-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Universita degli Studi di Siena

From COTSon to HLS:
Translating Timing into an Architecture

Roberto Giorgi', Marco Procaccini' and Farnam Khalili!,>

'Department of Information Engineering and Mathematics - University of Siena
’Department of Information Engineering - University of Florence
{giorgi,procaccini,khalili } @diism.unisi.it

Nowadays, the increasing core number benefits many
workloads, but programming limitations to exploiting full
performance still remain. A Data-Flow execution model
is capable of taking advantage of the full parallelism
offered by multicore systems [[]-[3]. In such model,
the execution can be decomposed in fine-grain threads
named Data-Flow Threads (DF-Threads) so that each of
them can execute only when their inputs are available
(4], [3]. The execution overhead and power consumption
is lowered thanks to the reduction of the data push-pull,
as well as the burden of thread management.

In a preliminary phase, we explored different solutions
through to the COTSon simulator environment [6]],
which provided us with full system simulation and
key metrics, such as OS impact. We compared DF-
threads against standard parallel programming models
such as OpenMPI, Cilk++ and DSM [7]. To further
improve the performance and the power consumption,
we investigated a hybrid execution model, which relies
both on Field Programmable Gate Arrays (FPGAs) and
General Purpose Processors (GPPs). GPP cores allow
us to support a large set of applications and FPGAs
are known for their reconfigurability and power efficiency.

The FPGA takes care of DF-Threads lifetime by
creating, updating and providing them to the Processing
System (PS), leaving the GPPs free to execute just
DF-Threads code. A key point of our design methodology
was to map the timing specification that we tested on
COTSon onto the programmable logic via the High-Level
Synthesis (HLS) language offered by Xilinx.

HLS permits designers to work at a higher level of
abstraction in order to define functions to be translated
into the hardware. HLS is progressively prominent in the
high performance and energy efficient system domains,
shortening time-to-market and offering several solutions
for a complex design such as DF-Threads hardware.

The DF-Threads management tasks are translated to the
corresponding finite state machines (FSMs), by mostly
using the HLS toolhain and optimized for efficiency
through the HLS directives and libraries. In order to
connect the IP to the GPP, a VHDL-based Register
Controller with AXI Lite interface has been deployed,
which is re-configurable in terms of register quantities
and access priorities. In order to optimize the design,

appropriate directives through the provided pragmas by
Vivado HLS have been used. This can be helpful to
reduce the latency, area and resource utilization as well
as improve throughput performance of the resulting RTL
design. Furthermore, in order to steer data efficiently
between the sub-module, HLS stream libraries have been
exploited, which additionally suggest extra options to
easily enable and use the interface side channels. We
realized our model on a Xilinx ZU9EG platform, using
24% of LUTs, 5% of LUTRAM, 15% of FF and 12% of
BRAM. The power consumption estimated by the Xilinx
XPE tool is 7.1 Watt for the entire chip and 4.049 Watt
for PL.

| COTSON | HLS

schedule(int64_t _ip, int8_t _sc) schedule(int64_t _ip, int8_t _sc)

{ {
init_fsm(); #pragma dlat =1 ms ;
init_data_mover();
clear_data_frame(); #pragma dlat = 2 ms;
frame_metal[ip] = _ip; #pragma dlat=1ms;
frame_meta(sc] = _sc; #pragmadlat=1 ms;
goto: init();

#pragma HLS DATAFLOW
< INIT FSM>
<INIT_DATA_MOVER>
<CLEAR_DATA_FRAME>
frame_meta.ip = _ip;
frame_meta.sc = _sc;
goto: <INIT>

#pragma dlat = 3 ms;

#pragma dlat = 1 ms;

Fig. 1: Translation of the schedule function from COTSon
simulator to Xilinx Vivado HLS tool in a nutshell.

REFERENCES

[1] L. Verdoscia and R. Giorgi, “A data-flow soft-core processor for ac-
celerating scientific calculation on FPGAs,” Mathematical Problems
in Engineering, vol. 2016, pp. 1-21, Apr. 2016. article ID 3190234.

[2] K. Stavrou, D. Pavlou, M. Nikolaides, P. Petrides, P. Evripidou,
P. Trancoso, Z. Popovic, and R. Giorgi, “Programming abstractions
and toolchain for dataflow multithreading architectures,” in /[EEE
Proc. Eighth Intl Symp. on Parallel and Distributed Computing
(ISPDC 2009), (Lisbon, Portugal), pp. 107-114, IEEE, July 2009.

[3] R. Giorgi, Z. Popovic, and N. Puzovic, “Dta-c: A decoupled multi-
threaded architecture for cmp systems,” in Proc. IEEE SBAC-PAD,
(Gramado, Brasil), pp. 263-270, Oct. 2007.

[4] K. M. Kavi, R. Giorgi, and J. Arul, “Scheduled dataflow: Execution
paradigm, architecture, and performance evaluation,” IEEE Trans.
Computers, vol. 50, pp. 834-846, Aug. 2001.

[5] R. Giorgi and P. Faraboschi, “An introduction to DF-Threads and
their execution model,” in /[EEE MPP, (Paris, France), pp. 60-65,
Oct. 2014.

[6] E. Argollo, A. Falcén, P. Faraboschi, M. Monchiero, and D. Ortega,
“COTSon: infrastructure for full system simulation,” SIGOPS Oper.
Syst. Rev., vol. 43, no. 1, pp. 52-61, 2009.

[7]1 R. Giorgi, “Scalable embedded computing through reconfigurable
hardware: comparing df-threads, cilk, OpenMPI and jump,” ELSE-
VIER Microprocessors and Microsystems, vol. 63, pp. 66-74, Aug.
2018.

https://core.ac.uk/display/188234058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

	References

