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SUMMARY 

Extracts from the leaves of Stevia rebaudiana, a plant native to South America, have been 

used as natural sweetener for centuries. With the global epidemic of obesity linked to 

increased prevalence of diabetes, Stevia has attracted interest for use as a non-nutritive 

sweetener (NNS). Unlike currently available NNS which are chemically synthesised (e.g. 

sucralose), Stevia extracts represent naturally occurring NNS with no negative side effects 

from its use. The sweet-to-taste compounds in Stevia are actually due to the accumulation of 

secondary metabolites in the leaves, specifically two steviol glycosides (SGs, stevioside and 

rebaudioside A). However, these SGs occur in low concentrations (between 2-4% of total 

fresh weight) and show variability in plants grown by commercial scale agricultural 

propagation. The plant also requires high irrigation inputs owing to its sensitivity to even 

moderate water deficit.  

Stevia is currently not a cash crop in South Africa (SA) but there is interest in establishing 

commercial scale agricultural ventures to establish a Stevia economy. SA is also experiencing 

a concerning rise in the number of new incidences of diabetes amongst its population and 

recently approved the introduction of a sugar tax that is envisaged to reduce this excessive 

sugar intake and over time improve the health and well-being of the population. The variable 

SG yields and the high irrigation inputs required to produce them from the plant are 

considered major restrictive factors toward establishment of a Stevia economy in SA - a 

naturally water scarce country.  Current propagation methods for Stevia are both laborious 

and costly because the seeds are recalcitrant and plants have to be propagated via stem 

cuttings or in vitro tissue culture. 

Hairy root cultures have been widely used in plants of medicinal importance to obtain high 

quantities of bioactive secondary metabolites, for use as pharmaceutical drugs. 

Agrobacterium rhizogenes is utilised in this context to induce hairy root formation and a few 

studies have investigated Stevia hairy root cultures but none have reported SG accumulation 

in these cultures. This study attempted to create Stevia hairy root cultures expressing key 

genes in the SG biosynthesis pathway and accumulating the two sweet SGs, stevioside and 

rebaudioside A. Additionally, attempts were made to create Stevia hairy root cultures 

overexpressing UGT74G1 and UGT76G1 (the two genes responsible for stevioside and 

rebaudioside A accumulation respectively) with the intention of increasing SG production.. 

Although we demonstrated that A. rhizogenes could be transformed with the plant expression 
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constructs and that this transformed A. rhizogenes could induce hairy roots from leaf 

explants, tandem mass spectrometry analyses of root extracts did not identify either 

stevioside or rebaudioside A. We suspect that the lack of photosynthetic capacity in hairy 

root cultures resulted in the unavailability of key intermediate substrates for SG biosynthesis 

that have been proposed to be produced during photosynthesis. However, we are currently 

investigating if these hairy root cultures could be primed for SG accumulation by growing 

them in the presence of the proposed intermediate substrates which are available 

commercially at low cost. 
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1. INTRODUCTION 

Stevia rebaudiana (Stevia) is a plant native to South America that is now grown globally on a 

commercial scale for use as a non-nutritive sweetener. The demand for Stevia is fuelled by its 

use as a natural alternative to table sugar (sucrose), which has been linked to the global 

epidemic status of diabetes (a disease which renders the human body unable to metabolize 

glucose). Stevia extracts were approved for human use by the Food and Drug Administration 

(FDA) in 2009 and, by the European Union in 2011 (Gardana et al., 2010). China is the 

leading supplier of Stevia plants and their products to the global market (Kinghorn and 

Soejarto, 1985) and the Stevia industry is estimated to be worth USD 565 million annually 

with significant growth projection in the next five years (Future Market Insights, 2014).  

The use of Stevia is mainly tied to the occurrence of unique secondary metabolites in its 

leaves. These are termed steviol glycosides (SGs) and a number are known to accumulate in 

the plant. However, only two SGs (stevioside and rebaudioside A) are known to impart the 

sweet-to-taste characteristic that is relevant to their use as alternative sweeteners (Madan et 

al., 2010). Currently, Stevia is not commercially cultivated in SA but our BRICS partners 

India and China are the major global producers of Stevia. However, in 2012, the SA 

government approved the use of Stevia extracts as a natural sugar alternative (Foodstuff 

South Africa, 2012) and with the planned sugar tax, the SA government is hoping to 

gradually prevent and cut the high trends of obesity, diabetes and cardiovascular diseases 

(Manyema et al., 2014). 

Seed propagation results in heterogeneous populations and variability in SG content (Sivaram 

and Mukundan, 2003). Consequently, Stevia is propagated by either stem cuttings or tissue 

culture, and both requires high labour inputs and are limited by the number of clonal 

individuals obtained from a single plant (Sivaram and Mukandan, 2003). An important factor 

in Stevia conventional cultivation methods such as stem cutting is that the major SGs which 

impart the sweet taste of Stevia extracts (stevioside and rebaudioside A) occur in low and 

variable amounts approximately 4% of leaf dry weight (Yadav et al., 2011). 

In the context of establishing a commercial scale Stevia industry in SA, the physiology of the 

Stevia plant poses a natural limitation. Since it is native to tropical climates, its commercial 

cultivation requires intensive irrigation as it is extremely sensitive to water deficit (Kaushik et 

al., 2010). Stevia plants wilt rapidly under moderate water-deficit and this negatively affects 
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the accumulation of SGs (Lemus-Mondaca et al., 2012). The agricultural landscape in SA is 

typified by its water scarcity and as such any commercial scale venture to propagate Stevia 

would require high irrigation inputs for the successful production of SGs (Ngaka, 2012) 

However, there have been considerable efforts in the use of plant tissue cultures as an 

alternative approach to plant regeneration with significant success (Guruchandran and 

Sasikumar, 2013; Patel and Shah, 2009; Pande and Gupta, 2013). Despite these substantial 

efforts for the improvement of Stevia propagation there has not been much breakthrough with 

regards to large-scale production of the SGs. Hairy root bioreactors are an established 

alternative for the production of secondary metabolites that typically accumulate in relatively 

low amounts in plant tissue (Mishra and Ranjan, 2008; Flores and Medina-Bolivar, 1995). 

The advantage of hairy root culture is its ability to grow rapidly in the absence of plant 

growth regulators and typically produce even more secondary metabolites than the parent 

plant (Eapen and Mitra, 2001). Since traditional propagation methods and low SG yields in 

leaf tissue ultimately culminate in relatively low amounts of SG production compared to the 

input material, hairy root cultures are an attractive alternative. Hairy root cultures have been 

used in other plants to produce medicinally important compounds such as digoxin from 

Digitalis lanata, quinine and quinidine from Cinchona spp, morphine and codeine from 

Papaver somniferum (Saito et al., 1992; Hollman, 1996). 

The focus of the study was to produce a Stevia hairy root bioreactor system that can reliably 

produce and accumulate SGs, particularly stevioside and rebaudioside A to be utilised as a 

natural sugar alternative. Although significant progress has been made in understanding the 

biological processes involved in the biosynthesis of SGs (Brandle and Telmer, 2007; Yadav 

and Singh, 2012; Guleria and Yadav, 2013) Stevia, a non-model species, remains relatively 

uncharacterised across the board (Chen et al., 2014). There have been limited 

biotechnological applications on Stevia rebaudiana in SA to actively encourage 

commercialization. Globally, a few studies have confirmed hairy root induction in Stevia 

utilising A. rhizogenes strains, but none have demonstrated SG accumulation in hairy root 

tissue (Yamazaki et al., 1991, Michalec-Warzecha et al., 2016). This study was conducted to 

develop a feasible and cost effective hairy root bioreactor culture with enhanced SG 

production.  
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1.1 Aims and Objectives of the study 

The study is contextualized to the emergent Stevia industry in South Africa. We propose that 

the commercial scale cultivation of Stevia in the future will encounter regional specific 

problems given that South Africa is a water scarce country and Stevia plants require intensive 

irrigation inputs for successful cultivation. Coupled to this is an inherent low and variable SG 

content in the leaves of Stevia (only between 2 - 4% of total fresh weight). We believe that 

this provides an opportunity to explore new ways for SG production if South Africa is to 

exploit the future market potential of SG production.  

The project thus aimed to investigate the creation of a viable Stevia hairy root culture and to 

determine whether it was able to produce any SGs, and generate transgenic hairy roots 

overexpressing UGT74G1 and UGT76G1 with elevated levels of SGs. To this end we (i) 

infected leaf explants with various strains of A. rhizogenes and a strain containing a binary 

vector for the overexpression of key SG biosynthetic genes (ii) established if any hairy root 

cultures expressed key genes from the known SG biosynthetic pathway and (iii) analysed the 

metabolite profile of hairy root cultures by tandem mass spectrometry to ascertain if they 

accumulated any SGs. 
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2. LITERATURE REVIEW 

2.1 Increased dietary sugar consumption is associated with increased incidence of 

insulin resistance 

Sugar has historically been associated with human society but in the late 18th century the first 

mechanized refinery process involving sugarcane vastly improved both the production and 

accessibility of refined sugar to the human population (Clemens et al., 2015). Currently about 

175 million metric tons of refined sugar is consumed annually (The Statista Portal n.d.). 

Although sugar consumption may not directly cause diabetes especially diabetes Type II, it 

has been associated with predisposing risk factors such as obesity and lack of exercise 

(Stuckler et al., 2012; Anton et al., 2010). Obesity is a major global health problem in 

developing countries which typically must manage the dual burdens of chronic and infectious 

diseases, and this leads to excessive total healthcare costs (Malik et al., 2010). The primary 

source of sugar intake that contributes to the obesity epidemic is the sweetened sugar 

beverages (SSBs). An increased consumption of SSBs and diabetes Type II prevalence have 

been noted over the last few decades resulting in governments implementing interventions to 

reduce sugar intake such as sugar taxes (Nielsen and Popkin, 2004). 

The World Health Organisation (WHO) recently released the first summative report of the 

worldwide occurrence of diabetes (WHO, 2016). It is clear that the incidence of diabetes is 

rising to pandemic proportions and that developing countries (including SA) are already 

dealing with the challenges of treatment in already strained public health systems. Many 

developing countries lack sustained public awareness campaigns stimulating healthy 

lifestyles and this serves only to compound new incidences of non-communicable diseases 

(like diabetes). The SA government has recently taken steps to address the excessive intake 

of dietary sugar of the populous by proposing a tax on sugar-sweetened drinks that is 

envisaged to reduce this excessive sugar intake and over time improve the health and well-

being of the population (Blecher, 2015). While this issue has become contentious in terms of 

whether it will work in the absence of a multipronged strategy to address public health issues, 

South Africa is not the first country to introduce such a tax and Mexico, France, Hungary 

(and New York City) have already introduced such sugar taxes Pan American Health 

Organisation (PAHO, 2015). 
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It is in this context that efforts to source alternative sweeteners that have little to no impact on 

general human health have intensified. These alternative sweeteners are generally defined as 

non-nutritive (since they do not provide any calories when consumed) and may occur 

naturally (e.g. Stevia extracts) or most often represent chemically synthesized alternatives 

(e.g. saccharin; Shwide-Slavin et al., 2012. 

2.2 A closer view into non-nutritive sweeteners (NNS) 

Also known as artificial sweeteners or non-caloric sweeteners, NNS are sugar alternatives 

that provide sweetness without glycaemic effects in the body (Gardiner et al., 2012). NNS 

can be up to a thousand times sweeter than sucrose (the most common dietary sugar). The 

intense sweetness allows for consumption of small portions to give sugar-like sweetness in 

foods, therefore people with obesity and those suffering from diabetes can enjoy foods and 

beverages without the risk of adding calories. Among the NNS that have been approved by 

the FDA, and have been granted a generally recognized as safe (GRAS) status, five are 

chemically synthesized (aspartame, saccharin, acesulfame K, neotame and sucralose) and one 

is a natural extract from the plant Stevia (Shwide-Slavin et al., 2012). 

However, the health advantages and disadvantages of these NNS have been in question since 

their discovery and introduction (Weihrauch and Deihl, 2004). There are negative side effects 

associated with NNS and the conflicting evidence by a recent study (Pepino, 2015) that 

reported metabolic responses to an oral glucose load after sucralose ingestion supporting the 

idea that NNS as the whole can be metabolically active in the body. The concept of NNS 

being metabolically inert with no glycaemic responses in the body can no longer hold true 

(Pepino, 2015), however, with this being said, human studies on natural Stevia extracts have 

shown potential benefits with no recorded negative side effects making it a better choice in 

the management, treatment and prevention of obesity (Ashwell, 2015; Elnaga and Mohamed, 

2016). 

2.2.1 Saccharin 

Saccharin, was approved before 1958 for general use as an organic non-nutritive sweetener. It 

is about 200-700 times sweeter than sucrose (Fitch and Keim, 2012). As a synthetic 

alternative sweetener, saccharin is believed to pass through the body without being 

metabolized giving off no calories. However, it has been reported to have carcinogenic 

potential since it caused bladder cancer in rats (Reuber, 1978). 
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2.2.2 Aspartame 

Aspartame was approved in 1981 and is about 160-220 times sweeter than sucrose. Unlike 

saccharin, aspartame is metabolized in the body yielding fewer calories than those obtained 

from the same amount of refined sugar to produce the same sweetness (Tandel, 2011). 

Further metabolism of aspartame yields aspartic acid, methanol and phenylalanine, therefore 

it must be used with caution by people with phenylketonuria (PKU) condition because their 

bodies cannot metabolize phenylalanine to tyrosine (Magnuson et al., 2007). 

2.2.3 Acesulfame K 

Generally known as acesulfame potassium and approved in 1988, it is about 200 times 

sweeter than sucrose (Fitch and Keim, 2012). Although it is not metabolized in the body and 

is excreted unchanged by the kidneys, its natural breakdown over time yields acetoacetamide 

as a by-product and this is toxic at high doses in the body. Studies (Bandyopadhyay et al., 

2008; Karstadt, 2010) have found it to be genotoxic and that it can inhibit fermentation of 

glucose by intestinal bacteria (Bian et al., 2017). 

2.2.4 Sucralose 

Sucralose is also poorly metabolized during the digestion process because the body does not 

recognize it as a carbohydrate. It is made from the sucrose molecule however, three of the 

hydroxyl groups are replaced by chlorine atoms (Shwide-Slavin et al., 2012), and thus it 

passes through the body unchanged with relatively small amounts being absorbed in the 

gastrointestinal tract. Sucralose has been reported to be non-carcinogenic and non genotoxic; 

however, it has been identified to cause migraines and headaches (Gardiner et al., 2012; 

Romo-Romo et al., 2016). 

2.2.5 Neotame 

Neotame is a dipeptide methyl ester derivative that is about 7000-8000 times sweeter than 

sucrose and highly stable (Tandel, 2011). It was approved in 2002 but has been rarely used. 

In humans it is rapidly absorbed, and like aspartame it yields aspartic acid and phenylalanine 

but only small amounts are needed to sweeten foods therefore it does not pose any major 

threat to people with PKU (Shwide-Slavin et al., 2012).  
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2.2.6 S. rebaudiana extract as a natural non-nutritive sweetener 

Stevia is known to have been used as a natural sweetener by the Aztecs culture in South 

America (Kinghorn, 2002). Leaf extracts from Stevia are claimed to be about 300 times 

sweeter than sucrose (Phillips, 1987). In addition to the sweetness intensity, SGs also show 

thermostability up to 200oC, and are thus suitable for the use in cooked foods (Lemus-

Mondaca, 2012). Stevia has been used in applications as a sweetener in food and beverage 

industries, confectionaries, fruit and milk drinks, delicacies and as dietary supplements 

(Mehrotra et al., 2014). 

The sweet-to-taste effect in the leaves is actually due to natural accumulation of secondary 

metabolites termed steviol glycosides (SGs). These naturally occurring SGs are non-caloric 

and it is for this reason alone that Stevia is heralded as one of the most important naturally 

occurring NNS for use as a dietary sugar-substitute (Anton et al., 2010). The SGs have been 

shown to have no effect on blood glucose and pressure when consumed and, no recorded side 

effects have been reported in extensive animal model testing (Barriocanal et al., 2008). A 

human study on toxicity and intake supports its safe use as an NNS (Anton et al., 2010).  

2.3 Current S. rebaudiana trends and status in sweetener markets 

Currently, the global sweetener markets include both caloric (traditional sugar) and non-

caloric sweeteners (chemically synthesized and natural) with consumer preferences driving a 

shift toward an increased demand for natural NNS compounds. Consequently, Stevia is 

considered as the forerunner in terms of its use as an artificial sweetener and there is a 

definitive interest in cultivating the plant on a commercial scale in order to harvest SGs (Patel 

and Shah, 2009; Aman et al., 2013).  

While the global sweetener market was estimated to be USD 68.1 billion in 2014 and is 

expected to increase to USD 95.9 billion by 2020, the market share of Stevia-based products 

was estimated at USD 347.0 million in 2014 with a projected increase  to reach USD 562.2 

million in 2020 (Future Markets Insights, 2014). This was estimated in the context of volume 

of consumption of Stevia. The introduction of Stevia sweeteners to the market have been the 

main focus of the large food and beverage companies (Clos et al., 2008). Most recently 

(2014), Stevia was the focus of media attention when both Coca-Cola and PepsiCo 

simultaneously announced the launch of new low calorie soda variants which contained 

Stevia extracts, highlighting the emerging importance of Stevia in the NNS market. 
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However, globally the demand for Stevia is localized to the Asia Pacific region (largest 

consumer) followed by North America, Latin America and Europe, respectively United 

States Agency for International Development (USAID Market Brief, 2014). In SA, no Stevia 

market exists but on the basis of the increasing global demand and the context of the 

proposed sugar tax there is an interest in growing Stevia on a commercial scale. In this regard 

a locally based company, (FoodStuff, 2016), that specializes in plant-based extracts for 

consumer use has outlined a pioneering venture in SA. They plan to conduct a pilot project to 

develop both the agricultural knowledge and technological ability toward large-scale 

commercialization of Stevia. A number of factors need to be taken into account in order for 

such ventures to be successful. Given that SA is considered a water scarce country (Sershen 

et al., 2016; Knox et al., 2010) factors such as climate change, crop management strategies, 

production techniques and water management should be looked into first in order to cultivate 

Stevia in large scale plantations. This is linked to the natural history of the Stevia plant and 

the intensive inputs required for successful commercial scale growing (Jia, 1984). 

Bitter after-taste is one of the major problems associated with SGs and hinders most food and 

beverage companies wishing to use Stevia as a sweetener. An alkaloid iminosugar, 

steviamine was found to be responsible for the bitter aftertaste (Michalik et al., 2010), and 

biotechnological techniques aiming to remove this bitter aftertaste are essential and may 

increase the market figures since some companies are currently reluctant to use Stevia. 

2.4 The natural history of S. rebaudiana leads to problems in commercial scale 

growing 

S. rebaudiana (Bert) Bertoni is a member of the Asteraceae family, one of 154 members of 

the genus Stevia and one of the two species to produce steviol glycosides (Madan et al., 

2010). It is native to the tropical region of Paraguay, where the indigenous Gaurani Indians 

have been using it since ancient times as a sweetening agent (Yadav and Guleria, 2012). It 

also occurs in neighbouring Brazil and Argentina (Soejarto, 2002). While unsuccessful 

attempts were made in England to establish the crop in 1942 (Lewis, 1992), Stevia has been 

introduced into countries such as Japan, Mexico, United States of America (USA), Indonesia, 

Tanzania and Canada as a crop (Yadav et al., 2011) and is now extensively cultivated for its 

SGs outside the native range.  
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Stevia occurs naturally in subtropical regions and tropical regions of South America and it 

can grow best in semi-humid subtropical areas with a temperature of 21-43oC and cannot 

tolerate extreme cold temperatures below 9oC (Huxley, 1992; Singh and Rao, 2005). Its 

growth is dependent on existing weather conditions and with five different stages of growth, 

namely germination and seed establishment, vegetative growth, floral bud initiation, 

pollination to fertilization and seed growth and maturity (Ramesh et al., 2006). Seeds of 

Stevia are said to be recalcitrant and have a very poor percentage of germination because they 

are small in size and largely infertile (Singh and Rao, 2005). 

One major limitation to commercial scale growing of Stevia is that seed-propagation also 

results in heterogenous populations and variability in SG content (Nakamura and Tamura, 

1985). Therefore, due to the poor seed germination and SG variability, cultivation through 

seeds is usually not the best approach (Saqib et al., 2015). In vitro culture is considered the 

most efficient way to rapidly mass propagate Stevia plants (Sivaram and Mukundan, 2003). 

However, propagation through cuttings is both labour and cost intensive and still leads to 

variability on SG content when plants are field grown (Karim et al., 2008). 

A second major limitation to large scale cultivation of Stevia is the need for consistent supply 

of water. Plants wilt rapidly under moderate water-deficit and this negatively affects the 

accumulation of SGs (Lemus-Mondaca et al., 2012). Thus, despite Stevia being considered as 

the only source of the SGs used as non-nutritive sweeteners intensive effort has been required 

to develop 90 varieties of S. rebaudiana for cultivation in specific climatic conditions around 

the world (Ibrahim et al., 2008; Singh and Rao, 2005). However, these varieties still require 

intensive irrigation input and SG yields remain variable and sensitive to climatic conditions. 

2.5 What are the steviol glycosides of S. rebaudiana? 

SGs are secondary metabolites, tetracyclic diterpenoids with a high sweetness intensity, 

proven to be non-toxic and non-mutagenic (Bondarev et al., 2003). About 8 SGs namely: 

stevioside, rebaudioside A, B, C, D, E, steviolbioside and dulcoside A accumulates in the 

leaves of Stevia and their concentrations vary widely depending on the genotype and 

production environment (Brandle et al., 1998). Stevioside and rebaudioside A are two major 

SGs out of various SGs that are among those that are negatively correlated to each other since 

according to their biosynthetic relationship stevioside is the substrate for the synthesis of 

rebaudioside A, hence plants with high rebaudioside A will probably be low in stevioside 

(Shibata et al., 1991). Despite being non-caloric, non-nutritive steviol glycosides are known 
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to be stable in a wide range of pH and heat, and are non-fermentative (Kinghorn and Soejarto, 

1985).  

2.5.1 Insights into steviol glycosides biosynthesis 

The high concentration of SGs found in Stevia leaves if compared to other plants organs 

accounts for the higher intensity of sweetness of Stevia leaves (Brandle and Telmer, 2007). In 

Stevia, SGs are synthesized via the mevalonate-independent, methylerythritol phosphate 

pathway (MEP), where the majority of SGs are synthesized through glycosylation reactions 

that begin with the aglycone steviol and ends with the production of rebaudioside A (Madan 

et al., 2010). Determination of the subcellular location of several enzymes involved in SG 

biosynthesis proved the spatial organization of the biosynthesis pathway itself (Humphrey et 

al., 2006). Kaurene oxidase (KO), an enzyme with dual roles in both gibberellic acid (GA) 

and SG biosynthesis, was found to be located in the endoplasmic reticulum (ER) ( 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1). 
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Figure 2.1 Schematic model of a plant cell showing subcellular organization of the enzymes involved in the 
steviol glycosides biosynthesis pathway. KS (Kaurene synthase); KO (Kaurene oxidase); KAH (Kaurenoic acid 
13-hydroxylase; UGT74G1, UGT76G1, UGT85C2 (UDP-glycosyltransferases; Brandle and Telmer, 2007) 

Kaurene synthase (KS) was found to be located in the chloroplast stroma ( 
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Figure 2.1). The reaction intermediate kaurene formed by kaurene synthase then moves out of 

the stroma through membranes into endoplasmic reticulum and in the presence of KO and 

kaurenoic 13-hydroxylase (KAH) to form steviol, which is then transported to the cytoplasm 

for glycosylation by uridine diphosphate glycosyltransferase (UGT) enzymes to produce SGs 

which are then moved to the vacuole (Humphrey et al., 2006), which is not surprising since 

the central vacuole of plant cells has been associated with the protection of secondary 

metabolites from sensitive metabolic processes within the cytosol (Martinoia et al., 2000). 

2.5.2 The role of uridine diphosphate glycosyltransferases 

Glycosyltransferases (GTs) are ubiquitous in nature and are required for the transfer of sugars 

from various sugar donors to important biomolecules including glycan, lipids and peptides. 

They have been presently classified into >80 families and are involved in numerous 

biological processes such as cell signalling, cell adhesion and carcinogenesis, mostly in 

humans (Chang et al., 2011) 

Uridine diphosphate glucose is the common donor and hydroxylated molecules are acceptors 

in the GT catalysed reactions, hence the name UGTs for the plant glycosyltransferases (Wang 

and Hou, 2009). UGTs are said to be region-specific to substrate molecules (Fukuchi-

Mizutani et al., 2003; Lim et al., 2003). In plants UGTs are localized in the cytosol and are 

involved in the biosynthesis of plant secondary metabolites and regulation of plant hormones 

(Bowles et al., 2006) 

2.5.3 The methylerythritol 4-phosphate (MEP) pathway for steviol glycoside biosynthesis 

In Stevia, SGs are synthesized via the plastid localized methylerythritol 4-phosphate pathway 

(Brandle and Telmer, 2007). Both GA and steviol, like all other diterpenoids, are synthesized 

from the precursor molecule geranylgeranyl diphosphate (GGDP) by the deoxyxylulose 5-

phosphate pathway (Figure 2.2). This is followed by the activity of two cyclases ent-copalyl 

diphosphate synthase (CPS) and ent-kaurene synthase (KS) to produce ent-kaurene 

(Humphrey et al., 2006). The ent-kaurene is further oxidized at the C-19 position to form ent-

Stellenbosch University  https://scholar.sun.ac.za



13 
 

kaurenoic acid (Brandle et al., 1998), it is at this stage where the GA and SG biosynthesis 

pathways diverge. The ent-kaurenoic acid is hydroxylated in the reaction catalysed by 

kaurenoic acid 13-hydroxylase at the C-13 position to form steviol. The formation of 

aglycone steviol is the first committed step of the SG biosynthesis pathway (Kim et al., 

1996). Steviol is then glycosylated through a sequential reaction catalysed by UGTs: 

UGT85C2; UGT74G1 and UGT76G1, whereby these three of four glycosyltransferases have 

been identified and characterized (Richman et al., 2005). The addition of the C13-glucose to 

steviol is catalysed by UGT85C2, the C19-glucose by UGT74G1 and the C3 of the glucose at 

C-13 position by UGT76G1 producing steviolmonoside, stevioside and rebaudioside A 

respectively (Brandle and Telmer, 2007), while the UGT responsible for the formation of 

steviolbioside from steviolmonoside is yet to be identified and characterized. Following 

production in the cytoplasm, steviol glycosides are then transported to the vacuole where they 

are stored. 
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Figure 2.2: Illustration of steviol glycosides biosynthesis pathway showing the first steps shared with gibberellic 
acid biosynthesis. Green arrows indicating the steviol glycoside biosynthesis pathway as it diverges from 
gibberellic acid biosynthesis (Blue arrows) 
(Mohamed et al., 2011) 

2.6 Pharmacological action and biological activity of steviol glycosides 

Despite its sweetening properties Stevia contain other nutritional components such as amino 

acids, minerals, vitamins and phytochemicals (Chu et al., 2000). Stevia is also a source of 

carbohydrates, fibre and proteins, all molecules required for human health maintenance 

(Sativa et al., 2004; Abou Arab et al., 2010). SGs have been reported to have a number of 

pharmacological properties for the treatment of certain diseases (Madan et al., 2010). Chen et 

al (2005) stated that Stevia has an anti-diabetic activity. Stevia leaf extracts have been used 

for many decades as an anti-diabetic agent in South America because of the significant fact 

that SGs does not affect glucose metabolism in the body. 

According to Goyal et al. (2010), Stevia has vasodilator activity and in that sense has a 

positive role in the control of hypertension. Stevia has also been reported to act as an 

inhibitor, and prevents the initiation and promotion of, some tumours (Paul et al., 2012; 

Yasukawa et al., 2002). Despite the extensive knowledge of the SG biosynthetic pathway and 

the many biological activities that are attributed to the SG component of Stevia extracts, there 

have been no reports on the use of biotechnology based-strategies to address the problems of 

low (and variable) SG yields in field grown plants, which form the basis of all commercial 

scale production of SGs for human consumption. 

2.7 Hairy root bioreactors can successfully produce high-value secondary 

metabolites targeted for human consumption 

The extensive use of Agrobacterium tumefaciens strains as a principal method (apart from 

biolistic methodologies) in plant genetic transformation is well described in the literature 

(Mersereau et al., 1990; Krenek et al., 2015). In this context the disarmed tumour inducing Ti 

plasmid that is naturally associated with A. tumefaciens has been recruited as the delivery 
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system to stably integrate foreign DNA into the plant genome, thereby creating stable genetic 

transformants (Rogowsky et al., 1990). 

However, A. rhizogenes is a soil-borne bacterium that has also been reported to transfer a T-

DNA segment of the root inducing plasmid (Ri) into the host (Figure 2.3) where it is stably 

integrated into the cell genome. This plasmid carries genes which disrupt the natural plant 

hormone homeostasis (primarily auxin and cytokinin metabolism) in the plant cell and leads 

to the development of hairy roots from the site of infection. Hairy root induction from an A. 

rhizogenes infected plant results in the induced Agrobacterium movement towards the plant 

cells, binding to the surface components of the cell wall, activating the virulence (vir) genes, 

thus transfer and integration of the transfer-DNA (T-DNA) into the plant genome (Zupan and 

Zambryski, 1997). The infection process is allowed by the genetic information contained in 

the Ri (root-inducing) plasmid (Figure 2.3) carried by Agrobacterium. Six to eight genes 

concentrated on the vir- region within the pRi are involved in the DNA transfer. Within the 

pRi, the genetic information between the right and left T-DNA regions (TR-DNA and TL-

DNA) is transferred and stably integrated to the plant cell genome. 

Auxin biosynthesis and other genes of the TR section are responsible for increased levels of 

auxins in the transformants and for opines used by bacteria for feeding (Gartland, 1995). The 

four genes rol A, B, C and D are contained within the TL-DNA in the pRi, which enhance 

auxin and cytokinins, formation of hairy roots by transformed tissues (Hong et al., 2006), 

thus the hairy root phenotype is due to these rol genes. The choice of bacterial strain is very 

important since some plant species are very resistant to infection; however the LBA9402 

known to be hypervirulent.  
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Figure 2.3: The Ri plasmid of A. rhizogenes.  
From the left border illustrating regions of auxin and cytokinins production, oncogenic genes, opine synthesis to 
the right border, conjugative transfer region, opine catabolism region, origin of replication and virulence region  
(Samanthi,2017). 

 

Hairy root cultures are a promising alternative in biotechnology as a method for consistent 

production of valuable metabolites from plant cells. In recent times, the use of plant hairy 

roots for the production of various chemicals such as pharmaceuticals, pesticides and 

flavourings has been explored (Toivonen, 1993; Chandra and Chandra, 2011). Plant hairy 

roots have proved useful in this regard because they are stably produce metabolites (Payne et 

al., 1992). They show continuous and active growth in hormone-free media and often 

produce valuable products at higher levels than the original plant leaves or roots (Flores and 

Curtis 1992). Hairy root cultures can also be effective in producing large quantities of 

genetically isogenic disease-free plants through "artificial" seeds that are obtained from 

organogenesis of hairy roots (Honda et al., 2001). Some examples of the successful use of 

hairy roots for commercial scale secondary metabolite production include scopolamine, 

caffeine from Coffea arabica L, anthraquinone from Cassia acutifolia and ginseng from 

Panax ginseng (Nazif et al., 2000; Waller et al., 1983; Sarfaraj Hussain et al., 2012). 
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3. MATERIALS AND METHODS 

3.1 Plant growth and propagation 

Stevia rebaudiana plants used in this study were purchased from the Builders’ Express 

gardening centre in Stellenbosch and grown and maintained at the Institute for Plant 

Biotechnology (IPB, Stellenbosch University), in 12 inch pots with a soil mixture of equal 

proportions; 1:1:1 (w/w) of vermiculite, potting soil and sand. Greenhouse conditions were 

16 h light (120-150 µmol/m2): 8 h dark at 22-25oC, 60% relative humidity. 

3.2 Agrobacterium rhizogenes growth, competent cell preparation and 

transformation 

The Agrobacterium rhizogenes LBA9402 and A4T strains were obtained from the IPB stock 

and were used to induce transgenic hairy roots in Stevia. Both strains were streak-plated on 

Luria Bertani (LB) agar medium supplemented with rifampicin (50 µg/mL) for 2 days at 

28oC. A single colony of each strain was sub-cultured into 50ml liquid LB media at 28oC 

until final OD600= 0.8-1.0. The culture was then centrifuged (Heraeus™ Multifuge, Thermo 

Scientific) in a pre-chilled Falcon® tube at 4000 rpm at 4oC for 10 min. The supernatant was 

discarded and the pellet was suspended in 2.5 ml ice cold water by pipetting and 50 ml ice 

cold water was added and spun for 15 min at 4000 rpm, after which water was discarded. The 

pellet was re-suspended in 20 ml cold sterile 10% glycerol and centrifuged for 15 min at 3000 

rpm at 4oC and the supernatant was discarded quickly. The pellet was suspended in 0.5 ml of 

20% cold sterile glycerol. The cells were aliqouted into 100 µl and were kept in a -80oC 

freezer for further use.  

One microgram of plasmid DNA was electroporated into 100 µl of the competent A. 

rhizogenes strains at 2.47 V, 2000 Ω and 25 µF in 2 mm cuvettes. After electroporation, 900 

µl of sterile LB media were added to the cells and incubated with shaking at 28oC for 2 hrs. A 

volume of 100 µl was spread-plated onto LB agar plates supplemented with the appropriate 

antibiotics. 

3.3 Hairy root culture induction and maintenance 

A. rhizogenes grown overnight at 28oC in LB media supplemented with 100 µM 

acetosyringone and rifampicin 50 mg/L was pelleted by centrifugation at 13 000 rpm for 1 

min and re-suspended to an OD600 of 0.5 in 1X Murashige and Skoog (MS) liquid media, pH 

Stellenbosch University  https://scholar.sun.ac.za



18 
 

5.7. Stevia leaves were harvested from the greenhouse maintained plants, rinsed briefly under 

running tap water, sterilised in 20% (v/v) bleach solution with a drop of Tween-20 for 10 min 

and rinsed 5 times with sterile water. One millilitre of overnight cultures of A. rhizogenes 

(grown in LB broth at 28oC) were centrifuged for 5 min at room temperature and the pellets 

resuspended in 2 ml 1X MS (pH 5.7, 3% sucrose v/v, 100 µM acetosyringone ). 10-30 mm2 

leaf sections were infected by incision with a sterile blade inoculated with the bacterial 

suspension or with 1X MS for the controls. 

The explants were co-infected in the dark at 28oC for 2 days on 1X MS solid media and 

subsequently transferred to 1X MS (3% w/v sucrose) medium supplemented with 100 µg/L 

cefotaxime to remove the bacteria from the explants and grown in the dark at 25oC. Explants 

were sub-cultured every 2 weeks or as necessary if the bacterial growth persisted. 

Sub-culturing of roots approximately 1 cm long was done by excision and separation from 

the explants and was transferred onto fresh 1X MS liquid media (pH 5.7, 3% w/v sucrose) 

medium with or without 20 µg/ml hygromycin selection to distinguish between hairy roots 

transformed with the Ri T-DNA and those doubly transformed with the Ti and Ri plasmid 

DNA and further incubated in the dark at 25oC. Three weeks after growth on solid media the 

hairy roots were sub-cultured into liquid 1X MS (pH 5,7 3% w/v sucrose) and grown with 

shaking (90 rpm) in either constant dark or light/dark cycle (same as greenhouse conditions) 

growth rooms. Half the growth media was replaced with fresh media weekly.  

3.4 Confirmation of hairy root induction and steviol glycoside biosynthesis gene 

expression analysis 

Crude genomic DNA extractions were carried out on hairy root tissue according to a 

modified Edwards’ DNA extraction protocol (Lu, 2011) and 100 ng of DNA was utilised in 

all PCR reactions. 

For gene expression, total RNA was extracted from hairy roots grown for 4 weeks under 

either dark and light conditions and leaf tissue from a Stevia plant as a control using the 

RNeasy® Plant Mini Kit (Qiagen, Whitehead Scientific, South Africa), following the 

manufacturer’s instruction. 

The cDNA synthesis was done using the Promega M-MLV Reverse Transcriptase RNase H 

Minus, Point Mutant Kit in a reverse transcription reaction. Using the primers designed 
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according to rol B, rol C gene and steviol glycoside biosynthesis genes (Table 3.1) with the 

following thermocycling conditions: initial denaturation temperature 95oC, 2 min, 

denaturation 95oC, 50 sec; annealing 58oC, 50 sec; extension 72oC, 30 sec; final extension 

72oC, 2 min and holding 10oC indefinitely for 25 cycles. Amplification products were then 

visualized under UV light on 2% agarose gel on TBE buffer stained with Pronosafe nucleic 

acid stain (0.005% v/v). 

3.5 Amplification and cloning of the UGT74G1 & UGT76G1 genes into pMDC32 

for constitutive expression in Stevia hairy root bioreactors 

Primers to amplify full length coding DNA sequences (CDS) amplicons for S. rebaudiana 

UGT74G1 (accession number: AY345982.1) and UGT76G1 (accession number: 

AY345974.1) were designed based on sequence information obtained from the Nucleotide 

Database of National Centre of Biotechnology Information (NCBI). All primers used in this 

study were produced and supplied by Inqaba Biotech. 

Total leaf RNA was extracted from fresh leaves of S. rebaudiana the RNeasy®  Plant Mini 

Kit (Qiagen, Whitehead Scientific, South Africa), following the manufacturer’s instruction. 

The synthesis of complimentary DNA (cDNA) was done using 1 µg total RNA, oligo dT18 

primer and a recombinant M-MuLV Reverse Transcriptase using a Thermo Scientific 

RevertAid First strand cDNA synthesis kit, following the manufacturer’s instructions.  

The high-fidelity, Q5 DNA polymerase (New England Biolabs) was used to amplify the two 

CDS amplicons following the manufacturer’s instruction with gene specific primers (Table 1) 

with the following thermocycling conditions: initial denaturation temperature 98oC, 30 sec; 

denaturation 98oC, 10 sec; annealing 60oC, 30 sec; extension 72oC, 45 sec; for 35 cycles; and 

a final extension 72oC, 2 min. All DNA/RNA electrophoresis and visualization throughout 

this study was conducted on 1% agarose TBE gels stained with Pronosafe 0.005% (v/v; 

Conda, South Africa) and visualized under UV light. 

Single discrete amplicons of UGT74G1 and UGT76G1 were column-purified with the 

Promega Wizard® Plus SV Mini-prep DNA Purification system, A-tailed with the Promega 

GoTaq DNA polymerase and cloned into the pCR8/GW/TOPO vector system (Invitrogen) 

and transformed into One Shot® TOP10 E. coli (Thermo Fischer) chemically-competent cells. 
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Colony PCR was done to determine insert orientation using the gene specific cloning primers 

and the T7 promoter (Table 1) primers. A single bacterial colony was selected using 

toothpicks and was briefly dipped into a 20µl PCR mixture under the following 

thermocycling conditions: initial denaturation temperature 95oC, 2 min; denaturation 95oC, 

50 sec; annealing 60oC, 50 sec; extension 72oC, 30 sec; final extension 72oC, 2 min and 

holding 10oC indefinitely. After confirmation, pCR8/UGT74G1 and pCR8/ UGT76G1 entry 

vectors were isolated from the One Shot® TOP10 cells using the Promega mini-prep kit 

standard protocol and sequenced at the Central Analytical Facility (Stellenbosch University) 

to confirm orientation and validate the fidelity of the amplification process. The genes were 

sub-cloned into the Gateway destination vector pMDC32 using a conventional LR clonase 

reaction and transformed into chemically-competent E. coli OMNIMAX cells (Invitrogen 

Gateway® LR Clonase®). The pMDC32 is a binary plant vector whose T-DNA region 

contains dual constitutive expression versions (CaMV35S) and Nos terminator. 

Again the independent presence and orientation of the two genes in PMDC32 were confirmed 

via PCR with a combination of gene specific primers and vector specific primers: 

UGT74G1(fwd) and UGT74G1(rev); UGT76G1(fwd) and UGT76G1(rev); UGT74G1(fwd) and Nos 

T(rev); UGT76G1(fwd) and Nos T(rev); pMDC32(fwd) and UGT74G1(rev); pMDC32(fwd) and 

UGT76G1(rev)  

 

 
 
 
 
 Table 1: Primers for UGT74G1 and UGT76G1 gene amplification and construct confirmation 
Gene Primer sequence5’→3’ (forward/reverse) 

UGT74G1 (GI: AY345982.1) ATGGCGGAACAACAAAAG/ 

TTAAGCCTTAATTAGCTCACTTACAA 

UGT76G1 (GI: AY345974.1) ATGGAAAATAAAACGGAGACC/ 

TTACAACGATGAAATGTAAGAAACTA 

Nos T AAGACCGGCAACAGGATTG 

pMDC32 AGAGGATCCCCGGCTACC 

T7 AATACGACTCACTATAGG 
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Table 2: Primers for identification of hairy root cultures and SG gene expression 
Gene Primer sequence 5’→3’(forward/reverse) Amplicon length (bp) 

Actin2 CGCCATCCTCCGTCTTGATCTTGC/ 

CCGTTCGGCGGTGGTGGTAA 

111 

rol B GCACTTTCTGCATCTTCTTCG/ 

CCTGCATTTCCAGAAACGAT 

383 

rol C GCACTCCTCACCAACCTTCC/ 

ATGCCTCACCAACTCACCA 

586 

Kaurene synthase 

 (KS; GI: AF097310.1) 

  

ACCAAAGAACGGATCCAAAAACTG/ 

AGACACTCAGGGAAACAAGGC  

125 

Kaurenoic oxidase (KO; GI: 

AY995178.1 

AGCTATGAGACAAGCATTGGGA/ 

CGACGTCAATTGCACCCATC 

128 

Kaurenoic acid 13-hydroxylase 

(KAH) 

AACTCTGGCACTCCTACGTG/ 

CAAAACGGTCGCCAAACAAC 

119 

UGT85C2 (AY345978.1) 

  

CATCGGGCCCACATTGTCTA/ 

CTCTGATTGGGATGCTCGCT 

99 

UGT74G1(GI: AY345982.1) ACAGTAACACCACCACCACC/ 

GACCCAACTTGTTTGAATGTTTCC 

 

274 

UGT76G1(GI: AY345974.1) TTCACACCAACTTCAACAAACCC/ 

ATGCGTTCGTCTTGTGGGTC 

107 

 

3.6 Extraction and LC-MS/MS analysis of steviol glycosides from hairy roots and 

Stevia leaves 

Steviol glycoside extractions were conducted using the method described by Routaboul et al., 

(2006) with minor modifications. Hairy roots harvested from dark and light conditions and 

Stevia leaves were freeze-dried overnight. One hundred milligrams of each of the hairy roots 

and Stevia leaves were ground into a fine powder using the Retsch mill and metabolites 

extracted in 2 ml acetonitrile/water (75:25; v/v) for 5 minutes at 4oC before sonication on ice 
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for 20 minutes. Paracetamol (5 ppm) were added to each sample as an internal standard. 

Following sonication, centrifugation was done for 5 minutes at 15000 rpm and the 

supernatant was kept at 4oC overnight. The remaining plant material was used for further 

metabolite extraction using 1ml acetonitrile/water (75:25; v/v) overnight at 4oC.The extract 

was centrifuged and the second supernatant kept at 4oC. The two extracts (supernatants) were 

combined together and were evaporated in vacuum and dry residue re-dissolved in 500 µl 

50% methanol. The extracts were aliqouted in 200 µl vials for LC-MS/MS analyses. 

LC-MS/MS analyses were performed with a Waters Synapt G2 quadrupole time-of-flight 

mass spectrometer (Waters Corporation, Milford, MA, USA) equipped with a Waters 

Acquity UPLC. Samples were separated on a Waters UPLC BEH C18 column (2.1 x 100 

mm; 3.5 μm) at a flow rate of 0.3 ml/min at 35oC. Solvent A consisted of 0.1% acetic acid in 

water and solvent B was 0.1% acetic acid in acetonitrile. The mobile phase gradient was from 

0% to 60% solvent A over 5 min, maintained for 2 min at 60% solvent A before the column 

was re-equilibrated to the initial conditions. Electrospray ionization was applied in the 

negative mode and the scan range was from m/z 150 to 1500. The capillary voltage was set a 

2.5 kV, the cone voltage was 15 V, the source temperature 120oC and the desolvation 

temperature was 275oC. The desolvation gas and cone gas flows were 650 L/h and 50 L/h, 

respectively. Metabolite quantification (where applicable) and fold changes were conducted 

against a series of standard flavonoids (stevioside and rebaudioside A at a concentration of 1 

mg/ml), and metabolite recovery was monitored with the internal standard (paracetamol, 0.1 

mg ml-1). Metabolites were monitored using their deprotonated quasi-molecular ions and 

quantified or identified (where possible) with the TargetLynx application manager (Waters 

MassLynx V4.1V software).  
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4. RESULTS 

4.1 Induction of hairy root cultures utilizing A. rhizogenes on Stevia leaf explants 

Since SG accumulation is strongly linked with photosynthetic vegetative tissue Stevia leaves 

were chosen as the ideal explants for hairy root induction. Two strains of A. rhizogenes (A4T 

and LBA9402) were preliminarily evaluated for their capacity to initiate Stevia hairy root 

culture. Following inoculation of the leaf explants (Figure 4.1 A), hairy root formations 

absent in the control (Figure 4.1 B), emerged within 20 days of infection with either A. 

rhizogenes A4T (Figure 4.1 C) or LBA 9402 (Figure 4.1 D). Two to three weeks after 

inoculation with both strains separately, qualitatively strain LBA9402 produced more hairy 

roots per explant (Figure 4.1 D) than A4T (Figure 4.1 C) and the hairy roots from strain 

LBA9402 appeared to grow with more vigour (Figure 4.1 E-F). Consequently, only strain 

LBA9402 was utilised for the rest of the study. 

Hairy root cultures are typically cultivated under constant dark conditions but since 

photosynthetically active tissue appears to be a pre-requisite for SG accumulation(Modi et 

al., 2016) we decided to investigate whether the light conditions would impact hairy root 

growth and the accumulation of SGs in our cultures. All initial liquid cultures of the hairy 

roots were conducted in the dark for 4 weeks. Fifty percent of the cultures were then 

transferred into long day conditions (16 h light/ 8 h dark) and unsurprisingly they developed 

from the typical yellow-brown colour of dark-grown roots (Figure 4.1 G) to a vibrant green 

hue (Figure 4.1 H) 

To determine if hairy roots were transgenic for the Ri plasmid DNA, semi-quantitative PCR 

was conducted on cDNA from hairy roots grown for 4 weeks in liquid culture. Two known 

and well characterised hairy root Ri plasmid-specific genes (rol B and rol C) were shown to 

be present and expressed in hairy root extracts but absent in leaf tissue, confirming the 

transgenic nature of the hairy roots ( 
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Figure  4.2). 

 

Figure 4.1: Sequential stages of hairy root induction in Stevia rebaudiana using A rhizogenes strains A4T 
and LBA9402 on leaf explants 
A, newly inoculated leaf explant at day 0; B, control Stevia explants 20 days post- inoculation with 1X MS; C & 
D, Stevia explants 20 days post infection with A4T and LBA9402 respectively; E & F, hairy roots infected with 
A4T and LBA9402 10 days after excision from mother explants; G & H, hairy roots from  LBA9402 after 4 

A B 

C D 

E F 

G H 
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weeks in liquid media under dark or light conditions respectively. Hairy root inductions were attempted in 
multiple independent experiments and a minimum of 50 explants were used per strain or light condition 
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Since SG production is light-dependent it follows that SG gene expression is potentially 

dependent on the light and photosynthetic status of the hairy root cultures. Using sqRT-PCR, 

we additionally managed to show that for the most part, SG biosynthesis genes are expressed 

to similar levels in hairy root tissue grown under constant dark or long day conditions ( 

 

 

 
 
 
 
 
 
 

Figure  4.2). These expression levels are also comparable to those in leaf tissue which is 

known to accumulate the highest levels of SGs in Stevia (Brandle and Telmer, 2007). 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure  4.2: SG biosynthesis gene expression in hairy root cultures grown in dark or light conditions as 
determined by sqRT-PCR. 
PCR was performed with gene specific primers for each gene for the predetermined linear range cycle number 
(25). cDNA was generated from total RNA extracted from a pool of 5 independent hairy root lines per growth 

KAH 
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KS 

KO 
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condition. ACT2 (Actin2); rol B & rol C (oncogenic genes from the pRi); KS (Kaurene synthase); KO (Kaurene 
oxidase); KAH (Kaurenoic acid 13-hydroxylase); UGT85C2, UGT74G1 & UGT76G1 (UDP-
glycosyltransferases. 
 
 
 
 

 

4.2 Generation of transgenic hairy root cultures overexpressing UGT74G1 and 

UGT76G1 

An objective of the research was to produce transgenic hairy root cultures that constitutively 

express the 2 final genes, UGT71G1 and UGT76G1 in the steviol glycoside biosynthesis 

pathway with the intention of increasing stevioside and rebaudioside A accumulation in these 

cultures.  

4.2.1 UGT gene isolation and sub-cloning into pMDC32, a plant expression vector  

To this end, the full length CDS regions of both UGT74G1 and UGT76G1 were amplified 

from Stevia leaf extract-based cDNA utilizing a high-fidelity DNA polymerase and 

subsequently cloned into the Gateway technology entry vector pCR8/GW/TOPO. Positive 

transformants containing the genes of interest were identified via colony PCR utilizing the 

gene specific primers originally utilized to amplify the genes from Stevia (Figure 4.3). 

pCR8/GW/TOPO cloning is bi-directional and as such two additional primer combinations 

were utilized to confirm the genes were inserted into the entry vector in the forward sense, a 

requisite for successful gene expression upon recombination into the destination vector. Only 

clones with a forward sense insertion will result in successful PCR amplification with the 

gene-specific forward primer and the T7 primer, and not with the gene-specific reverse and 

T7 primer combination (ThermoFisher Scientific, pCR8 product information booklet).  

After insert orientation and gene sequence fidelity was confirmed via PCR and subsequent 

plasmid DNA sequencing, respectively, the 2 genes were sub-cloned into the destination 

vector pMDC32, via LR clonase technology, to generate pMDC32/UGT7XG1 expression 

vectors (whereby X stands for either 4 or 6). Again positive transformants were identified via 

PCR with gene specific primers and a combination of gene and vector specific primers to 

ensure correct orientation ( 

Figure 4.4). 
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Figure 4.3: PCR confirmation of UGT gene insertion and insert orientation in the entry vector 
pCR8/GW/TOPO 
PCR was conducted with either gene-specific full length CDS primers (insertion) or a combination of a gene 
specific primer with the T7 promoter specific primer. I, gene specific primers; II, forward sense primers; III, 

reverse sense primers. 

 

Figure 4.4: PCR-based identification and confirmation of the pMDC32/UGT7XG1 expression vectors in 

E. coli.  

Recombinants were identified utilizing gene specific primers and gene insert orientation confirmed via a 
combination of vector and insert specific primers. I, gene specific primer; II vector forward and gene reverse 
primers; III, gene forward and vector reverse primers. 

 

4.2.2 Independent transformation of A. rhizogenes LBA9402 with pMDC32/UGT7XG1 

Subsequent to the generation of the two plant expression vectors harbouring the UGT genes, 

competent A. rhizogenes LBA9402 (section 4.2.1; previously determined to be the better 

strain for hairy root induction; Figure 4.1 D & F)  was independently transformed with both 

vectors and the successful uptake of the binary vectors dually confirmed, firstly with PCR 

amplification (Figure 4.5). Gene specific primers were utilised to identify successful 

transformants and it is apparent the binary vectors were successfully introduced into the 

bacterium. Additionally, the transformants were screened on LB growth media supplemented 

with and without a combination of antibiotics (Figure 4.6). Strain LBA9402 showed 

endogenous resistance to rifampicin (50 µg/ml) and the binary vector introduces resistance to 

kanamycin (50 µg/ml). As expected the successfully transformed colonies showed resistance 

to growth on selection with both rifampicin and kanamycin and were used for further work 

downstream. 

 I                            II                            III                I                                  II                         III  

                        UGT74G1                                                                    UGT76G1 

 I                           II                           III                I                           II                          III  

UGT74G1                                                              UGT76G1 
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Figure 4.5: pMDC32/UGT74G1 (II) and pMDC32/UGT76G1 (III) expression vectors were successfully 
transformed into A. rhizogenes LBA9402 as confirmed via PCR. 
PCR with gene specific primers was performed on plasmid DNA isolated from overnight cultures of A. 
rhizogenes independently transformed with the two expression vectors. I, untransformed control; II, 
pMDC32/UGT74G1; III, pMDC32/UGT76G1;  +, positive control. 

  

        I                      II                       +                         I                      III                          + 

                           UGT74G1                                                            UGT76G1 
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Figure 4.6: A. rhizogenes LBA9402 harbouring pMDC32/7XG1 expression constructs is resistant to 
selection on kanamycin. 
Untransformed bacteria (I), bacteria transformed with either pMDC32/UGT74G1(II) or pMDC32/UGT76G1 
(III) was grown on LB media with either no antibiotic (A), with rifampicin (50 µg/ml) only (B) or on rifampicin 
and kanamycin (50 µg/ml) (C) 

 
4.2.3 Co-transformation of Stevia with Ri and Ti for the production of transgenic hairy roots 

constitutively expressing UGT74G1 and UGT76G1. 

Stevia explants were infected with A. rhizogenes LBA9402 harbouring either 

pMDC32/UGT74G1 or pMDC32/UGT76G1 and allowed to grow and produce hairy root 

cultures. Four weeks after the emergence of hairy roots the cultures were transferred to liquid 

media and genomic DNA was extracted to determine if the hairy roots were transgenic for 

both Ri and Ti T-DNA. PCR analysis revealed that the Ri T-DNA was inserted into these 

cultures as confirmed by the amplification of the rol C gene (Figure 4.7).  

However, using the vector forward and gene specific primers for the pMDC32/UGT7XG1 

construct PCR showed the Ti T-DNA was not successfully integrated into the hairy root 

genome (Figure 4.7).  

 
Figure 4.7: Representative image of identification of hairy roots from explants infected with A. rhizogenes 
LBA9402 carrying a binary expression vector 
PCR was conducted on genomic DNA from 3 representative hairy root lines (I, II & III) with rol C and 
pMDC32/UGT76G1 construct specific primers. +, positive control plasmid DNA 

 

Furthermore, these hairy roots were unable to survive in liquid media with hygromycin, 

visibly changing colour and eventually dying (Figure 4.8 B), confirming a failure to co-

transform and simultaneously induce hairy root formation. This result was consistent across 

multiple hairy root lines and regardless of which of the two binary vectors was used. At this 

A B 
A B C I I I 

II II II III III III 

        I                    II                   III                      I                    II                   III                  + 

                           rol C                                                     pMDC32/UGT76G1 
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point the research focus was shifted solely onto the hairy root cultures induced via the classic 

approach. 

 

Figure 4.8: Hairy root cultures co-transformed with pMDC32/UGT7XG1 are not resistant to hygromycin 
selection 
Four-week-old hairy roots were grown in liquid 1X MS media. A, hairy root culture pre-hygromycin selection. 
B, hairy root culture in hygromycin selection for approximately 1 week under constant dark conditions. 

 

4.3 Identification of SGs accumulating in Stevia hairy root cultures via an LC-

MS/MS approach 

Total metabolites were extracted from hairy root cultures (both light and dark) and leaf 

material to determine steviol glycoside accumulation via LC-MS/MS analyses. The mass 

spectrum (m/z ratio) of each peak, correlating to commercial standards (stevioside and 

rebaudioside A), were extracted from the total ion chromatogram to confirm the identity of 

either stevioside or rebaudioside A in hairy root and leaf metabolite extracts (Figure 4.9). 

Leaf extracts accumulated both stevioside and rebaudioside A (Figure 4.9 A). When 

compared to the commercial standards (Figure 4.9 D). Hairy root extracts, from either light or 

dark controlled conditions, did not accumulate either of these compounds (Figure 4.9 B & C). 

A B 
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Figure 4.9: Mass spectrum isolated from total ion chromatogram of Stevia extracts.  
(A) leaf, (B) hairy roots maintained in the light and (C) hairy roots maintained in the dark as compared to (D) 
commercial standards. 
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5. DISCUSSION 

The most recent statistics around the global and domestic (SA context) incidence of diabetes 

paint a bleak picture, firmly placing the condition as a serious global problem linked to 

dietary lifestyle choices/preferences. The first ever comprehensive global report on diabetes 

released by the World Health Organization in 2016 clearly indicates that new incidences of 

diabetes are increasing significantly in developing countries (Roglic, 2016). This has 

implications in terms of the management and treatment on already strained public healthcare 

systems. Interestingly, Statistics SA released their mortality report in 2017 which investigated 

the leading causes of mortality in the SA population (Statistics South Africa; StatsSA, 2014). 

A very surprising finding was that tuberculosis (TB) and diabetes are the leading causal 

factors of mortality and in the Western Cape, diabetes accounts for more deaths than TB 

(StatsSA, 2014). 

While diabetes is a multifactorial non-communicable disease, there is evidence linking its 

onset to obesity. Obesity itself has been clearly linked to dietary and lifestyle preferences, and 

increased intake of dietary sugars e.g. sucrose (Golay and Ybarra, 2005; Eckel et al., 2011). 

Consequently, the South African government has promulgated legislation which will in future 

see a tax being applied to consumer products which contain dietary sugars in an attempt to 

help reduce excessive sugar intake in the South African population and, improve the general 

health and well-being of the population (Manyema et al., 2014). 

A long standing solution to the problem of excessive dietary sugar intake is the inclusion of 

non-nutritive sweeteners (NNS) into the human diet, as a substitute to normal sugar. The key 

feature of NNS is their inability to be metabolized by the human body (Romo-Romo et al., 

2016). Thus their consumption still imparts the sweet-to-taste characteristic of dietary sugar 

but does not affect sugar metabolism within the body. However, only a small number of 

chemically synthesized sweeteners (sucralose, aspartame, saccharin, acesulfame-K, neotame, 

and advantame) are approved to be used in food. Additionally two naturally derived NNS 

(steviol glycosides and Luo Han Guo extract) are generally recognized as safe  and carry 

endorsements for use in food by the FDA (FDA, n.d) and the European Food Safety 

Authority (EFSA, 2010). It is within this context that this thesis project was conducted and 

was particularly focused on the context of the use of Stevia as a source of NNS. 
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Leaf extracts of Stevia contain the high-value steviol glycosides (SGs) stevioside and 

rebaudioside A, NNS that are claimed to be up to 300 times sweeter than sucrose (Phillips, 

1987). However, commercial cultivation of the plant occurs primarily via tissue culture 

protocols and stem cuttings of plants resulting in a high labour cost. The SG yields are also 

very low and variable (between 2 - 4% total fresh mass) and the Stevia plant requires 

intensive irrigation inputs for successful commercial scale SG harvests. The development of 

such commercial scale agricultural cultivation of Stevia has been proposed for SA to develop 

a domestic supply market (FoodStuff South Africa, 2016) and make Stevia products more 

economically accessible to the general public. However, the problems associated with its 

cultivation are considered to be major factors restricting the development of this economy. 

Our work sought to use A. rhizogenes to infect Stevia leaf explants in order to induce hairy 

root development for SG production. Our experiments resulted in the formation of hairy roots 

(Figure 4.1) and subsequent sub-culturing procedures yielded hairy root cultures which were 

able to proliferate on solid and, in liquid growth media (Figure 4.1) The production of high 

value plant secondary metabolites from hairy root bioreactors is well reported (Nazif et al., 

2000; Waller et al., 1983; Sarfaraj Hussain et al., 2102). However, such approaches are often 

hampered by (i) low yields of the desired products and (ii) the required scalability for the 

industrial commercial-scale production of these products (Kim et al., 1996). This is due to the 

poor understanding of secondary metabolite biosynthesis pathways and common 

technological processes involved in extraction and accumulation of these compounds in large 

scale (Brandle and Telmer, 2007). Many secondary metabolites are products of very 

complicated biosynthetic networks, and their synthesis is triggered by several factors, 

therefore, the mechanism or enzymes involved for a specific secondary metabolite should be 

fully understood. 

The SG biosynthetic pathway in Stevia is only partially resolved (Brandle and Telmer, 2007). 

In that study it was reported that key steps in SG biosynthesis are localized to plastids (the 

MEP pathway) starting with the initial formation of the precursor steviol. Further, these 

primary steps in the synthesis of SGs rely on the formation of ent-kaurenoic acid which is 

known to occur only in plastids. The only steps which occur in the cytoplasm are proposed to 

be the final stage of glycosylation which yields the SGs stevioside and rebaudioside A. A role 

for photosynthesis in the biosynthesis of SGs has been explicitly demonstrated (Ladygin et 

al., 2008). Those authors examined the biosynthesis of SGs in Stevia leaves and callus tissue, 

Stellenbosch University  https://scholar.sun.ac.za



35 
 

demonstrating that SG accumulation was invariably linked to the presence of chlorophyll and 

light.  

With this in mind and since hairy root normally cultivated in the dark (Saito et al., 1992), we 

thus conducted experiments where hairy root cultures were propagated under both light and 

dark conditions and examined the transcript abundance of key SG biosynthetic genes ( 

 

 

 
 
 
 
 
 
 

Figure  4.2). From these analyses we could clearly confirm integration of the respective root 

inducing genes (rol B and rol C) from the Ri plasmid of A. rhizogenes when compared to leaf 

explants ( 

 

 

 
 
 
 
 
 
 

Figure  4.2). However, transcripts of six key SG biosynthetic genes showed similar 

abundance in hairy root cultures grown in the dark and the light when compared to leaf 

explants ( 
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Figure  4.2). These results were surprising given the reports linking photosynthetically active 

tissues to SG biosynthesis and perhaps there are post-transcriptional processes that drive SG 

accumulation.  

Following on from these analyses, hairy root cultures both grown in the dark and in the light 

were subjected to an acetonitrile based-extraction to recover secondary metabolites. These 

extracts were then subjected to tandem mass spectrometry analyses (LC-MS/MS) to 

determine (i) if the extraction procedure was valid and (ii) if our hairy root cultures were able 

to accumulate SGs, given that key biosynthetic genes were being expressed. When compared 

against commercially available pure standards for both stevioside and rebaudioside A, we 

could clearly detect the presence of both these compounds in leaf extracts. However, we 

consistently could not detect either compound in extracts from hairy root cultures. The 

reasons for these observations are unclear, however, in the study linking photosynthesis to 

SG accumulation it was found that both Stevia callus cultures grown in the light and the 

etiolated in vitro regenerants (plants from the callus) exhibited chlorophyll pigments one 

order of magnitude lower than that in leaves of the intact plants that had not been in vitro 

cultured (Ladygin et al., 2008). We propose that while key SG biosynthetic genes are clearly 

being expressed in our hairy root cultures, the actual abundance of key substrate 

intermediates required for SG accumulation may be too low to facilitate the biochemical 

reactions leading up to accumulation of stevioside and rebaudioside A. Since we were unable 

to obtained pure intermediate substrates as commercial standards, our analyses did not 

include determining if any SG biochemical intermediates were present in our extracts.  

 

Our study sought to develop a transgenic hairy root culture where Agrobacterium rhizogenes 

strains would be used to create hairy root cultures and additionally generate hairy roots 

overexpressing the two key genes involved in the last stages of SG biosynthesis (viz. 

UGT74G1 making stevioside and UGT76G1 making rebaudioside A). These respective genes 

were amplified from leaf cDNA preparations, cloned into the binary vector pMDC32 (dual 

CaMV 35S promoter, Curtis and Grossnikalus, 2004), and transformed into A. rhizogenes 

(LBA9402). PCR analysis confirmed the presence of the pMDC32 constructs with the target 

UGT genes within the bacteria (Figure 4.5 and we demonstrated that A. rhizogenes LBA9402 

transformed with the respective constructs grew on media containing the antibiotic 

kanamycin contrary to untransformed strains (Figure 4.6). 
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Presently only two studies have confirmed hairy root induction of S. rebaudiana transformed 

with A. rhizogenes (Yamazaki et al., 1991; Michalec-Warzecha et al., 2016). However, none 

have created hairy roots with A. rhizogenes strains that also carry binary vectors for plant 

transformation. Indeed, we consider this approach novel as to our knowledge (following 

extensive literature review searches), we believe that the use of A. rhizogenes for potential 

hairy roots development and simultaneous genetic transformation of Stevia has never been 

reported and is still potentially a significant approach to increasing SG production. It should 

be noted that the precedence exists for simultaneous hairy root induction and genetic 

transformation with an additional binary vector (Rana et al., 2017). 

Conclusion and final outlook 

Our work attempted to create a transgenic hairy root bioreactor from Stevia leaf explants, by 

transforming A. rhizogenes with binary plasmids normally used for A. tumefaciens plant 

genetic transformation methodologies. We showed that A. rhizogenes could be transformed 

stably with these plasmids and that the transformed strain could subsequently induce hairy 

root cultures. However, we did not detect pMDC32/UGT74G1 and pMDC32/UGT76G1 

specific genomic DNA in any of the hairy root cultures. Although the untransformed hairy 

roots clearly have comparable levels of critical genes in SG biosynthesis, they do not 

accumulate any of the SGs we had standards for (stevioside and rebaudioside A) and have 

linked this to the possible low concentration of biochemical substrate intermediates that are 

normally associated with photosynthesis.  

In this regard, future work making use of these hairy roots is suggested as follows: 

1. Since the overarching aim of the study was to produce SGs in a non-agricultural 

system, the hairy roots could be propagated under light conditions until they develop 

leaves. This system could then be analysed to determine if stevioside and 

rebaudioside A are present. For the duration of the study all light grown hairy root 

cultures did not develop shoots. 

2. One could consider using the substrate intermediates which are produced by 

photosynthesis as a means of priming hairy roots to then complete SG biosynthesis 

leading to stevioside and rebaudioside A accumulation. 

3. An attempt could be made to generate transgenic Stevia plants transformed with the 

pMDC32 vector system first, and then induce hairy roots from the recovered 
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transgenics. These cultures could then be inserted into the approaches described in 

points 1 and 2 above. 
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