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ABSTRACT 

 

Finite element procedures combined with microstructure development modeling are 

integrated to quantitatively predict the viscoelastic/viscoplastic relaxation of cement 

paste due to intrinsic calcium silicate hydrate viscoelasticity/viscoplasticity and 

microstructure evolution. The combined models are implemented in a computational 

routine to predict time-dependent stress and strain fields in cement paste. Besides 

predicting the time-dependent viscoelastic/viscoplastic properties of cement paste, the 

early-age desiccation shrinkage of cement paste is also computationally simulated 

utilizing this modeling approach. The model simulations suggest that inherent 

viscoelastic deformation caused by calcium silicate hydrate might not necessarily be the 

primary mechanism leading to the overall early-age time-dependent behavior of cement 

paste. The effect of time-dependent dissolution of load-bearing phases due to either the 

hydration reaction or the application of stress/strain can be substantial and should be 

considered as a significant mechanism for the apparent viscoelasticity/viscoplasticity of 

cement paste.  
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1. BACKGROUND AND OBJECTIVES  

 

1.1 Motivation and problem statement 

Cement paste exhibits viscoelastic/viscoplastic (VE/VP) behavior under mechanical 

loadings in addition to the instantaneous elastic response, and such time-dependent 

VE/VP effects have a significant impact on the stress and strain fields inside 

cementitious materials [1]. Decades of determined research efforts have been dedicated 

to studying the mechanisms leading to the VE/VP behavior of cementitious materials, 

yet the primary mechanism is still debatable. As portland cement concrete by far is the 

most used construction material worldwide because of its many advantages [2], 

understanding the mechanical properties of cementitious materials, as well as the 

mechanisms behind these behaviors, is necessary and important for predicting stress and 

strain in infrastructure.  

Currently, three major mechanisms have been proposed as the major sources 

leading to the VE/VP behavior of cement paste: 1) inherent 

viscoelasticity/viscoplasticity of the calcium silicate hydrate (C-S-H) phase, 2) 

dissolution of load bearing phases and 3) poromechanical effects. C-S-H 

viscoelasticity/viscoplasticity has been historically accepted as dominating the long-term, 

time-dependent deformation of cement paste. Based on this understanding, many 

theories towards C-S-H viscoelasticity/viscoplasticity have been proposed, such as the 

seepage theory [3, 4] and the viscous shear theory [3, 5]. Besides inherent C-S-H VE/VP 

effects, another major mechanism suggested by researchers is the dissolution of load 
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bearing phases [6, 7], which manifests as a time-dependent redistribution of stress 

prompted by the dissolution of load bearing solid phases [8, 9], leading to apparent 

VE/VP effects in cement paste. Poromechanical effects [8, 10-14] are only substantial 

when the material is fully saturated (at least over time-scales of hours to days or greater). 

It results in the VE/VP effects of cement paste in a similar way as the mechanism of 

dissolution of loading bearing phases, where stresses gradually transfer from the pore 

fluid phase to the solid skeleton inside saturated cementitious materials [15-17]. In this 

project, because all the cement paste specimens are analyzed under partially saturated 

condition, the main VE/VP mechanisms focused in the dissertation are the intrinsic 

VE/VP properties of C-S-H and the time-dependent dissolution of solid load bearing 

phases. 

To experimentally determine the VE/VP relaxation moduli of cement paste is 

challenging. First, creep or relaxation tests can last months or even years, which involves 

enormous cost, as well as time. Second, some of mechanical properties of cement paste 

are extremely difficult to measure, e.g., the VE/VP Poisson’s ratio. Generally, due to 

experimental difficulties in accurately measuring relatively small displacements normal 

to the loaded direction [18], Poisson’s ratio is agreed to be the most difficult of the 

elastic constants to experimentally determine [19]. For example, in a normal weight 

concrete cylinder with a 150 mm (6 in.) diameter, under a 1D longitudinal compressive 

failure strain of 0.003, the radial displacement for the specimen would be of order 10-2 

mm, leading to significant measurement difficulties. The challenges of measuring the 

time-dependent VE/VP Poisson’s ratio of cement paste [20, 21] are further compounded 
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in creep or relaxation tests which lasts for long periods. Third, as the relaxation/creep of 

cement paste can occur under the effects of multiple mechanisms, it is impossible to 

experimentally evaluate each single mechanism separately because these mechanisms 

occur simultaneously over the same time scale. These measurement challenges motivate 

the development of computational methods to complement experimental measurements 

in investigating cement paste VE/VP properties.  

To theoretically predict the VE/VP relaxation moduli of cement paste, one should 

overcome many difficulties. In addition to its complex, random, composite matrix 

arrangement at the micrometer scale, the microstructure evolution of cement paste 

during the hydration process is an additional important complexity, as its response to 

load critically depends on loading histories relative to the time the new components are 

formed. Previously, a model implementing the finite element method (FEM) was used to 

successfully predict the elastic properties of cement paste based on the elastic properties 

of the microscopic phases and their evolving spatial structure [22]. In combination with 

a microstructure evolution model, a next generation finite element model can be 

developed to give predictions of the VE/VP properties of cement paste using similar 

computational methods [8, 23].  

With the completion of the development of this viscoelasticity/viscoplasticity 

prediction model, this model can be applied to broader applications besides the 

prediction of the time-dependent behavior of cement pastes. Many natural and man-

made materials are multiphasic composite materials, such as polymers, alloys, porous 

media, etc., and most of these materials also exhibit notable time-dependent VE/VP 



 

4 

 

behavior under long-term external mechanical loading. Currently, many computational 

algorithms and numerical simulation techniques have been developed attempting to 

study the creep/relaxation behavior of composite materials, such as mesoscale finite 

element simulations of concrete [24], micromechanical modeling approaches of 

polymers [25], constitutive derivations of nanocomposite melts [26], etc. Research has 

also been conducted to study the mechanisms behind the VE/VP behavior of these 

materials, and it has been proposed that dissolution of load-bearing phases occurring 

during the microstructure evolution also plays an important role in inducing time-

dependent deformation behavior of the macroscopic materials. Utilizing the newly 

developed computational model in this project, with the input of different time-evolving 

microstructures, the dissolution-induced creep/relaxation of these composite materials 

could also be studied and analyzed.  

1.2 Objectives 

The major objective of this research is to develop a computationally implemented 

model to predict the evolution of VE/VP properties of cement paste based on the 

aforementioned mechanisms. To achieve this major target, a holistic kinematic 

framework linking the microstructure evolution to the evolution of stress and strain 

fields has to be established first to better understand the evolution of composite 

constitutive properties and deformation mechanisms. The evolution of different VE/VP 

mechanical properties of cement paste, including VE/VP Young’s modulus, Poisson’s 

ratio, Bulk modulus and Shear modulus, will be predicted utilizing the computational 

scheme. The second objective is to evaluate the contribution of each aforementioned 
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mechanism towards the overall VE/VP behavior of cementitious materials. Virtual 

experiments were carried out on cement paste specimens under different circumstances 

as well as under the separate or combined effects of different mechanisms. The predicted 

results from different virtual experiments will be analyzed and compared with each other. 

The last objective of this project is to demonstrate the utility and robustness of the 

modeling approach via prediction of the shrinkage behavior of hydrating cement paste 

under drying conditions, such that the broad utility of the computationally implemented 

model can be demonstrated. 

1.3 Disposition 

This report consists of eight chapters. Chapter 2 introduces the theoretical 

conceptualization, as well as the logic flow of the computational scheme. A kinematic 

framework is established to quantify the effect of dissolution of load-bearing phases on 

the overall stress and strain fields in evolving composite materials. Meanwhile, simple 

validation of the model is ensured in this chapter though comparing the simulation 

results from this newly developed model with the simulation results from other 

commercial softwares. Chapter 3 evaluates the role of the mechanism of C-S-H 

viscoelasticity/viscoplasticity as well as C-S-H aging towards the overall 

relaxation/creep behavior of cement paste. In comparison, Chapter 4 evaluates the 

mechanism of cement grain dissolution during the early age hydration reaction towards 

the overall VE/VP behavior of cement paste. Combining the effects of both mechanisms 

introduced in Chapter 3 and Chapter 4, Chapter 5 focuses on the calculation and 

discussion of the apparent VE/VP Poisson’s ratio of cement paste, which is the most 
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difficult mechanical property to experimentally measure, and Chapter 6 extends the 

utility of the computational scheme to simulate the shrinkage behavior of early age 

cement paste. New insights are developed in Chapter 6 to explain the mechanisms 

behind the irreversibility of desiccation shrinkage. Based on the discussions included in 

Chapter 4, Chapter 7 further extends the importance of dissolution of solid constituents 

in leading to VE/VP behavior of cement paste by introducing the mechanism of stress-

induced dissolution of hydrates. The computational scheme is further modified in this 

chapter to account for the stress-induced dissolution effect. Chapter 8 summarizes the 

whole manuscript and proposes future work. References are listed at the end of the 

document.  
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2. COMPUTATIONALLY IMPLEMENTED MODEL*  

 

The computational scheme integrates two different models: a time-evolving 

microstructure model and a finite element based mechanical model. The microstructure 

models generate time-evolving microstructures for different composite materials, which 

are then utilized in the finite element calculation model to predict the time-evolving 

creep/relaxation responses of these composites. In this chapter, the conceptualization of 

the microstructure model as well as the microstructure-based finite element calculation 

model is first introduced. A kinematical framework is also established in this chapter to 

quantify the dissolution process of solid phases inside material composites. Based on the 

thorough understanding of the microstructure evolution process inside cementitious 

materials, a microstructure evolution model of cement paste and the finite element 

calculation routine is computationally implemented into a computer program utilizing 

the programming language C++. 

2.1 Conceptualization and kinematic framework 

To account for the time dependence (as well as the strain and stress history 

dependence) of the elastic and viscoelastic properties, the computational scheme is 

discretized in time. At each time step in the computational scheme, the microstructure 

models provide a 3D snapshot of the composite materials for the corresponding age of 

                                                 

* Reprinted with permission from “Computationally implemented modeling of creep of composite 

materials caused by phase dissolution” by X. Li, S. Rahman and Z. C. Grasley, 2016. Computational 

materials science, 125, 61-71. 2017 by Elsevier. And reprinted with permission from “Modeling the 

apparent and intrinsic viscoelastic relaxation of hydrating cement paste” by X. Li, Z.C. Grasley, E.J. 

Garboczi and J.W. Bullard, 2015. Cement and concrete composites, 55, 322-330. 2017 by Elsevier.  
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the time step. All the 3D snapshots of the materials are meshed into voxels utilizing a 

spatially aligned numerical discretization [27]. Thus, each voxel is an eight node cubic 

finite element comprised of a single homogenous material. Therefore, in the 

computational-implemented model, the evolution of the microstructure with time occurs 

at the scale of the voxels. Then, finite element calculations are carried out on these 

meshed 3D time-evolving microstructures to predict the time-evolving mechanical 

responses of these composites under periodic strain-controlled boundary conditions. The 

evolving mechanical properties are subsequently calculated via the spatially averaged 

stress and strain fields. At each time step, phase change may occur in any of the voxels 

as prescribed by the evolution of the microstructure from one time step to the next– 

including both solid, load-bearing phases and phases that may not transmit stress (e.g., 

gases). Regarding conservation of linear momentum, it is assumed that once phase 

change occurs in one voxel, the stress being transmitted by this voxel would be 

transferred into surrounding voxels. Meanwhile, the newly formed phase in this voxel is 

assumed to be infinitely compliant such that it would not carry any stress at the time of 

formation, but meanwhile its configuration conforms to the preexisting deformed voxel, 

neglecting all the memories of historical responses. This procedure supposes that the 

process of stress redistribution takes much less time than microstructure evolution itself. 

This time-dependent stress redistribution is elaborated conceptually in Figure 1 under a 

stress-controlled boundary condition. 

The concept of evolving natural configurations [28-30] can be utilized to develop a 

consistent kinematical framework to quantify the effect of dissolution of load bearing 
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phases on the equilibrium state of composite materials. When a material is subjected to 

an external stimuli (or multiple stimuli) such as an external traction, temperature change, 

or moisture change, the material body will deform from the reference configuration to 

the current configuration. If the external stimuli are removed from the  

 

 

Figure 1 Conceptual diagram of the computational scheme. The creep behavior of an 

evolving microstructure is shown in the figure, with   denoting a controlled external 

macroscale load. (a) Initially, load-bearing phases exist inside the composite before 

load is applied. (b) When an external load is applied at time t0, the body deforms 

elastically immediately. (c) As load-bearing phases dissolve in certain voxels, the stress 

transmitted by the surrounding solid voxels increases, increasing the deformation in 

these surrounding voxels, leading to an increase in the macroscopic deformation of the 

whole composite. Since the rate of stress transfer depends on dissolution rate, this 

results in creep. (d) New phases form with their configurations conforming to the 

deformed voxels while carrying no stress. (e)This process repeats as more material 

dissolves and the whole composite deforms again. (f) When the external load is removed 

at time t1, the body deforms again, but it will not recover back to its initial configuration, 

leaving a permanent irreversible strain. 
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material body, it will deform back to its natural configuration; for the simplest, purely 

elastic bodies, the natural configuration may coincide with the reference configuration. 

In the case of the material with dissolving solids, as dissolution processes progress, 

under any external or internal stimuli (e.g. applied tractions/displacements), the 

composite body – as well as every voxel comprising the composite – deform from the 

initial, reference configuration to the current configuration. As the dissolution-formation 

process occurs over the same time scale as the motion, with the removal of external 

stimuli the composite will not return back to the reference configuration, but rather to the 

composite natural configuration, which may evolve with time. It has been demonstrated 

that the evolution of natural configurations could lead to creep in purely elastic bodies 

[31], and this is the basis of the hypothesized expectation that dissolution effects would 

lead to creep of composites. The same evolution of configurations that happens with the 

composite as a whole can be presumed to likewise occur with any voxel. Since the 

natural configuration for the composite can be different from the natural configuration 

for any given voxel at a given time1, this difference in motion yields “apparent strain” in 

the composite natural configuration, as shown in Figure 2.  

Figure 2 shows the overview of the kinematical framework of the dissolution-

formation process utilizing the concept of time-evolving natural configurations. Note 

that conceptually, this framework is analogous to that utilized in the analysis of mixtures 

or other materials with multiple natural configurations [32-38]. In Figure 2, the 

                                                 

1 The natural configuration of an individual voxel should be interpreted as the configuration that voxel 

would return to if any stimuli applied to that individual voxel were removed (e.g., if applied stress were 

removed from the voxel). 
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framework at each step corresponds to one time step shown in Figure 1. The motions 
  

show the paths of a material point between different configurations. The motions 
p

  

and 
( )p t  denote the path of a point in the composite body from the initial, reference 

configuration to the natural configuration of the composite, and then to the current 

configuration. The motions 
v
p

  and 
( )

v
p t

  denote the motion of a given voxel 

(occupying the same location in the composite as the point referred to above) from the 

initial reference configuration to the natural configuration, and then to the current 

configuration. In Figure 2(a), all the motions (both the composite and voxel) start from 

the initial reference configuration. At 
1t t , as shown in Figure 2(b), external or internal 

stimuli are applied on the material, deforming the composite body from the reference 

configuration to the current configuration, and removal of the stimuli will not necessarily 

make the composite return back to the initial reference configuration. If the inherent 

phases that comprise the composite are VE/VP themselves, the natural configuration of 

the whole composite may evolve with time, and with the removal of the stimuli, the 

body will return to the evolved natural configuration instead of the reference 

configuration; likewise for the individual voxels inside the microstructure. Once phase 

dissolution occurs in a voxel at 
2t t , as shown in Figure 2(c), any stress carried by this 

voxel is forced to be zero and the current configuration becomes the voxel’s new natural 

configuration. At this time, before the formation of new phases, the natural configuration 

of the composite stays the same as the configuration shown in Figure 2(b), 
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Figure 2 Overview of the kinematical framework of the dissolution-formation process. 
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leading to a difference between the composite natural configuration and the voxel 

natural configuration. This difference in deformation is a mapping 
v
apparent

  that leads to 

“apparent strain” in the composite body. From the perspective of continuum mechanics, 

apparent strain is defined here as the strain that exists independent of any applied stimuli 

(the state of stress specifically in this project). At 
3t t  in Figure 2(d), the natural 

configuration of the composite changes again with the formation or precipitation of new 

solid phases. At the last time step in Figure 2(e), with any future change in the stress 

field within the composite (which may occur due to further dissolution, intrinsic creep in 

the voxels, and/or change in boundary conditions), voxels filled with newly formed 

phases deform from the individual voxel natural configuration to the new current 

configuration; likewise, the whole composite body deforms to the new current 

configuration. 

From Figure 2, it can be seen that the existence of apparent strain is a key reason 

behind the dissolution-induced VE/VP behavior and the irreversible nature of much of 

the dissolution induced creep. To computationally predict the overall deformation 

behavior of the composite material, the effect of apparent strain on the inherent stress 

and strain fields inside the composite must be quantified. Figure 3 shows a more 

complete version of the framework demonstrated in Figure 2 (e), and in this figure, the 

motion of a material point inside continuous body is defined as  

 ( , ),tx X   (1) 

where x  is the position vector in the current configuration of the motion, X  is the 

position vector in the reference configuration of the motion, and the boldface indicates a 
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vector (or, in general, a higher order tensor). The deformation gradient of the body is 

defined according to 

 .





x
F

X
  (2) 

As stated previously, a primary goal here is to quantify the stress relaxation or creep 

that occurs due to phase dissolution in a composite microstructure. Such stress relaxation 

or creep is determined by quantifying the time evolution of the spatially averaged strain 

field and the spatially averaged stress field under a particular boundary condition. For a 

composite material body input into the computational scheme, spatially averaged strain 

is calculated according to the deformation from the reference configuration to the current 

configuration (i.e., motion 
 ). The spatially averaged stress field is calculated 

according to the difference between the composite natural configuration and the 

composite current configuration, which is mapped through the motion 
( )p t . 

Unfortunately, when stress relaxation or creep is induced by dissolution 
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Figure 3 A complete view of the kinematic framework shown in Figure 2(e). 

 

 

of load-bearing phases, one cannot directly determine the deformation gradient (and thus 

the strain and stress) associated with the motion 
( )p t . However, the motion   

( )p t  can 

be decomposed into two different computable motions: one from the composite natural 

configuration to the voxel natural configuration 
v
apparent

 , and one from the voxel natural 

configuration to the current configuration 
( )

v
p t

 . For these three motions, according to eq. 

(2), the deformation gradients are 
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( ) ( )

( ) ( )

motion :

motion :

motion :


 





 


 

 

 















 
 
 

p t p t

p

v
p

v v
apparent apparent

p

v

v v
p t p t

v v
p p

x
F

x

x
F

x

x x
F

x x

, (3) 

where x  and v
x  are the position vectors of a point in the composite body and the 

corresponding voxel in the current configuration, 
v
p

x  is the position vector of the voxel 

in the voxel natural configuration, and 
p

x  is the position vector of the point 

corresponding to the location of the voxel in the composite natural configuration. From 

eq. (3), one can derive that  

 
( ) ( )

v v
p t apparent p t

  
F F F .  (4) 

Combining eq. (4) with the Green-Lagrangian strain expression 

 
1

( - )
2

TE F F I ,  (5) 

where I  is the identity tensor, one finds that for the motion 
( )p t , 

 
( ) ( ) ( ) ( ) ( )

1 1
(( ) ( ) - ) ( - )

2 2
v v v v v v v v

p t apparent p t apparent p t p t apparent apparent p t

T T T

        
 E F F F F I F F F F I ,  (6) 

where 
( )p tE  is the strain tensor of a particular point in the composite body generated 

during the motion 
( )p t  from the composite natural configuration to the current 

configuration. Similarly, according to eq. (5), for motion v
apparent

  and 
( )

v
p t

 , 

 
( ) ( ) ( )

1 1
( - ) and ( - ),

2 2
v v v v v v
apparent apparent apparent p t p t p t

T T

     
 E F F I E F F I   (7) 
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where 
v
apparent

E  is the strain tensor for the voxel that exists at the same, particular point in 

the composite, generated during the motion 
v
apparent

 , and 
( )

v
p t

E  is the strain tensor of the 

particular voxel generated during the motion 
( )p t . 

Combining (6) and (7) results in 

( ) ( ) ( ) ( )
    

 v v v v
p t p t apparent p t p t

T
E F E F E . (8) 

We now recognize that the displacement 

 
 v v

p p

u x x   (9) 

is the displacement of a given voxel from the natural configuration of the voxel to the 

current configuration. Since 

( )

Grad

  




  


v v v
p t p p

v
p

x
F u I

x
, (10) 

where one should carefully note that Grad
 v

p

 is the gradient operation in reference to the 

position in the voxel natural configuration, we find that (8) becomes 

   ( ) ( )

Grad Grad      
   v v v v v v

p t p p apparent p p p t

TE u I E u I E . (11) 

If the strains are small in magnitude (as in the simulations considered in this work), then 

(11) becomes 

( ) ( )
  

 v v
p t apparent p t

ε ε ε (12) 

where ε is the infinitesimal, linearized strain. eq. (12) may also be written as 

, apparent mechanicalε ε ε  (13) 

where apparentε  is the apparent strain of a particular voxel generated during the 

dissolution-formation process (and associated with the mapping of a point from the 
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composite natural configuration to the corresponding voxel natural configuration), and 

mechanicalε  is the mechanical strain of the voxel as a result of the stress state within that 

voxel. Note that the specific requirement for the use of the linearized strain here is that 

the individual voxel strain between the natural and current configurations must be small 

along with the product of that strain and the apparent strain that occurs between the 

composite body as a whole and the individual voxels. It is important to be aware that one 

might have a composite exhibiting small strain at the macroscopic length scale while yet 

exhibiting locally large strains at the voxel level (depending on choice of length scale for 

the voxel); in such a case, the linearization in (12) is inappropriate. 

From eq. (13), it can be seen that, from a book-keeping perspective, apparent strain 

can be treated in the same fashion as free strains or eigenstrains [39], except that the 

apparent strain does not involve a change in the atomic or molecular spacing from the 

reference configuration, but a change from the natural configuration of the composite 

body to the natural configuration of a specific voxel. Other free strains that are induced 

by temperature change or internal relative humidity change are produced as a result of 

the configuration change from the reference configuration to the natural configuration of 

the composite. In the computational scheme, when calculating the stress in a particular 

voxel, only the mechanical strain is involved in the calculation while the stress 

associated with the apparent strain is strictly zero.  

To implement the above conceptualization and kinematic framework of the 

dissolution process into the computational scheme, the phases inside each voxel at all 

time steps should be tracked and all the voxels that participate in the dissolution process 
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should be recorded. In the model, under the applied periodic boundary condition over the 

entire time scale, different microstructures of composites are input into the scheme. 

Microstructures from two neighboring time steps would be compared first at the 

beginning of each time step, so that once the phases in one single voxel changes between 

the two time steps, the location and the configuration of this voxel would be noted for 

further calculation, while its historical mechanical responses would be expunged. The 

newly formed phases would be assigned with new constitutive properties for the 

subsequent time steps. Finite element analysis is carried out on the new microstructure to 

calculate the new internal stress and strain fields inside the material, and this procedure 

repeats for all time steps. Apparent VE/VP relaxation moduli are determined by 

quantifying the volume averaged stress at each time step (recall that the volume 

averaged strain is fixed as zero to simulate a relaxation experiment).  

2.2 Computational implementation 

2.2.1 Microstructural modeling 

The previously referenced prediction of cement paste elastic moduli involved 

utilizing the microstructure model CEMHYD3D (CEMent HYDration in 3D) [40], 

which generated lattice-based 3D digital microstructure images of specific cement pastes 

at specific degrees of hydration. Each voxel in the 3D microstructure was treated as an 

eight-node tri-linear cubic element in a finite element solver at the micrometer scale. By 

assigning individual phase elastic moduli to each voxel (depending on which individual 

phase occupied each voxel) and applying periodic displacement boundary conditions, the 

finite element program predicted the full 3D stress and strain fields [22, 41, 42]. These 
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fields were spatially averaged over the microstructure to determine the composite elastic 

moduli at a given degree of hydration and then compared to experiments where both 

elastic moduli and degree of hydration were measured [43].  

In the computational approach undertaken in this research, a next-generation 

hydration model called THAMES (Thermodynamic Hydration And Microstructure 

Evolution) [44, 45] was utilized to simulate the microstructure evolution during the 

hydration process at the micrometer level. THAMES is capable of producing 3D 

snapshots of hydrating cement paste microstructure at different ages based in part on 

thermodynamic equilibrium calculations and phenomenological dissolution kinetics [44]. 

The input provided to THAMES was the phase makeup (mass fractions of constituents) 

of the cement considered at the particle level, the particle size distribution of the cement, 

and the water to cement ratio (w/c). THAMES randomly placed the digital cement grains 

within a specified domain, and the grains began to dissolve at the surface according to 

phenomenological dissolution kinetics functions. At each time step, the pore fluid 

speciation from the previous time step was combined with the change in speciation 

induced from dissolution since the previous step. Based on the new speciation at the 

present time step, the thermodynamic engine GEMS (Gibbs Energy Minimization) [46, 

47] was utilized to find the equilibrium solution speciation and the mass of each solid 

constituent in equilibrium with the solution. It was assumed that near-equilibrium 

conditions were present between the hydration products and pore solution, which is a 

reasonable approximation after about 12-24 hrs of hydration for typical portland cement 

pastes. The new hydration products formed at a particular time step were spatially 
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located based on local geometric information regarding interfaces. This information 

included restrictions on where a particular constituent can grow and empirical 

information regarding the growth habit of the constituent (i.e. random, acicular, 

isotropic). The output from THAMES at each time step is a representative 

microstructure of constituents, in which each cubic voxel consists of a single phase. One 

thing to note here is that, when cement composites are subjected to external or internal 

stresses/strains, large local stresses/strains can be generated inside cement pastes. 

According to the second law of thermodynamics, these stresses/strains can potentially 

change the microstructure evolution of cement composites. At current stage, the 

microstructure model THAMES can predict the microstructure evolution of cement 

paste during hydration process, it is not capable of accounting for the microstructure 

change that occurs due to applied stress/strain. THAMES will be modified later in the 

dissertation to account for this stress-induced microstructure evolution effect. But unless 

stated clearly, for the simulation results generated in this first part of this dissertation, it 

only considers the relaxation/creep behavior of cement composites as a result of cement 

grain dissolution during the hydration process, while the stress-induced microstructure 

change inside cement paste was disregarded. 

2.2.2 Finite element calculation 

Finite element procedures were rewritten in C++, based on the existing Fortran 

codes [41, 42], to match THAMES, since it is also written in C++. The finite element 

codes were combined with the THAMES microstructure model to develop an elastic 

moduli prediction model as well as a VE/VP relaxation moduli prediction model. In each 
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case, the THAMES microstructure was meshed using a spatially aligned numerical 

discretization [48] such that each voxel (consisting of a unique phase) became an eight 

node tri-linear cubic finite element. In the elastic properties prediction model, each voxel 

was assigned isotropic elastic moduli. For anisotropic crystalline phases, the effective 

average isotropic moduli were calculated as the arithmetic average of the Voigt and 

Reuss polycrystalline bounds [49]. This procedure was deemed an accurate 

approximation owing to the probable random orientation of these phases within a given 

microstructure. The microstructure was subjected to strain-controlled periodic 

displacement boundary conditions and the total mechanical energy stored inside the 

whole microstructure was minimized to solve the boundary value problem [22, 42]. The 

composite elastic moduli were calculated by solving the elastic equations on a regular 

finite element mesh [43], based on the volume averaged stress of the composite under 

the specific boundary condition. A similar approach has yielded elastic moduli that agree 

well with the experimental results obtained from general porous materials and also 

cement paste specimens fabricated using the same cement and w/c considered in the 

simulations [22, 50]. 

To predict the time-dependent VE/VP behavior of cement paste, the elastic 

microstructure model was discretized in time to account for the time and (stress or strain) 

history dependent mechanical properties. At each time step in the finite element 

calculations, the microstructure model THAMES provided a snapshot of the 3D time-

evolving microstructure, and similarly to the elastic moduli prediction model, the VE/VP 
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finite element model solved the strain-controlled viscoelastic problem by minimizing the 

total energy stored in the microstructure at each time step.2  

If one phase is viscoelastic, the virtual work principle was used with the 

viscoelastic model to calculate the mechanical energy of the viscoelastic phases inside 

the microstructure [51, 52]. In the domain   of the problem, the virtual work 

expression for stored viscoelastic energy is derived under a virtual stress boundary 

condition induced by the traction condition 

 
i ji jt n  (14) 

for all points lying on a part of the boundary denoted as 2S , where  ij  are components 

of the Cauchy stress tensor and 
jn  are components of the unit normal vector [53, 54]. A 

variational form of virtual work for infinitesimal deformations is 

 

2

..

0ii i i i ij ij

S

iu b d u d u u d dt     
  

        , (15) 

where   is mass density, ib  are body force components, iu  are displacement 

components, 
ij  are infinitesimal strain components,   denotes an infinitesimal 

variation, and the overhead dots denote partial differentiation with respect to time [52]. 

Under a quasi-static state with a negligible inertia, the terms containing velocity 

components in eq. (15) can be eliminated and the instantaneous stored energy in 

viscoelastic phases can be approximated as  

                                                 

2 This solution procedure for the VE/VP material problem disregards any linear momentum in the body. 

This approach generates negligible error since the velocity of the time-dependent deformation is extremely 

slow under the boundary conditions considered. 
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1

2
ij ijkl kl i iC d u b d  

 

    , (16) 

where   is the energy stored in viscoelastic phases and 
ijklC  are components of 

instantaneous elastic moduli. For elastic phases, when the composite is subject to 

infinitesimal strains, the total elastic mechanical energy stored in one single voxel can be 

calculated by 

 

1 1 1

0 0 0

1
    ,

2
pq pqrs rs

En C dx dy dz     (17) 

where En  is the total stored mechanical energy, 
pq

  is the infinitesimal strain tensor; p, q, 

r, s = 1, 2, or 3, and the integral is over the volume of a single unit voxel. By expressing 

the strain tensor in terms of displacement components, eq. (17) can be rewritten as 

 
1

2
,T

rp rpsq sq
En u D u   (18) 

where 
rpsq

D  is the stiffness matrix and 
rp

u  is the p’th component of displacement at r’th 

node.  

From eq. (13), the strain tensors for any voxel in the microstructure can be 

approximated as the sum of the mechanical strain and the apparent strain, and so may the 

displacement vector of the nodes,  

 = + +
apparent

rp rp rp rp
u U     (19) 

where rp
U   is the displacement vector determined by the surrounding voxels, rp

  is the 

correction vector determined by periodic boundary conditions, and 
apparent

rp
  is the 
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correction vector determined by the apparent strain produced in the microstructure 

during the dissolution process. Defining +
combined apparent

rp rp rp
   , eq. (18) becomes  

 
, , ,

1
2

2

T

rp rp sq sq rp rp sq

combined comb

sq rp r

ined combine

s

d

p q sq
En u D u D u D         (20) 

where 
combined

rp
 is the total correction vector for the displacement of a node. eq. (20) can be 

simplified as  

 
1

,
2

En C  uAu bu   (21) 

where A  is the Hessian matrix comprised of the stiffness matrices, u is a vector of all 

the displacements, b  is a global vector, and C is a global constant; b  and C are 

determined by both the external strain controlled, periodic boundary conditions, and the 

dissolution and precipitation process of phases that occurs in voxels, which generates 

apparent strain. Since in eq. (21) there is no term with an order higher than quadratic, to 

derive the exact displacement solution leading to the minimum energy, Simpson's rule 

may be used such that 

 0.
En

  


Au b
u

  (22) 

Through minimizing the total mechanical energy stored in the microstructures, stress and 

strain fields of these microstructures at each time step can be predicted through FEM. 

While cementitious materials are rarely subjected to large deformation gradients on the 

macroscopic length scale – owing to their quasi-brittle nature – it is possible that locally 

large deformation gradients might still occur in the microstructure. While infinitesimal 

strains are considered in the analysis discussed herein, further study is needed to 

determine the likelihood of finite strains in the microstructure. 
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Prescribed, periodic volumetric strain and prescribed, periodic shear strain were 

applied on the boundaries of a series of microstructures at different ages to determine the 

evolutions of cement paste VE/VP bulk modulus and VE/VP shear modulus. To predict 

the time-evolving strain of the macroscopic composite under constant external stress, 

Boltzmann’s superposition principle [55, 56] was used to simulate the constant, stress-

controlled periodic boundary conditions. First, the spatially averaged hydrostatic stress 

of the composite under constant unit periodic volumetric strain may be calculated as a 

function of time for different loading ages as stress relaxes with time. In order to 

maintain an overall spatially averaged constant stress state, a necessary amount of extra 

strain must be applied on the composite at each time step. This additional strain may be 

calculated according to the superposition principle via  
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where 0  is the maintained constant boundary stress, ( )it  is the additional linear 

strain to be applied on the composite at time it  to achieve the desired boundary stress 

history, and ( )
kt iK t  is the apparent VE/VP bulk modulus of the composite at time it  

when loaded at age kt . The resultant strain history of the composite (e.g., the sum of the 

creep and elastic strains) is calculated through 
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where ( )total it  is the strain of the composite at time it . The preceding application 

of Boltzmann’s superposition principle was utilized in similar fashion (but with a 

constant applied, boundary deviatoric stress) to determine the time-dependent shear 

strain. The expressions were subjected to Laplace transformations to determine the 

VE/VP Young’s modulus and Poisson’s ratio from the VE/VP bulk and shear moduli. 

The resultant VE/VP Young’s modulus and VE/VP Poisson’s ratio of isotropic cement 

paste were subsequently calculated via [57, 58]  

 
9 3 2

   and  
3 2(3 )

sKsG sK sG
sE s

sK sG sK sG



 

 
, (25) 

where 𝐸̅, 𝐾̅, 𝐺̅, 𝜈̅ represent the Laplace transforms of apparent cement paste VE/VP 

Young’s modulus, VE/VP bulk modulus, VE/VP shear modulus and VE/VP Poisson’s 

ratio. The variable s  is the Laplace transformed (time) variable. In order to evaluate any 

potential anisotropy, simulations were performed whereby different strain magnitudes 

were applied along different axes, the VE/VP moduli calculated, then the axes 

interchanged and the moduli recalculated. Comparison of the results from the two 

simulations indicated negligible difference, confirming the isotropy assumption. To 

evaluate potential differences in response to constant state of stress versus the imposed, 

constant state of strain primarily utilized in our simulations, we performed creep 

simulations that yielded VE/VP compliance, which when converted to VE/VP moduli 

via Laplace transformations, yielded the same results as the relaxation simulations. 
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As mentioned in section 2.2, a major challenge in predicting the VE/VP behavior of 

cement paste is that microstructure evolution associated with hydration (i.e., dissolution 

of cement phases and precipitation of hydrates) occurs over the same time scale as 

VE/VP relaxation. This change of internal structure leads to stress and strain 

redistribution inside the whole composite. The key assumption in the model discussed 

herein is that when there is phase change in one voxel between two successive time steps 

(e.g., C3S to C-S-H), stress carried by the original phase would be redistributed to 

surrounding phases upon dissolution (thus increasing the stress carried by these phases), 

resulting in an apparent VE/VP deformation. This assumption implies that stress 

redistribution takes place much faster than chemical phase changes. Meanwhile, the 

newly formed phases must form in a stress-free state that conforms to the preexisting 

deformed configuration, and no historical responses in this voxel before formation 

occurs should be included in the finite element calculation. As a result, apparent strain is 

produced inside the microstructure and information regarding apparent strain must be 

stored in the finite element formulation for calculation purposes. 

2.2.3 Logic flow of the computational scheme 

To illustrate the process of the VE/VP model more specifically, Figure 4 shows the 

simplified flow chart for the computational scheme. At the first time step in the model, a 

strain-controlled periodic boundary condition is applied on the microstructure of a 

particular age, and the finite element calculation is carried out based on historical 

responses of each voxel and the loading histories. With the calculated stress and strain 

histories in each voxel, the total energy stored in the whole microstructure is calculated 
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and minimized at each time step to determine the resultant stress and strain fields inside 

the microstructure, which are then spatially averaged to calculate the VE/VP moduli at 

the macroscopic scale.  

At each subsequent time step, the new microstructure for the age corresponding to 

that time step is input into the model and comparison between the previous 

microstructure and the current microstructure is carried out on every voxel to check for 

phase change. Voxels with phase change are recorded and the previous mechanical 

responses of such voxels are disregarded in future calculations. Furthermore, any 

stresses within the dissolved phase are redistributed to the surrounding voxels.  The VE 

moduli of phase-changed voxels are relaxed according to the loading histories 

subsequent to the time they are formed during all the following time steps. That is, if one 

voxel experiences phase change at the i th time step ( 0t t ), in all subsequent time steps 

the moduli of this specified voxel are no longer based on the mechanical 
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Figure 4 Simplified flow chart for the computational finite element procedure predicting 

the apparent VE/VP behavior of cement paste.  

 

 

properties of the previous phase, but on the current changed phase. If the voxel is 

switched to an elastic phase, the moduli of this voxel are kept constant in all the 

following time steps with the current phase elastic moduli; if the voxel is switched to a 

VE phase (such as C-S-H), the moduli of this voxel would be assigned a VE moduli with 

the relaxation starting at time 0t t , the time at which phase change occurs, for all the 

following time steps. Calculations are carried out based on the renewed response 
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histories and moduli. The second step in the routine is repeated until all time steps are 

complete. 

The computational scheme and associated material model allows investigation of 

relaxation caused by both intrinsic C-S-H viscoelasticity and microstructure evolution 

concurrently. It also can separately model the VE/VP relaxation of cement paste due 

strictly to intrinsic C-S-H relaxation or the apparent VE/VP relaxation of cement paste 

due strictly to dissolution of certain phases. One can evaluate the contribution of 

intrinsic relaxation to the overall VE/VP behavior by defining a unique VE or VP 

constitutive property for any given phase while utilizing unchanging microstructure for 

all time steps or one can strictly examine the effect of microstructure evolution by 

utilizing time-evolving microstructures of composites with purely elastic phases. This 

separation allows us to judge the relative magnitude of these two sources of VE/VP 

behavior, as compared to experiment, which always mixes the two sources. 

2.2.4 Model validation 

The advantage of the newly generated model and finite element implementation is 

that it is able to simulate apparent VE/VP effects that occur due to microstructure 

evolution while simultaneously considering intrinsic VE/VP properties associated with 

phases that exhibit VE/VP behavior. As far as the author is aware, there are no 

commercially available FEM software packages capable of validating this novel aspect 

of the new software. However, a simple simulation was performed to evaluate the 

physical rationality of the computed results. The simulation considered a THAMES 

generated microstructure for a 0.40 w/c cement paste (simulated under an isothermal 
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condition of 25° C) that utilized chemical and physical data for a certain well-

characterized portland cement. Microstructure snapshots were taken over the course of 

several days of age. Each phase in the microstructure was assigned elastic properties 

taken from [22], except C-S-H was assigned a VE Young’s modulus prescribed as 

 ( ) 11.2 11.2exp 0.2  GPaE t t   , which allows 50% of the instantaneous elastic  

Young’s modulus to be relaxed as t  . The Poisson’s ratio of the C-S-H was 

prescribed to be time-independent as 0.25  . As shown in Figure 5(a), during the first 

13 days, a constant periodic bulk strain ( 11 22 33= =   ) of 0.01 was applied to the 

composite material, and this applied strain was suddenly removed at the 13th day, forcing 

the material to return back to its original geometry of zero bulk strain.  

Figure 5(b) shows the apparent macroscopic volumetric stress (the average value of 

11 , 22 and 33 ) of the composite predicted by the finite element model. During the 

first 13 d, the composite showed smooth relaxation under constant controlled strain due 

to the two stress-relaxation mechanisms (i.e., phase dissolution of cement grains and 

intrinsic VE properties of the C-S-H), and at the 13th day, with the sudden removal of the 

periodic bulk strain, the volumetric stress of the material also exhibited a sudden drop. 

However, instead of returning back to zero as the external controlled strain did, the 

volumetric stress assumed a negative value. The existence of the residual stress within 

the composite is not unexpected. As illustrated conceptually by the diagrams in Figure 

5(b), when a controlled strain is applied, the existing phases deform under the external 

boundary condition. During the hydration process, some phases inside the composite 
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Figure 5 Virtual experiment of 0.40 w/c cement paste with an evolving microstructure under a virtual strain controlled 

boundary condition. (a) Virtual applied bulk strain history with a sudden removal at 13th day. (b) Mechanical response 

(apparent volumetric stress) of viscoelastic composite material under boundary history (a). The VE Young’s modulus of C-S-H 

was assumed to be 
0.2

( ) 11.2 11.2
t

E t e GPa


  , where t is in days and the Poisson’s ratio of C-S-H was assumed to be a constant 

value of 0.25. The elastic properties of all other phases were taken from [22]. As illustrated by diagrams using simplified 

parallel phase geometry, the sudden drop of the apparent volumetric stress into a negative magnitude was associated with the 

tensile pressure required to force those phases formed after the initial application of bulk strain back to a zero strain condition. 
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material dissolve and form new phases in the deformed configuration in a stress-free 

state. When the bulk strain of the microstructure was suddenly forced back to zero in the 

simulation, opposing stresses were necessarily generated within the latter-formed phases, 

leading to a negative volumetric stress. A very simple model, a spring of length L, serves 

to further illustrate this point. Suppose the spring is extended in tension by an amount x 

and held there. Another spring is added in parallel, of unextended length L = L + x. This 

second spring is longer, but carries no force. When the first spring is released, it will not 

relax all the way back to zero extension but will retain some amount of tension since the 

second spring will be simultaneously pulled into compression.  
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3. CREEP/RELAXATION CAUSED BY C-S-H VISCOELASTICITY AND C-S-H 

AGING* 

 

To investigate the mechanisms of cement paste VE/VP behavior, simulations are 

first carried out to predict the effect of intrinsic C-S-H viscoelasticity as well as C-S-H 

aging on the overall VE/VP behavior of cement paste. 

3.1 Intrinsic C-S-H viscoelasticity 

Intrinsic viscoelasticity of C-S-H has been historically regarded as the primary 

mechanism leading to cement paste VE/VP behavior. However, recent experimental 

results suggest that C-S-H may not exhibit as much creep and relaxation as previously 

thought [59]. A clear demonstration is required to show the contribution of C-S-H 

intrinsic viscoelasticity towards overall cement paste VE/VP properties. Thus, a 

simulation was performed where dissolution effects were ignored and periodic boundary 

conditions were applied onto non-aging microstructures; that is, the microstructures did 

not evolve with time during the simulation and the simulated cement paste relaxation 

was due entirely to inherent C-S-H viscoelasticity. By applying periodic controlled strain 

on the boundary of a series of microstructures with 3100  voxels (with the dimension of 

each voxel as 1 µm3) at different ages, the evolution of apparent cement paste VE/VP 

Young’s modulus can be predicted by the model. All microstructures utilized in the 

virtual experiments were generated by THAMES on simulated sealed cement pastes of 

                                                 

* Reprinted with permission from “Modeling the apparent and intrinsic viscoelastic relaxation of hydrating 

cement paste” by X. Li, Z.C. Grasley, E.J. Garboczi and J.W. Bullard, 2015. Cement and concrete 

composites, 55, 322-330. 2017 by Elsevier. 
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CCRL Proficiency Sample Cement 168, simulated under an isothermal, sealed condition 

of 25 ℃ (298 K) [60]. Since, due to experimental challenges, there are no sufficient data 

currently available for modeling creep or relaxation of the C-S-H phase over several 

days, for simulation purposes, the viscoelastic Young’s modulus of C-S-H was assumed 

to be 
0.2( ) 11.2 11.2 tE t e GPa  , where t is in unit of days and the Poisson’s ratio of C-

S-H was set to be a time-independent constant value of 0.2. All other phases in the 

microstructure were assigned to be elastic with properties taken from [22]. Figure 6 

shows the apparent VE Young’s modulus associated with the response of 0.45 w/c paste, 

where the relaxation was due strictly to the intrinsic viscoelastic relaxation of C-S-H.  

In Figure 6, the 1 d cement paste VE/VP Young’s modulus was generated by 

utilizing the 1 d microstructure, and the 28 d VE/VP cement paste Young’s modulus was 

generated by utilizing the 28 d microstructure. After periodic strain boundary conditions 

were applied, microstructures were no longer allowed to evolve with time. As a result, in 

these simulations only the VE properties of C-S-H induced relaxation in the bulk cement 

paste.  
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Figure 6 VE Young’s modulus for 0.45 w/c cement paste at different ages (1 d old and 

28 d old) when the dissolution effect was ignored. The VE Young’s modulus of C-S-H 

was assumed to be 
0.2

( ) 11.2 11.2
t

E t e GPa


  , where t is in days and the Poisson’s ratio 

of C-S-H was assumed to be a constant value of 0.2. The elastic properties of all other 

phases were taken from [22]. In this graph, all relaxation was due to intrinsic C-S-H 

viscoelastic relaxation. 

 

 

According to the simulation results, a 28 d cement paste would exhibit more 

relaxation than a l d cement paste. The reason behind the predicted higher relaxation for 

older materials is that as volume fraction of C-S-H increases with age, so does the 

fraction of the stress transmitted by C-S-H. If C-S-H is the only phase in cement paste 

able to relax stress, more C-S-H would thus result in more overall stress relaxation. 

However, these predictions are in contrast to existing experimental evidence [61, 62], 

which shows that relaxation or creep rates decrease with age (i.e., the previously 
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mentioned aging effect). Therefore, according to these simulations, C-S-H relaxation 

cannot be the primary mechanism of early-age cement paste VE/VP behavior unless the 

VE properties of the C-S-H itself dramatically change with age. If C-S-H phases 

experience significant aging, the functions for C-S-H VE moduli must vary relative to 

the age when specific particles of C-S-H are formed.  

3.2 C-S-H aging 

3.2.1 C-S-H aging implementation 

It has often been suggested that the aging effect of concrete is due to intrinsic aging 

of C-S-H properties, which can occur due to either polymerization [63] or densification 

[64]. Meanwhile, as hydration progresses, the volume fraction of C-S-H also increases 

with age. Many modeling approaches (such as the solidification theory [65, 66] and 

solidification theory incorporating intrinsic C-S-H aging [20]) have been developed to 

predict the aging behavior of concrete. However, according to the discussions in section 

3.1 and in [67, 68], increases in C-S-H volume fraction yields more creep/relaxation 

simply because a larger volume fraction of C-S-H requires a greater fraction of the 

composite stress to be transmitted through C-S-H phases (and thus more creep/relaxation 

associated with C-S-H phases). In the traditional modeling approaches, it is assumed that 

cement grains are incapable of carrying stresses and the averaged stress carried by C-S-

H phases decreases with as the volume fraction of C-S-H increases. Thus, a modeling 

approach (such as existing analytical approaches) that neglects the fact that cement 

grains carry stress is inadequate to capture the effect of C-S-H aging on macroscale 
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VE/VP properties of cement paste, motivating the utilization of the above-mentioned 

model to predict the overall VE/VP behavior of cement paste. 

In the previous VE/VP moduli prediction model, all the hydrated and unhydrated 

phases (except C-S-H) were assigned age-independent linearly isotropic elastic moduli. 

As intrinsic C-S-H aging properties would lead to less overall relaxation in cement paste, 

to include this mechanism into the computational scheme, the finite element calculation, 

where the moduli of each phase were assigned, was modified in such a way that C-S-H 

phases formed at different ages or different time steps were treated as different phases. 

Each of these phases was assigned different VE/VP mechanical properties based on the 

initial non-aging VE/VP properties of C-S-H, the aging function of C-S-H, and the time 

when a specific C-S-H particle is formed. THAMES and finite element code can easily 

handle the many phases necessary. 

The time-age superposition method [55], a conventional way to model the age-

evolving properties of aging VE/VP materials, was used to model the aging VE/VP 

moduli of C-S-H phases. According to the time-age superposition method, the effect of 

different ages is incorporated by simply shifting the retardation or relaxation times 

without changing the shape of the compliance or moduli functions of the materials on 

the log time scale. By selecting one age to be the reference age or the ‘master’ age, the 

retardation or relaxation times for the other ages can be simply shifted by a constant time 

shift factor 
j

a  [20] 

  (t/ ) f

refa t  , (26) 
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where t  is the age of C-S-H. The aging factor f  in eq. (26) is a constant (constitutive) 

factor throughout each simulation, and controls the aging rate of C-S-H. By simply 

changing the value of the aging factor f , all of the time shift factors at different ages 

change simultaneously. Note that as aging and relaxation occurs simultaneously on the 

same time scale, the constitutive equation for aging C-S-H can be written as [69] 

    
 

0

11

11 : , ( ) ( )

t

ref

s
t f t E t s ds
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where ( )E t  is the reference age viscoelastic Young’s modulus, 
11

( : , )reft f t  is the axial 

stress function, 
11

( )t  is the axial time-dependent strain, and ( )t  is a pseudo-time 

expressed as 
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From the above three equations, one can see that when 0f  , the C-S-H phases are 

non-aging materials whose mechanical properties do not evolve with age. As the value 

of f  increases the time shift factor also increases, yielding a faster and more obvious 

aging effect on the resultant VE properties of C-S-H. Thus, by comparing the simulation 

results with different input values of f , the influence of intrinsic C-S-H aging towards 

the overall VE/VP relaxation of cement paste can be evaluated.  

While one could devise an analytical composite model using a simplified geometry 

(parallel, composite spheres, etc.) to simulate an aging, viscoelastic, composite material, 

the computationally implemented model described herein allows one to simultaneously 

capture effects induced by phase dissolution and to assign particular constitutive 
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behavior to each individual phase (i.e., C-S-H, CH, etc.).  Thus, the results from these 

simulations provide enhanced insight into aging, creep, and relaxation beyond that 

attainable from classical, analytical models. 

3.2.2 Simulation results & discussions 

Several virtual experiments were performed to probe the contribution of intrinsic C-

S-H aging to the overall early age (i.e., approximately one day to two month) VE/VP 

behavior of cement paste. A series of microstructures with 1003 voxels (the volume of 

each cube-shaped voxel is 1 µm3) at different ages were utilized in the computational 

model to predict the time-evolving apparent VE/VP Young’s modulus and the apparent 

VE/VP Poisson’s ratio of cement paste. All microstructures utilized in the virtual 

experiments were generated by THAMES on simulated cement pastes of the ASTM 

Cement and Concrete Reference Laboratory (CCRL: http://www.ccrl.us/) Proficiency 

Sample Cement 168 [60] under isothermal, sealed conditions of 25 ℃ (298 K), and the 

elastic moduli of each phase (e.g., C3S, C-S-H) were taken from previous studies [22]. 

One thing to note about the utilized microstructures is that, in reality, for the 

volume of 1 cubic micron voxel size, multiple phases might exist within this volume 

rather than one single phase. For the voxels of C-S-H phase analyzed in the 

microstructure model, nanosclae porosity as well as nanoscale CH could reside within 

this volume, intermixed with the predominant C-S-H. In the computational model, when 

assigning mechanical properties to these 1 µm3 C-S-H voxels, the “mean field” 

properties of this volume of “C-S-H phases” are utilized, which means that the assigned 

mechanical properties for each C-S-H voxel inherently account for the porosity or 
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nanoscale CH that might reside within this 1 µm3 volume; this is accomplished by 

utilizing mechanical properties obtained from experimental investigations probing a 

similar length scale (e.g., nanoindentation tests that probe a roughly 1 micron cube 

interaction volume). Thus, in this dissertation, the “intrinsic properties of C-S-H” refers 

to the “mean field” properties of C-S-H.  

From previous sections, the main reason that C-S-H viscoelasticity was determined 

unlikely as the dominant mechanism leading to the VE/VP relaxation of cement paste is 

the fact that this mechanism gives conflicting simulation results of the cement paste 

aging effect in comparison to experimental evidence [61, 62]. According to the previous 

simulation results, older cement paste specimens exhibit larger relaxation if C-S-H 

viscoelastic properties do not age because of the higher C-S-H volume fractions in older, 

more fully hydrated specimens. However, myriad experimental data indicate that older 

specimens exhibit lower rates of relaxation than younger specimens. Previous 

simulations assigned a non-aging VE/VP constitutive function for C-S-H. Incorporating 

the intrinsic C-S-H aging effect into the computational model so that the overall time-

dependent properties of C-S-H evolve with age may yield different early age cement 

paste aging effects. 

As discussed in section 3.2.1, changing the values of the aging factor f  enables one 

to evaluate by virtual experiments the effect of intrinsic C-S-H aging on the overall 

VE/VP relaxation of cement paste. In this dissertation, the reference age reft  in eq. (26) 

was set to be equal to 7 d, and the VE Young’s modulus of C-S-H at the reference age in 

Eqs. (27) and (28) was prescribed as ( ) 11.2 GPa 11.2exp( 0.2 ) GPaE t t   , where t denotes 
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the loading time of each specific C-S-H voxel, while the Poisson’s ratio of C-S-H was 

assumed to have a time-independent value of 0.25. The choice of reference age is 

arbitrary, so long as one is consistent in shifting all other ages to the relaxation function 

determined for the reference age. The aging factor was assigned to be f = 0.7, 1.4, 2.1 or 

2.8 to simulate different aging rates. All the other phases were assumed to be purely 

elastic with constant mechanical properties.  

Figure 7 shows the simulation results for a 0.40 w/c cement paste with different C-

S-H aging factors. These simulation results were generated using a fixed microstructure 

to eliminate any relaxation effects due to hydration, so that relaxations occur solely by 

C-S-H time-dependent properties. The non-aging, 1 d curve was generated at the loading 

age of 1 d, and the other curves were generated at the loading age of 7 d.  

Figure 7 shows that faster C-S-H aging (i.e., higher f) results in less relaxation in 

the apparent VE/VP Young’s modulus of the composite. When the aging factor is 

increased to a sufficiently large value, 7 d specimens potentially can exhibit slower 

relaxation than the 1 d old specimen, especially for the case when 2.1f   and 2.8f  . 

As already described, simulations suggested that C-S-H relaxation could not be the 

primary mechanism of early age cement paste VE/VP behavior because that mechanism 

alone implies greater overall relaxation in older specimens, in conflict with experimental 

data. However, the new simulations shown here demonstrate that the well-known aging 

effect can be recovered by introducing intrinsic aging of the C-S-H constitutive 

properties.  
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Figure 7 Apparent VE/VP Young’s modulus for 0.40 w/c at the loading age of 1 d and 7 

d under different intrinsic C-S-H aging conditions. The VE/VP behavior was considered 

to occur due to intrinsic C-S-H time-dependent behavior while ignoring dissolution 

effects. The non-aging E(t) due to loading at 1 d is included in this figure as a 

comparison. 

 

 

Through utilizing unchanging microstructures at each specific age, Figure 8 shows 

the simulation results of the 0.40 w/c cement paste subject to loading at ages of 1 d, 7 d, 

14 d and 28 d when assigned with different aging factors f = 0 (no C-S-H aging), 0.7, 1.4 

or 2.1. The C-S-H phase was assigned a VE Young’s modulus prescribed as 

( ) 11.2 GPa 11.2exp( 0.2 ) GPaE t t    at the reference age of 1 d, and the Poisson’s ratio of 

C-S-H was fixed to a constant 0.25. All the other phases are treated as purely elastic with 

constant mechanical properties. Apparent VE/VP Young modulus of the cement paste 
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composite, which are normalized by the instantaneous elastic Young’s modulus of each 

cement paste composite, are shown in Figure 8. 

Figure 8 (a)-(b) show that older specimens exhibit larger and faster relaxation than 

younger specimens when f  is small (little aging effect). When the aging factor for C-S-

H is higher, as shown in Figure 8 (c)-(d), older specimens relax slower than younger 

ones, which is in agreement with myriad experimental data regarding aging 

viscoelasticity in cement paste.  Thus, we have confirmed the hypothesis that the aging 

VE/VP behavior of cement paste may be accounted for strictly by time-dependent 

behavior of the C-S-H, provided that the viscoelastic properties of the C-S-H exhibit 

strong enough aging. This finding should not be construed to indicate that strong C-S-H 

aging is necessary for cement paste to exhibit aging viscoelastic behavior, only that it is 

theoretically sufficient. To investigate more thoroughly how cement paste at different 

loading ages responds to the intrinsic aging rate of C-S-H phases, or to investigate how 

sensitive cement pastes at different loading ages are to changes in f , Figure 9 shows the

normalized apparent VE/VP Young’s modulus of cement paste (which are normalized 

by the instantaneous elastic Young’s modulus of each cement paste composite) after 56 

d of loading versus the change in the aging factor f . This figure uses the same data as in 

Figure 8, plus one more set generated with f = 2.8; if the cement paste is loaded at 14 d, 

the normalized VE/VP Young’s modulus after 56 d of loading, which is at an actual age 

of 70 d, was used in the figure. 
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Figure 8 Apparent VE/VP Young’s modulus for 0.40 w/c cement paste at different 

loading ages with different aging factors of (a) f=0 (non-aging), (b) f=0.7, (c) f=1.4 and 

(d) f= 2.1 
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Figure 9 Normalized apparent VE/VP Young’s modulus of 0.4 w/c cement paste after 

being subjected to 56 d of constant controlled strain applied at the age indicated in the 

legend versus the aging factor f, where normalization was made by instantaneous elastic 

Young’s modulus. VE/VP behavior was considered to occur due to intrinsic C-S-H time-

dependent behavior. The data were selected from the data utilized in generating Figure 

8 and one more set of data when the aging factor f = 2.8. 

 

 

When the aging factor is small (f < 0.7), Figure 9 indicates that cement paste 

loaded at an earlier age, such as 1 d, has a shallower slope than paste loaded at a later 

age, meaning that cement pastes are less sensitive to the change in the intrinsic C-S-H 

aging rate when loaded at earlier ages. The major reason for this phenomenon is that 

younger specimens have a lower C-S-H volume fraction. When the aging effect is minor 

(i.e., f  is small) and dissolution effects are excluded, the volume of C-S-H dominates 

the behavior, leading to overall less relaxation in younger specimens, as shown in Figure 
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8(b). As the aging factor increases, the slopes of the earlier age curves gradually become 

steeper than later age curves (especially when the aging factor is greater than 1.4), 

meaning that earlier age cement paste becomes more sensitive to the intrinsic C-S-H 

aging effect. This phenomenon can be explained from Eqs. (26)-(28). When substituting 

eq. (26) into eq. (28), under the same reference age reft , the pseudo-time function has a 

1 ft   dependence, which is more sensitive to  changes in f  at early ages with smaller 

values of t , and thereby the C-S-H VE Young’s modulus, compared to an older 

specimen. Thus, from this aspect, younger cement pastes are more sensitive to the 

change in the values of f , and thus to the intrinsic aging of C-S-H phases.  

Additional virtual experiments were also conducted to examine the influence of 

intrinsic C-S-H aging on cement paste with different w/c. Cement pastes with w/c 

varying from 0.35 to 0.5 were subjected to loading at 7 d with one of four different aging 

factors, f = 0, 0.7, 1.4, or 2.1. The C-S-H phase was assigned the same properties as in 

Figure 8. Figure 10 shows the time evolving apparent VE/VP Young’s modulus of  
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Figure 10 Normalized apparent VE/VP Young’s modulus cement paste with different w/c 

under the loading age of 7 d with different intrinsic C-S-H aging factors of (a) f=0 (non-

aging), (b) f=0.7, (c) f=1.4 and (d) f= 2.1, where normalization was made by the 

instantaneous elastic Young’s modulus. 

the cement paste composites, normalized by the instantaneous elastic Young’s 

modulus, using different values of the aging factor. Figure 10 shows the normalized 

apparent VE/VP Young’s modulus after 56 d of loading versus the change in the aging 
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factor f  to demonstrate the sensitivity of different w/c cement pastes towards intrinsic 

C-S-H aging. 

From Figure 10 and 11, one can see that in all cases, cement pastes with a lower 

w/c value relax faster and are more sensitive to intrinsic C-S-H aging due to their higher 

C-S-H volume fractions at early ages [68]. Under the same loading age and the same 

aging factor, the relative amount of C-S-H phases is the only factor affecting the relative 

relaxation of cement paste under the mechanism of C-S-H time-dependent properties. 

 

 

Figure 11 Normalized apparent VE/VP Young’s modulus of cement pastes with different 

w/c after 56 d of loading (loading age of 7 d) versus the aging factor f, where 

normalization was made by instantaneous elastic Young’s modulus. VE/VP behavior was 

considered to occur due to intrinsic C-S-H time-dependent behavior. The data was 

selected from the data utilized in generating Figure 10. 
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3.3 Summary 

Without aging effect, intrinsic C-S-H viscoelasticity is not likely the primary 

mechanism leading to the early-age creep and relaxation behavior of cementitious 

materials; this is because significant C-S-H relaxation results in simulated macroscopic 

behavior that is in conflict with experimental evidence of early-age aging effects. When 

intrinsic C-S-H aging operates together with C-S-H viscoelasticity, the modeled time-

dependent VE/VP properties of cement paste are consistent with the experimentally 

observed aging effect on cement paste creep and relaxation rates. With the increasing 

volume fraction of C-S-H inside cement paste as hydration progresses, the influence of 

intrinsic C-S-H aging on apparent VE/VP Young’s modulus of cement paste likely 

increases with time. 
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4. CREEP/RELAXATION CAUSED BY CEMENT GRAIN DISSOLUTION* 

 

Beside C-S-H viscoelasticity/viscoplasticity and C-S-H aging discussed in Chapter 

3, cement grain dissolution during the hydration reaction is also a potential mechanism 

leading to time-dependent behavior of cement paste. To evaluate the apparent VE/VP 

behavior occurring strictly due to cement grain dissolution, microstructures of cement 

composites with pure elastic phases (no inherent viscoelasticity) at different ages are 

considered in this chapter. 

4.1 Cement grain dissolution 

In the virtual experiments carried out in this chapter, a series of microstructures of 

sealed cement pastes of CCRL Cement 168 with 1003 voxels (the volume of each cube-

shaped voxel is 1 µm3) at different ages (from 1 d to 56 d) were utilized under seal 

condition an isothermal, sealed condition of 25 ℃ (298 K). In this whole chapter, all the 

simulated microstructure are generated by THAMES, and only the cement grain 

dissolution during the hydration reaction are considered in the microstructure model, 

while any potential stress-induced microstructure changes of cement paste are 

disregarded. Different VE/VP mechanical properties of cement paste, including apparent 

VE/VP Young’s modulus, Poisson’s ratio, Bulk modulus and Shear modulus were 

analyzed in this chapter, especially the first two properties, and their evolution with time 

all occur strictly as a result of early-age cement grain dissolution. 

                                                 

* Reprinted with permission from “Modeling the apparent and intrinsic viscoelastic relaxation of hydrating 

cement paste” by X. Li, Z.C. Grasley, E.J. Garboczi and J.W. Bullard, 2015. Cement and concrete 

composites, 55, 322-330. 2017 by Elsevier. 
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4.1.1 Different loading ages 

Figure 11 shows the predicted apparent VE/VP Young’s modulus of 0.40 w/c 

cement paste under constant periodic strain boundary condition applied at different ages 

of 1 d and 7 d. The relaxation shown in Figure 11 was due entirely to the time-dependent 

dissolution of cement grains. From the predicted results, one can see that the apparent 

VE/VP behavior caused by dissolution of cement grains is substantial. Thus,  

 

 

Figure 11 Apparent VE/VP Young’s modulus of 0.40 w/c cement paste when loaded at 

different ages (1 d and 7 d). In this graph, apparent VE/VP behavior was considered to 

occur strictly due to dissolution of load bearing cement grains. The dissolution of load 

bearing cement grains resulted in significant apparent VE/VP behavior for the 

macroscopic cement pastes, and was able to account for the well-known aging effect of 

VE/VP behavior of cement paste.  
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4.1.2 Different w/c 

 

Figure 12 Apparent viscoelastic Young’ modulus for different w/c at loading age of (a) 1 

d and (b) 7 d and normalized apparent VE/VP relaxation at loading age of (c) 1 d and (d) 

7 d, where apparent VE/VP Young’s modulus E(t) was normalized by instantaneous 

elastic Young’s modulus. VE/VP behavior was considered to occur strictly due to 

microstructure evolution. 

 

microstructure evolution associated with the hydration process should be included as a 

significant mechanism in cement paste VE/VP behavior. Additionally, as the rate of 
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hydration rate with age), the well-known aging effect of cement paste VE/VP behavior is 

demonstrated by the hydration-related dissolution mechanism. 

To investigate the influence of different values of w/c on the apparent VE/VP 

Young’s modulus at different loading ages, microstructures of cement paste with purely 

elastic phases (with elastic properties taken from [22]) and w/c from 0.35 to 0.50 were  

utilized. In this set of simulations, the VE/VP relaxation of cement paste occurred 

strictly due to dissolution of load bearing cement grains. Figure 12 shows the predicted 

results of apparent VE/VP Young’s modulus for different values of w/c as well as the 

normalized apparent VE/VP Young’s modulus, which are normalized by the 

instantaneous elastic Young’s modulus at loading ages of 1 d and 7 d. As shown in 

Figure 12(a) and Figure 12(b), older cement pastes establish lower relaxation rates for all 

different w/c considered because of the decreasing hydration rate (and thus dissolution 

rate) with age, which is consistent with the discussion in previous sections and 

experimental results. According to Figure 12(c) and Figure 12(d), at an early age of 1 d, 

the normalized results clearly show that lower w/c results in a greater percent relaxation 

than higher w/c. This simulation result agrees with experimental data from Vichit-

Vadakan and Scherer [61], which shows that lower w/c cement pastes experience larger 

relaxation than higher w/c pastes at early ages. According to the model discussed here, 

this experimentally observed ranking may occur because dissolution of load bearing 

cement grains is the dominant factor affecting the relaxation rate at early ages due to the 

high rate of hydration. As low w/c generates higher hydration rate at early age, a larger 

relaxation rate with low w/c paste is observed. At later loading ages, on the other hand, 
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higher w/c results in larger relaxation [1]. This larger relaxation for higher w/c at later 

ages is likely due in part to the lower fraction of solid phases in high w/c cement pastes, 

which results in a smaller volume of available stress transferring phases. That is, when 

load bearing cement grains within a high w/c paste dissolve during a single time step, 

there would be a lower volume of previously formed solid phases (because of the high 

w/c) sharing the redistributed stress, leading to a higher relaxation rate. 

4.1.3 Evolution of stresses 

Besides the prediction of the effect of age and w/c on the apparent VE/VP 

properties of cement paste, predictions of the evolution of stresses (volumetric stress and 

deviatoric stress) carried by different phases (hydrated phases and unhydrated phases) 

inside cement paste composites also become achievable through the computational 

scheme.  

Volumetric stress is the stress tending to change the volume of the body, with 

magnitude given by 

 11 22 33 1

3 3

I
p

   
  , (29) 

where p is the volumetric stress, iI  are the three invariants of the stress tensor and 

11 22 33, ,    are normal stresses.  

Deviatoric stress is the stress tending to distort the stressed body. Components of 

the stress deviator tensor are given by 
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where ijs  is deviatoric stress, and ij  are the components of the overall stress tensor. A 

scalar measure of deviatoric stress magnitude is 

2

1 2

1 1

2 3
ij jis s s I I   , (31) 

where s is the scalar deviatoric stress and i, j = 1, 2, or 3. 

Since both volumetric stress and deviatoric stress are closely related to the three 

invariants of the stress tensor, their evolution with time can be representative of the 

corresponding evolutions of the general stress distribution inside the microstructure. 

Figure 13 shows the predicted evolution of p  and s  carried by hydrated phases and 

unhydrated phases at different ages. In this figure, p  for each phase is normalized by 

total volumetric stress carried by the whole microstructure and s  for each phase is 

normalized by total deviatoric stress carried by the whole microstructure. The 

normalization is expressed according to 

/ ( )
( )

( )

hydrated unhydrated

N

t
t

t




 

 


(32) 

where ( )Nt  is either normalized volumetric or deviatoric stress at time t, 

/ ( )hydrated unhydrated t  is the summed volumetric or deviatoric stress over hydrated or 

unhydrated voxels at time t, and ( )t   is the integrated volumetric or deviatoric stress 

over the whole volume of the microstructure at time t. Microstructures constructed 

considering 0.40 w/c with pure elastic phases at different ages were utilized in the model, 

and the elastic properties of all phases were taken from [22]. From Figure 13, stresses 

gradually transfer from unhydrated cement grains to hydrated phases. 
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Figure 13 Normalized volumetric stress and deviatoric stress carried by hydrated 

phases and unhydrated phases inside cement paste microstructure under loading age of 

1 d. The summed volumetric and deviatoric stresses carried by hydrated phases and 

unhydrated phases at time t are normalized by total volumetric stress or total deviatoric 

stress carried by the whole microstructure at time t, respectively. 

 

 

4.2 Comparison with solidification theory 
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as the solidification theory [70], have been developed based on this understanding. 
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stress and deviatoric stress with time should all be capable of representing the general 

stress evolutions inside the microstructure, as discussed in previous paragraphs of this 

section. Due to equilibrium requirements, the normalized, spatially averaged stress 

carried by the solidified products (equivalent to hydration products) in the solidification 

theory may be calculated through 

 
( )

( )
( )

total t
t

t


 


 (33) 

where ( )t  is the aging function describing the volume fraction of solidified phases, and 

( )total t  is the normalized total stress, either volumetric stress or deviatoric stress, 

predicted by the present model. Note that the solidification theory does not allow for any 

stress being carried by the unhydrated cement, even after the cement paste has set. From 

a simple composite theory view, it is clear that if solid phases are connected to the main 

solid backbone, they will carry load. Computations have shown that at lower values of 

w/c, the effective elastic moduli are significantly affected by the unhydrated cement [22].  

For comparison purposes, the curves of normalized stresses carried by solidified 

phases calculated via the new model presented in this project are obtained by summing 

all normalized stresses carried by the phases that solidify after load is applied. The 

evolution of stresses carried by the hydration products after the application of load (at 

age of 1 d) as predicted by the solidification theory and the new model are shown 

together in Figure 14. The predictions considered a 0.40 w/c cement paste hydrating 

under isothermal conditions (25° C). 
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Figure 14 Comparison between the new model developed herein and the solidification 

theory regarding normalized (a) volumetric and (b) deviatoric stress carried by 

solidified phases (hydration products). The stresses are normalized by instantaneous 

total stress carried by the microstructure.  

 

 

The solidification theory predicts that the average stress carried by solidified or 

hydrated phases decreases with time, which results from the presumption that only 

solidified phases may transmit stress. The solidification theory implies that hydration 

products are non-aging viscoelastic materials and aging arises in the bulk scale due to 

the increase in load bearing materials as a result of solidification and deposition of 

hydration products. As hydration progresses, each newly formed layer of the hydration 

products solidifies in a stress-free state and these layers are only subject to loads after 

they form. As a result of the predicted decrease in stress carried by solidified phases 

(including C-S-H) as hydration progresses, the solidification theory can account for the 

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Computational Model Solidification Theory

N
o
rm

a
liz

ie
d
 V

o
lu

m
e
tr

ic
 S

tr
e

s
s 

C
a
rr

ie
d

 b
y
 S

o
lid

if
ie

d
 P

h
a
s
e

s

Time after Load is Applied (d)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Computational Model Solidification Theory

N
o
rm

a
liz

e
d

 D
e

v
ia

to
ri
c
 S

tr
e

s
s
 C

a
rr

ie
d
 b

y
 S

o
lid

if
ie

d
 P

h
a
s
e
s
 

Time after Load is Applied (d)

(a) (b)



 

61 

 

early-age aging effect through reduced C-S-H creep as stress in that phase decreases. 

However, according to the model developed herein and as shown in Figure 13, the total 

stress carried by solidified phases increases with age. This increase occurs because the 

new model accounts for the fact that stress may be transmitted by both hydrated and 

unhydrated phases (hydrostatic stresses may be transmitted by cement grains at any age, 

while deviatoric stresses may only be transmitted once percolation of the solid skeleton 

has occurred). Since unhydrated phases are allowed to carry stress, their dissolution 

results in an increase in stress on hydration products. Thus, the solidification theory is 

only able to capture early-age aging effects while considering C-S-H viscoelasticity as a 

primary mechanism for early-age cement paste creep and relaxation because the ability 

of cement grains to transmit stress is neglected. 

4.3 Summary 

The apparent VE/VP behavior of hydrating cement paste due to dissolution of 

cement grains is a significant factor in the overall early-age creep and relaxation of the 

paste. The main reasons behind this are the stress transmission from dissolved load 

bearing phases to surrounding hydrated phases or cement grains, and the generation of 

apparent strain in the new components that form in deformed configurations (i.e., the 

newly formed phases have a deformation gradient but no stress). The comparison 

between the evolution of stresses within hydration products predicted by the new 

computational scheme and that predicted by the solidification theory indicates that 

specific assumption made about the extent to which unhydrated phases can transmit 

stress is key to interpreting VE/VP mechanisms of cement paste. If one stipulates that 
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unhydrated phases do not carry stress (as with the solidification theory), then increased 

formation of C-S-H can lead to aging of VE/VP properties of cement paste (e.g., 

reductions in creep or relaxation rates at later ages). However, as demonstrated by the 

new computational scheme and model presented herein, if one presumes that unhydrated 

phases may transmit stress once the solid phases form a percolated network, then their 

dissolution results in an increase in stress on hydration products as hydration progresses. 

This increase in stress in the hydration products prevents the increased formation of C-S-

H from acting as a source of aging of VE/VP properties of cement paste. Conversely, the 

slowing of the hydration process with time may contribute strongly to the aging of creep 

and relaxation of cement paste.    
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5. EVOLUTION OF APPARENT VE/VP POISSON’S RATIO CAUSED BY BOTH 

INTRINSIC C-S-H CREEP AND CEMENT GRAIN DISSOLUTION* 

 

To fully characterize or predict the three-dimensional stress, strain, and 

displacement fields in an isotropic material, at least two independent elastic moduli are 

required. The Poisson’s ratio and Young’s modulus are the most common moduli pair 

used in engineering to model isotropic elastic materials. After the thorough discussions 

on the apparent VE/VP Young’s modulus of cement paste in Chapter 3 and Chapter 4, 

this chapter focuses on the analysis of the time-evolving apparent VE/VP Poisson’s ratio 

due to both the mechanisms of C-S-H creep/relaxation and cement grain dissolution. 

5.1 Definition of VE/VP Poisson’s ratio  

In an axially-loaded material, the Poisson’s ratio [72, 73] is defined as the negative 

of the dimensionless ratio of the strain perpendicular to the loading direction to the strain 

in the axially loaded direction. When there are changes in the cement paste 

microstructure during the hydration process, leaving the whole composite with a 

permanent deformation after boundary conditions are removed. We would like to refer to 

this irreversible deformation as a viscoplastic process, and thus the term “viscoplastic” is 

used in this research project along with “viscoelastic.” Although a substantial number of 

theoretical analyses have been carried out on VE/VP behavior in terms of time-

                                                 

* Reprinted with permission from “Computing the time evolution of the apparent viscoelastic/viscoplastic 

Poisson’s ratio of hydrating cement paste” by X. Li, Z.C. Grasley, E.J. Garboczi and J.W. Bullard, 2015. 

Cement and concrete composites, 56, 121-133. 2017 by Elsevier. 
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dependent moduli, the rigorous definition of VE Poisson’s ratio has received limited 

treatment [18, 21].  

Based on the original definition of Poisson’s ratio [72, 73], for an isotropic material 

 𝜐 = −
𝜀⊥

𝜀∥
, (34) 

where   is Poisson’s ratio, 𝜀⊥ is the strain tensor component perpendicular to the loaded 

direction and 𝜀∥ denotes the strain tensor component in the axially loaded direction. eq. 

(34) describes a constitutive property for isotropic elastic materials exhibiting small 

deformation gradients. However, if one utilizes eq. (34) to describe the VE/VP Poisson’s 

ratio of a given material, significant errors due to stress/strain history might be 

introduced [8, 18, 21, 74] since ( )t  (where t  is time) in eq. (34) is dependent on the 

stress or strain history. That is, eq. (34) does not express a true constitutive property of a 

VE/VP material. Recently, an expression for the linear viscoelastic VE/VP Poisson’s 

ratio was derived based on the superposition principle by Lakes and Wineman [75], with 

the (isotropic mechanical properties) VE/VP Poisson’s ratio in the Laplace transform 

domain expressed as 

 𝜐̅(𝑠) = −
𝜀̅⊥(𝑠)

𝑠𝜀̅∥(𝑠)
  (35) 

where   is the VE/VP Poisson’s ratio, the overhead lines denote the Laplace transforms 

of the representative variables, and the variable s  is the Laplace transformed time 

variable. eq. (35) can also be rewritten in time domain as [76] 

  
0

( ')
'

( ')
'

t

t t dt
t

t
t


 


 

 .  (36) 
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This formulation of VE/VP Poisson’s ratio can be treated as a valid material property, 

which may be related to other linear VE/VP moduli utilizing the correspondence 

principle [77].  

A review of the literature indicates that the VE/VP Poisson’s ratio of concrete may 

be an increasing function of time [78], a decreasing function of time [19], or a constant 

independent of time [79]. Grasley and Lange found that the VE/VP Poisson’s ratio of 

cement pastes was slightly increasing for some materials and almost constant for others 

[20]. A VE/VP Poisson’s ratio that increases as a function of time indicates that the 

cement paste relaxes shear stresses faster than dilatational stresses, while a VE/VP 

Poisson’s ratio that decreases with time indicates that the material relaxes dilatational 

stresses faster than shear stresses, and a constant with time VE/VP Poisson’s ratio 

indicates equivalent relaxation rates for shear and dilatational stresses.  

There are likely two main reasons for the discrepancies in the literature regarding 

the character of the VE/VP Poisson’s ratio of concrete. First, experimentalists have 

frequently utilized improper definitions of VE/VP Poisson’s ratio in their data analysis, 

such as the negative ratio of lateral and axial creep strains in the time domain as in eq. 

(34). A second likely source of discrepancies is the lack of reliable, accurate 

experimental data. This promotes the use of the computational scheme to predict the 

time-evolving value of apparent VE/VP Poisson’s ratio. 

5.2 Simulation results & discussions 

A sequence of virtual experiments have been performed to probe the contribution of 

each VE/VP mechanism (intrinsic C-S-H viscoelasticity or cement grain dissolution) to 
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the overall early-age (i.e. approximately one day to one month) evolution of the VE/VP 

Poisson’s ratio of cement paste. By applying purely controlled periodic volumetric strain 

and purely controlled periodic shear strain on the boundary of a series of microstructures 

with 3100  voxels (the volume of each cube-shaped voxel is 1 µm3) at different ages, the 

evolution of apparent cement paste VE/VP bulk modulus and VE/VP shear modulus 

were simulated by the model, leading to the calculation of the apparent VE/VP Young’s 

modulus and the apparent VE/VP Poisson’s ratio using Eq. (25). All microstructures 

utilized in the virtual experiments were generated by THAMES on simulated cement 

pastes of the ASTM CCRL Portland cement 168 under an isothermal, sealed condition 

of 25 ℃  (298 K) [60], and the elastic moduli of each individual phase inside the 

composite were taken from previous studies [22]. The pore water in the composite was 

assumed to be fully compliant and thus did not become pressurized. In reality, the water 

in the composite would become locally pressurized immediately upon the imposition of 

stress to the composite boundaries, but this water pressure would be rapidly relaxed as 

the fluid would flow to nearby air bubbles present from self-desiccation. As the flow 

distance is so short (never more than a few micrometers), this fluid pressure would be 

relaxed orders of magnitude faster than the effects of interest in this study.  

Cement grain dissolution occurring during the hydration process has a significant 

influence on the overall VE/VP behavior of cement paste [23]. Figure 15 shows, for 

several different w/c, the simulated time-dependent  volume fraction (starting after 1 d of 

age) vs. time of all the hydration products and the main clinker phases, C3S, and C2S, 

which are indicative of the degree of hydration. One can see that lower w/c materials 
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exhibit a higher hydration rate at early ages but a low hydration rate at later ages than do 

higher w/c materials. For demonstration purpose, only partial of the data points would be 

shown in the graphs. The lack of smoothness of some plotted lines is due to numerical 

oscillations in the data points (not plotted) associated with the coarseness of the time 

steps. 

Figure 15 Simulated volume fractions of the phases that form after 1 d inside cement 

paste, along with the evolution of C3S and C2S volume fractions. The lines are added as 

an aid to the eye. 
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5.2.1 Poisson’s Ratio evolution due to cement grain dissolution 

Besides Young’s modulus and Poisson’s ratio, bulk modulus and shear modulus 

are the other two most commonly employed mechanical properties in characterizing the 

mechanical behavior of an isotropic material. Apparent VE/VP bulk modulus and 

apparent VE/VP shear modulus are closely related to the dilatational stress (the stress 

tending to change the volume of the body) and the deviatoric stress (the stress tending to 

distort the stressed body). Relative variations in these two moduli significantly influence 

the evolution of apparent VE/VP Poisson’s ratio, as can been seen from eq. (25). Figure 

16 gives the predicted results of apparent VE/VP bulk modulus and apparent VE/VP 

shear modulus for different values of w/c from 0.35 to 0.50 at different loading ages (i.e., 

the age at which the periodic strain boundary conditions are applied) of 1 d and 7 d, as 

well as the normalized bulk and shear moduli, which are normalized by the 

instantaneous elastic moduli at loading ages of 1 d and 7 d. Cement paste 

microstructures with purely elastic phases (with elastic properties taken from [22]) were 

utilized, so that in this set of simulations, the VE/VP relaxation of cement paste occurred 

strictly due to dissolution of load bearing cement grains. 

As shown in Figure 16, for both the apparent VE/VP bulk modulus and apparent 

VE/VP shear modulus, older cement pastes exhibit lower relaxation rates for all w/c 

considered because of the decreasing hydration rate (and thus cement grain dissolution 
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rate) with age. Furthermore, according to the simulation results in Figure 16(e) and 

Figure 16(f), the apparent VE/VP bulk modulus relaxes more quickly than the apparent 

VE/VP shear modulus. As the apparent VE/VP bulk modulus decreases faster with 

respect to the apparent VE/VP shear modulus, cement paste composites become more 

capable of sustaining volume-deforming strain fields relative to shape-deforming strain 

fields; in other words, under a controlled strain in the load direction, less deformation in 

the lateral direction (to prohibit the shape change in bulk composite) would exist inside 

cement paste at greater lengths of time under load. Therefore, from the simulation results 

of apparent VE/VP bulk and shear moduli in Figure 16, one should expect a decreasing 

apparent VE/VP Poisson’s ratio with time for all different w/c considered, as shown in 

Figure 17. However, comparing Figure 16(e) and Figure 16(f), the rate of VE/VP bulk 

modulus relaxation and the apparent VE/VP shear modulus relaxation are much closer at 

later ages, particularly for lower w/c cement paste. As a result, the apparent VE/VP 

Poisson’s ratio would be expected to be much less time-dependent at later ages than it 

does at earlier ages, as seen in Figure 17. 
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Figure 16 Apparent VE/VP bulk modulus for different w/c at loading age of (a) 1 d and 

(b) 7 d, apparent VE/VP shear modulus at loading age of (c) 1 d and (d) 7 d, and 

normalized apparent VE/VP relaxation at loading age of (e) 1 d and (f) 7 d, where the 

apparent VE/VP bulk modulus K(t) and shear modulus G(t) were normalized by the 

instantaneous elastic bulk and shear moduli. VE/VP behavior was considered to occur 

only due to cement grain dissolution. The lines are added as an aid to the eye, and the y-

axis scaling and limits vary among the figures to better demonstrate the trends of the 

evolution of the changing moduli.  
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Figure 17 Apparent VE/VP Poisson’s ratio for different w/c at loading age of (a) 1 d 

and (b) 7 d and normalized apparent VE/VP relaxation at loading age of (c) 1 d and (d) 

7 d, where the apparent VE/VP Poisson’s ratio  was normalized by the instantaneous 

elastic Poisson’s ratio. VE/VP behavior was considered to occur only due to cement 

grain dissolution.  

 

 

Figure 17 shows the predicted results for the apparent VE/VP Poisson’s ratio for 

different values of w/c as well as the normalized apparent VE/VP Poisson’s ratio, which 

are normalized by the instantaneous elastic Poisson’s ratio at loading ages of 1 d and 7 d. 
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The data used to generate Figure 17 originated from the data in Figure 16. From Figure 

17, four major observations may be made: 

1) Cement paste with higher stiffness (e.g., lower w/c and later loading age) 

exhibits a higher predicted value of the initial elastic Poisson’s ratio. Lower 

w/c pastes have higher initial elastic Poisson’s ratio because the unhydrated 

cement clinker (which has a higher Poisson’s ratio than the hydrates) carries a 

higher fraction of the stress in these materials. Furthermore, porosity decreases 

with reductions in w/c and increasing age (or degree of hydration). The 

dependence of elastic Poisson’s ratio of porous materials on the pore volume 

fraction is not universal, but is rather dependent on pore shapes, pore 

connectivity, and the Poisson’s ratio of the percolated solid between the pores 

[80]. Finite element simulations on digitized microstructures have indicated 

that, in agreement with the results herein, for porous materials with an average 

elastic Poisson’s ratio of the solid skeleton exceeding about 0.2, elastic 

Poisson’s ratio increases with decreasing porosity [80]. 

2) The apparent VE/VP Poisson’s ratio decreases with time under load for all w/c 

considered. As cement paste hydrates while under load, stresses are gradually 

transferred from unhydrated phases (such as C3S) to hydrated products (such 

as C-S-H). Since the unhydrated phases normally have a higher Poisson’s ratio 

value than hydrated solids [22], the overall apparent VE/VP Poisson’s ratio of 

the bulk cement paste composite decreases with time under load.  
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3) At both loading ages, 1 d and 7 d, higher w/c results in larger and faster overall 

relaxation in the apparent VE/VP Poisson’s ratio despite its lower hydration 

rate at early loading age. When load bearing phases inside the cement paste 

microstructure dissolve, the stresses carried by these phases are distributed into 

surrounding load bearing phases. For lower w/c, at any given degree of 

hydration, there is a greater content of cement grains, relative to the entire 

solid backbone consisting of unhydrated cement plus hydration products, 

available to carry this transferred load than at higher w/c. Thus, on dissolution 

of a given grain, for low w/c, a larger fraction of the transferred stress ends up 

on other cement grains in the solid backbone, which possess a higher Poisson’s 

ratio value than the hydrates, yielding less overall relaxation in apparent 

VE/VP Poisson’s ratio. Figure 18 shows the comparison of the ratio of 

summed stresses carried by C-S-H phases to that carried by C3S and C2S 

phases for w/c of 0.35 and 0.50 at loading age of 1 d. Figure 18 demonstrates 

the stress transfer rate from cement grains (whose main component is C3S and 

C2S) to hydration products (with the main hydration product of C-S-H) is 

slower for lower w/c, since the slope for β is smaller, thus leading to a lower 

apparent VE/VP Poisson’s ratio relaxation rate. 

4) The relaxation rate of apparent VE/VP Poisson’s ratio decreases with age as a 

result of the decreasing dissolution rate of cement grains, which is associated 

with the decreasing hydration rate with age. 
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Figure 18 Ratio, β, of volumetric stress and deviatoric stress carried by C-S-H phases to 

the stress carried by C3S and C2S phases inside the cement paste microstructure for a 

loading age of 1 d for w/c of 0.35 and 0.50. VE/VP behavior was considered to occur 

only due to cement grain dissolution. The ratio β is mathematically defined by  β = 

, where ∑ indicates a sum over all voxels with a given 

phases and  is either a scalar measure of dilatational stress or a scalar measure of 

shear stress magnitude. The lines are added as an aid to the eye. 
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H,      11 1

0

1

t

t E t s s ds   , C-S-H was assigned a time-dependent VE Young’s 

modulus prescribed as ( ) 11.2 GPa 11.2exp( 0.2 ) GPaE t t   , where t denotes the 

loading time of each specific C-S-H voxel, while the Poisson’s ratio of C-S-H was 

assumed to be independent of time and equal to 0.25. The relaxation function chosen for 

C-S-H is based on the instantaneous elastic Young’s modulus reported in Haecker et al. 

[22], E(0) = 22.4 GPa,  with an assumed 50 % ultimate relaxation.  There are little data 

available in the literature to guide the modeling of C-S-H relaxation.  However, the 

purpose of this research project is to investigate the effect of various mechanisms on the 

behavior of the macroscopic VE/VP Poisson’s ratio – as the observed trends are largely 

independent of the specific model utilized for C-S-H, the results are considered 

representative regardless of the actual accuracy of the C-S-H material model. Using 

these properties, Figure 19 and Figure 20 show the apparent VE/VP bulk modulus, shear 

modulus and Poisson’s ratio for different cement pastes with w/c ranging from 0.35 to 

0.50 at loading ages of 1 d and 7 d. The relaxation was due strictly to the intrinsic 

VE/VP relaxation of C-S-H with unchanging microstructure (i.e., no hydration taking 

place) with respect to time, and all the phases other than C-S-H in the microstructure 

were assigned to be elastic with properties taken from [22].  
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Figure 19 VE/VP bulk modulus for different w/c at loading age of (a) 1 d and (b) 7 d, 

VE/VP shear modulus at loading age of (c) 1 d and (d) 7 d, and normalized apparent 

VE/VP relaxation at loading age of (e) 1 d and (f) 7 d, where the apparent VE/VP bulk 

modulus K(t) and shear modulus G(t) were normalized by the instantaneous elastic bulk 

and shear moduli. VE/VP behavior was considered to occur due to intrinsic C-S-H 

relaxation while ignoring dissolution effects. The VE/VP Young’s modulus of C-S-H was 

assumed to be , and the Poisson’s ratio of C-S-H 

was assumed to have a constant value of 0.25. The elastic properties of all other phases 

were taken from [22]. 
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Figure 20 VE/VP Poisson’s ratio for different w/c at loading age of (a) 1 d and (b) 7 d 

and normalized VE/VP relaxation at loading age of (c) 1 d and (d) 7 d, where VE/VP 

Poisson’s ratio  was normalized by instantaneous elastic Poisson’s ratio. VE/VP 

behavior was considered to occur due to intrinsic C-S-H relaxation while ignoring 

dissolution effects. The VE/VP Young’s modulus of C-S-H was assumed to be 

, and the Poisson’s ratio of C-S-H was assumed to 

have a constant value of 0.25. The elastic properties of all other phases were taken from 

[22].  
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From  Figure 19, compared with the apparent VE/VP relaxation caused by cement 

grain dissolution, the VE/VP bulk and shear moduli relax at much closer rates for 

different w/c, thus leads to Figure 20 that,  the values of VE/VP Poisson’s ratio induced 

by intrinsic C-S-H viscoelasticity (whose changes are less than 2.5 %) change very little 

with time. In the simulations presented in Figure 20, where the VE/VP Poisson’s ratio of 

C-S-H was prescribed to be constant in time, the VE/VP bulk and shear moduli of the C-

S-H would necessarily have the same rate of relaxation. However, for most VE/VP 

solids (e.g., polymers), the shear relaxation is much faster than the dilatational relaxation 

[81]. For such materials it is common to treat the dilatational behavior as purely elastic 

and treat the shear behavior as VE/VP. Figure 21 and Figure 22 shows the apparent 

VE/VP bulk modulus, shear modulus and  Poisson’s ratio for cement pastes with w/c 

ranging from 0.35 to 0.50 at loading ages of 1 d and 7 d, where the relaxation was due 

strictly to the intrinsic VE/VP relaxation of C-S-H, but with the VE/VP bulk modulus of 

C-S-H prescribed to be a time-independent value of  = K(0) when E(0) = 22.4 

GPa and  = 0.25 [14]. The VE/VP shear modulus of C-S-H is prescribed to be 

, allowing 50% of the instantaneous elastic Shear 

modulus to be relaxed as . The value of G(0) = 9.0 GPa is also taken from [14], 

and is derived from E(0) = 22.4 GPa and  = 0.25. All other phases in the microstructure 

were prescribed to be elastic with properties taken from [22]. 

 

14.9 GPa

( ) 4.5 GPa 4.5exp( 0.2 ) GPaG t t  

t 
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Figure 21 VE/VP bulk modulus for different w/c at loading age of (a) 1 d and (b) 7 d, 

VE/VP shear modulus at loading age of (c) 1 d and (d) 7 d, and normalized apparent 

VE/VP relaxation at loading age of (e) 1 d and (f) 7 d, where the apparent VE/VP bulk 

modulus K(t) and shear modulus G(t) were normalized by the instantaneous elastic bulk 

and shear moduli. VE/VP behavior was considered to occur due to intrinsic C-S-H 

relaxation while ignoring dissolution effects. The VE/VP bulk modulus of C-S-H was 

prescribed to be a constant value of 14.9 GPa, and the VE/VP shear modulus of C-S-H 

was prescribed to be , where t is in days. The elastic 

properties of all other phases were taken from [22].  
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Figure 22 VE/VP Poisson’s ratio for different w/c at loading age of (a) 1 d and (b) 7 d 

and normalized VE/VP Poisson’s ratio at loading age of (c) 1 d and (d) 7 d, where 

normalizion was by instantaneous elastic Poisson’s ratio. VE/VP behavior was 

considered to occur due to intrinsic C-S-H relaxation while ignoring the dissolution of 

cement grains. The VE/VP bulk modulus of C-S-H was prescribed to be a constant value 

of 14.9 GPa, and the VE/VP shear modulus of C-S-H was prescribed to be 

, where t is in days. The elastic properties of all other 

phases were taken from [22].  
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When assigning different mechanical properties to C-S-H phases, the relaxation rate 

of the composite VE/VP bulk modulus relative to the composite VE/VP shear modulus 

changes with time, which then affects the evolution of the composite VE/VP Poisson’s 

ratio with time. In this case, where the VE/VP bulk modulus of C-S-H is kept constant 

while VE/VP shear modulus decreases with time, the overall VE/VP bulk moduli shows 

a slower relaxation than VE/VP shear moduli, leading to a time-dependent increase in 

VE/VP Poisson’s ratio. Later loading age leads to a higher overall increase of VE/VP 

Poisson’s ratio as a result of a faster decay in the composite shear modulus relative to the 

composite bulk modulus; this is because of the higher stress fraction carried by relaxing 

C-S-H phases at later ages. The differences of the evolution of VE/VP Poisson’s ratio 

between Figure 20  and Figure 22 show that, depending on the different mechanical 

properties of the VE/VP phases inside the composite material, the overall VE/VP 

Poisson’s ratio is capable of exhibiting increasing, decreasing or even constant time-

dependency. 

5.2.3 Poisson’s Ratio evolution due to simultaneous intrinsic C-S-H relaxation and 

cement grain dissolution 

Figure 23 and Figure 24 compares the simulation results of the apparent VE/VP 

bulk modulus, shear modulus and Poisson’s ratio time evolution occurring due to both 

intrinsic C-S-H relaxation and dissolution effects versus the apparent VE/VP evolution 

occurring strictly due to cement grain dissolution. Both simulations are for a cement 

paste with w/c of 0.40 and a loading age of 1 d. When predicting the apparent VE/VP 

Poisson’s ratio caused by both mechanisms, two different sets of virtual experiments 
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were performed by assigning different mechanical properties to the C-S-H phases: in the 

first virtual experiment, the VE/VP Young’s modulus of C-S-H was assumed to be 

( ) 11.2 GPa 11.2exp( 0.2 ) GPaE t t   , and the Poisson’s ratio of C-S-H was set to 0.25, 

independent of time; in the other virtual experiment, the VE/VP bulk modulus of C-S-H 

was assumed to have a time-independent value (fixed K) of 14.9 GPa  and, for 

comparison purposes, the VE/VP shear modulus of C-S-H has the same value of G(0) 

but was assigned with a larger relaxation value, 

G( ) 1.125 GPa 7.875exp( 0.2 ) GPat t   , than the one utilized in Figure 21 and Figure 

22 so as to yield a more observable difference from the first virtual experiment shown in 

Figure 19 and Figure 20. In both cases, each newly created voxel of C-S-H starts its own 

viscoelastic properties with the substituting time 0t  ; that is, at the time when a voxel 

forms, it is stipulated that ( 0) or ( 0)E t G t  for that voxel, with relaxation of that 

voxel proceeding at subsequent times. All other phases in the microstructure were 

assigned to be elastic with properties taken from [22]. When generating the apparent 

VE/VP Poisson’s ratio due only to cement grain dissolution, cement paste 

microstructures were utilized with purely elastic phases, also with elastic properties 

taken from [22]. 

One can see from Figure 23 and Figure 24 that the dissolution of cement grains 

dominates the evolution of the value of the apparent VE/VP bulk modulus, shear 

modulus, and Poisson’s ratio of cement paste at early ages, up to about 5 d, leading to 

decreasing VE/VP Poisson’s ratio values. This result lies in the fact that the inherent 

strain redistribution rate associated with the hydration rate significantly affects the 
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apparent VE/VP Poisson’s ratio; the rapid hydration rate at early age of cement paste 

leads to high relaxation rate of apparent VE/VP Poisson’s ratio. As cement paste ages, 

the effect of cement grain dissolution on the overall apparent VE/VP Poisson’s ratio 

 

 

Figure 23 Comparison of apparent VE/VP (a) bulk and (b) shear moduli where VE/VP 

effects due to both C-S-H viscoelasticity and cement grain dissolution are considered 

and where dissolution only is considered for a cement paste with w/c of 0.40 at loading 

age of 1 d. For the “C-S-H and Dissolution” simulation, the VE/VP Young’s modulus of 

C-S-H was assumed to be , and the Poisson’s ratio 

of C-S-H was assumed to be a constant value of 0.25. For the simulation with fixed K, 

the VE/VP shear modulus of C-S-H was assumed to be 

 and the bulk modulus of C-S-H was assumed to have 

a constant value of 14.9 GPa. For the “Dissolution” imulation C-S-H was assumed to 

be elastic. The elastic properties of C-S-H and all other phases were taken from [22]. 

 

 

relaxation decreases with decreasing hydration rate, while on the other hand, the 

apparent VE/VP Poisson’s ratio evolution caused by C-S-H relaxation increases with age 

due to the increasing amount of C-S-H. One thing to notice is that, depending on the 
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different mechanical properties of C-S-H (as well as different w/c and loading ages of 

cement paste), later-age cement paste, the behavior of which is dominated by intrinsic C-

S-H relaxation, can exhibit increasing (short dashed line in Figure 24), decreasing (long 

dashed line in Figure 24) or constant VE/VP Poisson’s ratio. It is clear  

 

 

Figure 24 Comparison of apparent VE/VP Poisson’s ratio where VE/VP effects due to 

both C-S-H viscoelasticity and cement grain dissolution are considered and where 

dissolution only is considered for a cement paste with w/c of 0.40 at loading age of 1 d. 

For the “C-S-H and Dissolution” simulation, the VE/VP Young’s modulus of C-S-H was 

assumed to be , and the Poisson’s ratio of C-S-H 

was assumed to be a constant value of 0.25. For the simulation with fixed K, the VE/VP 

shear modulus of C-S-H was assumed to be  and the 

bulk modulus of C-S-H was assumed to have a constant value of 14.9 GPa. For the 

“Dissolution” simulation C-S-H was assumed to be elastic. The elastic properties of C-

S-H and all other phases were taken from [22].  
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that dissolution effects govern the apparent VE/VP Poisson’s ratio evolution at early 

ages, leading to decreasing VE/VP Poisson’s ratio, while intrinsic C-S-H viscoelasticity 

determines the apparent VE/VP Poisson’s ratio evolution at later ages. At a later age of 7 

d, one would expect less influence from the cement grain dissolution, but more from 

intrinsic C-S-H aging, and thus a more likely increasing trend of the evolution of 

Poisson’s ratio under fixed bulk modulus. Thus, the simulation results indicate that there 

may not be a consistent trend (e.g., increasing, decreasing, or constant) with respect to 

the VE/VP Poisson’s ratio of cement paste. Since the properties of C-S-H in the virtual 

experiments are assumed values, further experimental inquiry is required to accurately 

characterize the three-dimensional relaxation nature of C-S-H, which can be input into 

the prediction model to generate more reliable results. Furthermore, we emphasize that 

poromechanical effects have been ignored in these simulations to elucidate the relative 

significance of relaxation due to dissolution/re-precipitation compared to intrinsic 

VE/VP deformation of C-S-H. However, for cement paste saturated with a relative low 

compliance fluid (e.g., water) , the poromechanical effect would tend to cause a time-

dependent decrease in the VE/VP Poisson’s ratio because fluid flow in the pore network 

results in a time-dependent reduction in the dilatational stiffness without affecting the 

deviatoric stiffness. Time-dependent, stress-induced dissolution of hydrates in 

cementitious materials might also induce apparent viscoelastic effects [82], but at this 

time it is unclear what influence such dissolution might have on the results presented. 

From literatures, the differences between Poisson’s ratio obtained from the 

traditional time domain calculation (with the most common form as shown in Eq. (34)) 
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and from the inverse of Laplace transform in creep and relaxation is minor unless under 

large relaxation strength [75]. Figure 25 shows the relative differences between the two  

 

 

Figure 25 The error of calculated VE/VP Poisson’s ratio obtained with the traditional 

calculation in time domain relative to the accurate value of VE/VP Poisson’s ratio 

obtained from the inverse of the Laplace transform. The apparent VE/VP effects occur 

under the same situations as in Figure 23 and Figure 24, and thus utilizing the same raw 

data (time evolution of bulk and shear moduli) with Figure 23 and Figure 24. 

 

 

calculation methods utilizing the same raw simulation data as in Figure 23 and Figure 24. 
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while the traditional Poisson’s ratio calculation utilize the apparent VE/VP bulk and 

shear moduli directly in time domain. From Figure 25, the error of classical Poisson’s 

ratio calculation increases with time, and can reach up to over 15%. Thus, the 

differences between the calculated results from the two methods for cementitious 

materials are substantial, and correct definition and calculation of VE/VP Poisson’s ratio 

is necessary. 

5.3 Summary 

The time-dependent changes in the apparent VE/VP Poisson’s ratio of cement paste 

are likely controlled by dissolution of cement grains at early ages due to the high early-

age hydration rate. The dissolution of cement grains result in a predicted decreasing 

VE/VP Poisson’s ratio at early ages. Simulation results also indicate that with the 

increasing volume fraction of C-S-H inside cement paste as hydration progresses, the 

influence of intrinsic C-S-H relaxation on apparent VE/VP Poisson’s ratio of cement 

paste increases. Depending on the mechanical properties of C-S-H as well as w/c and the 

loading age of cement paste, later-age cement paste is capable of exhibiting increasing, 

decreasing, or constant VE/VP Poisson’s ratio evolution with time.  
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6. EARLY AGE DESICCATION SHRINKAGE CAUSED BY BOTH INTRINSIC C-

S-H CREEP AND CEMENT GRAIN DISSOLUTION* 

 

In order to illustrate the robustness and breadth of applicability of the 

computationally implemented modeling approach, the early age desiccation shrinkage 

occurring in cement paste during drying process is analyzed in this chapter. Under the 

effect of the two mechanisms (C-S-H creep/relaxation and cement grain dissolution), the 

desiccation shrinkage of cement paste shows irreversibility at early ages. [83] 

6.1 Background of desiccation shrinkage 

Desiccation shrinkage, defined as the time-dependent deformation due to loss of 

pore water, is a characteristic behavior of cementitious materials. Such shrinkage can be 

induced by external drying (e.g., through moisture diffusion and evaporation) or internal 

drying (e.g., when capillary pore water is consumed during hydration or other chemical 

reactions) (see e.g., [1, 10, 84]). The origin of desiccation shrinkage at high relative 

humidity (RH) has been primarily attributed to a reduction in the pore fluid pressure that 

results in corresponding compression of the surrounding solid microstructure [85-89]. 

The mechanical response to this compression is experimentally measured as desiccation 

shrinkage. An important observation is that shrinkage continues even under constant RH 

(and thus constant pore fluid pressure), resulting in an irreversible component of 

deformation and a creep-like behavior of cement paste desiccation shrinkage [90].  

                                                 

* Reprinted with permission from “Irreversible desiccation shrinkage of cement paste caused by cement 

grain dissolution and hydrate precipitation” by X. Li, Z.C. Grasley, E.J. Garboczi and J.W. Bullard, 2016. 

Materials and structures, 50, 104. 2017 by Springer. 
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Despite devoted efforts to investigate the mechanisms behind shrinkage, no unified 

theory has been derived to explain the creep and irreversible components of desiccation 

shrinkage. It is generally believed that microstructural and chemical changes are the 

origin of these irreversible deformations, and many theories regarding these changes 

have been proposed, such as the formation of bonds between pressed surfaces [85], 

further formation of hydration products [91], creation of new interlayer space [89] and 

dissolution of adsorbent molecules [92]. The major components that are generally 

attributed as responsible for the irreversible strains are the amorphous calcium silicate 

hydrate (C-S-H) [1, 93, 94] and distributed pores inside cement paste [93, 95]. A change 

in the internal RH can lead to an alteration in the internal structure of the C-S-H gel, 

manifesting as a drying-accelerated “aging” process of the C-S-H, potentially leading to 

an irreversible component of deformation. Besides the mechanisms that are directly 

related to these fundamental microstructure changes, internal microcracking in cement 

paste is another potential mechanism of irreversible desiccation shrinkage [1]. 

According to the simulation results from this newly developed computational 

scheme, when the microstructure is under external loading, dissolution of solid load-

bearing constituents is a significant mechanism leading to irreversible, time-dependent 

deformation. As an analogous state of stress inside cementitious composites may be 

incurred through internal pore fluid pressure changes, it is hypothesized that a portion of 

early-age, irreversible desiccation shrinkage is associated with the dissolution of cement 

grains during the hydration process. Therefore, the desiccation shrinkage behavior of 
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cement paste is analyzed utilizing this program to get new insights into the mechanisms 

behind irreversible desiccation shrinkage.  

6.2 Shrinkage prediction implementation 

The current version of the computational scheme has an important limitation in that 

the microstructures in the model can only be subjected to strain-controlled periodic 

boundary conditions. To predict the time-evolving desiccation shrinkage strain of the 

macroscopic cement paste composite, which is normally measured under zero external 

stress (e.g., traction free boundaries) and negative internal pore fluid pressure, 

Boltzmann’s superposition principle [55, 56] was used. Figure 26 shows the flow chart 

for calculating the overall shrinkage strain of cement paste utilizing the computational 

program and the superposition principle. 

 

 

Figure 26 Flow chart for shrinkage strain calculation under strain-controlled boundary 

conditions. 
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To simulate experiments of desiccation shrinkage measurement and to predict the 

evolution of the magnitude of shrinkage strain with time, four major steps were 

conducted in the virtual, computational experiment. First, time was discretized into n  

different time steps, with each time step representing one particular age. For the 

preliminary simulations, a stepwise negative pore pressure 0( )H t p  (where ( )H t  is the 

Heaviside function) and zero external periodic boundary strain were applied on a list of 

microstructures that were generated by THAMES for all drying ages 1t , 2t , 3t …… nt  

(which means that pore pressure was applied on cement paste starting at time 1t , 2t ,

3t …… nt  and each time it  is the age represented by time step i ). The negative pore 

pressure was applied to the fluid phases of the simulated microstructures for the purpose 

of simulating the drying process, and the evolution of the stress fields of the whole 

composite as a result of the assigned pore fluid pressure were predicted by the 

computational program.  

The spatially averaged hydrostatic stress of the composite as a function of time for 

different drying ages was calculated from the simulation results. The hydrostatic stress 

of the composite per unit uniform pore pressure was determined as 

 0

0( ) ( ) /
m m

punit

t i t it t p  ,  (37) 

where ( )
m

unit

t it  is the value of the hydrostatic stress at time it  per unit pore pressure 

when dried at age mt , 0 ( )
m

p

t it  is the hydrostatic stress at time it  under pore pressure 0p  

when dried at age mt , 1,2,3...m n  and 1,2,3...i n . The resultant hydrostatic stress 
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history of the composite under any given internal pore pressure history, ( )p t , may be 

determined according to  

 1( ) { ( )[ ( ) ( )]}
k

i
unit

i t i k k

k m

t t p t p t  



  ,  (38) 

where ( )it  is the hydrostatic stress of the composite at time it  under the given pore 

pressure history. 

The desiccation shrinkage strain was calculated utilizing the hydrostatic stress 

history of the composite from eq. (38) and the evolving VE/VP properties of the 

composite simulated using the computationally implemented model as described in Ref. 

[23, 67]. In order to perform the shrinkage calculation, it was necessary to apply a virtual 

boundary hydrostatic stress history of ( )it  to maintain an overall spatially averaged 

zero stress state (corresponding to “free shrinkage”), as shown in Figure 26. Then the 

strain history that must necessarily be applied at each time step to achieve ( )it  was 

calculated according to the superposition principle via  

 1

1

( )
if 1,  ( ) ;                                     

3 ( )

( ) [ ( ) ( )]

if 1,  ( ) ,         
3 ( )

i
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i

i
i

t i

i

i k t i
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i

t i

t
i t

K t

t t K t

i t
K t




 








 

 

 


  (39) 

where ( )it  is the additional linear strain to be applied on the composite at time it  to 

achieve the desired boundary stress history, and ( )
kt iK t  is the apparent VE/VP bulk 

modulus (i.e., computed from the model in Ref [23, 67])of the composite at time it  when 



 

93 

 

loaded at age kt . The resultant linear shrinkage strain, ( )shrinkage it , of the composite is 

calculated as  

 
1

( ) ( )
i

shrinkage i k

k

t t 


 ,  (40) 

In this way, the predicted time-evolution of the shrinkage strain is due to the 

concomitant elastic deformation of the solid microstructure with changes in pore fluid 

pressure as well as the dissolution of cement grains and subsequent stress redistributions 

in the microstructure. Although eq. (37) through eq. (40) were intended for calculating 

the time-evolved shrinkage strain of cement paste during the drying process, if a 

specimen is exposed to re-wetting and the internal RH of the simulated cement paste 

increases as a function of time, then the time-dependent swelling strain of cement paste 

may be predicted following the same procedures, except that the final results obtained 

would have an opposite sign, denoting negative shrinkage (i.e., expansion). The ability 

to simulate re-wetting allows direct evaluation of reversibility and irreversibility of the 

simulated desiccation shrinkage. 

6.3 Simulation results & discussions 

Microstructures of hydrating cement composites at different ages (from 1 d to 56 d) 

were examined in this research project to predict the time-dependent shrinkage of 

cement pastes. Unless stated otherwise, all the phases inside cement pastes were 

approximated to be linearly elastic with elastic properties taken from [22]. Using the 

power of the model to examine only one deformation mechanism at a time, the 
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irreversible shrinkage occurs strictly due to the time-dependent dissolution of load-

bearing cement grains. 

6.3.1 Different ages of drying 

Once the desiccation process starts inside cement paste, negative pore fluid pressure 

is induced in the pores of the cement paste composite. When the pore fluid pressure was 

simulated as a step function, the instantaneous application of pore pressure resulted in 

instantaneous reversible elastic shrinkage. All of the time-dependent increases in 

shrinkage strain after the instantaneous application of the pore pressure were irreversible 

and associated with cement grain dissolution. Figure 27 shows the predicted irreversible 

shrinkage strain normalized by the applied pore pressure for a 0.40 w/c cement paste at 

ages of 1 d and 4 d. From Figure 27, cement pastes continue to shrink under constant 

pore pressure, leading to substantial irreversible shrinkage due to cement grain 

dissolution. Meanwhile, under the constant pore fluid pressure, younger specimens 

exhibit greater irreversible shrinkage and faster shrinkage rate because of the higher 

hydration rate (and thus higher dissolution rate of cement grains) at early ages. Another 

reason leading to the faster shrinkage in younger specimens is that, when specimens are 

younger, more water is present inside cement paste, resulting in a greater overall 

contraction of the solid skeleton because the pore fluid pressure is exerted within a 

greater fraction of the composite volume. Additionally, the younger cement paste 

composite is less stiff than an older specimen, and thus is more compliant to external and 

internal forces, resulting in an overall larger deformation. In conclusion, from the 

simulation results, younger cement paste specimens are more likely to exhibit greater 
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irreversible shrinkage from cement grain dissolution than older cement pastes, which 

agrees with the experimental data presented in Ref. [23, 67].  

 

Figure 27 Irreversible shrinkage strain normalized by the applied pore fluid pressure in 

a 0.40 w/c cement paste when dried at different ages (1 d and 4 d). In this graph, 

irreversible shrinkage strain was considered to increase strictly due to the dissolution of 

load-bearing cement grains. 

 

 

6.3.2 Different w/c 

Figure 28 shows the predicted irreversible shrinkage strain divided by the step-

applied pore fluid pressure for cement pastes with different w/c from 0.35 to 0.50 with 

drying initiating at 1 d. At early ages, higher w/c leads to faster shrinkage rate and 

greater shrinkage magnitude than lower w/c due to its higher water content and lower 

stiffness. The shrinkage rate of cement pastes for all w/c decreases with age. 
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Figure 28 Irreversible shrinkage strain normalized by the applied pore fluid pressure 

for different w/c at a drying age of 1 d. The irreversible shrinkage strain was considered 

to increase strictly due to dissolution of load-bearing cement grains. 

 

 

6.3.3 Time-evolving RH 

In the previous simulations (i.e., Figure 27 and Figure 28), the pore fluid pressures 

were all assigned as step-functions, while in reality, the pore fluid pressure 

approximately changes with age as a function of the time-evolving internal RH through 

the combined Kelvin-Laplace equation 
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where p  is the pore fluid pore pressure, RH  is the current internal relative humidity, 

0
RH  is the reference configuration internal relative humidity3, R  is the universal gas 

constant, w
  is the molar volume of water, and T  is the temperature in Kelvin [96]. 

Here, the time-evolution of the effect of the dissolved species on the chemical potential 

of the pore fluid is neglected; a modified version of eq. (41) should be used if one wishes 

to simulate evolving chemistry of the pore solution during desiccation [97]. With the 

experimental data of the time-evolving RH, the pore fluid pressure inside the cement 

paste composite can be calculated and implemented into the computational scheme to 

simulate realistic shrinkage behavior of cement paste.  

Figure 29 shows the predicted results of the time-dependent shrinkage strain of 0.40 

w/c cement paste utilizing experimental data of time-evolving RH at the drying age of 1 

d under constant temperature of 273 K. The experimental internal RH data [98] were 

obtained by embedding a small sensor in a self-desiccating (sealed from external drying) 

mortar bar4. One thing to note is that, in reality, the rate of hydration reaction has a close 

relationship with the internal RH of cement paste. At low to intermediate RH, the 

                                                 

3 The initial RH (i.e., prior to any desiccation) in cement-based materials is suppressed by the reduction in 

water activity caused by the presence of dissolved species in the pore fluid. Such effects can be accounted 

for, whereby the dissolved species and their concentrations are explicitly accounted for in a modified 

version of eq. (41). An alternative approach is taken here whereby one defines 
0

RH  not as 100%RH   

(i.e., the RH that is measured over a flat surface of pure water), but rather as the relative humidity above a 

flat surface of the pore solution as it exists prior to any desiccation. The latter approach is taken here, 

using experimental data from the literature.  
4 Since the referenced experiments only involved mortars rather than pastes and since the cement utilized 

in the specimens was not characterized to the extent necessary to utilize THAMES to simulate the 

microstructure evolution, it was not deemed useful to compare the actual measured autogenous shrinkage 

of the mortar bar with simulated autogenous shrinkage of the paste. The RH history was simply utilized to 

represent a “typical” history for simulation purposes. 
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hydration reaction significantly slows down or even stops, while at high RH, the RH 

magnitude has little effect on the hydration kinetics [99]. Since the simulations presented 

were all conducted under relatively high RH conditions (with RH > 80%), it was 

assumed, for simplification, that the hydration rate was independent of the internal RH.  

In Figure 29, besides the time-evolving measured RH history on the right hand Y 

axis, which leads to time-evolving pore fluid pressure, three different sets of predicted 

shrinkage strain history are included. The solid line and the dashed shrinkage strain line 

with square markers were obtained from the computationally predicted data. The solid 

line considered the microstructure-evolving properties of cement paste at all ages; it 

shows the increase of the shrinkage strain as a combination of both the elastic response 

to increasing internal pore fluid pressure as well as the dissolution effect of the load 

bearing cement grains. The dashed line with square markers considered the cement paste 

composite at each time step as a purely elastic material with constant mechanical moduli 

independent of microstructures from other ages; it simply shows the change of the 

cement paste shrinkage strain from the elastic response to the pore fluid pressure 

increase while neglecting the phase dissolution effects. The shrinkage demonstrated by 

the dashed line with square markers is simply a result of the elastic deformation of 

cement paste, and the differences between this line and the solid line are the predicted 

irreversible shrinkage induced by cement grain dissolution.  
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Figure 29 Predicted shrinkage strain of 0.40 w/c cement paste with drying initiated at 

age of 1 d. In this graph, the computationally predicted data is shown (i) by treating 

cement paste at all ages as a microstructure-dependent time-evolving material (solid 

line), which shows the overall shrinkage due to both pore pressure increase and cement 

grain dissolution effects; (ii) by treating cement paste as purely elastic while neglecting 

phase dissolution effects (dashed shrinkage line with square markers), which shows the 

shrinkage of cement paste occurring purely due to instantaneous elastic deformation; 

and (iii) by poroelasticity (dashed shrinkage line with diamond markers). The RH 

history (dotted line with cross markers) was also included in this graph on the right 

hand Y axis. Due to the irregularity of the real life RH data, the RH history curve is not 

smooth, while the computational scheme utilizes microstructures of cement paste at 

certain limited number of discrete ages, the predicted shrinkage curves are more smooth.  

 

 

Among analytical models for predicting the desiccation shrinkage of cementitious 

materials, from a mechanics perspective, poroelasticity has been used to predict the 

elastic, recoverable shrinkage of cement paste [10, 90, 100, 101] according to 
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( ) ( ) 1 1

 ( ) ( )
3 ( )

sh

p s

S t dp t
d t

K t K
   ,  (42) 

where t  denotes time, sh ( )t  is the time-dependent function of linear shrinkage strain, 

( )S t  is the function of saturation coefficient (fraction of pores filled with liquid pore 

solution), ( )dp t  is the differential of pore fluid pressure, ( )
p

K t  is the time-dependent 

function of bulk modulus of the drained porous medium and s
K  is the bulk modulus of 

the solid skeleton, which can be considered as constant. Comparison between the 

computationally predicted recoverable shrinkage and the poroelastic shrinkage would be 

carried out.  

The dashed shrinkage line with diamond markers in Figure 29 was obtained from 

the poroelastic calculation results utilizing a discretized form of eq. (42) in the 

computational model, 

 
1

( ) ( ) 1 1
 ( ) ( )

3 ( )

n
i i

sh i

i p i s

S t p t
t

K t K





    (43) 

where 1( ) ( ) ( )i i ip t p t p t    , denoting the pore pressure difference between two 

different time steps. The shrinkage predicted by poroelasticity follows the same trend as 

the predicted elastic recoverable shrinkage (the dashed line with square markers). One 

potential reason to explain the differences between the two dashed shrinkage prediction 

lines is that, for a partially saturated porous material, poroelasticity has significant 

drawbacks, and its accuracy highly depends on the microstructure (pore size distribution) 

of the material [100]. From the comparison between the solid shrinkage line and the two 



101 

dashed shrinkage lines, the dissolution of load-bearing cement grains during the 

shrinkage process appears to be a significant mechanism leading to irreversible 

shrinkage. Poroelasticity underestimates desiccation shrinkage, as has been noted 

previously [10, 90]. However, while Lura et al. [90] and Grasley and Leung [10] 

suggested that inherent viscoelasticity or creep of the cement paste phases might account 

for the under-prediction, here we suggest that dissolution of cement grains plays a role in 

such under-prediction at early ages. As cement paste ages during drying, the difference 

between the poroelastic calculation and the overall computational prediction (including 

both dissolution effect and pore pressure change) increases, as can be noted in Figure 29. 

6.3.4 Recovering RH 

Using the same RH data as used in Figure 29 but forcing RH to return back to its 

initial value after 6 (Figure 30a) and 7.5 days (Figure 30b) of drying, the results shown 

in Figure 30 can be obtained for drying initiating at 1 d and 3.5 d. Microstructures of 

0.40 w/c cement paste were used in the simulations, and the temperature was kept 

constant at 273 K. In both Figure 30(a) and (b), the RH histories were included on the 

right hand Y axis. The solid shrinkage lines show the overall shrinkage due to both pore 

pressure change and cement grain dissolution effects, and the dashed shrinkage lines 

show the predicted shrinkage of cement paste occurring purely due to pore pressure 

change. In both figures, cement paste shrinks with decreasing RH and swells with 

recovering RH. After RH returns back to its initial value, the irreversible shrinkage 

strains caused by the dissolution effect could be predicted by the differences between the 

solid lines and the dashed lines. Comparing to Figure 30(b), Figure 30(a) shows the 
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shrinkage strain history of cement paste when drying initiated at an earlier age, and it 

can be seen that, when dried at earlier ages, a much larger irreversible shrinkage would 

be observed due to the more active hydration reaction at earlier ages (and thus higher 

dissolution rate of cement grains). These results suggest that steps to increase the degree 

of hydration prior to drying initiation (e.g., wet curing and heat curing) would reduce the 

irreversible component of desiccation shrinkage. Note that countering the effect of 

increased degree of hydration on reducing irreversible shrinkage is the additional 

shrinkage that may occur as a result of the refined pore structure associated with wet 

curing [102]. 

In the model simulations, after the RH returns back to its initial value or pore 

pressure returns back to zero, a residual shrinkage exists as a result of the increasing 

stiffness in the cement paste. At earlier ages, cement paste shrinks as pore pressure 

increases, while at later ages, when pore pressure returns back to zero, cement paste 

would not swell as much because of the increased stiffness, leaving a residual shrinkage 

value shown in Figure 30. 

6.3.5 Cyclic drying and rewetting 

In Figure 31, a cyclic drying and rewetting process was applied on 0.45 w/c cement
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Figure 30 Predicted shrinkage strain of 0.40 w/c cement paste with drying initiated at 

ages of (a) 1 d and (b) 3.5 d. In both graphs, the solid lines show the overall shrinkage 

due to both pore pressure change and cement grain dissolution effects, while the dashed 

shrinkage lines show the recoverable shrinkage of cement paste occurring purely due to 

pore pressure change. Internal RH history was also included in this graph on the right 

hand Y axis. 
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paste at different ages of drying initiation of 1 d and 2 d. The RH history applied in 

Figure 31 follows the function 

( ) 100 10[1 cos(2 )](%)RH t f t     ,  (44) 

where ( )RH t  is the internal RH history as a function of time, t  represents the time in 

days after the start of drying, and f  denotes the frequency of the cyclic drying and 

rewetting. In this way, RH becomes a sinusoidal function oscillating between 100% and 

80% with each cycle period equal to  1 / f  in days (d). According to eq. (41) and eq. (44), 

the internal pore pressure also becomes a sinusoidal function starting from zero pore 

fluid stress and oscillates with the frequency of f . According to the simulated shrinkage 

strain shown in Figure 31, which includes both the elastic deformation of cement paste 

due to pore pressure changes and cement grain dissolution effects, the irreversible strain 

increases with age under cyclic drying and rewetting and can be directly observed at the 

time when pore pressure returns back to zero, revealed in Figure 31 as the strains at the 

bottoms of the oscillating curves. As discussed in the previous sections, younger 

specimens would yield a larger ultimate irreversible shrinkage, and the simulated 

maximum strain under maximum pore pressure per drying cycle decreases with age as a 

result of increasing stiffness of the cement paste. The irreversible component of 

desiccation shrinkage associated with cement grain dissolution theoretically achieves an 

ultimate value as indicated above if one presumes 
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Figure 31 Predicted shrinkage strain of 0.45 w/c cement paste when exposed to cyclic 

drying with different frequencies (f=0.5 and f =1) at the initial drying ages of (a) 1 d and 

(b) 2 d. All the lines in this figure show the predicted shrinkage as a result of cyclic 

drying due to both pore pressure change and cement grain dissolution effects. 
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the solid phases are strictly elastic. This ultimate value would depend on several 

parameters, including the porosity, pore size distribution, phases present and their 

respective elastic properties, the drying and hydration kinetics, and the degree of 

hydration at the onset of desiccation. Given the complexity and multi-parameter 

dependency of this ultimate irreversible shrinkage, it is not plausible to derive a simple 

analytical expression to calculate this value. 

According to Figure 31(a), more drying and rewetting cycles under the same time 

period would slightly increase the irreversible shrinkage value, but this increase is less 

than 10%. It is generally accepted that, under cyclic drying and rewetting, most 

irreversible shrinkage occurs in the first cycle of drying and rewetting, and the shrinkage 

strain in the following cycles can be treated as reversible shrinkage [1, 103], but at early 

ages, according to the simulation results, irreversible shrinkage is more age-dependent 

rather than cycle-dependent. If the period of one drying cycle is significantly long 

enough (e.g., 5 days in Figure 31 (a)), the shrinkage occurring after the first cycle can be 

treated as reversible, but if the period of one drying and wetting cycle is relatively short, 

the irreversible shrinkage occurring after the first cycle is not negligible. 

6.3.6 Combined irreversibility due to dissolution and intrinsic plasticity 

As noted in the introduction, irreversible desiccation shrinkage has historically been 

attributed to irreversible deformation of the C-S-H phase. Here, we evaluate the 

combined irreversible deformation associated with both irreversible deformation of the 

C-S-H and dissolution of cement grains. The quasi-instantaneous irreversible 

deformation of concrete associated with quasi-instantaneous application of stress is 
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generally attributed to microcracking rather than plasticity of the phases (see, e.g., the 

discussion in Ref. [1, 104, 105] and the references therein). Thus, C-S-H is modeled to 

exhibit both an instantaneous elastic response and a time-dependent viscoplastic (VP) 

response to stress.   

When utilizing the same RH history as in Figure 31 and treating the C-S-H phases 

inside cement paste as VP, Figure 32 can be obtained showing the shrinkage occurring 

due to pore pressure changes, cement grain dissolution effects and C-S-H viscoplasticity. 

As there are no sufficient data currently available for modeling the relaxation of the C-S-

H phase over several days due to experimental challenges, for simulation purposes, in 

Figure 32, the VP Young’s modulus of C-S-H was set to be 

( ) 11.2 GPa 11.2exp( 0.2 ) GPaE t t   , and the Poisson’s ratio of C-S-H was assumed 

to have a constant value of 0.25. The irreversible shrinkage observed in Figure 32 is a 

combined result of both mechanisms of cement grain dissolution and C-S-H 

viscoplasticity. Comparing to the irreversible shrinkage occurring due to cement grain 

dissolution effects, which is more significant at earlier ages, the relative importance of 

irreversible shrinkage caused by C-S-H viscoplasticity increases with age (through 

observing the differences between solid lines and dashed lines in Figure 32 at different 

ages). This is due in part to the fact that the volume fraction of C-S-H phases inside 

cement paste increases with age. Without dramatic change in the mechanical properties 

of C-S-H phases (due to either C-S-H viscoplasticity or C-S-H aging), according to the 

simulation results, cement grain dissolution is still the dominant mechanism leading to 

shrinkage irreversibility at early ages. The reason for this is that, over relatively short 
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drying cycle periods (i.e., about 1 or 2 days), there is very little relaxation of the C-S-H 

given the retardation time of 5 days, and 50% maximum relaxation used in the material 

model for ( )E t . The material model chosen for C-S-H is not validated by experimental 

data for C-S-H given the lack of reliable data on C-S-H VE/VP properties. However, 

given the observed relaxation of cement paste (which includes both intrinsic C-S-H 

relaxation and dissolution effects) [106], it is reasonable to approximate early-age C-S-H 

relaxation according to the model used. Thus, the data in Figure 32 indicate that, from a 

modeling perspective, it may be practicable to disregard irreversible shrinkage during 

daily drying cycles after the first drying. 

In contrast to the limited significance of intrinsic C-S-H VP with respect to 

irreversible shrinkage during short-term drying cycles, Figure 33 indicates that the 

influence of the intrinsic irreversible deformation is much more significant for long-term 

continuous desiccation. In Figure 33, the VE/VP Young’s modulus of C-S-H was set to 

be ( ) 11.2 GPa 11.2exp( 0.2 ) GPaE t t   , and the Poisson’s ratio of C-S-H was 

assumed to have a constant value of 0.25. An assumed RH history 

( ) 80 20exp( /14)(%)RH t t   was applied at different initial drying ages of 1 d and 14 

d, where t  represents the time in days after the start of drying. In Figure 33, the solid 

lines show the RH history, and the dashed lines show the time-dependent shrinkage of 

cement paste. It can be seen that the longer term drying provides a greater duration for 

the irreversible VP deformation to develop in the C-S-H, thus making this component of 

greater potential importance at later ages versus cement grain dissolution  
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Figure 32 Predicted shrinkage strain of 0.45 w/c cement paste when exposed to cyclic 

drying with different frequencies (a) f =1 and (b) f=0.5 when drying is initiated at an 

age of 1 d. All the lines in this figure show the overall shrinkage as a result of cyclic 

drying due to pore pressure change, cement grain dissolution effects and C-S-H time-

dependent behavior. 
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effects. Thus, in contrast to daily cycles, it may not be practicable to ignore long-term 

irreversible deformation of C-S-H under drying induced stresses. Ultimately, to 

accurately determine the contribution of C-S-H VP deformation to irreversible 

desiccation shrinkage (associated with either cyclical or asymptotic drying) requires 

greater confidence in the VE/VP constitutive function assigned to C-S-H, which requires 

a significant improvement in available experimental data. 

 

 

Figure 33. Simulation of response of 0.40 w/c cement paste to long-term drying with 

ages of drying initiation of 1 d and 14 d. The longer term drying allows more time for 

VP deformation to develop within the C-S-H than occurs during short-term cycles. The 

solid lines show the RH history, and the dashed lines show the time-dependent shrinkage 

of cement paste. 
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6.4 Summary 

Dissolution of load-bearing cement grains of hydrating cement paste is a significant 

factor leading to the irreversible component of early age cement paste shrinkage. 

Poroelasticity under-predicts the overall early age shrinkage of cement paste as it 

neglects the dissolution effect of cement grains during the hydration process. The 

simulations also imply that irreversible shrinkage is closely related to age; delayed 

drying would lead to drastic reductions in irreversible shrinkage associated with cement 

grain dissolution. According to cyclic drying and rewetting simulations, the number of 

cycles has a much smaller influence on the irreversible shrinkage than the age of the 

sample; thus, if drying cycles are sufficiently slow, then one would expect irreversible 

shrinkage only on the first cycle, whereas for fast cycles, one would expect irreversible 

shrinkage on subsequent cycles as well.  

At early ages, simulation results indicate that cement grain dissolution is likely 

more important than intrinsic C-S-H viscoplasticity with regards to irreversible 

desiccation shrinkage. For long term asymptotic drying, however, irreversible 

deformation within the C-S-H phase may significantly impact irreversible shrinkage. It 

is impossible to determine the precise magnitude of influence at this time due to a lack 

of quality data for intrinsic, long-term C-S-H viscoplastic properties. 
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7. CREEP/RELAXATION CAUSED BY STRESS-INDUCED DISSOLUTION 

 

The creep and relaxation associated with the dissolution of unhydrated cement 

grains quantified in previous chapters is insufficient to fully account for experimentally 

measured creep and relaxation of cement paste. The dissolution of solid hydrates under 

stress/strain as governed by the second law of thermodynamics could also potentially 

lead to VE/VP behavior of cement paste. Thus, the mechanism of stress-induced 

dissolution of solid constituents is quantified and implemented into the computational 

model in this chapter. Virtual experiments are also carried out to evaluate this 

mechanism towards the overall viscoelasticity/viscoplasticity of cement paste. 

7.1 Background of stress-induced dissolution 

Dissolution of solid, load-bearing phases inside cement paste leads to significant 

apparent creep/relaxation behavior. According to the second law of thermodynamics, 

dissolution/precipitation of solid constituents could be altered by the change of 

stress/strain fields inside cement paste via alteration of the stress power or strain energy 

terms. Thus, it is hypothesized that stress-induced dissolution can affect the overall 

creep/relaxation behavior of cement composites.  

Although the mechanism of stress-induced dissolution has not been systematically 

introduced and probed in cementations materials, it has long been established as one 

mechanism leading to creep/relaxation in other materials, which is also referred to as 

“pressure solution” or “dissolution creep” [107-112]. It has been suggested that pressure 

solution can lead to significant creep/relaxation in gypsum [107, 113], limestone[114, 
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115], quartz [116, 117],  polymers [118, 119], olivine [120], etc. Meanwhile, it has been 

demonstrated by others that stress can strongly affect the hydration process of cement 

paste [121-123]. Thus, with the potential that both thermodynamics and hydration 

kinetics could be impacted by the stress/strain state, stress-induced dissolution of solid 

constituents is a plausible mechanism [9] contributing to the VE/VP behavior of cement 

composites. 

In the original version of the scheme, cement grains dissolve as time evolves 

following empirically derived hydration kinetics equations to simulate the hydration 

reaction, and the hydration products and pore solution are treated as one single 

thermodynamic system that steps slowly from one equilibrium state to another. In this 

chapter, to strictly examine the effect of stress-induced dissolution of solid phases rather 

than confusing this mechanism with the mechanism of hydration-induced dissolution of 

cement grains, all the specimens analyzed in the virtual experiments are over 56 d old, 

where the hydration reaction can be approximated as inactive. The hydration reaction in 

the computationally implemented program is manually “turned off” such that the applied 

stress/strain becomes the only source that can lead to microstructure change of cement 

composite. After the loading age, according to the second law of thermodynamics, the 

internal thermodynamic state of every solid constituent would change as a result of 

applied external/internal stress/strain. The whole microstructure of cement paste would 

evolve with time following both the thermodynamic law (as the solid constituents tend to 

maintain a thermodynamic equilibrium state with the pore solution) as well as the 

dissolution kinetics of each constituent. The computational scheme will then predict the 
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time-dependent mechanical properties of cement paste as a function of these time-

evolving microstructures. 

7.2 Conceptualization 

7.2.1 Thermodynamic framework 

The concept of evolving natural configurations [28, 30, 36] together with mixture 

theory [124] was utilized to quantify the effect of stress/strain on the thermodynamic 

equilibrium state of composite materials. According to the concept of evolving natural 

configurations, a material body would deform from the reference configuration to the 

current configuration when subjected to external or internal stimuli. For the body of a 

cement paste specimen, as it deforms under mechanical loadings, chemical hydration 

process progresses simultaneously. Its natural configuration, which the body would 

return to when stimuli is removed, also evolves with time. The kinetic framework of this 

process is shown in Figure 34. In Figure 34,  s denotes the motions of the material 

body between different configurations. For any species i inside the composite material, 

its motion is defined by ( , ),i i i t x X  where 
i

x  is the position vector of species i in 

the current configuration, 
i

X  is the position vector of species i in the reference 

configuration, and the boldface indicates a vector (or, in general, a higher order tensor). 

Thus, it is easy to derive that, for any species i, 
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Figure 34 Overview of the thermodynamic framework of the concept of evolving 

configurations. s denote the motions of a material point between different 

configurations. The body deforms from the reference configuration to the current 

configuration under external or internal stimuli. As a chemical process progresses, the 

natural configuration, which the body will return to when stimuli is removed, may also 

evolve with time. 

 

 

The quantification of the effect of mechanical stress/strain fields on the 

thermodynamic equilibrium of a material body is achieved through the term of stress 

power. The volume specific stress power of species i is defined by ,i i i  σ L  where iσ  

is the Cauchy stress tensor applied to species i. Through decomposition of the 

deformation gradient, one finds that [97, 125] 

 
( ) ( )

,
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i i i i i i i

          σ L σ L   (46) 

where 
( )p t

i

 is the non-dissipative volume specific stress power and 
p

i

  is the dissipative 

volume specific stress power of species i. The terms 
( )p t

i

L  and 
p

i

L  represent the 

velocity gradient of species i for motion 
( )p t

i

  and 
p

i

  respectively.  

According to mixture theory [125], when ignoring mass diffusion, the rate of the 

change in internal energy for species i can be expressed as 
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1

div( ) ( ) ,
2

i i i
i i i i i i i i i i i

q

du dm dm
r V

dt dt dt
          j v m v v   (47) 

where 
i  is the density, iu  is the total stored internal energy, 

ir  is the mass specific rate 

of radiant heating, 
i

qj  is the mass specific heat flux, iV  is the volume, 
i  is the mass 

specific chemical potential and im  is the mass of species i. 
i

m  is the momentum 

transferred from other species to species i. The rate of entropy production for species i 

can be expressed according to 

 +div( ),

ii i i
qi i i i i

i i

dm ds r
s

dt dt T T
     

j
  (48) 

where 
i  is the mass specific rate of entropy generation, is  is the mass specific entropy, 

and 
iT  is the temperature of species i. If the term 

i
i i dm

T s
dt

is assumed to be equal to 

1
( )

2

i i
i i idm dm

dt dt
  v v , with 

2
div( ) div( ) grad( )

( )

i i

q qi i

qi i
T

T T
 

j j
j , through combining 

(47) and (48), it can be derived that 

 grad( ).
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qi i i i i i i i i i i

i

ds du
T T V T

dt dt T
         

j
v m   (49) 

The rate of the thermodynamic potential of species i ( i ) thus becomes 

 grad( ) .

ii i i
qi i i i i i i i i i i i

i

d du ds
T V T T

dt dt dt T


           

j
v m   (50) 

Since div( )
i i i i

i i i id dm

dt t dt

  
   


  


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v v , (50) can be rewritten 

as 
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 div( ) grad( )
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Summing (51) over all the species in the mixture under the equilibrium state, with 

1
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 v m , it can be obtained that 
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For mixtures comprised of purely elastic phases exhibiting small deformation gradients 

and negligible temperature gradients, according to (46), (52) can be simplified as 

 
1 1

,
n n

i i i i i

i i

d dm V d  
 

   σ ε   (53) 

where   is the infinitesimal strain tensor for species i. When integrating over time, 

 
1 1

.
n n

i i i i i

i i

d dm V d  
 

   σ ε   (54) 

An alternative yet equivalent form of (54) in units of moles is 

 
1

( ) ( ),
n

i i i

i

Gn a e


 a   (55) 

where ia  denotes the number of moles of species i , { }iaa , 
i  denotes the mole 

specific chemical potential of species i , and ( )Gn a  is the scalar total thermodynamic 

potential as a function of  a . The term ie  is the mole specific strain energy of species i  

with the expression 
1 1

2

i i i
i i i i

i i

V
e V d

a a
 

σ ε
σ ε . According to the second law of 

thermodynamics [126, 127], for a system to reach thermodynamic equilibrium, the 

expression in (55) should be minimized while the moles of the species { }ia  follow the 

mole balance constraint of the independent components. The expression in (55) is the 
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essential thermodynamic function utilized in the computational scheme introduced in 

this research project.  

7.2.2 Dissolution kinetics  

It can be seen from eq. (55) that, once stress is applied, the mole specific 

thermodynamic potential for all load-bearing phases will increase (because the strain 

energy is always positive or zero). For the whole thermodynamic system to reach 

thermodynamic equilibrium and to minimize the total thermodynamic potential stored in 

the system, the amount of load-bearing phases would tend to decrease, resulting in the 

dissolution of solid phases. Once dissolution occurs, the solid phases can no longer be 

approximated as maintaining a near-equilibrium state with the pore solution, and the 

solid phases would dissolve with time following the dissolution kinetics of each solid 

constituent. 

The dissolution process is a non-elementary reaction, which involves many 

elementary steps, including the breaking of each bond of the crystal unit from the lattice, 

diffusion of the unit away from the lattice site, the detachment of the unit from the 

crystal surface, and the multi-step decomposition of the unit in solution to individual 

hydrated ions. In general, the overall dissolution rate of a solid phase is often expressed 

as the product of kinetic terms with a thermodynamic driving force. According to 

experiments [128, 129], the thermodynamic driving force for dissolution/growth of a 

solid is / eqQ K  , where Q  is the activity product for the solid dissolution reaction and 

eqK  is the equilibrium value of the activity product (the equilibrium constant or 

solubility product, which is a function of the chemical potential). When a solid phase is 
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in equilibrium with the pore solution, the value of / eqQ K  equals 1. When stress/strain is 

applied on this phase, the value of eqK  would increase as a result of applied strain 

energy, thus the value of / eqQ K
 
will be less than 1, leading to dissolution of this solid 

phase.  

Consider the dissolution of portlandite (CH5) in water:  

 
2+ -

2Ca(OH) Ca +2OH ,  

where the dissolution rate equation is written as  

 
2

_

[1 ( ) ]f CH
CH CH CH

eq CH

Q
N k A

K
  ,  (56) 

where CHN  is the net dissolution/growth rate, 
f

CHk  is the kinetic rate constant, CHA  is 

the surface area, CHQ  and _eq CHK  are the activity product and equilibrium activity 

product of CH, respectively. The value of 
f

CHk  has been measured experimentally at 

room temperature with 
6 -2 -17.19 10 mol m sf

CHk   .  

The derivation process of the dissolution rate of C-S-H is more complicated 

because (a) the solid phase is like a solid solution with an activity different from one, (b) 

water is involved as a reactant and not just a catalyst in the overall reaction, and (c) the 

surface area of C-S-H is difficult to measure in the saturated state. For simplification 

purpose, the phase C-S-H is approximated as a stoichiometric solid with fixed 

composition (meaning that activity is equal to one), and the activity of water in pore 

solution is also approximated to one as it is typically greater than 0.9. Thus,  

                                                 

5 Cement chemistry oxide notation will be utilized in this work. 
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2+ - -

x y 2 3 4C SH +(1+x-y)H O xCa +H SiO +(2x-1)OH , 

and  

 
3

_

(1 )f C S H
C S H C S H C S H

eq C S H

Q
N k A

K

 
     

 

    (57) 

where C S HN    is the net dissolution/growth rate, 
f

C S Hk    is the kinetic rate constant, 

C S HA    is the surface area, C S HQ    and _eq C S HK    are the activity product and 

equilibrium activity product of C-S-H, respectively. The value of 
f

C S Hk    has been 

measured experimentally to be equal to 10 -2 -11.5 10 mol m s . 

For the other solid constituents inside cement paste, as currently there is not 

sufficient experimental data to quantify their kinetic rate constants, the 

dissolution/growth rate equations of these phases are uncertain. For better simulation 

purpose, some of these phases are assigned with the same kinetic equations to that of C-

S-H or CH in the computational scheme. Ettringite and hydrotalcite are assigned to 

dissolve/grow following the same dissolution equation as C-S-H, while monosulfate and 

monocarbonate are assigned to dissolve/grow following the same dissolution equation as 

CH. These assignments are taken as “best guess”, as these phases are most resembled 

structurally to C-S-H or CH. For all the other phases left inside cement composite, as the 

total volume occupation of these phases is less than 5% in matured specimens (older 

than 56 d), the dissolution/growth of these phases can only make limited differences. No 

dissolution/growth kinetic rules are assigned to them, and they are allowed to freely 

dissolve/grow inside the computational scheme independent of the state of stress or 

strain. 
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7.3 Computational implementation 

7.3.1 Computational implementation 

The computationally implemented model developed in this chapter is an updated 

version of the (hydration-induced) cement grain dissolution prediction model introduced 

in [23, 67, 130]. The cement grain dissolution prediction model has been utilized in 

different areas to predict the time-dependent behavior of cement composites [23, 67, 

130]. Based on this model, with the hydration reaction “turned off” inside the program, 

the newly developed (stress-induced) dissolution prediction model is composed of three, 

fully coupled parts: a finite element model that calculates the time-evolving stress/strain 

fields as well as the mechanical properties of cement composite, a thermodynamic 

engine that predicts the speciation of the composite based on the thermodynamic laws, 

and a microstructure model that generates 3D microstructure images based on the 

calculated composite speciation. To account for the time and history dependence of the 

behavior of the cement composite, the whole model is discretized in time. Figure 35 

shows the flow chart of the computationally implemented model, with FEM being the 

finite element mechanical model, GEMS (Gibbs Energy Minimization) being the 

thermodynamic engine, and THAMES (Thermodynamic Hydration and Microstructure 

Evolution) being the microstructure model. 
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Figure 35 Flow chart of the computationally implemented model. 

 

 

Before the start of the program, two primary files are input into the computational 

program, including the 3D microstructure image of cement paste at the loading age 

(where the loading age is 56 d or later) and the composition of the system (which is 

composed of hydrates and pore solution) at this age. Every 3D microstructure image 

utilized is one snapshot of a cement composite that is directly mapped to a finite element 

mesh, with each voxel being an eight-node tri-linear cubic element consisting of a 
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unique phase. All the 3D images are of the dimension of 1003 voxels, with each voxel 

occupying the space of 1 µm3. When the scheme starts in the program, the 3D image file 

is meshed as a finite element model (FEM) for mechanical calculation.  

The finite element calculation model embedded in the program predicts the time-

dependent VE/VP moduli of cement paste as a function of time-evolving microstructures. 

In the model, constant strain-controlled periodic boundary conditions are applied on a 

representative volume of cement composite (whose microstructure may evolve with 

time), and through minimizing the total mechanical energy stored in the system at each 

age, the stress/strain fields can be calculated. One assumption made in the model is that, 

once dissolution occurs in one voxel inside the microstructure (as a result of applied 

stress/strain), all the historical responses stored in this voxel may be disregarded, and the 

newly-formed phases form in the deformed configuration carrying no stress. Stress is 

redistributed from dissolved phases to the surrounding solid phases at a very fast rate, 

much faster than the chemical processes inside cement paste, increasing the stress 

carried by the remaining solid constituents and resulting in creep/relaxation of cement 

paste on the bulk scale. Since all the phases in the model were assigned to be purely 

elastic with elastic properties taken from [22], the predicted creep/relaxation by FEM 

occurs strictly due to the dissolution of solid, load-bearing phases.  

Besides calculating the apparent VE/VP moduli of cement paste in FEM, according 

to eq. (55), to accurately account for the effect of strain energy on changing the 

thermodynamic state of a cement composite system, the mole specific strain energy for 

each phase should also be calculated in the program. Based on the averaged strain 
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energy of each phase inside the composite, the mole specific strain energy for species i 

can be calculated through  

 
1

,
2

i ii n
j ji

j

V
e

n

 



    (58) 

where n  is the total number of voxels inside the composite (or chosen subdomain in the 

composite) that consist of phase i, iV  is the molar volume of phase i, and 
2

i i

j j 
 is the 

strain energy calculated for voxel j that is consist of phase i. Implementing (58) into (55), 

the total change in thermodynamic potential of the composite due to internal strain 

energy change can be calculated.  

With the initial input of the elemental composition of the system and the calculated 

strain energy from FEM, GEMS (Gibbs Energy Minimization) [46, 47, 131] calculates 

the composite speciation of the system at equilibrium state. It is assumed in GEMS that a 

near-equilibrium state is achieved between the hydration products and the pore fluid 

solution, and according to the second law of thermodynamics, the total stored Gibbs free 

energy stored in the system should be minimized.  

In the original version of the thermodynamic engine utilized in previous simulations 

[23, 67, 130], the total stored Gibbs free energy was calculated through 

 
1

( ) ,
n

i i

i

G a


a   (59) 

where ( )G a  is the scalar total Gibbs energy as a function of speciation vector  a . 

Equilibrium speciation  a  in the chemical system was found by minimizing the total 

Gibbs free energy ( )G a . At the beginning of the program, the elemental composition of 
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the thermodynamic system was input into GEMS, and GEMS calculated the formation 

of the dependent species following the mole balance constraint of the independent 

elements. In the updated version of GEMS, to account for the effect of stress power, the 

total thermodynamic potential, which is calculated through eq. (55), is minimized. The 

mole specific strain energy { }ie  is obtained from eq. (58), and the same calculation 

algorithm as implemented in the original version of GEMS (which was used to 

minimized eq. (59)) is utilized to determine the equilibrium speciation  a .  

One thing to note is that although the total amount of solids that tend to 

dissolve/form as a result of applied stress/strain can be calculated in the updated GEMS, 

the actual amount of solids that can really dissolve/form between two neighboring time 

steps are strictly limited by the dissolution kinetic rules of every solid phase. In cement 

pastes, the dissolution/formation of solid constituents occurs over a finite period of time, 

and the rate of this process depends on many factors. According to previous sections, the 

dissolution/formation rate of one solid phase depends on: 1) an empirically derived 

kinetic constant, 2) the surface area of this solid phase that is in contact with the pore 

solution, and 3) a thermodynamic driving gradient, which is expressed as / eqQ K . For 

each solid phase, its surface area can be calculated at each time step utilizing the 3D 

microstructure images, and its thermodynamic driving force, / eqQ K , is a direct output 

from GEMS. Thus, with the known kinetic constant, the net dissolution rate of every 

solid constituent can be calculated in the program (e.g., the net dissolution rate of CH 

and C-S-H can be calculated utilizing eq. (56) and (57)). The total amount of one solid 

phase that is “kinetically allowed” to dissolve/form between two neighboring time steps 



 

126 

 

is calculated through N t  , where N  is the net dissolution/formation rate of a solid 

phase, and t  is the time gap between these two time steps.  

To account for the change in the computational scheme due to changes in 

equilibrium induced by strain energy as well as the dissolution kinetics, the following 

routine was implemented into GEMS. At any time step nt t , the speciation of the 

system from the previous time step can be obtained from GEMS, denoted as 

1 1 ( ) {a ( )}i

n nt t a . Meanwhile, the amount of different species that are allowed to 

dissolve/form between these two time steps, 
1 1

{ }
n n

i

t td
 
d , could also be calculated 

utilizing the dissolution kinetics: 
1 1 1( )

n n

i i

t t n nd N t t
     , where 

1n

i

tN


 is the net 

dissolution/formation rate of species i  at time step 1nt t  . After the internal stress/strain 

state changes in the composite as a result of the microstructure evolution at the current 

time step, the new speciation ? )nta  should be calculated. When GEMS tends to 

calculate the new ? )nta  utilizing the thermodynamic law, one constraint was set ahead 

in the program that 
11( ) ( )

nn n tt t
 a a d . In this way, it is assured in the program that no 

more solid will dissolve/form at each time step than the allowed amount, and the 

dissolution kinetic laws for solid constituents are strictly followed. One thing to note 

here is that, once dissolution kinetics were implemented into GEMS, the hydrates can no 

longer be approximated as being in quasi-equilibrium state with the pore solution. The 

whole system will remain non-equilibrium (and this is why solids will continuously 

dissolve) until all the solid phases that are required to dissolve by the second 
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thermodynamic law (through minimizing eq. (55)) has fully transformed into pore 

solution.  

THAMES [44, 45] originally was a hydration based microstructure model, which 

predicts the microstructure evolution of cement paste during the hydration reaction. In 

this chapter, the hydration reaction in THAMES was manually “turned off” (as all the 

specimens tested in the chapter are over 56 d old and the hydration reaction can be 

treated approximately as stopped). Starting from the initial input 3D microstructure 

image, and with the calculated dissolved/formed solid phases from GEMS, THAMES 

predicts the 3D microstructure evolution under the constant applied strain at each time 

step. There are several factors that THAMES considers in determining the spatial 

locations of the newly-dissolved or newly-formed phases: 1) the local geometric 

information regarding interfaces to restrict the location where one particular constituent 

can grow, 2) the empirical information regarding the growth/dissolution habit of each 

constituent (e.g., random, acicular, isotropic) and 3) the stress/strain field distribution 

inside cement paste to determine the dissolution or formation order of one particular 

phase. Detailed discussions regarding the first two factors can be found in [44, 132]. 

With the implementation of strain energy into the computation scheme, the third factor 

becomes a new major factor that affects the dissolution/formation location preference of 

a solid constituent. Inside the program, the strain energy of each voxel was calculated in 

FEM. For the dissolution process, voxels exhibiting higher strain energy will dissolve 

prior to the voxels with lower strain energy. Although the surface tension between the 

water phases and solid phases also affects the location preferences of the dissolved solids, 
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comparing to the stress/strain exhibited on these phases, the effect of surface tension is 

presumed limited (as the magnitude of surface tension is much smaller than the 

magnitude of the stresses applied on the voxels). As for the precipitation of new solid 

phases, since they all form in a stress-free state, the stress/strain distribution inside 

cement composite will not affect their growth location. 

After calculating the 3D microstructure of cement paste in THAMES at the current 

time step, the next step in the program is to determine whether to output the 3D 

microstructure of cement paste from THAMES to FEM. To accurately simulate the 

dissolution process inside cement paste, a relatively fine set of time steps is required 

(e.g., the simulation of solid phase dissolution right after loading age can progress in 

units of hours), which, however, is finer than required for the mechanical calculations in 

FEM (in which the creep/relaxation rate of cement paste is calculated in units of days or 

even months). As the major utility of the microstructures in this program is to carry out 

mechanical finite element analysis and predict stress/strain fields inside cement paste, 

the required time gap between two neighboring microstructure output ages can be much 

wider than the crucial time gap (necessary for accurately simulating the dissolution 

process). Thus, the program only passes the 3D microstructure images from THAMES 

to FEM at desired ages. If the age in the program has reached the next microstructure 

output age, a 3D microstructure snapshot that is directly mapped to a finite element mesh 

is input into FEM. If the age in the program has not reached the next microstructure 

output age, the program loops over directly to the next round of calculation in GEMS.  



 

129 

 

In summary, and as shown in Figure 35, the flow of the computationally 

implemented model is as follows:  

1. FEM calculates the apparent VE/VP moduli of cement paste at each age and also 

calculates the strain energy of different phases. The information of the strain energy 

is then updated in GEMS. 

2. GEMS calculates the amount of dissolved/formed solid phases and inputs into 

THAMES. 

3. THAMES generates 3D microstructure images. 

4. Depending on ages, if the microstructure is not to be input into FEM, go back to 

step 2 and increase time step; otherwise, input the microstructure into FEM, go 

back to step 1 and increase time step. 

5. Loop over until all time steps are calculated. 

7.3.2 Choice of thermodynamic equilibrium domain size 

The essence of the thermodynamic framework utilized in GEMS is that the second 

law of thermodynamics holds for one mixture system, but the question as to whether this 

mixture system should be considered as the whole cement paste composite or a 

subdomain of the composite is unsettled. The term “domain” is defined here as the sub 

mixture system (inside the whole cement composite) over which the thermodynamic 

equilibrium is enforced. As the dimension of the whole cement paste composite in the 

computational model is fixed as 1003 voxels (each of 1 µm3 volume), when subdividing 

the cement composite equally, e.g., the composite is divided into 23 subdomains (2 

sections per axis), the size of a domain inside the program would be 503 voxels.  
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The introduction of the concept of domains into the program is essential, especially 

when the effect of strain energy is taken into account. When a cement composite is 

subjected to external load, the stress/strain field inside the composite is not uniformly 

distributed, as well as the mole specific strain energy and stress power of each species i. 

If the whole cement composite is treated as one single domain, the strain energy for any 

species i is calculated through spatial averaging of the strain energy of species i over the 

whole composite, as shown in eq. (58). This disregards the non-uniform distribution of 

strain energy and leads to a potential result that one could under-predict or over-predict 

the dissolution of solid phases. For example, when the averaged strain energy over the 

whole composite as a result of external applied load is insufficient to induce a speciation 

change according to eq. (55), while however, due to the relatively higher stress/strain 

concentration in some local areas (with respect to the global area of the whole 

composite), solids in these areas tend to dissolve (because of the high local strain 

energy). Neglecting these locally higher strain energies by averaging over the whole 

composite could cause an under-estimation of the stress relaxation or creep of cement 

paste. Similarly, when the averaged strain energy is large enough to cause solid phase 

dissolution on the global scale, while in some local areas, the effect of strain energy is 

not as significant, the creep/relaxation of cement paste is over-predicted in that locale. 

Thus, to more accurately predict the amount of dissolved solid constituents, as well as 

creep/relaxation of cement paste, the concept of an equilibrium domain should be 

introduced into the computational scheme.  
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While it is clear from the above discussion that the thermodynamic domain must 

not be too large (at the risk of neglecting locally high/low strain energy), such a domain 

may not be too small, either. At the extreme lower limit, each domain could be the size 

of an individual voxel (consisting of one phase) – in this case, one does not have a true 

mixture, and the derived thermodynamic relationships are inapplicable. Thus, the 

appropriate domain size must be large enough to consider the constituents within the 

domain as a mixture of solids and pore solution, yet small enough to capture local strain 

energy effects.  

To computationally implement the concept of domains into the program, Figure 36 

shows the updated conceptual flow chart of the computational scheme for one time step. 

At the beginning of each time step, FEM predicts the inherent stress/strain field inside 

the original 3D microstructure. The VE/VP moduli of cement paste are still calculated 

based on the averaged stress/strain over the bulk composite paste, while the strain energy 

was averaged within each domain and recorded in GEMS. Then in the program, as the 

whole cement paste (with dimension of 1003 voxels) is equally subdivided into different 

domains in space, the amount of aqueous solution together with all the hydrate phases 

within each domain (and thus the elemental composition within each domain) could be 

calculated based on the microstructure image. Depending on the different mole specific 

strain energies inside each domain as well as composition, the program calculates the 

dissolution rates for the solid constituents inside each domain separately. Then, based on 

these calculated dissolution rates and the second law of thermodynamics, the new 

speciation of each domain at the end of this time step are calculated. The sum of these 
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calculated speciation from all the domains is the overall speciation of the whole mixture 

system. For each species i , 
1

n
i i

d

d

a a


 , where 
i

da  is the amount of species i  in d th 

domain and n  is the total number of domains.  

One thing to note is that after involving the concept of domain, when a solid phase 

dissolves within one domain at one time step, the same phase could precipitate in 

another domain at the same time. Due to the combined result of the dissolution and 

precipitation process, the total amount of dissolved solid phases within the whole 

composite between two neighboring time steps could be underestimated by simply 

adding up the speciation composition of all domains, as well as the total amount of 

precipitated solid phases. As THAMES predicts the microstructure evolution based on 

the total amount of dissolved and precipitated phases, direct input of the summed 

speciation of the composite into the microstructure model would lead to incorrect 

microstructure prediction. To avoid this problem, inside this computationally 

implemented program, THAMES will predict the microstructure evolution in two parts 

for each time step. First, THAMES calculates the cement paste microstructure based the 

on the composite speciation where only dissolution is allowed to occur, while the 

precipitation process is neglected. The input speciation is 
1

{ } { ( ) }
n

i i

d

d

a a dissolve


  , where 

( )i i

d da dissolve a  if species i  dissolves within d th domain; otherwise, ( )i

da dissolve  

equals the originally input amount of species i  in d th domain before the 

thermodynamic calculation has been carried out. For the small microstructure considered 
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in the program, diffusion of solutes between time steps considered always cover the 

whole volume of the composite (1003 µm3), which is pre-requested in THAMES [44]. 

THAMES will compare the new phase and speciation composition of the system with 

the phase and speciation composition of the system from previous time step to get the 

true amount of dissolved phases. The location of the newly dissolved solids can be 

determined according to the factors discussed previous sections. Then the new speciation 

1

{ } { }
n

i i

d

d

a a


   would be input into THAMES. Through comparing 
1

{ ( ) }
n

i

d

d

a dissolve


  and 

1

{ }
n

i

d

d

a


 , the total amount of newly precipitated solids can be calculated. THAMES then 

determines the location of these precipitated phases and calculates the finalized 3D 

microstructure. 

As noted previously, a major concern regarding the implementation of subdomains 

into the computational scheme is that, to accurately account for the non-uniform 

distribution of stress/strain fields inside cement paste, a relatively fine division of the 

composite system (1003 voxels) is required. The finer the division (or the smaller the 

size of one domain), the more accurately the localized stress/strain can be accounted for. 

Theoretically, the smallest domain size the program could choose is 13 voxel. However, 

as the concept of “domain” is that one domain can reasonably represent the 

thermodynamic condition of the entire mixture, which includes both liquid aqueous 

solution and solid hydrates, both the existence of a reasonable amount of pore solution 

voxels and precipitated hydrates voxels are required. Thus, one major challenge of this 
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Figure 36 Conceptual flow of the computational scheme for one time step when 

implementing the concept of domains. 

 

 

computationally implemented program is to define a correct choice of the domain size 

for the cement paste tested. If the size of a domain is too large, the program could not 
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account for the non-uniform distribution of stress/strain; if the size of a domain is too 

small, the “invalid” mixture systems will lead to inaccurate predictions. In this chapter, 

after various virtual experiments carried out on portland CCRL 168 cement, the most 

appropriate choice of domain size was identified.  

7.4 Simulation results and discussions 

7.4.1 Different choices of domain size 

The first task in this section is to determine the most appropriate choice of domain 

size such that the non-uniform distribution of strain energy inside the cement composite 

could be captured in the computational program, while at the same time requiring that 

each domain chosen is a representative mixture system (no extremely low or high 

volume fraction of one particular phase within this domain). One thing to clarify here is 

that there is no single appropriate choice of domain size that is universal for all different 

types of porous composite materials, but this choice depends on many factors, e.g., 

different materials (different cement types for cement pastes, or different sizes of 

aggregates in concrete) and microstructure size (dimension of the microstructure image 

and coarseness of voxelation). To derive the appropriate choice of domain for the 

considered cement paste composite, a series of virtual experiments were carried out. In 

all the virtual experiments discussed, the cement pastes utilized were comprised of 

portland cement CCRL 168, and the phases inside the cement pastes were all assigned 

with linearly elastic properties taken from [22]. In this way, the predicted time-

dependent behavior of cement paste occurs strictly due to the dissolution of solid phases, 
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and the resultant calculated moduli associated with the dissolution process are referred to 

as the “apparent VE/VP moduli”.  

Figure 37 shows the predicted apparent VE/VP Young’s modulus of 0.45 w/c 

cement paste as a function of time when loaded at the age of 56 d. The cement pastes 

were subject to external strain-controlled boundaries, and two virtual controlled strains, 

(a) 0.0001 and (b) 0.0002, were applied on the specimens. After the loading age, the 

hydration reaction within the specimens are considered as stopped in the program, and 

all the predicted relaxation of cement occurs due to stress-induced dissolution of solid 

constituents. Four different choices of domain size are included in this figure, with the 

size of the domains being 1003 voxels, 503 voxels, 203 voxels and 103 voxels (the total 

number of domains within a cement composite being 1, 23, 53 and 103). It can be seen 

from the figure that, due to different choices of domain size, even when under the same 

boundary conditions, the simulation results show significant differences.  
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Figure 37 Predicted relaxation of the apparent VE/VP Young’s modulus of 0.45 w/c 

cement paste when loaded at 56 d. Different periodic controlled strain (a) 0.0001 and (b) 

0.0002 were applied on cement paste microstructures, and four different choices of 

domain size, 1003 voxels, 503 voxels, 203 voxels and 103 voxels, were utilized to obtain 

the figure. The relaxation of cement paste in this figure occurs purely as a result of 

stress-induced dissolution of solid constituents.  

 

 

From Figure 37(a), when the external applied boundary strain is 0.0001, smaller 

domain size will give higher prediction of cement paste relaxation. This is because under 

this applied strain, the averaged strain energy over the whole composite is insufficient to 

induce dissolution of solid phases over the whole microstructure. While on the other 

hand, when the microstructure is divided into domains, strain energy concentration at 

local areas could be accounted for, inducing solid phase dissolution in these areas. Thus, 

a finer division of domain could more accurately account for the strain energy 

concentration, inducing more localized phase dissolution and larger predicted relaxation 

of cement pastes. Similarly for Figure 37(b), when the applied boundary strain is 
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relatively high (0.0002), the averaged strain energy over the whole composite causes the 

dissolution of solid constituents on the global scale. When the division of domains can 

more accurately justify the non-uniform distribution of strain energy, the dissolution of 

solid phases in some low-stressed areas is prohibited, leading to a lower prediction of 

cement paste relaxation within finer domain divisions. In summary, from the perspective 

of the concern of strain energy concentration, a finer division of the microstructure 

would lead to a better prediction of cement paste relaxation, and according to Figure 

37(a) and (b), domain sizes of 1003 voxels and 503 voxels might not be sufficiently fine 

to account for the non-uniform stress/strain distribution inside cement paste. 

Another observation from Figure 37 is that, as the size of the chosen domain 

decreases, the predicted relaxation results do not necessarily converge. Although under 

higher strain (0.0002 as shown in Figure 37(b)), some convergence occurs as the size of 

domain gets smaller, under a lower strain (0.0001 in Figure 37(a)), the divergence 

between different predicted results can even increase as the size of a domain goes down. 

As discussed in previous sections, a finer division of domain does not necessarily lead to 

a more accurate prediction. When the size of a domain is too small, this domain could no 

longer be defined as a mixture system, and the calculation in GEMS could no longer be 

applied on this domain. From the 3D microstructure data, for 0.45 w/c cement paste at 

the age of 56 d, the average volume fraction of pore solution within the composite is 

around 7.4%. When the composite is divided into 103 domains (with the size of each 

domain being 103 voxels), around 37% of the domains will have a pore volume fraction 

less than 5%, and the lowest pore volume fraction within a domain can reach 0% (no 
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pore solution within this domain). When the composite is divided even finer to 203 

domains (with the size of each domain being 53 voxels), the number of the domains with 

less than 5% pore volume fraction reaches up to 45%.  

In summary of the observations from Figure 37, when domain size is too large, the 

non-uniform distribution of strain energy inside cement paste cannot be addressed 

properly. As the domain size decreases, the predicted apparent Young’s modulus of 

cement paste under different choices of domain might show some convergence. With the 

further decrease of the domain size, because the small domains can no longer be treated 

as the representative of thermodynamic mixture systems, the predicted relaxation of 

cement paste could start to diverge. For the microstructures utilized in this chapter (1003 

voxels), as the microstructure is subdivided into more sections per axis (1, 2, 3…100 

sections per axis), the size of a domain can differ from 1003 voxels, 503 voxels to 53 

voxels, 43 voxels or even 13 voxels. One thing to note is that under some choices of 

divided sections, the size of the domains inherent the microstructure can be inconsistent, 

e.g., the size of a domain can be either 333 voxels or 343 voxels when the microstructure 

is subdivided into 3 sections per axis. Theoretically, as the domain size gets smaller, the 

divergence among the neighboring predicted apparent VE/VP Young’s modulus under 

neighboring choices of domains (when each axis of the microstructure is subdivided into 

adjacent integers) should reach the minimum under certain choice of domain. This 

choice of domain with the minimum divergence was utilized as the most appropriate 

choice of domain size. To obtain the most appropriate choice of domain, the divergence 

among different serials of data sets should be quantified.  
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In this research project, for any three neighboring predicted data series of ( )E t  

under adjacent choices of domain, the averaged standard derivation among these three 

data series is utilized as the “divergence” of these three predicted ( )E t . For example, 

when each axis of the microstructure is divided into 7 sections (143 voxels or 153 voxels 

per domain), the predicted ( )E t  under this choice of domain will be compared with the 

predicted ( )E t  when the microstructures is subdivided into 6 sections (163 voxels or 173 

voxels per domain) and 8 sections (123 voxels or 133 voxels per domain). To obtain each 

relaxation curve of ( )E t , a fixed number of j  data points (or j  time steps implemented 

inside FEM) would be predicted by the computational program, and the “divergence” 

can be calculated through 

 
1

1
. . .( )

j

j

i

Divergence s t d t
j 

  ,  (60) 

where . . .( )js t d t  is the standard derivation of the three predicted value of ( )jE t  under the 

three different choices of domain size. Figure 38 shows the calculated divergence among 

the different series of predicted ( )E t  under different choices of domain sizes. 0.45 w/c 

cement paste was utilized to obtain this figure. Controlled strain of 0.0002 was applied at 

the age of 56 d, and the size of the domain varies from 1003 voxels (1 section per axis) to 

53 voxels (20 sections per axis). One thing to note is that, for the domain size of 1003 

voxels, because there is only one neighboring domain size next to it (503 voxels, or 2 

sections per microstructure axis), the standard derivation was calculated based on only 

two data series of ( )E t . Meanwhile, as the microstructure images get divided finer and 

finer, at some point, even when the microstructure is divided into different sections per 
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axis, the sizes of the domains do not differ much, e.g., 17 and 18 sections. This could 

potentially lead to very similar predicted ( )E t  under these choices of divided sections 

because the size of domain basically does not change, while the divergence between 

different domain sizes cannot be demonstrated appropriately. Thus, when selecting the 

data for obtaining Figure 38, the chosen adjacent domain sizes should differ at least one 

voxel per axis. For example, when selecting the neighboring domain sizes for the 

domain of 103 voxels, the adjacent domain size should be at least 113 voxels or at most 

93 voxels. From Figure 38, it can be seen that, the divergence reaches the minimum 

values at the domain sizes between 153 voxels and 253 voxels. Therefore, in this 

dissertation, a domain size of 203 voxels (when dividing the composite into 5 sections 

per axes) is utilized as the finalized appropriate domain size, which lies in the middle of 

the range where the divergence is minimized.  

There are also some other reasons behind choosing the domain size of 203 voxels. 

First, as the distribution of stress/strain fields inside cement paste is closely related to the 

phase distribution inside cement paste, and thus partially depends on the particle size 

distribution of the cement studied in the program. Portland cement CCRL 168 is the only 

cement utilized in the simulations in this research project, and according to the particle 

size distribution test carried out on this type of cement, the median effective diameter of 

the CCRL 168 cement grains is 11 µm and the mode diameter of the CCRL168 cement 

grains is around 20 µm [44]. When the size of domain is assigned 203 µm3 (203 voxels), 

the diameter of cement grains with respect to the domain dimension is  
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Figure 38 Calculated divergence among neighboring predicted apparent Young’s 

modulus under different choices of domain size. Controlled strain of 0.0002 was applied 

on 0.45 w/c cement paste at 56 d. The sizes of the domains differ from 1003 voxels to 53 

voxels. 

 

 

relatively large, this choice of domain division can partially account for the stress/strain 

concentration inside cement paste. Second, when the domain size is 203 voxels, less than 

20% of the domains will have a pore volume fraction less than 70% of the averaged pore 

volume fraction of the composite, and the lowest pore volume fraction among all these 

domains is around half the value of the averaged composite pore volume fraction. This 

could avoid the problem of inadequate aqueous solution inside one domain mixture 

system. Based on these two aspects, and meanwhile, from the virtual experiment results 

shown in Figure 38, the domain size choice in this research project is finalized as 203 
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voxels. All the following virtual experiments discussed in this research project are 

carried out under this choice of domain size. 

7.4.2 Stochastic microstructures of cement paste 

Besides different choices of cement paste, the prediction results from the 

computationally implemented model also vary depending on different input 

microstructures of cement paste. Because of the stochastic nature of the microstructure 

model, even for cement pastes with the same characteristic properties (e.g., w/c), 

different initial input microstructures could be generated for cement pastes under the 

same age. Although the microstructures differ from each other, their speciation 

compositions as well as mechanical elastic properties are essentially the same. Figure 39 

shows the predicted apparent VE/VP Young’s modulus of cement paste when loaded at 

the age of 56 d. Three different microstructures of CCRL 168 cement with w/c equal to 

0.45 were created and subdivided into 203 domains. Two virtual controlled strains, (a) 

0.0001 and (b) 0.0002, were applied on these specimens to obtain the figure. In Figure 

39, all the phases inside the cement pastes were assigned linearly elastic properties and 

all the predicted relaxation of cement occurs due to stress-induced dissolution of solid 

constituents. 

From Figure 39, it can be seen that under the same external boundary conditions, 

the same characteristic properties of cement paste, the same loading age and the same 

choice of domain size, different initial input microstructures could still lead to some 

differences in the predicted relaxation results. Because of the involvement of the concept 

of domain into the program, the location and the inherent phase composition of each 
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domain become important factors that influence the final computed results. For the 

domains located in the same location within different microstructures, due to their 

 

 

Figure 39 Predicted relaxation of the apparent VE/VP Young’s modulus of three 

different microstructures of 0.45 w/c cement paste when loaded at 56 d. Different 

periodic controlled strain (a) 0.0001 and (b) 0.0002 were applied on cement paste 

microstructures, and the choice of domain size is 203 voxels. The relaxations of cement 

paste in this figure occur purely as a result of stress-induced dissolution of solid 

constituents 

 

 

different surrounding environments, the calculated strain energy within these domains 

could be different, affecting the overall prediction of the VE/VP properties of cement 

paste. Thus, for the prediction of the relaxation/creep of cement paste caused by stress-

induced dissolution of solid constituents, the prediction results can vary from 

microstructure to microstructure. These differences on phase composition and the local 

microstructure environment are also responsible for the discrepancies on the predicted 
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relaxation when different domain sizes are chosen, as shown in Figure 37. From both 

Figure 39 and Figure 37, when the externally applied strain is at a relatively high value 

(0.0002), the differences in the predicted results caused by different choices of domain 

size (when the chosen domain size are 203 voxels and 103 voxels) and by different input 

cement paste microstructures are much smaller than under a smaller boundary strain 

(0.0001). One potential reason behind this is that, when the applied strain is smaller, the 

occurrence of phase dissolution within a domain has a higher dependency on the phase 

composition and microstructure environment of this domain. According to the second 

law of thermodynamics, dissolution of solid phases would only occur after the applied 

strain energy reaches a certain value. When the strain energy is lower, the amount of the 

domains that experience phase dissolution is less. For any slight changes in the 

microstructure inside one domain, it could potentially promote or prohibit the dissolution 

of solid phases in the surrounding domains, and thus affecting the overall amount of the 

solid phases that tend to dissolve in the microstructure. When the applied stress/strain is 

high, solid phase dissolution has already occurred in most domains. Changes in the 

microstructures would have less impact in the amount of dissolving solid phases, and 

thus leads to less discrepancy in the computed results.  

7.4.3 Different magnitudes of applied strain/stress 

Figure 40 shows the predicted apparent VE/VP Young’s modulus of 0.45 w/c 

cement paste when loaded at the age of 56 d. Periodic controlled strain varying from 

0.0001 to 0.0025 were applied on the cement composites. Domain size of 203 voxels was 

utilized in the figure. From Figure 40, it can be seen that the predicted relaxation of 
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cement paste increases with the magnitude of applied strain. As the applied strain/stress 

increases, the strain energy exhibited on the solid phase voxels increases. This strain 

energy increase promotes more solid phase dissolution and promotes increasing 

dissolution rates of the solid phases, and thus induces larger and faster relaxation/creep 

behavior of cement pastes. Dissolution of solid constituents associated with strain energy 

can be a substantial mechanism leading to cement paste VE/VP behavior. 

 

 

Figure 40 Predicted relaxation of the apparent VE/VP Young’s modulus of 0.45 w/c 

cement paste when loaded at 56 d. Different periodic controlled strain were applied on 

cement paste microstructures, and the choice of domain size is 203 voxels. The 

relaxation of cement paste in the figure occurs as a result of the combined effect of 

dissolution of solid constituents. 
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7.4.4 C-S-H and CH dissolution 

When cement pastes are of 56 d old or older, the two major components of the solid 

constituents inside cement composites are C-S-H and CH [1]. The dissolution of these 

two phases under load is the major source leading to stress-induced relaxation/creep of 

cement paste. When cement pastes were under controlled strains as shown in Figure 40, 

the total amounts of dissolved C-S-H and CH versus time are shown in Figure 41. 

Boundary strains were applied on 0.45 w/c cement paste at the age of 56 d, and domain 

size of 203 voxels was utilized in Figure 41. 

 

 

Figure 41 Total volume fraction of dissolved (a) C-S-H and (b) CH of 0.45 w/c cement 

paste when loaded at 56 d. Different periodic controlled strain were applied on cement 

paste microstructures, and the choices of domain size is 203 voxels. 
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60% of the volume of cement paste. Then in Figure 41, after load is applied, both C-S-H 

and CH would gradually dissolve into pore solution with time as a result of strain energy. 

The total amount of dissolved C-S-H and CH as well as the dissolution rate of C-S-H 

and CH increase with the magnitude of applied strain. Due to the different dissolubility 

(or dissolution kinetics) of C-S-H and CH, the dissolution rate of CH might be higher 

than C-S-H in a short time right after loading (through comparing Figure 41(a) and 

Figure 41(b) under controlled strain of 0.00015 and 0.0002), at later ages, however, the 

dissolution rates of these two phases are mostly governed by the magnitude of applied 

stress/strain. The dissolution process would slow down with time as the mixture system 

(which includes both the hydrate phases and pore solution) gradually reaches 

equilibrium state. Although it seems in Figure 41 that the total amount of dissolved C-S-

H and CH does not occupy a significant volume inside cement composite, it is capable 

of leading to substantial creep/relaxation behavior in cement paste. According to 

previous research results [23], the dissolution of cement grains between 7 days to 28 

days in 0.45 w/c cement paste would lead to around 20% relaxation in the predicted 

apparent VE/VP Young’s modulus of cement paste, while the dissolved cement grains 

only occupy 3.5% volume in the early age specimens. For the specimens tested in Figure 

41, the total amount of dissolved C-S-H and CH can reach up to 1.8% volume of cement 

paste under controlled strain of 0.00025. As the hydrated phases are normally carrying 

the major portion of the stresses rather the unhydrated cement grains, this means that 

dissolution of hydrate phases will lead to more stress redistribution inside cement paste, 

and thus more relaxation/creep in bulk cement composite. In combination with other 



 

149 

 

dissolved solid phases inside cement paste, dissolution of C-S-H and CH is capable of 

leading to the relaxation shown in Figure 40. In summary, dissolution of C-S-H and CH 

under stress/strain plays a substantial rule in leading to long-term VE/VP behavior of 

cement paste. 

 

 

Figure 42 Predicted volume fraction changes of (a) C-S-H and (b) CH of 0.45 w/c 

cement paste when loaded at 56 d. Different periodic controlled strain were applied on 

cement paste microstructures, and the choices of domain size is 203 voxels. 

 

 

Figure 42 shows the volume fraction changes of C-S-H and CH versus time under 

the same condition as in Figure 41. Through comparing Figure 42(b) and Figure 41(b), it 

can be seen that although the total volume of dissolved CH increases with time under 

different magnitudes of applied strain, the actual volume fraction of CH does not 

necessarily decreases with time. In Figure 42(b), other than the case of 0.0001 applied 
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strain, the volume of CH shows different amount of sharp increases right after the 

application of load (when the applied strains are 0.00015, 0.0002 and 0.00025). This 

occurs because of the re-precipitation of the CH phases. At the time right after loading, 

both a portion of C-S-H and CH dissolve, increasing the iconic concentration of the pore 

solution. Much of the dissolved material would precipitates elsewhere in the 

microstructure, but not before redistribution of stresses occur. Because the elemental 

composition of C-S-H (CxSHy) is much more complicated than CH, the dissolution of C-

S-H would have a much larger impact on the pore solution speciation. This could 

potentially promote the growth of CH, even under stressed condition, and thus leading to 

an increase in the volume fraction of CH, as shown in Figure 42(b). Nevertheless, this 

re-precipitation process will not affect the overall relaxation behavior of cement paste as 

the newly precipitated phases form in a stress-free state. It is the increasing amount of 

dissolved C-S-H and CH under stress that induces VE/VP behavior of cement paste.   

7.4.5 Different w/c 

Figure 43 shows the predicted apparent VE/VP Young’s modulus of 0.40, 0.45 and 

0.50 w/c cement pastes, as well as the normalized apparent VE/VP Young’s modulus of 

these cement pastes, which are normalized by the elastic instantaneous Young’s modulus 

at the loading age. Load was applied at the age of 56 d and periodic controlled strain 

0.0002 was applied on the cement composites. Domain size of 203 voxels was utilized. 

From the figures, it can be seen that stress-induced dissolution of solid constituents can 

cause relaxation in cement pastes with different w/c. From Figure 43(b), the total 

predicted relaxation decreases with w/c. From previous discussions, dissolution of C-S-
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H and CH phases are likely to be substantial sources leading to the relaxation/creep of 

cement paste. As the value of w/c decreases, the volume fraction of C-S-H as well as CH 

at the age of 56 d would increase, so too the available amount of C-S-H and CH that 

could dissolve due to the state of stress in the material. Thus, a lower w/c could 

potentially leads to a higher stress-induced relaxation in cement paste. 

 

 

Figure 43 Predicted relaxation of the (a) apparent VE/VP Young’s modulus and (b) 

normalized apparent VE/VP Young’s modulus of 0.40, 0.45 and 0.50 w/c cement paste 

when loaded at 56 d. The normalization is made by divided by the elastic Young modulus 

at the loading age. Periodic controlled strain of 0.0002 was applied on cement paste 

microstructures, and the choice of domain size is 203 voxels. The relaxation of cement 

paste in the figure occurs as a result of the combined effect of dissolution of solid 

constituents. 

 

 

 

 

 

16

18

20

22

24

26

28

30

0 50 100 150 200 250 300 350

w/c = 0.40
w/c = 0.45
w/c = 0.50

A
p
p
a

re
n
t 
V

E
/V

P
 Y

o
u
n
g
's

 M
o

d
u
lu

s
 E

(t
) 

(G
P

a
)

Time after loading (d)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 50 100 150 200 250 300 350

w/c = 0.40
w/c = 0.45
w/c = 0.50

N
o

rm
a

liz
e

d
 A

p
p
a

re
n

t 
V

E
/V

P
 Y

o
u

n
g

's
 M

o
d

u
lu

s
 

E
(t

) 
/E

(5
6

)

Time after loading (d)

(a) (b)



 

152 

 

7.4.6 Different loading ages 

Figure 44 shows the predicted apparent VE/VP Young’s modulus of 0.40 w/c 

cement paste when loaded at different ages of 56 d, 180 d and 720 d. Periodic controlled 

strain of 0.0002 was applied on the cement composites. Domain size of 203 voxels was 

utilized in the figure. From this figure, it is clear that the total relaxation time after the 

loading age can last for years. Unlike the relaxation of cement paste  

 

Figure 44 Predicted relaxation of the apparent VE/VP Young’s modulus of 0.40 w/c 

cement paste when loaded at different ages of 56 d, 180 d, and 720 d. Periodic 

controlled strain of 0.0002 was applied on cement paste microstructures, and the choice 

of domain size is 203 voxels. The relaxation of cement paste in the figure occurs as a 

result of the combined effect of dissolution of solid constituents. 
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cause by hydration reaction, which only applies for early-age cement paste, stress 

induced dissolution of solid phases can explain the long-term relaxation/creep behavior 

of cement paste, and this mechanism could still be substantial for old (more than around 

2 years) specimens. In combination with the discussions from previous sections, stress 

induced dissolution of solid constituents is an important mechanism leading to long-term 

VE/VP behavior of cement paste. 

7.5 Summary 

The mechanism of stress-induced dissolution of solid constituents can increase the 

overall relaxation/creep of cement paste, and depending on the magnitude of applied 

load, the effect of this mechanism can be significant. Meanwhile, as stress/strain can be 

applied at any age, the stress-induced dissolution of solid phases can occur at any age, 

and the significance of this mechanism does not decrease with age. While hydration 

induced dissolution only affects early age creep or relaxation, stress induced dissolution 

may yield long-term (years) creep or relaxation. Among the major solid phases that 

would dissolve under the effect of applied strain/stress, dissolution of both C-S-H and 

CH phases can be substantial sources leading to stress-induced relaxation/creep of 

cement paste. 
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8. CONCLUSIONS 

 

8.1 Dissertation summary and primary conclusions 

A computational scheme that couples a microstructure evolution model and a time-

stepping finite element method capable of tracking phase formation was developed to 

predict the apparent VE/VP properties of cement paste as a function of time-evolving 

microstructures. A kinematic framework was established to quantify the effect of 

dissolution of load-bearing phases on the overall stress and strain fields in evolving 

composite materials. Various virtual experiments have been carried out, and a list of 

multiple mechanisms that could potentially lead to creep/relaxation behavior of cement 

paste were evaluated and compared in the manuscript. In order to illustrate the utility of 

the computationally implemented modeling approach, the early age desiccation 

shrinkage occurring in hydrating cement was also analyzed. According to the simulation 

results: 

1. Without significant aging effects, intrinsic C-S-H viscoelasticity is not likely 

the primary mechanism leading to the early-age creep and relaxation behavior 

of cementitious materials. 

2. When intrinsic C-S-H aging operates together with intrinsic C-S-H 

viscoelasticity, the modeled time-dependent VE/VP properties of cement paste 

are consistent with the experimentally observed aging effect on cement paste 

relaxation rates. 



 

155 

 

3. The apparent VE/VP behavior of hydrating cement paste due to dissolution of 

cement grains is a significant factor in the overall early-age creep and relaxation 

of the paste. 

4. When comparing the solidification theory with the computational scheme 

developed herein, the major difference between the two models is to which 

extent that unhydrated phases can transmit stress, and this difference can 

strongly influence the interpreted mechanisms behind the VE/VP behavior of 

cement composites. 

5. The time-dependent changes in the apparent VE/VP Poisson’s ratio of cement 

paste are likely controlled by dissolution of cement grains at early ages due to 

the high early-age hydration rate. Depending on the mechanical properties of C-

S-H as well as w/c and the loading age of cement paste, later-age cement paste 

is capable of exhibiting increasing, decreasing, or constant VE/VP Poisson’s 

ratio evolution with time.  

6. Dissolution of load-bearing cement grains of hydrating cement paste is a 

significant factor leading to the irreversible component of early age cement 

paste shrinkage. 

7. The mechanism of stress-induced dissolution of solid constituents can increase 

the overall relaxation/creep of cement paste, and depending on the magnitude of 

applied load, the effect of this mechanism can be significant and long lasting 

(e.g., for years). 
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8. Among the major solid phases that would dissolve under the effect of applied 

strain/stress, dissolution of C-S-H and CH phases can both be substantial 

sources leading to stress-induced relaxation/creep of cement paste. 

8.2 Limitations of the computational model and future research 

Besides the many advantages of the developed computational scheme, there are 

also many limitations of the current version of the computational routine. One of the 

primary limitations is lack of reliable experimental data of the mechanical properties of 

C-S-H. Experiments are needed to directly measure the aging of C-S-H VE/VP 

properties in order to test and help improve the accuracy of the aging function used in 

the model. Due to a lack of reliable data, the simulation results presented in the C-S-H 

aging section highlight only the potential for C-S-H aging to strongly contribute to the 

overall aging of cement paste creep and stress relaxation. Reliable experimental data that 

probe explicitly the age dependency of C-S-H creep or relaxation are needed to further 

evaluate the extent to which aging of the C-S-H plays a role in the aging, VE/VP 

properties of cement paste.  

Meanwhile, when simulating the early-age shrinkage behavior of cement paste, the 

coupling between the hydration reaction and the internal RH is neglected. Once the 

internal RH is reduced sufficiently, the hydration rate is substantially slowed or even 

halted (due to either kinetic or thermodynamic constraints). If hydration slows, then the 

dissolution of cement grains likely slows correspondingly, which would reduce the 

amount of irreversible shrinkage expected. However, at early ages where cement grain 
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dissolution rates are more significant, the internal RH is generally not reduced to the 

point where the hydration rate would be significantly affected. 

In the future, with the further finalization of this computational scheme and with the 

utilization of the mechanism of stress-induced dissolution of loading bearing solid 

constituents inside the model, it could be applied to further more different areas. First of 

all, prediction of the time-dependent moduli of cement paste under different applied 

stresses (including Poisson’s ratio) at different loading ages, including but not limited to 

early ages, could be achieved without conducting time-consuming experiments. 

Meanwhile, with the implementation of the mechanism of stress-induced dissolution of 

solid phases, the mechanism of drying creep, which is the combined result of mechanical 

creep and drying shrinkage, could be potentially explained through carrying out more 

virtual experiments utilizing the computational approach. Besides drying creep, some 

phenomena associated with supplementary cementing materials, e.g., increased 

autogenous shrinkage when adding silica fume into the mixture (which will induce more 

dissolved hydrates under pore pressures at early ages), could also be predicted by this 

program. Further improvement of the program and application of this program into these 

areas could be carried out in the future. 
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