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Starting from the relativistic form of the Bonn potential as a bare nucleon-nucleon interaction, the full
relativistic Brueckner-Hartree-Fock (RBHF) equations are solved for finite nuclei in a fully self-consistent basis.
This provides a relativistic ab initio calculation of the ground state properties of finite nuclei without any free
parameters and without three-body forces. The convergence properties for the solutions of these coupled equations
are discussed in detail for the example of the nucleus 16O. The binding energies, radii, and spin-orbit splittings
of the doubly magic nuclei 4He, 16O, and 40Ca are calculated and compared with the earlier RBHF calculated
results in a fixed Dirac Woods-Saxon basis and other nonrelativistic ab initio calculated results based on pure
two-body forces.

DOI: 10.1103/PhysRevC.96.014316

I. INTRODUCTION

To understand the nuclear system from the underlying
interaction between nucleons has been one of the central
problems in nuclear physics. Because of the strong repulsive
core at short distance [1], the realistic nucleon-nucleon (NN )
interaction is notoriously difficult to be solved in the usual
many-body framework. Many methods have been proposed
in the past to treat this singular behavior, such as Brueckner
theory [2], variational method [3], Lee-Suzuki method [4],
the unitary correlation operator method [5], the low momen-
tum effective NN interaction Vlow−k [6], and the similarity
renormalization group [7]. Recently, with the great progress
of the high-precision NN interactions, such as Reid93 [8],
AV18 [9], CD Bonn [10], or chiral potentials [11,12], and with
the rapid increase of computational power, more and more
ab initio methods have been developed to study the nuclear
many-body system. Celebrated examples include the quantum
Monte Carlo method [13], the coupled-cluster method [14], the
no core shell model [15], the self-consistent Green’s function
method [16], the lattice chiral effective field theory [17], the
in-medium similarity renormalization group [18], the Monte
Carlo shell model [19], or the Brueckner-Hartree-Fock (BHF)
theory [20].

Among all ab initio methods, the Brueckner-Hartree-Fock
theory is one of the most promising theories for an extension
to heavy nuclei. Historically, the Brueckner theory was
introduced to deal with the hard core of the nuclear force
in nuclear many-body calculations [2]. The basic idea is to
describe nuclear structure in a mean-field approximation, but
replacing the bare nuclear force by an effective interaction
in the medium. This effective interaction is the reaction G
matrix, which takes into account the two-nucleon short range
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correlations by summing up all the ladder diagrams in the
nuclear medium. In this way, the saturation property of nuclear
matter can be obtained qualitatively [2]. A formal derivation
of Brueckner theory was provided by Goldstone [21], and
substantial progress has been made by Bethe and co-workers
[22,23]. This was one of the breakthroughs in microscopic
nuclear many-body theory, and many developments have been
made along this direction. The readers are referred to the
review papers [20,24,25] for the basic idea of Brueckner
theory, the three hole-line expansion beyond BHF, and BHF
for finite nuclei, respectively.

However, in the 1970s it was realized that all nonrelativistic
potentials failed to reproduce the saturation properties of
infinite nuclear matter in detail. The saturation points obtained
with various forces are distributed along the so-called Coester
line [26], which systematically deviates from the empirical
value. It is the general opinion that this discrepancy was
caused by the missing of the three-body forces [27,28], which
have been used in all the modern nonrelativistic investigations
phenomenologically. In this way, at the cost of additional
phenomenological parameters, one was able to reproduce the
saturation properties of nuclear matter [29] as well as the
ground states and a few excited states of light nuclei [30].

On the other hand, nuclear structure has also been investi-
gated in a relativistic framework. Johnson and Teller showed
already in 1955 that proper nuclear saturation properties can be
obtained provided that the potential depends on the velocity
of the nucleons [31]. Later this theory was reformulated by
Duerr in a relativistically invariant way [32]. In this way,
the collapse of the nucleus occurring in the nonrelativistic
theories for high kinetic energies was avoided, and at the same
time an extremely strong spin-orbit coupling was found [32],
in agreement with experimental data on the magic numbers
[33]. The Hamiltonian proposed by Duerr was then applied
to finite nuclei [34]. After the one-boson-exchange potential
was established gradually [35], Miller and Green developed a
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relativistic Hartree-Fock (RHF) approach based on attractive
scalar and repulsive vector meson-exchange forces [36].
The relativistic approach became popular when Walecka
established the σ + ω model and applied it successfully to
highly condensed matter [37]. See Ref. [38] for a recent review.

Inspired by the success of early phenomenological rel-
ativistic investigations for nuclear structure, several groups
proposed the relativistic versions of BHF theory and developed
the relativistic Brueckner-Hartree-Fock (RBHF) method. In
the pioneering works by the Brooklyn group [39,40], the
wave function of nucleon was chosen as a Dirac spinor in
free space and the relativistic effects were taken into account
in the first-order perturbation theory. Further developments
were advanced by Horowitz and Serot [41,42], Brockmann
and Machleidt [43,44], and ter Haar and Malfliet [45,46].
In these studies, the relativistic effects produced a strong
density-dependent repulsion and therefore the saturation point
was shifted remarkably close towards the empirical value.
Using perturbation theory, it was found that relativistic effects
lead to three-body forces through virtual nucleon-antinucleon
excitations in the intermediate states (the so-called Z dia-
grams) [47]. Later, using the newly developed Bonn A/B/C
potentials [48], the nuclear matter saturation points obtained
within the RBHF theory were located on a new Coester
line improving significantly the old one [44]. The study of
RBHF theory in nuclear matter has also been extended to the
investigations of optical potential [49,50], asymmetric nuclear
matter [51,52], or neutron stars [53,54]. See Ref. [55] for a
recent review.

Even though the RBHF theory has achieved great success
in the study of nuclear matter properties, the corresponding
progress in finite nuclei was rather slow. Due to its enormous
computational requirement, for a long time, RBHF theory for
finite nuclei has been available only with certain approxima-
tions, such as the effective density approximation (EDA) [56],
or the local density approximation (LDA) [57–61]. In the LDA
approach, the density dependence of the effective interaction,
i.e., of the G matrix, in nuclear matter is mapped onto a
density-dependent relativistic Hartree or Hartree-Fock (DDRH
or DDRHF) model, which is easy to be solved for finite nuclei.
However, this mapping is far from unique and therefore this
method suffers from large ambiguities as discussed in detail
in Ref. [62]. As a consequence, different LDA approaches
lead to rather different results. Only very recently, for the first
time the RBHF equations were solved directly for finite nuclei
[63]. The adopted Dirac Woods-Saxon (DWS) basis, which is
obtained by solving the Dirac equation with a Woods-Saxon
potential [64], guarantees the full relativistic structure of the
Dirac spinors. Furthermore, the angle averaging [65,66] is
avoided by solving the Bethe-Goldstone (BG) equation in the
rest frame. Taking the nucleus 16O as an example, convergence
has been achieved with an energy cutoff close to 1.1 GeV and
good descriptions of binding energy and radius have been
obtained without any adjustable parameters.

In this work, we will adopt the self-consistent RHF basis in
solving the BG equation and go beyond the previous work [63],
where the BG equation was solved in a fixed DWS basis. All
the cutoffs in the calculation will be checked and presented
in detail. We will discuss the self-consistent single-particle

potential and its uncertainties. The center-of-mass motion will
be treated in both projection before and after variation (PBV
and PAV) methods. Finally, as examples, the doubly magic
nuclei 4He, 16O, and 40Ca will be calculated in the RBHF
framework. The ground state properties will be studied and
compared with other ab initio calculations in the literature.

In Sec. II, the RBHF framework will be given. All the
numerical details will be discussed at length using 16O as an
example in Sec. III. Results for 4He, 16O, and 40Ca will be
presented in Sec. IV. A summary and perspectives for future
investigations will be given in Sec. V.

II. THEORETICAL FRAMEWORK

In this section, we will outline the theoretical framework of
the relativistic Brueckner-Hartree-Fock theory for finite nuclei.
In particular, the relevant formulas will be shown explicitly
with spherical symmetry.

The RBHF theory leads to a system of coupled nonlinear
equations. The relativistic Hartree-Fock equations produce
an optimized self-consistent single-particle potential U with
the single-particle wave functions |a〉, and the single-particle
energies εa . Filling them up to the Fermi surface leads
to a product state |�〉 and the corresponding mean-field
energy ERHF. These results depend on the effective interaction
Veff used in the mean-field equations. As compared to
conventional mean-field theory, where the effective interaction
Veff is phenomenological, in the RBHF theory this effective
interaction is replaced by the G matrix, derived in an ab
initio calculation from the bare nucleon-nucleon interaction
using the Bethe-Goldstone equation. Its solution depends in
a self-consistent way on the mean-field potential U and its
single-particle wave functions and energies. Therefore, RBHF
theory presents a coupled system of equations which has to be
solved by iteration. Its starting point is a relativistic form of
the bare nucleon-nucleon interaction.

A. Relativistic Brueckner-Hartree-Fock theory for finite nuclei

1. Realistic one-Boson-exchange Lagrangian

We start with a relativistic one-boson-exchange NN inter-
action which describes the NN scattering data [48]:

LNNpv = − fps

mps

ψ̄γ 5γ μψ∂μϕ(ps),

LNNs = gsψ̄ψϕ(s), (1)

LNNv = −gvψ̄γ μψϕ(v)
μ − fv

4M
ψ̄σμνψ

(
∂μϕ(v)

ν − ∂νϕ
(v)
μ

)
,

where ψ denotes the nucleon field. The bosons to be exchanged
are characterized by the index α and include the pseudoscalar
mesons (η,π ) with pseudovector (pv) coupling, the scalar (s)
mesons (σ,δ), and the vector (v) mesons (ω,ρ). For each pair,
e.g., (η,π ), the first (second) meson has isoscalar (isovector)
character. For the isovector mesons, the field operator ϕα will
be replaced by �ϕα · �τ with �τ being the usual Pauli matrices.
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2. Hamiltonian

The Hamiltonian density is obtained using the Legendre
transformation,

H =
∑

i

∂L

∂(∂0φi)
∂0φi − L , (2)

where φi represent the nucleon field ψ , the meson fields ϕα ,
and the photon field.

In the stationary case the Hamiltonian is found as a three-
dimensional integral over the Hamiltonian density:

H =
∫

d3rH (r). (3)

Eliminating the meson fields one finds the following many-
body Hamiltonian for the nucleons [67]:

H =
∫

d3rψ̄(−iγ · ∇ + M)ψ + 1

2

∑
α

∫
d3r1d

3r2ψ̄(r1)

×�(1)
α ψ(r1)Dα(r1,r2)ψ̄(r2)�(2)

α ψ(r2), (4)

where �(1)
α ,�(2)

α are the interaction vertices for particles 1 and
2, with the coordinates r1 and r2, respectively:

�s = gs, (5a)

�pv = fps

mps

γ 5γ i∂i, (5b)

�μ
v = gvγ

μ + fv

2M
σiμ∂i . (5c)

For the Bonn interaction [48], a form factor of monopole
type is attached to each vertex. In momentum space it has the
form

�2
α − m2

α

�2
α + q2

, (6)

where �α is the cutoff parameter for meson α and q is the
momentum transfer.

In Minkowski space, the meson propagators Dα(x1,x2) are
the retarded solutions of the Klein-Gordon equations,

Dα(x1,x2) = ±
∫

d4q

(2π )4

1

m2
α − q2

e−iq(x1−x2), (7)

where q is the four-momentum transfer between the two
particles. The sign − holds for the scalar (and pseudoscalar)
mesons and the sign + holds for the vector fields. The
dependence on the zero-component momentum transfer q0

(energy) reflects the retardation of the interaction between the
two particles. In the Bonn interaction of Ref. [48], this effect
was deemed to be small and was ignored from the beginning.
In this way, the meson propagators are just Yukawa functions:

Dα(r1,r2) = ±
∫

d3q

(2π )3

1

m2
α + q2

eiq·(r1−r2)

= ± 1

4π

e−mα |r1−r2|

|r1 − r2| . (8)

Note, however, that with the form factor in Eq. (6) the
meson propagators are no longer simple Yukawa functions. In

practice, the relevant matrix elements are calculated numeri-
cally in the momentum space; see Appendix A for details.

Now we expand the nucleon-field operators ψ(r), ψ†(r) in
terms of a complete orthonormal static relativistic basis |k〉:

ψ†(r) =
∑

k

ψ
†
k (r)b†k, ψ(r) =

∑
k

ψk(r)bk,

where b
†
k and bk form a complete set of creation and

annihilation operators for nucleons in the state |k〉, which
can be of positive energy or of negative energy. Here ψk(r)
is the corresponding Dirac spinor. The quantum number k
characterizing the state |k〉 contains also the isospin τ = n, p
for neutrons and protons. We then have the Hamiltonian for
nuclear system in the second quantized form as

H =
∑
kk′

〈k|T |k′〉b†kbk′ + 1

2

∑
klk′l′

〈kl|V |k′l′〉b†kb†l bl′bk′ , (9)

where the matrix elements are given by

〈k|T |k′〉 =
∫

d3r ψ̄k(r)(−iγ · ∇ + M)ψk′(r), (10)

〈kl|Vα|k′l′〉 =
∫

d3r1d
3r2 ψ̄k(r1)�(1)

α ψk′(r1)

×Dα(r1,r2)ψ̄l(r2)�(2)
α ψl′(r2). (11)

The two-body interaction V contains contributions from the
different mesons α.

The indices k,l run over an arbitrary complete basis of Dirac
spinors with positive and negative energies, as, for instance,
over plane wave states u(k,s) and v(k,s) in the momentum
space [68] or over the eigensolutions of a Dirac equation with
potentials of Woods-Saxon shapes discussed in Refs. [64,69].

3. Bethe-Goldstone equation

As is well known, the matrix elements of the bare nucleon-
nucleon interaction 〈ab|V |cd〉 are very large and difficult to
be used directly in nuclear many-body theory. Within the
Brueckner theory, one takes into account the fact that nucleons
in the nuclear medium do not feel the same interaction as
that in free space. All the states below the Fermi surface
are occupied and therefore the Pauli principle allows only
scattering processes into intermediate states above the Fermi
surface. The T matrix, which describes scattering processes
in free space, is therefore, in the nuclear medium, replaced by
the G matrix [2]. It sums up all the ladder diagrams with two
particles in intermediate states above the Fermi surface. It is
deduced from the Bethe-Goldstone equation [22],

〈ab|Ḡ(W )|a′b′〉 = 〈ab|V̄ |a′b′〉 + 1

2

∑
cd

〈ab|V̄ |cd〉

× Q(c,d)

W − εc − εd

〈cd|Ḡ(W )|a′b′〉, (12)

where 〈ab|V̄ |a′b′〉 = 〈ab|V |a′b′ − b′a′〉 is the antisym-
metrized two-body matrix element, W is the starting energy,
and εc, εd are the single-particle energies of the two particles
in the intermediate states. The Pauli operator Q(c,d) allows
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the scattering only to states c and d above the Fermi surface.
It is defined as

Q(c,d) =
{

1, for εc > εF and εd > εF,
0, otherwise. (13)

In this paper, we use the convention that indices a,b,c, . . .
run over the single-particle states being the solutions of RBHF
equation, whereas the indices k,l,m, . . . run over an arbitrary
complete single-particle basis. Of course, the single-particle
energies εc and εd depend on the solution of the corresponding
Hartree-Fock equation and therefore we are left with a coupled
system of equations, which has to be solved by iteration.

4. Relativistic Hartree-Fock equation

The relativistic Hartree-Fock equation reads

(T + U )|a〉 = ea|a〉, (14)

where ea = εa + M is the single-particle energy with the rest
mass of nucleon M , and U is the self-consistent single-particle
potential. In conventional relativistic Hartree-Fock theory
[67,70] based on an effective interaction Veff , this potential
is defined as

Uab = 1

2

A∑
c=1

〈ac|V̄eff|bc〉. (15)

According to the no-sea approximation, the index c runs over
all the occupied states in the Fermi sea. In the relativistic
Brueckner-Hartree-Fock framework, the interaction Veff in
the definition of U is replaced by the G matrix. Because
of the fact that the effective interaction in the medium
G(W ) depends on the starting energy, this definition is not
as straightforward as in the conventional Hartree-Fock case,
where the effective interaction does not depend on energy. The
connection between the matrix element Uab and G(W ) was first
discussed in Ref. [23] in nuclear matter. In the framework of
perturbation theory, it was shown that, according to the Bethe-
Brandow-Petschek (BBP) theorem [23], a specific choice of
the starting energy in terms of the single-particle energies
causes a large set of diagrams beyond the Hartree-Fock level
to vanish. The extension to finite nuclei gives the following
results [25,71]:

Uab = 1

2

A∑
c=1

〈ac|Ḡ(εa + εc) + Ḡ(εb + εc)|bc〉, (16)

if |a〉 and |b〉 are both hole (i.e., occupied) states, and

Uab =
A∑

c=1

〈ac|Ḡ(εa + εc)|bc〉, (17)

if |a〉 is a hole state and |b〉 is a particle (i.e., unoccupied) state,
and

Uab = 1

2

A∑
c=1

〈ac|Ḡ(ε′
a + εc) + Ḡ(ε′

b + εc)|bc〉, (18)

if |a〉 and |b〉 are both particle states.
In the above expressions, ε labels the self-consistent single-

particle energy, while ε′ is somewhat uncertain [71]. This

means the matrix elements of the self-consistent potential Uab

with both states |a〉 and |b〉 above the Fermi level are not
well defined in the Brueckner-Hartree-Fock theory. Different
choices have been proposed in the literature [24,71]. One
extreme is to set the potential Uab = 0 in Eq. (18). This is
known as the gap choice in nuclear matter. Another extreme
is to set ε′

a = εa , which is known as the continuous choice
in nuclear matter. The BHF theory can be viewed as the
first-order approximation of the so-called hole-line expansion
[20], which orders the Bethe-Brueckner-Goldstone expansion
diagrams according to the number of independent hole lines. In
principle, the final result will not depend on different choices
of the single-particle potential U if this hole-line expansion
is taken into account up to high orders. This has already been
confirmed in a nonrelativistic calculation for nuclear matter up
to the three-hole-line level: as shown in Ref. [72] the resulting
equation of state does not depend much on the choice of U .
Meanwhile, it was found in Ref. [72] on the BHF level, i.e.,
on the two-hole-line level, that near the saturation density
the continuous choice produces several MeV/A more binding
than the gap choice. The results in the three-hole-line level
agree with each other for these two different choices, and lie
in between the BHF results.

Following the discussions in Ref. [71], we choose in the
present investigation a prescription in between the above two
extremes. Precisely, ε′

a = ε′
b = ε′ is fixed as an energy among

the occupied states and we discuss the difference of the results
by fixing ε′ as the highest and as the lowest energy of the
occupied states in the Fermi sea.

5. Solution in the RHF basis

The coupled RBHF equations in finite nuclei are solved
within a complete Dirac basis {|k〉}, i.e., in a basis in Dirac
space with states of positive and negative energies. This means
that the RBHF single-particle states |a〉 are expressed as linear
combinations,

|a〉 =
∑

k

Dka|k〉. (19)

Because of the requirement of the completeness of the basis,
|k〉 runs not only over the positive-energy states in and above
the Fermi sea but also over the negative-energy states in
the Dirac sea [64], even though the no-sea approximation
is adopted for the RBHF or RHF calculations, which means
that the sums in the evaluation of various densities run only
over the occupied states in the Fermi sea. As a consequence,
also the index c in Eqs. (16)–(18) is restricted to the A occupied
states in the Fermi sea. The RHF equation in the basis {|k〉}
reads ∑

l

(Tkl + Ukl)Dla = eaDka. (20)

It is solved by diagonalization in the calculations of the present
work.

It should be noticed that both the BG equation (12) and the
single-particle potential (16)–(18) are defined in the RBHF
single-particle basis {|a〉}. Therefore, it requires a double-
iteration procedure.
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We start with a set of trial single-particle states, a discrete
DWS basis [64] with the single-particle wave functions |k〉
and the corresponding energies εk , and we evaluate the matrix
elements of the kinetic energy Tkl and the antisymmetrized
two-body matrix elements of the bare interaction V̄klmn in this
basis. This is a rather lengthy process, but it is done only once.
Details are given in Appendix A.

Then we start the iteration:
(1) We solve the BG equation (12) in this basis by matrix

inversion. This yields a first set of G-matrix elements in the
DWS basis.

(2) These G-matrix elements are used to evaluate the single-
particle potentials Ukl in Eqs. (16)–(18).

(3) The RHF equation (14) is solved as∑
l

(Tkl + Ukl)Dlk′ = ek′Dkk′, (21)

and a new set of single-particle states {|k′〉} with single-particle
energies εk′ is obtained. The iteration has converged if {|k′〉} =
{|k〉} ≡ {|a〉}. Otherwise the set {|k′〉} forms a new RHF basis
and we continue.

(4) The single-particle matrix elements of the kinetic energy
and the two-body matrix elements of the bare interaction are
transformed to the new RHF basis

Tk′l′ =
∑
kl

D∗
kk′Dll′Tkl, (22)

V̄k′l′m′n′ =
∑
klmn

D∗
kk′D

∗
ll′Dmm′Dnn′ V̄klmn. (23)

Then we go back to step 1 and solve the BG equation (12)
in this new RHF basis. This yields a second set of G-matrix
elements and we continue with step 2.

In practice, we found that performing an RHF iteration in
step 3 in each step of the RBHF iteration can speed up the
convergence, and avoid the very time consuming step 1, i.e.,
the solution of the BG equation.

This complicated iteration scheme allows the fully self-
consistent solution of the RBHF problem. In Ref. [63] a
simplified version has been applied. In that case step 4 was
omitted and for each step of the iteration the BG equation
was solved in the original DWS basis. Only the changes in
the single-particle energies εk′ in the propagator were taken
into account. In practice this means that the self-consistent
single-particle wave functions in the Pauli operator in Eq. (13)
were replaced by the corresponding one DWS basis.

6. Center-of-mass motion

In the above formulation, the spurious center-of-mass (c.m.)
motion is included in the total Hamiltonian in Eq. (9). It is not
of interest and should be removed. Since the Hamiltonian is
invariant against translations, the exact many-body eigenstates
of the system should be eigenfunctions of the total momentum
P = ∑A

i pi . The spurious center-of-mass motion is therefore
removed by projection onto the eigenspaces with vanishing
eigenvalues of this operator. It has been shown in Refs. [73,74]
that, for large values of the particle number A, the projected
energy is obtained in a good approximation by removing the

center-of-mass energy

Ecm = 〈P〉2

2AM
(24)

from the total energy 〈H 〉 = 〈T + V 〉.
In most of the (R)HF calculations the variation is carried out

without projection, i.e., the (R)HF equations are solved for the
total Hamiltonian H and the spurious center-of-mass energy
in Eq. (24) is removed after the variation, as for instance in
Ref. [75]. This is a projection after variation (PAV). A more
strict treatment [76] would be to exclude this term also in the
(R)HF equation, i.e., to carry out a projection before variation
(PBV), as has been done for instance in Ref. [77]. We will
discuss these two different choices in the RBHF framework
as has been done in Ref. [78] for the nonrelativistic BHF
framework. We also should mention that the two-body part
of the center-of-mass correction 〈P〉2/2AM as well as the
Coulomb force (see Appendix C) has only been taken into
account in the RHF equation (21) and not in the BG equation
for the calculation of the G matrix.

B. RBHF theory for spherical nuclei

1. Spherical DWS basis

The eigenfunctions of a Dirac equation with spherical
symmetry can be written as (for simplicity we neglect here
the isospin indices)

|a〉 = 1

r

(
Fnaκa

(r)�la
jama

(θ,ϕ)

iGnaκa
(r)�l̃a

jama
(θ,ϕ)

)
, (25)

where �l
jm(θ,ϕ) are the spinor spherical harmonics. The

radial, orbital angular momentum, total angular momentum,
and magnetic quantum numbers are denoted by n, l, j, and
m, respectively, while the quantum number κ is defined as
κ = ±(j + 1/2) for j = l ∓ 1/2. l̃ = 2j − l is the orbital
angular momentum for the lower component. F (r),G(r)
are the radial wave functions which satisfy the radial Dirac
equation:(

M + �(r) − d
dr

+ κ
r

d
dr

+ κ
r

−M + �(r)

)(
Fa(r)
Ga(r)

)
= ea

(
Fa(r)
Ga(r)

)
, (26)

where � = V + S and � = V − S are the sum and the
difference of vector and scalar potentials. For a DWS basis
[64], �(r) and �(r) are potentials with Woods-Saxon shape
parametrized as

�(r) = V0

1 + exp[(r − R)/a]
, (27)

�(r) = W0

1 + exp[(r − Rls)/als]
. (28)

2. Symmetries of the BG equation

The BG equation has to be solved in the space of particle
pairs. The quantum numbers of each particle are labeled as a =
(na,ja,πa,ta) with the parity π = (−)l and the isospin quantum
number t = n, p. Symmetries including rotation, parity, and
charge can be used to reduce the dimension of this space.
We therefore consider particle pairs with angular momentum
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J = ja + jb, parity P = πaπb, and z component of the isospin
(charge) T = ta + tb:

|ab〉JPT
pp =

∑
mamb

CJM
jamajbmb

|a,ma〉 |b,mb〉. (29)

Introducing the particle-particle (pp) jj -coupled matrix
elements in Eq. (A5), the BG equation can be reduced into
subsystems (channels) with the channel quantum numbers
JPT :

〈ab|Ḡ|a′b′〉JPT
pp

= 〈ab|V̄ |a′b′〉JPT
pp

+ 1

2

∑
cd

〈ab|V̄ |cd〉JPT
pp

Q(c,d)

W − εc − εd

〈cd|Ḡ|a′b′〉JPT
pp ,

(30)

where the m degeneracy has been summed up by Eq. (29). The
starting energy W is chosen according to Eqs. (16)–(18).

In practice, the BG equation has to be solved independently
for each channel with the quantum numbers JPT . For the
isospin, there are three channels (T = −1,0,+1), which can
be solved independently as

〈nn|Ḡ|nn〉Jpp,

(
〈np|Ḡ|np〉Jpp 〈np|Ḡ|pn〉Jpp

〈pn|Ḡ|np〉Jpp 〈pn|Ḡ|pn〉Jpp

)
,

〈pp|Ḡ|pp〉Jpp. (31)

The RHF equation is a single-particle equation of the
structure b†b. Therefore we need the antisymmetrized particle-
hole (ph) jj -coupled matrix elements as given in Eqs. (A6)
and (A7). In spherical nuclei, only I = 0 matrix elements are
relevant [79]:

〈a|U |b〉 =
A∑
c

ĵc

ĵa

〈ac|Ḡ(W )|bc〉I=0
ph δta tb δκaκb

, (32)

where ĵ = √
2j + 1. The antisymmetrized ph-coupled matrix

elements 〈ac|Ḡ(W )|bc〉I=0
ph are derived from the pp-coupled

matrix elements, i.e., from the solutions of the BG equation
(30) using Eq. (A10):

〈12|Ḡ|34〉Iph =
∑

J

(2J + 1)(−1)j3+j4+J

×
{
j1 j3 I
j4 j2 J

}
〈12|Ḡ|34〉Jpp. (33)

The maximum J in pp coupling used in the BG equation is
determined by the single-particle angular momentum cutoff
jcut of the basis. In practice, the high J matrix elements
give relatively small contributions to 〈12|Ḡ|34〉I=0

ph , thus we
introduce a cutoff Jcut and solve the G matrix for 0 � J � Jcut.

In practice, we first construct the ph coupled matrix
elements V̄ I

ph (for details see Appendix A). From those we
obtain the pp coupled matrix elements V̄ J

pp by an inverse
recoupling in Eq. (A9). They are used to solve the BG equation
(30) and to obtain ḠJ

pp for all J values satisfying 0 � J � Jcut.
Finally using Eq. (33) and recoupling again to the ph channel,
the RHF equation can be solved for the next step.

3. Observables

After getting the solution of the coupled system of RBHF
equations, the total energy is expressed as

E =
A∑
a

〈a|T |a〉 + 1

2

A∑
ab

〈ab|Ḡ(W )|ab〉 + EC − Ecm, (34)

with the starting energy W = εa + εb. In the present frame-
work, the Coulomb energy EC is not included in the evaluation
of the G matrix and is calculated separately. Ecm is the
center-of-mass energy in Eq. (24). For details in the calculation
of Ecm and EC see Appendixes B and C.

The charge density distribution is obtained from [75,80]

ρc(r) = 1√
πar

∫
r ′dr ′ρp(r ′)[e−(r−r ′)2/λ2 − e−(r+r ′)2/λ2

],

(35)

where λ2 = 1/(a2 − B2), with a =
√

2
3 ×0.8 fm the correction

due to the finite proton size, and B2 = 3
2 〈P2〉−2 the correction

due to the center-of-mass motion. For PBV, B2 = 0 since the
center-of-mass correction has already been considered in the
single-particle wave functions. The charge radius is calculated
as 〈

r2
c

〉 = 1

Z
4π

∫
r4drρc(r). (36)

III. NUMERICAL DETAILS

As an example we consider the nucleus 16O. We use the
realistic NN interaction Bonn A which has been adjusted to
the NN scattering data [48]. The Woods-Saxon potential in
Eqs. (27) and (28) is taken from Ref. [69]. The DWS basis is
then obtained by solving the spherical Dirac equation (26) in
a box with the box size R and mesh size dr = 0.05 fm.

The RHF equation (14) can be solved in either the DWS
basis or the obtained RHF basis. The validity of this RHF code
is confirmed by reproducing the results of other RHF codes in
the oscillator basis [81] and in coordinate space [70].

The BG equation (30) is solved by matrix inversion [82] in
the space of pair states |ab〉 given in Eq. (29). These are pairs
of Dirac spinors with the full relativistic structure coupled to
good angular momentum J (pp coupling). The indices a and b
run over all solutions of the Dirac equation (with positive and
negative energies). The BG equations are solved for each of
the channels characterized by the quantum numbers J , parity
π , and z component of the isospin T = ta + tb. This leads, for
various J values, to a set of pp-coupled matrix elements of the
G matrix. Because we work always in the RHF basis during the
iteration, the Pauli operator in Eq. (13) and all its relativistic
structure is here fully taken into account. In particular, there is
no angle averaging involved as is the case in most Brueckner
calculations in nuclear matter [65,66]. The fully self-consistent
RHF basis is used in comparison with previous investigation
with a fixed DWS basis [63]. The BG equation (30) is solved
for four different values of the starting energy W , equally
distributed between the lowest and the highest single-particle
energies in the Fermi sea. The G matrix with specific starting
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energy W is obtained by a four point Lagrange polynomial
interpolation [71].

In the following convergence check, ε′ in Eq. (18) is
chosen as the minimum single-particle energy of the hole states
(ε′ = εν1s1/2). The center-of-mass correction is not considered.
After the convergence check, discussion will be focused on the
single-particle potential of particle states in Eq. (18) as well as
PAV and PBV. Without explicitly stating, all the calculations
are performed in the self-consistent RHF basis.

A. Convergence check

It is well known that the bare NN interaction contains a
repulsive core and a strong tensor part connecting the nucleons
below the Fermi surface to the states with high momentum
in the continuum. In order to take this coupling fully into
account, one needs a relatively large basis space and it is
crucial to investigate the corresponding convergence of the
RBHF calculations. In our previous investigation with a fixed
basis [63], a reasonable convergence is achieved near an energy
cutoff εcut = 1.1 GeV. In this work, we will carry out the
same check for the fully self-consistent RBHF calculation.
Moreover, we will give a convergence check for the other
cutoffs, i.e., the single-particle orbital angular momentum
cutoff lcut, the single-particle energy cutoff in the Dirac sea
εDcut, and the total angular momentum cutoff Jcut in the
derivation of the ph matrix elements of the G matrix in
Eq. (33).

Except these single-particle cutoffs for the basis space, we
have introduced pair cutoffs with ε1 + ε2 � Ecut and l1 + l2 �
Lcut. The difference between the single-particle cutoff and the
pair cutoff is illustrated in Fig. 1. Since the matrix elements
with small total angular momentum J in the pp coupling have
a larger contribution to the matrix elements of total angular
momentum I = 0 in the ph coupling, the pair cutoffs will
be introduced for J > Jh with Jh defined as the largest total
angular momentum that the hole states can couple to. For 16O,
we have Jh = 3h̄ coupled from two particles in the 1p3/2 orbit.

FIG. 1. The difference between the single-particle cutoff and the
pair cutoff is illustrated for the example of orbital angular momentum
coupling for lcut = 15h̄ or lcut = 20h̄ (left panel) and for Lcut = 15h̄

or Lcut = 20h̄ with L = l1 + l2 (right panel).

FIG. 2. Total energy E and charge radius rc of 16O as a function
of angular momentum cutoff lcut calculated in RBHF theory.

In the present work, we set Ecut = εcut, Lcut = lcut, and the
convergence in the pair cutoff will be achieved automatically
in the convergence of the single-particle cutoff.

First, we give the convergence check for single-particle
angular momentum cutoff lcut in Fig. 2. In this check, the other
cutoffs are chosen as Jcut = 6h̄, εcut = 1100 MeV and εDcut =
−1700 MeV. With εDcut = −1700 MeV, single-particle states
with high angular momentum (l > 7h̄) in the Dirac sea are not
included in the basis; this will be discussed later in the check of
εDcut. At lcut = 20h̄, the convergence is achieved. Increasing
lcut to 25h̄ will change the energy by 0.6 MeV and charge
radius by 0.003 fm.

As shown in the RBHF calculation with fixed DWS basis
[63], one needs a very large energy cutoff to take into
account the short-range correlation of the strong repulsive
core. The general feature of this convergence still holds in the
self-consistent RBHF calculation as shown in Fig. 3. The other
cutoffs are Jcut = 6h̄, lcut = 20h̄, and εDcut = −1700 MeV. In
comparison with RBHF calculation with fixed DWS basis [63],
we have included a pair cutoff for the energy, that is, only pair
states |ab〉 with εa + εb � εcut are included in the intermediate
states in the BG equation (30) for the channels with J > Jh. As
in the case with the fixed DWS basis, we find good convergence
at εcut = 1.1 GeV. Increasing εcut to 1.3 GeV will change the
energy by 0.8 MeV and charge radius by 0.005 fm.

FIG. 3. Total energy E and charge radius rc of 16O as a function
of the energy cutoff εcut calculated in RBHF theory.
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FIG. 4. Total energy E and charge radius rc of 16O as a function
of energy cutoff in the Dirac sea εDcut calculated in RBHF theory.

As has been pointed out in Ref. [64], the single-particle
states with negative energy in the Dirac sea must be included
in the basis space for completeness. Because of spherical
symmetry, the Dirac equation is solved independently in
different blocks with the quantum numbers κ = (l,j ). We
include at least two states in the Dirac sea for each block, and
then we add more states by gradually decreasing the energy
cutoff in the Dirac sea εDcut to check the convergence. The
other cutoffs are Jcut = 6h̄, lcut = 20h̄, and εcut = 1100 MeV.
The result is shown in Fig. 4. Convergence is achieved at
εDcut = −1700 MeV. Decreasing εDcut to −1800 MeV will
change the energy by 0.4 MeV and charge radius by 0.002 fm.

Up to now, convergence has been checked with respect
to the single-particle basis space and the final choice is
lcut = 20h̄, εcut = 1100 MeV, and we include at least two
states in the Dirac sea for each block, and then add more
states by choosing the energy cutoff in the Dirac sea
εDcut = −1700 MeV. For a given DWS potential with a
box size R = 7 fm, there will be 686 single-particle states
distributed among 41 blocks (i.e., 0 � l � 20), where 92 are
states with negative energy and 594 are states with positive
energy. The dimension of pair states |ab〉 is different for
different channels (J , parity P , and isospin T ), for example,
for (0, − ,1) it is 5834, and for (2, + ,0) it is 54 654.

In Fig. 5, we show the convergence with total angular
momentum cutoff Jcut introduced in Eq. (33). Increasing Jcut

FIG. 5. Total energy E and charge radius rc of 16O calculated in
RBHF theory as a function of total angular momentum cutoff Jcut

introduced in Eq. (33).

FIG. 6. Total energy E and charge radius rc of 16O as a function
of box size R calculated in RBHF theory.

from 6 to 7 will change the energy by 0.3 MeV and charge
radius by 0.0007 fm. Therefore Jcut = 6 will be used in the
following calculations.

All the above convergence checks were performed at box
size R = 7 fm. In Fig. 6, we show that this is enough for 16O.
Further increasing the box size to 8 fm will cause changes by
0.3 MeV in the energy and by 0.006 fm in the charge radius.

B. Center-of-mass motion

In the above convergence check, the center-of-mass motion
in Eq. (24) has not been corrected. Usually there are two ways
to treat this term:

(1) Treat it as a first-order correction after the solution of
the RHF equation. As discussed in Sec. II A 6, we will label
this method as a projection after variation (PAV).

(2) Exclude this term in the RHF equation similarly as in
Ref. [77], which we will label as a projection before variation
(PBV).

In none of these cases the center-of-mass term is included
in the solution of the BG equation (30).

The results are listed in Table I. It can be seen that the
total energy given by PBV is about 9 MeV smaller than PAV,
while the charge radii and center-of-mass correction energy
Ecm are almost the same for both cases. In order to understand
it more clearly, we plot out the total energy at each iteration
step in Fig. 7. As can be seen from the figure, there is not
so much difference between PBV and PAV during the first
RBHF iteration step, where the G matrix G1 is calculated from
the initial DWS basis. Accordingly, the G matrices G2, G3,
and G4 are respectively calculated from the convergent RHF
basis. One may say that with the same interaction, PAV can
be viewed as a good approximation of PBV. But in the next

TABLE I. Total energy, charge radius, and c.m. correction for 16O
calculated by RBHF for PBV and PAV.

PBV PAV

E (MeV) −110.1 −101.4
rc (fm) 2.566 2.577
Ecm (MeV) −11.83 −11.12
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FIG. 7. Total energies at each RBHF iteration step for PAV
and PBV.

RBHF iteration step, the energy of PBV suddenly becomes
smaller than that of PAV.

The reason for this sudden change can be understood from
Fig. 8, where the single-particle spectra in s and p blocks
are given after the first (G1) and last (G4) RBHF iteration.
It can be seen that the single-particle energies in the RBHF
calculation with PBV are generally lower than those of PAV,
especially for those high-lying states. In the conventional RHF
calculations, the results for PAV and PBV are similar because
only the occupied states are concerned and they are similar
for PAV and PBV. But for RBHF calculations, the difference
in single-particle spectra, in particular high-lying states, will
lead to different G matrices in next iteration. Generally, the
lower the unoccupied states, the more attractive the G-matrix
elements of occupied states. As a result, the G matrix in PBV
is more attractive and the total binding energy is larger.

PBV and PAV have already been discussed in the nonrel-
ativistic BHF calculation [78]. As the single-particle energies
of BHF basis states are not fed back into the G matrix, the
conclusion in Ref. [78] was that the two methods give almost
the same results for 16O. This is the case in Fig. 7 calculated
with the G matrix G1. In the fully self-consistent RBHF
calculation, however, the total energy given by PBV is about
9 MeV smaller and the single-particle energies are generally
lower than those by PAV.

FIG. 8. Single-particle spectra in s and p blocks at each RBHF
iteration step for PAV and PBV.

TABLE II. Parameters for DWS potentials in Eqs. (27) and (28).

V0 (MeV) R (fm) a (fm) W0 (MeV) Rls (fm) als (fm)

−60 to −80 3.106 97 0.615 725.9136 2.8827 0.648

C. Self-consistent basis and fixed basis

To take into account the relativistic structure of the Pauli
operator in Eq. (30), we adopt a relativistic basis in our
calculation. The relativistic DWS basis [64] has advantages
in comparison with the harmonic oscillator basis [83], like a
proper asymptotic behavior of nuclear density distribution,
which is crucial for describing, e.g., halo nuclei. More
important here is that the nucleon single-particle potential is
close to the DWS shape, which serves as a good approximation
for the final converged RBHF single-particle states.

The DWS basis is obtained by solving the radial Dirac
equation (26) in potentials of Woods-Saxon shape given in
Eqs. (27) and (28). The parameters are chosen with reference
to [69] for the neutron potential, with potential depths V0 from
−60 to −80 MeV. They are listed in Table II.

The RBHF calculation has been previously carried out for
finite nuclei with a fixed DWS basis in Ref. [63]. We will
compare the results with fixed basis and results with the self-
consistent RBHF basis in the following.

The total energies at each iteration step are plotted in Fig. 9.
Solid symbols stand for the self-consistent RBHF calculations,
while open symbols stand for fixed DWS basis calculations.
Different shapes represent different DWS potential depths
V0. Similar to Fig. 7, the first RBHF iteration is represented
by G1.

We mention that in Fig. 7 or Fig. 9, different calculations
may have a different number of iteration steps. We have
adjusted them slightly in the figures to make them the same
without losing too much precision.

For the first RBHF iteration the results are identical to
those of the DWS basis calculation for each value of V0,
because in both cases the same basis is used. After the
first RBHF iteration, there appears a difference between the
self-consistent calculation and the fixed basis one. In the end,

FIG. 9. Total energies at each iteration step calculated by RBHF
in the self-consistent RHF basis (solid symbols) and in the fixed DWS
basis (open symbols).
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TABLE III. Binding energy per nucleon, charge radius, and
proton 1p spin-orbit splitting of 16O in the RBHF calculations with
different choices for Uab in Eq. (18).

ε′ = επ1p1/2 ε′ = εν1s1/2 Gap Expt.

E/A (MeV) −7.10 −6.88 −5.41 −7.98
rc (fm) 2.56 2.57 2.64 2.70
�Els

π1p (MeV) 5.4 5.4 5.4 6.3

the results of the self-consistent calculation do not depend on
the initial DWS basis, while the results of a fixed basis one
do. As expected, self-consistency is very important to get an
unambiguous result.

D. Single-particle potential U of particle states

One uncertainty in (R)BHF theory is the choice of the
single-particle potential for particle states in Eq. (18). Different
choices have been discussed in BHF for finite nuclei and the
readers are referred to Ref. [71] for more details. Here we
choose Eq. (18) for Uab where ε′

a is different from the single-
particle energy εa , with ε′

a = ε′
b = ε′ as the single-particle

energy of hole states, and compare the results between the
lowest value ε′ = εν1s1/2 and the highest value ε′ = επ1p1/2.
We also give as a comparison the results for the gap choice:
Uab = 0. These results are presented in Table III.

It can be seen that the gap choice gives the least bound
system. While fixing ε′ as an energy among the occupied
states gives 1.4 to 1.7 MeV per nucleon more binding.

In the framework of Bethe-Brueckner-Goldstone (BBG)
(see for instance Ref. [20]), the gap choice and the continuous
choice have been discussed in nuclear matter in Ref. [72].
The continuous choice gives more binding than the gap choice
at the BHF level. By performing the BBG expansion up to
the three hole-line level, the above two choices give similar
results, and lie between the results of these two choices at the
BHF level [72]. From this point of view, the choice of ε′ as an
energy among the occupied states is a reasonable choice.

In Fig. 10 we present the single-particle spectrum of RBHF
calculations with different choices and we find the following:

FIG. 10. Single-particle spectrum of 16O calculated by RBHF
theory with the interaction Bonn A for different choices of the single-
particle potential Uab of particle states in Eq. (18).

First, in the gap choice there is a larger gap between the
unoccupied states and occupied states as compared to other
choices. This has been observed in earlier nonrelativistic
calculations and therefore this name was chosen [20]. Second,
as compared to the gap choice, the choices of ε′ fixed as
an energy among the occupied states give more attraction
to low-lying states. This can be understood because the
single-particle energies ε of low-lying particle states are close
to the chosen ε′. Therefore it can be viewed as the continuous
choice and the G matrix is attractive. Third, the single-particle
energies of low-lying states with choices of ε′ = επ1p1/2 and
ε′ = εν1s1/2 are close to each other.

Summing up the previous discussions, the numerical details
for the solution of RBHF equations in the following appli-
cations include lcut = 20h̄ (Fig. 2), εcut = 1.1 GeV (Fig. 3),
εDcut = −1700 MeV (Fig. 4), Jcut = 6h̄ (Fig. 5), and Rbox =
7 fm (Fig. 6). The center-of-mass term is treated with PBV.
For the pp potential Uab in Eq. (18), we consider a continuous
choice with ε′ as the last occupied state in the Fermi sea.
This means ε′ = επ1p1/2 for 16O. For the nucleus 40Ca we use
ε′ = επ1d3/2, lcut = 25h̄, Jcut = 9h̄, and the same values for
the remaining quantities.

IV. RESULTS AND DISCUSSION

A. Nucleus 16O

The total energy, charge radius rc, matter radius rm, and
proton spin-orbit splitting for the 1p shell of 16O calculated
by RBHF with the interaction Bonn A [48] are listed in
Table IV, in comparison with experimental data [84–87]. The
corresponding results from RBHF in the fixed DWS basis
[63], density-dependent relativistic Hartree-Fock (DDRHF)
with PKO1 [70] and PKA1 [88], nonrelativistic BHF [89] with
Vlow−k derived from AV18 [9], coupled-cluster (CC) method
[90] and no core shell model (NCSM) [91] with N3LO [92],
and nuclear lattice effective field theory (NLEFT) [93] with
N2LO [94] are also included.

TABLE IV. Total energy, charge radius, matter radius, and π1p

spin-orbit splitting of 16O calculated by RBHF theory with the
interaction Bonn A [48], in comparison with experimental data.
The corresponding results from RBHF in fixed DWS basis [63],
DDRHF with PKO1 [70] and PKA1 [88], nonrelativistic BHF [89]
with Vlow−k derived from AV18, coupled-cluster (CC) method [90]
and no core shell model (NCSM) [91] with N3LO [92], and nuclear
lattice effective field theory (NLEFT) [93] with N2LO [94] are also
included.

E (MeV) rc (fm) rm (fm) �Els
π1p (MeV)

Expt. [84–87] −127.6 2.70 2.54(2) 6.3
RBHF, Bonn A −113.5 2.56 2.42 5.4
RBHF (DWS) [63] −120.7 2.52 2.38 6.0
DDRHF, PKO1 [70] −128.3 2.68 2.54 6.4
DDRHF, PKA1 [88] −127.0 2.80 2.67 6.0
BHF [89], AV18 −134.2 1.95 13.0
CC [90], N3LO −120.9 2.30
NCSM [91], N3LO −119.7(6)
NLEFT [93], N2LO −121.4(5)
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The phenomenological functional PKO1 includes tensor
correlations induced by the π -exchange and PKA1 includes in
addition tensor correlations by the ρ exchange. As expected,
the phenomenological results, which are both fitted to the
experimental data [70,88], are in much better agreement with
data than all the ab initio results.

The total energy of our self-consistent RBHF calculation is
underbound by 14.1 MeV (or by 11%) and the charge radius is
smaller by 0.14 fm (or by 5%) compared to the experimental
values. This is similar to the fixed basis calculation [63] and
consistent with the infinite nuclear matter results [44]. In
the self-consistent nonrelativistic BHF calculations [89], the
interaction Vlow−k derived from the Argonne interaction v18

was used. The result shows an overbinding by 6.6 MeV (or
by 5%) and the rms radius is too small. In comparison, the
values of E = −120.9 MeV are obtained with the CC [90]
using the chiral NN interaction N3LO, E = −119.7(6) MeV
obtained with the NCSM [91] using the same interaction
N3LO, and E = −121.4(5) obtained with the NLEFT [93]
using the interaction N2LO.

The experimental matter radius rm = 2.54 fm is larger
than rm = 2.30 fm calculated with the CC method. It has
been shown that this is a general feature of all the ab initio
calculations with conventional forces based on chiral effective
field theory [95]. Only modern chiral forces [96], which
include also radii in the adjustment of the parameters for the
bare forces, are able to cure this problem.

The spin-orbit splittings of 1p proton shell in RBHF theory
�Els

π1p = 5.4 MeV is smaller than the previous RBHF results
with fixed DWS basis �Els

π1p = 6.0 MeV, and the deviation
with the data is respectively 14% and 5%.

Figure 11 shows the energy per nucleon E/A for 16O as a
function of the charge radius rc calculated in RBHF using the
interactions Bonn A, B, and C, in comparison with BHF and
the relativistic effective density approximation (EDA) [97]. It
can be seen in all cases that relativistic effects improve the
results considerably. By comparing EDA with RBHF, one can
see that self-consistency has important effect.

FIG. 11. Energy per nucleon E/A for 16O as a function of the
charge radius rc calculated in RBHF using the interactions Bonn
A, B, and C, in comparison with BHF and the relativistic effective
density approximation (EDA) [97].

TABLE V. Total energy, charge radius, single-particle energies,
and π1p spin-orbit splitting of 16O calculated by RBHF theory with
the interactions Bonn A, B, and C. All energies are in MeV and radius
in fm.

Expt. Bonn A Bonn B Bonn C

E −127.6 −113.5 −102.7 −95.0
rc 2.70 2.56 2.61 2.65
εν1s1/2 −47 −48.1 −45.2 −43.1
εν1p3/2 −21.8 −26.4 −24.9 −23.7
εν1p1/2 −15.7 −21.0 −20.2 −19.7
επ1s1/2 −44 ± 7 −43.9 −41.1 −39.1
επ1p3/2 −18.5 −22.5 −21.1 −20.0
επ1p1/2 −12.1 −17.1 −16.5 −16.0
�Els

π1p 6.3 5.4 4.6 4.0

In Table V, the total energy, charge radius, single-particle
energies, and π1p spin-orbit splitting of 16O calculated by
RBHF theory with the interactions Bonn A, B, and C are
listed, and in comparison with the experimental data. The
experimental single-particle energies are taken from Ref. [87].

Figure 12 shows the charge density distributions of 16O cal-
culated by RBHF theory with the interactions Bonn A, B, and
C, in comparison with experimental data. The experimental
data are from Ref. [98]. It can be seen that Bonn A, B, and C
interactions give too large central distribution; as a result the
charge radius is smaller than the experimental value.

B. Nuclei 4He and 40Ca

The total energy, charge radius, and proton radius of 4He
calculated by RBHF theory using the interaction Bonn A [48]
with PBV and PAV are listed in Table VI, in comparison
with experimental data [84,85,99]. The corresponding results
from DDRHF with PKO1 [70] and PKA1 [88], solution of
the Faddeev-Yakubovsky (FY) equation [100] with CD-Bonn
[103], FY [101] with N4LO [104], NCSM [102] with N3LO
[92], NLEFT [93] with N2LO, and BHF [89] with Vlow−k

derived from AV18 [9] are also included.

FIG. 12. Charge density distributions of 16O calculated by RBHF
theory with the interactions Bonn A, B, and C, in comparison with
experimental data [98].
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TABLE VI. Total energy, charge radius, and proton radius of
4He calculated by RBHF theory using the interaction Bonn A [48]
with PBV and PAV, in comparison with experimental data [84,85,99].
The corresponding results from DDRHF with PKO1 [70] and PKA1
[88], solution of the Faddeev-Yakubovsky (FY) equation [100] with
CD-Bonn, FY [101] with N4LO, NCSM [102] with N3LO, NLEFT
[93] with N2LO, and BHF [89] with Vlow−k derived from AV18 are
also included.

E (MeV) rc (fm) rp (fm)

Expt. [84,85,99] −28.30 1.68 1.46
RBHF (PBV), Bonn A −35.05 1.83 1.64
RBHF (PAV), Bonn A −26.31 1.90 1.73
DDRHF, PKO1 [70] −28.45 1.90 1.72
DDRHF, PKA1 [88] −28.28 2.06 1.90
FY [100], CD-Bonn −26.26
FY [101], N4LO −24.27(6) 1.547(2)
NCSM [102], N3LO −25.39(1) 1.515(2)
NLEFT [93], N2LO −25.60(6)
BHF [89], AV18 −25.90

It can be seen that by considering only the two-body
interaction, all the nonrelativistic calculations predicted under-
binding for 4He. In contrast, RBHF with PBV gives too much
binding and a too large radius. As expected, the center-of-mass
correction plays an important role for such a light nucleus:
PBV and PAV give very different results.

In Table VII, the total energy, charge radius, matter radius,
and proton spin-orbit splitting for the 1d shell of 40Ca
calculated by RBHF with the interaction Bonn A [48] are
listed, in comparison with experimental data [84,85,87]. The
corresponding results from DDRHF with PKO1 [70] and
PKA1 [88], BHF [89], NCSM [105], and CC [106] with Vlow−k

derived from AV18 [9], and CC [107] with N3LO [92] are also
included.

Similar as for 16O, the total energy of 40Ca calculated by
RBHF with the interaction Bonn A is underbound by 51.3 MeV
(or by 15%) and the charge radius is smaller by 0.25 fm (or by
7%) as compared to the experimental values. For the proton

TABLE VII. Total energy, charge radius, matter radius, and
proton spin-orbit splitting for the 1d shell of 40Ca calculated by RBHF
with the interaction Bonn A [48], in comparison with experimental
data [84,85,87]. The corresponding results from DDRHF with PKO1
[70] and PKA1 [88], BHF [89], NCSM [105], and CC [106] with
Vlow−k derived from AV18 [9], and CC [107] with N3LO [92] are also
included.

E (MeV) rc (fm) rm (fm) �Els
π1d (MeV)

Expt. [84,85,87] −342.1 3.48 6.6 ± 2.5
RBHF, Bonn A −290.8 3.23 3.11 5.8
DDRHF, PKO1 [70] −343.3 3.44 3.33 6.6
DDRHF, PKA1 [88] −341.7 3.53 3.41 7.2
BHF [89], AV18 −552.1 2.20 24.9
NCSM [105], AV18 −461.8 2.27
CC [106], AV18 −502.9
CC [107], N3LO −345.2

1d spin-orbit splitting, RBHF with Bonn A gives a very good
description for the data. Most of the nonrelativistic results,
because of the missing three-body force, give too large binding
energy and too small radius, except the CC method with N3LO
which reproduces the experimental binding energy well.

V. SUMMARY

The relativistic Brueckner-Hartree-Fock equations have
been solved for finite nuclei in a self-consistent relativistic
Hartree-Fock basis. For this purpose a basis transformation
is performed in each step of the iteration, and the G matrix
is obtained by solving the Bethe-Goldstone equation in this
self-consistent RHF basis. The Pauli operator has been taken
into account fully self-consistently without any approximation.
Relativistic versions of the bare NN interactions Bonn A, B,
and C [48] have been used.

Taking 16O as an example, the relevant convergence prop-
erties in the RBHF calculation have been checked, including a
single-particle angular momentum cutoff lcut, a single-particle
energy cutoff εcut, a single-particle energy cutoff in the Dirac
sea εDcut, a total angular momentum cutoff Jcut, and a box
size R.

The binding energy calculated by the self-consistent RBHF
does not depend on the initial basis, and is generally smaller
than the results of RBHF calculations in the fixed DWS
basis. This underbinding is, at a first glance, unexpected,
because in conventional nonrelativistic Hartree-Fock theory
the variational principle yields the lowest energy for the fully
self-consistent calculation. However, this can be understood
by the well known fact that the Brueckner theory does not
obey the variational principle: the matrix elements of the G
matrix depend on the Pauli operator and on the single-particle
energies, and the single-particle potential is not defined by the
variational principle as the Hartree-Fock theory is.

Two different approaches for the treatment of the center-
of-mass motion have been discussed: approximate projection
before variation (PBV) and after variation (PAV). While the
two approaches give similar results for RHF calculations, the
total energy of 16O given by PBV is about 9 MeV smaller
than that of PAV for RBHF calculations. This is due to the
fact that the single-particle energies are different in the two
approaches, especially for those high-lying states, which have
a strong impact on the self-consistent G matrix. Thus, the
more consistent PBV approach should be used in the RBHF
framework.

We have also discussed different choices for the single-
particle potential of particle states, which brings a major
ambiguity in the (R)BHF framework. This ambiguity, in
the more general framework of the hole-line expansion, is
connected to the limitation of two hole lines used here. We
have chosen Eq. (18) for the single-particle potential of particle
states, and found that the choice of ε′ in Eq. (18) as an energy
among the occupied states is a reasonable choice.

We have performed RBHF calculations for the doubly
closed shell nuclei 4He, 16O, and 40Ca, and the results are
compared with experimental data, phenomenological DDRHF
calculations, and other state-of-the-art ab initio calculations.
For 4He, because of its very light nature, the treatment of the
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center-of-mass motion is essential. The total energy of 16O
and 40Ca calculated by RBHF with the interaction Bonn A is
underbound by 1 MeV per nucleon and the charge radius is
smaller by 5% to 7% as compared to the experimental values.
The spin-orbit splittings for both 16O and 40Ca are very well
reproduced.

Except 4He, we find considerable underbinding by RBHF
for the heavier nuclei. There remains the open question of the
origin of this underbinding.

First, we cannot exclude, at present, the importance of
additional three-body forces, even in a relativistic description.
In the relativistic framework, three-body forces resulting
from virtual nucleon-antinucleon excitations (Z diagram) are
included [47]. There are also other nonrelativistic origins for
three-body forces in nuclei, such as for instance, the Fujita-
Miyazawa force [27]. Microscopic investigations of various
contributions to the three-body force have shown that for
lower densities, up to the saturation density in nuclear matter,
the relativistic Z diagrams, which are included in our RBHF
calculations, play a major role [29]. However, they produce
too much repulsion, i.e., one should expect underbinding in
finite nuclei, as we find in 16O and 40Ca. As shown in Ref. [29]
additional three-body forces of a nonrelativistic nature produce
attraction and their contributions are not negligible. For lower
densities they play a less important role, but details and more
quantitative conclusions are still open questions for the future.

Second, we stayed in these calculations completely on
the Brueckner-Hartree-Fock level, i.e., we did not include
higher-order diagrams with more than two hole lines in the
hole-line expansion. They are known to have certain contri-
butions in nonrelativistic nuclear matter investigations [24].
Among them, the third-order saturation-potential diagrams
(or rearrangement diagrams) can be taken into account by the
so-called renormalized BHF approach [108] and it is definitely
interesting to investigate its relativistic extension in the future.

The current work is intended to establish a firm ground for
a relativistic ab initio framework in finite nuclei. With recent
progress in covariant chiral nucleon-nucleon interaction [109]
and hyperon-nucleon interaction [110], we are looking forward
to studying the nuclear many-body problem with RBHF based
on chiral effective field theory. The ultimate goal is to extend
it to heavy nuclei and help us to understand nuclear structure
in a microscopic way. We hope to learn from such ab initio
calculations and to settle some of the open questions in modern
nuclear energy density functional theory, such as the isospin
dependence or the importance of the tensor terms [81,88].
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APPENDIX A: TWO-BODY MATRIX ELEMENTS

Here we give the details for the calculation of relativistic
two-body matrix elements for the Bonn interaction [48], which
is defined in terms of meson-exchange terms:

〈ab|Vα|cd〉 =
∫

d3r1d
3r2ψ̄a(r1)�(1)

α ψc(r1)Dα(r1,r2)

× ψ̄b(r2)�(2)
α ψd (r2), (A1)

with α for scalar (σ,δ), vector (ω,ρ), and pseudoscalar (η,π )
mesons. The interacting vertices are given in Eq. (5). Here we
discuss the isoscalar mesons only since the isovector mesons
are identical except for the isospin matrix elements, which can
be considered separately.

Using the propagator in Eq. (8) in momentum space, we
can rewrite the two-body matrix elements as

〈ab|Vα|cd〉 =
∫

d3q

(2π )3

1

m2
α + q2

〈a|γ 0�α(1)

× eiq·r1 |c〉〈b|γ 0�α(2)e−iq·r2 |d〉.
(A2)

The form factor in Eq. (6) depends only on the meson α and
the absolute momentum transfer |q|, so that it can be added at
the last step.

The plane wave can be expanded as

eiq·r = 4π
∑
LM

iLjL(qr)Y ∗
LM (q̂)YLM (r̂), (A3)

where jL(qr) is the spherical Bessel function, YLM is the
spherical harmonic function, and q̂ represents the angular part
of the vector q. The integration over q̂ yields

〈ab|Vα|cd〉 = 2

π

∫
q2dq

m2
α + q2

∑
LM

(−1)M〈a|γ 0�αjL(qr)

×YLM (r̂)|c〉〈b|γ 0�αjL(qr)YL−M (r̂)|d〉.
(A4)

For spherical nuclei we consider matrix elements coupled to
good angular momentum. There are several ways to couple
pairs of indices:

(i) pp-coupled matrix elements,

〈12|V |34〉Jpp =
∑
m1m2

∑
m3m4

CJM
j1m1j2m2

CJM
j3m3j4m4

〈12|V |34〉; (A5)

(ii) ph-coupled matrix elements (direct term),

〈12|V |34〉Iph =
∑
m1m3

∑
m2m4

(−1)j3−m3CIM
j1m1j3−m3

(−1)j2−m2

×CIM
j4m4j2−m2

〈12|V |34〉; (A6)
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(iii) ph-coupled matrix elements (exchange term),

〈12|V |34〉Iph,e =
∑
m1m3

∑
m2m4

(−1)j3−m3CIM
j1m1j3−m3

(−1)j2−m2CIM
j4m4j2−m2

〈12|V |43〉. (A7)

These different coupling schemes are related to each other by the following recoupling rules [111]:

〈12|V |34〉Iph,e =
∑
I ′

(2I ′ + 1)(−1)j3+j4+I+I ′
{
j1 j3 I
j2 j4 I ′

}
〈12|V |43〉I ′

ph, (A8)

〈12|V |34〉Jpp =
∑

I

(2I + 1)(−1)j3+j4+J

{
j1 j2 J
j4 j3 I

}
〈12|V |34〉Iph, (A9)

and the inverse relation,

〈12|V |34〉Iph =
∑

J

(2J + 1)(−1)j3+j4+J

{
j1 j3 I
j4 j2 J

}
〈12|V |34〉Jpp. (A10)

The antisymmetrized ph-coupled matrix elements are obtained as

〈12|V̄ |34〉Jph = 〈12|V |34〉Jph − 〈12|V |34〉Jph,e. (A11)

Expressing the various vertices γ 0�αYLM in Eq. (A4) in terms of spherical tensor operators Ôλμ, we can use the Wigner-Eckart
theorem [112] and express the ph-coupled matrix elements by the reduced matrix elements of the corresponding tensors,

Ĵ
∑
m1m2

(−1)j2−m2CJM
j1m1j2−m2

〈j1m1|Ôλμ|j2m2〉 = δJλδMμ〈j1||ÔJ ||j2〉, (A12)

where Ĵ = √
2J + 1. Therefore we present in the following the direct terms of the ph-coupled matrix elements for the different

mesons.

1. Scalar meson

For the scalar meson,

〈ab|Vs |cd〉Iph = − g2
s

2

π

(−1)jb−jd

Î 2

∫
q2dq

m2
s + q2

(
�2

s − m2
s

�2
s + q2

)2

〈a||γ 0jIYI ||c〉〈b||γ 0jIYI ||d〉, (A13)

where

〈a||γ 0jIYI ||c〉 = 〈jala||YI ||jclc〉
∫

dr[FajI (qr)Fc] − 〈ja l̃a||YI ||jcl̃c〉
∫

dr[GajI (qr)Gc], (A14)

with Fa(r) and Ga(r) are the large and small components of the Dirac spinor in Eq. (25).

2. Pseudoscalar meson

For the pseudoscalar meson,

〈ab|Vps |cd〉Iph = − f 2
ps

m2
ps

2

π

(−1)jb−jd

Î 4

∫
q4dq

m2
ps + q2

(
�2

ps − m2
ps

�2
ps + q2

)2

×〈a||√I + 1jI+1[YI+1σ ]I +
√

IjI−1[YI−1σ ]I ||c〉〈b||√I + 1jI+1[YI+1σ ]I +
√

IjI−1[YI−1σ ]I ||d〉,
(A15)

where [YLσ ]I is the reduced form of

[YLσ ]IM =
∑
mk

CIM
Lm1kYLmσ1k. (A16)

The matrix elements read

〈a||jL[YLσ ]I ||c〉 = 〈jala||[YLσ ]I ||jclc〉
∫

dr[FajL(qr)Fc] + 〈ja l̃a||[YLσ ]I ||jcl̃c〉
∫

dr[GajL(qr)Gc]. (A17)
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3. Vector meson

The expression for the vector meson is more complicated. According to the Lorentz structure, we divide it into a time
component (v0) and a space component (v1). Take the vector-vector coupling (vv) as an example,

�(vv)
v = g2

vγ
μγμ = g2

v(γ0γ0 − γ · γ ) = �v0 + �v1. (A18)

The results for the time component are

〈ab|V (vv)
v0 |cd〉Iph = g2

v

2

π

(−1)jb−jd

Î 2

∫
q2dq

m2
v + q2

(
�2

v − m2
v

�2
v + q2

)2

〈a||jIYI ||c〉〈b||jIYI ||d〉, (A19)

〈ab|V (tt)
v0 |cd〉Iph = −

(
fv

2M

)2 2

π

(−1)jb−jd

Î 4

∫
q4dq

m2
v + q2

(
�2

v − m2
v

�2
v + q2

)2

〈a||√I + 1jI+1[YI+1γ ]I

+
√

IjI−1[YI−1γ ]I ||c〉〈b||√I + 1jI+1[YI+1γ ]I +
√

IjI−1[YI−1γ ]I ||d〉, (A20)

〈ab|V (vt)
v0 |cd〉Iph = −i

fvgv

2M

2

π

(−1)jb−jd

Î 3

∫
q3dq

m2
v + q2

(
�2

v − m2
v

�2
v + q2

)2

{〈a||jIYI ||c〉〈b||√I + 1jI+1[YI+1γ ]I

+
√

IjI−1[YI−1γ ]I ||d〉 + 〈a||√I + 1jI+1[YI+1γ ]I +
√

IjI−1[YI−1γ ]I ||c〉〈b||jIYI ||d〉}, (A21)

for the vector-vector, tensor-tensor (tt), and vector-tensor (vt) components, respectively.
The results for the space component are (with α = γ 0γ ):

〈ab|V (vv)
v1 |cd〉Iph = −g2

v

2

π

(−1)jb+jd+I

Î 2

∑
L

(−1)L
∫

q2dq

m2
v + q2

(
�2

v − m2
v

�2
v + q2

)2

〈a||jL[YLα]I ||c〉〈b||jL[YLα]I ||d〉, (A22)

〈ab|V (tt)
v1 |cd〉Iph =

(
fv

M

)2 3

π

(−1)jb+jd+I

Î 2

∑
L

(−1)L
∫

q4dq

m2
v + q2

(
�2

v − m2
v

�2
v + q2

)2

×
〈
a

∣∣∣∣
∣∣∣∣γ 0

√
L + 1

{
1 L + 1 L
I 1 1

}
jL+1[YL+1σ ]I + γ 0

√
L

{
1 L − 1 L
I 1 1

}
jL−1[YL−1σ ]I

∣∣∣∣
∣∣∣∣c

〉

×
〈
b

∣∣∣∣
∣∣∣∣γ 0

√
L + 1

{
1 L + 1 L
I 1 1

}
jL+1[YL+1σ ]I + γ 0

√
L

{
1 L − 1 L
I 1 1

}
jL−1[YL−1σ ]I

∣∣∣∣
∣∣∣∣d

〉
, (A23)

〈ab|V (vt)
v1 |cd〉Iph =

√
6i

fvgv

2M

2

π

(−1)jb+jd

Î 2

∫
q3dq

m2
v + q2

(
�2

v − m2
v

�2
v + q2

)2 ∑
L

(
V

(vt)
1 + V

(vt)
2

)
, (A24)

with

V
(vt)

1 = 〈a||jL[YLα]I ||c〉
〈
b

∣∣∣∣
∣∣∣∣γ 0

√
L + 1

{
1 L + 1 L
I 1 1

}
jL+1[YL+1σ ]I + γ 0

√
L

{
1 L − 1 L
I 1 1

}
jL−1[YL−1σ ]I

∣∣∣∣
∣∣∣∣d

〉
,

V
(vt)

2 =
〈
a

∣∣∣∣
∣∣∣∣γ 0

√
L + 1

{
1 L + 1 L
I 1 1

}
jL+1[YL+1σ ]I + γ 0

√
L

{
1 L − 1 L
I 1 1

}
jL−1[YL−1σ ]I

∣∣∣∣
∣∣∣∣c

〉
〈b||jL[YLα]I ||d〉.

The reduced matrix element reads

〈a||jL[YLα]I ||c〉 = i〈jala||[YLσ ]I ||jcl̃c〉
∫

dr[FajL(qr)Gc] − i〈ja l̃a||[YLσ ]I ||jclc〉
∫

dr[GajL(qr)Fc]. (A25)

Notice that in the Bonn interaction [48] the tensor part of ω meson is deemed to be small and omitted; only the ρ meson has
a tensor part fρ .

4. Isospin matrix elements

The isospin operator has been separated in the vertex expression in Eq. (5). For the isovector mesons (δ,π,ρ), the full
interaction vertices are accompanied with the isovector operator as

�i(1,2)�τ1 · �τ2. (A26)

For the isoscalar operator I, the nonzero matrix elements are

〈nn|I|nn〉 = 〈pp|I|pp〉 = 〈np|I|np〉 = 〈pn|I|pn〉 = 1. (A27)

014316-15



SHEN, LIANG, MENG, RING, AND ZHANG PHYSICAL REVIEW C 96, 014316 (2017)

In contrast, for the isovector operator �τ1 · �τ2, the nonzero matrix elements are

〈nn|�τ1 · �τ2|nn〉 = 〈pp|�τ1 · �τ2|pp〉 = 1, (A28a)

〈np|�τ1 · �τ2|np〉 = 〈pn|�τ1 · �τ2|pn〉 = −1, (A28b)

〈np|�τ1 · �τ2|pn〉 = 〈pn|�τ1 · �τ2|np〉 = 2, (A28c)

with the conventions τz|n〉 = |n〉 and τz|p〉 = −|p〉 for neutron and proton states.

APPENDIX B: CENTER-OF-MASS MOTION

1. Matrix element for center-of-mass motion

In second quantization the operator for the center-of-mass correction is given by

Hcm = 1

2MA
P2 = 1

2MA

∑
ab

p2
abb

†
abb + 1

2MA

∑
abcd

pac · pbdb
†
ab

†
bbdbc = Tcm + Vcm. (B1)

It contains a one-body operator Tcm and a two-body operator Vcm.
The matrix element of the one-body term Tcm is similar to the nonrelativistic kinetic energy. Because of spherical symmetry

and parity conservation, it is diagonal in the block index κ = (l,j ) and can be derived as

〈a|Tcm|b〉 = − 1

2MA
〈a|∇2|b〉 = − 1

2MA

∫
dr

{
F ∗

a

[
∂2

∂r2
− κ(κ + 1)

r2

]
Fb + G∗

a

[
∂2

∂r2
+ κ(1 − κ)

r2

]
Gb

}
. (B2)

The matrix element of the two-body term is

〈ab|Vcm|cd〉 = − 1

2MA
〈a|∇|c〉 · 〈b|∇|d〉

= 1

2MA
(−1)jc+jd ĵcĵd

∑
μ

(−1)μC
jama

jcmc1μC
jbmb

jdmd 1−μ

∑
ηζ=±

(−1)l
(η)
a +l

(ζ )
b

×
{
l
(η)
c

1
2 jc

ja 1 l
(η)
a

}[√
l
(η)
c + 1A(η)

ac δl
(η)
a ,l

(η)
c +1 −

√
l
(η)
c B(η)

ac δl
(η)
a ,l

(η)
c −1

]

×
{
l
(ζ )
d

1
2 jd

jb 1 l
(ζ )
b

}[√
l
(ζ )
d + 1A

(ζ )
bd δl

(ζ )
b ,l

(ζ )
d +1 −

√
l
(ζ )
d B

(ζ )
bd δl

(ζ )
b ,l

(ζ )
d −1

]
. (B3)

In this equation, summation indices η, ζ sum over the upper (+) and lower (−) components, and A,B are defined as

A(+)
ac =

∫ ∞

0
drF ∗

a

(
d

dr
− lc + 1

r

)
Fc, A(−)

ac =
∫ ∞

0
drG∗

a

(
d

dr
− l̃c + 1

r

)
Gc, (B4)

B(+)
ac =

∫ ∞

0
drF ∗

a

(
d

dr
+ lc

r

)
Fc, B(−)

ac =
∫ ∞

0
drG∗

a

(
d

dr
+ l̃c

r

)
Gc. (B5)

Here we also give the antisymmetrized jj -coupled form of Vcm. In the spherical RHF equation, only ph coupling I = 0
matrix elements in Eq. (A6) are needed,

〈ab|V̄cm|cd〉I=0
ph = 1

2MA
ĵaĵb

∑
ηζ=±

(−1)l
(η)
b +l

(ζ )
a

{
l
(η)
a

1
2 ja

jb 1 l
(η)
b

}{
l
(ζ )
b

1
2 jb

ja 1 l
(ζ )
a

}

× [√
l
(η)
a + 1A

(η)
bc δl

(η)
b ,l

(η)
a +1 −

√
l
(η)
a B

(η)
bc δl

(η)
b ,l

(η)
a −1

][√
l
(ζ )
b + 1A

(ζ )
ad δl

(ζ )
a ,l

(ζ )
b +1 −

√
l
(ζ )
b B

(ζ )
ad δl

(ζ )
a ,l

(ζ )
b −1

]
. (B6)

2. Center-of-mass correction for total energy

The energy of the center-of-mass motion is

Ecm = 〈Hcm〉 =
A∑
a

〈a|Tcm|a〉 +
A∑
ab

〈ab|V̄cm|ab〉. (B7)
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The first term can be obtained from Eq. (B2),

A∑
a

〈a|Tcm|a〉 = − 1

2MA

A∑
a

∫
dr

{
Fa

[
∂2

∂r2
− κ(κ + 1)

r2

]
Fa + Ga

[
∂2

∂r2
− κ(κ − 1)

r2

]
Ga

}
. (B8)

The second term can be obtained from Eq. (B3),

A∑
ab

〈ab|V̄cm|ab〉 = 1

2MA

A∑
ab

′

ĵ 2
a ĵ 2

b

∑
ηζ=±

(−1)l
(η)
a +l

(ζ )
b

{
l
(η)
b

1
2 jb

ja 1 l
(η)
a

}{
l
(ζ )
a

1
2 ja

jb 1 l
(ζ )
b

}

× [√
l
(η)
b + 1A

(η)
ab δl

(η)
a ,l

(η)
b +1 −

√
l
(η)
b B

(η)
ab δl

(η)
a ,l

(η)
b −1

][√
l
(ζ )
a + 1A

(ζ )
ba δl

(ζ )
b ,l

(ζ )
a +1 −

√
l
(ζ )
a B

(ζ )
ba δl

(ζ )
b ,l

(ζ )
a −1

]
. (B9)

Indeed, the direct contribution in this expression vanishes. Note that the
∑′ does not sum over magnetic quantum number m.

This energy Ecm should be subtracted in the total energy expression in Eq. (34).

APPENDIX C: COULOMB INTERACTION

The Coulomb interaction can be derived from the interac-
tion vertex,

�A(1,2) = e

2
γ μ(1 − τz)

e

2
γμ(1 − τz). (C1)

In the R(B)HF framework, its contribution to the single-
particle potential is

〈a|UA|b〉, (C2)

which is not included in the G matrix and calculated separately.

1. Direct term

The direct term of Coulomb field in the spherical case reads

UAdir(r) = e

∫
r ′2dr

ρp(r ′)
rθ (r − r ′) + r ′θ (r ′ − r)

, (C3)

with θ the step functions. The contribution to total energy is

EAdir = 1

2
4πe

∫
r2UAdir(r)ρp(r)dr. (C4)

2. Exchange term

In principle, the exchange term of Coulomb field is
nonlocal. For simplicity, in the present calculations, we use
the relativistic local density approximation (RLDA) for the
Coulomb exchange term [113], which in the spherical case
reads

U
(RLDA)
Aex (r) = −

(
3

π

)1/3

e2ρ1/3
p (r) + 3π

M2
e2ρp(r). (C5)

This is the well-known Slater approximation [114] plus a
relativistic correction. The contribution to total energy is

E
(RLDA)
Aex = −3

4

(
3

π

)1/3

e2
∫

r2drρ4/3
p

[
1 − 2

3

(3π2ρp)2/3

M2

]
.

(C6)

APPENDIX D: EXTRAPOLATION WITH RESPECT
TO BOX SIZE

For fixed lcut and εcut, the basis space increases dramatically
as R increases. As shown in the coupled-cluster calculations

with the harmonic oscillator basis, when the ultraviolet
condition is fulfilled, the total energy and radius have specific
relations with the box size R due to the infrared cutoffs induced
by the box boundary condition [115]

ER = E∞ + a0e
−2k∞R, (D1a)

〈r2〉R = 〈r2〉∞[1 − (c0β
3 + c1β)e−β ], (D1b)

where β = 2k∞R, and E∞ and 〈r2〉∞ are the expectation
values of total energy and radius when the box size R is
extrapolated to infinity. Together with k∞,a0,c0,c1, they are
fitted to several calculated points. Now we can evaluate these
relations within the RBHF framework.

We perform the RBHF calculations for 16O with several
different box sizes from R = 4 to R = 7 fm. The results are
shown in Fig. 13, where squares symbols represent the results
calculated by RBHF theory with Bonn A interaction. The
extrapolation of total energy and charge radius is carried out
by using the calculated points from R = 4 to 5.5 fm indicated
with the solid symbols. The corresponding uncertainties are
evaluated by the jackknife resampling method [116]. It is
clearly seen that the calculated points with open symbols,
which are not included in the fit of Eq. (D1), are well located
on the lines of extrapolation.

FIG. 13. Extrapolation of total energy and charge radius with
respect to the box size. Solid points are included in the fit of Eq. (D1),
whereas open points are not. The uncertainties are evaluated by the
jackknife resampling method.
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The extrapolated values of total energy and charge radius of 16O by the RBHF theory with Bonn A interaction are

E = −114.138 ± 0.265 MeV, (D2a)

〈rc〉 = 2.589 ± 0.023 fm, (D2b)

where the uncertainty comes from jackknife resampling.
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