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SUMMARY 

Due to an increase in wine production as well as an intensification of environmental 

legislation in South Africa, the need for guidelines for sustainable management of winery 

wastewater has increased. To address this, the first part of the study focused on the 

seasonal dynamics of the volumes and quality of undiluted winery wastewater. The soil 

chemical dynamics were monitored in two different soils that were irrigated with undiluted 

winery wastewater for three years. Over-irrigation with undiluted winery wastewater in 

combination with winter rainfall caused large amounts of cations, particularly K+ and Na+, 

to leach beyond 90 cm soil depth. Consequently, the leached elements are bound to end 

up in natural water resources over time. Irrigation with undiluted winery wastewater did 

not have a pronounced effect on soil pH(KCl). This was probably due to the decomposition 

of organic matter and the fact that the applied salts as well as dissolved organic or mineral 

acids leached beyond 90 cm depth.  

The practical application of irrigation with diluted winery wastewater was assessed in a 

pot experiment. Irrigations were applied under a rain shelter over four simulated irrigation 

seasons. Four soils varying in texture were irrigated with winery wastewater that was 

diluted to 3000 mg/L chemical oxygen demand (COD). The four soils were irrigated with 

municipal water as a control. The rate of K+ increase in the soil containing 20% clay was 

higher than in soils containing 13% clay, or less. This suggested that heavy soils will 

aggravate the risk of high K+ levels. The risk of Na+ accumulation increased linearly with 

the clay content in the soil. Low Ca2+ and Mg2+ concentrations in the diluted wastewater 

had no effect on the soil, irrespective of clay content. Irrigation with diluted winery 

wastewater increased soil pH(KCl) substantially in all soils over four simulated seasons. 

The soil pH increase was attributed to the addition of organic and mineral salts via the 

diluted winery wastewater to the soil. 

The effect of simulated rainfall on soils irrigated with winery wastewater was also 

assessed in a pot experiment. Six soils with different clay content were irrigated with 

winery wastewater diluted to 3000 mg/L over one simulated irrigation season. Thereafter, 

good quality river water simulating winter rainfall was added to the pots. The rainfall was 

simulated according to the long term averages of the regions were the soils originated. 
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Leaching of cations, particularly K+ and Na+ occurred only from four of the six soils when 

winter rainfall was simulated. In one of the sandy soils, the simulated rainfall was too low 

to allow leaching. In the case of other soil where there was no leaching, high clay content 

of 35% in combination with low rainfall prevented leaching. Where three soils received 

the same amount of rainfall, more cations leached from the sandy soils compared to the 

two heavier soils. These trends indicated that leaching of cations was a function of soil 

texture and rainfall.  
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OPSOMMING 

As gevolg van die toename in wynproduksie, asook ‘n verskerping in 

omgewingswetgewing in Suid-Afrika, het die behoefte vir riglyne vir volhoubare bestuur 

van kelderafvalwater ‘n belangrike aspek van wynproduksie geword. Om dit aan te 

spreek, het die eerste deel van die studie op die seisoenale dinamika van die volumes en 

gehalte van onverdunde kelderafvalwater gefokus. Die grondchemiese dinamika in twee 

verskillende gronde wat met onverdunde kelderwater besproei is,by twee verskillende 

kommersiële kelders oor drie seisoene gemonitor. Oorbesproeiing met die onverdunde 

kelderafvalwater, in kombinasie met winterreënval, het veroorsaak dat groot hoeveelhede 

katione, veral K+ en Na+, dieper as 90 cm gronddiepte geloog het. Die nagevolg hiervan 

is dat die geloogde elemente oor tyd in natuurlike water hulpbronne sal beland. 

Besproeiing met onverdunde kelderafvalwater het nie ‘n noemenswaardige effek op 

grond pH(KCl) gehad nie. Dis was heel waarskynlik te wyte aan die feit dat die organiese 

materiaal ontbind het, en dat die toegediende katione as opgeloste organiese of mineraal 

soute verby 90 cm diepte geloog het.  

Die praktiese toepasbaarheid van besproeiing met verdunde kelderafvalwater is in ‘n 

potproef ondersoek. Besproeiings is onder ‘n reënskuiling oor vier gesimuleerde seisoene 

toegedien. Vier gronde met verskillende teksture is besproei met kelderafvalwater wat tot 

3000 mg/L chemiese suurstof aanvraag (Eng. = chemical oxygen demand, of kortweg 

COD). As ‘n kontrole is die vier gronde met munisipale water besproei. Die K+ toename 

in die grond wat 20% klei bevat het, was hoër as in gronde wat 13% of minder klei bevat 

het. Dit het aangedui dat die risiko van K+ aansameling hoër is in swaarder gronde. Die 

risiko van Na+ toename het reglynig toegeneem met klei inhoud in die grond. Lae Ca2+ 

en Mg2+ konsentrasies in die verdunde afvalwater het geen effek in die gronde gehad nie, 

ongeag die klei-inhoud. Besproeiing met verdunde kelderafvalwater het die grond pH(KCl) 

in al die gronde oor die vier gesimuleerde seisoene betekenisvol laat toeneem. Die pH 

toename in die gronde kon aan die toediening van organiese en mineraal soute deur 

middel van die verdunde kelderwater toegeskryf word.  

Die effek van gesimuleerde winterreënval op gronde wat eers met verdunde 

kelderafvalwater besproei is, is ook met behulp van ‘n potproef ondersoek. Ses gronde 

Stellenbosch University  https://scholar.sun.ac.za



 
 

met verskillende kleiinhoude is vir een gesimuleerde besproeingseisoen met 

kelderafvalwater wat tot 3000 mg/L COD verdun is, besproei. Daarna is gesimuleerde 

winterreënval in die vorm van hoe kwaliteit rivierwater op die gronde toegedien. Die 

reënval is volgens die langtermyn gemiddeldes van die streke waar die gronde 

voorgekom het, gesimuleer. Loging van katione, veral K+ en Na+ het slegs by vier van die 

ses gronde tydens die gesimuleerde winterreënval voorgekom. In die geval van een van 

die sanderige gronde, was die gesimuleerde reënval te min om loging te veroorsaak. In 

die geval van die ander grond waar geen loging voorgekom het nie, het die hoë-klei 

inhoud van 35%, in kombinasie met lae winterreënval, loging verhoed. Waar drie gronde 

dieselfde hoeveelheid reënval ontvang het, het meer katione uit die sanderige grond in 

vergelyking met die twee swaarder gronde geloog. Hierdie tendense het aangedui dat 

loging van katione ‘n funksie van grondtekstuur en reënval is.  
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CHAPTER 1. GENERAL INTRODUCTION AND PROJECT AIMS  

1.1. INTRODUCTION 

In South Africa, the number of wineries increased from under 300 in 1997 to 

almost 600 in 2010. The increases in production of wine has put more pressure 

on the natural resources such as vegetation, water and soil. The rapid growth in 

wine production and the intensification of the land use in most countries that 

produce wine needs to be matched with reducing the environmental impact of 

operations because winery wastewater is the most important aspect in wine 

cellars that could result in detrimental effects on the natural environment 

(Chapman et al., 1995; Gajdos, 1998). Traditionally, wastewaters or effluents 

from wineries and other industries have been disposed of in evaporation ponds 

and in some cases in natural water courses (Chapman, 1995). The deterioration 

of water quality due to the disposal of wastewater into water bodies has resulted 

in the treatment of wastewater through land application all over the world (Cook 

et al, 1994). The increased demand for high quality water together with water 

shortages in arid and semi-arid regions have increased the water challenges to 

water management (Oron et al., 1999). This has led to the development of 

guidelines for the management of wastewater and solid waste at existing 

wineries (Van Schoor, 2005). 

In the past, most wineries in Australia used to dispose of their wastewater by 

means of evaporation and direct discharge into water courses (Chapman et al., 

1995). In South Africa, more than 70% of wine cellars dispose of their 

wastewater by means of land application using irrigation as the primary 

treatment (Van Schoor, 2000). Wastewaters from both distilleries and wineries 

are generated mainly from washing of equipment. In distilleries, wastewater can, 

in addition, be generated through distillation processes (Hazell, 1997). 

Composition of winery wastewater fluctuates on a daily basis and it also depends 

on how various wastewater streams are mixed (Levay, 1995). Besides having 

high contents of suspended solids in the form of grape skins and pips in the case 

of winery wastewater, both winery and distillery effluents have a high biological 

and chemical oxygen demand which could range between 1000-40000 mg/L 

with low pH ranging between 3 and 5 (Mulidzi, 2001). 
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Because of the intensification of environmental legislation, wine growers are 

expected to find solutions for the treatment or the reuse of their winery 

wastewaters (Van Schoor, 2001a). According to some authors, application of 

winery and distillery wastewater may have positive effects on soil. Papini (2000) 

found that direct land application of stillage as irrigation water and as fertilizer 

has positive effects such as: increase in soil pH, increase in water and mineral 

salt retaining characteristics and soil restoration. Although land application of 

winery and distillery wastewaters seems convenient, this practice may also have 

negative impacts on the natural resources, including the soil (Bond, 1998). 

Potential negative impacts include excessive nitrate leaching to the groundwater 

as well as the effects of increasing soil sodicity on current and future land uses 

(Bond, 1998). Increased sodicity may result in negative effects on the infiltration 

rate and hydraulic conductivity of the soil (Cameron et al., 1997). Where there 

are deep sandy soils, leaching of phosphorus to groundwater may be a potential 

limitation to sustainability (Papini, 2000).  

Nitrogen and P may cause eutrophication in aquatic ecosystems in which 

surface waters are nutrient enriched (Dufault et al., 2008). The organic 

component of winery wastewater is of no benefit to the soil to which it is applied, 

instead it poses a serious pollution hazard to the soil and adjacent water bodies 

as it was found that those soils that exhibited a low water holding capacity (high 

permeability soils) could not retain the organic matter at the rates irrigation was 

applied at various wineries (Mulidzi, 2001). According to Bond (1998), soil 

scientists should use their knowledge in developing suitability guidelines for 

wastewater disposal through land application. In South Africa, present 

guidelines for wastewater irrigation are very general and there is an urgent need 

to improve them through predicting soil processes after wastewater irrigation. 

Land resource assessment is very important in determining its suitability for 

wastewater irrigation and the selection of the most suitable land. 

In South Africa, this is the first study of its kind that looked at impact of winery 

wastewater on different soils commonly found in the wine region in order to 

establish suitability for wastewater application. The South African Wine Industry 

has co-funded various projects for the past 10 years in order to develop 

technologies and/or information that will contribute to responsible management 
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of wastewater and more particular the use of winery wastewater by means of 

crop irrigation. Currently, the South African Department of Water and Sanitation 

is investigating the specific General Authorization aimed at wineries in order to 

allow beneficial crop irrigation. This PhD study forms part of the multidisciplinary 

project on the impact of wastewater irrigation by wineries on soils, crop growth 

and product quality which was funded by the Water Research Commission, 

Winetech, THRIP and the Agricultural Research Council.  

The formulated hypotheses for the PhD study is as follows: Different soil types 

with different soil texture will react differently to winery wastewater irrigation. 

Winery wastewater containing high concentrations of cations will increase soil 

potassium and sodium after irrigation. 

1.2. PROJECT AIMS 

The overall aim of the study was to determine the impact of winery wastewater 

on different soils and the suitability of selected soils throughout the Western 

Cape for winery wastewater irrigation. 

Objectives of the study: 

(i)To determine the annual soil chemistry dynamics due to winery wastewater 

irrigation on existing and new grazing paddocks in order to develop 

recommendations for the management of winery wastewater through land 

application. 

(ii)To determine the effect of winery wastewater irrigation on the chemical 

properties of four different soils. 

(iii) Determining the vulnerability of selected soils in the different rainfall areas to 

degradation and excessive leaching after wastewater application. Develop 

recommendations for winery wastewater irrigation suitability’s on high as well as 

low rainfall areas. 
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1.3. STRUCTURE OF THE STUDY 

A literature review on the impact of irrigation with winery wastewater is presented 

in Chapter 2. This chapter also includes the production, composition and 

characteristics of winery effluents. It also covers the soils of the South African 

wine region, effects of wastewater irrigation on soil properties, legal 

requirements and guidelines for sustainable wastewater irrigation. The chapter 

concludes by looking at management systems available for mitigating winery 

wastewater quality. Chapter 3 explains the effect of winery wastewater on a 

grazing paddock that has been irrigated over 15 years and one that has only 

been irrigated with winery wastewater for 3 years. Chapter 4 outlines the design 

of the pot experiment to study the effect of irrigation with diluted winery 

wastewater on four differently textured soils., It describes the experimental 

layout, soil selection, packaging of soils to pots, irrigation system applied as well 

as irrigation volumes and analytical methods used for soil and winery 

wastewater analysis. Chapter 5 explains the effects of irrigation with diluted 

winery wastewater on cations, pH and phosphorus. Chapter 6 discusses the 

effect of simulated winter rainfall on six soils irrigated with winery wastewater. 

The chapter covers soil selection, composition of wastewater, simulated rainfall 

water and amount of rainfall applied. The results and discussion focus on the 

changes to the composition of soils after simulated winter rainfall. Chapter 7 

gives general conclusions and recommendations.  
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CHAPTER 2. LITERATURE REVIEW ON THE IMPACT OF IRRIGATION WITH 

WINERY WASTEWATER 

2.1. INTRODUCTION 

Many countries are, or will shortly be, experiencing water shortages due to a 

combination of climate change and increasing demand for clean water (Sang et 

al., 2007). This shift coincided with an increase in the demand for irrigation water. 

To meet the irrigation demand, the practice of supplementing available water 

with untreated, as well as treated, industrial wastewater was implemented 

(Wang et al., 2007). Water is the most valuable resource that, if not handled with 

care, may lead to enormous shortages of good quality water in arid and semi- 

arid regions in the coming decades due to global climate change (Faisal Anwar, 

2011). In most African and Asian cities, the growth in population has outpaced 

the sanitation and wastewater infrastructure, making it difficult to manage urban 

wastewater (Qadir et al., 2010). Good quality water resources in arid and semi-

arid regions are becoming scarcer due to quality water being prioritized or 

allocated for urban water supply (Jalali et al., 2008).  

The increase in urban population in most developing countries due to residents 

looking for better opportunities results in diversion of larger amounts of fresh 

water to domestic, commercial and industrial sectors, resulting in greater 

volumes of wastewater (Qadir et al., 2010). The shortage of quality water led to 

an increasing demand to irrigate with water contaminated with salts (poor 

quality) such as saline groundwater, drainage water and treated wastewater 

(Jalali et al., 2008). Irrigation in arid and semi-arid regions throughout the world 

has been linked with an increase in the salts concentration in the soil (Walker & 

Lin, 2008). The high demand for water in the agricultural sector has resulted in 

an increase in the reuse of treated and untreated municipal and industrial 

wastewaters (Wang et al., 2007). Previous studies have indicated that 

wastewater irrigation has the potential to change soil properties (Wang et al., 

2007). The capacity of the soil to handle an excess amount of water load will 

depend upon factors such as effluent composition, irrigation method, soil types 

and irrigation frequencies (Mulidzi, 2001). The environmental impact of irrigation 

with partially or treated wastewater has not yet been widely investigated (Cook 

et al., 1994). Due to the intensification of environmental legislation, wine growers 
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are expected to find solutions for the treatment or the re use of their winery 

wastewaters (Van Schoor, 2001a). The objective of this literature review is to 

discuss the production, composition, treatment and application of winery 

wastewater to land. 

2.2. PRODUCTION AND COMPOSITION OF WINERY WASTEWATER 

Wine is produced by crushing and fermentating grapes which is then followed 

by the straining of skins and seeds, storage, clarification and maturation of the 

young wines (Mulidzi, 2001). This process is given schematically in Figure. 2.1. 

 

 

 

Figure 2.1. A schematic diagram of the general winemaking procedure followed 

in most wineries (Vlyssides et al., 2005). 

According to Laurenson et al. (2010), wastewater generation is an inevitable 

aspect of wine production processes. Most wineries produce approximately 5 

kiloliters of wastewater per ton of grape crushed (Chapman et al., 1995).  
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Winery wastewater is composed of mostly cleaning waste because wineries 

need to maintain cleanliness to avoid microbial contamination and spoilage 

(Mulidzi, 2001) In contrast, wastewater created by distilleries is generated 

through distillation processes (Hazell, 1997). Some water containing alkali salts 

is used in order to remove tartrates and other organic acids from inside the 

equipment as well as promoting earth filtering and ion exchange processes 

(Mulidzi, 2001). According to Chapman et al. (1995), winery wastewater comes 

from a number of sources that include: cleaning of tanks, ion exchange columns, 

hosing down of floors and equipment, barrel washing, spent wine and product 

losses, bottling facilities, filtration units, laboratory wastewater and storm water 

diverted into, or captured in the wastewater management system. Wine 

production is seasonal and can be divided into various stages (Table 2.1). 

Composition of winery wastewater can even fluctuate on a daily basis, and also 

depends on how the various wastewater streams are mixed (Levay, 1995). 

Besides having a high content of suspended solids in the form of grape skins 

and pips in the case of wineries, effluents also have a high biological and 

chemical oxygen demand (COD) which can range from 1000 mg/L to 40000 

mg/L. These values are in line with winery wastewater from Greece with COD of 

3112 mg/L for white wines while for red wines it was in the range of 3997 mg/L 

(Vlyssides et.al., 2005). In addition, winery wastewater pH can be very low, and 

ranges between 3 and 5 (Mulidzi, 2001).  However, most winery wastewater is 

characterized by high pH and high monovalent cation concentrations, in 

particular Na+ and K+. These two cations originate from potassium hydroxide 

(KOH) and sodium hydroxide (NaOH) detergents which are used for cleaning 

purposes (Lieffering & McLay, 1996). 

Wine making processes results in generation of wastewaters of different 

quantities and qualities (Van Schoor, 2005). Winery wastewater and vinasse 

from Greece showed an acidic pH and high organic load. This combination 

makes the management of these wastes problematic hence different strategies 

need to be developed in order to reduce environmental risks (Bustamante et al., 

2005). The effect of winery wastewater on legal quality parameters is 

summarized in Table 2.2. 
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Table 2.1 Description of winery wastewater generation and production periods at wineries (after Chapman et al., 2001). 

Period Typical months of 

the year1 

Description 

Pre-vintage January-February Bottling, caustic washing of tanks, non-caustic washing of equipment in readiness for vintage 

Early vintage February-March Wastewater production is rapidly rising to peak vintage flows and has reached 40% of the 

maximum weekly flow; vintage operations dominated by white wine production 

Peak vintage March-May Wastewater generation is at its peak; vintage only operations are at a maximum 

Late vintage April-June Wastewater production has decreased to 40% of the maximum weekly flow; vintage operations 

dominated by production of red wines; distillation of ethanol spirit may coincide with this period 

Post vintage May-September Pre-fermentation operations have ceased; effect of caustic cleaning, ion exchange etc. is at its 

greatest, and wastewater quality may be poor. 

Non-vintage June-December Wastewater generation is at its lowest-generally less than 30% of maximum weekly flows 

during vintage; wastewater quality is highly dependent on day by day activities 

1 In the southern hemisphere 
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Table 2.2. Major processes related to winery wastewater generation and their 

associated contribution to wastewater quality and quantity (after Van Schoor, 

2005). 

Winery operation Contribution to 

total 

wastewater 

quantity 

Contribution to 

wastewater quality 

Effect on legal 

wastewater 

quality 

parameters 

Cleaning water    

Alkali washing 

(removal of K-

bitartrate) and 

neutralization 

 

Rinse water (tanks, 

floors, transfer 

lines, bottles, 

barrels, etc) 

Up to 33% 

 

 

 

 

Up to 43% 

Increase in Na+, K+, 

COD and pH 

 

 

 

Increase in Na+, P, Cl- 

and COD 

Increase in EC(1), 

SAR(1), COD(1) 

Variation in pH 

 

 

Increase in EC, 

SAR, COD 

Variation in pH 

Process water    

Filtration with filter 

aid 

 

Acidification and 

stabilization of 

wine 

 

Cooling tower 

waste 

Up to 15% 

 

Up to 3% 

 

 

Up to 6% 

Various contaminants 

 

NaCl 

 

 

Various salts 

Increase COD and 

EC 

 

Increase COD and 

EC 

Decrease in pH 

 

Increase COD and 

EC 

Other sources    

Laboratory 

practises 

Up to 5-10% Various salts, 

variation in pH, etc 

Increase COD and 

EC 

(1) EC= Electrical conductivity; SAR= Sodium adsorption ratio; COD= Chemical 

oxygen demand; NaCl=Sodium chloride  
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According to Levay (1995), winery wastewater contains the following: 

 Simple organic acids, sugars and alcohols from grapes and wine. As a 

result, the wastewater has a high requirement for oxygen for biological 

decay. 

 Moderate salinity, high concentrations of Na+ relative to Ca2+ plus Mg2+ 

and low amounts of nitrogen and phosphorus relative to carbon. 

 Inorganic components from the water supply, alkali wash waters and 

processing operations. Chemical fertilizers, pesticides and herbicides 

used in producing grapes are insignificant components of the effluent. 

 Appreciable amounts of sulphur. 

2.3. CHARACTERISTICS OF WINERY WASTEWATER 

When a person wants to irrigate more than 10m3 of winery wastewater, that 

person must register as a water user and up to 500m3 may be irrigated per day 

if limits in Table 2.3 are met (Van Schoor, 2001a). When the COD of the 

wastewater is more than 400 mg/L but less than 5000 mg/L, 50 m3 on any given 

day can be used for irrigation without a license. However, the water user may 

irrigate only above the 100-year flood line and no contamination to the surface 

or groundwater is allowed (Van Schoor, 2001a). It should be noted that in the 

legislation, there is no specified norm for the area that the water should be 

irrigated on. 

Table 2.3. Limits for chemical oxygen demand (COD), faecal coliforms, pH, 

electrical conductivity (EC) and sodium adsorption ratio (SAR) for irrigation with 

wastewater in South Africa (after Myburgh & Howell, 2014). 

Parameter Maximum irrigation volume allowed (m3/day) 

< 50 < 500 < 2000 

COD (mg/L) 5 000 400 75 

Faecal coliforms (per 100 ml) 1 000 000 100 000 1 000 

pH 6-9 6-9 5.5-9.5 

EC (mS/m) 200 200 70-150 

SAR <5 <5 Other criteria 
apply 
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2.3.1. Biological oxygen demand (BOD) 

A waste is normally characterized according to the effect its various 

contaminants have on the sewer or receiving waters (Gajdos, 1998). The BOD 

can be defined as a measure of organic waste that can be utilized by bacteria. 

While doing so, the bacteria utilizes oxygen thereby de-oxygenating the wastes, 

creating anaerobic conditions (Mulidzi, 2001). The disposal of untreated winery 

effluent can deplete soil oxygen thereby leading to anaerobic conditions in the 

soil (Levay, 1995). Prolonged anaerobic conditions have the potential to reduce 

the capability of soil microorganism’s  to decompose organic matter from winery 

wastewater leading to surface and groundwater pollution (Mulidzi, 2001). 

2.3.2. Chemical oxygen demand (COD) 

Chemical oxygen demand in winery wastewater can be defined as organic 

compounds that include organic acids, alcohols (ethanol) and phenolic 

compounds that has the ability to consume oxygen when they are degraded 

(Duncan et al., 1994). The phenolic compounds because of their ring structure, 

polymerize into long chained compounds that take long to degrade or treat 

(Shepherd & Grismer, 1997). Winery wastewater is mostly characterized by very 

high COD which is more than 15000 mg/L during vintage periods (Mulidzi, 2001). 

The high COD creates problems for discharging or disposal of wastewater 

(Shepherd & Grismer, 1997). 

2.3.3. pH 

Normally the pH of winery wastewater varies with relative concentrations of 

organic acids and caustic cleaning wastes which change quickly (Table 2.2). 

The pH of winery wastewater ranges between 4 and 8, but it is normally below 

5.5 (Levay, 1995). The pH of winery wastewater depends on the activities within 

the cellar i.e. during vintage period when the crushing of grapes is taking place, 

the pH is mostly acidic but during non-vintage periods such as bottling, pH 

normally ranges between 5 and 8 (Levay, 1995). Most of the wineries use 

calcium hydroxide slurry to adjust the pH at the storage dam before irrigation 

(Hazell, 1997). The source of low pH in winery wastewater is the citric acid that 

is used to dissolve tartaric crystals (Van Schoor, 2000). The South African 
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General Authorization requires wastewater pH to be between 6 and 9 when 

irrigating (Table 2.3). 

2.3.4. Sodium adsorption ratio (SAR) 

The SAR indicates concentrations of Na+ relative to Mg2+ and Ca2+ and the 

potential effects of Na+ on soil structure (Levay, 1995). An excessive amount of 

Na+ in winery wastewater relative to Ca2+ and Mg2+ has the ability to reduce the 

rate at which water moves into and through the soil as well as soil aeration 

(Ryder, 1994). The South African General Authorization stipulates that the SAR 

must not exceed 5 when irrigating with winery wastewater (Table 2.3).  

2.4. SOILS OF THE SOUTH AFRICAN WINE REGION 

The South African wine grape production region can be divided into four 

geographical zones i.e. Coastal, Breede River, Olifants River and Orange River 

regions (Bargmann, 2005). The three main soil types occurring predominantly in 

these vineyards are: residual and colluvial soils (soil movement had occurred 

due to weathering and chemical breakdown of local bedrock), alluvial soils (soils 

that have been deposited through action of water, mostly river waters) and 

aeolian soils (these sandy soils are deposited by wind action). Most soils in the 

Western Cape where vineyards are planted are low in P with the exception of 

soils along the Olifants River. Soils in the Coastal regions are dominated by the 

kaolin and sesquioxides clay minerals with increasing acidity while the inland 

soils are not acidic, and in most cases, contain free lime (Saayman, 2013). 

2.5. EFFECTS OF WASTEWATER APPLICATION TO SOIL BY MEANS OF 

IRRIGATION OR PONDING ON SOIL PROPERTIES 

Irrigation of winery wastewater has numerous effects on the soil’s chemical and 

physical properties. This section of the literature review summarizes the major 

findings of previous studies. 

2.5.1. Soil pH  

Soil pH is one of the most important chemical properties of soils as it affects 

numerous chemical reactions, physical stability as well as plant nutrient 

availability. Application of winery wastewater has been shown to have a 

substantial effect on soil pH. A pH increase leads to an increased dissolution of 
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organic matter which can induce dispersion in the soil (Faisal Anwar, 2011). High 

or low pH can lead to toxicity in macro- and micro-organisms as well as heavy 

metals solubility (Table 2.4). According to Lieffering and McLay (1996), soil pH 

and exchangeable Na+ tend to increase when wastewater with high pH as well 

as high Na+ concentrations has been used for irrigation. The accumulation of 

monovalent cations on the exchange sites has the ability to affect soil structure 

through clay dispersion and deflocculation processes. The presence of 

hydroxide solutions in wastewater has the ability to increase the soil cation 

exchange complex (CEC). High concentration of grey water contributes to higher 

EC due to the presence of salts in cleaning detergents (Faisal Anwar, 2011).  

Table 2.4. Contaminants in winery wastewater, origins and likely 

environmental effects (after Kumar and Christen, 2009). 

Contaminant 
class  

Examples  Sources  Effects  

Organics  Phenols, tannins, 
catechins, proteins, 
fructose, glucose, 
glycerol, ethanol, 
flavourings, citric acid, 
ethyl carbamate  

Loss of juice, wine and 
lees, residues in 
cleaning waters and 
filters, solids reaching 
drains  

Organism deaths, 
ecological function 
disruption, Odours 
generated by 
anaerobic 
decomposition, 
solubilisation of 
sorbed nutrients and 
heavy metals. Soil 
clogging  

Nutrients  Nitrogen, Phosphorous, 
Potassium  

Loss of juice, wine and 
lees, washings and ion 
exchange  

Algal blooms, excess 
nitrate in water, high 
SAR  

Salinity  Sodium chloride, 
Potassium chloride  

Juice and wine, cleaning 
agents  

Affects water taste, 
toxic to plants and 
animals  

Sodicity  Sodium, potassium  Washing water  Degrades soil 
structure, toxicity to 
plants  

Heavy metals  Al, Cd, Cr, Co, Cu, Ni, 
Pb, Zn, Hg  

Al, Cu, piping and tanks, 
Pb soldering, brass 
fittings  

Toxic to plants and 
animals  

pH effects  Organic, sulphuric and 
phosphoric acids, 
sodium, magnesium and 
potassium hydroxides  

Loss of juice, wine and 
lees, cleaning agents, 
wine stabilisation  

Toxicity to macro and 
micro organisms, 
effect on solubility of 
heavy metals  

Disinfectants  Sodium chloride, 
Sodium hypochlorite,  

Sterilization of tanks, 
bottles, transfer lines  

Formation of 
carcinogens  

Soil cloggers  Microbial cells and 
grape residues, 
flocculating/coagulating 
agents, bentonite, 
diatomaceous earth  

loss of lees and marc, 
floor cleaning, filtering, 
wastewater sludge  

Reduction in 
porosity, light 
transmission, odour 
generation  
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2.5.2. Salinity 

Salinity can be defined as soils with excess soluble salts in the soil solution 

thereby reducing growth of most crops. Wastewater irrigation leads to the 

addition of large amounts salts in the soil (Bond, 1998). In Australia, an annual 

application of 1000 mm of water with salinity of 500 mg/L of TDS adds 5 tons of 

salt per ha per year to the soil. To ensure sufficient leaching,of the accumulated 

salts, the soil should be permeable and this should be essential selection criteria 

for wastewater irrigation (Bond, 1998). Wastewater irrigation should be 

managed in a way that salts do not accumulate in the root zones and become 

toxic to plants (Table 2.4). 

2.5.3. Sodicity 

Soils characterized by high Na+ concentrations in their CEC usually have an 

exchangeable sodium percentage (ESP) of more than 15%. Winery wastewater 

contains high concentrations of Na+ relative to other cations and this could lead 

to degradation of soil structure (Table 2.4). High level of SAR in wastewater 

cause the ESP in the soil to increase (Bond, 1998).  

High ESP causes to the deterioration of soil physical properties such as clay 

dispersion leading to soil structure breakdown, soil pore blockage and a 

decrease in permeability of the soil. Soil sodicity increases from wastewater 

irrigation may cause problems following cessation of irrigation and possibly 

change in land use (Bond, 1998).  

2.5.4. Potassium  

Potassium is one of essential nutrients found in soils for plant growth and it is a 

soil mineral highest in well drained or aerated soils. The land application of 

winery wastewater results in the accumulation of K+ in soil and leaching of Ca2+ 

and Mg2+ could lead to soil structure instability in the long term (Bond, 1998). 

The replacement of bivalent ions such as Ca2+ and Mg2+ by the monovalent ones 

like K+ during repeated irrigation can potentially lead to soil structural breakdown 

thereby affecting the soil hydraulic conductivity (Mosse et al., 2011). Long term 

application of winery wastewater on pastures resulted in build-up of available K+ 

levels that has the potential to leach to the groundwater and other water sources 

(Christen et al., 2010). Although the effects of high K+ ions applied to soil have 
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not been researched extensively, it has been suggested that irrigation with 

potassium-rich wastewater could be advantageous to overall soil fertility but the 

long term application could result to alteration in the physico-chemical soil 

properties (Mosse et al., 2011). 

2.5.5. Clay dispersion and crusting 

According to Sumner (1993), the likelihood of soil structural breakdown 

increases with soil pH increase, decreasing organic matter, increasing 

proportion of smectitic and illitic clays and increasing mechanical disturbance. 

Clay, organic matter and higher CEC in soil have effects on adsorption and 

protection of zinc and other elements but in soils with lower cation exchange 

capacities, the heavy metals are mostly adsorbed by plants (Bahmanyar, 2008). 

2.5.6. Soil hydraulic conductivity 

The movement of water through the soil is mostly measured as hydraulic 

conductivity (Hillel, 1980). Soil texture, pore continuity and proximity to water 

tables are some of the factors that determine the capacity of soil drainage which 

can assist to determine if the soil is suitable for land application of wastewater 

(Laurenson & Houlbrooke, 2012). According to Hillel (1980), sandy soil will have 

greater drainage capacity than the clay fine silt soils because, in general, finer 

soil texture has less pore continuity. To avoid loss of nutrients through deep 

drainage as well as surface runoff, the depth of winery wastewater irrigation 

during the time of application should be less than the soil water deficit (South 

Australian EPA, 2004). 

2.5.7. Factors affecting infiltration rate and hydraulic conductivity 

Winery wastewater contains many attributes that have the potential to reduce 

the hydraulic conductivity and infiltration rate of the soil on which it is irrigated 

(Magesan et al., 2000). Sodicity can cause the swelling and dispersion of clays 

resulting in changes to pore geometry thereby affecting hydraulic conductivity 

(Halliwell et al., 2001). Soil hydraulic conductivity and infiltration rate can be 

reduced through physical blocking of soil pores as a result of a high amount of 

suspended solids during continuous land application of wastewater (Magesan et 

al., 2000). According to Halliwell et al.(2001), repeated irrigation with wastewater 
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containing suspended solids may result in the formation of restricting layer that 

can decrease the infiltration rate of the soil.  

Halliwell et al. (2001) reported that wastewater irrigation causes reduction in soil 

hydraulic conductivity due to the following: 

 Accumulation of suspended solids at the soil surface 

 Blockage of the inter-soil spaces by suspended material such as colloidal 

clay and algal cell particles. 

 Entrapped air bubbles. 

 Formation of a biological mat or crust. 

 Biological clogging including microbial extracellular polymeric materials 

such as polysaccharides. 

 Collapse of soil structure due to organic matter dissolution. 

2.6. DISPOSAL OF WINERY WASTEWATER THROUGH LAND 

APPLICATION  

2.6.1. Background 

More than 90% of wineries in South Africa dispose of their effluent by means of 

land application (Van Schoor, 2005). In order for the land treatment of winery 

wastewater to be sustainable, the treatment must have the ability to retain waste 

constituents in the soil and be effective in plant uptake of nutrients and 

contaminants that have been applied (Laurenson & Houlbrooke, 2012). If the 

conditions of the soil are suitable, the irrigation of crops with wastewater through 

land application could be practiced successfully if the salinity of the wastewater 

is low enough (Christen et al., 2010). The improvement of wastewater is needed 

in order to minimize health and environmental risks associated with wastewater 

irrigation. The effectiveness of wastewater reuse and disposal depends on the 

soil properties as well as the irrigation technology (Oron et al., 1999). Disposal 

of winery wastewater through land application has been practiced for many 

years as a treatment process, although it seems convenient, this practice may 

have a negative impact on the natural resources including the soil (Bond, 1998).  

Papini (2000) found that direct land application of stillage as irrigation water and 

as fertilizer has positive effects such as an increase in soil pH, increase in water 

and mineral salt retaining characteristics, and restoration as well as 
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maintenance of soil micro flora. The application of winery wastewater rich in 

soluble organic carbon to soils can, on the one hand lead to increased soil fertility 

through the conversion to soil organic matter while, on the other hand lead to 

the overloading of organic carbon which will be detrimental to soil health (Mosse 

et al., 2011). 

2.6.2. Effects of land application 

A survey by Mulidzi et al. (2009b) concluded that wineries differ regarding 

potential environmental hazard caused by their wastewater due to composition 

of effluents as well as the effectiveness regarding disposal practices and 

suitability of the disposal site. Wineries where Na+ based cleaning agents such 

as sodium hydroxide are used, produce wastewater which can result in the 

accumulation of Na+ in the receiving environment especially when the 

wastewater is discharged to the land (Mosse et al., 2011). Disposal of 

wastewater through land application on poorly drained soils will lead to 

salinisation and water logging thereby affecting the long-term sustainability of 

the site on which it is applied (Christen et al., 2010). Soil microorganisms also 

play an integral part of sustainable ecosystems and therefore any changes to 

microbial population as a result of winery wastewater irrigation need to be 

considered (Mosse et al., 2011). 

In a recent study, the organic component of winery wastewater was of no benefit 

to the sandy soil to which it was applied (Mulidzi, 2001). Furthermore, soils that 

exhibited a low water holding capacity (high permeability soils) could not retain 

the organic matter at the rates that irrigation was applied at various wineries. 

Therefore, the application of winery wastewater to such soils poses a serious 

pollution hazard to the soil and adjacent water bodies. Although information on 

the impact of high K+ concentration on soils is not available, there is the 

possibility that it could reduce the hydraulic conductivity of the soil on which it is 

applied (Mosse et al., 2011). 

Improvements in the quality of water can be achieved in many developing 

countries, including South Africa, through primary treatment of wastewater 

especially where wastewater is used for irrigation (Mulidzi, 2001). Low cost 

treatment systems such as constructed wetlands and waste-stabilization ponds 

Stellenbosch University  https://scholar.sun.ac.za



18 
 

 

could also be helpful as secondary treatment systems (Qadir et al., 2010). The 

integrating management of wastewater reuse in order to reduce or minimize 

treatment costs and improving agricultural productivity is gaining interest in 

many countries (Qadir et al., 2010).  

Within the framework of integrated natural resources, wastewater from different 

industries can be viewed as both effluent and a renewable resource. Most public 

authorities often do not have enough information and knowledge regarding the 

technical and management options available for minimizing and reducing 

environmental risks associated with wastewater irrigations (Qadir et al., 2010).   

2.6.3. Use of winery wastewater for crop irrigation 

In South Africa, most wineries dispose of their effluent through irrigation of 

pastures in grazing paddocks. A study by Zingelwa and Wooldridge (2010) found 

that winery wastewater which contained Na+ concentrations of less than 400 

mg/L did not have negative effect on the physiological status of vetiver and 

kikuyu grasses. In California, stored winery wastewater was used for vineyard 

irrigation during spring and summer (Ryder, 1994). More recently irrigation of 

Cabernet Sauvignon grapevines with winery wastewater diluted to 3000 mg/L 

and having SAR value of less than 10 did not have any effect on wine quality 

(Myburgh & Howell, 2014). 

2.7. LEGAL REQUIREMENTS AND GUIDELINES FOR SUSTAINABLE 

WASTEWATER IRRIGATION 

A survey on the composition of effluents from wineries in the Western and 

Northern Cape Provinces by Mulidzi et al. (2009a) found that none of the ten 

participating wineries complied with required environmental standards during the 

sampling period. According to Van Schoor (2001b), South African legislation 

requires that wine cellars adopt wastewater audit procedures as they do not 

have historic records of quality and volumes of their wastewater. Monitoring of 

wastewater impact on water resources, soil and vegetation should be 

compulsory (Van Schoor & Rossouw, 2004). A study investigating the 

sustainable use of greywater as an alternative water source for irrigation of 

gardens and small scale agriculture in South Africa found that, although there 

are no specific guidelines regarding greywater except the general wastewater 
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which is governed by the National Water Act (NWA), of 1998, local authorities 

such as City of Cape Town have introduced policies which are still in draft stages 

(Rodda et al., 2011).  

The South African irrigation guideline for agricultural water use require an SAR 

range of less than 2 to avoid sodium toxicity developing in plants sensitive to 

sodium whereas the EC should be less than 20 mS/m to ensure adequate 

infiltration rate. The recommended pH for irrigation water for agriculture should 

range from 6.5 to 8.4 (DWAF, 1996). 

2.8. MANAGEMENT SYSTEMS FOR MITIGATING WINERY WASTEWATER 

QUALITY 

According to Van Schoor (2001a), South African legislation does not permit the 

disposal of untreated winery wastewater into the natural water resources, which 

pressurized wine producers to manage their wastewater in a responsible 

manner. For the past ten years, the South African wine industry has invested 

money into research towards the sustainable treatment and management of 

winery wastewater (Mulidzi, 2005).  

2.8.1. Constructed Wetlands 

Constructed wetlands can be defined as natural wastewater treatment systems 

that have the potential to combine biological, chemical and physical treatment 

mechanisms for the improvement of water quality (Crites et al., 1991). The 

rationale behind the use of constructed wetlands for treating winery wastewater 

is that wetlands are biological active ecosystems (Shepherd, 2002). According 

to Mulidzi (2005), the use of a constructed wetland to treat winery and distillery 

wastewater reduced the COD of the wastewater by c. 83% after only 14 days. A 

similar study resulted in 60% COD removal after seven days retention time 

(Mulidzi, 2006). Similar results were reported where constructed wetlands were 

used in California (Mulidzi, 2005). Constructed wetlands require low capital 

when compared to other treatment systems and they provide aesthetic value as 

well as habitat for wild life (Shepherd, 2002). 

2.8.2. Up- flow anaerobic sludge blanket (UASB) 

UASB involves the fermentation of organic matter into fatty acids that are 

volatile, alcohols, di-hydrogen and carbon dioxide by acidogenic bacteria 
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(Moletta, 2003). Wastewater that needs treatment is introduced in the bottom of 

the reactor and flows upward through a sludge blanket composed of biologically 

formed granules. The treatment process occurs when wastewater comes in 

contact with granules (Muller, 1998). The system is popular for biggest 

distilleries and wineries in France (Moletta, 2003). The micro-organisms are 

stored in the granules which are later suspended by the biogas produced as a 

result of by wastewater recirculation (Muller, 1998).  The system had the ability 

to achieve COD removal of more than 90% and it can handle large quantities of 

wastewater but it needs trained personnel (Moletta, 2002). 

2.8.3. The aerobic treatment system 

For this type of treatment system, automatic machines supply air into the 

wastewater after every twenty or thirty minutes (Bloor et al., 1995). The 

technique application is limited to aerobic reactors only because of their 

capabilities to supply oxygen at a very low cost for the oxidation of organic matter 

to take place (Petruccioli et al., 2002). The system is used for large and medium 

size class wineries and is very effective in terms of COD removal (Eusebio et 

al., 2004).  
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CHAPTER 3. ANNUAL DYNAMICS OF WINERY WASTEWATER VOLUMES 

AND QUALITY AND THE IMPACTS OF DISPOSAL BY MEANS OF 

IRRIGATION ON SOILS 

3.1. INTRODUCTION 

Increasing wine production over the last two decades has necessitated wine 

producing countries to find sustainable winery wastewater management 

practices that address environmental concerns (Arienzo et al., 2012). The use 

and availability of wastewater for irrigation has increased globally and the 

disposal of wastewater is governed by stringent legislations (Arienzo et al., 

2009a). Most wineries in South Africa dispose of their wastewater through land 

application (Van Schoor, 2001b). This is carried out by irrigating small areas of 

cultivated pasture with the wastewater or ponding, with the former being the 

more general practice (Mulidzi, 2001).  

The use of winery wastewater for wine grape production is increasing, and it is 

therefore important to understand the environmental implication of such a 

practice (Laurenson et al., 2012). Land application of winery wastewater results 

in the accumulation of K+ and Na+ in the soil and leaching of Ca2+ and Mg2+, 

which could lead to the long term instability of soil structure (Mosse et al., 2011). 

The replacement of bivalent ions such as Ca2+ and Mg2+ by monovalent ones 

such as K+ and Na+ during continuous or long term repeated irrigation can 

potentially lead to the breakdown of the soil structure, thereby affecting the 

hydraulic conductivity of the soil (Lieffering & McLay, 1996). Long term 

application of winery wastewater on pastures resulted in the build-up of available 

K+ levels that had the potential to leach into the groundwater and other water 

sources (Christen et al., 2010). Although the effects of having high K+ 

concentrations in winery wastewater applied to the soil have not been 

researched extensively, it has been suggested that irrigating with K-rich 

wastewater could be advantageous to overall soil fertility, but long term 

application could result in the alteration of physicochemical soil properties 

(Mosse et al., 2011). A study by Arienzo et al. (2012) on effects of Na+ and K+ 

on soil hydraulic conductivity at a winery wastewater disposal site found that 

application of wastewater with high amounts of K+ and Mg2+ resulted in loss of 

soil structural stability, as well as reduced hydraulic conductivity.  
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The current trend to replace sodium hydroxide with potassium based cleaning 

detergents in the cellars has the ability to increase levels of potassium in winery 

wastewater (Arienzo et al., 2012). Accumulation of high levels of potassium in 

the soil is also regarded as a potential problem by regulators and the wine 

industry, because of the negative effect on soil structure and salt accumulation 

(Mulidzi et al, 2009b). According to Arienzo et al. (2009a), disposal of winery 

wastewater through land application has the potential to increase levels of 

soluble K+ and the potassium exchange percentage (EPP) in soils since most 

K+ in wastewater is immediately available. Soils with low clay content retained 

less K+ in the exchangeable form, while soils with higher clay content retained 

K+ to a much greater extent (Smiles & Smith, 2004). Another study showed that 

application of winery wastewater with K+ and Na+ concentration of about 400 

mg/L on pastures and woodlots resulted in accumulation of available K+ levels 

of 1400 mg/kg over a long term (Kumar & Kookana, 2006).  

The actual amounts and the ratios between the four dominant basic cations, 

namely Ca2+, Mg2+, K+ and Na+, adsorbed on the soil exchange complex are 

important with regard to soil chemical and physical conditions, as well as plant 

nutrition. Adequate potassium is, for example, important for grapevine 

performance and K+ deficiencies will cause low yields (Raath, 2012). On the 

other hand, excessive K+ levels cause poor wine quality in terms of low acidity 

and poor colouring of red wines (Kodur, 2011). The K+ exchange reactions with 

Ca2+, Mg2+ or Na+ on clay minerals and soils have been extensively studied. 

Some studies have shown soil preference for K+ over Ca2+, Mg2+ and Na+ 

(Arienzo et al., 2009a). Although limited research data exist on the effects of K+ 

on structure stability, it seems that high levels of exchangeable K+, similar to 

Na+, can reduce soil hydraulic conductivity and water infiltration rate (Quirck & 

Schofield, 1955). The exchangeable cation composition in the soil is extremely 

important due to the different impacts of different cations with regard to 

dispersion and flocculation of soil colloids. Dispersion leads to degradation of 

soil structure, which causes problems such as soil crusting (surface sealing) and 

slaking that can lead to low water infiltration rates, low hydraulic conductivity, 

poor aeration, poor root development and functioning (Laker, 2004). High levels 

of Na+ in the soil causes soil dispersion. Dispersion actually occurs when high-
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Na soils are irrigated with fresh relatively low salinity water. It was previously 

believed that problems occur only at exchangeable sodium percentage (ESP) 

above 15. Research in Australia and South Africa has shown that in some soils 

Na+ causes problems at much lower ESP values, even as low as 5, with the 

critical value varying between soils (Arienzo et al., 2009b; Bond, 1998; Laker, 

2004).  

Application of winery wastewater that contains high concentrations of 

bicarbonate cleaning products has the potential to increase soil pH when applied 

to land (Laurenson & Houlbrooke, 2012). Soil pH increase due to crop residues 

application is attributed to addition of cations such as K+, Na+, Mg2+ and Mg2+ 

with plant materials (Yan et al., 1996). Disposal of winery wastewater containing 

high levels P can increase the concentration of dissolved P in runoff. This risk is 

greatest when rainfall or irrigation occurs immediately after application (Mulidzi 

et al., 2009b). Only few, plant species require more than 50 mg/kg soil P 

(Bingham, 1966). High levels of soil P due to winery wastewater application 

could create problems such as poor nodulation in legumes, zinc and copper 

deficiencies, as well as interference with sugar metabolism (Mulidzi et al., 

2009a). When high levels of plant available P from the wastewater reach the 

fresh water streams, phosphate and organic phosphates are released. The latter 

can be assimilated by algae, plants and bacteria. Such water poses health 

hazard to humans (Corell, 1998). 

In terms of the Department of Water Affairs General Authorisations (2013), most 

of South African wineries would not qualify to discharge their untreated 

wastewater into natural water resources. Where the disposal of winery 

wastewater is through land application, the following requirements as stipulated 

in the General Authorization must be met. 

Up to 500 m3 of wastewater may be irrigated for crop production, including 

grazing, on any given day provided that: 

 The electrical conductivity (EC) is less than 200 (mS/m). 

 The pH is between 6 and 9. 

 The sodium adsorption ratio (SAR) does not exceed 5. 
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 The chemical oxygen demand (COD) is less than 400 mg/L. If the COD is 

higher than 400 mg/L, but less than 5 000 mg/L, irrigation (after registration) 

may not exceed 50 m3 on any given day. 

The composition of winery wastewater changes throughout the year. The large 

variability in volume and concentration of winery wastewater is associated with 

different practices that occur during different times of the year. Winery 

wastewater quality is usually at its worst when vintage operations are dominated 

by the production of red wines (Conradie et al., 2014). High pollution loads from 

July until November are associated with bottling of white wines, putting red wines 

to barrel and the filtering of previous year’s red wines. In the Southern 

hemisphere, harvest is from end of January until beginning of April. Winery 

wastewater produced during harvest will typically contain higher levels of COD 

and salts than wastewater produced outside the harvest period (Kumar & 

Christen, 2009). Concentrations of COD and salts in winery wastewater fluctuate 

according to winery operations, and reaches a maximum when grapes are 

crushed (Laurenson et al., 2010). The lowest COD values usually occur in 

December and January (pre-harvest) and June and July (mid-winter) (Mulidzi et 

al., 2009b). Peak periods of wastewater generation, as well as maximum levels 

of COD tend to coincide with peak harvest periods. Variation in the period of 

high COD reflected local differences in harvest period (Mulidzi et al., 2009a). 

This variation also depends on the production period, as well as the unique style 

of winemaking of different wines. It must be noted that winery wastewater 

concentrations actually vary on a daily basis within a winery depending on the 

activities occurring at the time. The variation in concentrations is also determined 

by the amount of clean water used for specific processes, e.g. cleaning the floors 

and tanks. This work is unique as it focuses on real amount of winery wastewater 

applied per week and its direct environmental impact to a specific site. 

The objective of this chapter is to investigate the annual dynamics of winery 

wastewater volumes and quality as well as the effect of winery wastewater 

irrigation on the chemical soil properties and potential environmental impacts at: 

(i) an existing grazing paddock at a winery near Rawsonville where wastewater 

has been applied for many years and (ii) a new paddock at a winery near 

Stellenbosch where no wastewater had previously been applied. 
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3.2. MATERIALS AND METHODS 

3.2.1. Sites and soils 

The experiment was carried out at two different sites, namely (i) at a winery near 

Rawsonville in an existing cultivated pasture grazing paddock where winery 

wastewater had been applied for over 15 years (-33.4137.7° 19.1920.3°) and (ii) 

at a winery near Stellenbosch in a newly cultivated pasture grazing paddock 

where no winery wastewater had been applied before (-33.4958.6° 18.4759.9°). 

Both sites are in the centre of wide flat plains. The grazing paddock at the 

Rawsonville winery had been irrigated with wastewater for more than 15 years. 

This site was considered to be representative of winery wastewater disposal 

through land application as practiced by most wineries in South Africa. The 

winery near Rawsonville annually crushes ca. 22 000 tons of grapes, whereas 

the one near Stellenbosch crushes 16 000 tons.  

3.2.2. Characteristics of the soil at the Rawsonville site 

The soils around Rawsonville were formed from the alluvium of the Breede 

Riverand are relatively young. The soil at the site selected for the study showed 

no clear stratification and contained a mottled subsoil, thus qualifying it for 

inclusion in the Longlands soil form (orthic A - E horizon - soft plinthic B horizon) 

or a Gleyic, Albic, Arenosol (IUSS Working Group WRB, 2014) (Fig. 3.1). The 

apedal soil consisted of fine sand. The B horizon showed few fine mottles with 

distinct contrast and brown colour (Appendix 3.1).  

 

Figure 3.1. The Longlands soil form near Rawsonville showing no clear 

stratification. 
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Table 3.1. Particle size distribution in the 0-30 cm layer of the Longlands soil form 

in an existing grazing paddock at the Rawsonville winery. 

Particle size (%) 

Clay 

(<0.002 mm) 

Silt 

(0.002-0.02 mm) 

Fine sand 

(0.02-0.2 mm) 

Medium sand 

(0.2-0.5 mm) 

Coarse sand 

(0.5-2 mm) 

3.3 1 60 29 8 

3.2.3. Characteristics of the soil at the Stellenbosch site 

The soil at the winery near Stellenbosch was classified as a Kroonstad soil form, 

which consists of an orthic A- E-G horizon sequence (Soil Classification Working 

Group, 1991). According to the World Reference Base this soil would classify as 

a Gleyic, Albic, Planosol (IUSS Working Group WRB, 2014). Beneath the topsoil 

was a bleached, light grey, structureless, apedal sandy horizon (E/Albic horizon) 

to a depth of 50 cm (Appendix 3.2). This is an example of an E horizon that is 

yellow when moist (Fig. 3.2). Below this horizon is a gleyed clay layer (G 

horizon), indicating a zone of prolonged wetness due to poor drainage.  

Kroonstad soils commonly occur in the Stellenbosch winelands region. 

 

Figure 3.2. The Kroonstad soil form at a winery near Stellenbosch showing its 

duplex character and waterlogged subsoil. 
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Table 3.2 Particle size distribution in the 0-30 cm layer of the Kroonstad soil form 

in an existing grazing paddock at the Stellenbosch winery. 

Particle size (%) 

Clay 

(<0.002 mm) 

Silt 

(0.002-0.02 mm) 

Fine sand 

(0.02-0.2 mm) 

Medium sand 

(0.2-0.5 mm) 

Coarse sand 

(0.5-2 mm) 

7 6 39 26 22 

3.2.4. Experiment layout 

At both sites, three 2 m x 3 m replication plots were demarcated for the 

experiment. Rain gauges were installed at each plot to measure the amount of 

wastewater applied. A two litre plastic bottle was attached to each rain gauge in 

the irrigation site in order to collect the overflow wastewater when the rain gauge 

was full (Fig. 3.3). Three rain gauges were also installed outside the wastewater 

demarcated area for measuring the rainfall.  

 

Figure 3.3. Rain gauge with attachment to catch overflow for measuring the 

volume of wastewater applied to a replication plot at a winery near Stellenbosch. 

3.2.5. Application of winery wastewater to the soils 

At both sites, an overhead sprinkler was connected to the main wastewater line 

where the winery disposes its wastewater through land application. The 

wastewater received only preliminary treatment, i.e. screening to remove coarse 

particles, addition of lime to increase the water pH followed by settling of solids 

in a pond. The water treatment was carried out by the wineries. No irrigation 

scheduling was implemented. At both wineries all wastewater was disposed of 

through sprinkler irrigation. The amount of wastewater applied as well as 
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rainwater was recorded on a weekly basis. At both sites, field measurements 

commenced on 1 March 2011 and were terminated on 30 November 2013. 

3.2.6. Wastewater sampling and analysis 

Winery wastewater sampling started in April 2011 at both wineries. Winery 

wastewater samples were collected from the rain meters once a week and 

analysed for chemical composition. The COD of the water was measured by the 

Soil and Water Science Division at ARC Infruitec-Nietvoorbij near Stellenbosch 

using a portable spectrophotometer (Aqualitic COD-reactor®, Dortmund) and 

the appropriate test kits (COD, CSB, 0-15000 mgL-1). The samples were also 

analysed by a commercial laboratory (Bemlab, Strand) for pH, EC, P (H2PO4
-), 

K+, Na+, Cl-, HCO3
-, SO4

2- and Fe2 according to methods described by Clesceri 

et al. (1998). The Ca2+, Mg2+, K+ and Na+ in the water were determined by 

inductively coupled plasma optical emission spectrometry (ICP-OES) using a 

spectrometer (Perkin-Elmer Optima 7300 DV, Waltham, Massachusetts). The 

cation concentrations in mg/L-1 were converted to meq.L-1 in order to calculate 

the sodium adsorption ratio (SAR) as follows: 

SAR = Na+ ÷ [(Ca2+ + Mg2+) ÷ 2]0.5                                                         (Eq. 3.1) 

Total dissolved solids (TDS) was estimated by multiplying the EC of the water 

using a factor of 6.4 as proposed by the Department of Water Affairs and 

Forestry (1996). 

3.2.7. Soil sampling and analysis 

At both sites, soil samples were collected before wastewater monitoring began 

in March 2011. Following this, samples were collected in May before winter 

rainfall and in November after the winter rainfall during 2011, 2012 and 2013. 

Soil samples were collected in 0 - 10 cm, 10 - 20 cm, 20 - 30 cm, 30 - 60 cm and 

60 - 90 cm depth increments. Physical limitations prevented the collection of soil 

samples deeper than 90 cm at both localities. All soil analyses were carried out 

by a commercial laboratory (Bemlab, Strand). Total organic C contents were 

determined using the method described by Walkley and Black (1934). The 

pH(KCl) was determined in a 1 M potassium chloride (KCl) suspension. The Ca2+, 

Mg2+, K+ and Na+
 were extracted with 1 M ammonium acetate at pH 7. The cation 

concentrations in the extracts were determined by means of atomic emission 
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using an optical emission spectrometer (Varian ICP-OES) at a commercial 

laboratory (BEMLAB, Strand). For this study, the cations will be referred to as 

extractable calcium (Ca2+
extr), magnesium (Mg2+

extr), potassium (K+
extr) and 

sodium (Na+
extr). The extractable potassium percentage (EPPʹ) was calculated 

as follows: 

EPPʹ = (K+
extr ÷ S) x 100 (Eq. 3.2) 

where K+
extr is the extractable potassium (cmol(+)/kg) and S is the sum of basic 

cations (cmol(+)/kg). The extractable sodium percentage (ESPʹ) was calculated 

in the same way to obtain an indication of the sodicity status. Phosphorus was 

determined according to the Bray No. 2 method, i.e. extraction with 0.03 M NH4F 

(ammonium-fluoride) in 0.01 M HCl (hydrochloric acid). The P concentration in 

the extract was determined by means of atomic emission as mentioned above. 

The soil’s CEC was determined using 0.2 M ammonium acetate (pH=7 as 

extractant of exchangeable cations) method as described by The Non-affiliated 

Soil Analyses Work Committee (1990). 

3.2.8 Statistical procedures 

The experimental design was a randomised complete block with seven sampling 

times randomly replicated within each of three blocks.  At each sampling time 

determinations were made at five depths intervals. Univariate analysis of 

variance was performed, for each depth separately, on all variables accessed 

using GLM (General Linear Models) Procedure of SAS statistical software 

(Version 9.2; SAS Institute Inc., Cary, NC, USA). Values for different depths 

were also combined in a split-plot analysis of variance with depth as sub-plot 

factor (Snedecor, 1980). Shapiro-Wilk test was performed to test for normality 

(Shapiro, 1965). Student’s t-least significant difference was calculated at the 5% 

level to compare treatment means (Ott, 1998). A probability level of 5% was 

considered significant for all significance tests. 
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3.3. RESULTS AND DISCUSSION 

3.3.1. Winery near Rawsonville  

3.3.1.1. Chemical composition of winery wastewater 

Basic cations: It was evident that the wastewater contained high amounts of K+ 

and Na+ which could have a negative impact on the soil (Fig. 3.4A). On average, 

K+ levels in the wastewater were substantially higher than the levels of Na+. This 

indicated that the winery probably used more K+ containing detergents than Na+  

based ones. The annual fluctuation in K+ and Na+ could not be related to specific 

seasonal activities in the winery, e.g. grape crushing or bottling. However, 

almost throughout the study period the Na+ was higher than 70 mg/L, i.e. the 

upper threshold for unrestricted use for sprinkler irrigation (Ayers & Westcot, 

1994). The levels of Ca2+ and Mg2+ in the wastewater were substantially lower 

than the monovalent ions (Fig. 3.4B). This was to be expected since chemicals 

containing Ca2+ and Mg2+ does not play a prominent role in winery processes. 

At these low levels the bivalent ions would not have any negative effects on soils 

or crops. However, the Ca2+ and Mg2+ could have some positive effect on the 

water quality by reducing the SAR.  

SAR: In 2011, the winery wastewater SAR was frequently higher than 5, i.e. the 

legal limit for irrigation with wastewater as stipulated in the Department of Water 

Affairs (2013) General Authorization (Fig. 3.4C). During the remainder of the 

study period, the SAR was mostly equal to, or below the legal limit. It should be 

noted that the wastewater SAR did not follow a distinct annual pattern that could 

be related to specific activities in the winery. 

EC: The winery wastewater EC was below the permissible limit of 2 dS/m, i.e. 

as stipulated in the Department of Water Affairs (2013) General Authorization for 

irrigation with wastewater, except for prominent spikes in January 2012 and 

June 2013 (Fig. 3.4D). Similar to the SAR, the EC did not follow a distinct annual 

pattern that could be related to specific winery activities. 
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Figure 3.4. Temporal variation in (A) K+ and Na+, (B) Ca2+ and Mg2+, (C) sodium adsorption ratio (SAR) and (D) electrical conductivity 

(EC) in wastewater from a winery near Rawsonville. Shaded columns indicate the harvest periods. Dashed lines indicate the Na+, SAR 

and EC thresholds for irrigation water. 
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 Anions: Similar to the cations, the variation in levels of HCO3
-, as well as SO4

2- 

and Cl- could not be related to a specific activity in the winery (Fig. 3.5A & B). 

During February and March 2013, the level of Cl- was above the recommended 

threshold of 150 mg/L for vineyard irrigation (Howell & Myburgh, 2013, and 

references therein) (Fig.3.5B). 

 Phosphorus: Since the levels of P were generally low throughout the study 

period (Fig. 3.5B), land application of the wastewater would not make a 

significant contribution to the P requirements of crops. 

pH: With the exception of November and December 2011, the winery 

wastewater pH was generally equal to or less than 6, i.e. the lower limit for 

wastewater irrigation as stipulated in the Department of Water Affairs (2013) 

General Authorization (Fig. 3.5C). Annually, the pH tended to be higher in winter 

than during the harvest period. Since the pH was below the legal requirement 

for disposal through land application during these periods, it was not suitable for 

irrigation of crops. Based on the foregoing, the experiment plots were irrigated 

with acidic water throughout most of the study period. 

COD: Throughout the study period, the winery wastewater COD was 

considerably higher than 400 mg/L, i.e. the upper limit for wastewater irrigation 

as stipulated in the Department of Water Affairs (2013) General Authorization 

(Fig. 3.5D). Therefore, the wastewater did not comply with the legislation for 

disposal through land application. Furthermore, the COD frequently exceeded 

5000 mg/L, i.e. the threshold where wastewater may not be used for irrigation, 

or any other land application (Department of Water Affairs, 2013). Annually, the 

wastewater COD tended to peak during the harvest period (Fig. 3.5D). This 

confirmed that the crushing and wine making processes generated wastewater 

containing high levels of COD. 

Iron: The fluctuation in levels of Fe could not be related to a specific seasonal 

activity in the winery (Fig. 3.6). The Fe levels were most of the time below the 

maximum acceptable water quality norm of 5 mg/L for continuous irrigation of 

grapevines (Howell & Myburgh, 2013 and references therein). 
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Figure 3.5. Temporal variation in (A) HCO
3
- and SO

4
2-, (B) Cl- and P, (C) pH and (D) chemical oxygen demand (COD) in wastewater from 

a winery near Rawsonville. Shaded columns indicate the harvest periods. Dashed lines indicate Cl-, pH and COD thresholds.  
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TDS: The fluctuation in levels of TDS could not be related to a specific seasonal 

activity in the winery (Fig 3.7). However, almost throughout the study period the 

TDS was higher than 450 mg/L, i.e. the upper threshold for unrestricted use for 

irrigation (Ayers & Westcot, 1994). 

 

Figure 3.6. Temporal variation of the iron in winery wastewater used to irrigate an 

existing grazing paddock at a winery near Rawsonville. Shaded columns indicate 

the harvest periods. The dashed line indicates the maximum Fe2+ level for 

continuous irrigation. 

 

Figure 3.7. Temporal variation of the iron and total dissolved solids (TDS) in 

winery wastewater used to irrigate an existing grazing paddock at a winery near 

Rawsonville. Shaded columns indicate the harvest periods. The dashed line 

indicates the limit for unrestricted irrigation use. 
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3.3.1.2. Rainfall and volumes of wastewater applied 

Mean monthly rainfall was typical for a Mediterranean climate (Fig. 3.8). 

However, it must be noted that the July rainfall was abnormally low in all the 

winters. Winter rainfall, i.e. from April to September, amounted to 380 mm, 420 

mm and 685 mm in 2011, 2012 and 2013, respectively. As expected, wastewater 

irrigations were substantially higher in the harvest period, i.e. from February until 

April (Fig. 3.9). During the peak period, in March, c. 23 mm irrigation was applied 

per day. In December, the soil received only c. 3 mm wastewater per day. The 

irrigation volumes also increased from mid-winter to reach a second peak in 

August. Total irrigation applied during winter, i.e. from April to September, 

amounted to 1475 mm, 2600 mm and 3285 mm in 2011, 2012 and 2013, 

respectively. Based on the foregoing, the soil received the highest irrigation plus 

rainfall in the winter of 2013, followed by 2012 and then 2011.  

 

Figure 3.8. Mean monthly rainfall during the study period at the winery near 

Rawsonville. 

Stellenbosch University  https://scholar.sun.ac.za



36 
 

 

 

Figure 3.9. Mean monthly wastewater applied during the study period at the 

winery near Rawsonville. 

Since wastewater was applied to a poorly drained soil on level land, the soil 

became totally waterlogged. Visual observations revealed that the water actually 

ponded on the soil after the irrigation was applied, particularly in winter (Fig. 

3.10A). A previous study showed that a similar poorly drained, grey, sandy soil 

developed a water table deep in the profile (Mulidzi et al., 2002). This particular 

soil was on a slight slope which allowed lateral drainage, thereby preventing the 

entire profile from becoming waterlogged.  

 

Figure 3.10. Waterlogging upon irrigation with wastewater caused (A) ponding 

and die-back of the grass, as well as (B) accumulation of organic matter on the 

surface of the Longlands soil form at a winery near Rawsonville. 
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Due to the waterlogging, part of the water soluble organic fraction of the 

wastewater accumulated in the topsoil and in the ponded water on the soil 

surface. The organic matter probably underwent anaerobic decomposition, 

which caused bad odours in the vicinity of the ponded water (Fig. 3.10B). This 

is in contrast with a previous study which showed that the anaerobic 

decomposition of the organic matter occurred deep in the soil profile (Mulidzi et 

al., 2002). Prior to soil sampling, no obnoxious odours were noticed. Obnoxious 

odours were only noticed when soil samples were collected from the deepest 

layers by means of an auger. Therefore, the source of the obnoxious odours 

seemed to be contained in the deepest soil layers. Given the fact that the soil 

was not entirely waterlogged, the organic matter probably leached into the 

subsoil.  

The application of winery wastewater at the Rawsonville winery resulted in 

dieback of the grass on the irrigated area after only one month (Fig. 3.10A). This 

might have been the result of oxygen depletion in the topsoil due to the high 

level of COD in the wastewater. Most wineries that dispose of their wastewater 

through land application do not measure how much wastewater they are 

applying and their strategy is to irrigate an area until the plants die off and then 

move the sprinkler. The plants normally recover after three months. On areas 

where irrigation was conducted on well drained soils on a sloping areas, it was 

observed that the grass did not die back which was associated to the deeper 

percolation of water containing high levels of organic matter (Mulidzi, 2001). 

3.3.1.3. Soil chemical status 

3.3.1.3.1. Initial soil chemical status 

After continuous irrigation with winery wastewater for 15 years, the soil was 

acidic throughout the profile, i.e. the pH(KCl) was less than 4.5 (Table 3.3). The 

soil Bray IIP was high in all soil layers, i.e. more than 20 mg/kg which is 

considered to be the norm for sandy soils (Conradie, 1994). The basic cations 

declined with depth. By far the highest concentration of all cations occurred in 

the 0-10 cm layer (Table 3.3). These levels were relatively high for sandy soils. 

This suggested that the sludge probably had a high CEC. The Caextr was the 

dominant cation, whereas Naextr was the lowest throughout the profile. The EPP' 
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was relatively high in the deepest soil layers (Table 3.3). In contrast, the ESP' 

was highest near the soil surface.  

Table 3.3. Chemical status of the Longlands soil that was irrigated with winery 

wastewater over a 15 year period near Rawsonville before the study began.  

Depth 

(cm) 

pH(KCl) 

 

P 

(mg/kg) 

Basic extractable cations (cmolc.kg-1) EPP' 

(%) 

ESP' 

(%) Na+
extr K+

extr Ca2+
extr  Mg2+

extr 

10 4.1 270 1.5 2.2 8.4 2.5 15.3 10.4 

20 4.3 209 0.5 0.9 4.9 0.7 12.9 6.7 

30 4.6 208 0.4 0.7 3.9 0.6 11.9 7.1 

60 4.6 255 0.1 0.5 0.9 0.2 26.9 7.0 

90 4.6 264 0.1 0.5 0.9 0.2 28.6 7.9 

3.3.1.3.2. Soil chemical status during the study period 

Organic carbon: Soil organic C in the 0-10 and 10-20 cm layers was 

substantially higher than 2% (Fig. 3.11), which is relatively high for soils of the 

Western Cape wine regions. This indicated that organic matter applied via the 

winery wastewater had accumulated in the layers near the soil surface. Except 

for May 2012, when the organic carbon in the 0-10 cm layer showed a peak, it 

tended to remain constant over the two-and-a-half-year period. The sludge 

observed at the surface probably contributed to the exceptionally high organic 

carbon in the 0-10 cm layer. Furthermore, it must be noted that the organic 

carbon at the end of the period was comparable to the initial level at the 

beginning of the study in March 2011. The organic carbon in the 10-20 cm layer 

showed an increase until May 2012. This suggested that some of the organic 

matter had leached into the soil by the high irrigation volume. The organic carbon 

in the 10-20 cm layer tended to remain constant from May 2012 until the end of 

the study period. The organic carbon in the 10-20 cm layer tended to decline 

following November 2011. At this stage there is no explanation for this trend. 

Since the organic carbon in the deeper layers remained almost unchanged, it is 

unlikely that organic carbon could have leached from the 20-30 cm layer into 

these layers. 
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Figure 3.11. Temporal variation in soil organic C where winery wastewater was 

applied to a Longlands soil near Rawsonville. 

Potassium: Substantial volumes of wastewater was applied between the 

different sampling times, particularly from November until May (Fig. 3.12). As 

expected, the contribution of rainfall to the total volume of water that the soil 

received was higher during winter than in summer. It was evident that application 

of winery wastewater increased the K+
extr levels in the 0-10 cm layer, and to 

some extent in the 10-20 cm layer, at the end of the harvest periods (Fig. 3.13). 

Despite the seasonal fluctuations, K+
extr steadily increased over the three years 

in the first two soil layers compared to the levels at the beginning of the study. 

After three years of wastewater application there was no significant increase in 

K+
extr levels deeper than 20 cm depth (Fig. 3.13).  

 

Figure 3.12. Temporal variation in rainfall and winery wastewater irrigation as 

measured near Rawsonville. 
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Figure 3.13. Temporal variation in soil extractable K+
 and the amount of K+ applied 

via winery wastewater to a Longlands soil near Rawsonville. Vertical columns 

indicate applied K
+
. 

The sludge deposits on the soil surface (Fig. 3.10B) probably retained high levels 

of K+ by the end of the harvest period. During winter, when less K+ was applied 

(Fig. 3.13), some of the K+ probably leached from the sludge, causing the lower 

levels in the 0-10 cm layer. Since there was little change in K+ levels with depth 

throughout the profile, it suggested that most of the applied K+ was leached 

beyond 90 cm. In fact, seasonal soil K+ balances showed that substantial 

amounts of K+ was leached (Table 3.4). Furthermore, the cumulative leached K+ 

was linearly related to the cumulative irrigation plus rainfall (Fig. 3.14). Due to 

the low clay content of the soil (Table 3.1), the exchange complex could not 

retain large amounts of K+. Therefore, leaching of K+ beyond 90 cm was not 

inhibited. Although, leaching of K+ from sandy or coarse textured soils during 

winter rainfall reduces the risk of accumulation and clay dispersion, it increases 

environmental risks such as groundwater recharge and/or lateral flow into other 

fresh water resources. 
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Table 3.4. Soil extractable K+ balances for selected periods in the 0-90 cm depth 

of a sandy Longlands soil that was irrigated with winery wastewater near 

Rawsonville. 

Period  

 

Soil K+ (kg/ha) Applied K+ 

(kg/ha) 

K+ loss 

(kg/ha) 

Leached K+ 

(%) 
Beginning End 

Mar 11 - May 11 3978 5909 2768 837 30 

May 11 - Nov 11 5909 4914 1561 2556 164 

Nov 11 - May 12 4914 6786 6760 4888 72 

May 12 - Nov 12 6786 5148 3894 5532 142 

Nov 12 - May 13 5148 5031 8879 8996 101 

May 13 - Nov 13 5031 6318 4186 2899 69 

 

 

 

Figure 3.14. Effect of cumulative (Σ) rainfall + irrigation - evapotranspiration on 

cumulative K+ losses beyond 90 cm depth where a Longlands soil was irrigated 

with winery wastewater near Rawsonville. 
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Sodium: Similar to K+
extr, irrigation with winery wastewater increased the Na+

extr 

levels in the 0-10 cm and in the 10-20 cm layers, at the end of the harvest periods 

(Fig. 3.15). In May 2012, the Na+
extr was also slightly higher in the 20-30 cm layer 

compared to the rest of the study period. Despite the seasonal fluctuations, 

Na+
extr tended to increase slightly over the two-and-a-half-year study period in 

the first two soil layers compared to the levels at the beginning of the study. At 

the end of the study period, there was no increase in Na+
extr deeper than 20 cm 

depth (Fig. 3.15).  

 

Figure 3.15. Temporal variation in soil extractable Na+
extr and amount of Na+ 

applied via wastewater to a Longlands soil near Rawsonville. Vertical columns 

indicate applied Na+. 

The sludge deposits on the soil surface probably also retained high levels of Na+ 

by the end of the harvest periods. During winter, when less Na+ was applied (Fig. 

3.15), some of the Na+ probably leached from the sludge, causing the lower 

levels in the 0-10 cm and 10-20 cm layers. Since there was little change in Na+
extr 

levels with depth throughout the profile, it suggested that most of the applied Na+ 

was leached beyond 90 cm. Seasonal soil Na+ balances confirmed that 

substantial amounts of Na+ was leached (Table 3.5). Furthermore, the 

cumulative leached Na+ was also linearly related to the cumulative irrigation plus 

rainfall (Fig. 3.16). Similar to K+, the low clay content of the soil could probably 

not retain large amounts of Na+. Therefore, leaching of Na+ beyond 90 cm was 

also not inhibited. Although, leaching of Na+ from sandy or coarse textured soils 

during winter rainfall also reduces the risk of accumulation and dispersion, it 

poses the same environmental risks as the large amounts of K+ that was leached 

from the soil.  
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High concentrations of Na+ in soil due to winery wastewater application can 

reduce soil aggregate stability (Laurenson & Houlbrooke, 2012). When Na+ is 

the predominant adsorbed cation, the clay disperses. When the soil is wet, 

puddling reduces permeability, and when it is dry a hard impermeable crust 

forms. This suggested that high levels of Na+ in the sludge could have caused 

the ponding on the soil surface (Fig. 3.10). However, it does not rule out the 

possibility that the high organic matter content could have clogged the soil pores 

near the surface, which reduced infiltration. 

Table 3.5. Soil extractable Na+ balances for selected periods in the 0-90 cm depth 

increment of a sandy Longlands soil that was irrigated with winery wastewater 

near Rawsonville. 

Period  

 

Soil Na+ (kg/ha) Applied Na+ 

(kg/ha) 

Na+ loss 

(kg/ha) 

Leached Na+ 

(%) 
Beginning End 

Mar 11 - May 11 1035 1173 1117 979 88 

May 11 - Nov 11 1173 1484 1060 749 71 

Nov 11 - May 12 1484 2664 2734 1354 50 

May 12 - Nov 12 2864 1484 2076 3456 167 

Nov 12 - May 13 1484 2001 3046 2529 83 

May 13 - Nov 13 2001 1553 2658 3106 117 

 

Figure 3.16. Effect of cumulative (Σ) irrigation plus rainfall on cumulative Na+ 

losses beyond 90 cm depth where a Longlands soil was irrigated with winery 

wastewater near Rawsonville. 

Stellenbosch University  https://scholar.sun.ac.za



44 
 

 

Calcium: The Caextr in the 0-10 cm and 10-20 cm layers, and to a lesser extent 

in the 20-30 cm layer, tended to increase at the end of the harvest period (Fig. 

3.17). This was followed by a decline during winter. It is interesting to note that 

the seasonal variation in Ca2+
extr occurred in the 30-60 cm layer although the 

concentrations were considerably lower compared to the topsoil. A previous 

study showed that continuous application of winery wastewater high in K+ and 

Na+ could cause the soil exchange sites to be dominated by monovalent ions, 

thereby pushing bivalent ions such as Ca2+ and Mg2+ out of the exchange 

complex (Mosse et al., 2011). Consequently, the bivalent cations will be leached 

from the soil. However, the Caextr in the deeper layers remained constant 

throughout the study period under the prevailing conditions. Although Ca2+ levels 

were generally low in the winery wastewater, it seemed that higher applications 

during the harvest period reflected in the Caextr. Since the applied Ca2+ was 

substantially lower than amounts of K+ and Na+, it is unlikely that the Ca2+ would 

affect the EPPʹ or ESPʹ significantly. Therefore, the bivalent cations will probably 

not counter structural problems caused by high amounts of K+ and Na+ from the 

wastewater when applied to the soil. 

 

Figure 3.17. Temporal variation in soil extractable Ca2+
 and amounts of Ca2+ 

applied where wastewater was applied to a Longlands soil near Rawsonville. 

Vertical columns indicate applied Ca2+. 

Magnesium: The Mg2+
extr in the 0-10 cm, and to a lesser extent in the 10-20 cm 

layer, showed the same seasonal fluctuation as the Ca2+
extr (Fig. 3.18). The 

Mgextr in the deeper layers remained more or less constant throughout the study 

period. Although Mg+ levels were generally low in the winery wastewater, it 

seemed that higher applications during the harvest period also reflected in the 
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Mgextr. Similar to Ca2+, the low levels of Mg2+ are unlikely to counter the negative 

effects of high K+ and Na+ applications on EPPʹ or ESPʹ, and consequently on 

soil physical conditions. 

 

Figure 3.18. Temporal variation in soil extractable Mg2+
 where wastewater was 

applied to a Longlands soil near Rawsonville. Vertical columns indicate applied 

Mg2+. 

EPPʹ: With the exception of the 0-10 cm layer, the EPPʹ tended to be lower at 

the end of the harvest period, followed by an increase during winter (Fig. 3.19). 

This result is somewhat unexpected, since the higher EPPʹ did not correspond 

with the higher K+ applications which caused higher K+
extr in the soil (Fig. 3.13). 

Although substantially more K+ than Ca2+ was applied via the wastewater, Ca2+ 

was the dominant cation in all the soil layers except in November 2013 when the 

Ca2+
extr levels were comparable to the other extractable cations in the deeper 

layers (Fig. 3.20). The source of the Ca2+ was probably lime that was added to 

the wastewater in order to increase the pH as part of the wastewater treatment 

carried out by the winery. Routine use of Ca2+ amendments including, yet not 

restricted to, lime, gypsum and calcium nitrate either added directly to 

wastewater or to soils will enable Ca2+ exchange and displacement of Na+ and 

K+. Winter application of Ca2+ amendments will ensure its percolation down the 

soil profile thereby ensuring good distribution of Ca2+ (Laurenson & 

Houlbrooke,2011). Quantification of this practice was beyond the scope of the 

study. In November 2013, the winery probably reduced, or stopped the lime 

application which caused the low soil Ca2+
extr. Based on the foregoing, it seemed 

that high levels of Ca2+
extr at the end of the harvest dominated the exchange 

complex to such an extent that the EPPʹ was reduced compared to the winter 
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when the Ca2+
extr was lower. The high EPPʹ in November 2013 was due to the 

low Ca2+
extr. These results also suggested that the large amounts of applied K+ 

via the winery wastewater was not preferentially absorbed onto the exchange 

sites.  

 

Figure 3.19. Temporal variation in soil EPPʹ where wastewater was applied to a 

Longlands soil near Rawsonville. 

ESPʹ: Although the Na+
extr showed some seasonal fluctuations (Fig. 3.15), it did 

not reflect in the ESPʹ (Fig. 3.21). The lack of seasonal fluctuations in ESPʹ was 

probably due to the dominance of Ca2+
extr, and to some extent K+

extr. It was 

previously reported that the adsorption of Na+ on soils similar to the Longlands 

soil was reduced by the presence of high levels of K+ after winery wastewater 

irrigation (Mulidzi et al., 2016). High soil ESP' increases the risk of soil physical 

properties to deteriorate through clay dispersion which will lead to structural 

breakdown and blockage of soil pores and reduced soil permeability (Bond, 

1998). However, since the ESPʹ was relatively low, it would probably not have 

caused serious soil physical deterioration. 
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Figure 3.20. Temporal variation of the extractable cations in the (A) 0-10, (B) 10-

20, (C) 20-30, (D) 30-60 and (E) 60-90 cm soil layers where winery wastewater was 

applied to a Longlands soil near Rawsonville. 

Figure 3.21. Temporal variation in soil ESPʹ where wastewater was applied to a 

Longlands soil near Rawsonville. 
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ECe: The salt content remained fairly constant to a depth of 60 cm until May 

2012, during which time the ECe in the 60-90 cm layer tended to incline steadily 

(Fig. 3.22). Following the winter of 2012, ECe in the deepest two soil layers 

declined. A similar trend also occurred in the winter of 2013. In fact, ECe in all 

layers tended to be lower following May 2013. These results indicated that the 

high irrigation plus rainfall must have leached some of the salts applied via the 

winery wastewater irrigation beyond 90 cm depth, particularly in the last two 

winters. 

 

Figure 3.22. Temporal variation in electrical conductivity of the saturated soil 

paste (ECe) where wastewater was applied to a Longlands soil near Rawsonville. 

pH(KCl): Irrigation with winery wastewater slightly increased the soil pH(KCl) until 

May 2012 (Fig. 3.23). In November 2012 the soil pH(KCl) showed a decrease, and 

tended to remain constant until November 2013. Variation in soil pH(KCl) was not 

related to variation in monovalent cations (data not shown). However, addition 

of organic acids from winery wastewater could be associated with the decrease 

of soil pH due to H+ dissociation from carboxyl functional groups (Rukshana et 

al., 2012). While the soil pH increase could be associated with high 

concentration of total alkalinity in wastewater that contains bicarbonate ions, as 

well as deprotonated organic acids, the charge of these ions are countered by 

cations. When applied to soils it increases the pH due to anion hydrolysis 

reactions and decarboxylation (Li et al., 2008). It is important to note that the soil 

was too acidic for viticulture, i.e. pH less than 5.5 (Conradie, 1994). 
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Figure 3.23. Temporal variation in soil pH(KCl) where wastewater was applied to a 

Longlands soil near Rawsonville. 

Phosphorus: The soil P fluctuations appeared to be erratic (Fig. 3.24). At 

certain times, the P in the topsoil tended to increase, whereas the subsoil P 

tended to decline and vice versa. Therefore, it seemed that leaching of P into 

the subsoil occurred, which coincided with P losses from the topsoil. This was 

illustrated more clearly when the means for the topsoil (0-30 cm depth) and 

subsoil (30-90 cm depth) were plotted over time (Fig. 3.25). It seemed that the 

increase in subsoil P lagged behind P increases in the topsoil up till November 

2012. Following this, top- and subsoil fluctuations coincided until November 

2013. The high rainfall and irrigation before May 2013 probably caused leaching 

of P throughout the soil profile. However, this does not rule out the possibility 

that the low pH reduced the solubility of the P. 

 

Figure 3.24. Temporal variation in soil P where wastewater was applied to a 

Longlands soil near Rawsonville. Dashed line indicate the proposed P norm for 

grapevines (Conradie, 1994). 
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Figure 3.25. Temporal P variation in the topsoil (0-30 cm) and subsoil (30-90 cm), 

as well as irrigation plus rainfall where wastewater was applied to a Longlands 

soil near Rawsonville. Vertical columns indicate irrigation plus rainfall. 

The soil P content was substantially higher than the minimum requirement for 

vineyards (Conradie, 1994) (Fig. 3.24). It must be noted that leaching of high 

levels of P into groundwater, as well as other fresh water sources close to the 

winery, could cause serious environmental problems, e.g. eutrophication. The 

leaching of P poses a very serious risk to the nearby water streams. Due to the 

sandy nature of the soil, i.e. 3.3% clay, and low Fe content, it does not have 

adequate P adsorbing capacity (Samadi, 2006). This would increase the risk of 

leaching excessive P from the soil. 
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3.3.2. Winery near Stellenbosch  

3.3.2.1. Chemical composition of winery wastewater 

Basic cations: It was evident that the wastewater contained high amounts of 

K+, but relatively low levels of Na+ (Fig. 3.26A). This indicated that the winery 

probably used more K+ containing detergents than Na+-based ones. Most of the 

time, the Na+ was less than 70 mgL-1, i.e. the upper threshold for unrestricted 

use with sprinkler irrigation (Ayers & Westcot, 1994). The annual fluctuation in 

K+ and Na+ could not be related to specific seasonal activities in the winery, e.g. 

grape crushing or bottling. The levels Ca2+ and Mg2+ in the wastewater were 

substantially lower than the monovalent ions (Fig. 3.26B). This was to be 

expected since chemicals containing Ca2+ and Mg2+ do not play a prominent role 

in winery processes. At these low levels the bivalent ions would not have any 

negative effects on soils or crops. However, the Ca2+ and Mg2+ could have some 

positive effect on the water quality by reducing the SAR of the wastewater.  

SAR: Except in April and May 2001 (Fig. 3.26C), the wastewater SAR was well 

below 5, i.e. the legal limit as stipulated in the Department of Water Affairs (2013) 

General Authorization. This indicated that sodic soil conditions were unlikely to 

develop under the prevailing conditions. Similar to the Na+, the wastewater SAR 

did follow a distinct annual pattern that could be related to specific activities in 

the winery.  

EC: Although the EC of the winery wastewater was initially high (Fig. 3.26D), it 

gradually declined and from January 2012 until the end of the study period it was 

below, or equal to the permissible limit of 2 dS/m, i.e. the legal limit as stipulated 

in the Department of Water Affairs (2013) General Authorization. This indicated 

that saline soil conditions were unlikely to develop under the prevailing 

conditions. It should be noted that the EC did not follow a distinct annual pattern 

that could be related to specific activities in the winery. 
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Figure 3.26. Temporal variation in (A) K+ and Na+, (B) Ca2+ and Mg2+, (C) sodium adsorption ratio (SAR) and (D) electrical conductivity 

(EC) in wastewater from the Stellenbosch winery. Shaded columns indicate the harvest periods. Dashed lines indicate the Na+, SAR 

and EC thresholds. 
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Anions: The level of HCO3
- in the wastewater general tended to decline over 

the study period (Fig. 3.27A). However, the HCO3
- content was relatively low 

during the harvest periods. Although irrigation with water containing high levels 

of HCO3
- could affect soils, plants and irrigation equipment, there are no 

guidelines available (Howell & Myburgh, 2013 and references therein). Given 

the high levels in the winery wastewater (Fig. 3.27A), negative effects could be 

expected over time if the water is used for irrigation. The level of SO4
2- in the 

wastewater was substantially lower than the HCO3
- (Fig. 3.27A). Except for 

some spikes following the harvest period in 2013, the variation in SO4
2- could not 

be related to a specific activity in the winery. Unlike the HCO3
-, the Cl- tended to 

increase during the harvest periods (Fig. 3.27B). The Cl- levels in the winery 

wastewater showed two distinct peaks where the permissible maximum norm of 

150 mg/L for continuous irrigation of grapevines (Howell & Myburgh, 2013 and 

references therein) was exceeded. One of these peaks occurred in November 

2011, whereas the second coincided with the harvest period in 2013 (Fig. 

3.27B). 

Phosphorus: The variation in P could not be related to a specific activity in the 

winery (Fig. 3.27B). Since the levels of P in the wastewater were generally low 

throughout the study period, land application of the wastewater would not make 

a significant contribution to the P requirements of crops. 

pH: Except during the harvest periods, the wastewater pH was most of the time 

within the legal requirement for wastewater irrigation as stipulated in the 

Department of Water Affairs (2013) General Authorization (Fig. 3.27C). Based 

on the foregoing, the soil was irrigated with suitable water with regards to pH, 

except during the harvest periods when the wastewater became acidic. 

COD: Annually, the wastewater COD tended to peak during the harvest period 

(Fig. 3.27D). This confirmed that the crushing and wine making processes 

generated wastewater containing high levels of COD. The winery wastewater 

COD was considerably higher than 400 mg/L throughout the study period (Fig. 

3.27). Therefore, the wastewater did not comply with the legislation for disposal 

through land application.  
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Figure 3.27. Temporal variation in (A) HCO
3
- and SO

4
2-, (B) Cl- and P, (C) pH and (D) chemical oxygen demand (COD) in wastewater from 

the winery near Stellenbosch. Shaded columns indicate the harvest periods. Dashed lines indicate Cl-, pH and COD thresholds. 
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Furthermore, the COD frequently exceeded 5000 mg/L, i.e. the threshold where 

wastewater may not be used for irrigation, or any other land application 

(Department of Water Affairs, 2013). 

Iron: The Fe levels in the winery wastewater showed three distinct peaks where 

it exceeded the maximum acceptable water quality norm of 5 mg/L for 

continuous irrigation of grapevines (Howell & Myburgh, 2013 and references 

therein) (Fig. 3.28). It must be noted that two of these peaks coincided with the 

harvest periods in 2012 and 2013, respectively. At this stage, there is no 

explanation for the latter trend, or the source of the Fe. 

 

Figure 3.28. Temporal variation of iron in wastewater from the winery near 

Stellenbosch. Shaded columns indicate the harvest periods. Dashed line indicate 

the maximum Fe level for continuous irrigation. 

TDS: The TDS variation in the winery wastewater could not be related to a 

specific activity in the winery, but it tended to decline during the study period 

(Fig. 3.29). However, at the end of the study period the TDS was slightly lower 

than 450 mg/L, i.e. the upper threshold for unrestricted use for irrigation (Ayers 

& Westcot, 1994). 

3.3.2.2. Rainfall and volumes of wastewater applied 

Mean monthly rainfall was typical for a Mediterranean climate (Fig. 3.30). Similar 

to Rawsonville, the July rainfall was abnormally low in all the winters. Winter 

rainfall, i.e. from April to September, amounted to 325 mm, 500 mm and 590 mm 

in 2011, 2012 and 2013, respectively. 
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Figure 3.29. Temporal variation of TDS in wastewater from the winery near 

Stellenbosch. Shaded columns indicate the harvest periods. The dashed line 

indicates the limit for unrestricted irrigation use (Ayers & Westcot, 1994). 

 

 

Figure 3.30. Mean monthly rainfall during the study period at a winery near 

Stellenbosch. 

As expected, wastewater irrigations increased from December until March (Fig. 

3.31). During the peak of the harvest period, in March, c. 30 mm irrigation was 

applied per day. The irrigation volumes remained relatively high in winter and 

began to decline from October to a minimum in December when the soil received 

only c. 1 mm wastewater per day. Total irrigation applied during winter, i.e. from 

April to September, amounted to 2670 mm, 4200 mm and 3820 mm in 2011, 

2012 and 2013, respectively. Based on the foregoing, the soil received the 
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highest irrigation plus rainfall in the winter of 2012, followed by 2013 and then 

2011. Similar to Rawsonville, application of high volumes of winery wastewater 

caused dieback of the grass in the study plot (Fig 3.32). 

 

Figure 3.31. Mean monthly wastewater applied during the study period at a winery 

near Stellenbosch. 

 

 

 

 

Figure 3.32. Disposal of volumes of winery wastewater caused dieback of the 

grass in the plot at a winery near Stellenbosch. 
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3.3.2.3. Soil chemical status 

3.3.2.3.1. Initial soil chemical status 

The soil status at the beginning of the study was acidic with average pH of 4.6 

for the profile (Table 3.6). The Bray IIP level was acceptable throughout the soil 

profile, although it seemed slightly high for a sandy soil. The Naextr was relatively 

low throughout the profile compared to Kextr and Caextr which seemed to 

dominate the exchange capacity (Table 3.6). The EPP' was relatively high 

compared to the ESP' which was less than 10% throughout the profile.  

Table 3.6. Chemical status of the Kroonstad soil that was irrigated with winery 

wastewater on a new grazing paddock near Stellenbosch before the study 

began.  

Depth 

(cm) 

pH(KCl) 

 

Bray IIP 

(mg/kg) 

Basic extractable cations (cmolc.kg-1) EPP' 

(%) 

ESP' 

(%) Na+
extr K+

extr Ca2+
extr  Mg2+

extr 

10 4.4 50 0.17 0.6 1.1 0.3 28.1 8.2 

20 4.6 54 0.13 0.5 0.7 0.2 31.4 8.4 

30 4.4 55 0.10 0.4 0.5 0.1 35.6 9.2 

60 4.7 42 0.10 0.4 0.6 0.1 29.8 8.1 

90 5.0 31 0.12 0.5 0.8 0.1 30.4 7.6 

3.3.2.3.2. Soil chemical status during the study period:  

Organic carbon: the organic C content in the 0-10 cm was substantially higher 

compare to the deeper layers (Fig. 3.33). During soil classification, visual 

observation revealed that this layer was rich in organic matter. Consequently, 

the 0-10 cm layer was classified as an overburden (Appendix 3.2). The initial 

decline of soil organic C in the 0-10 cm layer up to November 2011 was 

somewhat unexpected. Following the initial decline, the organic C steadily 

increased up to November 2013. However, the level of organic C still remained 

below the initial content in March 2011. This indicated that the breakdown of 

the overburden organic matter was more rapid than the addition of organic 

carbon through wastewater addition. The organic matter in the 10-20 cm layer 

showed a similar trend, except that the level at the end of the study period was 

slightly higher than the initial value (Fig. 3.33). The organic carbon in the deeper 

layers tended to remain constant over the two-and-a-half-year period.  
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Since the organic carbon in the deeper layers remained almost unchanged, it 

is unlikely that organic carbon could have leached from the 0-10 cm in spite of 

the high irrigation plus rainfall (Fig. 3.34). 

 

 

Figure 3.33. Temporal variation in soil organic C where winery wastewater was 

applied to a Kroonstad soil near Stellenbosch. 

 

 

Figure 3.34. Temporal variation in rainfall plus winery wastewater irrigation as 

measured near Stellenbosch. 

Potassium: Following an initial increase, in Kextr the 0-10 cm layer of this 

particular soil that was not previously irrigated with winery wastewater, 

remained relatively constant (Fig. 3.35). However, a slight increase occurred 

between November 2011 and May 2012. Since this trend also occurred down 

to a depth of 90 cm. This suggested that the high irrigation plus rainfall had 

leached some of the applied K+ into the deeper layers. The Kextr in the 60-90 
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cm layer showed a steady incline over the study period which indicated that the 

leached K was probably steadily accumulating in the deepest layer (Fig. 3.35). 

 

Figure 3.35. Temporal variation in soil extractable K+ and amount of K+ applied 

via winery wastewater to a Kroonstad soil near Stellenbosch. Vertical columns 

indicate amounts of applied K+. 

Since there was little change in K+ levels with depth throughout the profile, it 

suggested that most of the applied K+ was leached beyond 90 cm. in fact, 

seasonal soil K+ balances showed that substantial amounts of K+ remained in 

solution, and was leached (Table 3.7). Furthermore, the cumulative leached K+ 

was linearly related to the cumulative irrigation plus rainfall (Fig. 3.36). Due to 

the low clay content of the soil (Table 3.1), the exchange complex could not 

retain large amounts of K+. Therefore, leaching of K+ beyond 90 cm was not 

inhibited.  Leaching of K+ in sandy or coarse textured soils during winter rainfall 

reduces the risk of accumulation and dispersion but it increases environmental 

risks such as groundwater recharge and/or lateral flow into other fresh water 

resources. 

A previous study showed that the K+ accumulation in soil upon winery 

wastewater irrigation could be high if it is not absorbed by plants, but adsorbed 

to soil particles thereby reducing the possibility of leaching (Arienzo et al., 

2009b). Visual observations revealed that the roots of the grass did not extend 

beyond 30 cm depth. This suggested that the large amounts of the K+ that was 

applied via the wastewater could not be utilized by the grass, since it had died 

back. 
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Table 3.7. Seasonal soil K+ balances in the 0-90 cm depth of a sandy Kroonstad 

soil that was irrigated with winery wastewater near Stellenbosch. 

Period  

 

Soil K+ (kg/ha) Applied K+ 

(kg/ha) 

K+ loss 

(kg/ha) 

Leached K+ 

(%) 
Beginning End 

Mar 11 - May 11 2457 2633 5236 5060 97 

May 11 - Nov 11 2633 2984 2883 2532 88 

Nov 11 - May 12 2984 4154 17030 15860 93 

May 12 - Nov 12 4154 3452 9105 9807 108 

Nov 12 - May 13 3452 3686 15751 15517 99 

May 13 - Nov 13 3686 3744 5934 5876 99 

 

Figure 3.36. Effect of cumulative (Σ) irrigation plus rain on cumulative K+ losses 

beyond 90 cm depth where a Kroonstad soil was irrigated with winery 

wastewater for two and a half years near Stellenbosch. 

The negative effect of high levels of K+ ions on soil structure is well documented 

(Levy & Torrento, 1995 and references therein). However, knowledge on the 

effect of high levels of K+ in soil on soil structure stability due to winery 

wastewater irrigation is limited (Arienzo et al., 2009a). 
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Sodium: Except for an initial increase in May 2011, Na+
extr tended to decline 

steadily throughout the study period, particularly in the 0-10 and 10-20 cm 

layers (Fig 3.37). The decline was probably due to the small amounts of Na+ 

being applied via the winery wastewater. However, the fact that the specific 

winery had reduced the use of Na+ based cleaning detergents since 2012 was 

probably the primary reason for decline in Na+
extr but accumulation over time is 

expected.  The Naextr trend was in line with the levels of wastewater Na+ which 

were 41mg/l and 46.2 mg/l, respectively, during 2012 and 2013 (Tables 3.10 & 

3.11).  

 

Figure 3.37. Temporal variation in soil extractable Na+ and amount of Na+ applied 

via winery wastewater to a Kroonstad soil near Stellenbosch. Vertical columns 

indicate amounts of applied Na+. 

Since there was little change in Na+ levels with depth throughout the profile, it 

suggested that most of the applied Na+ was leached beyond 90 cm depth. 

Seasonal soil Na+ balances confirmed that substantial amounts of Na+ was 

leached (Table 3.8). Furthermore, the cumulative leached Na+ was also linearly 

related to the cumulative irrigation plus rainfall (Fig. 3.38). Similar to K+, the low 

clay content of the soil could not retain large amounts of Na+. Therefore, 

leaching of Na+ beyond 90 cm was also not inhibited. Although, leaching of Na+ 

from sandy or coarse textured soils during winter rainfall also reduces the risk 

of accumulation and dispersion, it poses the same environmental risks as the 

large amounts of K+ that was leached from the soil.
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Table 3.8. Seasonal balances for soil Na+ in the 0-90 cm depth of a sandy Kroonstad 

soil that was irrigated with winery wastewater near Stellenbosch. 

Period  

 

Soil Na+ (kg/ha) Applied Na+ 

(kg/ha) 

Na+ loss 

(kg/ha) 

Leached Na+ 

(%) 
Beginning End 

Mar 11 - May 11 366 514 1645 1497 91 

May 11 - Nov 11 514 411 333 436 131 

Nov 11 - May 12 411 283 1331 1459 110 

May 12 - Nov 12 283 221 1262 1324 105 

Nov 12 - May 13 221 155 1139 1205 106 

May 13 - Nov 13 155 221 1713 1647 96 

 

 

Figure 3.38. Effect of cumulative (Σ) irrigation plus rain on cumulative Na+ losses 

beyond 90 cm depth where a Kroonstad soil was irrigated with winery wastewater for 

two and a half years near Stellenbosch. 

Calcium: Although application of winery wastewater did not increase soil Caextr over 

the study period, this cation did show limited fluctuations (Fig 3.39). It seemed that 

higher applications during the harvest period reflected in the Caextr, particularly in 2012. 

Since the applied Ca2+ was substantially lower than amounts of K+ and Na+, it is 

unlikely that the Ca2+ would affect the EPPʹ or ESPʹ significantly. Therefore, the 

bivalent cation will probably not counter soil structural problems caused if the 

Stellenbosch University  https://scholar.sun.ac.za



64 
 

 

wastewater contains high levels of K+ and Na+ compared to Caextr. Furthermore, 

application of winery wastewater is unlikely to have any benefits of Ca2+ supply to 

plants because the wastewater contained only small quantities of this element. 

Magnesium: The Mg2+
extr in all layers only showed limited fluctuation over the study 

period (Fig. 3.40). However, this was not consistently related to the variations in the 

amount applied Mg2+. Similar to Ca2+, the low levels of Mg2+ were unlikely to counter 

the negative effects of high K+ and Na+ applications on EPPʹ or ESPʹ, and 

consequently on soil physical conditions. 

 

Figure 3.39. Temporal variation in soil extractable Ca2+
 and amounts of Ca2+ applied via 

winery wastewater to a Kroonstad soil near Stellenbosch. Vertical columns indicate 

amounts of applied Ca2+. 

 

 

Figure 3.40. Temporal variation in extractable Mg2+ and amount of Mg2+ applied via 

winery wastewater to a Kroonstad soil near Stellenbosch. Vertical columns indicate 

amounts of applied Mg2+. 

Stellenbosch University  https://scholar.sun.ac.za



65 
 

 

EPPʹ: With the exception of the 0-10 cm layer, the soil EPP' showed a steady increase 

over the study period (Fig. 3.41). The steepest increase occurred in the 60-90 cm 

layer. Since the Ca2+ and Mg2+ remained relative constant over the study period, the 

EPP' increase was probably due to the decline in Na+
extr when this specific winery 

started to use less Na+ based cleaning agents. 

 

Figure 3.41. Temporal variation in the extractable potassium percentage (EPPʹ) where 

winery wastewater was applied to a Kroonstad soil near Stellenbosch. 

ESPʹ: As expected, the soil ESP' followed the same trend as the Na+
extr (Fig. 3.42). 

The ESPʹ showed an increase in May 2011, except in the 60-90 cm layer. This was 

followed by a steady decline until the end of the study period. Consequently, the ESP' 

remained below 15% in all the soil layers, except in May 2011. These results confirmed 

the positive effect of sound winery management practices on the reduction of the 

potential sodicity hazard if the water is to be used for irrigation of agricultural crops. 

ECe: The ECe increased with soil depth throughout the study period (Fig. 3.43). The 

salt content in the 0-10 cm layer tended to remain almost constant over the study 

period, whereas it tended to decrease up to November 2012 in the deeper layers. This 

was followed by an increase in May 2013. However, the ECe was lower at the end of 

the study period compared to the initial values in all layers (Fig. 3.43). These results 

indicated that the salinity hazard was reduced where winery wastewater was applied 

under the prevailing conditions. 
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Figure 3.42. Temporal variation in the extractable sodium percentage (ESPʹ) where 

winery wastewater was applied to a Kroonstad soil near Stellenbosch. 

 

Figure 3.43. Temporal variation in the electrical conductivity of the saturated soil paste 

(ECe) where winery wastewater was applied to a Kroonstad soil near Stellenbosch. 

pH(KCl): The soil was acidic, i.e. the pH(KCl) was below 5.5, in all the layers throughout 

the study period (Fig. 3.44). Furthermore, the pH(KCl) tended to increase during the 

harvest period, followed by a decline in winter. This trend was notably less prominent 

in the 60-90 cm layer. However, the overall effect of irrigation with winery wastewater 

was that the pH(KCl) increased in all layers over the study period (Fig. 3.44). Application 

of winery wastewater increased the soil pH(KCl) from 4.6 to 5.0 in the topsoil and from 

5.0 to 5.3 in the subsoil. The pH(KCl) increase in the topsoil means that organic 

materials supplied by winery wastewater could be the source of the pH(KCl) increase. 

In contrast, leaching of salts into the deeper soil layers could have increased pH(KCl). 
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According to Rukshana et al. (2012), soil pH increased when organic anions were 

mineralised and H+ ions were consumed following winery wastewater application. 

Although application of winery wastewater increased soil pH by more than 0.2 units, 

the soil remained acidic under the prevailing conditions.  

 

Figure 3.44. Temporal variation in soil pH(KCl) where winery wastewater was applied to 

a Kroonstad soil near Stellenbosch. 

Phosphorus: The soil P did not show any trends that could be related to seasonal 

variation in the volumes of winery wastewater applied, or the level of P in the water 

(Fig. 3.45). Although limited fluctuations occurred, the soil P tended to increase slightly 

over time, except in the 60-90 cm layer. The latter suggested that P did not leach into 

the subsoil under the prevailing conditions.  The soil P content was well above the 

minimum requirement for vineyards (Conradie, 1994). 

 

Figure 3.45. Temporal variation in soil P where winery wastewater was applied to a 

Kroonstad soil near Stellenbosch. Dashed line indicate the proposed P norm for 

grapevines (Conradie, 1994). 
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3.4. CONCLUSIONS AND RECOMMENDATIONS 

It is important to note that the study represented the worst case scenario, i.e. the 

winery wastewater disposal was not carried out in a bigger paddock. Consequently, 

high volumes of wastewater irrigation were applied on a single plot, particularly in the 

harvest period and winter. Visual observations revealed that this caused waterlogging 

in the subsoil of a Longlands soil near Rawsonville, as well as the Kroonstad soil near 

Stellenbosch. Water movement in the Longlands would probably be vertical, whereas 

would be lateral above the G horizon for the Kroonstad. Although the winery 

wastewater contained high loads of organic C, it did not accumulate in any of the two 

soils. This suggested that aerobic conditions in the topsoil allowed decomposition of 

the applied organic matter during December when the wastewater irrigation volumes 

were at lowest and temperatures were high.  

Due to the high volumes of wastewater irrigation plus rainfall, the inevitable over-

irrigation leached large amounts of cations, particular K+ and Na+, beyond 90 cm depth 

in the Longlands and Kroonstad soils. This was confirmed by the fact that the ECe 

remained fairly constant during the study period. Unfortunately, the leached elements 

are bound to end up in natural water resources in the long run. Irrigation with the winery 

wastewater did not have a pronounced effect on soil pH(KCl), except for a slight 

increase in the Kroonstad soil near Stellenbosch. This was probably due to the 

decomposition of organic matter, and the fact that the applied salts were leached 

beyond 90 cm depth. The study confirmed that injudicious irrigation with untreated 

winery wastewater poses a serious environmental hazard, particularly where crops in 

sandy soils are irrigated.  

Due to the risks involved as discussed above, disposal of winery wastewater by means 

of irrigation is definitely not the ultimate solution to the problem. Land disposal can 

only be recommended where the wastewater application does not exceed the water 

requirement of the grazing crop, or any other agricultural crop. Wastewater application 

according to the potassium requirement of the crop is also very crucial. This means 

that the wastewater needs to be distributed on an area of land that is big enough so 

that the daily applications does not cause over-irrigation. Therefore, sound wastewater 

management can only be achieved by means of irrigation scheduling based on 

frequent soil water content measurements. Care should be taken that the irrigation 

water does not leach beyond the root zone. The soil chemical status should be 
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determined at least annually. The basis to which wastewater should be applied for a 

given crop should be based on water and nutrients requirement such as potassium. 

Depending on the type of soil and quality of wastewater, each winery will determine 

the size of land needed for irrigation with wastewater high on potassium. The winery 

will also have to consider the electricity costs if wastewater needs to be pumped from 

nearby farms in order to be utilized for a crop requirement. 

Based on the foregoing, it is essential that future research should focus on selecting 

halophytic crops that are capable of absorbing the applied elements, particularly K+ 

and Na+, if land disposal of winery wastewater is the only option. Preferably, the foliage 

and roots or tubers should be removed from the land when the crop is harvested. The 

effects of K:Na ratio in diluted or undiluted winery wastewater on soil structure stability, 

potassium availability and leaching of elements also needs to be addressed by 

continued research. Since the climate, particularly rainfall, will affect the accumulation 

and/or leaching of the elements, it is important that the research is carried out in field 

studies. 
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CHAPTER 4: DESIGN OF A POT EXPERIMENT TO STUDY THE EFFECT OF 

IRRIGATION WITH DILUTED WINERY WASTEWATER ON FOUR DIFFERENTLY 

TEXTURED SOILS 

4.1 INTRODUCTION 

The negative effects of irrigation with winery wastewater on soils are well documented 

(Bond 1998; Papini, 2000; Mulidzi, 2001; Arienzo et al., 2009a; Christen et al., 2010; 

Laurenson & Houlbrooke, 2011; Laurenson et al., 2012; Mosse et al., 2011; Arienzo 

et al, 2012). To comply with intensified environmental legislation (Department of Water 

Affairs, 2013), the wine industry must find solutions for treatment or re-use of winery 

wastewater (Van Schoor, 2001). Since negative impacts on soils might be less if the 

winery wastewater is diluted before being re-used for irrigation, such a practice could 

be more sustainable compared to undiluted wastewater. However, knowledge 

regarding effects of diluted winery wastewater on different soils in South African grape 

growing regions is limited. 

Determining effects of irrigation with winery wastewater on soils and crops in field 

experiments, requires an elaborate infrastructure, particularly if the wastewater has to 

be diluted to a predetermined level (Myburgh et al., 2014). Field experiments are 

usually carried out with one specific soil type. Since different soils respond differently 

to winery wastewater irrigation (Mulidzi, 2001), it is essential to determine the effects 

of diluted winery wastewater on soils that differ pedogenically. However, it would be 

expensive to erect the required infrastructure for a range of soils. A further 

disadvantage of field experiments is that wineries produce the bulk of their wastewater 

during the harvest period, i.e. from February to April. Therefore, field experiments can 

only be carried out annually during harvest. Based on the foregoing, pot experiments 

seem to be an alternative, since it could include a range of different soils. A further 

advantage is that winery wastewater can be stored in tanks which will allow 

experiments to be continued throughout the year if the pots are sheltered from rain. 

This will reduce the duration of experiments compared to ones carried out in the open 

field. If pot experiments are carried out correctly, drainage and subsequent leaching 

of elements can be avoided. The latter can be problematic and difficult to quantify 

under field conditions. 
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The objective of the study was to design and evaluate a pot experiment to determine 

the effects of irrigation with diluted winery wastewater on different soils.  

4.2. MATERIALS AND METHODS 

4.2.1 Experiment layout 

Four different soils from grape growing regions in the Western Cape Province were 

included in the study. A sandy, alluvial soil was collected in a vineyard near 

Rawsonville in the Breede River valley. This soil belongs to the Longlands (Arenosol) 

form. A sandy, aeolic soil which belongs to the Garies form (Eutric Petric Durisol) was 

collected near Lutzville in the Lower Olifants River valley. A shale derived soil was 

collected on the Nietvoorbij Experiment farm of the Agricultural Research Council near 

Stellenbosch. A granite derived soil was also collected at Nietvoorbij. These soils 

belong to the Oakleaf (Chromic Acrisol) and Cartref (Albic, leptic Acrisol) forms, 

respectively. For the purpose of the study, the soils will be referred to as Rawsonville 

sand, Lutzville sand, Stellenbosch shale and Stellenbosch granite, respectively.  

The alluvial sand was collected in a vineyard, whereas the others were from 

uncultivated land. Composite soil samples were collected from the 0-300 mm layer at 

each locality and placed in plastic bags for transport and storage. The shale and 

granite soils were passed through a 6 mm mesh sieve to remove large fragments. 

Triplicate samples were collected from the composited soils for determining particle 

size distribution at a commercial laboratory (Bemlab, Strand). Five soil particle size 

classes were determined using the hydrometer method (Van der Watt, 1966). Soil 

textural classes were assigned according to standard diagrams of the Soil 

Classification Working Group (1991). 

The pot experiment was carried out under a 20 m x 40 m translucent fiberglass rain 

shelter at ARC Infruitec-Nietvoorbij near Stellenbosch. Due to logistic constraints, 

irrigation water for the control treatments, as well as for wastewater dilution, could not 

be obtained from Lutzville and Robertson. Therefore, the control soils were irrigated 

with water supplied by the Stellenbosch municipality. For the wastewater treatments, 

winery wastewater was diluted to a chemical oxygen demand (COD) level of 3000 

mg/L. The undiluted wastewater was collected from the wastewater pit at a winery 

near Rawsonville, and stored in a 2500 L plastic stock tank next to the rain shelter. A 

500 L plastic tank was filled with municipal water. The COD in the undiluted 

wastewater and municipal water was measured using a spectrophotometer (Aqualitic 
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COD-reactor®, Dortmund) with appropriate test kits (COD, CSB, 0-15000 mg/L). The 

COD levels were used to calculate the volumes of winery wastewater and municipal 

water required to obtain the target COD level. The volume (m3) of wastewater required 

from the stock tank (VW) to obtain a certain target COD concentration (CODT) was 

calculated as follows:  

VW = (CODT – CODM) × VT/(CODS – CODm) (Eq. 4.1) 

where CODm and CODs are the COD concentrations (mg/L) in the municipal water and 

the stock tank, respectively, and VT is the tank volume (m3). The volume of wastewater 

required (VW) was pumped from the stock tank into another 500 L plastic tank where 

it was mixed with municipal water. The COD in the diluted wastewater was measured 

while the irrigations were applied. 

Treatments were applied over four simulated irrigation seasons. Each season 

consisted of six irrigations, which was estimated as the number of irrigations a 

vineyard would require during the harvest period, i.e. when the highest volumes of 

wastewater are produced. Hence, a total of 24 irrigations were applied over the four 

simulated irrigation seasons. Each soil/water treatment combination was replicated 

three times in a complete randomised block design. Following each simulated season, 

i.e. after 6, 12, 18 and 24 irrigations, the soil chemical status was determined to 

compare the effect of irrigation with diluted winery wastewater to that of municipal 

water. Since soil sampling was destructive, a replication “plot” of each soil/water 

treatment combination consisted of four pots (Fig.4.1). At the end of each season, one 

of the four pots was removed for sampling. 
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Figure 4.1. Schematic illustration of the layout of one replication of the treatment pots. 

In the actual experiment layout, the pots of different treatments were randomised in 

each replication. 

4.2.2. Packing of soils to a predetermined bulk density 

The day before the pots were filled, the bulked soils were moistened using municipal 

water to enhance compaction. Following this, the soils were mixed thoroughly and 

covered using plastic sheets to minimize water loss. Triplicate soil samples were 

collected in metal cans to determine the gravimetric water content of the bulked soils. 

The moist soil samples were weighed and dried in an oven at 105°C for 16 hours. 

Samples were removed from the oven and allowed to cool in a desiccator before they 

were weighed to obtain their oven-dry mass. Gravimetric soil water content (Θm) was 

calculated as follows: 

Θm = (Mw - Md) ÷ ( Md - Mc) (Eq. 4.2) 

where Mw is the mass of the moist soil plus the can, Md is the oven-dry mass of the 

soil plus the can and Mc is the metal can mass. Mass percentage soil water content 

(SWCm) was calculated as follows: 

SWCm = Θm x 100 (Eq. 4.3) 
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All the soils were packed to a bulk density (ρb) of 1400 kg/m3. The mass of moist soil 

required to obtain this target ρb was calculated as follows: 

Mp = (ρb x Vs) x (1 + SWCm ÷ 100) (Eq. 4.4)  

where Mp is the mass of the moist soil that needs to be packed into the pot (g), ρb is 

the target bulk density (kg/m3), Vs is the soil volume in cm3. Soils were packed into 

3.54 dm3 PVC pots which consisted of 200 mm lengths of 150 mm ø PVC pipe with a 

wall thickness of 4 mm. The base of each pot was machined from 3 mm thick PVC 

sheet, and glued onto one of the open ends. A 10 mm ø hole was drilled in the bottom 

of each pot to allow drainage. A piece of 1.5 mm plastic fly-mesh was placed on the 

bottom of each pot to prevent the soil from being lost through the drainage hole. All 

pots were cleaned and weighed before being filled with the soil. A custom built 

mechanical press was used to compact the soils to the required ρb. The packed soil 

columns were only 190 mm high, i.e. leaving 10 mm below the upper edge of a pot 

free. The surface under the rain shelter was first leveled with a gravel layer to promote 

even distribution of the irrigation water. A layer of coarse building sand was placed on 

the gravel. The pots were placed onto 240 mm ø plastic saucers. The area occupied 

by the pot experiment was 3.7 m x 7.8 m. For each soil, four additional pots were 

packed. The soil in these pots were saturated using municipal water. After free 

drainage had stopped, the pots were weighed to obtain the mean mass for each soil 

at field capacity. The dry soil mass (Mod) in each pot (g) was calculated as follows: 

Mod = Vs x ρb (Eq. 4.5) 

where Vs is the volume (dm3) of soil and ρb is the target bulk density (kg/m3).  

4.2.3. Irrigation system 

Two 0.74 kW, 3 m3/h pumps (Foras®, Berg River Irrigation, Paarl) were used to apply 

the municipal and diluted winery wastewater to the respective soil/water treatment 

combinations. The municipal and diluted winery wastewater passed through two 130-

micron ring filters (Arkal®, Netafim, Kraaifontein) installed downstream of each pump. 

An eight-way manifold with a ball valve at each outlet allowed individual irrigation of 

the eight soil/water treatment combinations. Water was distributed through a network 

consisting of 17 mm ø laterals, and applied to each pot by means of a 2 L/h pressure 

compensating button dripper with a four-way manifold attached to it (Netafim, 

Kraaifontein). Four 700 mm long, 3 mm inner ø micro-tubes were attached to each 
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dripper manifold (Fig. 4.2). In order to obtain equal flow through the four micro-tubes, 

an inline labyrinth-type dripper (Arrow®, Netafim, Kraaifontein) was inserted in the 

open end of each micro-tube to create some back pressure. To distribute the irrigation 

water uniformly over the soil surface, the four micro-tubes were supported by a brace 

placed onto each pot (Fig. 4.3). The brace, in the form of a cross, was made from two 

1.8 mm x 7 mm x 205 mm galvanised metal strips. On each side of the metal strips, 

the last 20 mm was bent at a rectangle so that the brace fitted firmly onto a pot. The 

four micro-tubes were pushed through 5 mm ø holes drilled in the brace. The flow rate 

through each of the four micro-tubes was 0.5 L/h. The total flow rate through the four 

micro-tubes (Qdrip) was 34 mL/min. 

 

 

Figure 4.2. Schematic illustration pressure compensating (PC) dripper, manifold and 

micro-tubes to distribute water evenly in the pots. 
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Figure 4.3. Schematic illustration of PVC pot with galvanized metal brace bearing the 

four micro-tubes. 

4.2.4. Irrigation volumes 

The volume of water applied to each soil was recorded using water meters. The mass 

of water in each soil at field capacity (WMfc) was calculated as follows: 

WMfc = Mfc - Mod   (Eq. 4.6) 

where Mfc is the mean pot plus soil mass at field capacity (g) and Mod is the pot plus 

oven-dry soil mass (g). To irrigate when WMfc had evaporated to a specific depletion 

percentage (P), the pot plus soil mass at that depletion percentage (Mdepl) was 

calculated as follows: 

Mdepl = Mod + (WMfc x P ÷ 100) (Eq. 4.7) 

Since weighing 96 pots was too laborious, only 4 representative pots per soil/water 

treatment, i.e. 32 in total, were weighed. Before weighing these pots, the braces 

bearing the micro-tubes were removed. An electronic balance was used to weigh the 

pots every second day until the mass reached Mdepl. Assuming that the water density 

is 1 g/cm3, the irrigation volume required per pot was calculated as follows: 

Virr = WMfc - Mact (Eq. 4.8) 

where Virr is the volume of water required per pot (mℓ) and Mact is the actual pot plus 

soil mass before irrigation (g). The time required to apply Vp was calculated as follows: 

t = Virr ÷ Qdrip (Eq. 4.9) 

where t is the time (min) and Qdrip is the total flow rate through the four micro-tubes 

(mL/min). The soils were irrigated when their P reached c. 85%. This high level of 

depletion was to ensure adequate soil aeration between irrigations. When pots were 
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removed for soil chemical analyses, their irrigation water was collected in 500 mL glass 

beakers and discarded. This was to maintain the same irrigation system flow rate 

throughout the experiment.  

4.3. RESULTS AND DISCUSSION 

Since only topsoil was used in the study, characteristics of the deeper horizons were 

considered to be irrelevant. With the exception of the Stellenbosch granite soil, which 

had a high coarse sand fraction, fine sand dominated the sand fraction (Table 4.1). 

According to Van Huyssteen (1989), this particular soil contains c. 47% gravel, i.e. 2-

6 mm ø, in its natural state. All soils compacted with relative ease to a ρb of 1400 

kg/m3. When the soils were packed into the pots, mean water contents were 14.9%, 

11.7%, 12.1% and 14.5%, respectively, for the Rawsonville sand, Lutzville sand, 

Stellenbosch shale soil and Stellenbosch granite soil. Irrigation amounts applied to the 

Rawsonville sand, Lutzville sand, and Stellenbosch shale soil over the four simulated 

seasons were comparable, but the Stellenbosch granitic soil received substantially 

less water (Table 4.2). As expected, the COD in the municipal water was substantially 

lower compared to the diluted winery wastewater (Table 4.3). The COD in the diluted 

winery wastewater was comparable between the four simulated seasons, and was 

reasonably close to the target level of 3000 mg/L. 

Table 4.1. Locality, soil form, particle size distribution (≤ 2 mm) and textural class for 

the four soils included in the study. 

 Rawsonville 

sand 

Lutzville 

sand 

Stellenbosch 

shale 

Stellenbosch 

granite 

Latitude -33.693698° -31.558906° -33.911717° -33.917296° 

Longitude 19.322569° 18.353115° 18.871152° 18.864484° 

Clay (<0.002 mm) 3.3 0.4 20 13 

Silt (0.002-0.02 mm) 1 1 13 17 

Fine sand (0.02-0.2 mm) 60 69 50 33 

Medium sand (0.2-0.5 mm) 29 26 5 3 

Coarse sand (0.5-2 mm) 8 2 12 35 

Soil textural class Fine sand Fine sand Fine sandy 

clay loam 

Coarse sandy 

loam 
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Table 4.2. Total irrigation amounts applied to four different soils during four simulated 

seasons. 

Soil Irrigation applied (mm/season) Total 

Season 1 Season 2 Season 3 Season 4 

Rawsonville sand 291 289 287 289 1156 

Lutzville sand 281 282 282 281 1126 

Stellenbosch shale 246 250 246 245 987 

Stellenbosch granite 181 180 184 183 728 

 

Table 4.3. Variation in chemical oxygen demand (mg/L) in the water used for the pot 

experiment. 

Water source Season Mean 

1 2 3 4 

Municipal water 35 25 26 26 28±4 

Diluted winery wastewater 3149 3257 3243 3190 3210±43 

The soil water contents at field capacity of the soils were comparable, except for the 

Stellenbosch granite soil (Fig. 4.4). This indicated that this particular soil had a lower 

water holding capacity compared to the other soils. The lower water holding capacity 

of the Stellenbosch granite soil was probably due to the high coarse sand content 

(Table 4.1). Initially, the soil water content was restored to field capacity following 

irrigation in all soils. However, in the case of the Stellenbosch granite, field capacity 

was only restored following the first two irrigations (Fig. 4.4D). From the third irrigation 

onwards, visual observation revealed that the irrigation water ponded on the soil 

surface due to poor water infiltration. Consequently, the target soil water depletion 

level was reached following irrigation, but field capacity could not be restored (Fig. 

4.4D). Although actual soil water content was not measured in the pots, it can be 

assumed that only the upper section of the profile in the Stellenbosch granite soil was 

wetted.  

Stellenbosch University  https://scholar.sun.ac.za



79 
 

 

 

Figure 4.4. Temporal variation in soil water content (SWC) in (A) Rawsonville sand, (B) 

Lutzville sand, (C) Stellenbosch shale and (D) Stellenbosch granite soils measured in a 

pot experiment. Arrows indicate when soil chemical status was determined after each 

of the simulated seasons. “FC” and “RP” indicate field capacity and refill point, 

respectively. 

Although the level of COD differed substantially between the municipal and winery 

wastewater (Table 4.3), water infiltration problems occurred where municipal, as well 

as winery wastewater were applied to the granite soil. The sodium adsorption ratios in 

the municipal and winery wastewater were 0.8±0.1 and 4.6±0.6, respectively 

(unpublished data). This confirmed that poor water quality did not cause the problem. 

Since the soil was not saline, irrigation with low salinity water could not have caused 

the problem in the case of the clean water treatments. When irrigated with clean river 

water and a range of diluted winery wastewaters, the near-saturation hydraulic 
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conductivity of this particular soil was considerable lower compared to the other soils, 

irrespective of the level of water quality (Howell & Myburgh, 2014). 

With the exception of the Stellenbosch granite soil, the soil water content was 

managed between field capacity and the refill point (Fig. 4.4). This indicated that the 

soils were well-aerated between irrigations. Since the lower part of the Stellenbosch 

granite must have remained dry, it implied that this soil was also well-aerated between 

irrigations. Visual observation revealed that no drainage occurred after irrigations had 

been applied. Therefore, it can be assumed that no leaching occurred of elements 

applied via the municipal or diluted winery wastewater. The foregoing indicated that 

the lysimetric approach provided an accurate measure of the irrigation volumes 

required. It is important to note that the pot experiment was completed in 

approximately two and a half years, whereas it would have taken four years to do the 

wastewater irrigations in a field experiment. Effects of irrigation with diluted winery 

wastewater on the chemical status of the four soils will be presented in subsequent 

chapters. 

4.4. CONCLUSIONS  

It was possible to subject more than one soil to irrigation with diluted winery 

wastewater by using a single mix and irrigation infrastructure. Since the pot experiment 

could be continued under the rain shelter during winter, results were obtained quicker 

compared to an open field study. Although only representative pots were weighed, the 

procedure was still time consuming. Therefore, it is recommended that load cells are 

used to record daily mass losses automatically. Automatic recording will also be useful 

for determining mass losses if experiments are carried out with potted plants. 

Stellenbosch University  https://scholar.sun.ac.za



81 
 

 

CHAPTER 5. EFFECT OF IRRIGATION WITH DILUTED WINERY WASTEWATER 

ON CATIONS, PH AND PHOSPHORUS IN FOUR DIFFERENTLY TEXTURED 

SOILS 

5.1. INTRODUCTION  

Changes in environmental legislation (Department of Water Affairs, 2013) put pressure 

on the wine industry to find solutions for treatment or use of winery wastewater (Van 

Schoor, 2001a). This initiated the development of guidelines for the management of 

wastewater and solid waste at wineries (Van Schoor, 2005). In many cases, shortage 

of good quality water leads to an increasing need to irrigate with poor quality water 

such as saline groundwater, drainage water and treated wastewater (Jalali et al., 

2008). The impact of using untreated industrial and municipal wastewater for 

agricultural irrigation is well-documented (Bond 1998; Papini, 2000; Mulidzi, 2001; 

Arienzo et al., 2009b; Christen et al., 2010; Laurenson & Houlbrooke, 2011; Mosse et 

al., 2011; Arienzo et al., 2012; Laurenson et al., 2012; Howell & Myburgh, 2014; 

Walker & Lin, 2008). 

Disposal of winery wastewater through land application has been practiced for many 

years (Mulidzi, 2001; Laurenson & Houlbrooke, 2011). Effective disposal of 

wastewater depends on the irrigation technology, as well as on soil properties (Oron 

et al., 1999). An earlier study confirmed that the impacts of using undiluted winery 

wastewater for irrigation differ substantially between soil types (Mulidzi, 2001). Under 

some circumstances irrigation with winery wastewater can have a beneficial effect. It 

was also suggested that using K+-rich wastewater could enhance soil fertility (Mosse 

et al., 2011). In Australia, continued irrigation of pastures with winery wastewater 

resulted in an accumulation of K+ to levels that leached into the groundwater and other 

water resources (Christen et al., 2010). In addition, it was observed that using winery 

wastewater for irrigation of poorly drained soils can lead to salinisation and water- 

logging, reducing the long-term sustainability of the land for agriculture (Christen et 

al., 2010).  

Replacement of bivalent Ca2+ and Mg2+ by monovalent K+ and Na+ during continuous 

irrigation can potentially lead to the breakdown of the soil structure. Exchangeable Na+ 

in soils tends to increase where wastewaters containing high levels of Na+ are used 

for irrigation (Lieffering & McLay, 1996). Where wineries use Na+ based cleaning 
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agents, e.g. sodium hydroxide (NaOH), accumulation of monovalent cations, such as 

Na+, on the exchange sites has the potential to degrade soil structure through clay 

dispersion and flocculation (Mosse et al., 2011). Consequently, soil hydraulic 

conductivity can be reduced where winery wastewater is used for irrigation (Laurenson 

et al., 2012). Indications of poor aeration and water infiltration observed in various soils 

where winery wastewater was used for irrigation, were attributed to structural 

degradation caused by high Na+ concentrations added to the soil (Mulidzi et al., 

2009b). This was confirmed when irrigation with diluted winery wastewater reduced 

the hydraulic conductivity of differently textured soils (Howell & Myburgh, 2014). Using 

winery wastewater for irrigation may also result in K+ accumulation in the soil, resulting 

in the leaching of Ca2+ and Mg2+ and increasing the instability of the soil structure in 

the long-run (Mosse et al., 2011). Since K+ has affinity for clay minerals, high soil K+ 

can cause clay swelling and dispersion where wastewater is used for irrigation 

(Arienzo et al., 2012). Similar to Na+, K+ in winery wastewater can reduce soil hydraulic 

conductivity, (Arienzo et al., 2009b). However, knowledge regarding negative effects 

of K+ on soil structure stability is limited compared to Na+. 

Soil pH tends to increase when wastewater with high pH and Na+ concentrations is 

used for irrigation (Lieffering & McLay, 1996). A study carried out in the Western Cape 

showed that disposal of grape processing effluents changed the soil pH from acidic to 

alkaline (Papini, 2000). This pH increase was attributed to initial soluble organic matter 

removal through volatilization of CO2 during biodegradation. 

In contrast, application of wine vinasse containing high bicarbonate slightly reduced 

the pH of a Mediterranean soil (Bueno et al., 2009). The pH reduction was attributed 

to the high electrical conductivity of the soil solution (ECe), i.e. 9.2 dS/m, and 

transformation of organic sugars by micro-organisms. These contrasting results of 

various studies imply that soil reactions to the application of winery wastewater cannot 

easily be predicted. In this regard, it is also possible that phosphorus (P) applied via 

winery wastewater irrigation could contribute towards the nutrient requirements of 

agricultural crops. The solubility of phosphate (PO4
3-) compounds, or P availability to 

plants (P is adsorbed by plants in the ionic form H2PO4
-), strongly depends on the soil 

pH (Sharpley et al., 1988; Conradie, 1994; Busman et al., 2002; Devau et al., 2009). 

In acidic soils, particularly where pH (Water) is less than 5.5, aluminium (Al3+) and iron 

(Fe3+) will react with PO4
3- to form amorphous phosphates (Busman et al., 2002).  
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The amorphous Al3+ and Fe3+ phosphates gradually change to insoluble PO4
3- 

compounds that are not available to plants. Phosphate also becomes increasingly 

insoluble if the soil pH(KCl) exceeds 7 (Conradie, 1994; Busman et al., 2002). In alkaline 

soils, i.e. pH > 7, calcium (Ca2+) is the dominant cation that will react with PO4
3-, to 

form a general sequence of calcium phosphates, i.e. dibasic calcium phosphate 

dihydrate, octocalcium phosphate and hydroxyl apatite (Busman et al., 2002). The 

formation of each of these compounds decreases the solubility of phosphate. On the 

other hand, PO4
3- solubility can also increase in high pH soils when exchangeable 

sodium (Na+) releases inorganic PO4
3- (Sharpley et al., 1988). When Na+ replaces 

exchangeable Ca2+, Mg2+ and Al3+ the negative potential of the surface increases, 

which results in desorption of PO4
3- (Naidu & Rengasamy, 1993). The soils of the 

South African winelands are highly heterogeneous and can show a high degree of 

spatial variation in a relatively small area. Soils range in parent material, texture, 

structure, drainage, coarse fragment content and chemistry. Parent material is usually 

largely responsible for the physical and chemical makeup of a soil (Van Schoor, 

2001b). In the Stellenbosch region, two of the dominant parent materials are shale 

and granite, while in the Breede River and Olifants River wine growing regions, 

transported aeolian or fluvial sands are important parent materials (Bargmann, 2003). 

Due to the heterogeneity of the winelands soils, they are likely to respond differently 

to the application of winery wastewater, however, there has been little work done to 

determine these responses. 

The objective of this study was to determine the effects of irrigation with diluted winery 

wastewater on selected chemical properties of four soils varying in parent material and 

clay content.  

5.2. MATERIALS AND METHODS 

5.2.1. Soil collection 

 Details of the pot experiment, wastewater dilution and the irrigation system was 

described in Chapter 4). 

5.2.2. Water sampling and analyses 

Water samples were collected prior to each irrigation. The COD in the water was 

measured using a portable spectrophotometer (Aqualitic COD-reactor®, Dortmund) 

and the appropriate test kits (COD, CSB, 0-15000 mg/L). The pH and electrical 
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conductivity (EC) were determined according to methods described by Clesceri et al. 

(1998) by a commercial laboratory (Bemlab, Strand). The water was analysed for Ca2+, 

Mg2+, K+ and Na+ by means of atomic emission using an optical emission spectrometer 

(Varian ICP-OES) at a commercial laboratory (BEMLAB, Strand). Total alkalinity was 

determined through titration with 0.05N hydrochloric acid. The sodium adsorption ratio 

(SAR) of the water was calculated as follows (units in meq.L-1): 

SAR = Na+ ÷ [(Ca2+ + Mg2+) ÷ 2]½ (Eq. 5.1) 

5.2.3. Soil sampling and analyses 

To make provision for destructive soil sampling, each experiment “plot” consisted of 

four pots. Following each simulated irrigation season, the soil in one of the pots was 

collected for sampling, i.e. after 6, 12, 18 and 24 irrigations. Soil samples were 

collected from the 0-10 cm and 10-20 cm layers in the pots of all replications. Soil 

samples were air dried and passed through a 2 mm mesh sieve. All analyses were 

carried out by a commercial laboratory (Bemlab, Strand). The pH(KCl) was determined 

in a 1 M potassium chloride (KCl) suspension. The Ca2+, Mg2+, K+ and Na+
 were 

extracted with 1 M ammonium acetate at pH 7. The cation concentrations in the 

extracts were determined by inductively coupled plasma optical emission 

spectrometry (ICP-OES) using a spectrometer (PerkinElmer Optima 7300 DV, 

Waltham, Massachusetts). Phosphorus was determined according to the Bray2 

method, i.e. extraction with 0.03 M NH4F (ammonium-fluoride) in 0.01 M HCl 

(hydrochloric acid). The P concentration in the extract was determined by inductively 

coupled plasma optical emission spectrometry (ICP-OES) using a spectrometer 

(PerkinElmer Optima 7300 DV, Waltham, Massachusetts). For this study, the cations 

will be referred to as extractable calcium (Ca2+
extr), magnesium (Mg2+

extr), potassium 

(K+
extr) and sodium (Na+

extr). The extractable potassium percentage (EPPʹ) was 

calculated as follows: 

EPPʹ = (K+
extr ÷ S) x 100 (Eq. 5.2) 

where K+
extr is the extractable potassium (cmol(+)/kg) and S is the sum of basic cations 

(cmol(+)/kg). The extractable sodium percentage (ESPʹ) was calculated in the same 

way to obtain an indication of the sodicity status.  
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5.2.4. Statistical procedures 

Each soil/water treatment was replicated three times in a complete randomised 

design. The four soils were randomly allocated within each block. The treatment 

design was a split-plot with soil type as the main plot factor, and soil depth as the sub-

plot factor. Analyses of variance were performed separately for each season using 

SAS version 9.2 (SAS, 2008). The Shapiro-Wilk test was performed to test for non-

normality (Shapiro & Wilk, 1965). Student’s “t” least significant difference (LSD) was 

calculated at the 5% significance level to facilitate comparison between treatment 

means (Ott, 1998). Linear regressions were calculated using STATGRAPHICS® 

version XV (StatPoint Technologies, Warrenton, Virginia, USA). 

5.3. RESULTS AND DISCUSSION 

5.3.1. Soil characterization 

Soils selected for this study were chosen because they represent dominant soils of 

the Western Cape wine region. Furthermore, it was expected that the impacts of 

winery wastewater on soils would differ widely between differently textured soils. The 

Rawsonville soil was formed from the alluvial gravels of the Breede River. The soils 

selected for this study, showed no clear stratification and contained a mottled subsoil 

thereby classifying as a Longlands soil form (orthic A-E horizon - soft plinthic B 

horizon). The topsoil texture of the soil was fine sand. The soil was slightly acidic with 

pH(KCl) of 5.7. The geology of the Lutzville region is dominated by metamorphic rocks 

of the Nama Group in the north and sedimentary rocks of the Cape Super group in the 

southern and south-western parts (Department of Water Affairs, 2011). However, the 

soils in this area are mainly derived from aeolian deposited sand (Saayman & 

Conradie, 1982). The soil was classified as the Garies form (orthic A - Red apedal B 

horizon – with dorbank as the underlying material). The topsoil texture was fine sand 

and the soil was neutral with pH(KCl) of 6.7. The Stellenbosch shale soil, was located 

on the foot hills of Simonsberg mountain. The lower subsoil was derived in situ from 

shale, however, the upper subsoil and A horizon were derived from colluvial material 

of shale origin. The soil was classified as a red Oakleaf soil form (orthic A – red 

neocutanic B horizon - unspecified material). The topsoil texture was a fine sandy clay 

loam and the soil was acidic with pH(KCl) of 4.2. The Stellenbosch granite soil was also 

located on the foot hills of Simonsberg mountain. The subsoil was derived in situ from 

granite, however the A and E horizons were derived from granitic colluvium. The soil 
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was classified as a Cartref form (orthic A - E horizon - lithocutanic B horizon). Both the 

A and E horizons were highly leached and hard setting. The topsoil texture was coarse 

sandy loam. The soil was acidic with pH(KCl) of 4.4. 

5.3.2. Chemical composition of the water and amount of elements applied 

The mean COD levels in the municipal water and diluted winery wastewater were, 

28±4 and 3210±43 mg/L, respectively, during the four simulated seasons (Mulidzi et 

al., 2016). The COD in the diluted winery wastewater was reasonably close to the 

target level of 3000 mg/L. As expected, most of the other winery wastewater quality 

variables were considerably higher compared to the municipal water (Table 4.3). On 

most irrigation days, the winery wastewater pH was lower compared to the municipal 

water. The average SAR of the winery wastewater was close to 5 (Table 5.1), which 

is the limit for irrigation with wastewater according to the South African water quality 

legislation (Department of Water Affairs, 2013). Due to the differences in the chemical 

composition of the municipal and diluted winery wastewater, considerably more 

cations were applied to the soil via the wastewater compared to the municipal water 

(Table 5.2). Total irrigation amounts applied to the Rawsonville sand (1156 mm), 

Lutzville sand (1126 mm) and Stellenbosch shale (987 mm) over four simulated 

seasons were comparable, but the Stellenbosch granite (728 mm) received 

substantially less water. According to Mulidzi et al. (2016), this particular soil had a 

lower water holding capacity and high coarse sand content compared to the other 

three soils. 
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Table 5.1. Quality characteristics of municipal water and winery wastewater used for 

irrigation of four different soils. 

Water quality 

variables 

Season 

 

1 2 3 4 Mean 

Municipal  

pH KCl 7.7 7.5 7.7 6.9 7.4 

EC (mS/m) 8.3 7.2 9.5 9.3 8.6 

K+ (mg/L) 0.8 0.7 0.9 1.6 1.0 

Na+ (mg/L) 7.4 7.2 8.1 8.5 7.8 

Ca2+ (mg/L) 6.3 6.0 6.1 5.3 5.9 

Mg2+ (mg/L) 1.3 1.1 1.5 1.8 1.4 

SAR 0.7 0.7 0.8 0.8 0.8 

HCO3
- 32.6 22.4 18.4 26.0 24.9 

 Winery  

pH KCl 5.3 6.0 4.9 5.6 5.4 

EC (mS/m) 94.2 109.8 94.6 119.0 104.4 

K+ (mg/L) 196.1 186.6 204.9 196.4 196.0 

Na+ (mg/L) 75.5 114.9 78.7 68.6 84.4 

Ca2+ (mg/L) 14.1 18.0 20.0 22.4 18.6 

Mg2+ (mg/L) 4.9 8.4 6.5 9.1 7.2 

SAR 4.5 5.6 4.0 4.1 4.6 

HCO3
- 511.3 655.1 438.2 552.9 539.4 
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Table 5.2. Amount of elements applied per simulated irrigation season via municipal water and diluted winery wastewater, to four 

different soils. 

Element Season Amount applied (kg/ha) 

  Rawsonville   Lutzville Stellenbosch shale  Stellenbosch granite 

  Municipal Winery Municipal Winery Municipal Winery Municipal Winery 

K+ 1 11 3414 11 3312 10 2895 7 2124 

 2 12 2535 12 2472 10 2181 7 1587 

 3 16 3538 15 3463 13 3034 10 2253 

 4 29 3406 28 3312 24 2887 18 2157 

Na+ 1 100 1315 97 1276 85 1115 62 818 

 2 125 1514 121 1477 107 1303 78 948 

 3 139 1358 136 1329 119 1165 89 865 

 4 147 1189 143 1156 125 1008 93 753 

Ca2+ 1 86 245 84 237 73 207 54 152 

 2 104 270 101 263 89 232 65 169 

 3 106 345 103 338 91 296 67 220 

 4 92 388 90 378 78 329 59 246 

Mg2+ 1 17 85 16 83 14 72 10 53 

 2 19 114 18 112 16 98 12 72 

 3 26 112 25 110 22 96 17 71 

 4 32 158 31 153 27 134 20 100 
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5.3.3. Potassium and EPPʹ  

Where municipal water was applied, K+
extr amounted to 0.21 cmol(+)/kg, 0.42 

cmol(+)/kg, 0.35 cmol(+)/kg and 0.31cmol(+)/kg, respectively for the Rawsonville sand, 

Lutzville sand, Stellenbosch shale and Stellenbosch granite after the four seasons 

(data not shown). Since these values were comparable to the baseline values (Table 

5.3), it indicated that municipal water irrigation had no effect on the K+
extr, irrespective 

of clay content. In contrast, irrigation with the diluted winery wastewater increased 

K+
extr substantially over the four seasons. The K+

extr in the 0-10 cm soil layer was 

slightly higher compared to the 10-20 cm layer, irrespective of clay content (Fig. 5.1). 

According to Arienzo et al. (2009b), a higher amount of exchangeable K+ is retained 

by soils higher in clay content than soils low in clay content following winery 

wastewater irrigation. Furthermore, K+
extr in the four soils increased linearly with the 

cumulative amount of K+ applied via the irrigation water (Fig. 5.1). 

In the 0-10 cm layers, the degree of K+ extraction was similar for the four soils with an 

increase of 0.0002 cmol(+)/kg per kg K+ applied. After the four seasons, EPPʹ amounted 

to 4.6%, 11.5%, 13% and 9.5%, respectively, for the Rawsonville sand, Lutzville sand, 

Stellenbosch shale and Stellenbosch granite soils where municipal water was applied 

(data not shown). Similar to K+
extr, EPPʹ values were comparable to the baseline values 

(Table 5.3), indicating that the municipal water irrigation did not affect EPPʹ. In 

contrast, irrigation with the diluted winery wastewater increased EPPʹ over the four 

seasons (Fig. 5.2). The EPPʹ in the 0-10 cm soil layer was slightly higher compared to 

the 10-20 cm layer, with the exception of Stellenbosch granite soil. In the case of the 

sandy soils and Stellenbosch shale soil, the EPPʹ in the 0-10 cm showed a slower 

increase following the second season (Figs. 5.2A, 5.2B & 5.2C).  

The EPPʹ in the 10-20 cm layer showed an almost linear increase with applied K+. In 

the case of Stellenbosch granite, these trends did not occur as EPPʹ was comparable 

in both soil layers (Fig. 5.2D). After the fourth season, EPPʹ was similar in both layers 

which suggested that the granite soil was no longer retaining high amounts of K+ in 

the 0-10 cm layer.  
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Table 5.3. Initial extractable cations, extractable potassium percentage (EPPʹ), 

extractable sodium percentage (ESPʹ) and pH(KCl) in the four soils selected for the study. 

Variable Rawsonville 

sand 

Lutzville   

sand 

Stellenbosch 

shale 

Stellenbosch 

granite 

K+
extr (cmol(+)/kg) 0.2 0.5 0.4 0.3 

Na+
extr (cmol(+)/kg) 0.1 0.1 0.1 0.2 

EPPʹ 3.7 13.2 13.8 9.7 

ESPʹ 1.9 2.6 3.4 6.5 

Ca2+
extr (cmol(+)/kg) 3.5 2.4 1.6 1.8 

Mg2+
extr (cmol(+)/kg) 1.6 0.8 0.8 0.8 

pH(KCl) 5.7 6.7 4.2 4.4 

For healthy grapevine growth in soils with a pH below 6, it is recommended that a K+ 

saturation of 4% is required on the exchange sites (Conradie, 1994). Prior to irrigation, 

the EPPʹ was greater than 4% in all soils, except for the Rawsonville sand which had 

an EPPʹ of 3.7%, which was close to the threshold (Table 5.3). Thus for the soils 

investigated, K+ added via the wastewater does not represent a benefit in terms of 

nutrient balance and supply. In fact, high K+
extr levels may cause excessive absorption 

by grapevines which could result in high wine pH, and eventually reduce colour 

stability of red wines where winery wastewater is applied (Mpelasoka, 2003; Kodur, 

2011).  

Under normal cropping conditions, there is a possibility that K+ applied via wastewater 

can be beneficial if it can maintain optimum levels when K+ is absorbed by grapevines 

and/or inter-row crops, or if K+ is leached by rainfall in winter. It should be noted that 

the observed K+ accumulation occurred in the absence of rainfall or crops. Determining 

the effect of leaching by winter rainfall where diluted winery wastewater is used for 

irrigation, is part of a separate study.
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5.3.4. Sodium and ESPʹ  

Where municipal water was applied, Na+
extr amounted to 0.15 cmol(+)/kg, 0.17 

cmol(+)/kg, 0.16 cmol(+)/kg and 0.25 cmol(+)/kg, respectively, for the Rawsonville sand, 

Lutzville sand, Stellenbosch shale and Stellenbosch granite soils after the four 

seasons (data not shown). Being comparable to the baseline values (Table 5.3), it 

indicated that municipal water irrigation had almost no effect on the Na+
extr, irrespective 

of clay content. On the other hand, irrigation with the diluted winery wastewater 

increased Na+
extr substantially over the four seasons. In all the soils, the degree of 

Na+
extr accumulation in the 0-10 cm layer was higher compared to the 10-20 cm layer 

(Fig. 5.3). The difference between the layers was most prominent in the shale followed, 

by the granite and sandy soils (Figs. 5.3C & 5.3D). These trends indicated that more 

Na+ was extracted in the 0-10 cm layer of the heavier soils compared to the sandy 

soils. The increased extraction of Na+ from the top layer, may be as a result of less 

sorption of Na+ to the soil and evaporative concentration of Na+ in the evaporating soil 

solution. In fact, previous studies have shown that the adsorption of Na+ was reduced 

by the presence of high K+ levels where winery wastewater was applied (Laurenson 

et al., 2012 and references therein).  

In all soils, the Na+
extr increased linearly with the cumulative amount of Na+ applied via 

the irrigation water (Fig. 5.3). However, the rate of increase in Na+
extr with increase in 

applied Na+ (Na+
extr/Na+

appl) differed between the soils. The Na+
extr/Na+

appl increased 

with clay content in the 0-10 cm layer, but no correlation was observed in the 10-20 

cm layer (Fig. 5.4). Where municipal water was applied, the ESPʹ amounted to 3.2%, 

4.4%, 2.9% and 4.3%, respectively, in the Rawsonville sand, Lutzville sand, 

Stellenbosch shale and Stellenbosch granite soils after four seasons. The ESPʹ values 

were comparable to the baseline values with the exception of Stellenbosch granite soil 

that had a higher baseline ESPʹ (Table 5.3). Where winery wastewater was applied 

over four seasons, the ESPʹ did not show a definite linear increase with the amount of 

Na+ applied in any of the layers (Fig. 5.5).  
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Figure 5.4. Relationship between the ratio of extractable sodium (Na+
extr

)
 
to sodium 

applied per hectare (Na+
appl

) and clay content for four different soils. 

In the case of the Rawsonville sand, the ESPʹ exceeded the critical threshold of 15% 

for sustainable agricultural use from the second season onwards in the 0-10 cm layer 

(Fig. 5.5A). Wastewater irrigation increased the ESPʹ above 15% after the second 

season in the Lutzville sand, but also only in the 0-10 cm layer (Fig. 5.5B). From the 

first season, the ESPʹ exceeded 15% only in the 0-10 cm layer of the Stellenbosch 

shale soil (Fig. 5.5C). Although no infiltration problems occurred after four seasons, it 

does not rule out the possibility that sodicity could have negative effects on soil 

structure in the long run. In the case of the Stellenbosch granite soil, the ESPʹ 

exceeded 15% after the third season, but also only in the 0-10 cm layer (Fig. 5.5D). 

Although the ESPʹ in the two sandy soils seemed to have reached a plateau at c. 20%, 

it might induce negative effects on grapevine growth and yield if the ESPʹ remains near 

the threshold over time. Given the higher ESPʹ in the heavier soils, sodicity will have 

negative effects on plant growth and soil physical conditions if these soils are irrigated 

with winery wastewater, even when diluted. The Stellenbosch shale soil showed no 

visual signs of infiltration problems but water infiltration into the Stellenbosch granite 

soil was considerably slower where the wastewater was applied compared to the 

municipal water. 
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It must be noted that the infiltration problems occurred right from the first season, i.e. 

when the ESPʹ in the top layer was around 15% (Mulidzi et al., 2016). It is well 

documented that Ca2+ and Mg2+ can counter the negative effects of Na+ on water 

infiltration but Ca2+
extr and Mg2+

extr in the Stellenbosch shale and granite soils were 

comparable (Table 5.3). It was previously reported that the saturated conductivity of a 

topsoil of a similar granitic soil at Nietvoorbij was 112 mm/h (Myburgh, 2015). Since 

the drip application rate was 115 mm/h (Mulidzi et al., 2016), it could be that the 

infiltration rate of the granitic soil was exceeded, thereby causing the slow water 

infiltration.  Another possible reason for the slow infiltration rate in the granitic soil is 

the dispersive nature of the bleached topsoil. Bleached topsoils are pale in colour due 

to the loss of Fe2+ from the horizon. Iron oxides play an important role in stabilizing 

clays against dispersion (Tombacz et al., 2004). The lack of Fe2+ in the granitic topsoil, 

might make this soil more susceptible to clay dispersion and surface sealing when 

irrigated with wastewater containing high levels of Na+ and K+. The red Oakleaf soils 

in the Stellenbosch region have a high Fe2+ content (Le Roux, 2015). This may explain 

why infiltration in the Stellenbosch shale was unhindered despite the poor quality of 

the irrigation water. 

5.3.5. Calcium and magnesium 

After the four simulated irrigation seasons, Ca2+
extr and Mg2+

extr did not show any trends 

that could be related to the amounts of these elements applied via the municipal water 

and diluted winery wastewater, respectively (Table 5.4). The lack of response was 

probably due to the small amounts of Ca2+ and Mg2+ applied through the irrigation 

water (Table 5.2). In fact, irrigation with the wastewater reduced the Ca2+
extr in the 

Rawsonville sand after the four seasons. The Mg2+
extr in the Lutzville sand showed a 

similar trend (Table 5.4). Where wastewater was applied to the Stellenbosch granite 

soil, Mg2+
extr was also lower compared to Mg2+

extr in the 0-10 cm layer of the municipal 

water irrigation. The foregoing implied that irrigation with winery wastewater is unlikely 

to have any benefits in terms of Ca2+ and Mg2+ supply to plants. Furthermore, if applied 

in such small amounts, these elements will not be able to counter possible structural 

problems caused by high levels of Na+ applied via winery wastewater.
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Table 5.4. Effect of irrigation with municipal water and diluted winery wastewater on the 

extractable Ca2+ and Mg2+ in four different soils after four simulated seasons. 

Soil Municipal  Winery  

0-10 cm 10-20 cm 0-10 cm 10-20 cm 

Ca2+
extr (cmol(+)/kg) 

Rawsonville sand 3.5a(1) 3.5a 3.1b 3.1b 

Lutzville sand 2.7a 3.1a 2.9a 2.7a 

Stellenbosch shale 1.9a 1.7a 2.0a 1.9a 

Stellenbosch granite 2.4a 2.2a 2.1a 1.9a 

 Mg2+
extr (cmol(+)/kg) 

Rawsonville sand 1.3a 1.4a 1.2a 1.2a 

Lutzville sand 0.8a 0.7b 0.6c 0.5d 

Stellenbosch shale 0.8a 0.7b 0.9a 0.9a 

Stellenbosch granite 1.0a 0.5d 0.9b 0.7c 

(1) Values designated by the same letter within each row do not differ significantly (p ≤ 0.05). 

5.3.6. pH(KCl)   

The pH(KCl) of the soils prior to any treatment is given in Table 5.3. The Stellenbosch 

soils had a low pH(KCl) (4.2-4.4) while the Lutzville and Rawsonville sands were 

substantially higher (6.7 and 5.7, respectively). Where municipal water was applied, 

soil pH(KCl) was 5.9, 7.4, 4.5 and 4.6, respectively, for the Rawsonville sand, Lutzville 

sand, Stellenbosch shale and Stellenbosch granite soils after the four seasons (data 

not shown). This indicated irrigation with municipal water did not substantially affect 

pH(KCl), irrespective of soil clay content (Table 5.3). In contrast, irrigation with diluted 

winery wastewater increased pH(KCl) substantially in all the soils over the four seasons 

(Fig. 5.6). In all the soils, pH(KCl) in the 0-10 cm soil layers tended to be higher 

compared to the 10-20 cm layer. This means that despite the wastewater having a 

fairly low pH (4.9-6.0) it actually increased the soil pH. The Lutzville, Rawsonville and 

Stellenbosch shale soils showed a pH increase of approximately 2 pH units, while the 

granite soil, which received less irrigation water only showed a pH increase of 1 unit. 

Although this may seem counter intuitive it is not an unusual phenomenon and has 

been recorded in numerous studies where organic substrates are added to a soil (Yan 

et al., 1996; Li et al., 2008; Rukshana et al., 2011; Rukshana et al., 2012).  
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When salts of organic acids are added to a soil, decarboxylation and hydrolysis of the 

organic/bicarbonate anions increases the pH (Li et al., 2008). The winery wastewater 

used in this study has an extremely high total alkalinity (Table 5.1). It is likely that this 

alkalinity comprises of a number of deprotonated organic acids as well as bicarbonate 

ions. The charge on these anions is largely countered by K+ and Na+ cations, thus 

when applied to soils this results in a pH increase due to decarboxylation and anion 

hydrolysis reactions as described by Li et al. (2008). These authors found that Na+ 

and K+ organic salts are more effective at increasing soil pH than Ca2+ and Mg2+ 

organic salts. This would explain why the soil pH(KCl) increased linearly with the 

cumulative amount of K+ plus Na+
 applied via the diluted winery wastewater (Fig. 5.6). 

Similar increases in pH were reported by Laurenson et al. (2012) when high alkalinity 

winery wastewater was applied to vineyard soils.  

Initially, pH(KCl) in the Rawsonville and Lutzville sands (Table 5.3) was higher than the 

lower threshold of 5.5 for vineyard soils (Conradie, 1994). However, where these soils 

were irrigated with diluted winery wastewater, the high pH(KCl) levels (Fig. 5.6) could 

have detrimental effects on the availability of plant nutrients (Busman et al., 2002). 

Where the pH(KCl) was initially lower than 5.5 in the Stellenbosch shale and granite 

soils, irrigation with the diluted winery wastewater had a beneficial effect by raising the 

pH(KCl) to the optimum range after the first season (Fig. 5.6C and D). In sandy soils 

where the pH is not well buffered, vineyard soils may become acidic under intensive 

irrigation, particularly drip irrigation (Myburgh, 2012b). Such soils, e.g. the sandy 

vineyard soils in the Olifants River region, require frequent liming. Therefore, irrigation 

with diluted winery wastewater containing high levels of K+ may reduce the rate of 

acidification in these poorly buffered sandy soils. 

Stellenbosch University  https://scholar.sun.ac.za



100 
 

 

 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



101 
 

 

5.3.7. Phosphorus  

The initial P contents were 217 mg/kg, 6 mg/kg, 8 mg/kg and 15 mg/kg, in the 

Rawsonville sand, Lutzville sand, Stellenbosch shale and Stellenbosch granite soils 

respectively.  With the exception of the Rawsonville sand, P contents in the soils were 

in line with values normally expected for vineyard soils (Conradie, 1994). The initial P 

levels in the Rawsonville sand were more than ten-fold the maximum of 20 mg/kg 

recommended for grapevines in soils containing less than 6% clay (Conradie, 1994). 

It was also more than double the P level at which wheat yields were reduced in a red, 

sandy soil near Vaalharts (Eloff & Laker, 1978). It was previously reported that P levels 

could range between 10 and 400 mg/kg for the duplex and gradational soils in Australia 

(Naidu & Rengasamy, 1993 and references therein). The foregoing confirmed that 

high levels of P are not uncommon in agricultural soils. Irrigation with municipal water 

had minimal effect on the P contents in all of the soils (data not shown). The change 

in extractable P of the four soils after wastewater irrigation is shown in Figure 5.7. The 

P content in the 10-20 cm layer of the Rawsonville sand only tended to be higher 

compared to the top layer following the third diluted winery wastewater irrigation, 

thereby indicating that attenuation of P did not occur in the top layer (Fig. 5.7A).  

The drastic decline of available P in the Rawsonville sand during the third season of 

winery wastewater irrigation (Fig. 5.7A) was possibly due the formation of stable 

complexes with constituents in the wastewater from which P could not be extracted by 

the Bray II reagent (Eloff & Laker, 1978). Since no leaching occurred when irrigations 

were applied (Mulidzi et al., 2016), it could not have contributed to the decline in 

available P. In contrast, irrigation with diluted winery wastewater increased soil P 

substantially more in the 0-10 cm layer compared to the 10-20 cm layer of the Lutzville 

sand and the Stellenbosch granite soil over the four simulated seasons (Fig. 5.7B & 

5.7D). This trend indicated that P attenuation occurred in the top layer of these soils. 

The very large increase in plant-available P in the top layer of the very sandy red soil 

from Lutzville is striking. It confirms the ability of non-acid red sandy soils 1 to retain 

applied P in plant-available forms, as reported by others (e.g. Eloff & Laker, 1978). On 

the one hand there is little movement of P in the soil, but there is on the other hand 

also little fixation of P into unavailable forms. Available P in the Lutzville sand 

increased as the pH (KCl) increased well above 7 where the diluted wastewater was 

applied (Fig.5.7B). 
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This trend suggested that the increasing amounts of sodium applied via the 

wastewater increased the soluble PO43-, instead of insoluble calcium phosphates 

being formed. Although the P content in the 10-20 cm layer of the Stellenbosch shale 

tended to be lower after the first simulated season, it increased at the same rate over 

time as in the 0-10 cm layer (Fig. 5.7C). This indicated that no P attenuation occurred 

from the second season onwards. 

In the case of the initially acidic Stellenbosch shale and granite soils (Fig. 5.7C & 5.7D), 

the amorphous Fe3+ and Al3+ phosphates became more soluble as the pH(KCl) 

increased towards the optimum as proposed by Busman et al. (2002). Since P was 

not determined in the irrigation water, models to estimate the effect of irrigation with 

diluted winery wastewater on soil P based on the amounts applied, could not be 

created. However, the general variation in available P for the four soils could be 

illustrated with a plot of relative P, as calculated for each soil and layer, against pH(KCl) 

(Fig. 5.8). 

After the fourth season, available P in the Rawsonville sand was still above the norm 

of 20 mg/kg proposed by Conradie (1994) for grapevines in sandy soils (Fig. 5.7A). 

However, this must be regarded as an atypical situation due to the initially high levels. 

After four simulated seasons of irrigation with the winery wastewater, Bray II P in the 

Lutzville sand reached over 40 mg/kg, thus far exceeding the norm of 20 mg/kg (Fig. 

5.7B). This indicates that the winery wastewater is a good source of P on such soils. 

On the other hand, the fact that the Bray II P content of this soil increased by nearly 

40 mg/kg after four seasons, could serve as a warning that long term continuous 

application of winery wastewater could cause accumulation of excessive P levels in 

such soil over time. 

After the fourth season, P in the Stellenbosch shale soil (Fig. 5.7C) was well below the 

norm of 30 mg/kg for grapevines in soils containing more than 15% clay (Conradie, 

1994). Likewise, P in the Stellenbosch granite soil (Fig. 5.7D) was less than the lower 

threshold of 25 mg/kg for soils containing 6% to 15% clay (Conradie, 1994). The much 

smaller increases in available P in the two Stellenbosch soils indicate much larger P 

fixation into unavailable forms in these acidic soils than in the Lutzville soil.  

Stellenbosch University  https://scholar.sun.ac.za



104 
 

 

 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



105 
 

 

Although the lower thresholds were not reached, it does not rule out the possibility that it 

could be achieved if diluted winery wastewater is applied over a longer period. However, 

if the P applied via winery wastewater is absorbed by grapevines and cover crops, the 

minimum thresholds might not be exceeded to the extent that no fertilizers will be 

required. 

5.4. CONCLUSIONS 

Irrigation with winery wastewater containing relatively high levels of K+ and Na+ affected 

the soil compared to the municipal water control. Since the K+
extr increase with increasing 

amounts of K+ applied was comparable for the four soils, it suggested that clay content 

did not play a significant role. The EPPʹ was above the critical level of 4% in all the soils 

before the experiment commenced.  

This means that, under the prevailing conditions, there is a high risk of K+ accumulating 

to levels that could have negative effects on wine colour if the excess K+ is not leached 

out in winter or absorbed by inter-row crops in summer. In the heavier soils the increase 

of Na+
extr with increasing amounts of Na+ applied was almost double compared to the 

sandy soils. This indicated that the risk of Na+ reaching excessive levels will be less where 

vineyards in sandy soils are irrigated with diluted winery wastewater than in heavier soils. 

Although the ESPʹ exceeded the threshold of 15% only in the 0-10 cm layer, Na+ 

accumulation in the deeper layers could increase ESPʹ to excessive levels in the long run. 

Due to low Ca2+ and Mg2+ concentrations in the diluted winery wastewater, their 

extractable concentrations in the soil were comparable to the initial levels after four 

seasons. This indicated that these elements are not contained in the cleaning detergents 

used in wineries to the extent that they would accumulate in the soil, irrespective of clay 

content. The soil pH(KCl) increase irrespective of clay content, could probably be attributed 

to organic anions added to the soil via irrigation with diluted winery wastewater.  

Where diluted winery wastewater was applied, the level of soluble P in the shale and 

granite soils increased. Although the initial pH(KCl) in the aeolic sand was higher than the 

optimum range, the presence of relatively high levels of Na+
 caused available P to 

increase as the pH(KCl) increased. In the case of the alluvial sand containing unusually 

high initial levels of P, the pH(KCl) increased out of the optimum range, thereby causing a 
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substantial reduction in the level of available P. These results indicated that irrigation with 

diluted winery wastewater could promote P absorption by grapevines if the pH(KCl) shift is 

towards the optimum. Since the level of P applied via diluted winery wastewater appears 

to be generally low, application of P fertilizers will probably still be necessary to ensure 

adequate uptake by grapevines. In the sandy soils, where the pH(KCl) approached 8, or 

even higher values, nutrient solubility and absorption could be reduced if winery 

wastewater is used for vineyard irrigation. It must be noted that the foregoing results 

represent a worst case scenario, i.e. in the absence of rainfall or crops. Determining the 

effect of seasonal leaching by winter rainfall on the chemical status in soils irrigated with 

diluted winery wastewater will be discussed in Chapter 6.
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CHAPTER 6. EFFECT OF SIMULATED WINTER RAINFALL ON SELECTED SOILS 

IRRIGATED WITH WINERY WASTEWATER  

6.1. INTRODUCTION 

Studies regarding climate change in the wine growing regions of the Western Cape 

Province have shown sharp increases in air temperature, whereas rainfall is expected to 

decline, or to be differently distributed during the rainy season (Vink et al., 2012). Winter 

rainfall after winery wastewater irrigation will lead to the leaching of nutrients to the 

groundwater. Changes in soil structure due to wastewater irrigation depend on the quality 

of wastewater i.e. salinity levels, organic matter content, and the amount of total 

suspended solids (Muller et al., 2007). The rate and amount of pollutants from winery 

wastewater reaching groundwater resources depend on several factors such as: sorption, 

degradation, chemical properties of the wastewater, soil characteristics, environmental 

conditions, rainfall and water management practices (Muller et al., 2007). Saline-sodic 

irrigation water in low rainfall and high evaporation areas will increase soil sodicity (Jalali 

et al., 2008). Furthermore, a major side effect associated with wastewater irrigation is the 

potential irreversible deterioration of the groundwater quality (US EPA, 2004). The electric 

conductivity (EC) of Fluvisol soils in Tunisia decreased as a result of leaching of salts by 

the Autumn-Spring rainfall (Kallel et al., 2012). However, due to high cation exchange 

capacity (CEC) and high water retention capacity, the soils still retain high levels of Na+. 

Winter rainfall on soils irrigated with winery wastewater will lead to the reduction of soil 

electrolyte concentrations regardless of soil type. Low rainfall areas are likely to 

experience less soil structural hazard which is linked to high exchangeable monovalent 

cation concentrations while high rainfall areas will experience more soil structural hazard 

(Suarez et al., 2008).  

The objective of this study was to investigate the effect of simulated winter rainfall on 

leaching of basic cations and subsequent pH changes in soils irrigated with diluted winery 

wastewater. 
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6.2. MATERIALS AND METHODS 

6.2.1. Soils used 

Six pedogenetically different soils commonly found in the Western Cape Province were 

included in the study (Table 6.1). The taxonomic classification of the soils is given 

according to the South African soil classification system (Soil Classification Working 

Group, 1991). For the purpose of this study, soils will be referred to as Rawsonville sand, 

Lutzville sand, Stellenbosch shale, Stellenbosch granite, Stellenbosch sand and 

Robertson clay.  

6.2.2. Soil collection 

The sandy Longlands soil was collected in a vineyard near Rawsonville, whereas the 

sandy Garies soil was collected from open land near Lutzville. The shale derived Oakleaf 

and granite derived Cartref soils were collected from the Nietvoorbij experiment farm of 

the Agricultural Research Council (ARC) near Stellenbosch. Detailed descriptions of 

these four soils, and how they were collected are presented in Chapter 3. The sandy 

Kroonstad soil was collected from a grass grazing paddock at a winery near Stellenbosch. 

The area was previously cultivated. Soil was collected at 30 different positions, i.e. 

approximately 10 m apart, in the paddock. The soil was sampled at a depth of 300 mm. 

The composited samples were put through a 6 mm sieve in order to remove large 

fragments such as stones. The clayey Valsriver soil was collected from an area which 

was previously used for lucerne production at the ARC experiment farm near Robertson. 

It was collected and prepared according to the same procedure as the Kroonstad soil. 

6.2.3. Packing of soils in pots to a predetermined bulk density 

The procedure for packing the soils into the PVC pots to a specific predetermined bulk 

density is described in Chapter 4. 

6.2.4. Application of water to the soils 

For the control treatment, the soils were irrigated with water abstracted from the Holsloot 

River near Rawsonville in the Breede River valley. Water for the wastewater treatment 

was collected from the wastewater pit at a winery near Rawsonville. The winery 

wastewater was then diluted to a chemical oxygen demand (COD) level of 3000 mg/L. 

Stellenbosch University  https://scholar.sun.ac.za



109 
 

 

Table 6.1. Origin, Taxonomic and World Reference Base (WRB) classifications, as well as general description and co-
ordinates for the six soils used. 

Origin Classification General description Co-ordinates 

Taxonomic WRB 

Rawsonville Longlands  Gleyic, albic,Arenosol Alluvial sand, from a vineyard -33.4137.7° 19.1920.3° 

Lutzville Garies  Eutric, petric, Durisol Aeolian sand, from open land -31.5589.1° 18.3531.2° 

Stellenbosch Oakleaf  Chromic, Acrisol Shale derived, from open land -33.550.28° 18.520.69° 

Stellenbosch Cartref  Albic, leptic, Acrisol Granite derived, from open land -33.5439.9° 18.5216.6° 

Stellenbosch Kroonstad  Gleyic, albic,Planosol Sandy soil from open land -33.4958.6° 18.4759.9° 

Robertson Valsrivier  Chromic, Lixisol Clay soil from cultivated area -33.4923.6° 19.5236.0° 
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Irrigations were applied over one simulated season, which consisted of six irrigations. It 

was estimated that six is the number of irrigations a micro-sprinkler irrigated vineyard 

would require during the harvest period, i.e. when the highest volumes of wastewater are 

produced. Irrigation was applied when c. 50% of the water had evaporated (Fig. 6.1). The 

latter was considered to be the recommended level of depletion for vineyards to obtain a 

balance between yield and wine quality. 

After one simulated irrigation season, simulated winter rainfall was applied to all 

treatments. Since the pot experiment was carried out in summer, there was no source of 

uncontaminated rainwater available. It was decided not to use distilled or de-ionized water 

for the rainfall simulations, since using distilled water changes the ionic balances and may 

flocculate or disperse the clay in the soil (Amezketa et al., 2004). Soil water contains 

solutes which are in balance with ions on exchange sites of the clay. Based on the 

forgoing, “rainwater” for the study was also abstracted from the Holsloot River, i.e. from 

a natural source where contamination is least expected (Table 6.2). The amount of rainfall 

applied to each soil was based on the long term mean rainfall for each of the different 

regions where the soil was collected (Appendix 6.1). During, and after each irrigation, as 

well as during and after each simulated rainfall day, the leachate was collected and 

pooled. The total volume of leachate per each soil was recorded at the end of the 

simulated rainfall period. The chemical status of the leachate from each soil was 

determined in samples collected from the pooled leachate. 

6.2.5. Water sampling and analyses 

Water samples were collected from the river water and wastewater tanks prior to each 

irrigation. The pH, electrical conductivity (EC), Na+, K+, Ca2+, Mg2+, Fe, Cl-, HCO3
-, SO4

2-

, B- and COD in the water were determined at a commercial laboratory (BEMLAB, Strand). 

Details of the analytical procedures are described in Chapter 4. 
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Figure 6.1. Variation in soil water content (SWC) in (A) Rawsonville sand, (B) Lutzville sand, 

(C) Stellenbosch shale, (D) Stellenbosch granite, (E) Stellenbosch sand and (F) Robertson 

clay soils where river water and diluted winery wastewater were applied to simulate one 

season’s irrigation. The first irrigations were applied on 02-01-2013. Dashed horizontal 

lines indicate field capacity (FC) and the refill point.  
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Table 6.2. Chemical composition of raw water abstracted from the Holsloot River near 

Rawsonville used for simulating winter rainfall and water obtained from the Stellenbosch 

municipality.   

Variable Raw water Municipal water 

pH 6.1 7.2 
EC (mS/m) 18.0 11.2 
Na+ (mg/L) 10.0 9.3 
K+ (mg/L) 1.1 1.4 
Ca2+ (mg/L) 7.4 8.3 
Mg2+(mg/L)  3.5 2.1 
SAR 0.76 0.75 
Fe2+(mg/L)  0.04 0.1 
B3+ (mg/L) 0.03 0.01 
Mn2+ (mg/L) 0.04 0.01 
Zn2+ (mg/L) 0.83 0.19 
P (mg/L) 0.01 0.04 
NH4

+-N (mg/L) 2.47 0.59 
NO3

-
 -N(mg/L)  0.95 0.11 

Cl- (mg/L) 89.8 21.2 
HCO3

- (mg/L) 15.3 26.7 
SO4

2-(mg/L)  6.1 3.2 
TDS (mg/L) 75.1 45 
COD (mg/L) 56 47 

6.2.6. Soil sampling and analyses 

After six irrigations, i.e. one simulated winery wastewater irrigation season, soil samples 

were collected from the 0 to 19 cm deep soil layer. Soil sampling was again carried out 

after the simulated winter rainfall had been applied. All analyses were carried out at a 

commercial laboratory (BEMLAB, Strand). Details of the analytical procedures are 

described in Chapter 4. 

6.2.7. Soil characterization  

The six soils selected, represent soils dominant in three of the main South African wine 

producing regions. It was expected that the effect of winter rainfall after winery wastewater 

irrigation would differ between different soils. The chemical properties of the six soils 

used, are presented in Table 6.3. The pH of the six soils used ranged between 4.2 and 

6.6, whereas the ECe ranged between 20 and 70 mS/m. The cation exchange capacity 

(CEC) ranged between 2.9 and 8.3 cmolc.kg-1 (Table 6.3). The Robertson soil had the 

highest clay content, i.e. 35%, whereas the Lutzville sand contained only 0.4% clay (Table 

6.4).
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Table 6.3. Chemical properties of the six soils before the river water and diluted winery 

wastewater irrigations were applied. 

Variable  Rawsonville 
sand  

Lutzville 
sand 

Stellenbosch 
shale  

Stellenbosch 
granite 

Stellenbosch 
sand  

Robertson 
clay  

pH 5.8 6.5 4.2 4.3 4.3 6.6 

ECe (mS/m) 30 20 30 40 20 70 

Bray2 P (mg/kg) 227 21 8 11 28 102 

Bray2 K (mg/kg) 66 240 95 99 206 702 

Org C (%) 0.8 0.2 1.5 1.3 0.9 0.6 

K+ extr (cmolc.kg-1) 0.17 0.61 0.24 0.25 0.53 1.79 

Na+
extr (cmolc.kg-1) 0.01 0.05 0.06 0.05 0.02 0.37 

Ca2+
extr (cmolc.kg-1) 2.79 3.22 1.64 1.21 0.7 9.17 

Mg2+
extr (cmolc.kg-1) 0.95 0.8 0.61 0.51 0.22 3.02 

CEC (cmolc.kg-1) 3.9 3.4 4.3 3.6 2.9 8.3 

 

Table 6.4. Particle size distribution and textural class of the six soils used in the study. 

Particle size & 
textural class 

Rawsonville 
sand 

Lutzville 
sand 

Stellenbosch 
shale 

Stellenbosch 
granite 

Stellenbosch 
sand 

Robertson 
Clay 

Clay 

(<0.002 mm) 

3.3 0.4 20 13 7 35 

Silt 

(0.002-0.02 mm) 

1 1 13 17 6 20 

Fine sand 

(0.02-0.2 mm) 

60 69 50 33 39 35 

Medium sand 

(0.2-0.5 mm) 

29 26 5 3 26 7 

Coarse sand 

(0.5-2 mm) 

8 2 12 35 22 3 

Textural class Sand Sand Sandy clay loam Sandy loam Sand Clay loam 

6.2.8. Composition and amount of simulated winter rainfall applied 

The overall average chemical composition of the Holsloot river water used to simulate 

winter rainfall was within the acceptable range for irrigation water (Table 6.2). The pH 

levels were below the recommended pH for irrigation water ranging from 6.5 to 8.4 

(DWAF, 1996). The amount of rainfall applied was calculated from the long term average 

rainfall in the region where each soil was collected (Table 6.5 and Appendix 6.1). 

Rawsonville soils received the highest amount of rainfall per day (13.8 mm) followed by 

the three soils from Stellenbosch (9.3 mm), while the Robertson and Lutzville soils 

received the least rainfall (4.5 and 3.8 mm, respectively) (Table 6.5). 
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Table 6.5. Mean number of rainfall days, interval between rainfall days and amount of water 

per rainfall day during winter, i.e. from May until September, at the four localities where 

the soils were sampled, as well as the volume of water applied per pot to simulate the 

rainfall. 

Soils Number of 
rainfall days 

Interval between 
rainfall days 

(days) 

Amount per rainfall day 

(mm/day) (mL/pot) 

Rawsonville sand 41 4 13.8 
 

244 

Lutzville sand 25 6 3.7 67 

Stellenbosch shale 50 3 9.3 164 

Stellenbosch granite 50 3 9.3 164 

Stellenbosch sand 50 3 9.3 164 

Robertson clay 34 5 4.5 80 

6.2.9. Statistical procedures 

The study was carried out under a 20 m x 40 m translucent fiberglass rain shelter at the 

ARC Infruitec-Nietvoorbij near Stellenbosch. Each soil/water treatment was replicated 

three times in a complete randomized design, i.e. 6 (soil) x 2 (water) x 3 (replicates). The 

six soils were randomly allocated within each block. The treatment design was a split-

plot. The main plot factor was soil type and the sub-plot factor was soil depth. Analyses 

of variance were performed separately for each season using SAS version 9.2 (SAS, 

2008). The Shapiro-Wilk test was performed to test for non-normality (Shapiro & Wilk, 

1965). Student’s t-least significant difference (LSD) was calculated at the 5% significance 

level to facilitate comparison between treatment means (Ott, 1998). STATGRAPHICS® 

was used to calculate the multiple linear regression equations. 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



115 
 

 

6.3. RESULTS AND DISCUSSION 

6.3.1. Chemical composition of the irrigation waters  

The chemical composition of the river water quality was within the acceptable range for 

irrigation water (Table 6.6). The average water pH for six irrigations was 7.2 which is lower 

than the 8.4 which is the maximum threshold for irrigation (DWAF, 1996). The average 

EC value was 21 mS/m which was well below the 75 mS/m salinity threshold value for 

grapevine irrigation (Myburgh, 2012a). The average COD was 44.8 mg/L which in line 

with normal drinking water. The overall Na+ and K+ levels were very low (Table 6.6). With 

the exception of pH, winery wastewater chemical parameters were higher than those of 

the river water (Table 6.7). The most noticeable elements and properties that were higher 

in the wastewater were K+, bicarbonate, EC, TDS and COD (Table 6.7). Although the 

average bicarbonate winery wastewater was high, it was high only in the first three 

irrigations while the last three irrigations it had dropped to almost zero. This could be 

attributed to the winery using different cleaning detergents during the latter period. 

6.3.2. Comparison of the chemical status of the river water and actual rainfall 

The river water used in the study contained substantially more basic cations compared to 

rainwater collected at Citrusdal and Cape Town (Fig. 6.2). In contrast, rainwater 

harvested at Kleinmond tended to contain more Na+, K+, and Ca2+ than the water 

abstracted from the Holsloot River. This suggested that the rainwater at Kleinmond was 

probably contaminated in the harvesting process. The cations in the river water was 

comparable to the water obtained from the Stellenbosch municipality (Fig. 6.2). It must 

be noted the level of Na+ were higher compared to the other cations in all the waters. The 

pH in the river and municipal water tended to be slightly higher than in the rainwater (Fig. 

6.3). The higher levels of cations caused the EC in the river and municipal water to be 

higher compared to the rainwater. The SAR in all the waters were relatively low, i.e. less 

than 1.5 (Fig. 6.3). 
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Table 6.6. Variation in quality of river water used for irrigation of six different soils in a pot experiment during a 

simulated winery wastewater irrigation season. 

Water  
quality 

Sampling date 

variable 03-01-2013 11-01-2013 18-01-2013 24-01-2013 06-02-2013 13-02-2013 Average 

pH 7.6 7.8 7.6 6.8 7 6.2 7.2 

EC (mS/m) 44 17 9 18.7 18.9 18.1 21.0 

Na+ (mg/L) 53.9 11.6 12.6 12.9 42.4 13.5 24.5 

K+ (mg/L) 5.6 3.4 2.6 2.7 3.1 2.5 3.3 

Ca2+ (mg/L) 21.2 14.2 11.9 11.5 10.3 8.9 13.0 

Mg2+ (mg/L) 11.5 5 5 5.2 8.3 5.5 6.8 

SAR 2.4 0.7 0.8 0.8 2.4 0.9 1.3 

Fe2+ (mg/L) 2.3 0.05 0.01 0.01 0 0 0.4 

B3+ (mg/L) 0.01 0.02 0 0 0 0.02 0.0 

Mn2+ (mg/L) 0.04 0.08 0.09 0.04 0.05 0.05 0.1 

Cu2+ (mg/L) 0.03 0.02 0.01 0 0.01 0 0.0 

Zn2+ (mg/L) 0.4 0.02 0.07 0.4 0.53 0.7 0.4 

P (mg/L) 0.2 0.12 0 0.02 0 0.03 0.1 

NH4
+-N (mg/L) 0.5 0.4 0.4 1.9 0.23 2.04 0.9 

NO3
--N (mg/L) 14 0.5 1.1 0 2.7 0.8 3.2 

Cl- (mg/L) 72.4 27.7 28.9 31 22.1 39.8 37.0 

HCO3
- (mg/L) 55.1 10.4 12.1 9.2 15.3 22.9 20.8 

SO4
2- (mg/L) 27.4 25.4 24.5 54 32 33 32.7 

TDS (mg/L) 264 45 52 119 121 116 120 

COD (mg/L) 48 62 57 18 38 46 45 
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Table 6.7. Quality variation of winery wastewater diluted to 3000 mg/L COD for irrigation of six different soils in a 

pot experiment during a simulated winery wastewater irrigation season. 

Water quality 
variable 

Sampling date 

03-01-2013 11-01-2013 18-01-2013 24-01-2013 06-02-2013 13-02-2013 Average 

pH 6.1 6.9 7.9 4.9 4.1 3.9 5.6 

EC (mS/m) 236 212 246 39 45 41 137 

Na+ (mg/L) 65 69 86 20 26 19 48 

K+ (mg/L) 487 422 663 55 50 45 287 

Ca2+ (mg/L) 45.1 70.3 43.2 21.2 13.7 14.9 34.7 

Mg2+ (mg/L) 39.1 44.6 62.4 10.1 9.5 9.5 29.2 

SAR 1.7 1.6 2.0 0.9 1.3 7.1 2.4 

Fe2+ (mg/L) 4.7 3.5 1.5 1.9 4.8 4.01 3.4 

B3+ (mg/L) 0.44 0.6 0.8 0.11 0 0.14 0.3 

Mn2+ (mg/L) 0.4 0.7 0.5 0.2 0.2 0.16 0.4 

Cu2+ (mg/L) 0.03 0.04 0.2 0.1 0.1 0.23 0.1 

Zn2+ (mg/L) 0.02 0.11 0.5 0.5 0.9 1.39 0.6 

P (mg/L) 21.9 26.4 42.5 6 6.1 6.12 53 

NH4
+-N (mg/L) 12 8.5 17.2 2.2 0.8 1 687 

NO3
--N (mg/L) 240 4.9 0.3 0 0.8 1.34 187 

Cl- (mg/L) 57 82 51 34 45 48 0.3 

HCO3
- (mg/L) 975 1047 2102 0.01 0.1 0.2 0.4 

SO4
2- (mg/L) 765 39 123 43 117 36 0.1 

TDS (mg/L) 1418 567 1490 246 289 245 709 

COD (mg/L) 3080 2870 3460 3540 3350 3500 3300 
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Figure 6.2. Basic cation concentration in rainwater collected at Citrusdal and Cape Town 

(after Soderberg, 2003) and rainwater harvested at Kleinmond (after Dobrowsky, 2014) 

compared to water obtained from the Holsloot River near Rawsonville and the 

Stellenbosch municipality, respectively. 

 

 

Figure 6.3. The pH, electrical conductivity (EC) and sodium adsorption ratio (SAR) in 

rainwater collected at Citrusdal and Cape Town (Soderberg, 2003) and rainwater harvested 

at Kleinmond (Dobrowski, 2014) compared to water obtained from the Holsloot River near 

Rawsonville and the Stellenbosch municipality, respectively. The EC was not determined 

at Kleinmond. 
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6.3.3. Composition of leachate after simulated winter rainfall 

No leachate occurred in the case of the Lutzville and Robertson soils after the simulated 

winter rainfall had been applied. This indicated that the volumes of simulated rainfall was 

inadequate to leach the elements applied via wastewater nutrients from these soils. In the 

case of the Robertson clay, a high water holding capacity also could have prevented 

leaching of solutes. For the soils where leaching occurred, extremely small volumes of 

solutes leached following a simulated rainfall event. Only 0.83±0.15, 0.36±0.14, 

0.55±0.16 and 0.64±0.14 mL were collected per rainfall event for the Rawsonville sand, 

Stellnbosch shale, Stellenbosch granite and Stellenbosch sand, respectively. The total 

leachate, i.e. which was used for the chemical analyses amounted respectively to 34.5, 

18.6, 27.9 and 32.7 mL per treatment replication for the four soils. It must be noted that 

the same rainfall was applied to the three Stellenbosch soils. 

The chemical composition of the leachates varied considerably (Table 6.8). In some 

cases, the pH, EC and element concentrations were unexpectedly higher in leachates 

where river water was used for irrigation before the simulated rainfall compared to 

irrigation with winery wastewater. It should be noted that the K+ and COD in the leachate 

from the Stellenbosch sand was substantially higher compared to the other soils, 

particularly where winery wastewater was applied (Table 6.8). 

Differences in the composition of the leachates were clearly reflected in their different 

colours observed (Fig. 6.4). Winter rainfall following winery wastewater irrigation caused 

leaching of K+ and Na+ from the soil as explained earlier. The leachate from soils irrigated 

with winery wastewater, were darker in colour than those irrigated with river water 

indicating leaching of organic matter. In the case of the Stellenbosch sand, the color of 

the leachate was similar to that of the winery wastewater applied (Fig. 6.4D). This 

indicated that substantial leaching of organic compounds applied via the winery 

wastewater occurred compared to the other soils. 
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Table 6.8. Chemical composition of the leachate collected after simulated winter rainfall 

for soils that were first irrigated with river water (RW) and winery wastewater (WW), 

respectively. No leachate could be obtained for the Lutzville and Robertson soils.  

Water 

quality  

variable 

Rawsonville 

sand 

Stellenbosch 

shale 

Stellenbosch 

granite 

Stellenbosch 

sand 

RW WW RW WW RW WW RW WW 

pH 7.1 7.5 6.7 6.5 6.3 6.5 6.1 7.2 

EC (mS/m) 133.5 84.4 21.5 28.8 18 33.1 97.8 86.6 

Na+ (mg/L) 58.8 53 17.2 25.8 15.9 31 54.3 73.5 

K+ (mg/L) 16.1 81.3 6 24.6 7.6 52.4 147.7 242.3 

Ca2+ (mg/L) 132.9 57.6 19.4 18.9 14.8 12.4 69.9 28.5 

Mg2+ (mg/L) 87.3 33.9 7.2 7.5 5.8 6.3 23.8 11.8 

SAR (mg/L) 0.06 0.06 0.17 0.17 0.2 0.2 0.92 0.25 

Fe2+ (mg/L) 0.04 0.07 2.39 11.06 2.2 2.02 0.22 12.21 

P (mg/L) 0.04 0.08 0.02 0.04 0.01 0.04 0.07 0.19 

NO3
--N 0 0 0.07 0.04 0.05 0 0.15 0.08 

Cl- (mg/L) 185.8 106.2 31 53.1 35.4 57.5 92.9 119.4 

HCO3
- (mg/L) 53.6 145.5 15.3 7.7 7.7 23 7.7 183.7 

SO4
2- (mg/L) 95 65 17 32 18 35 61 82 

TDS(mg/L)  0.04 0.06 0.02 0.03 0.02 0.03 0.03 0.08 

COD 0.94 1.1 0.09 0.17 0.13 0.32 0.18 2.1 
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Fig 6.4. Examples of leachate collected after simulated winter rainfall from (A) Rawsonville 

sand, (B) Stellenbosch shale, (C) Stellenbosch granite and (D) Stellenbosch sand. Bottles 

on the left contains leachate where river water was applied. 

6.3.4. Amount of cations leached 

The amount of cations leached from the four soils where percolation occurred, were 

relatively low both where river water and diluted winery wastewater were applied. With 

the exception of K+
extr, the amount of cations in the leachate declined non-linearly as the 

clay content increased (Fig. 6.5). Where river water was used for irrigation, the leached 

K+
extr was relatively high for the Stellenbosch sand, and low for the Rawsonville sand (Fig. 

6.5A). In the case of the Stellenbosch sand, substantially more K+
extr also leached where 

the wastewater was applied compared to the other soils (Fig. 6.5B). Perusal of the data 

revealed that the K+
extr variation seemed to be a function of (i) the initial K+

extr in the soil 

before the irrigations were applied (Kinitial) and (ii) the level of COD in the leachate 
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(CODleachate). Based on this, c. 90% of the variation in leached K+ could be explained by 

means of the following multiple linear regression equation. 

Kleached = 7.262*Kinitial  + 1.145*CODleachate - 1.58      (R2= 0.9279; s.e. = 0.42; p = 0.0006) (Eq 6.1) 

The high K+
extr content in the Stellenbosch sand compared to the other soils, probably 

contributed to the high level in the leachate. Since the COD was higher in the 

Stellenbosch sand, it suggested that the K+ formed organic salts which readily leached 

from the soil, particularly where the winery wastewater was applied prior to the simulated 

rainfall. These organic compounds probably contributed to the dark colour of the leachate 

from the Stellenbosch sand (Fig. 6.4D). Surprisingly, the CEC did not make a significant 

contribution to the multiple linear regression model. However, this does not rule out the 

possibility that the relatively low CEC of the Stellenbosch sand (Table 6.3) could have 

played a minor role. 

 

Figure 6.5. Relationship between amount of basic cation leached and the clay content 

where simulated winter rainfall was applied to soils that were first irrigated with (A) river 

water and (B) diluted winery wastewater, respectively. Due to the encircled outliers, K+ 

could not be related to the clay content. 

6.3.5. Calculated cation balances 

Where river water was applied, the fraction of applied basic cations leached from the six 

soils tended to be higher compared to irrigation diluted with winery wastewater (Tables 

6.9 to 6.12). 
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Table 6.9. Balance of K+ applied via simulated irrigation and winter rainfall where six soils were irrigated with river water and 

winery wastewater, respectively.  

Soils Applied (kg/ha) Retained 

(kg/ha) 

Leached 

(kg/ha) 

Retained 

(%) 

Leached 

(%) 
Via irrigation Via rainfall Total 

 River water 

Rawsonville sand 6.0 6.2 12.2 11.9 0.31 97.4 2.57 

Lutzville sand 6.7 1.0 7.7 7.7 0.00 100.0 0.00 

Stellenbosch shale 4.4 5.1 9.5 9.5 0.06 99.3 0.66 

Stellenbosch granite 3.5 5.1 8.6 8.5 0.12 98.6 1.39 

Stellenbosch sand 5.0 5.1 10.1 7.4 2.73 73.0 26.97 

Robertson clay 5.0 1.7 6.7 6.7 0.00 100.0 0.00 

 Diluted winery wastewater 

Rawsonville sand 2772.3 6.2 2778.5 2776.9 1.58 99.9 0.06 

Lutzville sand 2699.2 1.0 2700.2 2700.2 0.00 100.0 0.00 

Stellenbosch shale 2673.9 5.1 2679.0 2678.7 0.26 100.0 0.01 

Stellenbosch granite 1874.2 5.1 1879.3 1878.4 0.83 100.0 0.04 

Stellenbosch sand 2717.7 5.1 2722.8 2718.4 4.48 99.8 0.16 

Robertson clay 2276.5 1.7 2278.1 2278.1 0.00 100.0 0.00 
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Table 6.10. Balance of Na+ applied via simulated irrigation and winter rainfall where six soils were irrigated with river water 

and winery wastewater, respectively.  

Soils Applied (kg/ha) Retained 

(kg/ha) 

Leached 

(kg/ha) 

Retained 

(%) 

Leached 

(%) 
via irrigation via rainfall Total 

 River water 

Rawsonville sand 44.5 56.6 101.1 99.9 1.15 98.9 1.13 

Lutzville sand 50.0 9.3 59.3 59.3 0.00 100.0 0.00 

Stellenbosch shale 32.8 46.5 79.3 79.1 0.18 99.8 0.23 

Stellenbosch granite 25.9 46.5 72.4 72.1 0.25 99.7 0.35 

Stellenbosch sand 34.0 46.5 80.5 79.5 1.00 98.8 1.25 

Robertson clay 39.0 15.3 54.3 54.3 0.00 100.0 0.00 

 Diluted winery wastewater 

Rawsonville sand 458.8 56.6 515.4 514.4 1.03 99.8 0.20 

Lutzville sand 446.7 9.3 456.0 456.0 0.00 100.0 0.00 

Stellenbosch shale 442.5 46.5 489.0 488.8 0.27 99.9 0.06 

Stellenbosch granite 310.2 46.5 356.7 356.2 0.49 99.9 0.14 

Stellenbosch sand 449.8 46.5 496.3 495.3 1.00 99.8 0.20 

Robertson clay 376.8 15.3 392.1 392.1 0.00 100.0 0.00 
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Table 6.11. Balance of Ca2+ applied via simulated irrigation and winter rainfall where six soils were irrigated with river water 

and winery wastewater, respectively.  

Soils Applied (kg/ha) Retained 

(kg/ha) 

Leached 

(kg/ha) 

Retained 

(%) 

Leached 

(%) 
via irrigation via rainfall Total 

 River water 

Rawsonville sand 23.6 41.9 65.5 62.9 2.59 96.0 3.96 

Lutzville sand 26.5 6.8 33.3 33.3 0.00 100.0 0.00 

Stellenbosch shale 17.4 34.4 51.8 51.6 0.20 99.6 0.39 

Stellenbosch granite 13.7 34.4 48.1 47.9 0.23 99.5 0.49 

Stellenbosch sand 18.0 34.4 52.4 51.3 1.11 97.9 2.11 

Robertson clay 21.0 11.3 32.3 32.3 0.00 100.0 0.00 

 Diluted winery wastewater 

Rawsonville sand 335.5 41.9 377.4 376.3 1.12 99.7 0.30 

Lutzville sand 326.7 6.8 333.5 333.5 0.00 100.0 0.00 

Stellenbosch shale 323.6 34.4 358.0 357.8 0.20 99.9 0.06 

Stellenbosch granite 226.8 34.4 261.2 261.0 0.20 99.9 0.07 

Stellenbosch sand 328.9 34.4 363.3 362.8 0.53 99.9 0.14 

Robertson clay 275.5 11.3 286.8 286.8 0.00 100.0 0.00 
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Table 6.12. Balance of Mg2+ applied via simulated irrigation and winter rainfall where six soils were irrigated with river water 

and winery wastewater, respectively.  

Soils Applied (kg/ha) Retained 

(kg/ha) 

Leached 

(kg/ha) 

Retained 

(%) 

Leached 

(%) via irrigation via rainfall Total 

 River water 

Rawsonville sand 12.3 19.8 32.1 30.4 1.70 94.7 5.30 

Lutzville sand 13.9 3.2 17.1 17.1 0.00 100.0 0.00 

Stellenbosch shale 9.1 16.3 25.4 25.3 0.08 99.7 0.30 

Stellenbosch granite 7.2 16.3 23.5 23.4 0.09 99.6 0.39 

Stellenbosch sand 9.0 16.3 25.3 24.8 0.44 98.3 1.74 

Robertson clay 11.0 5.4 16.4 16.4 0.00 100.0 0.00 

 Diluted winery wastewater 

Rawsonville sand 282.1 19.8 301.9 301.2 0.66 99.8 0.22 

Lutzville sand 274.6 3.2 277.9 277.9 0.00 100.0 0.00 

Stellenbosch shale 272.0 16.3 288.3 288.2 0.08 100.0 0.03 

Stellenbosch granite 190.7 16.3 207.0 206.9 0.10 100.0 0.05 

Stellenbosch sand 276.5 16.3 292.8 292.6 0.22 99.9 0.07 

Robertson clay 231.6 5.4 237.0 237.0 0.00 100.0 0.00 
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The fraction of applied cations leached also varied considerably between the different 

soil-rainfall combinations. Although the winter rainfall at Rawsonville was highest of the 

four localities, most of the applied cations were retained in this sandy soil. Due to the low 

winter rainfall in the Lower Olifants river region, no cations were leached from the Lutzville 

sand (Tables 6.9 to 6.12). The Stellenbosch shale and granite soils also retained most of 

the applied cations (Tables 6.9 to 6.12). The highest fraction of cations leached from the 

Stellenbosch sand. Due to the relatively low rainfall in the Breede River valley and a high 

water holding capacity, all the applied cations were retained by the Robertson soil (Tables 

6.9 to 6.12).  

The amounts of basic cations leached from the Rawsonville sand and the Stellenbosch 

sand reported for the field study in Chapter 3 were considerably higher than the amounts 

that leached in the pot experiment (Tables 6.9 to 6.12). This suggested that the rainfall 

did not play a prominent role under field conditions. In fact, the rainfall at Rawsonville and 

Stellenbosch were substantially lower than the large volumes of irrigation applied to the 

grazing paddocks in the field study. Therefore, it seems that the irrigation was responsible 

for the leaching of cations in the field, and it is not an environment friendly way of 

wastewater disposal. If diluted winery wastewater is to be used for vineyard irrigation, the 

irrigation volumes will be relatively low. This suggests that little, or no leaching, might 

occur under normal rainfall conditions, and that cations will accumulate in the soil. Since 

rainfall in South Africa is highly variable (Dent et al., 1987), it does not rule out the 

possibility that abnormally high daily rainfall events can leach the cations from vineyard 

soils irrigated with winery wastewater. In fact, a field study showed that cations 

accumulated during summer where grapevines in a sandy soil near Rawsonville were 

irrigated with winery wastewater diluted to 3000 mg/L COD (Howell & Myburgh, 2014). 

However, the accumulated cations, particularly K+ and Na+, were leached out beyond 1.8 

m depth during winter. Since rainfall events of up to 80 mm/d were recorded (Howell & 

Myburgh, 2014), it indicated that high rainfall events could leach accumulated cations 

where winery wastewater is used for irrigation. Furthermore, it is possible that occasional 

freak floods could leach accumulated cations from the soil. 
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In the case of the diluted winery wastewater irrigations, perusal of the data revealed that 

the variation in the amount of a specific cation retained in the soils appeared to be a 

function of (i) the element amount applied via the irrigation plus rainfall, (ii) the amount of 

rainfall and (iii) the organic carbon content of the soil. Using these three variables, most 

of the variation in the amount of a specific cation could be explained by means of multiple 

linear regression models for all the soils (Table 6.13). According to these models, the 

retention of cations increased with the amount of element applied. As expected, the 

retained amount decreased as the winter rainfall increased. The amount of element 

retained also increased with the organic carbon in the soil. The fact that the organic 

compunds can increase the CEC of soils, is well-documented (Harada & Inoko, 1975; 

Parfitt et al., 1995; Caravaca, 1999; Seilsepour & Rashidi, 2008). 

The equations in Table 6.13 were used to estimate the amount of cations that would have 

remained in the soil after the rainfall simulation if the water used contained no cations. 

Due to the relatively low level of K+ in the water (Fig. 6.2), the difference between the 

actual and estimated amount of K+ retained was relatively small, i.e. less than 0.5% (Table 

6.14). However, in the case of Na+ and Ca2+ the differences in the amounts retained were 

as high as 13%. In the case of Mg2+ the differences were less than 8%. This indicated 

that the higher levels of Na+, Ca2+ and Mg2+ in the river water used, increased the actual 

amount of cations retained, irrespective of soil type. Therefore, harvesting rainwater for 

leaching studies would be advisable. However, care should be taken to avoid 

contamination of the harvested water, particularly if it needs to be stored in tanks. 

Stellenbosch University  https://scholar.sun.ac.za



129 
 

 

 

Table 6.13. Slopes (mn), constants, correlation coefficients (R2), standard error (s.e.), level of significance (P) and number of 

data sets (n) used for multiple linear regression models to estimate the amount of cations retained in the soil after simulated 

irrigation with diluted winery wastewater was followed by simulated winter rainfall, with the amount applied, winter rainfall 

and organic carbon content as the independent variables. 

Basic cation Applied 

(kg/ha) 

Rainfall 

(mm) 

Organic C  

(%) 

Constant R2 s.e. P n 

m1 m2 m3  

K+ 0.9996 -0.0077 1.8589 1.1299 0.9999 2.07 0.0001 6 

Na+ 0.9997 -0.0035 0.7964 0.2078 0.9998 0.41 0.0001 6 

Ca2+ 0.9991 -0.0029 0.7851 0.3316 0.9998 0.15 0.0001 6 

Mg2+ 0.9998 -0.0029 0.4865 0.0729 0.9998 0.12 0.0001 6 
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Table 6.14. Difference between actual amount of basic cation retained by six soils and the 

estimated amount that would have been retained if the water used for the rainfall 

simulation contained none of the four basic cations. 

Cation Soil Amount of element retained (kg/ha) Difference 

(%) Actual Estimated 

K+ Rawsonville sand 466.7 459.1 -0.43 

 Lutzville sand 450.9 449.5 -0.15 

 Stellenbosch shale 450.5 444.8 -0.32 

 Stellenbosch granite 316.6 311.5 -0.42 

 Stellenbosch sand 453.6 450.9 -0.36 

 Robertson clay 381.1 379.5 -0.17 

Na+ Rawsonville sand 514.4 457.5 -11.05 

 Lutzville sand 456.0 446.6 -2.05 

 Stellenbosch shale 488.8 442.2 -9.54 

 Stellenbosch granite 356.2 309.7 -13.06 

 Stellenbosch sand 494.9 448.9 -9.29 

 Robertson clay 392.1 376.8 -3.89 

Ca2+ Rawsonville sand 376.3 334.4 -11.12 

 Lutzville sand 333.5 326.5 -2.11 

 Stellenbosch shale 357.8 323.3 -9.64 

 Stellenbosch granite 261.0 226.5 -13.24 

 Stellenbosch sand 362.8 328.2 -9.54 

 Robertson clay 286.8 275.5 -3.95 

Mg2+ Rawsonville sand 301.2 281.5 -6.54 

 Lutzville sand 277.9 274.6 -1.18 

 Stellenbosch shale 288.2 272.0 -5.63 

 Stellenbosch granite 206.9 190.6 -7.88 

 Stellenbosch sand 292.6 276.2 -5.60 

 Robertson clay 237.0 231.7 -2.23 
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6.3.6. Soil chemical changes after irrigation and simulated winter rainfall 

6.3.6.1. Basic cations 

Potassium: Similar to the results reported in Chapter 4, the soil K+
extr showed almost no 

change where river water was applied, irrespective of soil type (Fig. 6.6). In contrast, 

irrigation with winery wastewater increased the K+
extr in the six soils. Due to no, or limited 

leaching, as discussed above, the K+
extr remained almost unchanged in all soils after the 

simulated winter rainfall. In fact, K+
extr in the Lutzville sand tended to increase slightly after 

the rainfall (Fig. 6.6B). The Stellenbosch sand was the only soil where the K+
extr showed 

a prominent decline after the rainfall (Fig. 6.6E). This trend was probably due the 

combined effect of the high initial K+
extr content and the organic compounds on the amount 

of K+ leached from the soil as discussed above. In spite of the leaching, the soil K+
extr 

retained was still almost double the initial level. 

Sodium: The Na+
extr tended to increase in all soils where river water was used for 

irrigation (Fig. 6.7). This due to the relatively high Na+ content in the water (Table 6.6), 

i.e. on average 24.5 mg/L compared to 3.3 mg/L for K+. As expected, irrigation with the 

diluted winery wastewater increase the Na+
extr in all soils to higher levels than river water 

irrigation in most of the soils (Fig. 6.7). The levels of Na+
extr in the Lutzville sand and 

Robertson clay were similar after the river water, as well as winery wastewater irrigations 

(Figs. 6.7B & 6.7F). At this stage, there is no explanation for this unexpected result, other 

than possible experimental errors. The Na+
extr declined in all the soils where the simulated 

rainfall resulted in leaching (Fig. 6.7). Where river water was used for irrigation, the Na+
extr 

levels were comparable to, or even lower in the Rawsonville sand, the initial levels. 

However, the simulated rainfall was insufficient to leach all the Na+ where diluted winery 

wastewater was used for irrigation. Due to the relatively high Na+ in the water used for 

the rainfall simulation (Fig. 6.2), the Na+
extr in the Lutzville sand and Robertson clay 

increased after the rainfall (Figs. 6.7B & 6.7F). This indicated that the Na+ in the river 

water used for the rainfall simulation contributed to the soil Na+
extr where diluted winery 

wastewater was applied. This confirms the importance of using natural rainfall for leaching 

studies. 
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Figure 6.6. Effect of irrigation with river water and winery wastewater diluted to 3000 mg/L 

COD (After Irr.) followed by simulated winter rainfall (After R) on extractable soil K+ for (A) 

Rawsonville sand, (B) Lutzville sand, (C) Stellenbosch shale, (D) Stellenbosch granite, (E) 

Stellenbosch sand and (F) Robertson clay.
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Figure 6.7. Effect of irrigation with river water and winery wastewater diluted to 3000 mg/L 

COD (After Irr.) followed by simulated winter rainfall (After R) on extractable soil Na+ for 

(A) Rawsonville sand, (B) Lutzville sand, (C) Stellenbosch shale, (D) Stellenbosch granite, 

(E) Stellenbosch sand and (F) Robertson clay.
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Calcium: Although more Ca2+ was applied via the diluted winery wastewater (Table 6. 

11), it had no effect on the level of soil Ca2+
extr compared to the irrigation with river water, 

irrespective of soil type (Fig. 6.8). This indicated that the c. 35 mg/L Ca2+ in the 

wastewater (Table 6.7) was too low to increase the soil Ca2+
extr. Likewise, the simulated 

rainfall had no effect on the soil Ca2+
extr, except for a substantial increase in the Robertson 

clay (Fig. 6.8F). At this stage, there is no explanation for this unexpected result. 

Magnesium: Similar to Ca2+
extr, irrigation with diluted winery wastewater had no effect on 

the level of soil Mg2+
extr compared to the irrigation with river water, irrespective of soil type 

(Fig. 6.9). The simulated rainfall had no effect on the Mg2+
extr in most soils. However, the 

Mg2+
extr

 increased except Stellenbosch granite that was irrigated with winery wastewater 

before the rainfall simulation (Fig. 6.9D). The Mg2+
extr in the Robertson clay did not 

increased after the simulated rainfall, irrespective of the water used for irrigation (Fig. 

6.9E). At this stage, there is no explanation for these unexpected results. 

6.3.6.2. Soil EPPʹ and ESPʹ 

EPPʹ: Irrigation with river water tended to decrease the EPPʹ in some of the soils (Fig. 

6.10). The lower EPPʹ probably resulted from the increase in soil Na+
extr (Fig. 6.7) caused 

by the relatively high Na+ compared to K+ in the river water as discussed above. Since 

the Ca2+
extr (Fig. 6.8) and Mg2+

extr remained constant (Fig. 6.9), it did not affect the EPPʹ. 

Irrigation with diluted winery wastewater increased the EPPʹ in all soils, except for the 

Robertson clay where the EPPʹ remained almost the same (Fig. 6.10). The higher EPPʹ 

resulted from the increase in soil K+
extr (Fig. 6.6) whereas the Ca2+

extr and Mg2+
extr 

remained constant. 

In the soils that were irrigated with river water, the simulated rainfall caused a further 

decline in EPPʹ in most soils (Fig. 6.10). This was also due to the relatively low K+ in 

comparison to the other cations in the river water used for the rainfall simulation. In soils 

that were irrigated with diluted winery wastewater, and where leaching occurred, the 

simulated rainfall caused a decline in EPPʹ (Fig. 6.10). However, in the case of the 

Lutzville sand and the Robertson clay where no leaching of K+ occurred, the EPPʹ also 

tended to decrease as a result of the low ratio of K+ versus the other cations in the river 

water (Figs. 6.10B and 6.10F). 
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Figure 6.8. Effect of irrigation with clean water and winery wastewater diluted to 3000 mg/L 

COD (After Irr.) followed by simulated winter rainfall (After R) on extractable soil Ca2+ for 

(A) Rawsonville sand, (B) Lutzville sand, (C) Stellenbosch shale, (D) Stellenbosch granite, 

(E) Stellenbosch sand and (F) Robertson clay. 
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Figure 6.9. Effect of irrigation with clean water and winery wastewater diluted to 3000 mg/L 

COD (After Irr.) followed by simulated winter rainfall (After R) on extractable soil Mg2+ for 

(A) Rawsonville sand, (B) Lutzville sand, (C) Stellenbosch shale, (D) Stellenbosch granite, 

(E) Stellenbosch sand and (F) Robertson clay.
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Figure 6.10. Effect of irrigation with clean water and winery wastewater diluted to 3000 

mg/L COD (After Irr.) followed by simulated winter rainfall (After R) on soil extractable 

potassium percentage (EPPʹ) for (A) Rawsonville sand, (B) Lutzville sand, (C) Stellenbosch 

shale, (D) Stellenbosch granite, (E) Stellenbosch sand and (F) Robertson clay. 
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ESPʹ: In most soils irrigation with river water tended to increase the ESPʹ (Fig. 6.11). This 

was probably due to the increase in soil Na+
extr (Fig. 6.7) upon irrigation with water 

containing a relatively high level of Na+ (Fig. 6.2). Irrigation with diluted winery wastewater 

also increase the ESPʹ. At this stage there is no explanation why the ESPʹ showed the 

same increase in the Lutzville sand and the Robertson clay (Figs. 6.11B and 6.11F). 

In the soils that were irrigated with river water, the simulated rainfall caused a decline in 

ESPʹ in most soils (Fig. 6.11). In the soils where leaching occurred, the ESPʹ was lower 

than the initial levels. Although Na+ was the highest in the river water used for the 

simulation, the amount applied via the rainfall was considerably lower than the summed 

amount of the other cations (Tables 6.9 to 6.12). This probably also explains why the 

ESPʹ also tended to decrease in the soils where no leaching occurred, i.e. the Lutzville 

sand and the Robertson clay (Figs. 6.11B and 6.11F). In the soils that were irrigated with 

the diluted winery wastewater, the simulated rainfall caused a decline in ESPʹ in most 

soils (Fig. 6.11). In the soils where leaching occurred, the ESPʹ was also comparable to, 

or lower, than the initial levels before the irrigations were applied. 

6.3.6.3. Soil pH(KCl) 

Irrigation with river water had no effect on the pH(KCl), irrespective of soil type (Fig. 6.12). 

This is in agreement with the results reported in Chapter 4. Irrigation with diluted winery 

wastewater tended to increase the pH(KCl) slightly, except in the Robertson clay (Fig. 

6.12F). If soils are irrigated with diluted winery wastewater the pH(KCl) can increase 

substantially over time, as was shown in Chapter 4. The high amount of basic cations, 

particularly K+ and Na+, applied via the wastewater seems to be the reason for the pH(KCl) 

increase. In soils that were irrigated with river water, and where leaching occurred, the 

pH(KCl) tended to decline slightly (Fig. 6.12). In the Lutzville sand and Robertson clay 

where no leaching occurred, the pH(KCl) showed a slight incline upon the simulated rainfall 

(Figs. 6.12B & 6.12F). Since the K+
extr showed almost no increase in the Lutzville sand 

and Robertson clay after the rainfall (Figs. 6.6B & 6.6F), the higher pH(KCl) was probably 

caused by the increase in soil Na+
extr (Figs. 6.7B & 6.7F). The higher Ca2+

extr (Fig. 6.8) 

and Mg2+
extr

 (Fig. 6.9) after the simulated rainfall could also have contributed to the pH(KCl) 

increase in the Robertson clay. 
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Figure 6.11. Effect of irrigation with clean water and winery wastewater diluted to 3000 

mg/L COD (After Irr.) followed by simulated winter rainfall (After R) on soil extractable 

sodium percentage (ESPʹ) for (A) Rawsonville sand, (B) Lutzville sand, (C) Stellenbosch 

shale, (D) Stellenbosch granite, (E) Stellenbosch sand and (F) Robertson clay.
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Figure 6.12. Effect of irrigation with clean water and winery wastewater diluted to 3000 

mg/L COD (After Irr.) followed by simulated winter rainfall (After R) on soil pH
(KCl)

 for (A) 

Rawsonville sand, (B) Lutzville sand, (C) Stellenbosch shale, (D) Stellenbosch granite, (E) 

Stellenbosch sand and (F) Robertson clay. 
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The diluted winery wastewater used for irrigation contained a high organic load compared 

to the river water (Tables 6.6 & 6.7). The cations in the wastewater were probably present 

in the form of organic salts. These salts can produce OH- anions via decarboxylation that 

will increase the soil pH as illustrated in Figure 6.13 (Rukshana et al., 2011). Organic 

acids present in the wastewater may also be a source of organic anions via the 

dissociation of H+ which can increase the soil pH via decarboxylation (Fig. 6.13). If this 

happens, the soil might initially contain more H+, but the pH will increase over time as 

more OH- is formed (Rukshana et al., 2011). The organic load in the wastewater could be 

a further source of organic N. These compounds will also produce OH- anions which can 

increase the soil pH if ammonification occurs in soil (Fig. 6.13). 

 

 

Figure 6.13. Diagram illustrating possible mechanisms of soil pH changes upon addition 

of model compounds (redrawn from Rukshana et al., 2011). 

6.4. CONCLUSIONS AND RECOMMENDATIONS 

Irrigation with winery wastewater diluted to 3000 mg/L COD increased the basic cations 

which resulted in a slight pH(KCl) increase in the six soils, i.e. irrespective of clay content. 

The pH(KCl) increase was probably related to the soluble organic compounds in the 

wastewater. Leaching of cations, particularly, K+ and Na+, occurred only from four of the 
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six soils when the winter rainfall was simulated. The total average K added to the soil was 

2500 kg/ha while Na was 450 kg/ha. In one of the sandy soils, the simulated rainfall was 

too low to allow leaching. In the case of the other soil, a high clay content, i.e. 35%, in 

combination with low rainfall, prevented leaching. Where three soils received the same 

amount of rainfall, more cations leached from the sandy soil compared to the two heavier 

soils. These trends indicated that the leaching would be a function of soil texture, as well 

as rainfall. In fact, multiple linear regression models showed that the amount of 

exchangeable cations retained in the soils was a function of initial cation content, rainfall 

and organic carbon content. It must be noted that organic carbon content seemed to be 

a better indicator of the exchangeable cation amounts retained than clay content. This is 

most likely due the prominent effect of organic material on the CEC. 

Since the leachate volumes were generally small, most of the cations applied were 

retained in the soils. The small volumes of leachate were due to the relatively low mean 

rainfall per simulated event. Therefore, it would have been more realistic to simulate the 

rainfall on a monthly, and not on a seasonal basis. However, the simulation with low 

rainfall events indicated that the exchangeable basic cations are more likely to 

accumulate in soils if climate change result in lower winter rainfall. Given highly variable 

rainfall in South Africa, it is also possible that abnormally high daily rainfall events can 

leach the accumulated cations from vineyard soils in regions with relatively low rainfall.  

Due to the relatively low level of K+ in the river water used for the rainfall simulation, the 

difference between the actual and estimated amount of K+ retained, was less than 0.5%. 

In contrast, the amounts of Na+ and Ca2+ retained, differed by as much as 13%, whereas 

the Mg2+ retained, differed up to c. 8%. Therefore, the Na+, Ca2+ and Mg2+ in the water 

used for the simulations increased the actual amount of cations retained. Based on these 

results, it would be advisable to use genuine pure rainwater for leaching studies. It will be 

recommended that wineries should irrigate with wastewater based on the nutrient 

demand that the volume of the wastewater. Furthermore, care should be taken to avoid 

contamination of the harvested water, particularly if it needs to be stored in tanks. 
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CHAPTER 7. GENERAL CONCLUSIONS AND RECOMMENDATIONS 

Specific conclusions have been included in each chapter. This chapter is aimed at 

providing general conclusions and recommendations to the industry and for future 

studies. 

7.1. Scope of the study 

The overall general aim of the study was to determine the suitability of selected soils 

from the Western Cape for winery wastewater irrigation in order to provide the South 

African wine industry with more knowledge regarding the response of different soil 

types found in the region to winery wastewater irrigation. The study investigated the 

effects of winery wastewater irrigation on (i) seasonal dynamics of soil chemical status, 

(ii) reactions of different soils and (iii) the role of winter rainfall in order to establish the 

risks of this practice on South African soils. Therefore, it distinguishes itself from any 

other studies carried out thus far, locally or internationally. 

7.2. General conclusions 

7.2.1. Seasonal soil chemistry dynamics due to winery wastewater irrigation on 

existing and new grazing paddocks  

The study demonstrated that disposal of winery wastewater through land application, 

which is a general practice by South African wine farmers, causes high volumes of 

undiluted winery wastewater to be disposed of on very small areas. This practice 

results in over irrigation which aggravates leaching of large amounts of cations, 

particular K+ and Na+, beyond 90 cm soil depth. Unfortunately, the leached elements 

are bound to end up in natural water resources in the long run. To reduce this risk, 

wineries should be advised to apply the wastewater according to crop water 

requirements. As wastewater contains high amount of K, wastewater should also be 

applied based on the crop K requirement. The grazing paddocks used for disposal via 

irrigation should be as big as possible. Wineries should be encouraged to measure 

the quantity and quality of wastewater they dispose. The sprinklers used to irrigate the 

soil should be moved around regularly to avoid over irrigating beyond the soil’s water 

holding capacity. The land application study confirmed that injudicious irrigation with 

undiluted winery wastewater poses a serious environmental hazard, particularly when 

the wastewater is applied to crops in sandy soils. Disposal of winery wastewater 

through land application can only be recommended where wastewater application will 

not exceed the water requirement of the grazing or other crop. Wineries should be 
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advised to determine soil chemical status on a regular basis to minimise the risk of soil 

degradation. Proper winery wastewater management strategies such as irrigation 

scheduling should be considered for sustainable land application.  

7.2.2. Effects of winery wastewater irrigation on the chemical properties of four 

different soils 

A possible solution to reduce the abovementioned risk would be to dilute the winery 

wastewater before it is used for irrigation of vineyards or other crops. In this regard, a 

single mix and irrigation infrastructure made it possible to irrigate four different soils 

accurately with winery wastewater diluted to a COD of 3000 mg/L in a pot experiment. 

Irrigation with diluted winery wastewater increased the levels of extractable K+ and Na+ 

in the soils. The study confirmed that in clayey soils the increase of Na+
extr with 

increasing amounts of Na+ applied was almost double compared to the sandy soils. 

This indicated that the risk of Na+ reaching excessive levels will be less where 

vineyards in sandy soils are irrigated with diluted winery wastewater than in clayey 

soils. Due to low Ca2+ and Mg2+ concentrations in the diluted winery wastewater, their 

concentrations in the soil at the end of the study were comparable to the initial levels. 

The application of winery wastewater led to soil pH(KCl) increases in all four soils 

irrespective of clay content. This could probably be attributed to organic anions added 

to the soil via irrigation with diluted winery wastewater.  

7.2.3. Vulnerability of selected soils in the different rainfall areas to degradation 

and excessive leaching after wastewater application 

Recommendations were developed regarding the suitability of winery wastewater 

irrigation in high and low rainfall areas respectively. Six different soils from three wine 

growing regions were subjected to simulated winter rainfall following one season of 

irrigation with winery wastewater. The winter rainfall could not leach basic cations, 

particularly K+ and Na+, from two of the six soils as the amount of the simulated rainfall 

was too low to achieve leaching. Where three soils received the same amount of 

rainfall, more cations leached from the sandy soil compared to the two clayey soils. 

These trends indicated that the leaching would be a function of soil texture, as could 

be expected, as well as rainfall. The simulation with low rainfall events indicated that 

the basic cations are more likely to accumulate in soils if climate change results in 

lower winter rainfall.  
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Given the highly variable rainfall in South Africa, it is possible that abnormally high 

daily rainfall events can leach accumulated cations from vineyard soils in regions with 

relatively low average rainfall, especially in sandy soils. In regions where winter rainfall 

is not high enough to leach nutrients from the soil that was irrigated with winery 

wastewater, there is a potential for accumulation of high salt concentrations that will 

increase soil salinity. It can be recommended that if the Lutzville sand and Robertson 

clay soils are to be used for wastewater irrigation, proper management and monitoring 

of soils are essential to avoid accumulation of salts due to low winter rainfall in these 

regions. The Stellenbosch duplex soil seems unsuitable for winery wastewater 

irrigation unless accurate irrigation scheduling is practised. 

7.3. Recommendations 

 Disposal of winery wastewater through land application can only be recommended 

where wastewater application does not exceed the water requirement of the crop.  

 Wastewater needs to be distributed on an area of land that is big enough so that 

the daily applications do not cause over-irrigation. 

 The effects of K: Na ratio in diluted or undiluted winery wastewater on soil structure 

stability, potassium availability and leaching of elements need to be addressed by 

continued research.  

 Since climate, particularly rainfall, will affect the accumulation and/or leaching of 

elements, research should be carried out in field studies. 

 Modelling studies to predict soil suitability and optimum level of winery wastewater 

dilution are essential to avoid pollution as a result of excessive leaching. 

 Due to known lesser negative effect of K+ on soil structure when compared to Na+, 

it is recommended that will be advisable for winemakers to switch from sodium 

hydroxide detergents to potassium or ammonium hydroxide. 

 The reason(s) why irrigation with diluted winery wastewater did not increase the soil 

organic carbon content must be investigated. 

 Determination of the chemical status of permanent crops, e.g. vineyards, irrigated 

with diluted winery wastewater should be carried out at least annually. 

 The soil chemical status should be determined at least annually. Soil samples must 

be collected as deep as practically possible to make sure that elements applied via 

the winery wastewater do not accumulate below the root zone and do not leach into 

streams and other water bodies. 
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APPENDIX 3.1.  

Description for a modal profile at an existing grazing paddock in Rawsonville. 

Water table > 90 cm Slope Erosion  Flood occurrence: Occasional 

Terrain unit: Valley bottom Percentage: 1 Wind erosion: Slight Microrelief: none 

 Type: straight Water erosion: slight Surface covering: None 

  Erosion stability: not stabilized  

Parent Material Weathering of underlying material Alteration of underlying material: generalized  

Lithology of solum:  Physical: Weak Vegetation/Land use: Vineyards  

Origin: Single Chemical: Weak   

Mode Alluvium    

Lithology of underlying material: Unknown    

SIOL HORIZON RECORD    

HORIZON Lower depth Colour: dry Colour: moist 

A 10cm 10YR 5/1 10YR 3/2 

E 40cm 10YR 5/1 10YR 3/2 

B 40cm+ 10YR 7/1  10YR  3/1 

Field estimated texture: less than 5% clay MOTTLES SOIL STRUCTURE CONSISTENCE 
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 Mottles A: few <2% Primary: Apedal Dry: Loose 

 Size: Fine <5mm Size: Fine Moist: Loose 

 Contrast: Distinct  Wet stickiness: Non-sticky 

 Colour: Brown  Wet plasticity: Non-plastic 

MACROPORES & CRACKS Cementation of Horizon: none Surface & Subsurface features Roots: Many 

Very fine & Fine pores: Few Freelime- non hardend: none Kind: Bleached surface crust Transition: Diffuse 

Surface coating: Normal Slickensides: none Depositional Stratification: none Topography: Smooth 

Cracks: None Cutans: none   

 Coarse fragments: none   

DIAGNOSTIC HORIZONS AND MATERIAL SOIL FORM: LONGLANDS   

Orthic A Horizon  FAMILY: 1000 SHERBROOK   

E Horizon    

Soft Plinthic B horizon    
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APPENDIX 3.2.  

Description for a modal profile from the disposal area at a new grazing paddock in Stellenbosch. 

Water table < 90 cm Slope Erosion  Flood occurrence: Occasional 

Terrain unit: Lower footslope Percentage: 1 Wind erosion: none Microrelief: none 

 Type: straight Water erosion: none Surface covering: None 

  Erosion stability: stabilized  

Parent Material Weathering of underlying material Alteration of underlying material: Kaolinised  

Lithology of solum Physical: Weak Vegetation/Land use: Cultivated pastures  

Origin: Binary suspected Chemical: Strong   

Mode Alluvium    

Lithology of underlying material: mixed 

lithology 

   

Soil Horizon Record    

Horizon Lower depth Colour: dry Colour: moist 

OB (Overburdened) 10cm 10YR 6/2 10YR 7/1 

A 20cm 10YR 6/2 10YR 7/1 

E 20-70cm 10YR 6/2 10YR  7/1 

G 70+ 10YR 6/2 10YR 7/1 
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Field estimated texture: less than 5% clay MOTTLES SOIL STRUCTURE CONSISTENCE 

 Mottles A: few <2% Primary: Apedal Dry: Hard 

 Size: Fine <5mm Size: Fine Moist: Friable 

 Contrast: Faint Type: Single grain Wet stickiness: Non-sticky 

 Colour: Red and Brown  Wet plasticity: Non-plastic 

MACROPORES & CRACKS Cementation of Horizon: none Surface & Subsurface features Roots: Many 

Very fine & Fine pores: Few Freelime- non hardend: none Kind: None Transition: Abrupt 

Surface coating: Normal Slickensides: none Depositional Stratification: none Topography: Smooth 

Cracks: None Cutans: none   

 Coarse fragments: none   

DIAGNOSTIC HORIZONS AND MATERIAL SOIL FORM: Kroonstad   

Orthic A Horizon  FAMILY: 1000 Morgendal   

E Horizon    

G    
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APPENDIX 6.1 

Average rainfall data for weather stations situated in the areas where the soils 
included in the study where collected. 

     

Lutzville weather station 1971 - 1989 (18 years) 

Month Rainfall 
(mm) 

No. of rainfall days 
per month 

Rainfall per 
day (mm) 

Intervals 

May 17.9 4 4.5 7.8 

June 24.8 5.4 4.6 5.6 

July 19.6 5.4 3.6 5.5 

August 19.8 6 3.3 5.2 

September 11.5 4.1 2.8 7.3 

Total 93.6 24.9   

 
Rawsonville weather station 2000 - 2012 (12 years) 

Month Rainfall 
(mm) 

No. of rainfall days 
per month 

Rainfall per 
day (mm) 

Intervals 

May 116.5 8.8 13.2 3.5 

June 127.5 7.9 16.1 3.8 

July 100.5 8.5 11.8 3.6 

August 121.2 8.2 14.8 3.8 

September 82.7 7.1 11.6 4.2 

Total 548.4 40.5   

 
Stellenbosch weather station  1967 - 1989 (22 years)   
Month Rainfall 

(mm) 
No. of rainfall days 

per month 
Rainfall per 
day (mm) 

Intervals 

May 106.8 10.4 10.3 3.0 

June 108.7 10.5 10.4 2.9 

July 110.4 10.6 10.4 2.9 

August 86.5 10.1 8.6 3.1 

September 56.7 8.8 6.4 3.4 

Total 469.1 50.4   

 
Robertson weather station  

1954 – 1989  (35 
years)   

Month Rainfall 
(mm) 

No. of rainfall days 
per month 

Rainfall per 
day (mm) 

Intervals 

May 32.5 6.8 4.8 4.6 

June 31.9 6.9 4.6 4.3 

July 26.9 6.5 4.1 4.8 

August 41.8 7.8 5.4 4.0 

September 19.8 5.8 3.4 5.2 

Total 152.9 33.8   
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