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Reversible protein phosphorylation, regulated by protein kinases and phosphatases,
mediates a switch between protein activity and cellular pathways that contribute to a
large number of cellular processes. The Mycobacterium tuberculosis genome encodes
11 Serine/Threonine kinases (STPKs) which show close homology to eukaryotic kinases.
This study aimed to elucidate the phosphoproteomic landscape of a clinical isolate
of M. tuberculosis. We performed a high throughput mass spectrometric analysis of
proteins extracted from an early-logarithmic phase culture. Whole cell lysate proteins were
processed using the filter-aided sample preparation method, followed by phosphopeptide
enrichment of tryptic peptides by strong cation exchange (SCX) and Titanium dioxide (TiO2)
chromatography. The MaxQuant quantitative proteomics software package was used for
protein identification. Our analysis identified 414 serine/threonine/tyrosine phosphorylated
sites, with a distribution of S/T/Y sites; 38% on serine, 59% on threonine and 3%
on tyrosine; present on 303 unique peptides mapping to 214 M. tuberculosis proteins.
Only 45 of the S/T/Y phosphorylated proteins identified in our study had been previously
described in the laboratory strain H37Rv, confirming previous reports. The remaining 169
phosphorylated proteins were newly identified in this clinical M. tuberculosis Beijing
strain. We identified 5 novel tyrosine phosphorylated proteins. These findings not
only expand upon our current understanding of the protein phosphorylation network
in clinical M. tuberculosis but the data set also further extends and complements
previous knowledge regarding phosphorylated peptides and phosphorylation sites in
M. tuberculosis.

Keywords: M. tuberculosis, phosphoproteomics, tyrosine phosphorylation, serine phosphorylation, threonine

phosphorylation

INTRODUCTION
According to the World Health Organization (WHO), tubercu-
losis (TB) ranks as the second leading cause of death from an
infectious disease worldwide, after HIV (WHO|Global tubercu-
losis report 2014, 2014). It is estimated that one third of the
world’s population is infected with Mycobacterium tuberculosis,
the causative agent of TB and 8.6 million new TB cases were
reported in 2012 alone (WHO|Global tuberculosis report 2013,
2013). In order to control this epidemic there is a critical need for
the development of effective and affordable anti-TB therapy and
diagnostic tools.

Harnessing the power of the field of proteomics provides
a unique opportunity to identify novel protein candidates for
diagnosis and drug targets of pathogenic bacteria. Of particular

interest is the identification of proteins with post-translational
modifications (PTMs) as these modifications are often critical
to protein functions, such as regulating protein-protein interac-
tions, subcellular localization or modification of catalytic sites
(Seo and Lee, 2004; Gupta et al., 2007). Protein phosphoryla-
tion is an important reversible PTM that directly or indirectly
regulates signal transduction cascades linking the intracellular
and extracellular environments. In bacteria, protein phosphory-
lation plays a fundamental role in the regulation of key processes
ranging from metabolism and cellular homeostasis to cellular sig-
naling which can be mediated by two classes of phosphorylation
events (Cozzone, 1998). The underlying molecular mechanisms
regulating protein phosphorylation and dephosphorylation is of
great physiological importance due to its ability to ultimately
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affect protein activity, function, half-life or subcellular localiza-
tion (McConnell and Wadzinski, 2009). Until recently it was
thought that histidine/aspartate phosphorylation was the main
mediator of signal transduction in bacteria (Frasch and Dworkin,
1996). However, with the advancement of mass spectrometry-
based analyses serine/threonine and tyrosine kinases have been
identified in a number of different bacteria (Macek et al., 2007;
Macek and Mijakovic, 2011; Mijakovic and Macek, 2012).

The M. tuberculosis genome encodes 11 Serine/Threonine
kinases (STPK’s) (PknA, PknB, PknD, PknE, PknF, PknG, PknH,
PknI, PknJ, PknK, PknL), two tyrosine phosphatases (PtpA,
PtpB) and 11 two-component systems, highlighting the complex-
ity of signaling network mediated by protein phosphorylation
and thereby their potential as drug targets (Chopra et al., 2003;
Koul et al., 2004; Sharma et al., 2004; Sala and Hartkoorn, 2011).
Prisic et al. described the Serine/Threonine (S/T) phosphoryla-
tion profiles of the laboratory strain M. tuberculosis H37Rv under
6 different culture conditions (Prisic et al., 2010). This study iden-
tified 301 phosphorylated proteins after combining data from six
different culture conditions (Prisic et al., 2010) and identified
four phosphorylated STPKs, ribosomal and ribosome-associated
proteins as well as phosphorylated substrates which suggest that
protein phosphorylation provides a mechanism for regulating
key physiological process during infection. A more recent study
of H37Rv further expanded the knowledge of the phosphopro-
teome by identifying novel tyrosine (Y) phosphorylated proteins
in M. tuberculosis further supporting the broad regulation of its
physiology by phosphorylation (Kusebauch et al., 2014).

In this study we report the phosphoproteome of a previously
described clinical Beijing genotype M. tuberculosis isolate at early-
logarithmic growth phase in liquid culture to provide further
insight the influence of S/T/Y phosphorylation events on bacterial
growth and virulence (de Souza et al., 2010). We used a combi-
nation of strong cation exchange (SCX) with Titanium dioxide
(TiO2) enrichment in a mass spectrometry-based phosphopro-
teomic analysis of a hyper-virulent clinical M. tuberculosis isolate
(de Souza et al., 2010). We confirmed the presence of previ-
ously described M. tuberculosis phosphorylated proteins and also
identified novel phosphorylated proteins and sites. In addition,
this dataset identified novel tyrosine phosphorylation events, and
thereby confirmed that there are multiple tyrosine kinase targets
in this clinically relevant M. tuberculosis strain.

MATERIALS AND METHODS
CELL CULTURE AND LYSATE PREPARATION
A previously described hyper-virulent clinical Beijing genotype
Mycobacterium tuberculosis isolate, SAW5527, isolated from a TB
patient attending a primary health care clinic in the Western
Cape province, South Africa was used for this phosphopro-
teomics analysis (de Souza et al., 2010). Secondary cultures were
inoculated into 50 ml 7H9 Middlebrooks medium supplemented
with Dextrose and Catalase and incubated at 37◦C until early-
logarithmic phase (OD600 between 0.6 and 0.7). Mycobacterial
cells were collected by centrifugation (2000 × g for 10 min at 4◦C)
and washed two times with cold lysis buffer containing 10 mM
Tris-HCl (pH 7.4), 0.1% Tween-80, Complete Protease inhibitor
cocktail (Roche, Mannheim Germany) and Phosphatase inhibitor

cocktail (Roche, Mannheim Germany). An equal amount of
0.1 mm glass beads (Biospec Products Inc., Bartlesville, OK) was
added to the cell pellet after centrifugation together with cold
300 µl lysis buffer and 10 µl DNaseI (2U/ml) (NEB, New England
Laboratories). Lysis was achieved by mechanical bead-beating in
a Rybolyser (Bio101 SAVANT, Vista, CA) for 6 cycles of 20 s at
a speed of 4.0 m.s−1, with 1 min cooling periods on ice. The
whole cell lysates were filter-sterilized with a sterile 0.22 µm
pore acrodisc 25 mm PF syringe filter (Pall Life Sciences, Pall
Corporation, Ann Arbour, MI) and stored at −80◦C. The pro-
tein concentration of the whole cell lysate was determined using
the RC DC Protein assay according to manufacturer’s instructions
(BioRad). A single biological replicate was analyzed in triplicate
for downstream phosphoproteomic analysis.

FILTER AIDED SAMPLE PREPARATION AND TRYPSIN DIGESTION
Four milligrams of concentrated whole cell lysate proteins was
heated in 4% SDS buffer and 0.1 M dithiothreitol (DTT) in
100 mM Tris/HCl pH 7.5. The samples were processed using Filter
Aided Sample Preparation (FASP) (Wiśniewski et al., 2009). In
brief, 4 mg dried whole cell lysate protein was resuspended in
250 µl of urea (UA) and loaded onto a 15 ml Amicon filtration
device (30 kDa MWCO) and centrifuged at 2000 × g for 40 min
at 25◦C. After centrifugation, the flow-through was collected in
a clean falcon tube and discarded. The concentrated whole cell
lysate proteins in the filter unit were diluted in 2 ml 8 M Urea in
0.1 M Tris/HCl (pH 8.5) and re-centrifuged to remove the SDS.
The flow-through was discarded and the remaining proteins in
the filter unit were alkylated by mixing with 1.5 ml 50 mM iodac-
etamide (IAA) and incubated in the dark for 20 min to irreversibly
modify cysteine. The alkylated proteins were equilibrated with
2 ml 50 mM ammonium bicarbonate (ABC) and digested with
trypsin (Promega) in a protein to enzyme ratio of 100:1 at 37◦C
overnight. After trypsin digestion the filter unit is transferred to a
clean collection tube and the peptides were eluted by centrifuged
at 14 000 × g for 10 min. The eluted peptides were diluted in 50 µl
water to avoid desalting for further processing of the peptide and
acidified with trifluoroacetic acid (TFA).

FRACTIONATION OF PEPTIDES BY STRONG CATION EXCHANGE (SCX)
Extracted trypsin digested peptides were diluted to a volume of
7 ml in Solvent A (5 mM monopotassium phosphate (KH2PO4)
30% acetonitrile (ACN), pH 2.7). The pH of the diluted pep-
tide samples was adjusted to 2.7 and made up to a volume of
10 ml with 100% ACN. The respective peptide samples were
then separated at pH 2.7 by strong cation exchange (SCX ) by
loading each peptide mixture onto a cation exchanger column
(3.0 mm × 20 cm) (Poly LC, Columbia, MD) containing 5 µm
polysulfoethyl aspartamine beads with a 200 Å pore size and
a flow rate of 350 µl/min−1 equilibrated with SCX solvent A.
The flow-through was collected and the bound peptides were
eluted from the columns using an increasing salt gradient (0–
30%) containing 5 mM KH2PO4 pH and 150 mM KCl. A total
of 9 fractions were collected; 5 fractions generated by SCX based
on UV absorbance (220 and 280), 3 from the flow-through and
1 salvage fraction (containing washes from the cation exchanger
column) from the SCX column as an additional fraction.
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ENRICHMENT OF PHOSPHOPEPTIDES WITH TiO2 BEADS
All nine fractions (5 SCX, 3 SCX flow-through, 1 salvage frac-
tion) were subjected to Titanium dioxide (TiO2) phosphopeptide
enrichment. The TiO2-beads,10 µm in size, (GL Sciences, Inc.,
Japan) was resuspended 30 mg/ml dihydrobenzoic acid (DHB)
(Sigma) to prevent non-specific binding. Each of the 9 fractions
was incubated 4 times with TiO2 at a peptide to bead ratio of
1:2–1:8. Each fraction was rotated for 30 min, and then briefly
centrifuged (14,000 g × 30 s). The supernatants were aspirated
and transferred to a new labeled tube and the phosphopeptides
bound to the TiO2beads were washed twice with 30% ACN and
3% TFA followed by washing twice with 75% ACN and 0.3%
TFA. The enriched phosphorylated peptides were eluted with elu-
tion buffer containing 25% ammonia and ACN pH10. The eluted
phosphopeptides were desalted using in house prepared C18

Stage tips.

LC-MS/MS ANALYSIS
The peptides were separated on a column packed in-house with
C18 beads (reprosil-AQ Pur, Rd Maisch) on an Proxeon Easy-nLC
system (Proxeon Biosystems, Odense, Denmark) using a binary
gradient with buffer A (0.5% acetic acid in water) and buffer B
(0.5% acetic acid and 80% ACN). The 4 µl of the enriched phos-
phopeptides from each of the 9 fractions were injected 3 times and
were loaded directly without any trapping column with buffer A
at a flow rate of 500 nl/min. Elution was carried out at a flow rate
of 250 nl/min, with a linear gradient from 10 to 35% buffer B
over a period of 95 min followed by 50% buffer B for 15 min. At
the end of the gradient the column was washed with 90% buffer B
and equilibrated with 5% buffer B for 10 min. The LC system was
directly coupled in-line with the LTQ-Orbitrap Velos instrument
(Thermo Fisher Scientific) via the Proxeon Biosystems nano-
electrospray source. The mass spectrometer was programmed to
acquire in a data-dependant mode with a resolution of 30,000
at 400 m/z with lock mass option enabled for the 445.120025.
However, the target lock mass abundance was set to 0% in order to
save the injection time for lock mass. For full scans 1E6 ions were
accumulated within a maximum injection time of 250 ms in the
C trap and detected in the Orbitrap mass analyser. The 10 most
intense ions with charge states ≥2 were sequentially isolated and
fragmented by high-energy collision dissociation (HCD) mode
in the collision cell with normalized collision energy of 40% and
detected in the Orbitrap analyser at 75,000 resolution. For HCD
based method, the activation time option in the Xcalibur file was
set to 0.1 ms. For the high-low strategy, full scans were acquired
in the Orbitrap analyser at 60,000 resolution as parallel acquisi-
tion is enabled in the high-low mode. Up to the 10 most intense
peaks with charge states ≥2 were selected for sequencing to a tar-
get value of 5000 with a maximum injection time of 25 ms and
fragmented in the ion trap by HCD with normalized collision
energy of 35%, activation of 0.25 and activation time of 10 ms.

DATABASE SEARCH
The raw data acquired were processed using MaxQuant software
version (1.4.1.2) and processed as per default workflow. Since
HCD spectra were acquired in profile mode, deisotoping was
performed similar to survey MS scans to obtain singly charged

FIGURE 1 | Growth curves of hyper-virulent M. tuberculosis Beijing

strain. Growth monitored over a 24 day period using OD600 measurements
in 7H9 Middlebrooks liquid media supplemented with dextrose and
catalase.

peak lists and searched against the M. tuberculosis H37Rv protein
database (version R11 tuberculist.epfl.ch). The search included
cysteine carbamidomethylation as a fixed modification while
N-acetylation, oxidation of methionine and phosphorylation at
serine, threonine and tyrosine were set as variable modifications.
Up to two missed cleavages were allowed for protease digestion
and a peptide had to be fully tryptic. Identifications were fil-
tered at 1% FDR at three levels namely; site, peptide and protein
using reversed sequences. As such there is no fixed cut-off score
threshold but instead spectra were accepted until the 1% false
discovery rate (FDR) is reached. Only peptides with a minimum
length of 7 amino acids were considered for identification and
detected in at least one or more of the replicates. All phospho-
peptide spectra were manually validated by applying stringent
acceptance criteria: only phosphorylation events on S/T/Y with
a localization probability of ≥0.75 and PEP ≤ 0.01 were used
for further analysis and reported as high confidence localized
phosphosites.

GENE ONTOLOGY ANALYSIS
The categorization of identified phosphorylated proteins in
terms of functional categorization, molecular function, biolog-
ical processes and cellular components was carried out using
TubercuList-Mycobacterium tuberculosis Database.

RESULTS
In this study we set out to analyse the phosphoproteome of a
hyper-virulent Beijing genotype M. tuberculosis isolate by extract-
ing whole cell lysate proteins at early-logarithmic growth (OD600

of 0.8) (Figure 1) which resulted in the identification of 619
MS/MS spectra. The 274 LC-MS/MS spectra that fulfilled the cri-
teria for high confidence phosphosites identified a total of 414
(38:59:3%) S/T/Y phosphorylation sites present in 214 M. tuber-
culosis H37Rv proteins (Supplementary Table S2; Supplementary
Figure S1).
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Table 1 | List of phosphopeptides identified in this and previous studies of M. tuberculosis.

Rv numbers Protein name Phosphopeptides Phospho-residue References

Rv0007 Rv0007 FISGASAPVTGPAAAVR Not known Prisic et al., 2010

FIS*GAS*APVT*GPAAAVR S; T This study

FIS*GASAPVT*GPAAAVR S; T This study

Rv0014c PknB AIADSGNSVTQTAAVIGTAQYLSPEQAR Not known Prisic et al., 2010

AIADSGNSVT*QT*AAVIGTAQYLSPEQAR T This study

AIADSGNS*VT*QTAAVIGTAQYLSPEQAR S; T This study

TSLLSSAAGNLSGPRTDPLPR Not known Prisic et al., 2010

TSLLSSAAGNLS*GPRTDPLPR S This study

TSLLSSAAGNLSGPRT*DPLPR T This study

Rv0015c PknA RPFAGDGALT$VAMK T Prisic et al., 2010; This study

Rv0020c FhaA FEQSSNLHTGQFR Not known Prisic et al., 2010

FEQS*SNLHT*GQFR S; T This study

HPDQGDY$PEQIGYPDQGGYPEQR Y Kusebauch et al., 2014; This study

QDYGGGADY$TR Y Kusebauch et al., 2014; This study

VPGY$APQGGGYAEPAGR Y Kusebauch et al., 2014; This study

Rv0175 Rv0175 AADSAESDAGADQTGPQVK Not known Prisic et al., 2010

AADSAESDAGADQT*GPQVK T This study

Rv0204c Rv0204c DPPT$DPNLR Prisic et al., 2010; This study

Rv0227c Rv0227c GGFEEPVPGAEAETEKLPTQRPDFPR Not known Prisic et al., 2010

GGFEEPVPGAEAET$EK T Prisic et al., 2010; This study

Rv0351 GrpE RIDPET#GEVR T Prisic et al., 2010

IDPET*GEVR T This study

Rv0389 PurT AAGHQVQPQT$GGVSPR T Prisic et al., 2010; This study

Rv0410c PknG SGPGTQPADAQTAT#SATVRPL T O’Hare et al., 2008

S*GPGT*QPADAQTATSATVR S; T This study

SGPGTQPADAQTAT*S*ATVRPLSTQAVFR S; T This study

SGPGTQPADAQTAT*SAT*VR T This study

PLST#QAVFRPDFGDEDNFPHPTLGPDTEPQDR T O’Hare et al., 2008

PLS*T*QAVFR S; T This study

Rv0421c Rv0421c GLAEGPLIAGGHS#YGGR S Prisic et al., 2010

GLAEGPLIAGGHS*Y*GGR S; Y This study

Rv0440 GroEL2 KWGAPTIT$NDGVSIAK T Molle et al., 2006

WGAPTIT*NDGVSIAK T This study

AVEKVT#ETLLK T Molle et al., 2010

VTET*LLK T This study

Rv0497 Rv0497 RGDSDAITVAELT$GEIPIIR T Prisic et al., 2010; This study

T*GPHPETESSGNR T This study

Rv0685 Tuf PDLNET$KAFDQ T Sajid et al., 2011

VLHDKFPDLNET*K T This study

Rv0733 Adk LGIPQISTGELFR Not known Prisic et al., 2010

LGIPQIS*TGELFR S This study

Rv0822c Rv0822c VHDDADDQQDTEAIAIPAHSLEFLSELPDLR Not Known Prisic et al., 2010

VHDDADDQQDT*EAIAIPAHSLEFLSELPDLR T This study

Rv0896 GltA2 ADTDDT$ATLR T Prisic et al., 2010; This study

Rv0931c PknD PGLTQT$GTAVG T Durán et al., 2005; This study

AASDPGLT*QT*GTAVGTYNYMAPER T This study

WSPGDS*AT*VAGPLAADSR S; T This study

WSPGDSATVAGPLAADSR Not known Prisic et al., 2010

WSPGDS*AT*VAGPLAADSR S; T This study

WSPGDS*ATVAGPLAADS*R S This study

Rv1388 MihF AQEIMTELEIAPT$RR T Prisic et al., 2010; This study

Rv1719 Rv1719 S$GGIQVIAR S Prisic et al., 2010This study

(Continued)
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Table 1 | Continued

Rv numbers Protein name Phosphopeptides Phospho-residue References

Rv1746 PknF DDTRVS$QPVAV S Durán et al., 2005; This study

Rv1747 Rv1747 YPTGGQQLWPPSGPQR T Prisic et al., 2010

YPT*GGQQLWPPS*GPQR S; T This study

IPAAPPSGPQPR Not known Prisic et al., 2010

IPAAPPS*GPQPR S This study

Rv1820 IlvG STDTAPAQTMHAGR Not Known Prisic et al., 2010

STDT*APAQTMHAGR T This study

Rv1827 GarA DQTSDEVTVETTSVFR Not known Prisic et al., 2010

DQTSDEVT*VET*T*SVFR T This study

VTVETT$SVFRA T Prisic et al., 2010; This study

DQTSDEVTVET$TSVFR T Villarino et al., 2005; This study

DQT*SDEVTVET*TSVFR T This study

DQTSDEVT*VET*TSVFR T This study

DQTSDEVTVET*T*SVFR T This study

DQTSDEVT*VET*T*SVFR T This study

Rv2094c TatA VDPSAASGQDS*T*EARPA S; T This study

AEASIETPTPVQSQR Not known Prisic et al., 2010

AEAS*IETPTPVQSQR S This study

AEASIETPT*PVQSQR T Prisic et al., 2010; This study

VDPSAASGQDSTEARPA Not known Chou et al., 2012

VDPSAASGQDST*EARPA T This study

Rv2127 AnsP1 ERLGHT$GPFPAVANPPVR T Prisic et al., 2010; This study

Rv2151c FtsQ VADDAADEEAVT#EPLATESK T Prisic et al., 2010; This study

Rv2197c Rv2197c MAEAEPATRPT#GASVR T Prisic et al., 2010; This study

MAEAEPAT#RPTGASVR T Prisic et al., 2010

MAEAEPAT*RPT*GASVR T This study

Rv2198c MmpS3 ASGNHLPPVAGGGDKLPSDQTGETDAYSR Not known Prisic et al., 2010

ASGNHLPPVAGGGDKLPSDQT*GETDAY$SR T; Y Kusebauch et al., 2014; This study

Rv2536 Rv2536 ADDSPTGEMQVAQPEAQTAAVATVER Not known Prisic et al., 2010

AADTDVFSAVR Not known Prisic et al., 2010

AADT*DVFS*AVR T This study

Rv2536 Rv2536 EAPT$EVIR T Prisic et al., 2010; This study

ADDSPT*GEMQVAQPEAQTAAVAT*VER T This study

ADDS*PTGEMQVAQPEAQTAAVATVER S This study

Rv2606c SnzP MDPAGNPATGT$AR T Prisic et al., 2010; This study

MDPAGNPAT*GTAR T This study

Rv2694c Rv2694c RIPGIDT$GR T Prisic et al., 2010; This study

Rv2696c Rv2696c EAAAAQADT#QRQAAAGVAR T Prisic et al., 2010

EAAAAQADT*QR T This study

Rv2921 FtsY IDTSGLPAVGDDATVPR Not known Prisic et al., 2010

IDTS*GLPAVGDDATVPR S This study

IDT*SGLPAVGDDAT*VPR T This study

IDT*SGLPAVGDDAT*VPR T This study

Rv2940c Mas ALAQYLADTLAEEQAAAPAAS$ S Prisic et al., 2010; This study

Rv2996c SerA1 SATTVDAEVLAAAPK Not known Prisic et al., 2010

SAT*TVDAEVLAAAPK T This study

S*ATTVDAEVLAAAPK S This study

Rv3181c Rv3181c LAALDST#DTLER T Prisic et al., 2010

LAALDST*DT*LER T This study

Rv3197 Rv3197 S#KDEVTAELMEK S Prisic et al., 2010

Rv3200c Rv3200c QSGADTVVVSS$ETAGR S Prisic et al., 2010; This study

QSGADTVVVS*SETAGR S This study

(Continued)

www.frontiersin.org February 2015 | Volume 6 | Article 6 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Physiology_and_Metabolism/archive


Fortuin et al. Phosphoproteome of a clinical Mycobacterium tuberculosis isolate

Table 1 | Continued

Rv numbers Protein name Phosphopeptides Phospho-residue References

Rv3248c SahH GVTEETTTGVLR Not known Prisic et al., 2010

GVTEETT*T*GVLR T This study

GVTEET*TTGVLR T This study

Rv3604c Rv3604c TADTPPDDSGGLHAR Not known Prisic et al., 2010

TADTPPDDS*GGLHAR S This study

DPLTGGQSVADLMAR Not known Prisic et al., 2010

DPLT$GGQSVADLMAR T Prisic et al., 2010; This study

Rv3801c FadD32 FDPEDTSEQLVIVGER Not known Prisic et al., 2010

FDPEDT*SEQLVIVGER T This study

Rv3817 Rv3817 LWQAEDDS*S*R S This study

RLWQAEDDSSR Not known Prisic et al., 2010

Rv3868 EccA1 LAQVLDIDT$LDEDRLR T Prisic et al., 2010; This study

*Novel phosphorylated amino acid identified in this study.
#Phosphorylated residue identified in previous studies.
$Phosphorylated residue identified in current and previous studies.

Of the 401 serine/threonine phosphorylation sites (pS/T), only
156 had been previously described for M. tuberculosis (Table 1).
Only 6 of 13 tyrosine phosphorylation sites (pY) has been pre-
viously described for M. tuberculosis (Kusebauch et al., 2014).
The remaining 245 pS/T and 7 pY were uniquely identified
in this study (Supplemental Table S2). To determine whether
phosphorylated proteins were differentially represented in any
particular cellular process, we grouped the phosphorylated pro-
teins based on their functional category according to Tuberculist
(Lew et al., 2011) (Figure 2). One hundred and seventy (79.4%)
of the phosphorylated proteins had an annotated function, while
the remaining 59 phosphorylated proteins (20.5%) were assigned
as hypothetical. The biological function of the annotated pro-
teins varied from transcription, translation, protein biosynthesis,
fatty acid metabolism to phosphorylation. Our analysis identified
phosphorylated forms of the 9 of the 11 M. tuberculosis STPK’s:
PknA, PknB, PknD, PknF, PknG PknE, PknH, PknJ, and PknL
(Table 2). Of these, phosphorylated forms of PknE, PknH, PknJ,
and PknL had not been previously described in M. tuberculosis.

We detected 13 Y phosphorylation sites located on 10 proteins
in M. tuberculosis during early-logarithmic growth. Six of the 13
Y phosphorylation sites (Table 3) were located on two proteins,
FhaA and MmpS3 (Kusebauch et al., 2014) and have recently
been described in a M. tuberculosis H37Rv at stationary growth
phase. The remaining 7 Y phosphorylated sites were uniquely
identified in this study. Amongst these with known annotations
were 2 virulence factors (GroS and GroEL2) and Ppa involved in
macromolecule biosynthesis.

A large number of proteins involved in intermediary
metabolism and respiration processes such as lipid and fatty acid
metabolism (KasB, FadD32, AccD4, and MmaA3) were found to
be phosphorylated in this study (Supplemental Table S2). In addi-
tion, several proteins from the ESX-1 type seven secretion system
(T7SS) in M. tuberculosis including EspR, EccA, CFP10, EspI,
EspL, EspB were amongst the identified phosphorylated proteins
(Supplemental Table S1). We also identified virulence factors such
Pks15, AceA5, FadD5, EsxB, KatG, GlpX, Rv2032, and PtbB that

were phosphorylated in this hyper-virulent M. tuberculosis strain
(Supplemental Table S2).

Of the 21 phosphorylated proteins involved in information
pathways, we identified 6 phosphorylated ribosomal proteins; two
phosphorylated small subunit (30S) ribosomal proteins (S3, S19),
and four large subunit (50S) ribosomal proteins (L3, L24, L29,
L31) with a total of 8 S/T phosphorylation sites. In addition, phos-
phorylated sites on the ribosomal proteins RpsS and RplX were
also identified (Table 4).

DISCUSSION
Here we report 214 phosphorylated proteins extracted dur-
ing early-logarithmic growth phase from a hyper-virulent clin-
ical Beijing genotype Mycobacterium tuberculosis isolate. These
proteins can be categorized into different biological functions
according to Tuberculist (Lew et al., 2011). The impact of
phosphorylation on these Hank’s type Ser/Thr kinases (STPKs),
phosphatases and their substrates, and the functional role of
phosphorylated residues still remains to be elucidated. However,
as in previous studies, the identification of phosphorylated
residues clearly suggests functional importance.

REGULATORY PROTEINS
In recent years, bacterial S/T/Y kinases and phosphatases have
been extensively investigated, with indications that they might
play a crucial role in pathogenicity. These Hank’s type kinases
have the ability to short-circuit the host defense mechanism since
they are mostly involved in key biological processes. We identi-
fied phosphopeptides from 9 of the 11 STPKs encoded by the
M. tuberculosis genome. This included both previously described
S/T phosphorylation sites (Boitel et al., 2003; Young et al., 2003;
Durán et al., 2005; Villarino et al., 2005; Molle et al., 2006; O’Hare
et al., 2008; Prisic et al., 2010; Sajid et al., 2011; Chou et al., 2012;
Kusebauch et al., 2014) and novel sites on these STPKs thereby
highlighting the complexity of the signal transduction mecha-
nism of this pathogen. Phosphorylated peptides were not detected
for PknI and PknK. However MS/MS spectra for these peptides
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FIGURE 2 | Functional classification of phosphorylated proteins. Percentage phosphorylated proteins per functional category were classified according to
Tuberculist. Number of phosphorylated proteins identified in each functional category depicted above the black bars.

Table 2 | Serine/threonine kinases and their phosphorylation sites identified in this study.

STPK Phosphorylated residue (position in protein) Phosphopeptides References

PknA T8, S10, T224, S299, T301, T302 AAPAAIPS*GT*T*AR This study

VGVT*LS*GR This study

RPFAGDGALT#VAMK Prisic et al., 2010

PknB S169, T171, T173, S305, T309 AIADSGNS*VT*QTAAVIGTAQYLSPEQAR This study

TSLLSSAAGNLS*GPRTDPLPR This study

AIADSGNSVT*QT*AAVIGTAQYLSPEQAR This study

TSLLSSAAGNLSGPRT*DPLPR This study

PknD T169, T171, S332,T334,S343,S350 GGNWPS*QTGHSPAVPNALQASLGHAVPPAGNK This study

WSPGDS*AT*VAGPLAADSR This study

WSPGDS*ATVAGPLAADS*R This study

AASDPGLT*QT*GTAVGTYNYMAPER This study

PknE S304 LPVPSTHPVS*PGTR This study

PknF T289, S290 LGGAGDPDDT*RVS*QPVAVAAPAK This study

PknG S10, T14, T23, S24, T26, S31, T32, T55 PLS*T*QAVFR This study

S*GPGT*QPADAQTATSATVR This study

SGPGTQPADAQTAT*S*ATVRPLSTQAVFR This study

PDFGDEDNFPHPTLGPDT*EPQDR This study

SGPGTQPADAQTAT*SAT*VR This study

PknH T174 LTQLGT*AVGTWK This study

PknJ S498 HLADLAS*IWRR This study

PknL S306, T309 S*RIT*QQGQLGAK This study

*Novel phosphorylation sites identified in this study.
#Phosphorylated residue identified in previous studies.

for these proteins were detected with mass spectrometry thereby
confirming the presence of these proteins (data not shown).

Of the phosphorylated STPKs, PknA, PknB, and PknG have
been shown to be essential for in vitro growth (Sassetti et al.,
2003) and to regulate cell growth and cell division and inter-
fere with host signaling pathways (Fernandez et al., 2006). PknE,
PknH, PknJ, and PknL have been implicated in the adapta-
tion to the extracellular environment or intracellular survival
of M. tuberculosis (Sharma et al., 2006; Lakshminarayan, 2009;
Arora et al., 2010; Parandhaman et al., 2014) which is in agree-
ment with reports that during early growth the bacilli undergo a
period of adaptation to their external environment (Stock et al.,
1989; Soares et al., 2013). PknE is involved in the suppression

of apoptosis during nitrate stress (Kumar and Narayanan, 2012)
and intracellular survival and adaptation to hostile environments
(Parandhaman et al., 2014). In M. tuberculosis, PknH controls
the expression of a variety of cell wall related enzymes and
regulates in vivo growth in mice (Zheng et al., 2007). PknJ
undergoes autophosphorylation and phosphorylates the Thr168,
Thr171, and Thr173 residues of Embr (a transcriptional regula-
tor), MmaA4/Hma (a methyltransferase involved in mycolic acid
biosynthesis) and PepE (a peptidase located adjacent to the pknJ
gene in the M. tuberculosis genome), respectively (Jang et al.,
2010). Lastly, PknL is involved in an adaptive response to nutri-
ent starvation. This kinase regulates transcription which allows
the bacilli to maintain metabolic activity without sourcing energy
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Table 3 | Tyrosine phosphorylation sites identified.

Rv number Protein name Tyrosine phosphopeptides Biological Function References

Rv0020c FhaA GGQGQGRPDEY*YDDR Signal transduction This study

GGYPPETGGYPPQPGY*PRPR This study

HEEGSY*VPSGPPGPPEQR This study

HPDQGDY$PEQIGYPDQGGYPEQR Kusebauch et al., 2014; This study

QDYGGGADY$TR Kusebauch et al., 2014; This study

VPGY$APQGGGYAEPAGR Kusebauch et al., 2014; This study

Rv0421c Rv0421c GLAEGPLIAGGHS*Y*GGR Hypothetical This study

Rv0440 GroEL2 QEIENSDSDY$DREK Protein refolding Kusebauch et al., 2014; This study

Rv0613c RecC IVLAGY*DEELLER Exonuclease V gamma chain This study

Rv1513 Rv1513 HQDAFPPANY*VGAQR Hypothetical This study

Rv2198c MmpS3 ASGNHLPPVAGGGDKLPSDQT*GETDAY*SR Integral Membrane protein This study

AYS*APESEHVTGGPY$VPADLR Kusebauch et al., 2014

AYS*APESEHVT*GGPY*VPADLR This study

Rv3418c GroS Y*GGTEIK Response to stress This study

Rv3628 Ppa HFFVHY*K Phosphate metabolic process This study

#Previously identified pY site.
*Novel pY site identified in this study.
$pY site identified in current and previous studies.

Table 4 | List of phosphorylated ribosomal proteins identified in this study and other bacteria.

Protein name Protein name Phosphopeptides Phospho-residue References

rpsC Streptomyces coelicolor Not known Not known Mikulík et al., 2011

M. tuberculosis NPES*QAQLVAQGVAEQLSNR S This study

AAGGEEAAPDAAAPVEAQSTES* S This study

rpsS M. tuberculosis HVPVFVTES*MVGHK S This study

rplC Streptomyces coelicolor Not known Not known Mikulík et al., 2011

Streptococcus pneumonia Not known Not known Zhang et al., 2000

Halobacterium salinarum Not known Not known Aivaliotis et al., 2009

M. tuberculosis IVVEVCSQCHPFYT*GK T This study

rplX M. tuberculosis S*GGIVTQEAPIHVSNVMVVDSDGKPTR S This study

rpmC Streptococcus agalatiae FQAAAGQLEKT*AR T Burnside et al., 2011

Streptomyces coelicolor RERELGIET*VESA T Manteca et al., 2011

Listeria monocytogenes FQLATGQLENT*AR T Misra et al., 2011

DLSTTEIQDQEK Not known Misra et al., 2011

Lactococcus lactis MKLSETK Not known Soufi et al., 2008

M. tuberculosis ELGLATGPDGKES* S This study

rpmE Klebsiella pneumonia S*TVGHDLNLDVCGK S Lin et al., 2009

Halobacterium salinarum ASSEFDDRFVTVPLRDVTK Not known Aivaliotis et al., 2009

M. tuberculosis T*GGLVMVR T This study

*Novel pY site identified in this study.

from elsewhere (Lakshminarayan, 2009). Furthermore, we iden-
tified a number of STPK substrates that were phosphorylated
in clinical hyper-virulent M. tuberculosis strain (list not shown)
thereby highlighting the complexity of the phosphorylation regu-
latory network in M. tuberculosis. Even though the role of STPKs
in bacterial physiology is not yet fully understood the data pre-
sented here could underpin a targeted approach to improving
our understanding of STPK-mediated signal transduction mech-
anisms in M. tuberculosis.

TYROSINE PHOSPHORYLATION
The M. tuberculosis genome encodes for two putative tyrosine
phosphatases (PtpA and PtpB) but is not predicted to encode
tyrosine kinases (Cole et al., 1998; Bach et al., 2009). Most bac-
terial phosphorylation sites are on serine and threonine; a survey
of 11 bacterial phosphoproteomes revealed that S/T phospho-
rylation accounted for an average of 48 and 40% of phospho-
rylated sites, respectively, while tyrosine phosphorylation events
account for less than 10% of the overall phosphoproteome (Ge
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and Shan, 2011). Tyrosine phosphorylated proteins have been
previously shown to play important regulatory roles through
their involvement in biological functions such as exopolysaccha-
ride production, DNA metabolism, stress responses (Ge et al.,
2011; Whitmore and Lamont, 2012). Recently, Kusebauch et al.
identified tyrosine phosphorylated proteins in M. tuberculosis
and demonstrated that a number of STPKs can phosphorylate
tyrosine in either cis or trans (Kusebauch et al., 2014). This sug-
gests that STPKs have the ability to phosphorylate S/T/Y. In this
study we identified 13 tyrosine phosphorylation sites in 8 pro-
teins (Table 3). An overlap of three proteins (FhaA, MmpS3, and
GroES) and 6 tyrosine phosphorylated sites we similar between
this and the previous study (Kusebauch et al., 2014). Five of
the tyrosine phosphorylated proteins (FhaA, GroEL2, MmpS3,
GroES, and Ppa) identified in this study are essential for in vitro
growth (Sassetti et al., 2003; Griffin et al., 2011) and involved in a
variety of functions.

This study confirmed and expanded work by Kusebauch
et al., where multiple tyrosine phosphopeptides were identified
for FhaA. FhaA is a regulatory protein which has been impli-
cated in cell wall biosynthesis (Fernandez et al., 2006) and has
a strong association with PknA and PknB (Pallen et al., 2002;
Roumestand et al., 2011). We found that the highly S/T/Y phos-
phorylated FHA-domain contained 6 tyrosine phosphopeptides
of which 4 were previously been identified in H37Rv (Kusebauch
et al., 2014). FhaA is a major substrate of PknB and has been
implicated in the formation of a regulatory complex with MviN
required for peptidoglycan biosynthesis (Warner and Mizrahi,
2012). In our dataset, we found that all three of the pro-
teins (PknB, FhaA, and MviN) in the regulator complex were
phosphorylated.

We also confirm the presence of a previously reported Y
phosphopeptide of MmpS3 and identified a second phospho-
peptide. MmpS3 forms part of the mycobacterial membrane
protein small family and is an essential protein for mycobac-
terial growth and cholesterol metabolism (Griffin et al., 2012).
The role of phosphorylation of this protein has yet to be
determined.

The two proteins GroEL2 and GroES have been identified as
potential candidates for antituberculosis treatment (Al-Attiyah
et al., 2006). We confirmed the presence of the Y phosphopep-
tide in GroEL2 identified in H37Rv (Kusebauch et al., 2014).
Recently it has been shown that the antigen GroES is sufficient
to protect BALB/c mice against challenge infection (Lima et al.,
2003) and up-regulated in kanamycin and amikacin resistant iso-
lates (Kumar et al., 2013). Ppa is an inorganic pyrophosphate
and is involved in macromolecule biosynthesis. The M. tuber-
culosis Ppa is highly similar to a well conserved homolog of
Legionella. pneumophila PPase which is induced in macrophages,
although the M. tuberculosis PPa promotor is not respon-
sive to any specific intracellular triggers (Triccas and Gicquel,
2001).

VIRULENCE FACTORS
The identification of virulence factors is crucial in order to
improve our understanding of the mechanisms involved in patho-
genesis of M. tuberculosis. Several of the phosphorylated virulence

factors identified in this study were found to be involved in
basic metabolic pathways such a lipid and fatty acid metabolism,
secretion systems and response and adaptation to environmental
changes. The virulence factor KasB and key enzymes (FadD32,
AccD4, and MmaA3) in the mycolic acids biosynthesis path-
way were phosphorylated in this hyper-virulent M. tuberculosis
strain. The kasB gene is not essential for growth, however, the
deletion mutant, �kasB, resulted in an alteration in growth mor-
phology and loss of acid-fast staining (Bhatt et al., 2007). This
suggests that modification of this protein could influence the
synthesis of mycolic acids and thereby the pathogenicity of the
bacilli.

The specialized ESX-1 Type VII secretion system (T7SS),
unique to pathogenic mycobacteria is responsible for the secre-
tion of two culture filtrate proteins EsxA and EsxB (ESAT-6 and
CFP-10). These secretion systems have been shown to be involved
in virulence and are critical for intracellular survival (Bitter and
Kuijl, 2014) due to their ability to secrete proteins that lack clas-
sical signal peptides across the complex cell envelope to host
cells during infection (Houben et al., 2014, p. 5). M. tuberculo-
sis have several different ESX regions (ESX-1 to ESX-5) (Daleke
et al., 2012) with varying gene numbers and size for each of
these secretion machinery. In this study we found 6 T7SS proteins
to be phosphorylated in the hyper-virulent strain. In a previous
study, proteomics of whole cell extracts of this hyper-virulent
M. tuberculosis strain revealed an under-representation of viru-
lence factors such as ESAT-6 and Esx-like proteins (de Souza et al.,
2010). The authors showed the abundance of ESAT-6 gene expres-
sion was reduced in the hyper-virulent M. tuberculosis suggesting
that the low levels of this protein might be as a result of its abil-
ity to export these proteins more efficiently into the extracellular
environment (de Souza et al., 2010).

PROTEIN SYNTHESIS AND INTERACTIONS
The impact of phosphorylation on the functionality of riboso-
mal proteins is not fully understood. Mikulik et al. hypothesized
that phosphorylation of ribosomal proteins induces or stabilizes
conformational changes during proteins synthesis which could
allow modification of subunit association or changes in interac-
tions with proteins and RNAs (Mikulík et al., 2011). According
to the protein phosphorylation database, phosphopeptides of
RpmC have been identified in four different bacteria (Soufi et al.,
2008; Burnside et al., 2011; Manteca et al., 2011; Misra et al.,
2011). The implication of phosphorylation on RpmC has not
been investigated. However, in E.coli, RpmC, RplW and Trigger
factor are located at the exit tunnel in the ribosome, suggest-
ing that phosphorylation may impact on multiple stages of
transcription (Kramer et al., 2002). In our study we identified
phosphopeptides for 7 ribosomal proteins. We also identified
unique phosphopeptides on ribosomal proteins RpsS and RplX
(Table 3).

OVERLAP OF PHOSPHORYLATED PROTEINS WITH OTHER BACTERIA
Twenty-five of phosphorylated proteins identified in our study
were also identified in phosphoproteomics studies of other bac-
teria such as Klebsiella pneumonia (Lin et al., 2009), Helicobacter
pylori (Ge et al., 2011), Steptococcus pneumonia (Sun et al., 2010),
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Bacillus subtillis (Macek et al., 2007), Halobacterium salinarum
(Aivaliotis et al., 2009), etc. (Table 4). In our dataset the distri-
bution of S/T/Y seem to be bias toward pT and is in accordance
with previously described phosphoproteomes of M. tuberculosis
(Prisic et al., 2010; Kusebauch et al., 2014). Manual evaluation
of the genome found an over-representation of Threonine rel-
ative to Serine (52:48%). This compared to other bacteria such
as Acinetobacter baumannii (Soares et al., 2014), Bacillus sub-
tilis (Macek et al., 2007), Escherichia coli (Macek et al., 2008;
Soares et al., 2013) and Halobacterium salinarum (Aivaliotis et al.,
2009), Pseudomonas aeruginosa (Ravichandran et al., 2009), and
Streptomyces coelicolor (Parker et al., 2010) which demonstrate a
bias toward pS.

Forty-five of the phosphorylated proteins identified in our
study were previously described for M. tuberculosis H37Rv (Boitel
et al., 2003; Young et al., 2003; Molle et al., 2004, 2006; Durán
et al., 2005; Kang et al., 2005; Villarino et al., 2005; O’Hare et al.,
2008; Thakur et al., 2008; Prisic et al., 2010; Sajid et al., 2011; Gee
et al., 2012). The reason for not identifying all of the previously
identified phosphorylated proteins in the protein phosphoryla-
tion database could be ascribed to different genetic backgrounds
of the analyzed M. tuberculosis strains, culture conditions, sam-
ple preparation and different MS-based proteomics approaches
used in each of the studies. Our analysis was performed on a
hyper-virulent clinical isolate of M. tuberculosis and a member of
the Beijing genotype which is genetically distinct from the lab-
oratory strain M. tuberculosis H37Rv analyzed by Prisic et al. and
Kusebauch et al. In addition, the Prisic et al. study reported on the
combined phosphoproteome from 6 different conditions (5 dif-
ferent culture conditions and 2 different growth phases) (Prisic
et al., 2010) while Kusebauch et al. reported on the phospho-
proteome of late-logarithmic phase cultures (Kusebauch et al.,
2014), whereas our study analyzed early-logarithmic phase cul-
tures. Even though the overlap between our study of clinical
M. tuberculosis and that of the previously described laboratory
M. tuberculosis H37Rv is low this work substantially extends our
knowledge of the M. tuberculosis phosphoproteome. During log-
arithmic growth phase of bacterial growth the cells are adapting
to the environment of the growth media and biological process
such as RNA synthesis, DNA replication and synthesis of micro-
and macromolecules are up-regulated. It is important to note
that in this study the whole cell lysate proteins were enriched
for phosphopeptides and we detected a number of phospho-
rylated proteins involved in these biological processes such as
fatty acid- and lipid biosynthetic metabolism; RNA modification
and translation; DNA repair, replication and modification. It is
believed that environmental conditions, cell density and growth
phase influence the expression of virulence factors by a pathogen
(McIver et al., 1995). This is consistent other bacterial phospho-
proteomes, thereby emphasizing that S/T/Y phosphorylation is
an important process required for the regulation of numerous
cellular processes.

CONCLUSION
Recent developments in the methodology and mass spectrom-
etry technology for phosphoproteomics have highlighted the
need to explore the involvement of phosphorylation in disease

development and progression. However, the impact of the pro-
tein phosphorylation cascade on the physiology of pathogenic
bacteria such as M. tuberculosis has yet to be fully elucidated.
Improved preparative techniques and more sensitive instrumen-
tation are required to fully appreciate the complexity of protein
modification. This can only be achieved if concomitant methods
are developed to elucidate the impact of phosphorylation on pro-
tein function. Although this qualitative study was done in clinical
hyper-virulent M. tuberculosis, without any follow-up validation
studies it still provides a valuable resource for further investi-
gating and understanding the impact of protein phosphorylation
regulation in M. tuberculosis.
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