rϕϕ(zi,ζk, t) = gϕ(zi,ζk)θ(zi,ζk, t)∆V (zi)∆V (ζk) (6b)

dϕϕ(zi,ξk, t) = g̃ϕ(zi,ξk)Dα

0+[θ(zi,ξk, t)]∆V (zi)∆V (ξk) (6c)



where gϕ and g̃ϕ are the attenuation function of the long range elastic and fractional viscoelas-
tic pure bending interactions, respectively. Typically, these functions are chosen as Gaussian,
exponential or power law [13]. The forces mutually exerted by the two volumes ∆V (xi) and
∆V (ξk), due to the pure shear defromation ψ , are given as:

qy(zi,ξk, t) = ry(zi,ξk, t)+dy(zi,ξk, t)] (7a)

ry(zi,ξk, t) =
1

|zi−ξk|
gy(zi,ξk)ψ(zi,ξk, t)∆V (zi)∆V (ξk) (7b)

dy(zi,ξk, t) =
1

|zi−ξk|
g̃y(zi,ξk)Dα

0+[ψ(zi,ξk, t)]∆V (zxi)∆V (ξk) (7c)

whereas the moments are

qϕy(zi,ξk, t) = rϕy(zi,ξk, t)+dϕy(zi,ξk, t) (8a)

rϕy(zi,ξk, t) = gy(zi,ξk)ψ(zi,ξk, t)∆V (zi)∆V (ξk) (8b)

dϕy(zi,ξk, t) = g̃y(zi,ξk)Dα

0+[ψ(zi,ξk, t)]∆V (zi)∆V (ξk) (8c)

2.4 Non-local bar equation of motion
Let us divide the bar in N segments of length ∆x and consider the bar segment of ∆V (xi) = A∆x
at the location x = xi = i∆x, with i = 0,1, ...,N; the equations of motion of this bar segment are

T (l)(zi +∆z)−T (l)(zi)+Ry(zi, t)+Fy(zi, t)∆z−ρ(xi)Av̈(zi, t)∆z = 0 (9a)

M(l)(zi +∆z)−M(l)(zi)+Rϕ(zi, t)∆z−ρIxϕ̈(zi, t)∆z = 0 (9b)

where qy(zi, t) is the external force per unit-length, m(x) = ρ(x)A being ρ(x) the mass per unit
volume and Ry and Rϕ are the resultants of non-local forces and moments on the beam segment
at hand. They can be written as

Ry(zi, t) =
N−1

∑
k=0,k 6=i

qy(zi,ξk, t); Rϕ(zi, t) =
N−1

∑
k=0,k 6=i

qϕϕ(zi,ξk, t)+qϕy(zi,ξk, t) (10)

By considering Eqs. (10), dividing Eqs. (9) by ∆z and performing the limit for ∆z→ 0, the
continuous counterparts of Eqs. (9) are obtained:

χGA
[

∂ 2u(z, t)
∂ z2 +

∂ϕ(z, t)
∂ z

]
+qy(z, t)+

∫ L

0

2
ξ − z

{
gy(z,ξ )ψ(z,ξ , t)

+ g̃y(z,ξ )Dα

0+ [ψ(z,ξ , t)]
}

dz = ρAv̈(z, t) (11a)

EIx
∂ 2ϕ(z, t)

∂ z2 +χGA
[

∂u(z, t)
∂ z

+ϕ(z, t)
]
+A2

∫ L

0

{
gϕ(z,ξ )θ(z,ξ , t)+ g̃ϕ(z,ξ )Dα

0+ [θ(z,ξ , t)]
}

dz

+A2
∫ L

0

{
gy(z,ξ )ψ(z,ξ , t)+ g̃y(z,ξ )Dα

0+ [ψ(z,ξ , t)]
}

dz = ρIxϕ̈(z, t) (11b)

Regards the boundary conditions (BCs), it can be easily seen that the BCs of the classical local
theory still hold since in the equilibrium equation at the bar ends, the long-range resultants are
infinitesimal of higher order with respect to the local resultants [22]. They are not reported here
for brevity.



2.5 Finite element formulation
The displacement based non-local model of the bar is suitable for implementation in FE method.
To this purpose, let us divide the bar in n finite elements of the same length l, such that nl = L,
being L the length of the bar. The points shared by adjacent bar elements are the nodes; the
generic i− th element has two nodes located at z = ẑi = (i−1)l and z = ẑi+1 = il. The displace-
ment field within the element is approximated by means of standard linear shape functions as
follows:

ui(z, t) = NNNi(z)dddi(t); dddi(t) =
[
v(i)1(t) ϕ(i)1(t) v(i)2(t) ϕ(i)2(t)

]
(12)

where i = 1,2, ...,n,, v(i)1,2(t) and ϕ(i)1,2(t), are the transverse displacements and rotations of
the two nodes of the i− th element and NNNi(x) is the shape functions vector of the i− th element,
that is

NNNi(z) =



(l−yi)(l2(1+12Ω)+(l−2yi)yi)
l3(1+12Ω)

6(l−yi)yi
l3(1+12Ω)

− (l−yi)(l+6lΩ−yi)yi
l2(1+12Ω)

(l+12lΩ−3yi)(l−yi)
l2(1+12Ω)

yi(12l2Ω+3lyi−2y2
i )

l3(1+12Ω)
6(yi−l)yi

l3(1+12Ω)
(l−yi)(6lΩ+yi)yi

l2(1+12Ω)
(2l(1−6Ω)+3yi)yi

l2(1+12Ω)

 (13)

where yi = z− ẑi. Next, being dddT(t) = [u1(t) u2(t) . . .un+1(t)]
T the vector collecting the dis-

placements of all nodes, the nodal displacements of the i− th element are written as dddi(x) =
CCCiddd(t) where Ci is the connectivity matrix of the i− th element. Following a standard Galerkin
approach, the dynamic equilibrium equation of the discretized bar is

MMMd̈dd(t)+CCC(nl) (Dαddd)(t)+KKKddd(t) = FFF(t), (14)

being MMM the consistent mass matrix, CCC(nl) the matrix of fractional viscoelastic long range in-
teractions, KKK the stiffness matrix and FFF(t) the vector of nodal forces. The stiffness matrix is
obtained as

KKK = KKK(l)+KKK(nl) =
n

∑
i=1

KKK(l)
i +

n

∑
i=1

KKK(nl)
i , (15)

where KKK(l) and KKK(nl) are the local and non-local stiffness contribution to the stiffness, respec-
tively. The local stiffness matrix of the i− th element is

KKK(l)
i =

∫ ẑi+1

ẑi

[BBBi(z)CCCi]
T DDDBBBi(z)CCCidz, (16)

where DDD = Diag [EIx χGA] and BBBi(z) is the vector collecting the spatial derivative of the shape
functions and is not reported here for brevity, while KKK(nl)

i is evaluated as

KKK(nl)
i = KKK(nl,θ)

i +KKK(nl,ψ)
i =

n

∑
j=1

KKK(nl,θ)
i j +

n

∑
j=1

KKK(nl,ψ)
i j (17)

with

KKK(nl,θ)
i j =

A2

2

∫ ẑi+1

ẑi

∫ ẑ j+1

ẑ j

[
NNN(ϕ)

j (ζ )CCC j−NNN(ϕ)
i (z)CCCi

]T
gϕ(z,ζ )

[
NNN(ϕ)

j (ζ )CCC j−NNN(ϕ)
i (z)CCCi

]
dzdζ

(18a)



KKK(nl,ψ)
i j =

A2

2

∫ ẑi+1

ẑi

∫ ẑ j+1

ẑ j

[
2
(

NNN(v)
j (ζ )CCC j−NNN(v)

i (z)CCCi

)
/(ζ − z)+NNN(ϕ)

j (ζ )CCC j +NNN(ϕ)
i (z)CCCi

]T

gy(z,ζ )
[
2
(

NNN(v)
j (ζ )CCC j−NNN(v)

i (z)CCCi

)
/(ζ − z)+NNN(ϕ)

j (ξ )CCC j +NNN(ϕ)
i (z)CCCi

]
dzdζ (18b)

It is to emphasized that the matrix CCC(nl) has the same mathematical form of the non-local
stiffness matrix KKK(nl); the only difference is that in CCC(nl) gi(z,ζ ) has been replaced by g̃i(z,ζ ).
Finally, the vector FFF(t) is given as:

FFF(t) =
n

∑
i=1

∫
Vi

[NNNi(x)CCCi]
T F̄FF(z, t)dVi(x)+ [NNN1(0)CCCi]

T F̄FF1(t)+ [NNNn+1(L)CCCn+1]
T F̄FFn+1(t). (19)

where F̄FF(z, t) = [Fy(z, t) 0] and F̄FF i(t) = [Ti Mi], i = 1,n+ 1, being Ti and Mi the shear and
bending moment reactions.

3 Stochastic response of non-local beam
The finite element formulation of fractional viscoelastic non local beam is considered for the
case in which the external load vector in Eq. (14) is composed by stochastic actions. An ap-
proach to find the analytical solution of the power spectral density (PSD) of the stochastic
response of such mechanical system is present below.

3.1 Problem formulation in frequency domain
In the stochastic case, the set of coupled differential equations in Eq. (14) is forced by a stochas-
tic input. In particular, consider that each node of the beam is forced by a zero mean Gaussian
white noise denoted by W (t), therefore FFF(t) = pppW (t), being ppp an influence vector. In this
case the set of inputs are stochastic processes and the response vector is a set of stochastic
response processes too dddT(t) = [V1(t), Φ1(t), . . . ,Vn+1(t), Φn+1(t)]. Moreover, since the frac-
tional derivative is a linear operator, and the input processes are Gaussian, than the set of nodal
displacements ddd(t) is composed by Gaussian processes too. Therefore, each response process
can be described at steady state by two deterministic function. That is, the PSD, and the corre-
lation function that are related each other by the Fourier transform. Without loss of generality,
consider the evaluation of the PSD only. Such analysis in frequency domain in terms of PSD
determination is particularly useful for the evaluation of the stationary statistics of the response.
This aim can be pursued considering the Eq. (14) in frequency domain. In other words, taking
into account that the forcing vector contains stochastic processes and performing the Fourier
transform, Eq. (14) in frequency domains yields[

−ω
2MMM+(iω)αCCC(nl)+KKK

]
dddF (ω,T ) = pppWF (ω,T ) (20)

where the i =
√
−1 is the imaginary unit, dddF (ω,T ) contains the truncated Fourier transform

of the response processes, and WF(ω,T ) denotes the Fourier transform of the Gaussian white
noises truncated at time T in the frequency domain ω . Observe that the power law (iω)α ,
related to the fractional order terms, contains an effective stiffness (related to the ℜ [(iω)α ])
and an effective damping (proportional to the ℑ [(iω)α ]). From Eq. (20) the response in the
frequency domain is

dddF (ω,T ) =
[
−ω

2MMM+(iω)αCCC(nl)+KKK
]−1

pppWF (ω,T ) = HHH(ω)pppWF (ω,T ), (21)

where HHH(ω) contains the transfer functions.



In order to fully characterize the stationary response in terms of displacements Vj(t) and rotation
Φ j(t) for j = 1,2, . . . ,n+1, the evaluation of the PSD and all the cross PSD of each element of
the vector ddd(t) is needed. In this regard, consider the PSD matrix defined as

SSSddd(ω) = HHH∗(ω)ppp lim
T→∞

E
[
W ∗F (ω,T )WF (ω,T )

]
2πT

pppTHHHT(ω) = HHH∗(ω)pppS0 pppTHHHT(ω), (22)

where S0 = SW (ω) is the constant PSD of the Gaussian white noise, E [·] is the expectation
value, and the apex * denotes the complex conjugate. Consequently, the matrix SSSd(ω) is

SSSddd(ω) =


SV1(ω) SV1Φ1(ω) . . . SV1Φn+1

SΦ1V1(ω) SΦ1(ω) . . . SΦ1Φn+1
...

... . . . ...
SΦn+1V1(ω) SΦn+1Φ1(ω) . . . SΦn+1

 (23)

and each term represents the PSD function of the output processes and their cross counterparts.
In particular, the diagonal terms are the PSDs, whereas the other terms are the cross PSDs.
Unfortunately, the PSD matrix cannot be obtained in analytical form because the matrix HHH(ω)
cannot be obtained by means of the matrix inversion in Eq. (21). In fact, just a numerical eval-
uation of each terms of SSSddd(ω) can be pursued by the discretization of the variable ω . For this
reason in the next subsection the problem is solved with the introduction of a proper state vari-
able expansion and a complex modal transformation in order to find the exact solution of each
term in the PSD matrix. However, the numerical solution obtained with the aid of of Eq. (21) is
used as a benchmark for the results obtained by the method in the next subsection.

3.2 State variable expansion and complex modal transformation
The matrix inversion problem in the previous subsection in some cases can be overcame with the
aid of a classical modal transformation and diagonalizing all the involved matrices in Eq. (20).
Unfortunately, for the case at hand the three involved matrices can be diagonalized and other
mathematical tools are needed. In this regards, consider the case in which the fractional order
α is rational, under this assumptions it is possible to represent the generic fractional order as
irreducible fractions of two integer values α = a/b, where a,b∈N. Thus, the system in Eq. (20)
can be rewritten as the following sequential linear algebraic equations:[

2b

∑
j=1

CCC j (iω) j/b +KKK

]
dddF (ω,T ) = vvvWF (ω,T ), (24)

where the involved matrices in the summation are CCCa = CCC(nl), CCC2b = MMM and CCC j = 000, ∀ j : j ∈
(1,a]and [a,2b−1). Introducing the vector of state variables in the frequency domain

zzzT
F (ω,T ) =

[
dddT

F (ω,T ), (iω)1/bdddT
F (ω,T ), . . . (iω)(2b−1)/bdddT

F (ω,T )
]
, (25)

and appending to Eq. (24) the 2b−1 identities

2b−k

∑
j=1

CCC j+k(iω)1/b(iω)( j−1)/bdddT
F (ω,T ) =

2b−k

∑
j=1

CCC j+k(iω) j/bdddT
F (ω,T ), k = 1,2, . . . ,2b−1,

(26)
then a set of (n+1)×2b coupled algebraic equations is readily cast in the form(

AAA b
√

iω +BBB
)

zzzF (ω,T ) = gggF (ω,T ), (27)



where gggT
F (ω,T ) =WF (ω,T )

[
vvvT 000 . . . 000

]
, the involved matrices are symmetric and defined as

AAA =


CCC1 CCC2 . . . CCC2b−1 CCC2b
CCC2 CCC3 . . . CCC2b 000
...

... . . . ...
...

CCC2b−1 CCC2b . . . 000 000
CCC2b 000 . . . 000 000

 BBB =


KKK 000 . . . 000 000
000 −CCC2 . . . −CCC2b−1 −CCC2b
...

... . . . ...
...

000 −CCC2b−1 . . . 000 000
000 −CCC2b . . . 000 000

.

 (28)

Now, it is possible to diagonalize the involved matrix by placing the complex modal transfor-
mation yyyF (ω,T ) = ΨΨΨzzzF (ω,T ). That is,

ΨΨΨ
T
(

AAA b
√

iω +BBB
)

ΨΨΨ yyyF (ω,T ) = ΨΨΨ
TgggF (ω,T )

(
UUUd

b
√

iω +VVV d

)
yyyF (ω,T ) = µµµF (ω,T ),

(29)

where ΨΨΨ contains the eigenvectors of the matrix DDD = AAA−1BBB, the matrices UUUd = ΨΨΨ
TAAAΨΨΨ and

VVV d =ΨΨΨ
TBBBΨΨΨ are diagonal (the subscript d stands for diagonal). Now, from Eq. (29) the response

in the complex modal space is

yyyF (ω,T ) =
(

UUUd
b
√

iω +VVV d

)−1
µµµF (ω,T ) = HHHd(ω)µµµF (ω,T ), (30)

since the matrix HHHd(ω) = (UUUd
b
√

iω +VVV d)
−1 can be evaluated in closed form each term of the

vector yyyF (ω,T ) can be readily obtained and then the exact PSD matrix in the state variable
domain can be derived. In particular,

SSSzzz(ω) = lim
T→∞

E
[
zzz∗F (ω,T )zzzT

F (ω,T )
]

2πT
= ΨΨΨ

∗ lim
T→∞

E
[
yyy∗F (ω,T )yyyT

F (ω,T )
]

2πT
ΨΨΨ

T

= ΨΨΨ
∗HHH∗d(ω) lim

T→∞

E
[
µµµ∗F µµµT

F (ω)
]

2πT
HHHd

T(ω)ΨΨΨT = ΨΨΨ
∗HHH∗d(ω)SSSµµµ(ω)HHHd

T(ω)ΨΨΨT.

(31)

The advantage in the use Eq. (31) respect than Eq. (22) arises in the fact that the involved
transfer function can be evaluated in closed form and then exact solution in terms of PSD and
CPSD functions can be obtained. The described state variable analysis and the complex modal
transformation are used in the next section in which numerical applications for different value
of fractional order are reported.

4 Numerical applications
The state variable expansion described in the previous section is used now to evaluate the
PSD of the stochastic response of non-local beam forced by Gaussian white noise. In partic-
ular, consider a cantilever beam under a zero-mean Gaussian white noise as ground motion
acceleration. Such white noise is characterized by unitary PSD, S0 = 1. The beam length is
L = 300 µm, it has a constant cross section with dimensions b = 30 µm and h = 15 µm. Consid-
ering that the material is an epoxy resin the elastic modulus is E = 1.4GPa, whereas the density
is ρ = 1000Kg/m3. As for the attenuation functions, typical exponential functions have been

selected [13, 17]. That is, g(x,ξ ) = Ch−2e
|x−ξ |

λ , and g̃(x,ξ ) = C̃h−2e
|x−ξ |

λ̃ , where λ = 30 µm,
λ̃ = 20 µm, C = 1022 Nm−6 and C̃ = 1021 Nm−6. The beam is discretized with then n = 20
FE. In order to show the effect of the fractional order in the stochastic response of the bar, two
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Figure 3: Displacement PSD at x = L for EV case and for VE case, exact solution by Eq. (31) in grey
continuos line, numerical solution by Eq. (22) in black dotted line.

different cases are considered. In the first case the chosen fractional order is α = 1/4, whereas
in the second case the fractional order is α = 3/4. Such choice aims to show the differences
in terms of PSD of the response between the case in which the elastic phase is predominant
(elasto-viscous (EV) case α = 1/4) and the response when the damping effect prevails (visco-
elastic (VE) case α = 3/4). In both cases the matrices of the coefficients CCCnl are the same. In
this manner only the influence of the fractional order is considered. For both cases the value b
in Eq. (24) is b = 4 and the number of state variables is 2b = 8.
The PSD matrix of the nodal displacement ad rotation can be evaluated by Eq. (22). In this
way just a numerical results can be found by the discretization of the frequency domain ω

and performing a matrix inversion for each frequency step ω j = j∆ω . For the case at hand
∆ω = 10.000 and the number of frequency step is N = 500. Such numerical results are used
as benchmark for the described method in which the PSD matrix of the node displacement and
rotation SSSddd(ω) is obtained from the PSD matrix in the state variable space SSSzzz(ω) in Eq. (31). In
particular, the matrix SSSddd(ω) is the first block of the 2n×2n elements of the super-matrix SSSzzz(ω)
and by the state variable expansion and the complex modal transformation each term of the PSD
matrix can be evaluated in closed form. Figure 4 shows the PSD of the top node displacement
for the two considered fractional orders α = 1/4 and α = 3/4.

5 Concluding remarks
The vibrations of a non-local beam with fractional viscoelastic long range interactions sub-
jected to a Gaussian white noise has been studied in this paper. The non-local beam is studied
by means of a FE formulation which closed form of non-local stiffness and fractional damping
matrices are available. With this approach the system is treated as a MDOF system and the re-
lated coupled differential equations of fractional order cannot be uncoupled by standard method
of modal analysis. For this reason the fractional order state variable expansion is used in con-
junction with a complex model transformation to decouple the equations of motion. It is shown
that the elements of the PSD matrix can be obtained analytically, while without the application
of the described method the PSD matrix can be obtained only numerically.

References
[1] Arash, B., and Wang, Q. 2012. A review on the application of nonlocal elastic models in modeling of carbon

nanotubes and graphenes. Comp Mater Sci, 51(1), 303313.

[2] Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., and Tong, P., 2003. Experiments and theory in strain
gradient elasticity. J Mech Phys Solids, 51(8), 14771508.



[3] Eringen, A.C., 1972. Linear theory of non-local elasticity and dispersion of plane waves. Int J Eng Sci,
10(5), 425435.

[4] Lu, P., Lee, H.P., Lu, C., and Zhang, P.Q., 2007. Application of nonlocal beam models for carbon nanotubes.
Int J Solids Struct, 44(16), 52895300.

[5] Payton, D., Picco, L., Miles, M.J., Homer, M.E., and Champneys, A.R., 2012. Modelling oscillatory flexure
modes of an atomic force microscope cantilever in contact mode whilst imaging at high speed. Nanotech-
nology, 23(26), 265702.

[6] Murmu, T., and Adhikari, S., 2012. Nonlocal frequency analysis of nanoscale biosensors. Sensor Actuat
A-Phys, 173(1), 4148.

[7] Chen, C., Ma, M., Liu, J., Zheng, Q., and Xu, Z., 2011. Viscous damping of nanobeam resonators: Humidity,
thermal noise, and a paddling effect. J Appl Phys, 110(3), 034320.

[8] Lee, J., and Lin, C., 2010. The magnetic viscous damping effect on the natural frequency of a beam plate
subject to an in-plane magnetic field. J Appl Mech, 77(1), 011014.

[9] Lei, Y., Friswell, M.I., and Adhikari, S., 2006. A Galerkin method for distributed systems with non-local
damping. Int J Solids Struct, 43(1112), 33813400.

[10] Di Paola, M., Failla, G., and Zingales, M., 2013. Non-local stiffness and damping models for shear-
deformable beams. Eur J Mech A-Solid, 40, 6983.

[11] Di Paola, M., Failla, G., and Zingales, M., 2014. Mechanically based nonlocal Euler-Bernoulli beam model.
J Nanomech Micromech , 4(1), A4013002.

[12] Failla, G., Santini, A., and Zingales, M., 2015. A non-local tw-dimensional foundation model. Arch. Appl.
Mech., 83(2), 253-272.

[13] Alotta, G., Failla, G., and Zingales, M., 2014. Finite element method for a nonlocal Timoshenko beam
model. Finite Elem Anal Des, 89, 77-92.

[14] Alotta, G., Di Paola, M., Pirrotta, A., 2014. Fractional TajimiKanai model for simulating earthquake ground
motion. B Earthq Eng, 12, 2495–2506.

[15] Di Paola, M., Fiore, V., Pinnola, F.P., and Valenza, A., 2014. On the influence of the initial ramp for a correct
definition of the parameters of fractional viscoelastic materials. Mech Mater, 69(1), 6370.

[16] Podlubny, I., 1999. Fractional differential equations. Academic Press, New York.

[17] Alotta, G., Failla, G., and Zingales, M., 2015. Finite-Element Formulation of a Nonlocal Hereditary
Fractional-Order Timoshenko Beam. J Eng Mech-ASCE, 10.1061/(ASCE)EM.1943-7889.0001035.

[18] Pirrotta, A., 2005. “Non-linear systems under parametric white noise input: Digital simulation and re-
sponse”. Int J Nonlinear Mech, 40(8), 1088–1101.

[19] Di Paola, M., Pirrotta, A., 1999. “Non-linear systems under impulsive parametric input”. Int J Nonlinear
Mech, 34(5), 843–851.

[20] Pinnola, F.P., 2016. Statistical correlation of fractional oscillator response by complex spectral moments and
state variable expansion. Commun Nonlinear Sci Numer Simul, 39, 343–359.

[21] Fuchs, M.B., 1997. Unimodal formulation of the analysis and design problems for framed structures. Comput
Struct, 63(4), 739747.

[22] Di Paola, M., Failla, G., and Zingales, M., 2009. Physically-based approach to the mechanics of strong
non-local linear elasticity theory. J of Elast, 97(2), 103130.


	Introduction
	Non-local fractional viscoelastic model
	Fractional viscoelasticity
	Kinematic and local resultant of the beam
	Long-range forces
	Non-local bar equation of motion
	Finite element formulation

	Stochastic response of non-local beam
	Problem formulation in frequency domain
	State variable expansion and complex modal transformation

	Numerical applications
	Concluding remarks

