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ABSTRACT
Accurate classifiers for short texts are valuable assets in
many applications. Especially in online communities, where
users contribute to content in the form of posts and com-
ments, an effective way of automatically categorising posts
proves highly valuable. This paper investigates the use of N-
grams as features for short text classification, and compares
it to manual feature design techniques that have been popu-
lar in this domain. We find that the N-gram representations
greatly outperform manual feature extraction techniques.

CCS Concepts
•Information systems → Document representation;
Sentiment analysis; Information extraction; •Computing
methodologies → Supervised learning by classifica-
tion; Knowledge representation and reasoning;

Keywords
Classification, information retrieval, vector space models,
feature design, N-gram models, NLP, text mining

1. INTRODUCTION
The problem of identifying and assessing the quality of

short texts (e.g. comments, reviews or web searches) has
been intensively studied since 2008 [15, 46, 27]. There are
great benefits in being able to analyse short texts, for ex-
ample, advertisers might be interested in the sentiment of
product reviews on e-commerce sites to more efficiently pair
marketing material to content. Analysing short texts is a
difficult problem, because traditional machine learning mod-
els generally perform better on larger samples. More data
allow for better estimation of parameters for these models.
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Short texts generally do not have much content, but still
carry high variability in that they may use a large corpus
of words. This makes it difficult to build a representative
feature space for short texts [15].

We investigate the problem of classifying short texts in
the context of website comment filtering, where the com-
ments are filtered by an editor according to how suitable
they are for live content. Internet news providers often al-
low users to contribute content in the form of comments.
These comments are often not written in standard English
and contain many colloquialisms and linguistic phenomena
(similar to tweets). The success of a news website is greatly
dependent on these comments, as they facilitate discussion,
which boosts user engagement. Unfortunately, some users
contribute malicious content that is often defamatory, anti-
social, or racist. This can not be allowed if the news provider
seeks legitimacy in the news space. We investigate feature
extraction techniques for automatic detection of antisocial
behaviour.

Many learning methods have been used for short text clas-
sification, including k-nearest neighbours (kNN) [24], näıve
Bayes [22, 57] and Support Vector Machines (SVMs) [4].
SVM-based methods are particularly popular for this prob-
lem [63], because SVMs are very versatile and can easily deal
with both dense and sparse data representations. A variety
of kernels can also be applied to represent various priors on
the data distribution. The quality of SVM-based methods
depends on a variety of factors, but most notably the choice
of the kernel and the quality of the training data [31]. Pre-
processing input data is important for training SVMs: most
importantly, the data should first be transformed into fea-
tures of a type that can be processed by the specific kernel
function (most kernels use numeric features). Therefore, an
important focus for improving the quality of short comment
classification is feature extraction [56, 15, 63], where pro-
posed approaches are typically compared using one or two
standard SVM kernels.

In [10], the efficacy of a simple bag-of-words model in com-
parison to manually designed features for regression to ad-
dress a different problem, but in the same domain, i.e. In-
ternet comments, was investigated. Results showed that
neither of these models are sufficiently accurate. The chief
focus of this paper is an investigation into N-gram-based ap-
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proaches (e.g. bag-of-words models) for feature extraction,
using the manually designed features as a baseline. N-gram
models have been hugely successful in other natural lan-
guage processing tasks [41, 20], but their performance on
short texts such as Internet comments, where the represen-
tations will likely be very sparse, is not well-studied. This
paper thus provides an empirical evaluation that sheds some
additional light on whether N-gram models are suitable for
short text classification. All experiments are performed us-
ing a representative data set of comments from an Internet
news source.
The rest of the paper is structured as follows. First, Sec-

tion 2 provides context for our work by presenting related
research in the field of short text classification. Thereafter,
some background information on the N-gram approaches is
detailed in Section 3. Then, Section 4 discusses the source of
the data and explains the methodology we follow to produce
the various feature sets. Finally, the results of the study are
given in Section 5, followed by our conclusions and future
work (Section 6).

2. PREVIOUS WORK
Our work leans heavily on previous studies of both clas-

sification and ranking of comments. No studies were found
that specifically use N-gram-based approaches for Internet
comment classification, however N-grams have been used in
other short text classification tasks.
Cavnar and Trenkle used N-gram-based techniques for

building word frequency profiles for longer documents and
used these profiles to categorize the documents under consid-
eration [13]. They achieved a very high accuracy using the
statistical properties of simple character N-grams of lengths
1 to 5.
Mishne investigated the accuracy of using N-gram ap-

proaches for classifying the mood or sentiment of writers
of blog posts [41]. The posts were obtained from Live-
journal.com, a free blog service with several million users.
The posts were tagged by users with moods from a prede-
fined list of 132 common moods, including “angry”, “happy”
and “amused”. Mishne used various text-based features to
augment the N-gram vectors and obtained modest results.
Sriram et al. also augmented traditional “bag-of-words” ap-
proaches with their own domain-specific features to cate-
gorise texts [57]. They were able to marginally improve the
classification accuracy of the bag-of-words approach with
features specific to the Twitter domain, including the pres-
ence of shortened words, currency, Twitter-like directives
(e.g. “@username”), etc.
Lampe and Resnick [35] used the properties of the com-

ments left by users (comment length, word usage), as well
as the properties of the authors themselves (frequency of
posting, frequency of response) in order to classify com-
ments. Wanas et al. [63] sought to improve on the work
done by Lampe and Resnick. The features that Wanas et
al. used, were based on features designed by Weimer et
al. [64], and consisted of various features categorised into
five classes. These classes were relevance, originality, forum-
specific, surface (frequency of capitalised words, quality of
grammar, etc.) and posting component (presence and qual-
ity of weblinks in posts) features. They focused their in-
vestigation on designing features that take various linguistic
phenomena, present in online forums, into account.

3. N-GRAM MODELS
Since designing and creating a manual feature set is a

time-consuming process, and since a user can manipulate
the system if they know the features that are being used, we
rather investigate alternative representations for comments.
In information retrieval a piece of text is often represented
by certain keywords or terms [47]. A set of weights can
also be associated with these terms to show their relative
importance to the text [52]. This idea of text representation
is often called the N-gram model, which is a specific type of
vector space model for texts [53]. It has been shown that
N-gram representations can be trained on a wide variety of
linguistic tasks [11].

An N-gram is a series of objects (letters, words, syllables,
or other linguistic units) from a longer piece of sample text.
An N-gram is often taken to be a contiguous sequence, but
it could be any co-occurring set of objects (e.g. the first and
third character of words, i.e. skip-grams [16]). Unless stated
otherwise, we consider N-grams as contiguous sequences of
words or characters. The simplest N-gram representation
is the unigram, which only considers one object at a time.
More interesting models with higher order N-grams (e.g. bi-
grams and trigrams) are also used and are sliced so that N-
grams overlap. As an example, consider the sentence “The
blue bird flew away”, which is composed of the following
word N-grams:

unigrams: “The”, “blue”, “bird”, “flew” and “away”.
bigrams: “The blue”, “blue bird”, “bird flew” and “flew

away”.
trigrams: “The blue bird”, “blue bird flew”, “bird flew

away”.
Similarly, the word “medal” consists of the following char-

acter N-grams:
unigrams: “m”, “e”, “d”, “a” and “l”.
bigrams: “me”, “ed”, “da” and “al”.
trigrams: “med”, “eda” and “dal”.
The general pattern is that a sequence of k words (or

characters) will consist of k unigrams, k − 1 bigrams and
k − 2 trigrams.

N-gram representations are widely applicable to a variety
of problems, not only in information retrieval. These ap-
plications include probabilistic language modelling (where
words are predicted using N-grams, often useful in statisti-
cal machine translation) [5], DNA sequencing [59], and com-
pression algorithms [29].

4. METHODOLOGY
The N-gram-based feature sets are based on popular tech-

niques in information retrieval [47] and are part of a class of
data representations often referred to as vector space mod-
els [53]. The baseline manual feature set is based on work
done by previous authors [43, 49, 30], as well as some addi-
tional features devised by us.

All of the constructed feature sets are used to train SVM
classifiers [62, 18], which are then evaluated and compared
by using standard metrics, including accuracy, precision, re-
call and F1-scores. The Radial Basis Function (RBF) and
linear kernels [32] for SVM will be considered by using the
SVM classifier from the Scikit-Learn Python library [45].
These are very common kernels, and previous studies on
comment classification have also made use of them [30].
These kernels are also attractive for N-gram techniques, since



they can efficiently deal with the sparse matrices induced by
our N-gram representations.
The data we use are comments obtained in cooperation

with News24 (further discussed in Section 4.1). This input
data set has to undergo various transformations to be suit-
able as training data for the SVM classifiers. This is shown
in Figure 1 and detailed in the following sections.
The training sets are labelled data sets with each data

point represented by a feature vector and an associated la-
bel (called the class value). Each feature vector represents
a comment by a feature representation model, as detailed
in Section 4.2. Then, feature selection is applied to reduce
the dimension of the feature set. This is necessary due to
constraints on the time required to train the SVM classifiers
and is discussed in Section 4.3. Each of these features are
normalized so that its l2 norm (i.e. the sum of the squared
values for that feature over all samples) equals 1. Normal-
izing the data leads to improved performance in algorithms
such as Support Vector Machines (depending on the ker-
nel) [26, 31, 23]. This is further detailed in Section 4.4.
Finally, a classifier is trained to predict the class value of a
training feature vector for each data set. These trained clas-
sifiers are used to predict the value of an unlabelled feature
vector (representing a new comment). The best choice of
feature representation is our chief topic of investigation.

4.1 The Data Set
News24 provided us with a data set containing articles

and comments that were left on these articles. Metadata
about both the articles and comments are included (e.g. au-
thor name, date of posting and article title). The comments
themselves are used as input data for training our models.
Thus, the input data set consists of N comments, denoted

as {c1, c2, ..., cN}. For each comment ci, a set of m features
Fci = {f1, f2, ..., fm} is extracted. Thus, a candidate feature
set consists of rows of the form {(Fc1 , rc1), ..., (FcN , rcN )},
where a tuple (Fci , rci) indicates a feature set Fci for com-
ment ci, and the associated class value rci .
We found experimentally that comments with fewer than

20 words are hard to classify with the methods described in
this paper and are, as such, not included in the data set.
Thus, the data set used consist of 79017 samples, but the
number of features in each feature set differs depending on
the representation.
News24 allows its users to leave comments on news arti-

cles. A user can either leave a comment on an article directly
(referred to as a parent comment) or reply to a parent com-
ment (referred to as a child comment). Figure 2 shows an
excerpt from a comment thread where one user has posted
a comment and another user replied to that comment. Each
parent comment can have multiple replies, forming a thread.
Each article typically has multiple parent comment threads
associated with it. The collection of threads on an article is
referred to as the article comments. Figure 3 shows statistics
describing the data set.
Users are also able to vote on comments in the form of

likes and dislikes, as well as report comments that they
feel are of low quality (e.g. that they consider demeaning
or defamatory). Figure 2 shows an example of likes and dis-
likes attributed to a comment. The editorial team can then
decide whether the comment should be removed from the
site (i.e. be made hidden). The editors also have automatic
filters, based on high-level criteria (as discussed below), for

Figure 2: Part of a typical News24 comment thread.

Original number of comments 130713
Number of comments with ≥ 20 words 79017
Number of parent comments 56124
Number of child comments 22893
Average number of child comments per
parent

0.48

Average number of comments per article 16.24
Total number of words 7.3 Million
Average number of words per comment 93.32
Percentage of ‘hidden’ comments 34.8%

Figure 3: Corpus statistics. Numbers are listed for
comments with twenty or more words.

removing comments. Thus, some comments are visible and
some are hidden. We present the following goal: to predict
this status for unlabelled comments (typically newly posted
comments) automatically, i.e. to classify a comment to re-
flect the ideological orientation of the editors.

After a comment is reported, editors remove the comment
(i.e. make “hidden”) based on whether:

• it contains abusive language, hate speech or profanity,

• it contains completely incorrect grammar,

• it includes “text-speak”1,

• it includes nicknames or insulting names for the indi-
vidual the article is about,

• it refers to racial stereotypes or contains racial slurs.

It is relevant to note that News24 is primarily based in
South Africa, so the user comments typically feature a unique
language domain, known as South African English (SAE).
SAE contains various colloquialisms and slang that are spe-
cific to the South African context. SAE may also include
words from other official South African languages (e.g. Zulu,
Xhosa or Afrikaans). Comments that a provided language
model [54] identified as being predominantly English were
considered in this work. Thus, comments can still contain
words from other languages which pollute the standard En-
glish vocabulary.

4.2 Feature Extraction
Both word and character N-grams are investigated. For

word N-grams, the effects of three main choices in the con-
struction of the N-gram models is investigated.

The first is the order of the N-grams used — we consider
unigrams (N = 1), bigrams (N = 2) and trigrams (N = 3)
(detailed in Section 4.2.2). Other N-gram representations

1Internet colloquialisms and abbreviations.
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Figure 1: The pipeline that a comment goes through to be classified.

with N > 3 could be used, but the resulting feature vectors
are extremely sparse, making them unsuitable for training
a classifier. For each choice of N , we then consider either
N -gram features alone (denoted by “=”), or a feature vector
using all N -grams of that order or lower (denoted by “≤”).
Finally, we consider three different vectorization methods
for determining the value of each component in the resulting
comment vector: the binary count (denoted by“B”), the fre-
quency count2 (denoted by “F”) and the TFIDF-normalized
frequency (denoted by“T”). These three representations are
also explained in detail in Section 4.2.2. We summarize the
selection of N , whether lower-order N-grams are included or
not, and the vectorization method in our notation by con-
catenating N and our symbols denoting the other choices.
For example, “≤3T” represents the use of unigrams, bigrams
and trigrams with TFIDF-normalized vectorization.
We decided to use character N-grams in addition to word

N-grams, because they could potentially handle inconsistent
spelling in words (i.e. users that use the same word but
spell it slightly differently). This is useful for users trying to
use bad words or derogatory terms without being filtered,
by changing the spelling of the words. We also investigate
character skip-grams, since they are even better suited for
identifying cases where a user changes a letter in a word to
obfuscate the word.
For character N -grams, all the N -grams for values of 2 ≤

N ≤ 8 are included in a single representation (denoted by
“C28”). These N-grams are taken across whole sentences
(i.e. with spaces included). As with the word N-grams,
the binary and TFIDF-normalized frequency vectorization
methods are used. This produces two feature sets, namely
C28B and C28T .
For character skip-grams, each complete word, as well as

all the variations of that word with single characters left
out, are included (i.e. the character skip-grams for the word
“bird” are “ird”, “brd”, “bid” and “bir”). Again, the binary
and TFIDF-normalized frequency vectorization methods are
used. This produces two feature sets, namely CSB and
CST .

4.2.1 Preprocessing
For the word N-gram representations, two types of pre-

processing are done before the feature vectors are generated:
stop-word removal and lemmatization. The character N-
grams are constructed without any preprocessing.
Before the feature sets are constructed, stop-words [48] are

removed from the comments. The list of stop-words is taken
from the python NLTK corpora [7]. Also, words are trans-
formed into their base dictionary form (called the lemma)
through a process called lemmatization. As an example, the
words car, cars, car’s and cars’ are all mapped to car. This
is done to group plurals and other word variations into a sin-
gle representative term. Lemmatization is performed with

2The frequency count is only investigated for unigrams, since
we found that higher order N-grams rarely occur multiple
times within a comment, so there is very little difference
between the binary and frequency count representations.

an implementation from NLTK [7], using the WordNet [40]
lexical database.

4.2.2 Constructing N-gram Representations
Let V be the vocabulary of all terms (or N-grams) in the

corpus. Then each data sample is represented by a vector of
term weights ⟨ei1, ...ei|V |⟩ and a class value yi ∈ {0, 1}. Here
eij is the weight of term j in sample i and |V | is the number
of terms in the corpus. Depending on the representation,
the terms in the vocabulary are either the distinct words
(unigrams) or sequence of terms (bigrams or trigrams), or
the character N-grams for N ∈ {2, 3, 4, 5, 6, 7, 8}, and are
referred to as term-features.

All the representations are implemented using a row-wise
sparse data representations from scipy [33]. This represen-
tation stores only the non-zero entries in the matrix, saving
on memory when the matrices are extremely sparse, as is
the case with N-gram representations for N > 1.

For vectorization (or occurrence counting), three different
schemes are considered:

• Binary Count. For each comment Ci, the jth term-
feature will be 1 if the word appears in the comment
and 0 otherwise.

• Frequency Count. Instead of simply considering
the existence of a term in a comment, the frequency
of occurrence is a common weighting [38]. For each
comment Ci, the jth term-feature will contain the fre-
quency of the N-gram in the comment.

• TFIDF3. Longer documents have higher frequencies
of terms and are hard to compare to shorter texts
for similarity. Also, terms that occur very frequently
in all texts, provide little discriminatory information
for a classifier. Therefore, approaches using inverse-
document frequency and length normalization have be-
come popular in vector space models [51]. For each
comment Ci, the jth term-feature is given by:

tfidf(tj , Ci) = tj ∗ ln
(

|C|
f(wj , C) + 1

)
where tj is the frequency of term wj in comment Ci,
normalised by the number of words in the comment,
and the second term is the natural logarithm of the
total number of comments C divided by the number
of comments wj appears in.4 This is based on the
implementation used by the Python library scikit-

learn [45] for TFIDF.

3TFIDF abbreviates Term Frequency - Inverse Document
Frequency [2] Normalization.
4The frequency is artificially increased by 1 to avoid zero
division errors. This adjustment can also be interpreted as
smoothing via a suitable prior.



4.3 Feature Selection
Reducing the dimensionality of the feature space helps to

reduce noise in the data by removing irrelevant and redun-
dant features [58]. This could result in faster and better per-
formance for many regression and classification models [25],
as well as prevent over-fitting of a model [61].
A popular technique for dimensionality reduction is fea-

ture selection. Feature selection [12] involves selecting a sub-
set of the original features to maximize the relevance of the
feature set for predicting the class variable. To identify the
most relevant features, a popular type of feature selection,
called univariate feature selection, is applied. This means
the algorithm considers each feature’s relationship to the
class variable independently and scores the relevance of the
features to the class variable. The scoring mechanism used
is the χ2 (chi-squared) statistical test [37].
The top 50% of features are selected for the baseline man-

ual feature set. For the N-gram representations, all the fea-
tures are kept, up to a maximum of 200000 features. This
is done due to constraints on the time required to train the
classifiers, as the training complexity of SVM is directly cor-
related to both the number of samples and the number of
features (for both linear and RBF kernels) [8]. We deter-
mined experimentally that this arbitrary maximum does not
significantly impact the results, but provides a substantial
decrease in running time of experiments.
For illustration, the ten most relevant unigram, bigram,

and trigram features are given below:

• Unigram - airtime, buy, monkey, customer, data, illu-
minati, enjoy, gb, get, message.

• Bigram - buy mtn, application form, http www, jacob
zuma, psychic twitter, new promo, note wait, receive
message, serial number, say dear.

• Trigram - jacob zuma finally, go message box, last
month note, mtn user u, message box type, message
say dear, promo mtn user, receive message say, say
dear customer, send dis mtn.

4.4 Feature Normalization
Feature scaling, in most cases, involves manipulating each

component of each observation in the feature set as follows:

X∗ =
X − µ

σ

where X is the value of the component, and µ and σ are
the empirical mean and standard deviation of that com-
ponent for all obervations in the feature set. This can be
computationally problematic for sparse feature sets such as
the N-gram representations, since subtracting the mean in
such a case will typically shift many values away from zero,
thus losing the sparsity in the original representation. For
this reason, an alternative approach, called feature normal-
ization, is used. In feature normalization, each feature is
individually scaled so that its l2 norm (i.e. the sum of the
squared values for that feature over all the samples) is equal
to 1. Thus, zero value features are unaffected, which is ad-
vantageous for maintaining sparseness.

5. RESULTS
Before any features are extracted, the data set is parti-

tioned into training and test sets that are stratified (i.e. the

Table 1: The number of features of each feature set.
Feature Representation Number of Features

Manual Features 38
= 1B, = 1F , = 1T 43566

= 2B, = 2T 589597
= 3B, = 3T 866469
≤ 2B, ≤ 2T 633163
≤ 3B, ≤ 3T 1499632
C28B, C28T 4462649
CSB, CST 484006

class distribution is maintained through the split). The
training and test sets make up 60% and 40% of the data
set (for each feature approach), respectively. After the par-
titioning, each comment in the training set is transformed
through the pipeline in Figure 1 to form a final training set
for training the classifiers.

Table 1 shows the number of features per training set
for each feature representation (before dimensionality reduc-
tion).

5.1 Parameter Tuning
Techniques such as SVMs are often highly sensitive to

the choice of parameters [17]. A grid search was used to
tune the parameters for each feature set being used with the
RBF or linear kernel. Grid search has been shown to be
a very efficient and accurate technique for hyper-parameter
tuning [6].

The cost parameter C, as well as the bandwidth parameter
γ for the RBF kernel, was tuned. The search was done over
a logarithmic distribution of values (10−1 to 107 for C and
10−4 to 101 for γ). Each value was tuned by taking a random
subset of 10265 samples from the feature set (25% of the
training samples) and doing a 3-fold cross-validated search
over the parameters.5 The resulting parameters are shown
in Appendix B.6

5.2 Baseline Manual Features
The features used for the baseline manual feature set are

discussed below. The features can be categorised into post
and social features. The social features are “per-user” fea-
tures and are calculated using social network analysis [50,
49, 1] on a user graph, called a sociogram [1, 14]. A sum-
mary of these features is presented in Table 5.2, with detailed
descriptions in Appendix A. Even more comprehensive de-
scriptions can be found in [10].

5.3 Evaluation
Classification performance is evaluated with various scor-

ing metrics. For each technique, we present the accuracy,
precision, recall and F1-score. We focus particularly on the
F1-score [60], which is the harmonic mean of precision and
recall [19]. This is preferable to the accuracy score, since a
classifier could still achieve relatively high accuracy if it suc-
ceeds at classifying one class, but completely fails to classify
the other, due to the imbalance in class size.

5Since the experiments are very time-consuming, parame-
ter tuning with cross-validation on larger data sets was not
feasible.
6The standard deviation of the 3-fold evaluation for each
parameter pair for each feature set, was in the order of 10−3.



Table 2: A summary of the manual features.
Post Features Timeliness, lengthiness, part-of-

speech count, uppercase frequency,
question frequency, exclamation
frequency, capitalized sentence
frequency, comment complexity,
spelling, profanity, readability,
relevance, subjectivity, sentiment
and comment-article sentiment
overlap.

Social Features In-degree, out-degree, user age,
post count, post rate, PageRank
value, hub and authority values
(from Hyperlinked-Induced Topic
Search).

Table 3: Results for RBF SVM classification.
Feature Set Accuracy Precision Recall F1
Manual Fea-
tures

0.836 0.807 0.641 0.714

= 1B 0.856 0.812 0.719 0.762
= 1F 0.851 0.863 0.638 0.734
= 1T 0.844 0.780 0.717 0.747
= 2B 0.843 0.805 0.675 0.734
= 2T 0.834 0.770 0.690 0.728
= 3B 0.851 0.840 0.662 0.741
= 3T 0.828 0.750 0.699 0.723
≤ 2B 0.852 0.839 0.665 0.742
≤ 2T 0.838 0.779 0.690 0.732
≤ 3B 0.851 0.833 0.670 0.743
≤ 3T 0.806 0.689 0.719 0.703
C28B 0.852 0.870 0.634 0.733
C28T 0.813 0.695 0.742 0.717
CSB 0.860 0.888 0.645 0.747
CST 0.857 0.856 0.666 0.749

Results
Table 3 presents the performance scores of the different fea-
ture sets with the RBF kernel SVM classifier. Similarly,
Table 4 presents the performance scores for the linear kernel
SVM classifier.
Table 3 shows that nearly all the N-gram representations

outperform the manual feature set on all metrics. There
seems to be relatively small differences between the results
for the binary and the TFIDF-normalization vectorization
methods, although it seems that the TFIDF models per-
form slightly worse. It is surprising that the unigram mod-
els perform better than the higher-order N-gram represen-
tations, with the binary unigram model showing the highest
F1-score. This implies that we get no additional information
from higher order N-grams. However, this could be caused
by the sparseness of the higher order N-gram representa-
tions, leading to weaker results.
The näıve character N-gram model (with TFIDF-norma-

lization) showed the highest recall (by a relatively large mar-
gin), but comes at the cost of the lowest precision. The bi-
nary character skip-gram model had the highest accuracy
and precision overall, but then at the cost of a lower recall.
These results illustrate the precision-recall tradeoff, where

Table 4: Results for linear SVM classification.
Feature Set Accuracy Precision Recall F1

Manual Fea-
tures

0.830 0.786 0.647 0.710

= 1B 0.856 0.825 0.699 0.757
= 1F 0.853 0.821 0.692 0.751
= 1T 0.849 0.804 0.701 0.749
= 2B 0.850 0.829 0.673 0.743
= 2T 0.847 0.814 0.679 0.740
= 3B 0.852 0.838 0.669 0.744
= 3T 0.852 0.843 0.705 0.768
≤ 2B 0.845 0.866 0.610 0.716
≤ 2T 0.849 0.819 0.681 0.744
≤ 3B 0.851 0.842 0.660 0.740
≤ 3T 0.845 0.806 0.682 0.739
C28B 0.843 0.868 0.601 0.711
C28T 0.802 0.671 0.750 0.709
CSB 0.848 0.869 0.621 0.724
CST 0.846 0.785 0.714 0.748

higher precision can be obtained at the cost of lower recall
(and vice versa). This highlights why we use the F1 score,
which takes both precision and recall into account, as the
primary basis of comparison for our models.

Table 4 shows better results for higher order N-grams than
with lower order N-grams, with the TFIDF-normalized tri-
gram feature set showing the highest F1-score. The charac-
ter models again show promise, with the TFIDF-normalized
character N-gram model achieving the highest recall score
(by a relatively large margin), and the binary character skip-
gram model having the highest precision. However, these
results seem to be due to a similar precision-recall tradeoff
as mentioned earlier.

6. CONCLUSION AND FUTURE WORK
We investigated the performance of N-gram approaches

for automatically classifying short texts, using a compila-
tion of leading techniques in feature extraction. We showed
that all of the proposed N-gram representation approaches
outperformed the manual feature set approach. Surprisingly,
we did not obtain consistently improved performance from
higher order N-gram models. While a trigram model gave
the best results for the linear kernel by a narrow margin,
the unigram representations were best for the RBF kernel,
and second-best for the linear kernel. This may very well be
caused by the sparsity of higher-order N-grams in our short
text data set. Also, it might be explained by the observation
that editors may predominantly hide comments based purely
on the presence of certain words, in which case higher order
N-grams should provide no additional gain over unigrams.

Character N-grams show great promise, as we used a näıve
approach but already achieved notable results, with char-
acter skip-grams achieving the highest precision for SVM
classification with both the RBF and linear kernels. Fur-
ther investigation into more sophisticated character models
should yield interesting results. In addition, a more care-
ful investigation of what properties of these models lead to
differing precision-recall tradeoffs could be insightful.

The feature extraction models we currently use can be im-
proved. On this front, we would like to consider smoothing



techniques and contextual language models [42] to improve
on the N-gram representation techniques used in this pa-
per. Another approach is to use more sophisticated bigrams
and trigrams that identify certain lexical classes of terms
(e.g. adjective noun or adv verb bigrams) in the hopes that
these classes will reduce the noise in the bigram and trigram
feature sets. Also, investigating syntactic N-grams could
help to identify equivalent N-grams by considering different
neighbourhoods for the elements contained in the N-grams.
Both of these ideas are loosely inspired by the research of
Sidorov et al. [55].
Alternative feature extraction models, including deep learn-

ing techniques [28] and distributed representation models
(e.g. word embeddings [39]), could also be considered.
Future work will consider alternative approaches for short

text classification. These approaches will include both al-
ternative SVM kernels (e.g. string kernels [36]), as well as
alternative classification techniques. It would also be inter-
esting to know which samples our classifiers failed to classify,
so as to learn how to improve the techniques further.

7. SOURCE CODE
The source code for this paper is kept in a Github reposi-

tory [9]. Unfortunately the data sets used in this study can
not be made public; however the repository provides guide-
lines for setting up a data set.
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APPENDIX
A. MANUAL FEATURES
This appendix details the features used in the manual fea-

ture set.

• Post Features

– Timeliness. This feature reflects the response time
of a user’s comment in relation to when the relevant
article was posted [63].

– Lengthiness. This feature is a simple measure of
the length of a comment relative to the average
length of comments of that article [63].

– Part-of-speech Count. The number of verbs, nouns
and pronouns in the comment are all used as fea-
tures.

– Uppercase Frequency. This feature is the frequency
of words in the comment that are uppercase [30],
as a percentage of the total words.

– Question Frequency. This feature is the counts of
the number of sentences in the comment that end
in a question mark [64]. The value is given as a
percentage of the total number of sentences.

– Exclamation Frequency. This feature is the counts
of the number of sentences in the comment that end
in an exclamation mark [64]. The value is given as
a percentage of the total number of sentences.

– Capitalized Sentence Frequency. This feature de-
termines the percentage of sentences in the com-
ment starting with a capital letter.

– Complexity. The complexity of a comment is mea-
sured by the entropy of the words in the com-
ment [30]. Intuitively, it represents the diversity
in word choice in the comment. A low entropy
score would indicate that a comment has few or
repetitive words.

– Spelling. This feature measures the frequency of
misspelled words in the comment. The feature is
calculated by looking up each word in a dictionary
and recording the percentage of words that cannot
be found in the dictionary.

– Profanity. This feature measures the frequency
of profane words in the comment. Similar to the
spelling feature, the feature value is calculated by
looking up each word in a dictionary of profane lan-
guage and recording the percentage of words that
can be found in the list of banned words. The list
is built from a list published by Alejandro U. Al-
varez [3].

– Readability. The readability of a comment is de-
fined as with what ease the reader is able to read
the comment (determined by the Flesch Reading
Ease Test (FRES) [21]).

– Relevance. The relevance of a comment can be
measured relative to its enclosing article. To cal-
culate the relevance of a comment to the article,
the overlap between the words in the comment and
the words in the article is quantified. For this, a
bag-of-words vector of the 100 most frequent words
is generated from the body of the article.

– Subjectivity. The subjectivity of the comment is
also captured as a feature. The polarity of the
comment is determined by a classifier (as a proba-
bility distribution), and if the difference between a
comment’s positive and negative values is over 20%
(i.e. the positive value is below 40% or above 60%),
the comment is classified as objective, otherwise it
is classified as subjective.

– Sentiment. To determine the sentiment of a com-
ment, a trained classifier (Näıve Bayes) was used to
predict the sentiment of a comment. The classifier
produces a probability distribution of positivity of
the comment. This score is then used as a feature.

– Comment-Article Sentiment Overlap. To capture
the commenter’s alignment to the article, the po-
larity of the article’s content is compared to that
of the comment. If it matches, a one is used as a
feature, otherwise a zero.

• Social Features

– In-degree. The number of comments that have been
left as a child comment to this user’s parent com-
ment.

– Out-degree. The number of parent comments that
this user has commented on.

– User age. The difference between the user’s first
post (“join date”) and the user’s last post (in days).

– Post count. The number of comments the user has
posted.

– Post rate. The post count divided by the user age.

– PageRank. The PageRank [44] value of the user as
calculated on a sociagram (with users as nodes and
comments as directed edges).

– HITS. The authority and hub value of the com-
ment, as calculated by the Hyperlink-Induced Topic
Search algorithm [34].

B. TUNED PARAMETERS
Table 5 shows the parameters that were tuned with a grid

search for the various feature sets.



Table 5: Parameters obtained through parameter
tuning.

Feature Set SVM (RBF) SVM (Linear)
C γ C

Manual Features 100000 10.0 10000

= 1B 10 0.072 1
= 1F 10 0.072 1
= 1T 10 0.072 1
= 2B 100 0.001 1
= 2T 10 0.072 1
= 3B 1 0.072 10
= 3T 100000 0.0001 10
≤ 2B 100 0.002 0.1
≤ 2T 100 0.013 10
≤ 3B 10000 0.01 1
≤ 3T 10 0.1 10
C28B 1000 10 0.001
C28T 1000 10 0.01
CSB 10 0.0001 0.001
CST 100 1.0 1.0


