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Abstract

The use of model predictive control in power electronics has increased significantly in recent
years. More specifically, the so-called direct model predictive control methods are primarily
considered for power electronic converters due to their switching nature. In direct control
methods the output of the controller directly manipulates the converter inputs, which are
restricted to integers, without the use of a modulator. However, predominantly, only a short
horizon of one prediction step is considered. This can be attributed to two reasons. Firstly, it
has been previously regarded that longer horizons do not provide any performance benefits
in power electronics. Secondly, the computational burden associated with prediction horizon
increases exponentially, discouraging practical consideration.

Recently it was shown that the stigma that longer horizons do not provide performance
benefits is false, and that long horizons do indeed increase the harmonic performance of a
converter. In fact, if the prediction horizon is long enough, model predictive control can
compete with the highly regarded optimised pulse patterns in terms of harmonic distortion.
Furthermore, it was shown that the optimization problem of direct model predictive con-
trol with long horizons can be reformulated as an integer least-squares. A branch-and-bound
method, known as sphere decoding, can solve the reformulated optimization problem in a
time-efficient manner, enabling practical considerations.

The primary contribution of this thesis is the practical implementation of long-horizon di-
rect model predictive control. A detailed description of the implementation of the controller
within a field programmable gate-array is given. It is shown that, for almost 90% of the cases,
only 8.4 µs are required to calculate the optimal inputs for a three-phase neutral-point-clamped
inverter when using a prediction horizon of 5 with a sampling interval of 25 µs.

Continuing on the practical implementation of long-horizon direct model predictive con-
trol, experimental results are captured and analysed for prediction horizons one to five. The
claim that longer horizons do provide a performance increase is validated through experi-
mental results. A decrease of roughly 8.5% in total total harmonic distortion at a switching
frequency of 250Hz is achieved when adopting a prediction horizon of five instead of one.

The secondary contribution of this thesis is the proposal of a method to selectively sup-
press selected harmonics. The formulation of the method is explained, and simulations are
used to verify the suppression of harmonics.
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Opsomming

Die toepassing van modelvoorspellendebeheer vir drywsingselektronika het aansienlik toe-
geneem in die afgelope paar jaar. Die sogenaamde direkte voorspellende beheer tegnieke is
veral van toepassing tot die veld van drywingselektronika as gevolg van die skakelnatuur van
die toerusting. ’n Modulator is afwesig wanneer direkte beheer metodes gebruik word, om-
dat die beheersein direk aan die intree van die omsetter gekoppel word. Die beheersein is
daarom beperk tot heelgetalle. Oor die algemeen word ’n kort voorspellings horison van een
gebruik. Daar is hoofsaaklik twee redes hiervoor. Eerstens, in die verlede was daar verneem
dat langer horison geen voordelige bydra tot die optrede van ’n drywsingelektroniese toestel
in hou nie. Tweedens, berekeninge wat verband hou met die voorspellings horison verhoog
eksponensieel en ontmoedig daarom die gebruik daarvan.

Dit was redelik onlangs bewys dat langer horisonne wel ’n beduidende positiewe bydrae
tot die werking van drywingselektroniese toestelle maak. Indien die horison lank genoeg is,
kan voorspellende beheer redelik goed kompeteer met die hoog aangeskrewe optimalepulspa-
trone. Verder was dit bewys dat die direkte-voorspellendebeheer optimeringsprobleem her-
formuleer kan word as ’n heelgetal-kwadratiese optimeringsprobleem. ’n Metode wat bekend
staan as sfeerdekodering kan gebruik word om die herformuleerde optimeringsprobleem ef-
fektief op te los, wat die praktiese gebruik daarvan bemoedig.

Die primêre bydrae van die tesis is die praktiese implementering van direkte modelvoor-
spellendebeheer met lang horisonne. ’n Gedetailleerde beskrywing om die beheerder binne
’n veldprogrammeerbare hekskikking te implementeer word aangebied. Dit word bewys dat
in byna 90% van die gevalle slegs 8.4 µs benodig word om die optimale intree te bereken vir ’n
driefase neutralepuntgeklampte omsetter, wanneer ’n voorspellings horison van vyf gebruik
word met ’n monsterperiode van 25 µs.

Verder word praktiese resultate aangebied vir voorspellendehorisonne vanaf een tot vyf.
Dit word bewys dat langer horisonne verbetering rakende die harmoniese gedrag van dry-
wingselektroniese toestelle teweeg bring. ’n Afname van 8.5% in stroomharmoniesedistorsie
teen ’n skakelfrekwensie van 250Hzword waargeneem, wanneer ’n voorspellendehorison van
vyf in plaas van een gebruik word.

Die sekondêre bydrae van die tesis is die bekendstelling van ’n metode om harmonieke
selektief te onderdruk. Die formulering van die metode word verduidelik en simulasies word
uitgevoer om te bevestig dat harmoieke wel onderdruk word.
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Chapter 1

Introduction

1.1 Background
In power electronics, there is a well-known fundamental trade-off between harmonic distor-
tion and switching losses. If one of these two objectives is optimised, the other onewill regress.
Instead, both of these objectives should be marginally optimised as illustrated in Figure 1.1.
Ideally, the optimal trade-off point should be as close to the origin as possible.

Optimal trade-off

Switching losses

H
ar
m
on

ic
di
st
or
tio

n

Figure 1.1: The fundamental trade-off. Replicated from [1].

Harmonic distortions are of great concern in electrical machines and grid-connected inverters.
In machines, harmonic torque distortion leads to mechanical stress and wear on the shaft,
while harmonic current distortion leads to iron and copper losses (thus leading to thermal
losses) [1]. For grid-connected inverters, there are standards imposed on both the current and
voltage harmonics. These standards are quite stringent, with certain harmonics, such as the
even-order and third-order-odd harmonics, having extremely strict requirements [1].

In medium-voltage drives (i.e., power ratings above 1MVA), the switching losses are of
significant concern. Due to the high currents and voltages (in the range of kiloamperes and
kilovolts), thyristors or gate-commuted thyristors are used. Due to their high-power applica-
tions, the switching frequency of these devices is limited to a few hundred hertz. Even at low
switching frequencies, the switching losses are still significantly greater than the conduction
losses [1].

Finding a control scheme that satisfies both of the abovementioned requirements, i.e., low
harmonic distortion at low switching frequencies, can be challenging. Volts per hertz (V/Hz)

1
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CHAPTER 1. INTRODUCTION 2

control with optimised pulse patterns (OPPs) [2, 3] fulfils these requirements by having low
harmonic distortion at low switching frequencies [1]. Unfortunately, this control scheme
fails to satisfy another requirement: fast response time of the controller. A control scheme
must be able to react quickly to any changes in operating set-points or faults, in other words,
have a fast transient response. Field-orientated control (FOC) [4, 5] and voltage orientated
control (VOC) [6], with space-vector modulation (SVM) [7], have fast response times but
consequently high harmonic distortion at low switching frequencies [1]. Hysteresis control
schemes, such as speed direct torque control (DTC) [8] and direct power control (DPC) [9],
have high controller speeds, but unfortunately give rise to profound harmonic distortion [1].

Over the past few years, interest in model predictive control (MPC) within the power
electronics community has increased significantly [10, 11, 12, 13, 14] due to the increased
computational power of microprocessors and field programmable gate-arrays (FPGAs). As
shown in Figure 1.2, MPC combines the best characteristics of the aforementioned control
schemes (that is, fast transient response and low harmonic distortion) along with other ad-
vantages that will be mentioned.

Fast Slow

Low

High

MPC
V/Hz control
with OPPs

FOC/VOC
with SVM

DTC/DPC

Controller response time

D
ist
or
tio

n
pe
rs
w
itc

hi
ng

lo
ss
es

Figure 1.2: Comparison between control schemes. Replicated from [1].

To achieve harmonic distortion levels that can compete with OPPs, which is the modulation
technique that offers the lowest harmonic distortion, the MPC controller must predict a fair
amount of discrete-time steps into the future. This method of MPC is known as long-horizon
(ormulti-step) MPC. Unfortunately, the computational burden associated with the optimiza-
tion problem underlying long-horizon MPC increases exponentially with the number of pre-
dicted discrete-time steps. Fortunately, a branch-and-bound method known as sphere decod-
ing has been demonstrated to solve the optimization problem in a time efficient manner [15],
enabling practical implementation of long horizons to be considered.

1.2 Thesis objectives
To date, papers that advocate for long horizons are based on simulation results. During simu-
lations, the practical implementation of the controller and real-time requirements are ignored.
The longest horizon found to be practically implemented in literature is a 2-step prediction
in [16].
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CHAPTER 1. INTRODUCTION 3

This thesis aims to achieve the following results. Firstly to execute the optimization problem
of long horizons with short sampling intervals in real-time on an FPGA, without relying on
heuristics (i.e., only concerned with exact solutions).

Secondly, MPC with long horizons should be practically implemented on a low-cost
FPGA. Solving the optimization problem in real-time is only one half of the problem. Since
FPGAs only have finite amount of resources, questions remain on whether long horizons
can be implemented without severely sacrificing the computational performance, sampling
interval, or achievable number of prediction steps.

Thirdly, the practical use of long horizons should offer a performance benefit over shorter
horizons, even though non-ideal characteristics are present in practice (e.g., model uncertain-
ties and saturation effects).

After investigating the practical implementation of long-horizon MPC, this thesis will
propose a method to selectively suppress targeted harmonics present in the current. The
theory of themethodwill be introduced and simulationswill be used to verify that themethod
does indeed suppress harmonics.

To summarise, the objectives of this thesis are:

• Practically implement long-horizon MPC on a low-cost FPGA.

• With experimental results, validate that long horizons provide a performance benefit.

• Introduce a method for selective suppression of harmonics in the current spectrum.

1.3 Thesis summary
This thesis contains six chapters, with the following content.

Chapter 1: Introduction introduces the fundamental trade-off between harmonic distor-
tion and switching losses in power electronics. Control schemes that are currently used in the
industry, and their associated disadvantages, are mentioned. The concept of model predictive
control with long horizons and the benefits thereof are stated, specifically with reference to
low harmonic distortions with quick response time at low switching frequencies. The com-
putational burden of the optimization problem underlying long-horizon MPC is mentioned
to increase exponentially along with the number of prediction steps.

The objectives of this thesis are presented, of which the primary objective is to investigate
the practical implementation of long-horizon MPC on an FPGA.

Chapter 2: Theoretical background lays the foundation of the theoretical knowledge re-
quired for this thesis. The chapter starts by introducing amulti-level inverter topology known
as the neutral-point-clamped inverter. MPC is formally introduced and its advantages are dis-
cussed. This includes a description of the components that form MPC, namely, an internal
dynamic model of a plant, addition of constraints, an optimal control problem, and a receding
horizon policy. The reformulation of the original optimization problem, that makes use of
an exhaustive search to find the minimum, to an integer least-squares problem is presented.
The notation of sphere decoding is introduced, which is effective at solving the reformulated
optimization problem underlying long-horizon MPC. The chapter concludes by reviewing
optimised pulse patterns and space-vector modulation that are used as benchmarks during ex-
perimental evaluation. Relevant examples are given throughout this chapter.
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CHAPTER 1. INTRODUCTION 4

Chapter 3: FPGA implementation discusses the implementation of long-horizon MPC
on an FPGA. First, the chapter describes the modelling of a neutral-point-clamped inverter
with a resistive-inductive load. The formulation of the optimal control problem is given.
Some preliminary information on FPGAs are presented. The computational delay present
in the practical controller is discussed and addressed. Thereafter, the implementation of the
controller algorithm, including a reformulated sphere decoding algorithm that can be imple-
mented within an FPGA, is explained. The resource usage of the FPGA for prediction steps
1 to 5 is shown. The chapter concludes with simulations that verify the implementation of
the practical controller.

The computational burden of the sphere decoder is presented, which can solve the opti-
mization problem for a 5-step prediction well within a sampling interval of 25 µs.

Chapter 4: Performance evaluation of long horizons presents the experimental results
of long-horizon MPC. The testing framework for the practical evaluation is explained. The
results for 1-step to 5-step predictions are given, with an emphasis on the trade-off between
harmonic distortions and switching frequency.

It is shown that at a switching frequency of 250Hz a prediction of 5 steps lowers the har-
monic distortions by roughly 8.5% when compared to a 1-step prediction. A comparison
with optimised pulse patterns and space-vector modulation shows that MPC performs excep-
tionally well at low switching frequencies. Under the selected conditions for this thesis, MPC
even outperformed the optimised pulse patterns. However, reasons regarding the apparent
outperformance of optimised pulse patterns are given. The response time of MPC is demon-
strated, showing a quick response when multiple reference changes are applied.

Chapter 5: Selective harmonic suppression for long horizons proposes a method to se-
lectively suppress desired harmonics. Methods previously used to obtain similar outcomes
are briefly discussed. The formulation of the suppression method is presented, which in-
cludes the design of an appropriate filter and an augmented state-space representation. The
simulation framework is also explained.

Simulations are conducted which demonstrate the ability of the proposed method to sup-
press harmonics at selected frequencies. The proposed method is shown to benefit from long
horizons.

Chapter 6: Conclusions and recommendations for future work concludes this thesis. Key
observations and results of relevant chapters are summarised. Improvements and recommen-
dations for future work are proposed and made, respectively.
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Chapter 2

Theoretical background

2.1 Introduction
This chapter presents the relevant theory required for this thesis. The chapter starts by in-
troducing a multilevel inverter topology that is used throughout the project. Model predic-
tive control is formally introduced, along with its fundamental principles and components.
The integer least-squares reformulation of the optimization problem underlying direct long-
horizon model predictive control is presented. The solver for the integer least-squares prob-
lem, sphere decoding, is explained in detail. This chapter concludes with an overview of
alternative modulation schemes that model predictive control will be measured against in
terms of harmonic distortions. Relevant examples are given.

2.2 The neutral-point-clamped inverter

2.2.1 Introduction to topology

+

−

Vd

−
vbot
+

Cd

−
vtop

+
Cd

va
vb
vc

N

Figure 2.1: The neutral-point-clamped inverter, using insulated-gate bipolar transistors (IG-
BTs) semiconductor switches with their associated freewheeling diodes.

In 1981, a three-level inverter topology, known as the neutral-point-clamped (NPC) inverter,
was introduced [17]. The inverter is shown in Figure 2.1, where Vd denotes the dc supply

5
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CHAPTER 2. THEORETICAL BACKGROUND 6

voltage. Two identical capacitors Cd are placed in parallel with the dc supply, where the point
between them forms the neutral point N. The voltage across the top and bottom capacitors
are denoted by vtop and vbot, respectively.

A given phase arm can produce three different voltage levels with respect to the neutral
point N: vtop, 0V, and −vbot. If fluctuations on the neutral point potential are neglected and
the capacitor voltages vtop and vlow are equal, the output for a given phase arm is

vx =
Vd

2
ux, (2.1)

where x ∈ {a, b, c} denotes the phase and ux ∈ {−1, 0, 1} represents the switch position
for a given phase arm. Considering a phase arm of the inverter with switch position ux, the
positive and negative phase current paths are shown in Figure 2.2 and Figure 2.3, respectively.
The output voltage and semiconductor states for a given phase with switch position ux are
summarised in Table 2.1.

+

−

Vd

Cd

Cd

N ix

Sx,1

Sx,2

Sx,3

Sx,4

vx

(a) ux = −1

+

−

Vd

Cd

Cd

N ix

Sx,1

Sx,2

Sx,3

Sx,4

vx

(b) ux = 0

+

−

Vd

Cd

Cd

N ix

Sx,1

Sx,2

Sx,3

Sx,4

vx

(c) ux = 1

Figure 2.2: Current paths for positive phase current.
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Sx,4

vx

(a) ux = −1

+

−

Vd

Cd

Cd

N ix

Sx,1

Sx,2

Sx,3

Sx,4

vx

(b) ux = 0

+

−

Vd

Cd

Cd

N ix

Sx,1

Sx,2

Sx,3

Sx,4

vx

(c) ux = 1

Figure 2.3: Current paths for negative phase current.
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Table 2.1: Switching states for phase arm of NPC inverter.

ux Sx,1 Sx,2 Sx,3 Sx,4 vx

−1 0 0 1 1 −Vd

2

0 0 1 1 0 0

1 1 1 0 0 Vd

2

2.2.2 Clarke transformation and switching vectors
To simplify the control formulation in Section 3.2, consider the Clarke transformation

ξαβ0 = Kξabc, (2.2)

and inverse Clarke transformation

ξabc = K−1ξαβ0, (2.3)

where

K =
2

3

1 −1
2

−1
2

0
√
3
2

−
√
3
2

1
2

1
2

1
2

 and K−1 =

 1 0 1

−1
2

√
3
2

1

−1
2

−
√
3
2

1

 . (2.4)

Since only non-grounded star-connected loads are considered, the 0-component of the or-
thogonal reference frame is not required [1], as will be explained shortly. Therefore, the
transformations are reduced to

ξαβ = Kξabc (2.5)

and
ξabc = K−1ξαβ, (2.6)

where the transformation matrices are redefined as

K =
2

3

[
1 −1

2
−1

2

0
√
3
2

−
√
3
2

]
and K−1 =

 1 0

−1
2

√
3
2

−1
2

−
√
3
2

 . (2.7)

There exist 33 = 27 different switching states that the inverter switch positions can assume
in the form of uabc =

[
ua ub uc

]T . After applying the Clarke transformation to all of the
different switching states

uαβ = Kuabc, (2.8)

19 unique switching vectors in the form uαβ =
[
uα uβ

]T are produced, as illustrated in
Figure 2.4. Note that there are 27 different switching states, but only 19 switching vectors.
This is because 6 pairs of switching states produce identical short switching vectors, and 3
switching states produce the zero switching vectors, as shown in Table 2.2. These vectors are
known as redundant vectors.

The inverter output voltage in the orthogonal reference frame is given by

vαβ =
Vd

2
Kuabc, (2.9)
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CHAPTER 2. THEORETICAL BACKGROUND 8

and it is apparent that the voltage vectors produced have the same form as the switching
vectors shown in Figure 2.4. The (neglected) 0-component v0 of the voltage vector represents
the common-mode voltages, which do not drive phase currents if the star connection of the load
floats [1]. The αβ-components form the differential-mode voltages that drive phase currents.

uα

uβ

1
3

2
3

1 4
3

√
3
3

2
√
3
3

Figure 2.4: The switching vectors produced by a three-level NPC inverter.
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Table 2.2: Switching vector table.

Classification ua ub uc uα uβ

Zero
−1 −1 −1

0 00 0 0
1 1 1

Short

1 0 1 1
3 −

√
3
30 −1 0

0 0 1 −1
3 −

√
3
3−1 −1 0

1 1 0 1
3

√
3
30 0 −1

0 1 0 −1
3

√
3
3−1 0 −1

1 0 0 2
3

0
0 −1 −1

0 1 1 −2
3

0−1 0 0

Medium

0 1 −1 0 2
√
3
2

0 −1 1 0 −2
√
3
2

1 0 −1 1
√
3
2

1 −1 0 1 −
√
3
2

−1 1 0 −1
√
3
2

−1 0 1 −1 −
√
3
2

Long

1 −1 −1 4
3

0

−1 1 1 −4
3

0

1 1 −1 2
3

2
√
3
3

−1 −1 1 −2
3

−2
√
3
3

−1 1 −1 −2
3

2
√
3
3

1 −1 1 2
3

−2
√
3
3

2.3 Model predictive control

2.3.1 Introduction to MPC
History and fundamental principles

Model predictive control (MPC) is rooted in optimal control theory [18]. Since its inception
in the 1970s, MPC has been widely used in the process industry [19], where plant dynamics
are relatively slow. MPC has only recently been readily adopted in power electronics due to
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the increased computational power of microprocessors and FPGAs.
By using the internal dynamic model of a system, MPC predicts the evolution of the

sampled system state over a prediction horizon. A constrained optimal control problem is
formulated over the prediction horizon, with the control objectives as a cost function. By
solving an optimization problem, an optimal control sequence is obtained that minimises the
cost function, resulting in the optimal behaviour of the system. In order to provide feedback,
the receding horizon policy is adopted. This implies that only the first control action is applied
to the system, and at the next sampling instant the state is updated with new measurements
and the optimization procedure is repeated.

Advantages of MPC

If plant is nonlinear, multiple-input multiple-output (MIMO), or has constraints, the design
effort increases when classic control methods are considered. MPC can easily cope with the
aforementioned challenges.

Firstly, any nonlinearities can be included (or approximated) in the internal dynamic
model of the system. Nonlinearities range from the switching behaviour of the power elec-
tronics system to the saturation effects of an inductor. With induction machines, the elec-
tromagnetic torque or stator flux magnitude, if directly controlled, are nonlinear functions
of currents or flux linkages [1]. Note that when the dynamic model is nonlinear, nonlinear
MPC arises; see [20] for more details on nonlinear MPC.

Secondly, constraints can be imposed on the inputs, states, and outputs. For example, with
proportional-integral (PI) controllers, anti-windup schemes have to be implemented in order
to prevent the integrator from saturating. With MPC, a constraint can simply be imposed on
any of the variables and requires no augmentation to the control loop.

Thirdly, MPC is well-suited for MIMO systems, requiring only a single control loop.
With classical controllers, significant effort is required when designing for MIMO systems.
The MIMO system is first broken down into multiple single-input single-output (SISO) cas-
caded control loops. Then, for every SISO control loop an individual controller is designed.
However, when realising these control loops in practice, they tend to interact with each other
in an adverse manner, especially during transients [1].

Continuous-control set MPC versus direct MPC

A power electronics system usually consists of a modulation stage and a converter. A modula-
tor modulates the continuous input signal into a pulse-width modulated signal, that is used as
gating signals for semiconductor switches. When using pulse-width modulation (PWM) with
MPC, the method is known as continuous-control setMPC. The modulation stage is nonlinear
and must be included in the internal dynamic model to account for the switching behaviour
of the system. Unfortunately, nonlinear MPC requires solving a non-convex optimization
problem [20]. Finding the global minimum for most non-convex optimization problems can
prove to be intractable in real-time.

By using averaging techniques, such as the method of Middlebrook and Cuk [21], the
internal dynamicmodel is simplified to an averaged state-space representation. Themodulator
is simplified to a gain, thus ignoring the baseband-, carrier multiple-, and sideband harmonics
of PWM. However, the switching between sampling instants is ignored and not addressed by
the controller. As a result, at low switching frequencies, averaging should be avoided [1].

An alternative is to model the power electronics system, which is sometimes referred to as
a hybrid system [22, 23], as a piecewise affine (PWA) system [24]. The optimization problem is
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formulated as a mixed-integer quadratic program. The (explicit) state-feedback control law is
solved offline by using multi-parametric programming, and stored in a lookup table [25]. The
state-space is partitioned into polyhedra, where an affine control law is assigned to each poly-
hedron [25]. The problem then amounts to identifying which polyhedron the state vector
belongs to. After identifying the polyhedron, the affine control law is read from the lookup
table and the optimal control law is computed [25]. This is referred to as explicit MPC. This
approach is well-suited for short sampling intervals and low dimensional problems. However,
the memory requirements increase significantly as the dimension of the problem grows [1],
e.g., many state variables. Interested readers are referred to [22] for more information on
hybrid systems and their modelling, multi-parametric programming, and explicit MPC. For
a summary on explicit MPC, see [25].

When removing the modulator and applying the outputs of the controller directly to the
converter, directMPC arises. The main advantage of direct MPC is that the internal dynamic
model is linear, while the switching nature of the system is taken into consideration by the
controller. Thus, direct MPC is suitable for low switching frequencies. The direct problem is
convex up to the constraints, where the output of the controller is restricted to a set of integers.
Hence, this method is also referred to as finite-control setMPC. Even though the optimization
problem is non-convex, it can be solved efficiently by a branch-and-bound method that will
be introduced in Section 2.5. From here on in, only direct MPC will be considered.

2.3.2 Internal dynamic model
Consider the controller and plant in Figure 2.5. The plant has an output vector y ∈ Rny that
is regulated by the controller along the reference yref , and an input vector (also known as the
manipulated variable) u ∈ Rnu that influences the state vector x ∈ Rnx of the system.

Controller Plant+
−

yuyref

Figure 2.5: Block diagram consisting of a controller and plant.

Assuming that the plant in Figure 2.5 is linear time-invariant (LTI), it can be represented by
a continuous-time state-space representation

ẋ(t) = Fx(t) +Gu(t) (2.10a)
y(t) = Cx(t), (2.10b)

where F ∈ Rnx×nx , G ∈ Rnx×nu , and C ∈ Rny×nx represent the state, input, and output
matrix, respectively. The dimension of the state, input, and output vector are denoted by
nx, ny, and nu, respectively. The representation in (2.10) can be discretised to represent a
discrete-time state-space representation [1],

x(k + 1) = Ax(k) +Bu(k) (2.11a)
y(k) = Cx(k), (2.11b)

where

A = eFTs (2.12a)
B = −F−1(Inx −A)G, (2.12b)
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with Ts being the sampling period, e as the matrix exponential, and Inx the identity matrix
with dimension nx.1 The discretisation method in (2.12) is known as exact discretisation.

2.3.3 Constraints
Constraints can be imposed on the output, state, and input variables,

y(k) ∈ Y ⊆ Rny (2.13a)
x(k) ∈ X ⊆ Rnx (2.13b)
u(k) ∈ U ⊆ Rnu , (2.13c)

during the optimization procedure. There are two types of constraints: soft constraints and
hard constraints. Soft constraints, which are imposed by the user, can be violated during the
optimization procedure to avoid infeasibility issues. Hard constraints are usually characteris-
tics of the system, and thus cannot be relaxed.

Using direct MPCmethods automatically imposes a non-convex constraint on the manip-
ulated variable, meaning that the optimization problem will be non-convex. In the case of a
three-phase three-level NPC inverter, the constraint is

U = U3, (2.14)

with
U = {−1, 0, 1}, (2.15)

where U3 is the three-times Cartesian product of U , that is, U = U × U × U . Note that this
constraint is physical in nature (i.e., the only switch positions the inverter can assume; see
Table 2.1), and thus hard.

2.3.4 Optimal control problem
Cost function formulation

Anoptimal control problem involves constructing a cost function from the control objectives.
A general cost function over Np-time steps is given by

J(x(k),U(k)) =

k+Np−1∑
l=k

V (x(l),u(l)), (2.16)

where V (·, ·) denotes the weighting functions over the prediction horizon. For simplicity, Np

will be referred to as the prediction horizon from here on.2 The weighting functions penalise
the control objectives individually. The derivations henceforth will be for a three-phase three-
level NPC inverter. See Appendix A for the general dimensions of the matrices and vectors.
The switching sequence U(k) ∈ UNp is introduced as the control commands (i.e., the switch
positions for the inverter) at every time step over the prediction horizon

U(k) =
[
uT (k) uT (k + 1) uT (k + 2) · · · uT (k +Np − 1)

]T
. (2.17)

1If F is singular, then B =
∫ Ts

0
eF τdτ G

2If unclear, see clarification of terms in the nomenclature.
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Recall from Section 1.1 that the systemmust have low harmonic distortions and low switching
losses. These are two control objectives, and they directly relate to reference tracking and
switching effort (i.e., the number of switching transitions). Formulating a quadratic cost
function with the aforementioned objectives results in

J(x(k),U(k)) =

k+Np−1∑
l=k

∥∥yref (l + 1)− y(l + 1)
∥∥2
R
+ λu

∥∥u(l)− u(l − 1)
∥∥2
2
, (2.18)

with

y(l + 1) = Cx(l + 1) (2.19a)
x(l + 1) = Ax(l) +Bu(l), (2.19b)

where yref is the current reference,
∥∥ξ∥∥2

2
is the 2-norm (or Euclidean norm) squared of vector

ξ. The penalty on the tracking error is represented by
∥∥ξ∥∥2

R
, which is the 2-norm squared

of vector ξ weighted with the penalty matrix R ∈ Rny×ny . The weighting factor on the
switching effort is denoted by λu ∈ R.

The diagonal penalty matrix R can be used to prioritise certain references above others.
For example, with an inductive-capacitive (LC ) filter-connected induction machine, the sta-
tor current can be prioritised above inverter current. However, for the majority of this thesis,
the systems considered will not require certain references to be prioritised above others. For
simplicity, the penalty matrix can simply be set to R = Iny . By tuning the weighting fac-
tor λu, the trade-off between tracking error and switching effort (that is, between harmonic
distortions and switching losses) is adjusted. As λu → 0, the tracking error is prioritised
and the controller allows switching transitions more freely. As λu → ∞, switching losses
are prioritised and the controller allows less switching transitions. Thus, λu is used to adjust
the (average) switching frequency fsw of the system. Note that direct MPC has a variable
switching frequency.

The cost function (2.18) can be written in a vector form [10]

J(x(k),U(k)) =
∥∥Y ref (k)− Γx(k)−ΥU (k)

∥∥2
2
+ λu

∥∥SU (k)−Eu(k − 1)
∥∥2
2
, (2.20)

with

Γ =


CA
CA2

...
CANp

 , Υ =


CB 0ny×3 · · · 0ny×3

CAB CB · · · 0ny×3
...

... . . . ...
CANp−1B CANp−2B · · · CB

 ,

S =


I3 03×3 · · · 03×3

−I3 I3 · · · 03×3

03×3 −I3 · · · 03×3
...

... . . . ...
03×3 03×3 · · · I3

 and E =


I3

03×3

03×3
...

03×3

 ,

where 0n×n is the zero matrix with appropriate dimensions and Y ref (k) ∈ RnyNp denotes the
reference over the prediction horizon

Y ref (k) =
[
yT
ref (k + 1) yT

ref (k + 2) yT
ref (k + 3) · · · yT

ref (k +Np)
]T

. (2.21)

As with (2.18), the first term in (2.20) penalises the tracking error and the second term pe-
nalises the switching effort. The derivation of (2.20) is presented in Appendix A.
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Optimization stage

The minimisation of J(x(k),U(k)), subjected to constraints on the input variable, and with
U(k) as the decision variable of the problem, results in the (open-loop) optimal solution
U opt(k) (also known as the optimizer) that results in the ideal behaviour of the system. The
optimization problem can be stated as

U opt(k) = argmin
U(k)

J(x(k),U(k)) (2.22a)

subject to U(k) ∈ U, (2.22b)

where U is the Np-times Cartesian product of U , that is, U = UNp . The feasible set U for
the optimization problem represents all of the possible switching sequences (also known as
candidate solutions) that U(k) can assume.

The optimization problem is most often solved via the enumeration of all possible switch-
ing sequences with Algorithm 1. This is known as exhaustive search. This approach, however,
is only suitable for very short horizons of Np = 1 or Np = 2. The number of candidate
solutions for (2.22) is given by 33Np , where the base value represents the number of single-
phase switch positions ( |U| = 3) and the constant in the exponent represents the number of
inputs (nu = 3). It should be apparent that an increase in the prediction horizon causes an
exponential increase in candidate solutions for (2.22), e.g.,Np = 1 has 27 candidate solutions,
Np = 2 has 729 candidate solutions, and Np = 3 has 19 683 candidate solutions.

Algorithm 1 Exhaustive search
1: Initialize:
2: J = ∞, U opt(k) = ∅, U = UNp

3: for each U (k) ∈ U do
4: Jtemp =

∥∥Y ref (k)− Γx(k)−ΥU (k)
∥∥2
2
+ λu

∥∥SU (k)−Eu(k − 1)
∥∥2
2

5: if Jtemp ≤ J then
6: J = Jtemp

7: U opt(k) = U(k)
8: end if
9: end for

2.3.5 The receding horizon policy
Asmentioned in Section 2.3.4, the optimization problem (2.22) results in an open-loop switch-
ing sequence. To provide feedback and to make the system more robust to uncertainties
and disturbances, only the first element in U opt(k) (i.e., uopt(k)) is applied to the system at
time-step k. At the next time-step k + 1, new measurements are taken and the optimization
procedure is repeated. An exhaustive search based controller is described below.

1. Obtain measurements for x(k).

2. Execute Algorithm 1.

3. Apply uopt(k) to system.

4. Shift the prediction horizon with one time-step, k = k + 1.

5. Return to step 1.
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2.3.6 Illustrative example of direct MPC
To illustrate direct MPC, consider Figure 2.6, where the phase current, switching sequence,
and predicated current are shown. The system is a single-phase three-level NPC with an RL
load. The prediction horizon is set to Np = 2.

In Figure 2.6a, the phase current is sampled at time-step k. By using Algorithm 1, the
current trajectories (black lines) for all of the possible switching sequences are evaluated. The
trajectory (red line) that results in the minimisation of the cost function (2.20) yields the op-
timal switching sequence (red line). In Figure 2.6b, the prediction horizon is shifted forward
with one time-step (k = k+1). The first element of the previous optimal switching sequence
has been applied to the system (now uopt(k−1)), and the entire optimization procedure is re-
peated. Figure 2.6c demonstrates the advantage and importance of the receding horizon prin-
ciple. Although the optimal switch position calculated in Figure 2.6b was uopt(k|k − 1) = 0,
the sudden reference step at k resulted in a different optimal switch position of uopt(k|k) = 1.3
Other disturbances include the quantization error of an analogue-to-digital converter (ADC),
model uncertainties, assumptions that were made during modelling, and so forth.

k − 1 k k + 1 k + 2 k + 3

(a) Prediction at time-step k.

k − 2 k − 1 k k + 1 k + 2 k + 3

(b) Prediction at the shifted horizon.

k − 3 k − 2 k − 1 k k + 1 k + 2 k + 3

(c) Prediction at shifted horizon with a sudden reference step.

Figure 2.6: An example of a prediction horizon Np = 2. The dash-dotted black line rep-
resents the reference current. The blue lines depict the phase current and switch positions
up to the sample instant k. The black lines represent the predicted phase current for the 9
possible switching sequences. The red lines represent the optimal switching sequence and the
associated current trajectory calculated at time-step k. The shaded area depicts the horizon.

3The notation uopt(k|k − 1) implies that the optimal switch position at k (in Figure 2.6c) was calculated at
the previous sample k − 1 (now Figure 2.6b).
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2.4 Integer quadratic programming formulation
As stated in Section 2.3.4, using a brute force approach to solve the optimization problem, via
an exhaustive search, rapidly becomes computationally intractable as the prediction horizon
increases. To achieve long horizons, the optimization problem in (2.22) will be reformulated
as an integer quadratic program (QP) [10].

The cost function in (2.20) is first written in a more compact form of [10]

J(x(k),U(k)) = UT (k)QU (k) + 2ΘT (k)U(k) + θ(k) (2.23)

where

Q = ΥTΥ+ λuS
TS (2.24)

Θ(k) = ([Γx(k)− Y ref (k)]
TΥ− λu[Eu(k − 1)]TS)T (2.25)

θ(k) =
∥∥Γx(k)− Y ref (k)

∥∥2
2
+ λu

∥∥Eu(k − 1)
∥∥2
2
. (2.26)

The matrixQ ∈ R3Np×3Np is symmetrical and positive semidefinite for λu ≥ 0 [1]. Note that
θ(k) is a function of the sampled statex(k), the reference over the prediction horizonY ref (k),
and the previous switch positions u(k− 1), but is independent of the decision variableU(k).
Therefore, θ(k) will be constant during optimization and can be omitted. The derivation of
(2.23) can be found in Appendix B.

2.4.1 The unconstrained quadratic program
If the constraints are neglected, i.e., the feasible set becomes R3Np , the underlying (convex)
optimization problem is an unconstrained quadratic program (QP):

U opt(k) = argmin
U(k)

UT (k)QU (k) + 2ΘT (k)U (k). (2.27)

For technical reasons that will be explained, Q (known as the Hessian) is required to be posi-
tive definite, and this only holds true when λu > 0 [10]. Since the feasible set is convex and the
Hessian is positive definite, the QP can be solved in polynomial time [14]. This means that
as the dimension of the problem is increased, the computational time increases polynomially.
Since the optimization problem is convex, any local minimum (if there were minima) is also a
global minimum. The minimum can be found by differentiating (2.23) and finding the point
where the gradient is zero [1]. This is known as the unconstrained solution Uunc(k) ∈ R3Np

and after differentiating
∇J(Uunc(k)) = 0, (2.28)

is found as
Uunc(k) = −Q−1Θ(k). (2.29)

After completing the squares in (2.27), omitting any terms independent ofU(k), and inserting
(2.29), the (unconstrained) QP becomes [1]

U opt(k) = argmin
U(k)

(U(k)−Uunc(k))
TQ(U (k)−Uunc(k)). (2.30)
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2.4.2 The integer quadratic program
Although Uunc(k) minimises the cost function, it cannot be used as gating signals for the
inverter due to the (hard) integer constraints. By reintroducing the constraints, the optimiza-
tion problem can be stated as a (truncated) integer quadratic program:

U opt(k) = argmin
U(k)

(U (k)−Uunc(k))
TQ(U(k)−Uunc(k)) (2.31a)

subject to U(k) ∈ U. (2.31b)

Recall from Section 2.4.1 that Q is symmetric and positive definite. Therefore, there exists a
unique invertible lower triangular matrix H ∈ R3Np×3Np such that

HTH = Q. (2.32)

This is known as the Cholesky decomposition [26].4 By applying (2.32) to (2.31), the opti-
mization problem becomes an integer least-squares (ILS) problem:

U opt(k) = argmin
U(k)

∥∥HU (k)−HUunc(k)
∥∥2
2

(2.33a)

subject to U(k) ∈ U (2.33b)

The H matrix is known as the generator matrix, as it generates the (truncated) lattice Λ (i.e.,
a discrete space) of the ILS problem. The lattice points, representing transformed candidate
solutions for the ILS problem, are generated from all of the possible switching sequences,

Λ = {HU (k)|U(k) ∈ U}. (2.34)

Note that the columns of H form the basis for the new space, and the set of linear combina-
tions of the basis spans the lattice, and thus can also be defined by

Λ = {
3Np∑
i=1

uihi|ui ∈ U}. (2.35)

Note that the lattice is truncated in the sense that the switching sequences only contain the
integers from the set of single-phase switch positions U (and not Z). Figure 2.7 illustrates
the transformation from the original space (u1-u2) to the transformed space ( ū1-ū2). Note
that the example is 2-dimensional for illustration purposes. When considering a system with
nu = 3, the dimension increases by a factor of three for an increase in Np. The general case
has a dimension of n = nuNp

4It should be noted that, by definition, the Cholesky decomposition results in LLT = A or UTU =
A, where L and U are lower and upper triangular matrices, respectively. However, by taking the Cholesky
decomposition of A−1, LLT = A−1, and inverting both sides results in a lower triangular matrix that satisfies
L−TL−1 = A.
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u1

u2

ū1

ū2

h2

h1

H

Figure 2.7: The H matrix transforms the integer switching sequences (black dots), in the or-
thogonal space, to transformed switching sequences (gray dots). Note that the transformed
space is skew. The unconstrained solution (orange dot) is also transformed to the new space
(blue dot). h1 and h2 represent the columns of H , which are the basis vectors for the trans-
formed space.

The ILS problem (2.33) can geometrically be interpreted as finding the nearest lattice point (a
gray dot in Figure 2.7) to the transformed unconstrained solution (the blue dot in Figure 2.7).
This is also known as the closest vector problem and is widely used in other fields such as
communication theory and cryptography [27]. The closest vector problem is known to be
nondeterministic polynomial-time hard (NP-hard) [27].5 This means that it is highly unlikely
that an algorithm will exist that can solve the problem in polynomial time; by increasing the
dimension of the problem, the computation time increases exponentially. Note that when
referring to the computational complexity of a problem, it is referred to as the worst-case
scenario of that problem (in other words, the upper bound) and how the difficulty scales
when significantly increasing the size of the problem (e.g., how much more difficult a 100-
dimensional problem is to solve than a 10-dimensional problem). Note that unlike (2.33),
(2.31) does not refer to the nearest neighbour of Uunc(k) in terms of the Euclidean distance.

2.5 Sphere decoding

2.5.1 Introduction to sphere decoding
Although the ILS problem is NP-hard, a branch-and-bound technique known as sphere decod-
ing, in conjunction with a good initial candidate solution, solves the optimization problem in
a time-efficient manner for the dimensions considered in power electronics [10]. Sphere de-
coding has been shown to solve the optimization problem for a prediction horizon ofNp = 10
(30-dimensional problem) extremely efficiently [15].

The principle of sphere decoding involves considering candidate solutions within a sphere
with radius ρ(k) that is centred at Ūunc(k) = HUunc(k),

ρ(k) ≥
∥∥Ūunc(k)−HU (k)

∥∥
2
. (2.36)

The radius is tightened (decreasing the upper bound) until only one candidate solution lies
within the sphere, which is then the optimal solution U opt(k). Sphere decoding is illustrated

5NP has two definitions. The first is when given the solution of a problem, an algorithm exists that can verify
that the solution is indeed optimal in polynomial time. The second definition states that a nondeterministic
algorithm can solve the problem in polynomial time. The hard part in NP-hard means that if an algorithm is
found to solve the NP-hard problem in polynomial time, all NP problems can be solved in polynomial time.
The curious readers are referred to [28] for more details on computational complexity.
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in Figure 2.8. The initial radius ρini(k), based on an initial candidate solutionU ini(k), should
be chosen as small as possible so that the vast majority of the candidate solutions are not
enclosed by the sphere. However, if the radius is too small the set of candidate solutions will
be empty and feasibility issues will arise.6

ū1

ū2

Ūunc

HU ini

(a) A radius is chosen based on
an initial candidate solution.

ū1

ū2

(b) The tightening of the sphere
around the transformed uncon-
strained solution.

ū1

ū2

HUopt

(c) The sphere is tightened un-
til only one point lies within the
sphere, which is then the opti-
mal solution.

Figure 2.8: Principle of sphere decoding.

To efficiently identify the candidate solutions that belong to the sphere, consider the lower
triangular H matrix, which is a key property in sphere decoding. By exploiting the trian-
gularity of H , the squared radius of a candidate solution from the unconstrained solution is
given by

d′2(k) =

d21︷ ︸︸ ︷
(ūunc,1 − h(1,1)u1)

2 +

d22︷ ︸︸ ︷
(ūunc,2 − h(2,1)u1 − h(2,2)u2)

2︸ ︷︷ ︸
d′22

+ . . .

+

d23Np︷ ︸︸ ︷
(ūunc,3Np − h(3Np,1)u1 − h(3Np,2)u2 − . . .− h(3Np,3Np)u3Np)

2

(2.37)

where ξj denotes the j’th element of a vector, and ζ(i,j) denotes the (i, j)’th entry of a matrix.
The squared term of the j’th element is denoted by d2j , and d′2j represents the intermediate
squared radius up to the j’th element (i.e., the squared terms accumulated from levels 1 to
j ). The H matrix enables the multi-dimensional problem to be solved in a one-dimensional
manner, by allowing a switching sequence to be assembled entry by entry and testing if the
intermediate radius exceeds the sphere. From (2.36) and (2.37) it is apparent that for a can-
didate solution to be inside the sphere it must satisfy ρ2(k) ≥ d′2j (k) at all instants during
assembly. The computational burden associated with the calculation of the (intermediate)
squared radius is alleviated by the fact that the lower levels (that is, levels 1 to j − 1) do not
have to be recomputed.

There are two methods that provide a good initial candidate solution: the Babai estimate
[29] and the educated guess [10]. The Babai estimate involves roundingUunc(k) to the nearest

6It might cause some confusion by stating the candidate solutions, in other words, switching sequencesU(k)
that belong to the feasible setU, enclosed by the sphere are considered. Geometrically, the transformed candidate
solutions HU(k) (i.e., the lattice points) are considered that belongs to the sphere. However, it should be
obvious that if a lattice point is located outside of the sphere, then the associated candidate solution will violate
the upper bound and considered a suboptimal solution. For simplicity, lattice points will also be referred to as
candidate solutions.
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switching sequence,
U bab(k) = bUunc(k)e ∈ U, (2.38)

that is, the nearest black dot to the orange dot in Figure 2.7. The closer the basis vectors of
H are to being orthogonal, and thus the lattice, the greater the probability that the Babai
estimate is the optimal solutionU opt(k). The educated guess is based on the previous optimal
solution U opt(k − 1), where the entries are shifted forward by one time step and repeating
the last entry,

U ed(k) =


03×3 I3 03×3 · · · 03×3

03×3 03×3 I3
. . . ...

... . . . . . . 03×3

03×3 · · · · · · 03×3 I3

03×3 · · · · · · 03×3 I3

U opt(k − 1). (2.39)

The educated guess is based on the assumption that the switching transitions that were dis-
carded in the receding horizon principle should, ideally, match those that are calculated at the
next time-step. It will be explained in Section 3.3.4 that both the Babai estimate and educated
guess should be investigated when calculating the initial sphere radius.

2.5.2 Sphere decoding algorithm
The recursive sphere decoding algorithm proposed in [10] is shown in Algorithm 2. The
arguments are passed to the algorithm as U opt = SphDec(∅, 0, 1, ρ2ini, Ūunc).

Algorithm 2 Sphere decoder

1: function U opt = SphDec(U , d2, j, ρ2, Ūunc)
2: for each u ∈ U do
3: uj = u

4: d′2 =
∥∥ūunc,j −H(j,1:j)U 1:j

∥∥2
2
+ d2

5: if ρ2 ≥ d′2 then
6: if j < 3Np then
7: SphDec(U , d′2, j + 1, ρ2, Ūunc)
8: else
9: U opt = U
10: ρ2 = d′2

11: end if
12: end if
13: end for
14: end function

The algorithm can be visualised by traversing a search tree with a depth n = 3Np (see Figure
2.9 for an example of a search tree). The algorithm assembles the switching sequence U (k)
entry by entry, where the levels of the search tree represent an entry uj . The admissible
single-phase switch positions U = {−1, 0, 1} are considered at every level and are represented
by the branches of the search tree. When a branch is explored, a node is visited where the
(intermediate) squared radius is calculated. If d′2 exceeds the radius of the sphere, there is no
need to explore the current branch any further. After the branch is pruned from the search
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tree, thereby reducing the candidate solutions that have to be considered, the adjacent branch
is explored. Once the bottom node is reached, known as a leaf node, a full switching sequence
has been assembled. If the candidate solution belongs to the sphere, the incumbent optimal
solution is updated and the sphere is tightened. Note that a certificate for optimality (i.e., the
incumbent optimal solution is optimal) is only obtained once all the possible branches have
been investigated.

u1 = −1
u1 = 0

u1 = 1

j = 3

j = 2

j = 1

Figure 2.9: Search treewith depthn = 3. The branches represent single-phase switch positions
U . The level in the search tree is denoted by j and relates to the j′th entry in U (k)

2.5.3 Illustrative example of sphere decoding
Consider a three-phase three-level NPC inverter with a prediction horizon of Np = 1. An
illustrative example on how the sphere decoder traverses a search tree is given in Figure 2.10.

u1 = −1
u1 = 0

u1 = 1

j = 3

j = 2

j = 1

Figure 2.10: Example of the traversal of a search tree for Np = 1. The gray branches and
nodes represents those that were not explored during the sphere decoding. The red branches
and nodes are those that exceeded the radius of sphere and are pruned from the tree. The
black branches and nodes were traversed and evaluated, and the yellow node represents the
leaf node corresponding to the optimal solution U opt(k).

The algorithm considers the single-phase switch positions from−1 to 1, in other words, from
the left to rightmost branch of any node (expect for the leaf nodes) in the search tree.7 At the
first level, the first element of U(k) is u1 = −1. After computing the intermediate radius of
the partial candidate solution, it is found that the intermediate radius already exceeds that of
the sphere. The branch is pruned from the search tree and there is no need to consider any

7The order on how the sphere decoder considers the single-phase is not unique and is determined by the user.
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switching sequences where the first entry is u1 = −1. After testing u1 = 0 for the first ele-
ment inU(k), it is found that the partial candidate solution resides within the sphere and the
current branch is explored further. With the second element u2 = −1, the partial switching
sequence is now U(k) =

[
0 −1

]T . It is found that the intermediate radius of the current
partial candidate solution exceeds that of the sphere, and the branch is pruned. The second
element is now u2 = 0, with the switching sequence U(k) =

[
0 0

]T , and it is calculated
that the intermediate radius of partial candidate solution is less than that of the sphere. Af-
ter branching further down the tree, and setting the final element u3 = −1, the switching
sequence U(k) =

[
0 0 −1

]T is now complete. After calculating the radius of the candi-
date solution, it is found to belong to the sphere. The incumbent optimal solution is updated
and the sphere is tightened. The remaining two branches of the last level (i.e., u3 = 0 and
u3 = −1) are investigated and it is found that both candidate solutions are located outside
the sphere. The sphere decoder backtracks to investigate the final branch of the second level,
u2 = 1. After calculating that the intermediate radius exceeds that of the sphere, the sphere
decoder again backtracks to explore the final branch of the root node, u1 = 1. The interme-
diate radius is calculated, where it exceeds that of the sphere, and the final remaining branch
is pruned. The incumbent optimal solution U opt(k) now has a certificate for optimality.

2.6 Alternative modulation techniques

2.6.1 Space-vector modulation
Carried-based pulse-width modulation

A very popular modulation technique, that is synonymous with power electronics, is pulse-
width modulation (PWM). The concept of PWM is to modulate a real-valued reference signal
uref into a discrete-valued output uabc that is used as gating signals for semiconductor devices.
In other words, the pulse-width modulated signals directly translate to the switch positions
of the converter. The harmonic content of the pulse-width modulated signals uabc include a
fundamental component that is ideallyuref , and the baseband-, carriermultiple-, and sideband
harmonics that arise due to the switching nature of PWM. This section will exclusively be
devoted to PWM for a three-level NPC inverter. For information on pulse-width modulation
for power electronics, the reader is referred to [30].

Carrier-based pulse-width modulation (CB-PWM) for an NPC inverter is depicted in Fig-
ure 2.11, where carrier signals are used to achieve modulation. In order to achieve three out-
put levels (i.e., {−1, 0, 1}), two carrier signals are required. The carrier signals are in phase
(known as phase disposition [1]), where one signal from ranges −1 to 0 and while the other
signal ranges from 0 to 1, as shown in Figure 2.11a. The carrier signals have a frequency of fc,
which is proportional to the switching frequency of the inverter. For a three-phase system,
three references are required

uref (t) = m

 sin(ω1t)
sin(ω1t− 2π

3
)

sin(ω1t+
2π
3
)

 , (2.40)

where m is the modulation index. When digitally implementing CB-PWM, the reference
uref (t) is a sampled signal. Two sampling techniques are usually used: symmetric sampling
or asymmetric sampling [1]. In the former, the reference signal is sampled once during a
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carrier interval (Tc =
1
fc
), for example, only at the upper triangular peaks. In the latter, the

reference signal is sampled twice during the carrier interval, that is, at both of the upper and
lower triangular peaks. In Figure 2.11a, symmetric sampling is illustrated.

Let c1 and c2 denote the top and bottom carriers, respectively. The modulation of the
(sampled) reference signal happens as follows:

• if uref,x ≥ c1, then ux = 1

• if c1 > uref,x > c2, then ux = 0

• if uref,x ≤ c2, then ux = −1,

where x ∈ {a, b, c} denotes a phase. The resulting pulse-width modulated signals uabc, that
are used as gating signals, are shown in Figure 2.11b.
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(a) Illustration of carrier signals (solid black lines) and reference signalsuref (solid coloured lines)
of CB-PWM. The dashed coloured signals represent the symmetrically sampled reference signals.
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(b) Illustration of the pulse-width modulated signals, which correspond to the switch positions
uabc of the inverter.

Figure 2.11: Example of pulse-width modulation for a NPC inverter where m = 0.8 and
fc = 450Hz.
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Space-vector modulation equivalent

An attractive alternative to CB-PWM is space-vector modulation (SVM). The advantages of
SVM over PWM include lower harmonic current distortion and a larger fundamental voltage
[31]. The reader is referred to [7, 30] for more details on SVM. In [32], it is shown that
by adding an appropriate common-mode term u0 to the reference signal uref used during
CB-PWM, equivalent switching patterns to SVM are achieved [1].

The common-mode term u0 is given by [1]

u0 = ū0 +
1

2
− 1

2
(min(ūref ) + max(ūref )), (2.41)

where

ū0 = −1

2
(min(uref ) + max(uref )) (2.42a)

ūref = (uref + ū0 + 1) mod 1. (2.42b)

This common-mode term and new reference signals for m = 0.8 are depicted in Figure 2.12.
An example of the equivalent SVM is illustrated in Figure 2.13. The ease of implementation
makes this technique attractive, while also offering adequate harmonic performance if the
carrier frequency is not significantly less than 20 times the fundamental frequency [1].
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Figure 2.12: Example of the addition of the common-mode term u0 (black solid line) to the
reference signals uref (coloured solid lines), resulting in the new reference signals (coloured
dashed lines) used to convert CB-PWM into SVM. The modulation index is m = 0.8.
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(a) Illustration of reference signals (solid coloured lines) and carrier signals (black solid lines)
for the SVM equivalent. The symmetrically sampled reference signals are shown in the dashed
coloured lines.
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(b) The resulting switching patterns equivalent to SVM.

Figure 2.13: Example of SVM equivalent for an NPC inverter where m = 0.8 and fc =
450Hz.

2.6.2 Optimised pulse patterns
Formulation of total harmonic distortion for a pulse pattern

For low switching frequencies well under 1 kHz, a modulation technique known as optimised
pulse patterns (OPPs) is the definitive option in terms of harmonic distortions [2, 3]. The
technique considers a single-phase pulse pattern (i.e., the switching pattern over a fundamental
period), as shown in Figure 2.14. The idea is to calculate the angles where switching transitions
should occur that will minimise the harmonic current distortion for a givenmodulation index
and switching frequency. For a more in-depth (and well-written) analysis on OPPs, the reader
is referred to [1].
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Figure 2.14: Illustration of an optimised pulse pattern. The angles αj refer to where switching
transitions occur. The pulse pattern is denoted by u(θ). The fundamental component of
the pattern is given by û1 sin(ω1t), where û1 relates to the amplitude of the fundamental
component, which is desired to be equal to the modulation index m. In this illustration, the
modulation index is m = 0.8. Adapted from [1].

In order to simplify the optimization problem underlying OPPs and to impose some har-
monic characteristics, it is standard practice to enforce quarter-wave symmetry on the pulse
pattern. The benefit of quarter-wave symmetry is that the even-order harmonics are zero.
Furthermore, it is only required to calculate the switching angles up to a quarter of the fun-
damental period, i.e., up to π

2
. The number of switching transitions in a quarter wave is

determined by the pulse number d. Thus, the number of angles required to be calculated is
equal to d, that is, angles αj for j ∈ {1, 2, . . . , d}. The pulse number d directly relates to the
switching frequency, which is given by fsw = df1, where f1 represents the fundamental fre-
quency. At an angle αj , a switching transition from uj−1 to uj occurs, where uj ∈ U denotes
the switch position. Note that there are d+ 1 switch positions uj , since the initial switch po-
sition is included, in other words, j ∈ {0, 1, 2, . . . , d}. In order to preserve the quarter-wave
symmetry, the initial switch position is set to u0 = 0.

Since the pulse pattern u(θ) is periodic, it can be represented by a Fourier series

u(θ) =
a0
2

+
∞∑
n=1

(an cos(nθ) + bn sin(nθ)) , (2.43)

where an and bn represent the Fourier coefficients. Due to the quarter-wave symmetry, an
coefficients are zero for all n, and bn coefficients are nonzero only for odd n. This leads to the
Fourier series being reduced to [1]

u(θ) =
∞∑
n=1

ûn sin(nθ), (2.44)

with

ûn = bn =
4

nπ

d∑
j=1

∆uj cos(nαj), if n = 1, 3, 5, . . . , (2.45)

where ûn relates to the peak value of the n-th harmonic. A switching transition is denoted
by ∆uj = uj − uj−1, and can be represented by ∆uj = (−1)j+1 [1]. The modulation index
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m determines the fundamental component û1 sin(ω1t) (see Figure 2.14) of the pulse pattern
u(θ), where û1 represents the amplitude of the fundamental component, which is desired to
be equal to the modulation index ( û1 = m).

When considering a three-phase inverter with switch positions uabc(θ), the pulse pattern
of the thee phases are identical, but shifted by ±120°

uabc(θ) =

 u(θ)
u(θ − 2π

3
)

u(θ + 2π
3
)

 . (2.46)

The ±120° phase shift causes the third-order harmonics (i.e., n = 3, 6, 9, . . .) to be in phase
[1]. The third-order harmonics establish the common-mode voltage harmonics mentioned
in Section 2.2.2. When the star connection of the load floats, the common-mode voltages do
not drive phase currents.

Consider the output voltage of a single-phase NPC inverter, which is given by v = Vd

2
u

when neglecting the fluctuations on the neutral-point potential. The output voltage amplitude
for n-th harmonic is given by

v̂n =
Vd

2
ûn. (2.47)

When considering a resistive-inductive (RL) load, the amplitude of the n-th current harmonic
is given by

în =
v̂n√

R2 + (nω1L)2
. (2.48)

Usually the reactance of the inductor dominates resistance, and it is customary to neglect the
resistance.8 Therefore, (2.48) is reduced to

în =
v̂n

nω1L
. (2.49)

The total harmonic distortion (THD) of the current is given by [1]

ITHD =
1

î1

√∑
n6=1

î2n (2.50)

where î1 is the amplitude of the fundamental component of the current.9 By inserting (2.45),
(2.47), and (2.49) into (2.50), the current THD can now be given by

ITHD =
2Vd

πω1Lî1

√√√√ ∑
n=5,7,11,...

(
1

n2

d∑
j=1

∆uj cos(nαj)

)2

. (2.51)

Note that only non-third-order-odd harmonics are considered in (2.51). This is due to the
quarter-wave symmetry of the pulse pattern (leading to no even-order harmonics), and±120°
phase shift between phase pulse patterns (resulting in third-order harmonics to cancel between
phases, i.e., in differential-mode).

8Especially true for induction machines and grid-connected inverters [1].
9THD is most commonly defined by the root-mean-square (rms) values of the harmonics. However, as long

as all of the harmonics in (2.50) relate to either their peak or rms value, there will be no difference in terms of
THD.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. THEORETICAL BACKGROUND 28

Optimization problem for OPPs

It should be apparent that the minimisation of the term inside the square in (2.51) will min-
imise the current THD. To achieve this, an optimization problem can be stated by

αj,opt =argmin
αj

∑
n=5,7,11,...

(
1

n2

d∑
j=1

∆uj cos(nαj)

)2

(2.52a)

subject to m =
4

π

d∑
j=1

∆uj cos(αj), (2.52b)

0 ≤ α1 ≤ α2 ≤ . . . ≤ αd ≤
π

2
. (2.52c)

The optimization problem yields an optimal set of switching angles that minimises the cost
function, and therefore current THD, in (2.52a). The constraint in (2.52b) enforces the fun-
damental component of the pulse pattern equal to the modulation index m. The constraint
in (2.52c) imposes an ascending order on the switching angles. The optimization problem
in (2.52) is a non-convex and has local minima. This makes it particularity challenging to
find the global minimum for high pulse numbers d, and requires significant computational
effort. Furthermore, there is no way to guarantee that a global minimum has been found.
An example of the switching angles for a pulse number of d = 3, and for modulation indices
m ∈ [0, 4

π
], is shown in Figure 2.15. Interested readers are referred to [3] for a guide on how

to calculate OPPs.
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Figure 2.15: Switching angles αj for d = 3 over m ∈ [0, 4
π
].
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Chapter 3

FPGA implementation

3.1 Introduction
This chapter discusses the implementation of long-horizon direct MPC within an FPGA. For
convenience, some of the concepts and symbols introduced in Chapter 2 are repeated. The
modelling and optimal control formulation for a three-phase three-level NPC inverter with
an RL load are presented. The FPGA implementation of the controller is discussed in detail.
A non-recursive sphere decoding algorithm, that is well-suited for FPGA implementation, is
presented. The computational burden and resource usage of the implemented controller are
given. The verification of the FPGA implementation is demonstrated via simulations. This
chapter concludes with a summary.

3.2 Modelling and optimal control formulation
To evaluate the practical implementation of long-horizon direct MPC, a three-phase three-
level NPC inverter with an RL load, as shown in Figure 3.1, will be used as the plant.

+

−

Vd

−
Vd

2

+
Cd

−
Vd

2

+
Cd

va
vb
vcN

L

L

L

ia R

ib R

ic R

Figure 3.1: NPC inverter with an RL load.

During modelling, fluctuations on the neutral point voltage are ignored and it is assumed that
the bus voltage Vd divides evenly between the two bus capacitors. Second-order effects, such
as dead-time and saturation effects, are ignored.

29
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Modelling is done by applying theClarke transformation to the three-phase currents and using
a continuous-time state-space representation of the plant. The exact discretisation is used to
obtain the discrete-time state-space representation of the system. The state vector includes
the αβ-currents

x(k) =
[
iα(k) iβ(k)

]T
, (3.1)

and to apply reference tracking to the phase currents, the output vector is also taken as the
αβ-currents

y(k) = iαβ(k) =
[
iα(k) iβ(k)

]T
. (3.2)

The input vector denotes the three-phase switch positions

u(k) =
[
ua(k) ub(k) uc(k)

]T
, (3.3)

where a single-phase switch position is restricted to ux ∈ U , with x ∈ {a, b, c} and U =
{−1, 0, 1}. The input vector is restricted to u(k) ∈ U , where U = U3. The discrete-time
state-space representation is given by

x(k + 1) = Ax(k) +Bu(k) (3.4a)
iαβ(k + 1) = Cx(k), (3.4b)

where

A = eFTs (3.5a)
B = −F−1(I2 −A)G (3.5b)
C = I2, (3.5c)

with Ts as the sampling period and e as the matrix exponential. The (continuous-time) state
matrices are given by

F = −R

L

[
1 0
0 1

]
and G =

Vd

2L
K, (3.6)

where K is the (reduced) Clarke transformation as defined in Section 2.2.2. The full deriva-
tion of (3.4) is presented in Appendix C.

By applying reference tracking to the phase currents and penalising switching transitions,
the cost function over a prediction horizon of Np is formulated as1

J =

k+Np−1∑
l=k

∥∥iabc,ref (l + 1)− iabc(l + 1)
∥∥2
2
+ λu

∥∥∆u(l)
∥∥2
2
, (3.7)

where ∆u(l) = u(l)− u(l − 1), and λu is the weighting factor on the switching transitions.
Knowing that KK−1 = I2, 3

2
K = (K−1)T and

∥∥ξ∥∥2
2
= ξTξ, the tracking error can be

transformed to the orthogonal reference frame by∥∥iabc,e(l + 1)
∥∥2
2
= (K−1iαβ,e(l + 1))T (K−1iαβ,e(l + 1))

= iαβ,e(l + 1)T (K−1)TK−1iαβ,e(l + 1)

=
3

2

∥∥iαβ,ref (l + 1)− iαβ(l + 1)
∥∥2
2
. (3.8)

1The argument of J , as used in Section 2.3.4, is dropped for convenience.
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By omitting the constant factor 3
2
in (3.8), the cost function now becomes2

J =

k+Np−1∑
l=k

∥∥iref (l + 1)− i(l + 1)
∥∥2
2
+ λu

∥∥∆u(l)
∥∥2
2
. (3.9)

With U(k) =
[
uT (k) uT (k + 1) · · · uT (k +Np − 1)

]T introduced as the switching se-
quence over the prediction horizon, the optimization problem is stated as

U opt(k) = argmin
U(k)

J (3.10a)

subject to U(k) ∈ U, (3.10b)

where U = UNp .
As explained in Section 2.4, (3.10) can be reformulated as an ILS problem

U opt(k) = argmin
U(k)

∥∥Ūunc(k)−HU (k)
∥∥2
2

(3.11a)

subject to U(k) ∈ U, (3.11b)

where

Ūunc(k) = HUunc(k) (3.12)
Uunc(k) = −Q−1Θ(k) (3.13)
HTH = Q, (3.14)

with

Q = ΥTΥ+ λuS
TS (3.15)

Θ(k) = ([Γi(k)− Y ref (k)]
TΥ− λu[Eu(k − 1)]TS)T . (3.16)

The reference current over the prediction horizon is denoted by Y ref (k) , and matrices Γ ∈
R2Np×2, Υ ∈ R2Np×3Np , S ∈ R3Np×3Np , and E ∈ R3Np×3 are defined in Section 2.3.4.

3.3 VHDL implementation
An Altera Cyclone® V 5CSEMA5F31C6N FPGA is used to implement the controller. The
FPGA has 32 070 adaptive logic modules (ALMs) and 87 variable-precision digital signal pro-
cessing (DSP) blocks. The FPGA includes an ARMCortex™ processor.3 The Cyclone® series
is described as “. . . optimized for low-cost, high-volume systems” [33]. Management of resources,
especially multipliers, is of the utmost importance to achieve long horizons.4 Moreover, the
structure of the code has to be considered in order to achieve a clock frequency that can solve
the optimization problem within the sampling period.

2From here on, the αβ subscript is dropped for convenience.
3It is worthmentioning that theARMprocessor use some of the available space on the die, and an FPGA-only

solution will have more FPGA resources.
4Multipliers are provided by the DSP blocks.
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3.3.1 FPGA preliminaries
By coding in Very High Speed Integrated Circuit (VHSIC) HardwareDescription Language
(VHDL), a behavioural description of a program is given. Quartus®, Altera software, syn-
thesises the behavioural description into a netlist that is used to program the logic blocks of
the FPGA. The code structure will determine how the logic blocks are used. Where possible,
the implementation must be done in such a way that the same logic blocks (especially the
multipliers) can be used for different equations. This will be demonstrated in Section 3.3.3
and 3.3.4. Recursion should be avoided in VHDL, as will be explained in Section 3.3.5.

Although VHDL do not natively support matrices, it does support the use of arrays. A
matrix can be stored in an array from the first to the last column, for example,

M =

a d g
b e h
c f i

⇐⇒
[
a b c d e f g h i

]
.

Accessing the element in the first row and second column in matrix indexing is indicated by
M(1,2), while in the array index it will be M4. For simplicity, matrix indexing will be used in
this chapter.

Attention must be given to the timing requirements of the FPGA, especially as the pro-
gram becomes more complex and arithmetic intensive. The timing requirements are due to
delays that occur in the logic elements of the FPGA. Quartus® includes a timing analysis tool,
known as TimeQuest Timing Analyzer, that determines conditions that should be satisfied.
One of these conditions is the maximum clock frequency at which the FPGA can operate
reliably. The critical path (i.e., the longest) determines the conditions that must be satisfied.
If the timing requirements are not met, errors in the program could occur.

A real value can either be represented as a fixed-point or floating-point number. Fixed-
point arithmetic has the advantage of being quicker than floating-point arithmetic, and is well-
suited for most applications. When realising that quantization errors and model uncertainties
are present in the practical system, the fixed-point package is more than sufficient for this
purpose. The accuracy of the fractional part is determined by the number of bits assigned. A
compromise is made between accuracy and resource usage. The maximum obtainable clock
frequency is also influenced by the number of assigned bits.

3.3.2 Delay compensation
Ideally, once a measurement is taken at time-step k, the optimal solution U opt(k) is instanta-
neously calculated and the optimal switch position uopt(k) is applied at the current sampling
instant, as illustrated in Figure 3.2. In simulation this is possible. However, in a practical sce-
nario there will be a variable computational time tc required to calculate the optimal switching
sequence. The computational time tc is dependent on how quick the sphere decoder traverses
the search tree. Note, that once the optimal switching sequence is calculated, switching is not
permitted between sampling instants. The prediction model does not account for any switch-
ing between sampling instants, and by applying a switch transition the prediction model be-
comes invalid. This is emphasised in Figure 3.3.
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k − 2 k − 1 k k + 1

Sample i(k − 2)
Calculated Uopt(k − 2)
Apply uopt(k − 2)

Sample i(k − 1)
Calculated Uopt(k − 1)
Apply uopt(k − 1)

Sample i(k)
Calculated Uopt(k)
Apply uopt(k)

Sample i(k + 1)
Calculated Uopt(k + 1)
Apply uopt(k + 1)

Figure 3.2: The idealised scenario: zero computational delay.

k − 2 k − 1 k k + 1

tc tc tc tc

Calculated Uopt(k − 2)

7 Apply uopt(k − 2)

Calculated Uopt(k − 1)

7 Apply uopt(k − 1)

Calculated Uopt(k)

7 Apply uopt(k)

Calculated Uopt(k + 1)

7 Apply uopt(k + 1)

Sample i(k − 2) Sample i(k − 1) Sample i(k) Sample i(k + 1)

Figure 3.3: The practical scenario: computational delay of tc.

Since the computational time tc is variable, it cannot be directly addressed. Instead, a fixed
delay of one sampling interval is assumed, Td = Ts. Now, instead of solving the optimization
problem and finding U opt(k) for time-step k, the optimization problem is solved for the next
time-step k + 1, in other words, finding U opt(k + 1|k). At the sampling instant, the switch
position thatwas calculated at the previous sampling instantuopt(k|k−1) is applied. Therefore,
the current at the next sampling instant can be extrapolated to5

i(k + 1|k) = Ai(k) +Buopt(k|k − 1). (3.17)

The optimization problem is now solved for the next time step based on the measurements
at the current time-step,

U opt(k + 1|k) = arg min
U(k+1)

∥∥Ūunc(k + 1|k)−HU (k + 1)
∥∥2
2

(3.18a)

subject to U(k + 1) ∈ U. (3.18b)

Once the optimal solutionU opt(k+1|k) is calculated within the sampling period, the optimal
switch position uopt(k + 1|k) is only applied once the next sampling instant is reached. This
procedure is illustrated in Figure 3.4.

5The notation i(k+m|k+m−1) denotes the value of the current at time-step k+m calculated at i(k+m−1).
uopt(k +m− 1|k +m− 2) is the optimal switch position at time-step k +m− 1 based on the measurements
at k +m− 2.
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k − 2 k − 1 k k + 1
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Uopt(k − 1|k − 2)
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Uopt(k|k − 1)
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Sample i(k + 1)
Apply uopt(k + 1|k)
Calculate i(k + 2|k + 1)

Figure 3.4: Illustration of delay compensation.

A second delay is introduced due to the acquisition and conversion time of theADC. Sampling
is done at a fixed time ∆T before the sampling instant, where ∆T is greater than the delay
introduced by the ADC. By using a discrete-time state-space representation discretised with
an interval of ∆T , the current value at the sample instant can be extrapolated to

i(k) = A∆T i(k −∆T ) +B∆Tuopt(k − 1), (3.19)

where

A∆T = eF∆T (3.20a)
B∆T = −F−1(I2 −A∆T )G. (3.20b)

3.3.3 Unconstrained solution
Efficiently calculating the unconstrained solution is cardinal to achieve long horizons. First
Θ(k) has to be calculated, and is given by (from Section 2.4)

Θ(k) = ([Γi(k)− Y ref (k)]
TΥ− λu[Eu(k − 1)]TS)T . (3.21)

By calculating all entries of Θ(k) in one clock cycle, i.e., the linear equations in the rows, a
significant amount of resources will be used. Moreover by doing so, it is highly likely that
the maximum achievable clock frequency will be low due to the intensive arithmetic in one
clock cycle. Instead, at every clock cycle one entry of Θ(k) is calculated. Since every entry
is an inner product with the same form, the coefficients can simply be changed at every clock
cycle. This will significantly reduce the resource usage, since the same multipliers are used to
calculate all the entries of Θ(k).

After manipulating (3.21), the j’th entry of Θ(k) is given by

Θj = ΥT
(j,1)(Γ(1,1)i1 + Γ(1,2)i2 − Yref,1) + ΥT

(j,2)(Γ(2,1)i1 + Γ(2,2)i2 − Yref,2)

+ ΥT
(j,3)(Γ(3,1)i1 + Γ(3,2)i2 − Yref,3) + . . .+ΥT

(j,2Np)(Γ(2Np,1)i1 + Γ(2Np,2)i2 − Yref,2Np)

− λuZjU(k − 1)j, (3.22)

with
Z =

[
1 1 1 0 · · · 0

]T
,
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where ξj denotes the j’th element of a vector and ζ(i,j) denotes the (i, j)’th entry of a matrix.
Z is introduced by noting that Θ(k) is a function of only the first element u(k − 1) in the
previous switching sequence U(k − 1).

The unconstrained solution and transformed unconstrained solution are given by (from
Section 2.4.1)

Uunc(k) = −Q−1Θ(k) (3.23)
Ūunc(k) = HUunc(k), (3.24)

respectively. It is worth mentioning that if only the educated guess is used, there is no need to
calculateUunc(k), and Ūunc(k) can directly be calculated by pre-multiplyingH and−Q−1. If
the Babai estimate is used, the unconstrained solution Uunc(k) (in the original vector space)
is required in order to round to the nearest switching vector in U. The calculation of the
unconstrained solution follows the same principles as calculating Θ(k).

The j’th entry of Uunc(k) is given by

uunc,j = −Q−1
(j,1)Θ1 −Q−1

(j,2)Θ2 −Q−1
(j,3)Θ3 − . . .−Q−1

(j,3Np)
Θ3Np . (3.25)

By noting that Uunc(k) and Ūunc(k) has an inner product of the same form, only the coef-
ficients have to be changed in (3.25). Therefore, the j’th entry of Ūunc(k) can be calculated
by

ūunc,j = −(HQ−1)(j,1)Θ1 − (HQ−1)(j,2)Θ2 − (HQ−1)(j,3)Θ3 − . . .− (HQ−1)(j,3Np)
Θ3Np ,
(3.26)

with no extra expense to the multipliers. The coding implementation for the calculation of
the unconstrained solution is shown in Algorithm 3. Although not shown, the Babai estimate
is calculated as the entries of the unconstrained solution are calculated.

Algorithm 3 Unconstrained solution
1: for j = 1 to 3Np do
2: Θj = ΥT

(j,1)(Γ(1,1)i1 + Γ(1,2)i2 − Yref,1) + . . .− λuZjU(k − 1)j
3: end for
4: for q = 1 to 2 do
5: if q = 1 then
6: M = −Q−1

7: else if q = 2 then
8: M = −HQ−1

9: end if
10: for j = 1 to 3Np do
11: utemp,j = M(j,1)Θ1 +M(j,2)Θ2 + . . .+M(j,3Np)Θ3Np

12: end for
13: if q = 1 then
14: Uunc = U temp

15: else if q = 2 then
16: Ūunc = U temp

17: end if
18: end for
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3.3.4 Initial radius
Babai estimate versus educated guess

It is highly recommended that both the Babai estimate and the educated guess are evaluated
when determining the initial radius. Under steady-state conditions, the educated guess proves
to be an excellent initial guess [1]. As explained in Section 2.5, the educated guess is depen-
dent on the previous optimal solution (in other words, information of the previous sampling
instant). The guess relies on the assumption that the discarded entries of U opt(k − 1) should
look similar to the new (now shifted) entries in U opt(k). However, during transients, this
does not always hold true and the new optimal solution can look substantially different. This
will cause an enormous initial radius that encloses a great number of lattice points, as demon-
strated in Figure 3.5.

Ūunc

ū1

ū2

HU ed

HU bab

HUopt

Figure 3.5: Demonstration of the initial radii for the Babai estimateU bab(k) and the educated
guess U ed(k) during a transient. The shaded area represents the convex hull of the lattice.

The Babai estimate, however, is reliant on the unconstrained solutionUunc(k)which is calcu-
lated at the current sampling instant. Since the unconstrained solution contains information
about where the optimal solution is located in the lattice, the Babai estimate will be in the
vicinity of the optimal solution (see Figure 3.5). Unfortunately, in the case where the uncon-
strained solution is located far from the convex hull of the truncated lattice (see Section 2.4.2
for lattice description), the sphere decoder will visit many nodes of the search tree. It is worth
stressing that aforementioned problems intensify at higher dimensions, where the geometry
of the lattice is non-trivial. Note that the skewness of the lattice will also determine how
quickly the sphere decoder will traverse the search tree. The interested readers are referred to
[34] where a proposal is made to efficiently reduce the computational effort during transients.

Calculation of initial radius

The radii for the Babai estimate and the educated guess are given by

ρ(k) =
∥∥Ūunc(k)−HU ini(k)

∥∥
2
, (3.27)

where U ini(k) ∈ {U ed(k),U bab(k)}. The initial radius will be the minimum of the Babai
estimate and the educated guess

ρini(k) = min{ρbab(k), ρed(k)}. (3.28)
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By squaring (3.27), the squared radius is given by

ρ2(k) =

ρ21︷ ︸︸ ︷
(ūunc,1 − h(1,1)uini,1)

2+

ρ22︷ ︸︸ ︷
(ūunc,2 − h(2,1)uini,1 − h(2,2)uini,2)

2+ . . .

ρ23Np︷ ︸︸ ︷
(ūunc,3Np − h(3Np,1)uini,1 − h(3Np,2)uini,2 − . . .− h(3Np,3Np)uini,3Np)

2 (3.29a)

=

3Np∑
j=1

(ūunc,j − h(j,1)uini,1 − h(j,2)uini,2 − . . .− h(j,3Np)uini,3Np)
2. (3.29b)

From (3.29a) it is apparent the polynomial of the squared term of the bottom level, that is,
ρ23NP

, can be used to calculate the squared term of any level by simply changing the coefficients.
The squared radius is given by the squared terms accumulated up to the final level, as shown
in (3.29b). As with the unconstrained solution, only one squared term is calculated per clock
cycle. The code implementation for the initial radius is shown in Algorithm 4.

Algorithm 4 Initial radius
1: for q = 1 to 2 do
2: ρ2temp,prev = 0
3: if q = 1 then
4: U ini = U bab

5: else if q = 2 then
6: U ini = U ed

7: end if
8: for j = 1 to 3Np do
9: ρ2temp = (ūunc,j − h(j,1)uini,1 − h(j,2)uini,2 − . . .− h(j,3Np)uini,3Np)

2 + ρ2temp,prev

10: ρ2temp,prev = ρ2temp

11: end for
12: if q = 1 then
13: ρ2bab = ρ2temp

14: else if q = 2 then
15: ρ2ed = ρ2temp

16: end if
17: end for
18: if ρ2ed ≤ ρ2bab then
19: ρini = ρed
20: else
21: ρ2ini = ρ2bab
22: end if

3.3.5 Sphere decoding algorithm
Non-recursive sphere decoding algorithm

Recall that the sphere decoding algorithm (SDA) proposed in [10] employs recursion (see Al-
gorithm 2 in Section 2.5.2). Implementing recursion in VHDL is not as benign as in common
programming languages. Whereas languages such as C/C++ use a stack to implement recur-
sion, VHDL will synthesise the same algorithm n-times (the maximum recursion depth).
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This results in n-times the amount of resources being used. Due to the complexity of the
SDA, using recursion will come at a great expense of resources and should be avoided. A
non-recursive SDA is proposed in Algorithm 5. The algorithm fundamentally functions the
same as the recursive variant, but storage and backtracking methods are realised differently.

Algorithm 5 Non-Recursive Sphere Decoder

1: function U opt = SphDec(U , 3Np, ρ
2, Ūunc)

2: Initialize:
3: j = 1
4: set each element in lvlcnt = −1
5: set each element in d2 = 0
6: while solutionfound = 0 do
7: uj = lvlcntj
8: d′2 =

∥∥ūunc,j −H(j,1:j)U 1:j

∥∥2
2
+ d2j

9: if ρ2 ≥ d′2 then
10: if j = 3Np then
11: U opt = U
12: ρ2 = d′2

13: lvlcntj ++
14: else
15: j ++
16: d2j = d′2

17: end if
18: else
19: lvlcntj ++
20: end if
21: for q = 3Np downto 2 do
22: if lvlcntq > 1 then
23: lvlcntq = −1
24: j = q − 1
25: lvlcntj ++
26: end if
27: end for
28: if lvlcnt1 > 1 then
29: solutionfound = 1
30: end if
31: end while
32: end function

The squared terms of the ILS problem are stored in the array d2, where d2j are the accumulated
squared terms up to (not including) the j’th level. The algorithm traverses the search tree in
the same order as the non-recursive algorithm, but uses two different pointers to keep track
of the explored branches. The first pointer is known as the level pointer, denoted by j, and
keeps track of which level of the search tree is being explored. The second pointer is known
as the level counter, denoted by lvlcntj , and keeps track of what branches of the search tree is
being explored. There are 3Np of such pointers stored in an array lvlcnt.

Up to line 20 in Algorithm 5, the two SDAs are relativity similar. The biggest difference
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is how backtracking is achieved. Instead of popping an element from a stack6, the algorithm
evaluates 3Np − 1 if-statements (line 21–26) in order to realise backtracking. Backtracking
works as follow: if a branch of a node is more than 1, which means that the switch position
does not belong to the single-phase set U , the branch is set back to −1.7 The current level is
decreased and the next branch of the node is evaluated. This procedure is done from bottom
to top. Figure 3.6 illustrates the backtracking procedure. Once the top-level counter exceeds
lvlcnt1 > 1, it means that the entire search tree has been evaluated and the sphere decoder
terminates. A certificate for optimality is obtained.

lvlcnt3 = 1

lvlcnt2 = 1

lvlcnt1 = −1

j = 3

u1 = −1
u1 = 0

u1 = 1

(a) The sphere decoder is currently at a leaf node, where the switching sequence isU(k) =
[
−1 1 1

]
.

Once the evaluation is finished, the bottom level counter is incremented to lvlcnt3 = 2 ( /∈ U ) and
backtracking starts.

lvlcnt3 = −1

lvlcnt2 = −1

lvlcnt1 = 0
j = 1 u1 = −1

u1 = 0
u1 = 1

(b) The bottom-level counter is now set back to lvlcnt3 = −1 and the current level is decreased to
j = 2. After the second level counter is incremented, since the current branch has been explored, the
level counter is now lvlcnt2 = 2 ( /∈ U ). The sphere decoder sets lvlcnt2 = −1 and backtracks to
the top level, where the level counter is incremented to lvlcnt1 = 0. Backtracking is finished, and the
(partial) switching sequence now is U(k) =

[
0
]
.

Figure 3.6: Backtracking example. The blue lines represent the branches that are currently
being explored. This relates to the switching sequence that is assembled.

The squared term calculation in line 8 is achieved in a similar way to that of line 9 in Algo-
rithm 4. Note that the elements inU(k)will never be empty during practical implementation,
but due to the triangularity of the H matrix, elements at lower levels of the search tree (i.e.,
the levels more than j ) will not be considered.

6The term stack refers to a programming stack, and is accessed in the Last In, First Out method.
7For convenience, U = {−1, 0, 1}.
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At every clock cycle the SDA visits one node of the search tree, in other words, one (partial
or full) candidate solution is evaluated.

3.3.6 Computational burden and resource usage
Offline calculations

All of the matrices are pre-calculated in advance and stored on the FPGA in arrays. This
includes the state-space matrices A and B, as well as the prediction matrices Γ and Υ. The
Cholesky decomposition of Q is calculated via MATLAB® in order to obtain the generator
matrix H . The pre-multiplication of Q−1 and H are done offline. Note that matrices S and
E are not required for practical implementation (see (3.22) in Section 3.3.3). Theαβ-reference
currents are calculated at discrete intervals of Ts and stored on the FPGA in arrays.

It is important to note that when the weighting factor λu is changed, Q and H have to
be recalculated. This poses a problem as the switching frequency, via tuning of λu, cannot
be adjusted online without recalculating the required matrices. When a reference change is
given, the switching frequency could change to an undesired frequency. This can be overcome
in two possible ways.

For multiple λu values, multiple Q and H matrices can be calculated offline and stored
on the FPGA in lookup tables. This approach has significant memory requirements.

Another approach would be to calculate the matrices online, albeit not instantaneously.
Using this approach would require significantly more DSP blocks, inhibiting the achievable
horizon. Note that the matrices grow quadratically in size as the prediction horizon increases,
and the Cholesky decomposition is non-trivial.

Online calculations

The number of clock cycles in which online calculations are permitted within a sampling
period is given by Tsfclk, where fclk is the clock frequency of the controller algorithm. To
guarantee optimality, the sphere decoder must terminate within the allocated clock cycles.
Irrespective of the sampling interval and clock frequency, calculations for the unconstrained
solution and initial radius are limited to one term per clock cycle.

Five clock cycles are used to calculate the sampled αβ-currents. This includes processing
the ADC value, applying the Clarke transformation, and adding the delay compensation.
The reference is also shifted accordingly. 5 × 3Np clock cycles are required to calculated the
(transformed) unconstrained Uunc(k) (Ūunc(k)), and the radii squared ρ2ed(k) and ρ2bab(k).
One clock cycle is used to determine the initial radius ρ2ini(k), and a final clock cycle is used to
send Ūunc(k) and ρ2ini(k) to the SDA. Taken as a whole, 7+5× 3Np clock cycles are required
before the sphere decoding starts.

The remaining clock cycles are used for sphere decoding. If the sphere decoder does not
terminate within the sampling period, the Babai estimate is applied to the plant in order to
avoid infeasibility issues. Ideally, the incumbent optimal solution found by the sphere decoder
should be applied. However, the possibility for truncation does exist, since the variables are
assigned a reasonable number of bits (i.e., the largest number a variable can represent) within
the expected operating range. Transients can occur where the variables of the sphere radius
or unconstrained solution truncates. This will lead to a compromised sphere decoder, since
some candidate solutions will erroneously be considered to belong within the sphere.
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FPGA resources

The resource usage of the FPGA for prediction horizons Np = 1 to 5 is shown in Figure 3.7.
Increasing the horizon leads to a linear increase in resource usage. Note that squaring is done
in two steps: the term that should be squared is calculated, and then multiplied with itself.
The number of bits assigned to variables range from 23 to 33. It is encouraging to see that
digital signal processing (DSP) blocks, arguably the most valuable resource, increase by only
13 blocks as the horizon increases. The limiting factor for the prediction horizon was the
amount of DSP blocks available, as 100% are used, while only 21% of the adaptive logic
modules (ALMs) are used.

1 2 3 4 5
30

40

50

60

70

80

Np

D
SP

bl
oc
ks

2 000

3 000

4 000

5 000

6 000

7 000

A
LM

s

DSP
ALMs

Figure 3.7: Resource usage of controller implementation. The FPGA has a total of 87 DSP
blocks and 32 070 ALMs.

3.3.7 Verification
ILS verification

First and foremost, an exhaustive search (see Algorithm 1 in Section 2.3.4) and an ILS simula-
tion are done in order to verify that the reformulated ILS problem is correctly implemented.
Ideally, it is preferable to do a comparison for Np = 5, as this was the longest horizon that
could be implemented on the FPGA and has the most complexity. Unfortunately, for hori-
zons beyondNp > 2, the exhaustive search rapidly becomes intractable. Since all simulations
are run for multiple fundamental periods to ensure steady-state conditions, only an exhaustive
search simulation for Np = 3 was done. MATLAB® was used for the simulation platform.
The system parameters are shown in Table 3.1.

Figure 3.8 shows the comparison of phase currents for the exhaustive search and ILS simu-
lations. A 50Hz, 10A (peak) reference current is given, and the weighting factor λu is adjusted
so that the average switching frequency is 250Hz. It can be seen that the exhaustive search
and ILS problem have identical results, confirming the implementation of the reformulated
problem. The switch positions of the simulation are shown in Figure 3.9.
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Table 3.1: Simulation parameters.

Parameter Description Value

Vd Bus voltage 100V

R Resistive load 3.5Ω

L Inductive load 2mH

Ts Sampling interval 25 µs
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for the exhaustive search and the ILS simulations are denoted by ix and i∗x, respectively. The
phase references are depicted by the black dash dotted lines.
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Figure 3.9: The switch positions for ILS verification simulation. The switch positions for
phases a, b, and c are indicated by blue, red, and yellow, respectively.
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VHDL verification

To verify the VHDL implementation of the controller, a simulation of the controller and the
plant is conducted within the FPGA. The simulation and the practical controllers are near
identical, with the only differences being that in the practical controller a delay compensation
is added and the state variable is updated via the ADC. The sampling interval is chosen as
Ts = 25 µs to demonstrate that the optimization problem can be solved well under 100 µs in
real-time. Although only the verification for a prediction horizon of Np = 5 will be shown,
as this is the horizon with the most complexity, prior horizons were also verified.

According to the timing analysis tool, the upper bound and lower bound of the maximum
clock frequency are 16.1MHz and 31.1MHz, respectively.8 A conservative approach is taken
and the clock frequency is set to 15MHz.

Figure 3.10 shows a comparison of the simulation executed on the FPGA and that of
MATLAB®. A 50Hz, 10A (peak) reference current is given, and the weighting factor λu

is adjusted so that the average switching frequency is 250Hz. Figure 3.11 shows the switch
positions of the simulation. It should be apparent that the FPGA implementation of the
controller algorithm is correct, as Figure 3.10 indicates that both simulations have identical
results.
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Figure 3.10: FPGA and MATLAB® simulations comparison for Np = 5. The phase currents
for the FPGA and MATLAB® simulations are denoted by ix and i∗x, respectively. The phase
references are shown by the black dash dotted lines.

8The TimeQuest Timing Analyzer does an analysis that is subjected to a variety of conditions. This includes
temperature, voltage, and manufacturing process conditions.
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Figure 3.11: The switch positions for FPGA verification simulation. The switch positions for
phases a, b, and c are indicated by blue, red, and yellow, respectively.

Figure 3.12 shows the distribution of the number of clock cycles required for sphere decoding
within one fundamental period. The data is captured from the FPGA simulation. In 89.5%
of the occurrences, the sphere decoder only requires 45 clock cycles to receive a certificate for
optimality. This translates to only 3 µs. The calculations during the first 82 clock cycles have
a duration of 5.4 µs. Thus, in 89.5% of the occurrences, the controller only requires 8.4 µs to
find the optimal switch positions; well under 25 µs. The maximum number of clock cycles
the sphere decoder required to solve the optimization problem was 120 cycles. This relates
to 13.4 µs in total, still within the sampling interval. Considering that there are 315 candidate
solutions, this is rather promising.
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Figure 3.12: Histogram of number of clock cycles required for sphere decoding for Np = 5.

3.4 Summary
With the processing power available today, long-horizon direct MPC can be practically imple-
mented within a low cost FPGA.However, the structure of the code should not be considered
trivial. By efficiently structuring the code and using a non-recursive SDA, the resource usage
is drastically decreased, enabling the possibility of long horizons.
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The optimization problem can be solved in real-time well within a sampling interval of Ts =
25 µs for a prediction horizon of Np = 5. The computational burden associated with sphere
decoding scales well with an increase in the prediction horizon. In [1], the average nodes
visited by the sphere decoder roughly doubled when the horizon was increased from Np =
5 to Np = 10. It can be concluded that solving the optimization problem for prediction
horizons up to Np = 10 in real-time is possible, provided the FPGA has sufficient resources
for the implementation.
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Chapter 4

Performance evaluation of long horizons

4.1 Introduction
This chapter presents experimental results of long-horizon direct MPC. The experimental
setup that is used during practical evaluation is explained, including the testing framework
and conditions. The steady-state performance of direct MPC with horizons Np = 1 to 5 are
presented and discussed, with an emphasis on the trade-off between harmonic distortions and
switching frequency. A comparison between MPC, OPPs, and SVM is given. The response
time of a prediction horizon Np = 5 is analysed via a reference step. This chapter concludes
with a summary.

4.2 Testing procedure

4.2.1 Experimental setup
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Figure 4.1: Experimental setup block diagram.

Figure 4.1 represents the experimental setup that is used to evaluate long-horizon direct MPC.
The flow of the controller algorithm, which is clocked at 15MHz, is illustrated.
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The experimental setup consist of a Cyclone® V FPGA1, an Infineon F3L030E07 evaluation
board with an F3L75R07W2E3 three-level IGBT module, an RL load, an Allegro ACS714
Hall effect current sensor (CS), and a Texas Instruments ADS7864 ADC. The plant param-
eters are shown in Table 4.1. The parameters are identical to that of the simulations in Sec-
tion 3.3.7, but with the sampling interval increased to Ts = 100 µs. The bus voltage is realised
by two power supplies; one across each of the top and bottom capacitors. The power supplies
ensure that the neutral point potential has minimum fluctuations, which was assumed to be
constant during modelling.

Table 4.1: Practical parameters.

Parameter Description Value

Vd Bus voltage 100V

R Resistive load 3.5Ω

L Inductive load 2mH

Ts Sampling interval 100 µs

4.2.2 Testing framework
Long-horizon direct MPC

In order to complete a thorough analysis on the benefit of long horizons, a diverse set of
weighting factors λu (relating to numerous switching frequencies) for all horizons must be
considered. As stated in Section 3.3.6, changing λu requires certainmatrices to be recomputed.
Recomputing these matrices offline is the only viable option available for the FPGA at hand,
since the implementation of the longest horizon (Np = 5) causes all the resources to be
utilised. After recalculating the new matrices offline, the FPGA has to be recompiled with
thematrices for the new λu. This is inconvenient, as it takes an excess of 20minutes to compile
for long horizons.

To overcome this, serial communication via a universal asynchronous receiver/transmitter
(UART) is established between the FPGA and personal computer. MATLAB® is used to
manage the automatic testing procedure. This includes calculating the requiredmatrices for λu

values, converting them to a fixed-point representation, and then transmitting to the FPGA.
The experimental data (e.g., the ADC readings and switch positions) stored in the memory
of the FPGA is sent back to MATLAB®, where it is processed.

Data is sampled at the same sampling interval as the controller, that is, Ts. Due to the
low (average) switching frequency, harmonic components of the current above the Nyquist
frequency ( fs

2
) should be insignificant. This allows for 80 fundamental periods of data per λu

to be measured, resulting in an averaged representation of steady-state operation.

Alternative modulation schemes

OPPs are calculated offline and stored on the FPGA in lookup tables. The optimization prob-
lem is repeated multiples times in order to improve the probability that the global minimum,
or at least a satisfactory local minimum, is found. The modulating signal (with the added
common-mode term) of SVM is calculated offline for one fundamental period and stored on

1More specifically, a terasIC DE01-SoC development board is used that includes the FPGA.
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the FPGA in lookup tables. Two carrier signals with phase disposition are generated on the
FPGA that are used to modulate the input signals.

Themodulation indices of bothOPPs and SVM are tuned so that the fundamental compo-
nent is nearly equivalent to that of MPC. The measurements of OPPs and SVM are sampled
at 25 µs and recorded over 20 fundamental periods.

Harmonic distortion and switching frequency

The total harmonic distortion (THD) of the current is a measurement of the harmonic dis-
tortion present in the phase current, and is given by [30]

ITHD =

√∑
n6=1 I

2
n,rms

I1,rms

, (4.1)

where I1,rms is the root-mean-square (rms) value of the fundamental component, and In,rms

the rms value of the n-th harmonic. Note that due to the variable switching frequency of
MPC, n is not restricted to an integer and all of the harmonics up to the Nyquist frequency
of the Fourier transform are considered. The final THD value is comprised of the average
THD of the three-phase currents.

Although direct MPC does not have a fixed switching frequency, the average switching
frequency of a semiconductor switch can be calculated.2 This is done by counting the number
of switching transitions over an NTs interval, and is given by [1]

fsw = lim
N→∞

1

12NTs

N−1∑
l=0

∥∥u(l)− u(l − 1)
∥∥
1
, (4.2)

where
∥∥ξ∥∥

1
is the 1-norm (or Taxicab norm) of vector ξ, N is the number of samples, and

the factor 12 represents the number of semiconductor switches in an NPC inverter.

4.3 Long horizons steady-state performance evaluation

4.3.1 Comparison of Np = 1 to 5

The weighting factor λu is varied so that switching frequencies from fsw = 125Hz to 450Hz
(widely-used medium-voltage application switching frequencies) are obtained for horizons
Np = 1 to 5. In total, the results of over 1000 λu values are recorded and examined. In the
figures, dots represent recorded values. Appropriate trend lines are plotted. Unless stated
otherwise, all tests are conducted with a peak reference current of 8A.

Figure 4.2 shows the trade-off between the switching frequency and current THD for
horizons Np = 1 to 5. It can be seen that, in general, longer horizons tend to improve cur-
rent THD for a given switching frequency. The improvement in THD from Np = 2 to 3
is substantial, especially between 200Hz and 350Hz. After increasing the horizon beyond
Np > 3, a decrease in current THD is still achieved, albeit gradually. Considering that dead-
time, quantization errors (from the ADC and the fixed-point representation of variables),
and model uncertainty are present, which all have adverse effects as the horizon increases,

2From here on when referring to the switching frequency of direct MPC, the average switching frequency is
implied.
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the results of Np = 5 are encouraging.3 This also highlights the importance of the receding
horizon principle. Note that a longer horizon does not necessarily offer improved perfor-
mance over all the switching frequencies. This was also observed in [15]. The benefits of long
horizons are more profound for higher-order and more complex plants; see [35] for control
of a quasi-Z-source inverter and [36] for control of an LC filter-connected induction motor.

The horizon Np = 2 case had peculiar results. From 375Hz to 425Hz, it outperformed
Np = 1 noticeably. However, from 175Hz to 240Hz, Np = 2 performed the worst of the
tested horizons. Measurements were repeated and implementation was verified with a simu-
lation comparison as discussed in Section 3.3.7. It is worth mentioning that with a sampling
interval of Ts = 100 µs and clock frequency of fclk = 15MHz, the sphere decoder always
issues a certificate for optimality since the number of available clock cycles is greater than the
nodes of the search tree. The search tree has 798 nodes, which is given by

∑3Np

i=0 3
i, and there

are roughly 1500 clock cycles available for sphere decoding.
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Figure 4.2: Trade-off between switching frequency and current THD for horizons Np =
1 to 5.

Figure 4.3 shows the influence of the weighting factor λu on the switching frequency. As
expected, the switching frequency decreases as λu increases. The switching frequency can-
not be reliably increased beyond 450Hz. As λu → 0, the entries in Q−1 become larger and
eventually truncate in the FPGA due to the number of integer bits assigned to the variables.4
This causes the unconstrained solutionUunc(k), and therefore the Babai estimate, to become
compromised. Furthermore, the conditioning of the matrices start to deteriorate until they
become ill-conditioned.5 This means that rounding and quantization errors will have a pro-
found effect.

3A post analysis showed that the time constant of the RL load is 6% lower than the model parameters.
4For convenience, Q = ΥTΥ+ λuS

TS
5When a matrixA is ill-conditioned and a system of linear equations is given byAx = b, any small changes

to b will result in significant changes in x.
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Figure 4.3: Trade-off between switching frequency and theweighting factor for horizonsNp =
1 to 5.

Switching frequencies from 350Hz to 450Hz for all horizons have similar λu values. Below
350Hz, longer horizons (generally) require a larger weighting factor than shorter horizons
in order to achieve similar switching frequencies. It is interesting to note that all the hori-
zons exhibit frequencies where increasing λu result in an identical switching frequency. It
appears that direct MPC enters a limit cycle at certain frequencies. The Np = 2 case had
an extended period (λu = 1.5 to 2.5) where the switching frequency remained 225Hz. Also,
Np = 2 required the largest weighting factor to achieve similar switching frequencies as longer
horizons.

Figure 4.4 shows the trade-off between the current THD and the weighting factor. As can
be seen, an increase in λu results in an increase in current THD, since the prioritisation of the
reference tracking is decreasing. Note the sections where as increase in λu resulted in (more
or less) the same THD. This translates to the plateaus in switching frequency that are referred
to in Figure 4.3. These occurrences can be seen in Figure 4.2 at the concentrated dots, e.g., at
fsw = 225Hz for Np = 2 and fsw = 160Hz for Np = 3.

Figure 4.5 and Figure 4.6 show the differential-mode switch positions uα and uβ, respec-
tively, for prediction horizons Np = 1 and Np = 5. Figure 4.7 shows the difference between
the harmonic amplitudes of the differential-mode switch positions for Np = 1 and Np = 5,
and illustrates how MPC with longer horizons achieves lower current THD. It can be seen
that for harmonics under 650Hz, the horizon Np = 5 case has smaller differential-mode
switch harmonics (and therefore voltage harmonics vαβ = Vd

2
uαβ ) than the Np = 1 case, but

larger harmonics at frequencies above 3000Hz. It can be concluded that long horizons shift
some of the energy in differential-mode voltage harmonics from lower frequencies to higher
frequencies. This was also observed in [1]. This will cause the current THD to be lower, since
at higher frequencies the current harmonics will be attenuated by the RL load, which has a
cutoff frequency of 280Hz. It is also stated in [1] that longer horizons can shift some of the
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harmonic energy into the common-mode voltage harmonics v0 = Vd

2
u0, which do not drive

phase currents and contribute to current THD.
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Figure 4.4: Trade-off between current THD and the weighting factor for horizonNp = 1 to 5.
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Figure 4.5: The harmonic amplitude spectra of the differential-mode switch position uα for
Np = 1 and Np = 5.
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Figure 4.6: The harmonic amplitude spectra of the differential-mode switch position uβ for
Np = 1 and Np = 5.
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Figure 4.7: The harmonic amplitude spectra of the difference between differential-mode
switch positions uα and uβ, for Np = 1 and Np = 5. The difference in amplitude of
the n-th harmonic for the differential-mode switch positions are represented by ∆ûξ,n =
ûξ,n,Np=1 − ûξ,n,Np=5.
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4.3.2 Comparison of MPC, OPPs, and SVM

150 175 200 225 250 275 300 325 350 375 400 425 450

6

8

10

12

14

16

18

fsw [Hz]

I T
H
D
[%

]
Np = 1

Np = 3

Np = 5

OPP
SVM

Figure 4.8: Trade-off between switching frequency and current THD for MPC, OPPs, and
SVM.

Table 4.2: Comparison of MPC, OPPs, and SVM at fsw = 250Hz.

Method fsw [Hz] ITHD [%]

MPC, Np = 1 251 8.61

MPC, Np = 3 252 8.27

MPC, Np = 5 250 7.94

SVM, fc = 450 250 12.34

OPP, d = 5 250 9.16

Unless stated otherwise, all tests are conducted with a peak reference current of 8A. ForOPPs
and SVM, the modulation index is set to m = 0.61 to achieve the same current fundamental
amplitude as MPC. In Figure 4.8, the current THD of MPC with horizons Np = 1, 3, and 5
are compared to OPPs and SVM for switching frequencies between 150Hz and 450Hz. Ta-
ble 4.2 shows a comparison at fsw = 250Hz, a popular switching frequency for medium-
voltage applications. As expected, the lower the switching frequency, the more pronounced
the advantage of using OPPs instead of SVM becomes. At a switching frequency of 450Hz,
the reduction in THD is roughly 35%, while at 200Hz it is further reduced to 63%.

When comparing MPC to SVM, the reduction in THD is immediately clear for lower
switching frequencies. Even the horizon Np = 1 case outperforms SVM. However, as the
switching frequency increases above 450Hz, the performance of MPC and SVM starts to
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converge. For higher switching frequencies, SVM can outperform MPC depending on the
horizon and sampling interval [15].
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Figure 4.9: Current waveforms, switch position, and current spectrum for MPC withNp = 5
at fsw = 250. Phases a, b, and c are indicated by blue, red, and yellow, respectively.

The comparison between MPC and OPPs is rather interesting. For switching frequencies
above 300Hz, OPPs outperforms MPC. However, for frequencies below 300Hz, MPC out-
performs OPPs. For frequencies below 200Hz, MPC presents a noticeable advantage over
OPPs. In [15], OPPs always had the lowest THD. The reason MPC outperforms OPPs in
the following conditions can be contributed to the rather unique switching pattern of MPC.
Figure 4.9 and Figure 4.10 show the current waveforms, switching pattern, and current spec-
trum of MPC with horizon Np = 5 and OPPs, respectively.6 Figure 4.9b shows that MPC
only uses one half of the bus voltage (i.e., the short voltage vectors in Table 2.2) due to the
relatively low current reference in comparison with the bus voltage. This will lead to a smaller

6The dc-component seen in the current spectra is due to the offset in the current sensor. This was compensated
for in the controller, but not during the measuring and recording of data.
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ripple current (see Figure 4.9a and Figure 4.10a). The reader is reminded that characteristics
are enforced onOPPs, i.e., quarter wave symmetry and full bus voltage utilisation. In terms of
absolute THD, this might not necessarily be the lowest. Moreover, and very importantly, the
optimization problem for OPPs (see Section 2.6.2) considers a purely inductive load, which
is a valid assumption for frequencies where the reactance dominates the resistance of the load.
For grid-connected inverters and induction machines, this statement hold true. However,
when considering the RL load parameters that is used, the resistance is far greater than the
inductance. At low frequencies the reactance will be significantly less than the resistance, and
it can be seen that the advantage that MPC holds over OPPs only increases at lower switching
frequencies.
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Figure 4.10: Current waveforms, switch position, and current spectrum for OPPs at fsw =
250. Phases a, b, and c are indicated by blue, red, and yellow, respectively.

It is interesting to note that the switching pattern of MPC does pose a form of half-wave
symmetry, leading to small even-order harmonics. Some symmetry with appropriate phase
shifts is present between the phase switch positions, but they are not identical. This does lead
to a more noticeable third-order harmonic at 150Hz when compared to that of OPPs. MPC
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has no constraint that enforces identical, 120° out-of-phase switching patterns, or any form of
symmetry for that matter. Therefore, there is no guarantee that even-order or third-order har-
monics will not be present in the current spectrum. The variable switching pattern of MPC
can be observed in Figure 4.9c, where the spectrum does have noticeable inter-harmonics,
i.e., harmonics at non-integer multiples of the fundamental. However, the switching pattern
does have a form of periodicity, and harmonics are more profound at integer multiples of the
fundamental frequency. In contrast, OPPs (as well as SVM) have a significantly more discrete
harmonic spectrum, as can be observed in Figure 4.10c.

Table 4.3 shows the current THD of MPC and OPPs when the reference current is
changed. In these conditions, OPPs outperform MPC at a switching frequency of 250Hz.
Furthermore, even at the lower reference current, the resulting switching pattern of MPC
utilised the full bus voltage.

Table 4.3: Comparison of MPC and OPPs at different reference current.

Method fsw [Hz] ITHD @ 6A [%] ITHD @ 9A [%]

MPC, Np = 5 250 16.67 8.83

OPP, d = 5 250 16.14 7.43

4.4 Response time of MPC
A benefit of using MPC is a fast response time during transients. In [15], it is shown that the
prediction horizon does not influence the response time of the controller. However, solving
the optimization problem during transients requires a greater computational effort than in
steady-state operation (see Section 3.3.4). Therefore, practical evaluation is conducted with
a horizon of Np = 5, as this horizon has the highest computational burden out of all tested
horizons. If the optimal solution is not found during a transient, the fast response of MPC
could be inhibited if a suboptimal switch position is applied.

In Figure 4.11, the current is stepped from 8A to 4A, then to 10A, then to 0A, and
then back to 8A. The switch positions are shown in Figure 4.12. The reference step is sud-
denly given and not included in the prediction horizon, in other words, the controller cannot
anticipate the reference step. Due to the addition of a delay compensation as explained in
Section 3.3.2, a delay of Ts (i.e., 0.1ms) is inherent. The step-down cases have a settling time
of approximately 0.2ms and 0.3ms, while both the step-up cases take approximately 0.5ms.
The step-down cases are faster since the available voltage to manipulate across the inductor is
greater due to the current through the load.

The maximum number of clock cycles required to find the optimal solution during the
transients is 1030 out of the available 1500 clock cycles. This includes the calculation of the
unconstrained solution and initial radius. For more aggressive reference steps to larger cur-
rents or if shorter sampling intervals are used, there is no guarantee that the optimal solution
will be found within the sampling interval.
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Figure 4.11: The current waveforms for reference step changes. The phase references are
shown by the black dash dotted lines.
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Figure 4.12: The switch positions for reference step changes. The switch positions for phases
a, b, and c are indicated by blue, red, and yellow, respectively. The grid lines on the x-axis
represent the reference step points.

4.5 Summary
The increased performance benefit that long horizons offer is verified with practical measure-
ments. At a switching frequency of 250Hz, the current total harmonic distortion is decreased
by roughly 8.5% when using a prediction horizon ofNp = 5 instead ofNp = 1. Considering
that a primitive RL load is used and that modelling uncertainties are present, the benefits of
long horizons are promising. The practical application of long horizons on more complex
plants should definitely be considered and investigated. The fast response time of MPC is
demonstrated, where it is shown to quickly regulate to new reference set-points.

Although MPC did outperform OPPs by a significant margin in some cases, caution
should be exercised. For operating conditions that are different from those in this chapter,
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and if highly inductive loads are considered, it is expected that OPPs will result in the lowest
current THD.

Although the performance benefit that longer horizons should offer does not always seem
to hold true, only the weighting factor was adjusted to obtain the desired switching frequency.
However, there is one parameter that was not adjusted that has an influence on the perfor-
mance: the sampling interval Ts [15]. The sampling interval, along with the number of pre-
diction steps Np, determines the length of the horizon in time, NpTs. In [15], Monte Carlo
simulations were performed, where the prediction horizon Np, sampling interval Ts, and
weighting factor λu are randomly chosen for simulations. In the Monte Carlo simulations,
the performance benefits of longer horizons over all of the switching frequencies are much
more pronounced and clear. This also highlights a disadvantage of long horizons; tuning of
the weighting factor and sampling interval is required in order to find the optimal operating
point for a given horizon and desired switching frequency.
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Chapter 5

Selective harmonic suppression for long
horizons

5.1 Introduction
One disadvantage of direct MPC is that little control is available over the resulting non-
deterministic harmonic spectrum, which could contain undesired harmonics such as even-
order harmonics or certain harmonics that exceed standards. This chapter proposes a method
to selectively suppress selected harmonics, allowing some control over the spectrum.

This chapter will open with a brief discussion about some of the existing methods to
alter the harmonic spectrum. The formulation of the new proposed suppression method,
which is compatible with the integer least-squares (ILS) formulation discussed in Section 2.4,
is presented. This includes the formulation of the filter and state-space representation of the
entire system. Preliminary simulation results of steady-state performance and response time
are presented. This chapter concludes with a summary.

5.2 Existing methods
In literature, methods already exist that are able to eliminate harmonics. However, most of
these methods are limited to a prediction horizon of Np = 1.

In [37], the phase currents are passed through a notch filter. The filtered current is included
alongside the phase-current tracking error in the cost function. Note that the cost function
does not penalise switching transitions. The filtered variable thus represents the frequency
components that should be attenuated by the controller (i.e., all frequencies other than that
of the notch filter). In order to achieve this, the controller focuses the switching energy into
the harmonic that is filtered out. This results in a switching frequency around the frequency
of the filter. Whether this method is suited for low switching frequencies well below 1 kHz
remains to be seen.

A very interesting and promising method is proposed in [38]. In this method, selective
harmonic elimination (SHE) PWM switching patterns are calculated, which is similar to the
concept of optimised pulse patterns (OPPs). The cost function includes phase-current ref-
erence tracking and a term that penalises deviation of the switch positions from those of
SHE-PWM. Thus, in steady state this method has a harmonic spectrum that represents that
of the SHE-PWM, while combining the fast response time of MPC during transients. Note
that this method depends on the offline calculation of the SHE-PWM patterns over a wide

59

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. SELECTIVE HARMONIC SUPPRESSION FOR LONG HORIZONS 60

range of operating conditions.

5.3 Formulation of filter
The proposed harmonic suppression method, hereafter referred to as selective harmonic sup-
pression (SHS) MPC, is done exclusively online. The principle of the scheme is as follows.
By placing a resonant pole at a target frequency, that is, s = ±jwn, where wn is the natural
frequency, the frequency component of a signal at the target frequency will be significantly
amplified. In a sense, the resonant term acts as a filter by amplifying the desired frequency
component well above the rest of the spectrum. The filtered signal, consisting of a single
frequency component1, can then be included in the cost function so that it can be suppressed.
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Figure 5.1: Magnitude response of the filter.

The first step in this method will be to design an appropriate filter. First, some slight damping
will be added. This will cause a reduction in gain, but the bandwidth will be slightly higher
than that of a resonant term. This is done to ensure that the controller does not simply
shift the harmonic energy of the suppressed term into a neighbouring frequency (e.g., simply
shifting the energy from 250Hz to 253Hz). Note that if harmonics near the fundamental
frequency are to be suppressed, special attentionmust be given to the bandwidth. The transfer
function of the filter is given by

If (s)

I(s)
= Hf (s) =

K

s2 + 2σs+ ω2
n

, (5.1)

which has a complex pole pair at s = −σ ± jωd, where

σ = ζωn (5.2a)

ωd = ωn

√
1− ζ2, (5.2b)

1Although the signal will contain other frequency components as well, they are assumed to be insignificant
in comparison to that at the natural frequency.
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with ζ as the damping ratio and ωd the damped natural frequency. The maximum gain of the
filter Hf (s) is achieved at ωd (see Figure 5.1). However, if ζ � 1, the maximum gain of the
filter will approximately be at the natural frequency, since ωd ≈ ωn. The gain at ωd will be

20 log
∣∣H(jωd)

∣∣ = 20 log
K

2σωd

. (5.3)

For the formulation of SHS-MPC in Section 5.3.1 and Section 5.3.2, the filter can be described
by a continuous-time state-space representation of

ẋ(t) = F fx(t) +Gf i(t), (5.4)

where the state vector is
x(t) =

[
if (t) i̇f (t)

]T
, (5.5)

and the state and input matrices are

F f =

[
0 1

−ω2
n −2σ

]
(5.6a)

Gf =

[
0
K

]
. (5.6b)

5.3.1 Selective harmonic suppression formulation for a single-phase in-
verter

The proposed elimination method is first evaluated on the single-phase three-level NPC with
an RL load, as shown in Figure 5.2.

+

−

Vd

Cd

Cd

N
LiR

v

Figure 5.2: Single-phase NPC with an RL load.

The output voltage (with respect to N) is given by v(t) = Vd

2
u(t), where u(t) ∈ {−1, 0, 1} de-

notes the switch position of the inverter. After analysing the circuit, the differential equation
describing the current is given by

i̇(t) = −R

L
i(t) +

Vd

2L
u(t). (5.7)
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For a single-phase system, only one filter in the form of (5.1) is required per harmonic sup-
pression. A state-space representation can now be derived that includes the inverter current
and filter states,

x(t) =
[
i(t) if (t) i̇f (t)

]T
. (5.8)

The augmented state-space representation is given by

ẋ(t) = Fx(t) +Gu(t), (5.9)

where

F =

[
−R

L
01×2

Gf F f

]
=

−R
L

0 0
0 0 1
K −ω2

n −2σ

 (5.10a)

G =

[
Vd

2L

02×1

]
=

 Vd

2L

0
0

 . (5.10b)

Note that the input i(t) in (5.4) is now a state in (5.9). If desired, multiple harmonics can be
suppressed, but will require extra filters. The state vector will increase by a factor of two for
every harmonic suppression, i.e, x(t) ∈ R1+2m, wherem represents the number of harmonic
eliminations. For the general case of m harmonic eliminations, the state vector will be

x(t) =
[
i(t) if,1(t) ˙if,1(t) · · · if,m(t) ˙if,m(t)

]T
, (5.11)

where the state and input matrices are

F =


−R

L
01×2 01×2 · · · 01×2

Gf,1 F f,1 02×2 02×2

Gf,2 02×2 F f,2
. . . 02×2

... . . . . . . ...
Gf,m 02×2 02×2 · · · F f,m

 (5.12a)

G =


Vd

2L

02×1
...

02×1

 . (5.12b)

The discrete-time state-space representation can by obtained by the exact discretisation as
described in Section 2.3.2:

x(k + 1) = Ax(k) +Bu(k) (5.13a)
y(k) = Cx(k), (5.13b)

where the output vector includes the phase current and filter outputs

y(k) =
[
i(k) if,1(k) if,2(k) · · · if,m(k)

]T
, (5.14)

meaning that the output matrix is given by

C =


1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 0 1 0 0
...

...
...

...
0 0 0 0 · · · 1 0

 . (5.15)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. SELECTIVE HARMONIC SUPPRESSION FOR LONG HORIZONS 63

The cost function for Np prediction steps is given by2

J =

k+Np−1∑
l=k

∥∥yref (l + 1)− y(l + 1)
∥∥2
R
+ λu

∥∥∆u(l)
∥∥2
2
, (5.16)

where

yref (l + 1) =
[
iref (l + 1) iref,f,1(l + 1) iref,f,2(l + 1) · · · iref,f,m(l + 1)

]T
, (5.17)

and∆u(l) = u(l)−u(l−1). The weighting factor on the switching effort is represented by λu,
and R ∈ R(1+m)×(1+m) represents the penalty matrix where the diagonal elements represent
the weight on the tracking errors. Naturally, since the filter outputs should be suppressed
(i.e., the selected harmonics), the reference for the filters should be zero. Thus, iref,f,j = 0
for j ∈ {1, 2, . . . ,m}.

One of the benefits of using SHS-MPC is that no modifications to the ILS problem for-
mulation (or more specifically, the derivation) are required. This allows for the use of sphere
decoding, thus enabling the use of long horizons. With the addition of the penalty matrix
R̃ ∈ RNp(1+m)×Np(1+m) over the prediction horizon3 and by using a single-phase system, the
constraints of the optimization problem and the calculation of the unconstrained solution
Uunc(k) is slightly different to that in Section 2.4:

U opt(k) = argmin
U(k)

∥∥Ūunc(k)−HU (k)
∥∥2
2

(5.18a)

subject to U(k) ∈ {−1, 0, 1}Np , (5.18b)

where

Ūunc(k) = HUunc(k) (5.19)
Uunc(k) = −Q−1Θ(k) (5.20)
HTH = Q, (5.21)

with

Q = ΥT R̃Υ+ λuS
TS (5.22)

Θ(k) = ([Γx(k)− Y ref (k)]
T R̃Υ− λu[Eu(k − 1)]TS)T . (5.23)

2The argument of J , as used in Section 2.3.4, is dropped for convenience.
3The penalty matrix R̃ over the prediction horizon contains R in the diagonal.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. SELECTIVE HARMONIC SUPPRESSION FOR LONG HORIZONS 64

5.3.2 Selective harmonic formulation for three-phase inverters
For convenience, the three-phase three-level MPC with an RL load in Figure 3.1 is repeated
in Figure 5.3.
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Figure 5.3: NPC inverter with an RL load.

The continuous-time state-space representation of the plant is given by

˙iαβ(t) = FRLiαβ(t) +GRLu(t), (5.24)

where the state vector includes the phase currents in the orthogonal reference frame

iαβ =
[
iα(t) iβ(t)

]T
, (5.25)

and the input vector denotes the three-phase switch positions

u(t) =
[
ua(t) ub(t) uc(t)

]T
, (5.26)

which are restricted to {−1, 0, 1}3. The state and input matrices are given by

FRL = −R

L

[
1 0
0 1

]
(5.27a)

GRL =
Vd

2L
K, (5.27b)

where K is the (reduced) Clarke transformation as defined in Section 2.2.2. The derivation
of (5.24) can be found in Appendix C.

The formulation of SHS-MPC for a three-phase system is similar to that of a single-phase
system described in Section 5.3.1. The only difference is that two filters (instead of one) is re-
quired per harmonic suppression; one filter each for iα and iβ. For one harmonic suppression,
the state vector will include αβ-currents and four filter states,

x(t) =
[
iα(t) iβ(t) iαf (t) ˙iαf (t) iβf (t) ˙iβf (t)

]T
. (5.28)

The augmented state-space representation is given by

ẋ(t) = Fx(t) +Gu(t), (5.29)
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where

F =

FRL 02×2 02×2

Gαf F αf 02×2

Gβf 02×2 F βf

 =


−R

L
0 0 0 0 0

0 −R
L

0 0 0 0
0 0 0 1 0 0
Kα 0 −w2

αn −2σα 0 0
0 0 0 0 0 1
0 Kβ 0 0 −w2

βn −2σβ

 (5.30a)

G =

GRL

02×3

02×3

 =
Vd

3L



1 −1
2

−1
2

0
√
3
2

−
√
3
2

0 0 0
0 0 0
0 0 0
0 0 0

 . (5.30b)

Note that the input vectors of the filters in (5.6b) are now redefined to

Gαf =

[
0 0
Kα 0

]
(5.31)

Gβf =

[
0 0
0 Kβ

]
, (5.32)

in order to simplify the representation in (5.30a).
For a three-phase system, the state vectorwill increase by a factor of four for each harmonic

suppression, i.e., x(t) ∈ R2+4m, where m is the number of harmonic eliminations. For the
general case of m harmonic suppressions, the state vector will be

x(t) =
[
i2αβ(t) iαf,1(t) ˙iαf,1(t) iβf,1(t) ˙iβf,1(t) · · · iαf,m(t) ˙iαf,m(t) iβf,m(t) ˙iβf,m(t)

]T
,

(5.33)
while the state and input matrices are

F =



FRL 02×2 02×2 02×2 02×2 · · · 02×2 02×2

Gαf,1 F αf,1 02×2 02×2 02×2 · · · 02×2 02×2

Gβf,1 02×2 F βf,1 02×2 02×2 02×2 02×2

Gαf,2 02×2 02×2 F αf,2 02×2
. . . 02×2 02×2

Gβf,2 02×2 02×2 02×2 F βf,2
. . . 02×2 02×2

...
... . . . . . . . . . ...

...
Gαf,m 02×2 02×2 02×2 02×2 · · · F αf,m 02×2

Gβf,m 02×2 02×2 02×2 02×2 · · · 02×2 F βf,m


(5.34a)

G =
[
GT

RL 0T
2×3 0T

2×3 0T
2×3 0T

2×3 · · · 0T
2×3 0T

2×3

]T
. (5.34b)

As described in Section 2.3.2, the discrete-time state-space representation can be obtained by
using the exact discretisation, and will be in the form of (5.13). The output vector includes
the orthogonal reference frame currents and the filter outputs

y(k) =
[
iTαβ(t) iαf,1(t) iβf,1(t) · · · iαf,m(t) iβf,m(t)

]T
, (5.35)

where
y(k) = Cx(k), (5.36)
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with

C =



1 0 0 0 0 · · · 0 0
0 1 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
0 0 0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 0 0 · · · 1 0


. (5.37)

The cost function for Np prediction steps is given by

J =

k+Np−1∑
l=k

∥∥yref (l + 1)− y(l + 1)
∥∥2
R̃
+ λu

∥∥∆u(l)
∥∥2
2
, (5.38)

where

yref (l + 1) =
[
iref (l + 1) iref,f,1(l + 1) iref,f,2(l + 1) · · · iref,f,m(l + 1)

]
(5.39)

and ∆u(l) = u(l) − u(l − 1). The weighting factor on the switching transitions is denoted
by λu , and R ∈ R(1+2m)×(1+2m) represents the diagonal penalty matrix. As mentioned in
Section 5.3.1, the reference for the filters should be zero since the selected harmonics should
be suppressed.

As already stated in Section 5.3.1, this harmonic elimination method requires no modifi-
cation to the ILS problem described in Section 2.4. With the addition of the penalty matrix
R̃ ∈ RNp(1+2m)×Np(1+2m), the calculation of the unconstrained solution Uunc(k) is slightly
different to that in Section 2.4:

U opt(k) = argmin
U(k)

∥∥Ūunc(k)−HU (k)
∥∥2
2

(5.40a)

subject to U(k) ∈ U, (5.40b)

where

Ūunc(k) = HUunc(k) (5.41)
Uunc(k) = −Q−1Θ(k) (5.42)
HTH = Q, (5.43)

with

Q = ΥT R̃Υ+ λuS
TS (5.44)

Θ(k) = ([Γx(k)− Y ref (k)]
T R̃Υ− λu[Eu(k − 1)]TS)T . (5.45)

It is worth mentioning that the computational burden associated with the calculation of the
unconstrained solution Uunc(k) will increase with the number of suppressed terms. This is
due to an increase in the number of state variables, and the influence can be seen in (5.45).

5.4 Simulation results

5.4.1 Simulation framework
MATLAB® will be used for simulation purposes. The optimization problem will be solved
in the ILS form via sphere decoding, instead of the commonly-used exhaustive search based
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algorithm described in Section 2.3.4. The investigated plants are the single-phase and three-
phase NPC inverter with anRL load shown in Figure 5.2 and Figure 5.3, respectively. Unless
stated otherwise, the phase currents will have a reference current of 50Hz, 12A peak. Multiple
fundamental periods are simulated and only the results during steady-state operation, in terms
of THD and switching frequency, will be analysed. Only harmonic components up to 2 kHz
will be shown for a clear and convenient presentation of the suppressed harmonics. Unless
stated otherwise, the gain of the respective filters will be set to K = 2σωn (see (5.1) for
transfer function and (5.3) for gain at target frequency). The damping of the filter and weight
on the suppressed terms will be adjusted until adequate suppression of the selected harmonics
is achieved. The simulation parameters are shown in Table 5.1.

Table 5.1: Selective harmonic elimination simulation parameters.

Parameter Description Value

Vd Bus voltage 100V

R Resistive load 2Ω

L Inductive load 2mH

Ts Sampling interval 25 µs

5.4.2 Evaluation of SHS-MPC for single-phase inverter
Before investigating SHS-MPC for a three-phase system, a straightforward single-phase NPC
will be simulated to verify that SHS-MPC does indeed suppress harmonics. Simulations are
done for a prediction horizon of Np = 1.

Figure 5.4a shows the current spectrum for MPC.4 The weighting factor is tuned to λu =
4, where a switching frequency of 300Hz is obtained. Note that a near carrier-based discrete-
like harmonic spectrum is obtained in Figure 5.4a. During simulations with ideal conditions,
MPC tends to enter a near-periodic switching pattern, resulting in most of the harmonic
energy to be focused into integer multiples of the fundamental frequency.

Figure 5.4b shows the current spectrum for SHS-MPC where the harmonic at 150Hz is
suppressed. The weighting factor is kept at λu = 4. From Figure 5.4b it is shown that the
selected harmonic is significantly attenuated when compared to that of Figure 5.4a. The har-
monic spectrum in Figure 5.4b has noticeable, although small and spread out, inter-harmonics
between 600Hz and 1050Hz. The harmonic at 250Hz is noticeably larger. The suppression
method merely shifts the energy of the suppressed harmonic into other frequencies. It is in-
teresting to observe that the switching frequency remains at 300Hz. As stated in [1], MPC,
and therefore reasonable to assume SHS-MPC as well, tend to lock into switching frequencies
at integer multiples of the fundamental even if the weighting factor is varied.

In Figure 5.4c the current spectrum for SHS-MPC is shown, where harmonic suppressions
at 150Hz and 250Hz are applied. The weighting factor is kept at λu = 4, and the resulting
switching frequency still remains 300Hz. It is seen that the selected harmonics are signif-
icantly attenuated. It can be observed that certain harmonics (e.g., at 450Hz and 650Hz)
noticeably increase, while others decrease significantly (e.g., at 950Hz).

4When just referring to MPC, it is implied that no harmonic suppression is active.
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(a) Current spectrum for no harmonic suppression.
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(b) Current spectrum for harmonic suppression at 150Hz.
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(c) Current spectrum for harmonic suppressions at 150Hz and 250Hz.

Figure 5.4: Current spectra for single-phase MPC and SHS-MPC simulations.

Figure 5.5, Figure 5.6, and Figure 5.7 show the current waveforms and switch positions for
MPC, SHS-MPC with a term at 150Hz, and SHS-MPC with terms at 150Hz and 250Hz,
respectively. Although the current waveforms and switch positions seem similar, there is
a key difference. The switch positions shown in Figure 5.6b and Figure 5.7b have varying
pulse widths over time, leading to the harmonics at non-integer multiples of the fundamental
frequency (see Figure 5.4b and Figure 5.4c). The pulse widths of Figure 5.5a are identical for
all fundamental periods in steady-state, leading to the before mentioned discrete spectrum in
Figure5.4a.
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Figure 5.5: Current waveform and switch position of single-phase simulation for MPC.
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(b) Switch position.

Figure 5.6: Current waveform and switch position of single-phase simulation for SHS-MPC
with a term at 150Hz.
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(a) Phase current.

0 5 10 15 20

−1

0

1

Time [ms]

Sw
itc

h
po

sit
io
n

(b) Switch position.

Figure 5.7: Current waveform and switch position of single-phase simulation for SHS-MPC
with terms at 150Hz and 250Hz.

The filter parameters, penalties, and harmonic distortion for the simulations are shown in
Table 5.2. As seen, a disadvantage of using SHS-MPC is a reduction in the current fundamen-
tal component, contributing to an increased harmonic distortion. This can be attributed to
the inclusion of the 50Hz component, which is relatively large in comparison to the other
harmonics, in the filter output (see Figure 5.1 for magnitude response). Furthermore, the
weight on the suppressed terms causes a trade-off between suppression and reference tracking
of the phase currents.

Table 5.2: Comparison of single-phase SHS-MPC simulations. P1 and P2 denote the penalties
on the suppressed frequencies. I1 represents the amplitude for the fundamental component.
The weighting factor and switching frequency for all of the simulations are λu = 4 and fsw =
300Hz, respectively.

SHS terms wn,1 σ1 wn,2 σ2 P1 P2 I1 THD
[rad/s] [rad/s] [rad/s] [rad/s] [A] [%]

0 11.6 23

1 2π150 2.5 20 10.9 24.7

2 2π150 5 2π250 5 30 7 10.3 25.8

5.4.3 Evaluation of SHS-MPC for three-phase inverter
For the three-phase simulations, uniformly distributed pseudorandom current values from
−0.0075A to 0.0075A are added to the orthogonal reference current measurement of the
controller, acting as quantization noise.5 This is done in order to prevent the controller from
entering a fixed switching pattern, as preliminary simulations resulted in peculiar harmonic
spectra. This is known as dither, and is used in digital processing in order to prevent large-scale
patterns [39].

5Note that noise is only added to the measurement and not to the state variable itself.
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Harmonic suppression during steady-state operation
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Figure 5.8: Phase-current spectra comparison for three-phase simulations of MPC and
SHS-MPC with Np = 1. The top graphs show the current spectra for MPC and the bot-
tom graphs show those of SHS-MPC. Magnitudes are given in ampere. Phases a, b, and c are
indicated by blue, red, and yellow, respectively.

Figure 5.8 shows the comparison of the phase-current spectra between MPC and SHS-MPC
with harmonic suppressions at 350Hz and 550Hz. The horizon is set toNp = 1. The weight-
ing factor is adjusted to λu = 1, which results in switching frequencies of 253Hz and 275Hz
for MPC and SHS-MPC, respectively. Unlike the single-phase cases without dithering, the
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switching frequency changes when harmonics are suppressed. It is apparent that the harmon-
ics at 350Hz and 550Hz are significantly attenuated. Also, as seen in the single-phase results,
certain harmonics that are not included to be suppressed are significantly reduced, e.g, at
950Hz and 1550Hz. However, the noise floor does noticeably increase, since the energy of
the suppressed harmonics is spread throughout the spectrum.
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(b) Switch positions.

Figure 5.9: Current waveform and switch position of MPC with Np = 1. Phases a, b, and c
are indicated by blue, red, and yellow, respectively.
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(a) Phase currents.
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(b) Switch positions.

Figure 5.10: Current waveform and switch position of SHS-MPC with Np = 1. Phases a, b,
and c are indicated by blue, red, and yellow, respectively.

The current waveforms and switch positions for MPC and SHS-MPC are shown in Figure 5.9
and Figure 5.10, respectively. Although neither MPC nor SHS-MPC had a fixed switching
patterns, MPC does have noticeable half-wave symmetry and symmetry between the phases.
The symmetry between the phases can also be seen in the phase currents in Figure 5.9a.
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Figure 5.11: Phase-current spectra comparison for three-phase simulations of MPC and
SHS-MPC with Np = 5. The top graphs show the current spectra for MPC and the bot-
tom graphs show those of SHS-MPC. Magnitudes are given in ampere. Phases a, b, and c are
indicated by blue, red, and yellow, respectively.

The phase-current spectra for MPC and SHS-MPCwith harmonic suppressions at 350Hz and
550Hz are shown in Figure 5.11. The horizon is set to Np = 5. Even with the addition of
dithering, MPC entered a fixed switching pattern, giving rise to the discrete spectrum with
barely noticeable inter-harmonics. The weighting factor is adjusted to λu = 13, resulting in
switching frequencies of 250Hz and 270Hz for MPC and SHS-MPC, respectively. The addi-
tion of the harmonic suppression inhibited the fixed switching pattern of MPC, and a variable
switching pattern is obtained with SHS-MPC. The current waveforms and switch positions
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for MPC and SHS-MPC are shown in Figure 5.12 and Figure 5.13, respectively. It is inter-
esting to observe that SHS-MPC has a form of half-wave symmetry, as seen in Figure 5.13b.
However, the half-wave symmetry is not manifested during all of the fundamental periods.
The computational burden associated with sphere decoding, in terms of nodes visited, is near
identical to that of Figure 3.12.
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(b) Switch positions.

Figure 5.12: Current waveform and switch position of MPC with Np = 5. Phase a, b, and c
are indicated by blue, red, and yellow, respectively.
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Figure 5.13: Current waveform and switch position of SHS-MPC with Np = 5. Phase a, b,
and c are indicated by blue, red, and yellow, respectively.

The horizon is increased to Np = 15, and the phase-current spectra for MPC and SHS-MPC
with harmonic suppressions at 350Hz and 550Hz are shown in Figure 5.14. The weighting
factor for MPC is set to λu = 19, where a switching frequency of 250Hz is obtained. The
weighting factor for SHS-MPC is changed to λu = 22 so that a switching frequency of 273Hz
is obtained, similar to the previous SHS-MPC simulations.
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Figure 5.14: Phase-current spectra comparison for three-phase simulations of MPC and
SHS-MPC with Np = 15. The top graphs show the current spectra for MPC and the bot-
tom graphs show those of SHS-MPC. Magnitudes are given in ampere. Phases a, b, and c are
indicated by blue, red, and yellow, respectively.

The harmonics at 350Hz and 550Hz are significantly suppressed when using SHS-MPC.Note
that the harmonic at 550Hz for MPC is noticeably larger than the horizon Np = 5 case in
Figure 5.11. The current waveforms and switch positions for MPC and SHS-MPC are shown
in Figure 5.15 and Figure 5.16, respectively.
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(a) Phase currents.
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(b) Switch positions.

Figure 5.15: Current waveform and switch position of MPC with Np = 15. Phases a, b, and
c are indicated by blue, red, and yellow, respectively.
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(a) Phase currents.
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Figure 5.16: Current waveform and switch position of SHS-MPC with Np = 15. Phases a, b,
and c are indicated by blue, red, and yellow, respectively.

Table 5.3 shows the filter parameters, penalties, and harmonic distortion for the three-phase
simulations. First and foremost, the advantage that MPC with a horizon of Np = 5 has over
Np = 1, in terms of harmonic performance, is apparent. Increasing the horizon to Np = 15
only yields a marginal improvement over a horizon of Np = 5. For SHS-MPC with Np = 5,
the improvement is marginal overNp = 1, even if the switching frequency decreased by 5Hz.
However, when adopting a horizon of Np = 15, the benefit of long horizons is apparent.
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Table 5.3: Comparison of three-phase SHS-MPC simulations. P1 and P2 denote the penalties
on the suppressed frequencies. I1 represents the amplitude for the fundamental component.
The weighting factors for the horizon Np = 1 cases are kept at λu = 1, and for the horizon
Np = 5 cases are kept at λu = 13. ForNp = 15, the weighting factors are λu = 19 and λu = 22
for MPC and SHS-MPC, respectively.

Np fsw wn,1 σ1 wn,2 σ2 P1 P2 I1 THD
[Hz] [rad/s] [rad/s] [rad/s] [rad/s] [A] [%]

1 253 12 8.3

1 275 2π350 5 2π550 4 0.2 0.1 11.8 8.7

5 250 12.3 7.6

5 270 2π350 5 2π550 4 0.01 0.003 12.1 8.5

15 250 12.5 7.5

15 273 2π350 5 2π550 4 0.0018 0.00014 12.1 8

Response time

One of the benefits of usingMPC is the fast response time. Ideally, the SHS-MPC formulation
should not impede the response time of the controller. In Figure 5.17, a reference step is given
to 0A and then back to 12A for SHS-MPCwithNp = 5. As can be seen, the controller quickly
regulates the phase currents to the new set-points; approximately 0.35ms for the step down
case and 0.5ms for the step up case. The overshoot and settling time to 0A, most noticeable
in phase c, is due to the penalty on the switching transitions. The switch positions are shown
in Figure 5.18. Figure 5.19 shows the same reference step applied to MPC. It can be seen that
the response time with or without harmonic suppression is near identical.
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Figure 5.17: The current waveforms of SHS-MPC for reference step changes. The phase
references are shown by the black dash dotted lines.
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Figure 5.18: The switch positions of SHS-MPC during reference steps. The switch positions
for phases a, b, and c are indicated by blue, red, and yellow, respectively. The grid lines on
the x-axis represent the reference step points.
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Figure 5.19: The current waveforms of MPC for reference step changes. The phase references
are shown by the black dash dotted lines.

5.5 Summary
This chapter introduced a method to suppress harmonics at selected frequencies. The concept
is straightforward and can immediately be implemented with the reformulated ILS problem,
making it possible to be used with long horizons. The computational burden of the sphere
decoder is minimally affected by the addition of harmonic suppressions. Long horizons are
shown to improve harmonic performance of SHS-MPC. A decrease of 6.3% in current THD
is obtained when adopting a horizon of Np = 15 instead of Np = 5.

In [36], MPC was used to control an LC filter connected to an induction machine, also
a second-order filter with a transfer function similar to that used in SHS-MPC. Very long
horizons in time (i.e., NpTs) were required to achieve a performance benefit. The sampling
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interval was chosen as Ts = 125 µs due to the low switching frequency and slow dynamics
of the LC filter. This is in contrast with the simulations conducted in this section, where a
sampling interval of Ts = 25 µs was chosen. This results in a much shorter horizon in time
when compared to [36].

It is worthmentioning that the proposedmethod does have its drawbacks. First of all, tun-
ing is no trivial matter. Some effort is required to tune the damping of the filter and penalties
associated with the suppressed harmonic terms. With these aforementioned inconveniences,
incorrect tuning resulted in resonance at the selected suppressed frequency. Secondly, from a
practical standpoint, the implementation of the proposed method will require more resources
to implement than MPC. While the implementation of the sphere decoder will stay identical,
the resources allocated for the calculation of the unconstrained solution will increase along
with the number of suppressed terms.
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Chapter 6

Conclusions and recommendations for
future work

The following chapter concludes the thesis. Summaries of the main results for relevant chap-
ters are given and recommendations are proposed for future work on the topics discussed in
this thesis.

6.1 Overview of main results

6.1.1 FPGA implementation
By carefully considering the structure of the code and usage of available resources, direct
MPC with a prediction horizon of Np = 5 was successfully implemented within a Cyclone®
V FPGA. A non-recursive sphere decoding algorithm was presented, which is ideal for im-
plementation within an FPGA. A verification simulation executed on the FPGA was shown
to be identical to a simulation conducted on MATLAB®. The optimization problem was
solved in only 3 µs in nearly 90% of the cases. When the calculations required for the uncon-
strained solution and initial radius of the problem were also considered, the FPGA required
8.4 µs to execute the control law. Considering that the sampling interval was 25 µs, and that
a conservative clock frequency was used, the results are encouraging.

6.1.2 Performance evaluation of long horizons
The decrease in current harmonic distortions that is demonstrated in existing literature, based
on simulations, is verified with practical experimental results. Note that this does not hold
true for all switching frequencies, which was also observed in simulations of [15]. Even
though a straightforward RL load was used, a decrease of 8.5% in THD was achieved at a
switching frequency of 250Hzwhen adopting a prediction horizonNp = 5 instead ofNp = 1.
When realising that the benefits of long horizons are more pronounced for higher-order and
complex plants, the results proved to be promising.

The comparison between MPC, OPPs, and SVM demonstrated that MPC performs ex-
tremely well with the alternative modulation schemes, at least at low switching frequencies
under 450Hz. MPC did significantly outperform SVM at switching frequencies lower than
300Hz, and also unexpectedly outperformedOPPs. However, this particular result (i.e., MPC
outperforming OPPs) should not be taken at face value and expected to be the norm. The
low output current did benefit MPC, since the output voltage can be lowered by using half of
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the available bus voltage by only applying the short voltage vectors. More importantly, the
formulation of OPPs assumes that the load resistance can be neglected during the optimiza-
tion stage. For the given system parameters, this assumption is invalid when considering low
frequency harmonics.

The response time of the controller with a prediction horizon ofNp = 5was demonstrated
to react fast and regulate at new set-points. Although the optimal solution was found during
transients for the given tests, this cannot always be guaranteed.

6.1.3 Selective harmonic suppression for long horizons
By including filters, which significantly amplify target harmonics, inside the state-space rep-
resentation of the plant, selected harmonics can be significantly suppressed as demonstrated
in this thesis. The proposed method is immediately compatible with the integer least-squares
problem underlying long-horizon direct MPC. Although the desired harmonics are attenu-
ated, the current THD and switching frequency do increase compared to when no harmonic
suppressions are applied. A decrease of 6.3% in current THD was achieved when using a
horizon of Np = 15 instead of Np = 5.

The response time of the controller with the inclusion of harmonic suppression was
shown to be minimally affected, at least for the given simulations.

6.2 Recommendations for future work

6.2.1 FPGA implementation
It is possible to better utilise the available resources of the FPGA. The die of the FPGA
used included an ARM Cortex™ processor, which was not utilised in this thesis. Some of the
arithmetic can be off-loaded to the ARM processor, which will free up FPGA resources. Also,
instead of using MATLAB® to calculate the matrices when the weighting factor changes, the
ARM processor can be used.

The calculations of the unconstrained solution, initial radius, and those calculated during
sphere decoding can be exploited. A single process can be used that exclusively does most of
the required arithmetic. By using logic checks and changing coefficients, this can be achieved.
An example on how this can be done is given in Algorithm 6.

Algorithm 6 Universal multiplier
1: if Unconstrained solution should be calculated then
2: M = −Q−1

3: V = θ
4: else if Initial radius should be calculated, or sphere decoding is active then
5: M = −H
6: V = U
7: end if
8: Vtemp,j = M(j,1)V1 +M(j,2)V2 + . . .+M(j,3Np)V3Np

Naturally, the squaring of the term and accumulation of previous squared terms for the
initial radius and sphere decoding is still required after the implementation of Algorithm 6.
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6.2.2 Performance evaluation of long horizons
It is recommended that long-horizon direct MPC should be considered for more complex
plants, such as induction machines, grid-connected inverters, and higher-order plants that
include, for example, an LC filter. It is shown in [36] that long horizons significantly reduced
the harmonic distortions for an LC filter connected to an induction machine.

During testing, only the weighting factor was adjusted to dictate the switching frequency.
It is recommended that a wide range of sampling intervals, alongside different weighting fac-
tors, should be considered in order to investigate the effect of the prediction horizon on the
harmonic distortions; similar to the Monte Carlo simulations in [15].

6.2.3 Selective harmonic suppression for long horizons
To conduct a thorough investigation on the benefits of long horizons for the proposed sup-
pression method, it is recommended that a wide variety of damping factors, penalties on the
suppressed terms, and sampling intervals should be considered. This can be achieved by using
Monte Carlo simulations.

Different transfer functions can also be considered that will shape the current spectra
differently. For example, at the time of this writing a new method proposed in [40] resulted
in the switching energy to be distributed evenly throughout the harmonic spectrum, and
resulted in very low harmonic distortions.
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Appendix A

Vector form of cost function

The derivation of the cost function in vector form follows that that was presented in [1].
The (quadratic) cost function for Np prediction steps is given by

J(x(k),U(k)) =

k+Np−1∑
l=k

∥∥yref (l + 1)− y(l + 1)
∥∥2
R̃
+ λu

∥∥u(l)− u(l − 1)
∥∥2
2
, (A.1)

with

y(l + 1) = Cx(l + 1) (A.2a)
x(l + 1) = Ax(l) +Bu(l). (A.2b)

For the general case, the output at time-step l + 1 based on the state vector at k is given by

y(l + 1) = CAl−k+1x(k) +CBAl−ku(k) + . . .+CA0Bu(l), (A.3)

for l = k, . . . , k + Np − 1. By introducing the switching sequences U(k) ∈ UnuNp over the
prediction horizon as

U(k) =
[
uT (k) uT (k + 1) uT (k + 2) · · · uT (k +Np − 1)

]T
, (A.4)

the output trajectory Y (k) over the prediction horizon

Y (k) =
[
y(k + 1) y(k + 2) y(k + 3) · · · y(k +Np)

]T
, (A.5)

is given by
Y (k) = Γx(k) +ΥU (k), (A.6)

where the prediction matrices are given as

Γ =


CA
CA2

...
CANp

 and Υ =


CB 0ny×nu · · · 0ny×nu

CAB CB · · · 0ny×nu

...
... . . . ...

CANp−1B CANp−2B · · · CB

 .

The term of (A.1) that penalises the tracking error can be written as

Jerr =

k+Np−1∑
l=k

∥∥yref (l + 1)− y(l + 1)
∥∥2
R

=
[
yT
e (k + 1) · · · yT

e (k +Np)
]
R̃
[
yT
e (k + 1) · · · yT

e (k +Np)
]T

, (A.7)
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where R̃ ∈ RnyNp×nyNp is introduced as the penalty matrix over the prediction horizon, and
ye(l) as the error between the predicted and reference current. With

Y ref (k)− Y (k) =
[
yT
e (k + 1) yT

e (k + 2) · · · yT
e (k +Np)

]T
, (A.8)

and by inserting (A.6), (A.7) can be written as

Jerr =
∥∥Y ref (k)− Γx(k) +ΥU (k)

∥∥2
R̃
, (A.9)

where Y ref (k) represents the reference over the prediction horizon

Y ref (k) =
[
yT
ref (k + 1) yT

ref (k + 2) yT
ref (k + 3) · · · yT

ref (k +Np)
]T

. (A.10)

Similarly, the term of (A.1) that penalises the switching transitions can be written as

Jλu = λu

k+Np−1∑
l=k

∥∥u(l)− u(l − 1)
∥∥2
2

= λu

k+Np−1∑
l=k

(u(l)− u(l − 1))T (u(l)− u(l − 1))

= λu

∥∥SU (k)−Eu(k − 1)
∥∥2
2
, (A.11)

where

S =


Inu 0nu×nu · · · 0nu×nu

−Inu Inu · · · 0nu×nu

0nu×nu −Inu · · · 0nu×nu

...
... . . . ...

0nu×nu 0nu×nu · · · Inu

 and E =


Inu

0nu×nu

0nu×nu

...
0nu×nu

 .

By combining (A.1) and (A.11), the cost function can be written in vector form as

J(x(k),U(k)) =
∥∥Y ref (k)− Γx(k)−ΥU (k)

∥∥2
R̃
+ λu

∥∥SU (k)−Eu(k − 1)
∥∥2
2
, (A.12)

where the dimensions of the matrices are Γ ∈ RnyNp×nx , Υ ∈ RnyNp×nuNp , S ∈ RnuNp×nuNp ,
and E ∈ RnuNp×nu .
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Appendix B

Quadratic programming form of cost
function

The derivation of the cost function in quadratic programming form follows that was presented
in [1].

From Appendix A, the cost function is given in vector form as

J(x(k),U (k)) =
∥∥Y ref (k)− Γx(k)−ΥU (k)

∥∥2
R̃
+ λu

∥∥SU (k)−Eu(k − 1)
∥∥2
2
. (B.1)

Knowing that
∥∥ξ∥∥2

R̃
= ξT R̃ξ, (B.1) can be written as

J = (ΥU (k))T R̃ΥU (k) + λu(SU (k))TSU (k) + (Γx(k)− Y ref (k)
T R̃ΥU (k)

+ (ΥU (k))T R̃(Γx(k)− Y ref (k)− λu(Eu(k − 1))TSU (k)− λu(SU (k))TEu(k − 1)

+ (Γx(k)− Y ref (k)
T R̃((Γx(k)− Y ref (k) + λu(Eu(k − 1))T (Eu(k − 1))

,

(B.2)
where the argument of J is dropped for convenience. Since R̃ is symmetric, (B.2) can be
simplified to

J = UT (k)QU (k) + 2ΘT (k)U (k) + θ(k) (B.3)

where the matrices and vectors defined as

Q = ΥT R̃Υ+ λuS
TS (B.4)

Θ(k) = ([Γx(k)− Y ref (k)]
T R̃Υ− λu[Eu(k − 1)]TS)T (B.5)

θ(k) =
∥∥Γx(k)− Y ref (k)

∥∥2
R̃
+ λu

∥∥Eu(k − 1)
∥∥2
2
. (B.6)

Note that Q ∈ RnuNp×nuNp is a symmetrical matrix.
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Appendix C

State-space representation of NPC
inverter with an RL load

+

−

Vd

−
Vd

2

+
Cd

−
Vd

2

+
Cd

va
vb
vcN

L

L

L

ia R

ib R

ic R

Figure C.1: NPC inverter with an RL load.

By analysing the circuit in Figure C.1, the following differential equations can be derived

va − vb = L
dia
dt

+Ria − L
dib
dt

−Rib (C.1a)

vb − vc = L
dib
dt

+Rib − L
dic
dt

−Ric, (C.1b)

where the phase voltages vabc are with respect to the neutral point N. The reduced Clarke
transformation is defined as

ξαβ = Kξabc, (C.2)
where

K =
2

3

[
1 −1

2
−1

2

0
√
3
2

−
√
3
2

]
. (C.3)

From (C.2), vα is given as

vα =
2

3
(va − vb − vc)

=
2

3
((va − vb) +

1

2
(vb − vc)), (C.4)
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and by inserting (C.1) and by applying (C.2), becomes

vα =
2

3
(L(

dia
dt

− 1

2

dib
dt

− 1

2

dic
dt

) +R(ia −
1

2
ib −

1

2
ic))

= L
diα
dt

+Riα. (C.5)

Similarly, from (C.2), vβ is given as

vβ =
2

3
(

√
3

2
vb −

√
3

2
vc), (C.6)

and by inserting (C.1) and by applying (C.2), becomes

vβ =
2

3
(

√
3

2
(L(

dib
dt

− dic
dt

) +R(ib − ic)))

= L
diβ
dt

+Riβ. (C.7)

With vαβ = Vd

2
Kuabc, where uabc denotes the three-phase switch positions, and from (C.5)

and (C.7), the continuous-time state-space representation is given as

˙iαβ(t) = Fiαβ(t) +Guabc(t), (C.8)

where

F = −R

L

[
1 0
0 1

]
(C.9a)

G =
Vd

2L
K. (C.9b)
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