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A B S T R A C T

Epithelial sinonasal cancers (SNCs) are rare diseases with overlapping morphological features and a dismal
prognosis. We aimed to investigate the expression differences among the histological subtypes for discerning
their molecular characteristics.

We selected 47 SNCs: (i) 21 nonkeratinizing squamous cell carcinomas (NKSCCs), (ii) 13 sinonasal neu-
roendocrine cancers (SNECs), and (iii) 13 sinonasal undifferentiated cancers (SNUCs). Gene expression profiling
was performed by DASL (cDNA-mediated annealing, selection, extension, and ligation) microarray analysis with
internal validation by quantitative RT-PCR (RT-qPCR). Relevant molecular patterns were uncovered by sparse
partial-least squares discriminant analysis (sPLS-DA), microenvironment cell type (xCell), CIBERSORT, and gene
set enrichment (GSEA) analyses.

The first two sPLS-DA components stratified samples by histological subtypes. xCell highlighted increased
expression of immune components (CD8+ effector memory cells, in SNUC) and “other cells”: keratinocytes and
neurons in NKSCC and SNEC, respectively. Pathway enrichment was observed in NKSCC (six gene sets, pro-
liferation related), SNEC (one gene set, pancreatic β-cells), and SNUC (twenty gene sets, some of them immune-
system related). Major neuroendocrine involvement was observed in all the SNEC samples.

Our high-throughput analysis revealed a good diagnostic ability to differentiate NKSCC, SNEC, and SNUC, but
indicated that the neuroendocrine pathway, typical and pathognomonic of SNEC is also present at lower ex-
pression levels in the other two histological subtypes. The different and specific profiles may be exploited for
elucidating their biology and could help to identify prognostic and therapeutic opportunities.

Introduction

The sinonasal tract can develop a wide variety of tumors, with a
greater heterogeneity of neoplasms than that in any other part of the
human body [1]. Sinonasal tumors are rare diseases, representing ap-
proximately 5% of all head and neck neoplasms [2]. According to
RARECARE, their worldwide annual incidence is ∼0.5 cases per

100,000 people [3], and the average age at which patients present with
such lesions is between 50 and 60 years [4]. These cancers require a
multimodal therapeutic approach, including surgical treatment, radia-
tion, and systemic chemotherapy. Despite the aggressive treatment,
globally the prognosis of patients remains poor, with an overall 5-year
survival rate of 30–50% [5]. The most frequent histological kind of
sinonasal tumors is the epithelial type [4], which differs from epithelial
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cancers arising from the mucosa of other head-and-neck subsites in
epidemiological, clinical, and causal factors [5]. Due to their rapid
growth, most of epithelial sinonasal cancers (SNCs) are detected and
treated at advanced stages. In terms of a histological definition, they are
characterized by a high rate of discrepancies after second-opinion re-
view [6]. As a matter of fact, pathologists may have difficulty differ-
entiating the SNC subtypes owing to the overlaps of morphological
features and the similarity of immunohistochemical (IHC) character-
istics, all increasing the laboriousness of the diagnosis. Even though
several IHC markers have been proposed to overcome the complexity of
the classification, no consensus on this subject has been reached yet.
Clearly, to better define the prognosis and treatment options for SNCs,
it is crucial to dissect their heterogeneity and obtain valuable in-
formation on the biology of these malignant tumors. According to re-
cent data, the mutational profiles could help to identify patterns of
alterations typical of each histological type and to regroup different
tumors [2]. Because SNCs are a rare entity, the identified genomic al-
terations are limited to the NUT-BRD4 translocation in NUT carcinoma
(target of bromodomain and extra-terminal inhibitors) [7] and an EGFR
exon 20 mutation (target of second and third generations of EGFR in-
hibitors) in squamous cell carcinoma [8]. Another remarkable ob-
servation is that no comprehensive analyses of the gene expression of
the three histological subtypes are available at present. The present
work was focused on gene expression analysis of different and chal-
lenging epithelial subtypes [1]. We analyzed a retrospective series of
SNCs representative of the three selected histological subtypes, which
manifested overlapping morphological features: (i) nonkeratinizing
squamous cell carcinoma (NKSCC), a subtype of squamous cell carci-
noma; (ii) sinonasal neuroendocrine carcinoma (SNEC), characterized
by neuroendocrine features; and (iii) sinonasal undifferentiated carci-
noma (SNUC), with an undetermined histogenesis without evidence of
squamous or glandular differentiation, and therefore representing a
category with a diagnosis of exclusion [2,9]. The aim of our work was
to find out whether gene expression may be of some help in refining the
three histological subtypes by uncovering possible different and specific
profiles that may be exploited for elucidating their biology and for
improving treatment approaches.

Patients and methods

Patients and samples

We selected 47 cases from a retrospective cohort of SNCs cases
(treated at two Italian referral centers: Fondazione IRCCS Istituto
Nazionale dei Tumori, Milan and Ospedale di Circolo, Varese) ac-
cording to the following criteria: (i) histological patterns consistent
with NKSCC, SNUC, or SNEC, according to WHO [10]; (ii) not having
received any other treatment for the index disease, except for diagnostic
biopsies; (iii) not having received any previous radiation therapy in the
head-and-neck area; and (iv) availability of sufficient histological ma-
terial.

The local Ethical Committee approved the study design, and ac-
cording to our practice, all patients signed an informed consent form for
the use of their data for research purposes. Patients’ medical records
were retrospectively reviewed to identify the following clinical char-
acteristics: age and gender, disease stage and subsite, and the ther-
apeutic approach applied. We analyzed a series of patients treated be-
tween 01/2000 and 04/2016. Patients were staged or reclassified
according to the VII edition of the American Joint Committee on Cancer
Staging [11]. All pathological specimens were reviewed by an internal
pathologist expert in head and neck cancer (S.P.).

RNA isolation and gene expression profiling

The gene expression profiling was performed starting from for-
malin-fixed paraffin-embedded (FFPE) material from diagnostic

biopsies obtained by direct manual dissection of methylene blue–-
stained slices and containing at least 75% of tumor cell content without
necrosis or surrounding normal tissue. Total RNA was isolated using the
miRNeasy FFPE Kit (Qiagen, Valencia, CA, USA), and the procedure
was automated on a QIAcube Robotic workstation. Extracted material
was quantified on a Nanodrop-1000 instrument (Thermo Fisher
Scientific, Waltham, MA, USA). RNA quality was assessed by RT-qPCR
analysis of amplicons of different sizes for the ACTB housekeeping gene
[12,13]. Total RNA (200 ng) from each sample was profiled (as de-
scribed by Bossi et al. [14]) for gene expression by the Human WG-
DASL (cDNA-mediated annealing, selection, extension, and ligation)
assay technology with Human HT12 v4.0 BeadChips (Illumina Inc., San
Diego, CA, USA) allowing for the detection of 29,377 transcripts. Re-
verse transcription, oligo annealing, ligation, amplification, labeling,
probe purification, hybridization, and chip washing were performed
following the manufacturer’s instructions. Microarray chips were
scanned with an Illumina BeadArray Reader. All microarray data are
MIAME compliant, and the raw data were deposited in the NCBI Gene
Expression Omnibus (GEO) database [15] under the accession number
GSE118386. Bioinformatics analyses were performed in R software (R
Development Core Team, 2007 version 3.5.1), BioConductor [16], and
BRB-ArrayTool developed by Richard Simon and by the BRB-Array-
Tools Development Team (v4.6.0; National Cancer Institute, USA);
details are presented in Supplementary File 1.

Results

Case material

Clinical and pathological characteristics of the present series of
patients are described in Table 1. We analyzed the database of patients
with NKSCC, SNEC, or SNUC treated between 1/2000 and 4/2016. We
identified 65 cases; sufficient histological samples were available for 47
patients on whose biopsies the following diagnoses were made: NKSCC,
21 cases (44%); SNEC, 13 (27%), and SNUC, 13 cases (27%). Male
prevalence (74%) and 58 years as a median age (range, 16–84) are in
line with the epidemiological data reported in the literature [17–19].
No female was found affected by SNEC, possibly owing to the small
sample size. The main subsite of origin was the ethmoid (62%), fol-
lowed by the nasal cavity (26%) and maxillary and other subsites (6%
each). Locally advanced (III–IV) stages were the most prevalent (91%),
mainly due to the advanced T values (T4a, 19%; T4b, 53%). Treatment
consisted of surgical resection (followed by radiation with or without
concurrent chemotherapy) or of curative chemoradiation, preceded by
induction chemotherapy in case of very advanced tumors. No difference
in treatment was observed among the histotypes.

Gene expression patterns in SNCs

Fig. 1 depicts the analyses applied in the present study based on
gene expression profiling aimed at improving our knowledge about the
biology behind the three selected SNC histological subtypes. A micro-
array platform was used for gene expression analysis yielding a data
matrix containing 17,531 unique genes. Among the available bioin-
formatics tools, we decided to apply sparse partial-least squares dis-
criminant analysis (sPLS-DA): a supervised, pattern-recognition ap-
proach enabling to reduce the dimensionality of data [20] and already
successfully used in head and neck squamous cell carcinoma (HNSCC)
genomic translational research [21]. Because our study deals with a
multiclass histological stratification with a small sample size as com-
pared to the large number of genes, sPLS-DA allows for retaining those
genes showing the best performance on discriminating NKSCC, SNEC,
and SNUC histological features. For this purpose, we determined the
optimal number of dimensions and genes on the basis of the lowest
misclassification rate. The best performance was achieved by including
the first two components: (i) the first component, n= 72 genes; (ii) the
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second component, n= 10 genes. The two gene lists are given in Table
A1, and the first and second component loading values are depicted in
Figs. A1 and A2, respectively (a list of functionally relevant genes is
highlighted in Table 2). According to this approach, a total of 82 genes
subdivided into two components were able to stratify SNC tumor
samples into the three histological subtypes (Fig. 2a). The first com-
ponent significantly separated SNEC from NKSCC and SNUC (Fig. 2b),
while the second component stratified histological subtypes NKSCC and
SNUC (Fig. 2c). The classification performance of the two components,
on the basis of the selected parameters, was evaluated by estimating the
receiver-operating characteristic (ROC) curves and by assessing the
area under the curve (AUC). In the three different comparisons con-
sidering one histological subtype versus the others, the discriminative
ability of sPLS-DA reached at least AUC > 0.95 (Fig. 2d).

The tumor microenvironment landscape

We used the xCell tool to portray the infiltrate of “immune cells,”
“stromal cells,” and “other cells” (components) present in each sample.

The different sets of cell types were plotted according to their scores,
with a dimensionality reduction technique and colored by subtype, as
shown in Fig. 3a the subtypes are clearly separated. Among the 64 cell
types, we found significantly different contents among the three his-
totypes: the immune component (CD8+ effector memory T cells, P
value= 0.0014; mast cells, P value= 0.00241) showed a significant
increase in proportion within SNUC (Figure 3b) and moderate enrich-
ment in NKSCC; NKSCC manifested an increase in the proportion of
“other cells,” namely epithelial cells (keratinocytes and sebocytes, P
value= 0.00249 and P value=0.0135 respectively); SNEC showed
enrichment in “other cells” (neurons, P value=0.00612; Fig. 3c).

Visualization of infiltrates of the immune and “other cells” in SNCs
as assessed by xCell; individual patients are summarized based on two-
dimensional coordinates from t-distributed stochastic neighbor em-
bedding (t-SNE) and are colored by subtype.

Quantitative RT-PCR (RT-qPCR) validation

We carried out RT-qPCR for internal validation of the selected

Table 1
Main clinical–pathological characteristics of the analyzed patients.

Clinical-pathological characteristics All SNCs
N=47

NKSCC
N=21

SNEC
N=13

SNUC
N=13

P value

Age, years Median (range) 58
(16–84)

64
(39–77)

52
(16–84)

50
(31–78)

0.241a

Gender Male 35 13 13 9 0.041b

Female 12 8 / 4

Site Nasal cavity 12 4 3 5 0.696b

Ethmoid sinus 29 13 9 7
Maxillary sinus 3 2 1 /
Other 3 2 / 1

T stage 1 1 / / 1 0.255b

2 4 2 1 1
3 8 4 3 1
4a 9 7 / 2
4b 25 8 9 8

Stage I–II 4 1 1 2 0.818b

III 8 4 2 2
IV 35 16 10 9

Therapy Surgery ± RT ± CT 33 17 9 7 0.243b

CTRT ± induction CT 14 4 4 6

SNC: sinonasal cancer; NKSCC: non-keratinizing squamous cell carcinoma; SNEC: sinonasal neuroendocrine carcinoma; SNUC: sinonasal undifferentiated carcinoma;
CT: chemotherapy; RT: radiation.
T stage at first diagnosis according to the TNM 7th edition.

a P-value as Kruskal–Wallis test.
b P-value as χ2 tests.

Histology Surpervised 
analysis by sPLS-DA 

Neuroendocrine involvement 
by CIBERSORT and C4 signature 

mRNA profiling by DASL microarray g by D

Selection of 47 paranasal sinus tumors balanced for 
of NKSCC, SNEC and SNUC histology 

Microenvironment  
cell type  
by X-cell 

Neuroendocrine iy Surpervised
Microenvironment 

cell type
environment

Functional annotation 
by GSEA 

Manual curation  
of gene lists 

Fig. 1. Study workflow.
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genes: DSG2 and TMEM123 (sPLS-DA, first component, see Table 2) for
NKSCC, NRSN1, and TAGLN3 (sPLS-DA, first component, see Table 2),
for SNEC and RGS1 (sPLS-DA, second component, see Table 2) and
CD8A (CD8+ effector memory T cells according to microenvironment
analysis) for SNUC, and ACTB as housekeeping genes. As presented in
Fig. A3, the selective expression revealed by gene expression analysis
was confirmed by RT-qPCR (up-regulation in NKSCC: DSG2 and
TMEM123 P value= 0.023 and P value=0.019, respectively; up-reg-
ulation in SNEC: NRSN1 and TAGLN3 P value=0.0054 and P
value=0.032, respectively; up-regulation in SNUC: RGS1 and CD8A, P
value=0.0094 and P value=0.016, respectively; p-values by Krus-
kal–Wallis test).

Functional annotation

The biological pathways related to the histological subtype were
investigated by GSEA. The latter revealed the regulatory relations
among genes and provided a systematic understanding of the

underlying molecular mechanisms. According to the separation ob-
tained by sPLS-DA, we decided to compare SNEC, SNUC, and NKSCC
each to the combined remaining two histological subtypes. GSEA re-
vealed that only one gene set was upregulated in “SNEC vs other sub-
types,” in contrast to the large number of gene sets (N=20) upregu-
lated in “SNUC vs other subtypes” and the mild upregulation of gene
sets (N= 6) in NKSCC (Table A3; most relevant ones are highlighted in
Table 2).

Neuroendocrine content

We focused our attention on estimating the proportion of neu-
roendocrine cells in each sample by means of CIBERSORT, a compu-
tational tool able to infer the proportion of a cellular type from bulk
gene expression data. Our sPLS-DA identified a list of 72 genes that
stratify SNEC from the other subtypes. This gene list, named “First
Component List” (Fig. 4a) served as a gene signature for assessing the
neuroendocrine involvement (Fig. 4b) in each sample of our case

Table 2
Summary of the main characteristics of the SNEC subtypes identified by genomic analyses.

Genomic analysis Sinonasal epithelial cancer subtytes

NKSCC SNEC SNUC

sPLS-DA
Identification of specific gene(s) in component:

First: DSG2,
TMEM123

Second: LINC00461

First: NRSN1, TLGLN3, SYT4, SYT13, CHGA,
SYP
MIR758

Second: RGS1

Functional pathways Vs the other two MYC targets;

Mitotic spindle

Pancreas beta cells Innate and adaptive immune response;
Epithelial mesenchymal transition; KRAS up;
Hypoxia; TP53;
Cholesterol homeostasis

Neuroendocrine involvement > 50%=1/21
>25%=4/21

>50%=13/13
>25%=13/13

>50%=1/13
>25%=3/13

Pan-cancer C4 Heterogeneous distribution

Agreement with previously reported IHC markers Not applicable YES Not applicable
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Fig. 2. Gene expression patterns in SNCs. (a) sPLS-DA allows for selection of genes that best separate SNUC (n= 13), SNEC (n=13), and NKSCC (n= 21); the sPLS-
DA score plot of the first two components including 72 and 10 genes, respectively, is shown, and data on each individual patient are plotted. The lines indicate the
distance from the respective centroid to the samples of each class. (b) Box plots of the loading values for the first component divided on the basis of the three
histological subtypes; significant differences were observed in the comparisons SNEC/NKSCC (P value= 3.52E−15) and SNEC/SNUC (P value=9.88E−12). (c)
Box plots of the loading values for the second component; significant differences were observed in comparisons SNEC/NKSCC (P value= 0.00465), SNEC/SNUC (P
value= 0.00071), and NKSCC/SNUC (P value=3.2E−08). (d) A ROC curve and AUC of the model containing the first and second components; AUC was calculated
for comparison of one class to the others, resulting in NKSCC vs (SNEC and SNUC) AUC=0.954, SNEC vs (SNUC and NKSCC) AUC=1, and SNUC vs (NKSCC and
SNEC) AUC=0.973.
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material. The neuroendocrine involvement reflected the relative
abundance (proportion) of neuroendocrine cells in the tumor tissues as
a score ranging from 0 (i.e., absence) to 1 (i.e., exclusive presence). As
expected, SNEC tumors showed the strongest neuroendocrine involve-
ment, median=0.957 (range: 0.502–1.000) as compared to the other
histological subtypes, whereas NKSCC and SNUC showed weak neu-
roendocrine involvement (NKSCC median=0.14, range: 0–0.657;
SNUC median=0.0555, range: 0–0.539) with the exception of two
cases with the neuroendocrine-cell proportion> 0.5. Besides our ana-
lysis, we tested an additional novel signature generated by Chen et al.
This recent Pan-cancer analysis, including head and neck cancers [22],
provided a neuroendocrine signature, named the C4 subtype, for the
identification of the neuroendocrine subclass of tumors. Therefore, the
Pan-cancer neuroendocrine signature was tested in our dataset for
comparison purposes. The signature was composed of 169 genes. Genes
were annotated by gene symbol and Entrez Gene ID, and 134 out of 169
of genes typical for the C4 subtype were present in our gene expression
data matrix (see Table A2). Pan-cancer C4 subtype gene expression was
summarized by z-score to obtain a composite index, and the resulting
heatmap is depicted in Fig. A4. Our neuroendocrine involvement score
and Pan-cancer C4 subtype signature revealed a significant positive
correlation (r= 0.727, P value= 3.71E−09). However, the perfor-
mance of the Pan-cancer C4 subtype signature on separating SNEC was
worse if compared to our First Component List signature: the Pan-
cancer signature identified 11 of 13 SNECs as neuroendocrine, in con-
trast to our First Component List signature, which classified 13 of 13
SNECs as neuroendocrine tumors (as summarized in Table 2).

Discussion

Histological diagnosis of SNCs is often complex due to the presence
of overlapping characteristics and similar patterns. High-throughput
technologies have proved to have a great potential for providing in-
sights into tumor biology. We chose to reduce the analysis to three

histological subtypes of epithelial origin sharing some morphological
characteristics (NKSCC, SNEC, and SNUC) to which we applied in-depth
molecular analyses. This analysis could have practical applications in
those cases where it is difficult to differentiate among these histotypes
because they may have overlapping morphological features; in this
regard, the sinonasal tract has the highest rate of discrepant diagnoses
among the head and neck subsites [6].

The initial sPLS-DA analysis provided evidence that the three SNC
subtypes were clearly separated, and the subsequent xCell tumor mi-
croenvironment, functional pathway, and neuroendocrine content
analyses confirmed that this separation, thereafter discussed for each
subtype, was a reflection of their intrinsic molecular patterns. In the
case of NKSCC, different genes were significantly expressed in the sPLS-
DA “First Component,” in particular desmoglein 2 (DSG2, a desmo-
somal cadherin) and the keratinocyte-associated transmembrane pro-
tein 3 (TMEM123). These expressed genes indicated that NKSCC, de-
spite the minimal or absent squamous differentiation, maintained
markers of keratinization, and DSG2 has often been found to be over-
expressed in HNSCCs [23]. In agreement with this observation, ac-
cording to microenvironment analysis, the proportion of “keratino-
cytes” in NKSCC, in this case representative of epithelial tumor cells,
was significantly higher than that in the other two subtypes, while
neuroendocrine involvement was low. In this subtype, the same ana-
lysis revealed a relative increase in the proportions of mast cells and
sebocytes; however, this observation—because of the very small de-
tectable input—should be interpreted with caution and needs external
validation. For NKSCC, functional analyses highlighted a significant
upregulation of pathways associated with altered signaling and pro-
liferation (MYC targets, mitotic spindle, and WNT–β-catenin signaling).
Among these, MYC targets may be potentially druggable; in fact, even if
direct targeting of this gene has not yet been identified, several indirect
ways of pharmacological targeting of MYC are possible [24]. In the case
of SNEC, as expected, sPLS-DA indicated that this subtype over-
expressed i) brain or adrenal markers including NRSN1 and TAGLN3

Fig. 3. The tumor microenvironment. (a) Visualization of infiltrates of the immune and “other cells” in SNCs as assessed by xCell; individual patients are summarized
based on two-dimensional coordinates from t-distributed stochastic neighbor embedding (t-SNE) and are colored by subtype. (b) Immune-cell infiltrates; the box plot
shows the transformed xCell scores for CD8+ effector memory T cells and mast cells showing a different proportion among the histological subtypes, yielding P
value= 0.014 and P value= 0.00241, respectively. (c) Other cell infiltrates; the box plot shows the transformed xCell scores for neurons, keratinocytes, and
sebocytes (P value= 0.00612, P value= 0.00249, and P value=0.0135, respectively). P values were calculated by the Kruskal–Wallis test. It is noteworthy that the
scores of mast cells and sebocytes, which reflect the true cell proportions in the tumor microenvironment, are lower compared to the others, and they should be
interpreted with caution.

L. De Cecco, et al. Oral Oncology 90 (2019) 94–101

98



found in brain tissue (https://www.uniprot.org); ii) neuroendocrine
markers including SYT13, which is reported to be overexpressed in
other neuroendocrine tumors, such as those of bowel and stomach, and
is known to be associated with peritoneal metastases and to be a po-
tential target for treatment [25,26], and SYP and CHGA, used for IHC
diagnosis of neuroendocrine differentiation in breast and digestive
system cancers [27,28]. In addition, microenvironment analysis de-
tected a high proportion of the “neuronal component,” which con-
firmed the upregulation of brain markers. For this subtype, the func-
tional analysis was not helpful; in fact, a single pathway associated with
pancreatic β-cells was upregulated, reinforcing once again the relevant
endocrine involvement.

As for SNUC, the sPLS-DA second component highlighted the

overexpression of RGS1, a member of the regulators of the G protein
signaling family, involved in multiple immune-system–mediated dis-
eases and upregulated in HNSCC metastases [29,30]. It has been ob-
served that RGS1 regulates chemokine signaling [31], thereby con-
necting RGS1 upregulation to our results on deregulation in functional
immune pathways seen in SNUC samples. Recently, RGS1 expression
was proposed as a prognostic marker for risk stratification and as a
promising target for the development of therapeutic strategies against
multiple myeloma [31]. The microenvironment analysis uncovered
low-to-moderate epithelial or endocrine differentiation but a well-de-
fined immune profile. In particular, SNUC tumors turned out to contain
a high proportion of CD8+ effector memory cells according to the mi-
croenvironment analysis and a strong association with immune-

Fig. 4. Neuroendocrine involvement. (a) A heatmap of the 72 genes of sPLS-DA discriminating SNEC from the other histological subtypes; the samples are ordered by
first component values as shown in the line chart. Forty-nine genes show an upregulation trend in SNEC tumors, whereas 23 upregulation in histological subtypes
other than SNEC, corresponding to the genes having positive or negative loading values in Table A1, respectively. (b) Neuroendocrine involvement was assessed by
CIBERSORT using the 72-gene sPLS-DA first component as an input custom signature and providing the proportion of neuroendocrine cells (yellow bars). Fifteen
samples, including all the SNEC tumors, one NKSCC, and one SNUC, yielded a score>0.5.
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system–related functional pathways. These pathways shared several
upregulated subgroups of chemokines including CXCL10, CXCL11, and
CCL19. Other upregulated functional pathways, such as epithe-
lial–mesenchymal transition, the TP53 pathway, the KRAS pathway,
and hypoxia, were found to be enhanced similarly to HNSCC with a
poor prognosis [32]. Furthermore, upregulation of genes involved in
the hallmarks of cholesterol homeostasis was observed; this observation
deserves further in-depth evaluation, in light of the miR758 deregula-
tion in SNEC, demonstrated to be involved in the same pathway [33].
Overall, the observed gene expression profile makes SNUC a possible
candidate for immunotherapeutic strategies, being more prone to elicit
an immune response. A better characterization of the profile of the
CD8+ T cells [34] could help to identify the most effective treatment
approach to SNUC, fully taking advantage of the possible synergism of
chemotherapy and immunotherapy [35].

Of note, the neuroendocrine involvement of our entire case material
was analyzed via two different signatures: the first signature (generated
in the present study) and the second signature, named the Pan-cancer
C4 subtype [20] (generated on over 10,000 samples from 32 cancer
types and associated with central nervous system and neuroendocrine
involvement). A very small overlap of the two gene lists was noted: only
five genes (CHGA, PHYHIPL, SYT13, SYT4, and TAGLN3) were in
common, and at least three of them are among the most frequently used
in IHC for differential diagnosis. Our first component signature well
separated SNEC from the other two SNC subtypes: all SNEC samples
manifested more than 50% of neuroendocrine involvement, whereas
20% of NKSCCs and 23% of SNUC samples demonstrated a proportion
of neuroendocrine involvement up to 25%. In contrast, the Pan-cancer
C4 signature yielded a heterogeneous pattern in which NKSCC and
SNUC were widely distributed, and SNEC, although more strongly as-
sociated with high expression of the neuroendocrine signature, was not
sufficiently discriminated. Possible explanations of the different per-
formance of the two signatures are as follows: the high performance of
the sPLS-DA first component may be caused by the overfitting due to
the use of the same case material for generating and testing; the C4
performance may be explained by the large heterogeneity of the Pan-
cancer tumor samples. From a clinical point of view, the finding that
neuroendocrine traits are present also in a percentage of NKSCC and
SNUC cases should prompt a better investigation of these cases. Further
studies should be conducted to assess whether these traits retain a
prognostic value or could also be a druggable target.

We should acknowledge the limitations of this study. First, with the
samples derived from diagnostic biopsies, there is a risk of having
dissected a portion of the disease, without considering the hetero-
geneity of the tumor. The analysis of multiple regions from the whole
resected tumor remains the optimal way to assess tumor heterogeneity;
however, in an attempt to determine the histological subtype and
possibly the best combination of treatment modalities for SNCs, we
should often rely on diagnostic biopsies. Second, we focused only on the
transcriptome analysis on a platform well suited for FFPE samples [14]
but limited to the expression of coding RNA, while other classes of RNA,
and in particular long noncoding RNAs (lncRNAs), microRNAs
(miRNAs), and circular RNAs (circRNAs), emerged as critical regulators
of cancer-related pathological changes not only in post-transcriptional
regulation of oncogenes and tumor suppressors but also in interactions
or competitive interaction with each other [36,37]. As proof of their
potential role in SNC biology, we identified deregulation of noncoding
RNA, such as miR758, in SNEC and LINC00461 (econexin) in SNUC, the
latter being recently described as a potential oncogene in glioma [38].
Therefore, we plan not only to analyze new independent case materials
but also to adopt more recently established platforms for gene expres-
sion enabling simultaneous evaluation of coding and noncoding RNA.

In conclusion, the gene expression analysis of three SNC entities
(NKSCC, SNEC, and SNUC) revealed a good diagnostic ability to dif-
ferentiate these histotypes. In parallel, it revealed some characteristics
that are partially shared by the different histotypes. For instance, the

neuroendocrine pathway, typical and pathognomonic of SNEC, is also
present at lower levels of expression in NKSCC and SNUC and could be
useful if analyzed during the pathological diagnosis of SNCs. Moreover,
the genomic pathways we discovered could help to find prognostic and
therapeutic opportunities to increase the chances of a cure of SNCs. In
this regard, identification of immune pathways in SNUC and NKSCC
should be further investigated, for possible integration of im-
munotherapy into the multidisciplinary approach to these cancers. In
general, molecular profiling of SNCs could pave the way for a more
personalized treatment of these diseases, considering the global dismal
prognosis and the lack of new drugs studied for this rare cancer. All
these biological interpretations based on gene expression analysis and
internal RT-qPCR require further independent validation studies, and
these are being performed on an independent cohort whose compilation
is in progress (SINTART trials; Clinicaltrials.gov identifier:
NCT02099175 and NCT02099188).
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