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1 Introduction

In many cases of engineering interest the system
may be considered as a black-box system and
some informations are available from experimen-
tal data. The question is: what is the filter equa-
tion that exactly match the response for any kind
of input? Such an example if the Power Spectral
Density (PSD) function is measured or is assigned
like in the case of wind velocity, or wave elevation
or earthquake the PSD is already known and we
search some differential equation enforced by a
white noise whose output reproduces the PSD tar-
get. Discrete Auto-regressive (AR), Moving Av-
erage (MA) or their combination (ARMA) mod-
els are currently used for. Such an example in
order to represent the wave elevation represented
by the Pierson-Moskovitz spectrum (Pierson and
Moskowitz, 1964) in Spanos (1983) the AR, MA
and ARMA models have been widely discussed.
In Spanos (1986) an analog filter representation is
presented for the Jonswap spectrum (Hasselmann
et al., 1973). The main disadvantage in the dis-
crete filter representation is that the filter equation

so obtained is able to reproduce only the given
PSD (or the correlation function) but the differen-
tial equations governing the problem remain un-
known and then powerful tools of the Itô calcu-
lus may not be applied. In Thampi (1999) a filter
based on the Markov method has been proposed,
however the filter is only suitable for modeling re-
sponse of offshore structures.
Recently Cottone et al. (2010) proposed a contin-
uous filter equation in the form L[x(t)] = W (t)
where W (t) is a white noise process and L[·] is
a linear fractional differential operator. The only
problem is that the filter so obtained is non causal.
This is due to the fact that the only knowledge of
the PSD is not enough to represent both amplitude
and phase of the given signal.
In order to overcome this problem, in this paper
we assume that the black-box system is enforced
by an impulse. Then we measure the impulse re-
sponse function (or the transfer function), with
this information the exact causal filter equation
is readily found by using Mellin transform and
fractional differential calculus (Podlubny, 1999;
Samko et al., 1993). It is shown that the filter
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equation may be obtained in two different forms,
a form involving a summation of Riesz integrals
whose coefficients are readily found simply by
evaluating the Mellin transform of the impulse re-
sponse function.

2 Preliminary concepts and
definitions

In this section some basic concepts on fractional
calculus are introduced for clarity sake’s as well
as for introducing appropriate symbologies. Let
us start with the definition of Riemann-Liouville
fractional integral and derivative

(aI
γ
t f)(t) =

1

Γ(γ)

∫ t

a

f(τ)

(t− τ)1−γ dτ (1)

(aD
γ
t f)(t) =

1

Γ(n− γ)

(
d

dt

)n ∫ t

a

f(τ)

(t− τ)γ+1−ndτ

(2)

with γ = ρ + iη, ρ > 0, η∈R and Γ(·) is the
Euler Gamma function. Eqs. (1) and (2) are the
left fractional integral and derivative respectively.
It may be also defined the right fractional integral
and derivative

(tI
γ
b f)(t) =

1

Γ(γ)

∫ b

t

f(τ)

(τ − t)1−γ dτ (3)

(tD
γ
b f)(t) =

1

Γ(n− γ)

(
− d

dt

)n ∫ b

t

f(τ)

(τ − t)γ+1−ndτ (4)

If a → −∞ in Eqs. (1) and (2) and b → ∞
in Eqs. (3) and (4), they will be indicated as Iγ+
andDγ

+ and Iγ− andDγ
−, respectively. It may be

easily demonstrated that the Fourier transform of
such operator are (see Podlubny (1999); Samko
et al. (1993))

F {(Iγ±f)(t);ω} = (∓iω)−γfF(ω) (5)

F {(Dγ
±f)(t);ω} = (∓iω)γfF(ω) (6)

where fF(ω) is the Fourier transform of f(t);
Fourier transform of f(t) and its inverse are de-
fined as:

fF(ω) = F{f(t);ω} =

∫ ∞
−∞

f(t)eiωtdt (7a)

f(t) = F−1{fF(ω); t} =
1

2π

∫ ∞
−∞

fF(ω)e−iωtdω

(7b)
Other useful definitions for the ensuing deriva-

tions are Riesz fractional integral and derivative,
denoted as Iγ and Dγ , respectively, defined as

(Iγf)(t) =
1

2νc(γ)

∫ ∞
−∞

f(τ)

|t− τ |1−γ
dτ =

1

2 cos(γπ
2

)
[(Iγ+f)(t) + (Iγ−f)(t)] (8)

(Dγf)(t) =
1

2νc(−γ)

∫ ∞
−∞

f(t− τ)− f(t)

|τ |γ+1
dτ =

− 1

2 cos(γπ
2

)
[(Dγ

+f)(t) + (Dγ
−f)(t)] (9)

where νc(γ) = Γ(γ) cos(γπ/2). Moreover we
may define the complementary Riesz fractional
integral and derivative, denoted as Ĩγ and D̃γ , in
the form

(Ĩγf)(t) =
1

2νs(γ)

∫ ∞
−∞

f(τ) sgn(t− τ)

|t− τ |1−γ
dτ =

1

2 sin(γπ
2

)
[(Iγ+f)(t)− (Iγ−f)(t)] (10)
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(D̃γf)(t) =

1

2νs(−γ)

∫ ∞
−∞

f(t− τ)− f(t)

|τ |γ+1
sgn(t− τ)dτ

= − 1

2 sin(γπ
2

)
[(Dγ

+f)(t)− (Dγ
−f)(t)] (11)

where νs(γ) = Γ(γ) sin(γπ/2) and sgn(·) is
the signum function. Eqs. (8) to (11) are valid
provided ρ > 0, ρ 6= 1, 3, . . . .

Fourier transform of Riesz operators can be ex-
pressed as follows

F {(Iγf)(t);ω} = |ω|−γfF(ω) (12a)

F {(Dγf)(t);ω} = |ω|γfF(ω) (12b)

F
{

(Ĩγf)(t);ω
}

= i sgn(ω)|ω|−γfF(ω) (13a)

F
{

(D̃γf)(t);ω
}

= −i sgn(ω)|ω|γfF(ω)

(13b)

For the fractional operators above defined the fol-
lowing rules

Dγ
±(Iγ±f)(t) = f(t), Dγ(Iγf)(t) = f(t),

D̃γ(Ĩγf)(t) = f(t) (14)

hold true. Finally for Fourier transformable func-
tion and 0 < ρ < 1

(Iγf)(t) = (D−γf)(t) (Ĩγf)(t) = (D̃−γf)(t)
(15)

Now let us introduce the Mellin transform op-
erator as

M{f(t), γ} =

∫ ∞
0

tγ−1f(t)dt = fM(γ);

γ = ρ+ iη ∈ C (16)

where ρ has to be chosen in an interval −p < ρ <
−q called Fundamental strip (FS) of the Mellin
transform; p and q depend of the asymptotic be-
havior of f(t) at t→ 0 and t→∞:

lim
t→0

f(t) = O(tp); lim
t→∞

f(t) = O(tq) (17)

where O(·) is the order of the term in parenthe-
sis. From the knowledge of fM(γ) we may re-
construct the function f(t) in the whole domain
by the inverse Mellin transform namely

f(t) =M−1{fM(γ), t} =

1

2πi

∫ ρ+i∞

ρ−i∞
fM(γ)t−γdγ =

1

2π

∫ ∞
−∞

fM(γ)t−γdη

(18)

Integrals in Eq. (18) are independent of the
value of ρ selected, provided they belongs to the
FS, because the Mellin transform of f(t) is holo-
morph in the FS.
In discretized form Eq. (18) may be written as

f(t) ' ∆η

2π

m∑
k=−m

fM(γk)t
−γk =

1

b
e−ρξ

m∑
k=−m

fM(γk)e
−ik π

b
ξ (19)

where γk = ρ + ik∆η, b = π/∆η and ξ = ln t.
The number m of the summation has to be cho-
sen in such a way that contribution of terms or-
der n > m do not produce sensible variations on
f(t). Discretization produces a divergence phe-
nomenon in t = 0 (unless f(0) = 0). This patho-
logical behavior is however confined in the range
−e−b ÷ e−b then it may be easily dropped out by
assuming the value in e−b as the value in zero.
The Mellin transform operates for f(t) defined in
the range 0 ≤ t <∞. For ensuing derivations we
have to work with f(t) defined in −∞ < t <∞.

3



Filter equation by fractional calculus
G. Alotta, M. Di Paola

Then we divide f(t) into a symmetric and anti-
symmetric function u(t) and v(t), respectively

f(t) = u(t) + v(t) (20a)

u(t) =
f(t) + f(−t)

2
; v(t) =

f(t)− f(−t)
2

(20b)

In this way, the Mellin transform of f(t) can be
written as

M{f(t), γ} =

∫ ∞
0

(u(t) + v(t))tγ−1dt =

uM(γ) + vM(γ) = fM(γ) (21)

where uM(γ), vM(γ) are Complex Fractional
Moments (CFMs) of order γ− 1 of u(t) and v(t),
respectively. Inverse Mellin transform defined in
Eqs. (18) or in its discretized form (19), now resti-
tutes u(t) and v(t) for t > 0, and by deifnition of
even and odd function the whole f(t) may be de-
fined also for t < 0. Moreover by taking into
account Eqs. (12), (13) and Eq. (15) we can write

(Iγf)(t) = (D−γf)(t) =

1

2π

∫ ∞
−∞
|ω|−γfF(ω)e−iωtdω =

1

2π

∫ ∞
−∞
|ω|−γ[uF(ω) cos(ωt)−i vF(ω) sin(ωt)]dω

(22a)

(Ĩγf)(t) = −(D̃−γf)(t) =

− i

2π

∫ ∞
−∞

sgn(ω)|ω|−γfF(ω)e−iωtdω =

− i

2π

∫ ∞
−∞
|ω|−γ sgn(ω)[vF(ω) cos(ωt)−

i uF(ω) sin(ωt)]dω (22b)

where uF(ω) and vF(ω) are the Fourier trans-
forms of u(t) and v(t) respectively. Since u(t) is

a real even function uF(ω) is real and even, while
since v(t) is a real odd function vF(ω) is imagi-
nary and odd. Then Eqs. (22) evaluated in t = 0
reveal that the Riesz integrals and its complemen-
tary are related to the CFMs of order−γ of uF(ω)
and vF(ω), namely

(Iγf)(0) = (D−γf)(0) =
1

2π

∫ ∞
−∞
|ω|−γuF(ω)dω

(23a)

(Ĩγf)(0) = −(D̃−γf)(0) =

− i

2π

∫ ∞
−∞

sgn(ω)|ω|−γvF(ω)dω (23b)

On the other hand from Eq. (8) and (10), by
letting t = 0 in Eq. (8) and by taking into account
Eq. (20a) we get

(Iγf)(0) =
1

2νc(γ)

∫ ∞
−∞

f(τ)

|τ |1−γ
dτ =

1

νc(γ)

∫ ∞
0

τ γ−1u(τ)dτ (24a)

(Ĩγf)(0) =
1

2νs(γ)

∫ ∞
−∞

f(τ) sgn(τ)

|τ |1−γ
dτ =

1

νs(γ)

∫ ∞
0

τ γ−1v(τ)dτ (24b)

From Eqs. (23) and (24) it may be stated that
the Riesz fractional integrals are related to the
Mellin transform of u(t) and v(t) (Di Paola and
Cottone, 2009; Di Paola et al., 2010; Di Paola
and Pinnola, 2012). From the previous considera-
tions it may be asserted that the quantities uM(γ)
and vM(γ) are able to represent both f(t) and its
Fourier transform fF(ω) in the form

f(t) ' ∆η

2π

m∑
k=−m

[uM(γk) + vM(γk) sgn(t)] |t|−γk

(25a)

fF(ω) ' ∆η

2π

m∑
k=−m

[νc(1− γk)uM(γk)+

i sgn(ω)νs(1− γk)vM(γk)] |ω|γk−1 (25b)
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Other informations may be found in Di Paola and
Cottone (2009); Di Paola et al. (2010); Di Paola
and Pinnola (2012).

3 Fractional linear non antici-
pative filter

In this section we suppose that we have a black-
box linear system enforced by an impulse at t =
0. In time domain direct measure of the response
(displacement, or current, or any other physi-
cal quantity) gives the impulse response function
h(t), that due to causality condition is zero fo
t < 0. A measure in frequency domain gives
the transfer function H(ω). h(t) and H(ω) are
related each another by the Fourier transform op-
erator, that is

H(ω) =

∫ ∞
−∞

h(t)eiωtdt =

∫ ∞
0

h(t)eiωtdt (26)

h(t) =
1

2π

∫ ∞
−∞

H(ω)e−iωtdω (27)

Let us now suppose that the filter equation is ruled
by a linear differential operator L[y(t)] and then
during the test, the equation is

L[y(t)] = δ(t) (28)

where L[·] is an unknown linear operator that de-
scribes the black-box system whose impulse re-
sponse function is h(t) and δ(t) is the impulse at
t = 0. We know the function h(t) (or H(ω)) and
we want identify the operator L[·].

Let us denote as hµ(γ) the Mellin transform of
h(t), that is

M{h(t); γ} = hµ(γ) =

∫ ∞
0

h(t)tγ−1dt (29)

ant its inverse Mellin transform returns h(t) in the
form

h(t) =
1

2πi

∫ ρ+i∞

ρ−i∞
hµ(γ)t−γdγ '

∆η

2π

m∑
k=−m

hµ(γk)t
−γk ; t > 0 (30)

Fourier transform of h(t) described by the dis-
cretized form of Eq. (30) gives

H(ω) ' ∆η

2π

m∑
k=−m

hµ(γk)|ω|γk−1 [νc(1− γk)+

iνs(1− γk) sgn(ω)] (31)

On the other hand the transfer function H(ω) has
an even real part and an odd imaginary part that
will be labeled as A(ω) and B(ω), respectively.
Then we may write

H(ω) = A(ω) + iB(ω) (32)

whereA(ω) = A(−ω)∈R,B(ω) = −B(−ω)∈R.
It follows that because of Eq. (31) these two func-
tions are given as

A(ω) ' ∆η

2π

m∑
k=−m

νc(1−γk)hµ(γk)|ω|γk−1 (33)

B(ω) ' ∆η

2π
sgn(ω)

m∑
k=−m

νs(1−γk)hµ(γk)|ω|γk−1

(34)

From Eqs. (32) to (34) it may be stated that from
the knowledge of the Mellin transform of the im-
pulse response function also H(ω) may be di-
rectly evaluated. The causality condition (h(t) =
0 ∀t < 0) implies that
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A(ω) = H{B(ω)} (35)

where H{·} is the Hilbert transform operator
defined as

H{B(ω)} =
1

π
P
∫ ∞
−∞

B(ω̄)

ω − ω̄
dω̄ (36)

and P means principal value. Condition (36)
proves to be fulfilled by making the Hilbert trans-
form of B(ω) given in Eq. (34).
Now let us suppose that, from the experimental
test performed with the impulse response func-
tion, we directly obtain A(ω) and B(ω), namely
the transfer function is given then we may di-
rectly operate in frequency domain by making the
Mellin transform of A(ω) and B(ω), that is

M{A(ω); γ̄} = Aµ(γ̄) =

∫ ∞
0

A(ω)ωγ̄−1dω

(37)

M{B(ω); γ̄} = Bµ(γ̄) =

∫ ∞
0

B(ω)ωγ̄−1dω

(38)

where γ̄ = ρ̄ + iη and then A(ω) and B(ω) are
restored in the form

A(ω) =
∆η

2π

m∑
k=−m

Aµ(γ̄k)ω
−γ̄k ;

B(ω) =
∆η

2π

m∑
k=−m

Bµ(γ̄k)ω
−γ̄k ; ω > 0 (39)

on the other hand, due to the simmetry and anti-
simmetry of A(ω) = A(−ω), B(ω) = −B(−ω),
Eq. (39) may be also rewritten as

A(ω) =
∆η

2π

m∑
k=−m

Aµ(γ̄k)|ω|−γ̄k ;

B(ω) =
∆η sgn(ω)

2π

m∑
k=−m

Bµ(γ̄k)|ω|−γ̄k (40)

By letting γ̄k = 1− γk, Eq. (40) may be rewritten
as

A(ω) =
∆η

2π

m∑
k=−m

Aµ(1− γk)|ω|γk−1;

B(ω) =
∆η sgn(ω)

2π

m∑
k=−m

Bµ(1− γk)|ω|γk−1

(41)

Direct comparison with Eqs. (33) and (34) gives

Aµ(1−γk) = νc(1−γk)hµ(γk); Bµ(1−γk) =

νs(1− γk)hµ(γk) (42)

From Eq. (42) we may conclude that in the Mellin
domain Aµ(1 − γk), Bµ(1 − γk) and hµ(γk) are
strictly related each another. With this results in
mind we can proceed to define the filter equation.

4 Filter equation
Due to the linearity of the system, once h(t) (or
H(ω)) are obtained in analytical form, the re-
sponse of the system (28) may be easily obtained
by invoking the Duhamell superposition integral
in the form

y(t) =

∫ t

0

h(t− τ)f(τ)dτ ∼=

∆η

2π

m∑
k=−m

hµ(γk)

∫ t

0

(t− τ)−γkf(τ)dτ (43)
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that is valid for quiescent system at t = 0.
Inspection of Eqs. (1) and (43) allow us to rewrite
y(t) as a summation of RL fractional integrals in
the form

y(t) ∼=
∆η

2π

m∑
k=−m

hµ(γk)Γ(1− γk)(I1−γk
0+ f)(t)

(44)

The exact filter equation may then be obtained by
letting ∆η → 0 and m→∞, so obtaining

y(t) =
1

2πi

∫ ρ+i∞

ρ−i∞
hµ(γ)Γ(1− γ)(I1−γ

0+ f)(t)dγ

(45)

From Eq. (44) we get the solution of the equation

L[y(t)] = f(t) (46)

where f(t) is the forcing function acting on the
black-box system. From Eq. (44) we may state
that the inverse operator of Eq. (46) is a linear
combination of RL fractional integrals.

5 Filtered white noise process
Let us now suppose that f(t) is a white noise pro-
cess, labeled as W (t). In this case y(t) is a pro-
cess and will be denoted, as customary, with a
capital letter Y (t). Then Eq. (28) is rewritten as

L[Y (t)] = W (t) (47)

The filter equation, for each sample function of
W (t) remain valid and then Eq. (44) is rewritten
in the form

Y (t) ∼=
∆η

2π

m∑
k=−m

hµ(γk)Γ(1− γk)(I1−γk
0+ W )(t)

(48)

Now let us first suppose that W (t) is represented
as a Poisson white noise labeled as WP (t)

WP (t) =

N(t)∑
s=1

Rsδ(t− Ts) (49)

where Rs is the realization of a random variable
with assigned distribution PR(r), Ts is the real-
ization of random times distributed according to
Poisson law (independent of R) and N(t) is a
Poisson counting process giving the number of
spikes in 0 ÷ t. The compound Poisson process
labeled as CP (t) is the integral of WP (t), that is

CP (t) =

N(t)∑
j=1

RsU(t− Ts) (50)

and increment dCP (t) are characterized in proba-
bilistic setting by

E[(dCP (t))k] = λE[Rk]dt (51)

where E[·] means mathematical expectation and
λ is the mean number of impulses per unit time.
As we insert Eq. (49) in Eq. (48) we get

Y (t) ∼=
∆η

2π

m∑
k=−m

hµ(γk)

N(t)∑
s=1

Rs(t−Ts)−γkU(t−Ts)

(52)

where U(·) is the unit step function. Eq. (52) may
be used to generate a filtered Poisson white noise.
On the other hand it is well known that if E[R] =
0, λ → ∞ and λE[Y 2] remains a finite quantity
then the Poisson white noise process reverts to the
normal white noise and the Compound Poisson
process reverts to the Brownian motion B(t).
In order to generate the sample functions of the
normal white noise we may subdivide the interval
0÷ t into small intervals of amplitude ∆t and we
suppose that λ in Eq. (51) is 1/∆t, in this way
in each interval we have one impulse (in mean).
Moreover we assume that the amplitudes R in
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each interval is normally distributed with a vari-
ance E[R2] = σ2∆t then λE[R2] = σ2. As we
assume that in each interval only a spike occurs
(λ = 1/∆t), then we may suppose that at the cur-
rent time t = r∆t we have r impulses in each of
them acts the realization of a normal random vari-
able with variance σ2∆t, moreover because small
changes of the exact position of the spike occur-
rence into ∆t does not produce sensible variations
on Y (t), then we may suppose that each spike oc-
cours at the end (or at the beginning) of each in-
terval. If ∆t → 0 then we get a true white noise,
if ∆t is small we generate a band limited white
noise, and the smaller ∆t the wider the bandwidth
is. It follows that Eq. (52) may be rewritten as

Y (r∆t) ∼=
∆η

2π

m∑
k=−m

hµ(γk)

r∑
s=1

Rs((r − s)∆t)−γkU(r − s) (53)

where Rs is the s-th realization of a zero mean
normal random variable having σ2∆t variance. It
is obvious that Eq. (53) restitutes a non stationary
process and Y (r∆t) for r = 0 is zero with prob-
ability one. If a stationary process Y has to be
simulated it may be selected as a starting time a
value of r so large that the steady-state is already
reached.
Statistics of Y (r∆t) generated by Eq. (53) is
readily found in time domain by taking account
that E[RsRp] = 0 if s 6= p. Then

E[Y (r∆t)Y (q∆t)] =

(∆η)2

4π2

m∑
k=−m

m∑
s=−m

hµ(γk)hµ(γj)

|r−q|∑
s=1

σ2∆t[(r − s)∆t]−γk [(q − s)∆t]−γj (54)

Eq. (54) gives the correlation function of the pro-
cess Y (r∆t). The correlation of the process Y (t)
depends of r∆t = t1 and q∆t = t2. This s be-
cuase the response process generated by Eq. (48)

is quiescent in t = 0. Then in order to get a
steady state correlation it is enough to assume r
very large and q < r.

6 Numerical examples

6.1 Transfer function and impulse re-
sponse function

In this section we want to validate the procedure
described in previous section. Firstly we suppose
to test a mechanical system and to measure its
impulse response function h(t); we suppose that
the function has the form of the impulse response
function of the single degree of freedom (SDOF)
system and that we don’t know the filter equation
(that in this case is already known). In this case
the impulse response function target is
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Figure 1: Impulse response function h(t): Eq.
(55) (continuous line) vs. Eq. (30) (dotted line).

h(t) =
1

ωd
exp(−ζω0t) sin(ωdt) (55)

and its Fourier transform is given as

H(ω) =
(ω2

0 − ω2) + 2iζωω0

(ω2
0 − ω2)

2
+ 4ζ2ω2ω2

0

(56)

where ω0 is the natural frequency of the un-
damped system, while ωd is the damped fre-
quency ωd = ω0

√
1− ζ2 and ζ is the percentage

of the critical damping.
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Figure 2: Transfer function, real and imaginary
part <[H(ω)] and =[H(ω)]; Eq. (56) (continuous
line) vs. Eq. (31) (dotted line).

Eq. (55) and (56) are our target. By evaluating
hµ(γ) defined in Eq. (27) we may reconstruct
both h(t) and H(ω) by using Eqs. (30) and (31).
In Fig. 1 and 2 the target h(t) and H(ω) are plot-
ted and contrasted with results obtained by Eq.
(30) and (31).

The parameters selected are ω0 = 2rad/sec,
ζ = 0.2, ωd = ω0

√
1− ζ2 ' 1.96rad/sec, ∆η =

0.5, m = 40 and consequently ηc = 20; Figs. 1
and 2 show the contrasts between h(t), <[H(ω)]
and =[H(ω)] respectively and their counterparts
evaluated with CFMs.

6.2 Response to white noise process

In this section we want to validate the procedure
discussed in Sec. 5. The equation of motion is that
descibed in Eq. (47) with W (t) a normal white
noise process. The impulse response function is
that described in Eq. (55) that is represented in
terms of hµ(γk)how it has been made in Sec. 6.1.
The sample function of the response is plotted in
continuous line in Fig. 3. Then Eq. (53) is ap-
plied for the case in exam and results are plotted
in dotted line.

With the results obtained in this section we
may generate any stochastic process with a gen-
eral form of filter.
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Figure 3: Sample of the process Y (t); step-bystep
integration (continuous line) vs. Eq. (53) (dotted
line).

7 Conclusions
In this paper a method to obtain an exact and an
approximated filter equation for any linear system
is proposed. The procedure starts from the knowl-
edge of the impulse response function or the trans-
fer function of the system. Once one of this quan-
tity is known, we can reconstruct both the impulse
response function and the transfer function simply
by calculating the Mellin transform of the known
fucntion, namely its complex fractional moments.
The filter equation can be then constructed simply
by performing the Duhamell integral of the im-
pulse response function written in terms of com-
plex fractional moments, that renstitute a summa-
tion of Riemann-Liouville integral. The main ad-
vantage of this filter is that it is non anticipative.
It has been shown that with a limited number of
complex fractional moments it is possible to con-
struct a general form of the filter and to generate
filtered processes with the same accuracy of exist-
ing methods.
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