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The application of numerical techniques to the study of energy landscapes of large systems relies on
sufficient sampling of the stationary points. Since the number of stationary points is believed to grow
exponentially with system size, we can only sample a small fraction. We investigate the interplay
between this restricted sample size and the physical features of the potential energy landscape for the
two-dimensional XY model in the absence of disorder with up to N = 100 spins. Using an eigenvector-
following technique, we numerically compute stationary points with a given Hessian index I for all
possible values of I. We investigate the number of stationary points, their energy and index distribu-
tions, and other related quantities, with particular focus on the scaling with N. The results are used
to test a number of conjectures and approximate analytic results for the general properties of energy
landscapes. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4880417]

I. INTRODUCTION

The stationary points of a potential energy function, de-
fined as configurations where the gradient of the potential
energy function vanishes, play a crucial role in understand-
ing and describing physical and chemical phenomena. Based
on these stationary points, a variety of methods, collectively
known as “potential energy landscape theory,” have attracted
a lot of attention, with applications to many-body systems
as diverse as metallic clusters, biomolecules, structural glass
formers, and coarse-grained models of soft matter.1, 2 In all
these examples, the potential energy landscape is a multivari-
ate function defined on a high-dimensional manifold.

In most applications, the potential energy function is non-
linear, and an analytic calculation of the stationary points is
therefore extremely difficult, and in most cases impossible.
Hence, one has to rely on numerical methods. In the present
paper we report the results of a numerical computation of sta-
tionary points of the XY model in the absence of disorder.

The XY model is among the simplest lattice spin models
amenable to an energy landscape approach. The even simpler
Ising model has a discrete configuration space and the notion
of a stationary point of the potential energy function is some-
what different. Despite the XY model’s simplicity, its potential
energy landscape exhibits a plethora of interesting properties,
and it has been helpful in understanding general features of
potential energy landscapes. We consider d-dimensional cu-
bic lattices � of side length L, so that the total number of
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lattice sites is N = Ld. For each lattice site k ∈ � we assign a
degree of freedom, parameterized by the angular variable θ k

∈ (− π , π ]. The Hamiltonian of the XY model is defined as

H = 1

2

∑

k∈�

∑

l∈N (k)

[1 − cos(θk − θl)], (1)

where N (k) denotes the set of nearest-neighbors of lattice site
k. No kinetic energy term is present in (1), and the potential
energy function is therefore identical to the Hamiltonian.

The Hamiltonian (1) appears in many different con-
texts. In statistical physics, the two-dimensional version of the
model, which is the one we investigate here, is known to ex-
hibit a Kosterlitz-Thouless transition.3 It describes a system of
N classical planar spin variables where each spin is coupled
to its nearest neighbors on the lattice. It is used to model low-
temperature superconductivity, superfluid helium, hexatic liq-
uid crystals, and other phenomena. In the context of quantum
field theory, H corresponds to the lattice Landau gauge func-
tional for a compact U(1) lattice gauge theory.4, 5 Each of the
stationary points corresponds to a fixed gauge, and a number
of interesting physical phenomena, such as the Gribov prob-
lem and the Neuberger problem, are related to the stationary
points and their properties.6 Furthermore, the Hamiltonian H
describes the nearest-neighbor Kuramoto model with homo-
geneous frequencies.7 The stationary points of H are the spe-
cial points in the phase space from the non-linear dynamical
systems point of view.8 Knowing the behavior of the model
near the stationary points can greatly enhance our understand-
ing of the full dynamical system.

In an earlier paper on the stationary points of the two-
dimensional XY model,9 specific classes were investigated,

0021-9606/2014/140(22)/224503/7/$30.00 © 2014 AIP Publishing LLC140, 224503-1
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predominantly by analytic means. This study was then com-
plemented by a numerical analysis, focusing on minima and
the pathways between them, which are mediated by transi-
tion states (stationary points of index one, i.e., with a sin-
gle negative eigenvalue of the Hessian matrix at the station-
ary point).10 In the present paper, we compute and analyze
general stationary points, without any restrictions on their in-
dices.

The paper is organized as follows: in Sec. II we review
previous results for the energy landscapes of XY models. We
then describe in Sec. III the numerical methods employed
in the present paper. The numerical results are presented in
Sec. IV, and our conclusions are summarized in Sec. V.

II. PREVIOUS RESULTS

The stationary points of the Hamiltonian (1) are defined
as the solutions of the set of equations,

∂H

∂θk

=
∑

j∈N (k)

sin(θj − θk) = 0, (2)

simultaneously for all k ∈ �. We have performed numerical
calculations for periodic boundary conditions as well as for
anti-periodic ones. While the choice of boundary conditions
affects the stationary points, the qualitative features turned
out to be very similar, leading to identical conclusions.
For this reason we report here only the results for periodic
boundary conditions. Periodic boundary conditions preserve
the global O(2) symmetry of the Hamiltonian (1). This
symmetry implies that all solutions of the stationary point
equations (2) occur in one-parameter families. Continuous
families of solutions are harder to deal with numerically,
but we avoid this complication by setting the variable
θN to zero, thereby explicitly breaking the global O(2)
symmetry. Once this symmetry has been broken, the Hamil-
tonian (1) has a unique ground state (global minimum) at
θ ≡ (θ1, . . . , θN ) = (0, . . . , 0), with vanishing energy
H(0, . . . , 0) = 0.

An analytic study of stationary points was reported
in Ref. 11 for the XY model on a fully-connected lattice,
i.e., a lattice where every site is considered neighboring to
every other site. With such “mean-field-type” interactions,
exponentially many (in N) isolated stationary solutions were
found, and also a family of continuous solutions at the maxi-
mum value of the energy, even after breaking the global O(2)
symmetry. The XY model on a fully-connected lattice is also
known as the Kuramoto model in complex systems applica-
tions. In Ref. 12 the continuous family of solutions, termed
an incoherent manifold, was observed and discussed.

The stationary points of the one-dimensional XY model
with periodic boundary conditions were also studied in
Ref. 11, and a class of stationary points was identified ana-
lytically. Subsequently, analytic expressions for all stationary
points of that model were reported in Refs. 5 and 6. As in
the fully connected model, some of the solutions were found
to be singular and occur in continuous families, even after
breaking the global O(2) symmetry. In Refs. 5, 13, and 14 all
the stationary points for the one-dimensional model with anti-

periodic boundary conditions were characterized. Some ana-
lytic results for a one-dimensional XY chain with long-range
interactions were reported in Ref. 15.

A general solution to the stationary equations for the XY
model on a cubic lattice in two or higher dimensions turns out
to be a formidable task. Constructing certain special classes
of analytical solutions is, however, feasible.9 While most of
these special solutions are isolated and nonsingular, singular
solutions also exist, either as isolated singular solutions, or as
continuous families (even after breaking the global O(2) sym-
metry of a lattice with periodic boundary conditions). Further
progress was made on the numerical side. A crucial step was
the observation that the stationary point equations (2) for the
XY model, despite the presence of trigonometric terms, can be
viewed as a system of coupled polynomial equations.5 Poly-
nomial equations are more amenable to numerical techniques
such as the polynomial homotopy continuation method,16 a
method that has been applied to compute the stationary points
of a variety of models in statistical mechanics and particle
physics.17–25 By applying this method to the polynomial form
of the XY model, numerical results for the stationary points of
the two-dimensional XY model were reported in Refs. 26 and
27 for small lattices of 3 × 3 sites.

Other numerical methods have also been applied to the
two-dimensional XY model, but they typically find only some
of the stationary points or minima,27, 28 not all of them. Based
on data obtained by a conjugate gradient method, it was
conjectured in Ref. 27 that the number of local minima of
the two-dimensional XY model increases exponentially with
the system size N, as expected.29, 30 In a more general XY
model, it was shown that the number of minima of the ran-
dom phase XY model increases exponentially in 2, 3, and 4
dimensions.28

The above mentioned minimization methods have a com-
mon shortcoming in that they are restricted to relatively small
systems of a few tens of lattice sites. In the present paper we
push this boundary by about an order of magnitude, treat-
ing two-dimensional XY models with up to a hundred lat-
tice sites by means of the numerical techniques introduced in
Sec. III.

III. NUMERICAL METHODS

We used the OPTIM program31 to find minima and
transition states for the 2D XY model. In particular, we re-
fined 500 000 random initial guesses for all lattice sizes up
to L = 10, i.e., a total of 100 spins. For each solution,
θ = (θ1, . . . , θN ), we then considered θ → −θ and θ → θ

± (π, π, . . . , π ), i.e., the symmetry-related solutions that pre-
serve the index of the second derivative matrix (Hessian),
defined as the number of negative eigenvalues. Local min-
ima have no negative eigenvalues, while transition states are
here defined according to the geometrical definition, as sta-
tionary points (vanishing gradient) with precisely one nega-
tive eigenvalue.32 OPTIM includes a wide variety of methods
for locating stationary points of different Hessian index, as
well as techniques for characterizing pathways. A modified
version of the limited-memory Broyden–Fletcher–Goldfarb–
Shanno (LBFGS) algorithm33, 34 was employed for all the
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minimizations in the present work, since this approach has
proved to be the most efficient in recent benchmarks.35 OP-
TIM implements both single- and double-ended36 transition
state searches via either gradient-only or second derivative-
based eigenvector-following37, 38 and hybrid eigenvector-
following algorithms.39, 40 Single-ended gradient only meth-
ods were generally used here.

In a corresponding paper, we also certify the numeri-
cal solutions we find in the present work using Smale’s α-
theory, which can prove if a numerical solution is in the
quadratic convergence region of an actual solution of the
system.41, 42

IV. NUMERICAL RESULTS

A. Numbers of stationary points

The number of stationary points of the potential energy
function is relevant for a number of applications, for exam-
ple when analyzing the complexity of (spin) glasses. For a
generic potential energy function of a system of N degrees
of freedom, the number of stationary points is expected to
grow exponentially with N.29, 30 Hence a numerical computa-
tion will yield only a small subset of all the stationary points
already for moderately large systems. The total number of sta-
tionary points obtained in our numerical calculations (up to
5 × 106 for N = 100) reflects the computational effort in-
volved in this study. In spite of this effort, our sample does
not reproduce the actual number of stationary points that the
system has (Fig. 1). The situation is different when constrain-
ing the search to minima or transition states (stationary points
of index one).32 Their populations, n0 and n1, while also ex-
pected to grow exponentially, are much smaller, and we can
expect to find at least a large fraction of them. This expecta-
tion is consistent with the data in Fig. 1, where an exponential
increase with N is found for both n0 and n1.

Another way to look at these exponential increases is by
considering the ratio of the logarithms,

RI,J = ln nI

ln nJ

, (3)

where nI and nJ denote the numbers of stationary points with
index I and J, respectively. If nI and nJ indeed increase ex-
ponentially with N, nI ∝ exp (aIN), the ratio of logarithms

FIG. 1. The total number of stationary points nsp, the number of minima n0,
and the number of transition states n1, as a function of system size N.

FIG. 2. Ratio of the logarithm of the number of transition states to the loga-
rithm of the number of minima vs. 1/N.

will be a constant, R ∼ aI/aJ, asymptotically for large N. The
same argument also holds for the ratio Rsp,J , where ni in the
ratio (3) is replaced by the total number of stationary points
nsp = ∑

I nI . On the basis of our numerical results, we plot-
ted in Fig. 2 the ratios R1, 0 and Rsp,0 vs. the inverse system
size 1/N. The flat, almost-constant behavior of R1, 0 is as ex-
pected from the above reasoning and previous theory.29, 30 The
strong decrease (with increasing N) of Rsp,0 is due to the nu-
merical limitations, indicating that only a small fraction of all
stationary points were found.

A more detailed analysis of the index-dependence of the
numbers of stationary points is shown in Fig. 3. In this plot
the numbers of stationary points of a given index I are shown
vs. the index density I = (N − 1). The observed behavior is in
part due to the properties of the system, and in part determined
by the finite computational resources. The steep increase or
decrease at the flanks of the curves (i.e., around i = 0 and
i = 1) reflects the actual behavior of the total number of sta-
tionary points of that index, which is expected to follow a
binomial distribution.30 The flat region in between (except for
the 4 × 4 and 5 × 5 lattices) is an artefact of the numerical
limitations.

B. Energies at stationary points

A physical system at a given energy (or temperature) will
sample a subset of the energy landscape. It is therefore not

FIG. 3. The number nsp of stationary points as a function of the index density
i, shown for various lattice sizes N = L × L.
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FIG. 4. The number nsp of stationary points in intervals [e, e + 0.01] of the
energy density e = E/N with N = L × L.

surprising that the stationary energies, i.e., the Hamiltonian
(1) evaluated at the various stationary points, play an impor-
tant role in energy landscape applications.

Analyzing the number of stationary points as a func-
tion of energy, we find the bell-shaped distribution shown in
Fig. 4. As for the number of stationary points as a function of
the index density in Fig. 3, the observed behavior reflects in
part the properties of the system and in part the numerical lim-
itations. The two plots are in fact closely linked, as energy and
index density are strongly correlated, as illustrated in Fig. 5.
Such a correlation is expected: The minima (stationary points
of index 0) will typically be of lower energy than the maxima
(stationary points of index N). Or, more generally, the energy
of stationary points of index I + 1 is expected to be a higher
average than for those of index I.32 Based on this observa-

FIG. 5. Density plot of the frequencies of the occurrence of stationary points
of a certain index density i and energy density e. The frequencies are ob-
tained as the number of stationary points with e ∈ [10−2n, 10−2(n + 1)) and
i ∈ [10−2m, 10−2(m + 1)), where n, m ∈ {0, 1, 2, . . . }. The distribution is
sharply peaked around a bent curve in the (i, e)-plane, indicating the strong
correlation between index and energy densities. The plot shown is for a lat-
tice of size 10 × 10. The distributions for smaller lattices look similar, but
are less sharply peaked.

FIG. 6. Relative frequency of the occurrence of stationary energy differences
�i, obtained as the number of �i-values in the binning intervals [5 × 10−7n,
5 × 10−7(n + 1)) with n ∈ {0, 1, 2, . . . }.

tion we conclude that, similar to Fig. 3, the steep flanks of the
curves in Fig. 4 reflect the actual dependence of the number
of stationary points on the energy, whereas the flatter regions
of the plot correspond to energies where the actual numbers
of stationary points are so large that only a small fraction is
found numerically.

C. Energy differences

The difference in energy between two stationary points
can determine thermodynamic and dynamic properties. For
example, energy barriers appear exponentially in unimolec-
ular rate theory in the canonical ensemble.43 Here, instead
of looking at energy differences between specific states, we
follow a statistical approach, investigating the frequency of
occurrence of energy gaps of a certain size. Somewhat in
the spirit of Wigner’s level statistics,44 we focus on the
differences,

�i = ei − ei−1 (4)

between neighboring values of the stationary energy densi-
ties ei = H (θ s

i )/N . The various stationary points θ s
i are sorted

such that the energy densities ei form an increasing sequence.
On the basis of the differences �i between neighboring sta-
tionary energies, all other differences can be computed.

In Fig. 6, the relative frequency for the occurrence of en-
ergy differences �i is shown for various system sizes N. For
all values of N, the maximum relative frequency is attained
for the smallest binning interval, �i ∈ [0, 0.05). The over-
all trend of all the curves is a monotonic decrease for larger
�i, superimposed by fluctuations. At least for the smaller
system sizes shown, the relative frequency of small �i val-
ues grows with increasing system size. Such behavior is ex-
pected: An exponentially (in N) growing number of station-
ary energies has to be accommodated in a finite interval of
energy densities, and this observation implies that typical dis-
tances between neighboring energy densities will decrease
dramatically. For the largest system sizes studied (9 × 9 and
10 × 10) the tendency towards smaller �i is virtually absent,
which we attribute to the fact that only a small fraction of the
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FIG. 7. As in Fig. 6, but for the normalized energy differences �i/� and
binning intervals [0.05n, 0.05(n + 1)) with n ∈ {0, 1, 2, . . . }. The collapsed
data nicely follow a decaying exponential exp(−�i/�).

exponentially many stationary points could be computed for
these system sizes, with absolute sample sizes that are virtu-
ally N-independent.

The trivial tendency towards smaller �i-values, caused
by the increasing number of stationary points, can be elimi-
nated by normalizing the �i to a unit average. This normal-
ization is achieved by computing the sample average

� = 1

M

M∑

i=1

�i, (5)

where M is the sample size. The normalized energy differ-
ences �i/� are shown in Fig. 7 for various system sizes N.
With the exception of the very small lattice sizes of 5 × 5 and
6 × 6, the various curves now collapse onto each other, indi-
cating that the distribution of normalized energy differences is
largely independent of the system size, and presumably con-
verges in the large-N limit. The collapsed data appear to fol-
low a decaying exponential exp(−�i/�); note that no fitting
parameter is involved. The use of such a decaying exponen-
tial is inspired by Wigner’s level statistics for the differences
between neighboring energy eigenvalues of the Hamiltonian
of an integrable quantum mechanical system.

D. Hessian determinant at stationary points

The energies at stationary points, discussed in Secs. IV B
and IV C, give the leading, zeroth order contribution of a Tay-
lor expansion around a stationary point. The next nonvanish-
ing term is quadratic, with the expansion coefficients given by
the elements of the Hessian matrix. The quadratic expansion
corresponds to standard normal mode analysis and generates
the harmonic vibrational density of states, which can be em-
ployed to analyze equilibrium thermodynamic properties, as
well as rate coefficients.1

One way to condense the information contained in the
many matrix elements of the Hessian matrix into a single

number is by computing its index I, as introduced in Sec. III,
where only the signs of the eigenvalues enter. To condense in-
formation about the magnitude of the eigenvalues into a sin-
gle number, we compute the determinant at a stationary point
(equal to the product of all the eigenvalues). Zero eigenvalues
that result from translational or rotational symmetry must first
be eliminated from consideration, either by projection, shift-
ing, or coordinate transformation.1 Roughly speaking, a small
value of the determinant corresponds to a “flatter” stationary
point, and a large value to a “narrower” one, with lower vibra-
tional entropy. The Hessian determinant at a stationary point
θ s, and more precisely its rescaled version,

D = | detH(θ s)|1/N , (6)

has been proposed as an indicator for (the absence of) phase
transitions in the limit of large system size; see Refs. 45–47
for details.

For each stationary point computed, the pair (e, D) is cal-
culated, where e = H (θ s)/N is the energy density at the sta-
tionary point. The density plots in Fig. 8 illustrate that the
rescaled determinant D and the energy density e are strongly
correlated, accumulating around a bow-shaped curve in the

FIG. 8. Density plots of the frequencies of the occurrence of stationary
points of energy density e and rescaled determinant D. The frequencies are
obtained as the number of stationary points with e ∈ [10−2n, 10−2(n + 1))
and D ∈ [10−2m, 10−2(m + 1)), where n, m ∈ {0, 1, 2, . . . }. The plots are
for lattice sizes 6 × 6 (top) and 10 × 10 (bottom).
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FIG. 9. Frequency of occurrence of eigenvalues of the Hessian in the binning
intervals [0.01n, 0.01(n + 1)) with n ∈ {0, 1, 2, . . . }.

(e, D)-plane. With increasing system size, the distribution be-
comes more sharply peaked around this curve. This obser-
vation suggests that, in the limit of infinite system size, the
rescaled Hessian determinant D is sharply localized for each
value of e, behaving like a thermodynamic quantity.

E. Eigenvalues

Various quantities have been studied previously in rela-
tion to the Hessian eigenvalues.48 In the harmonic normal
mode approximation, the vibrational partition function and
associated density of states are determined by the product
of normal mode frequencies. The corresponding transition
state theory43 rate constants also depend on these frequen-
cies, which are obtained from the mass-weighted Hessian
eigenvalues.1 Some interesting properties have also been ex-
amined for the smallest Hessian eigenvalue in terms of catas-
trophe theory.49

Let λ
(I )
i denote the lowest eigenvalue of a stationary point

of index I. We can average over the lowest eigenvalue at each
stationary point for a particular index I,

〈λ〉(I ) = 1

nsp(I )

nsp(I )∑

i=1

λ
(I )
i . (7)

In Fig. 9, we plot a histogram of all the eigenvalues of
the Hessian matrices computed at all the stationary points we
obtained. The plots seem to become bell-shaped curves as N
increases, with a sharp discontinuity at the origin representing
the fact that we have only considered nonsingular stationary
solutions in this study.

In the binary Lennard-Jones liquid at constant volume, a
linear decrease of the average of the lowest eigenvalues of the
Hessian is seen when the energy is increased above the thresh-
old energy at which the first stationary points with higher
index are found,50 i.e., a linear decrease with i. In atomic clus-
ters bound by the pairwise Lennard-Jones potential,51 the be-
havior of the average lowest eigenvalue was shown to tend to
have a quadratic dependence on i as the number of particles
increased.48 In the present work, we observe a linear decrease
of the lowest eigenvalue as a function of i beyond a threshold
value for i in Fig. 10. This behavior is therefore closer to the
bulk structural glass former than to an atomic cluster.

i
0.0 0.2 0.4 0.6 0.8 1.0

−4

−3

−2

−1

0

1

λ
(I

)

L = 4
L = 5
L = 6

L = 7
L = 8
L = 9

L = 10

FIG. 10. The average lowest eigenvalue 〈λ〉(I) as a function of index
density i.

V. DISCUSSION AND CONCLUSIONS

We have numerically computed stationary points of the
potential energy landscape of the two-dimensional XY model
on a square lattice for systems of up to N = 10 × 10 sites.
Since the number of stationary points is believed to grow ex-
ponentially with N, we can in general sample only a small
fraction of them. As a consequence, the results reflect prop-
erties of the underlying energy landscape, but also of the
restricted sample size. The main motivation for the present
study was to better understand the interplay of physical fea-
tures and the restricted sample size, as this is an important
aspect in the application of numerical techniques to the study
of energy landscapes of large systems.

The interplay of physical features and the restricted sam-
ple size becomes particularly obvious, and can be analyzed
by classifying the stationary points by their Hessian index I.
Stationary points of indices around I = N/2 are much more
numerous than those of indices close to 0 or close to N.
For this reason, the available sample sizes faithfully repro-
duce the physical properties of stationary points of small or
large indices, while the numerical limitations become dom-
inant for intermediate values of I. These different regimes,
and the crossover between them, are illustrated from var-
ious perspectives in Figs. 1–4. In the regime of small or
large indices where the sample sizes are sufficient, expo-
nentially increasing numbers of stationary points, a bino-
mial distribution in index density, and other properties ex-
pected from approximate theoretical arguments are nicely
confirmed.

Restricted sample sizes pose a problem for quantities that
are—like the above examples—based on the numbers of sta-
tionary points. In Secs. IV C–IV E we have studied several
other properties of the energy landscape where the problem
of restricted sample size can be avoided, or at least attenuated.
Examples include the (rescaled) determinants of Hessian ma-
trices at stationary points in Sec. IV D and the averaged low-
est eigenvalues in Sec. IV E. In Sec. IV C we have analyzed
the distribution of the distances between neighboring sta-
tionary energy levels. While such distributions are frequently
studied for eigenenergies in the context of quantum chaos,
their application in the context of energy landscapes is novel.
The Poisson-type distributions we find are familiar from the
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quantum mechanical counterpart and they seem to be little af-
fected by the small sample size of the numerical calculations.
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