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Abstract

The need to reduce the world’s carbon foot print has led to a significant rise
in wind energy generation. The doubly-fed induction generator (DFIG) is one
of the most popular wind turbine generators partly due to its low rated back-
to-back converter. A constant DC-link voltage in the doubly-fed induction
generator system’s back to back converter allows for bidirectional power flow
of the rotor power. Hence, effective control of the DC-link voltage is necessary.
The presence of the switching elements in the back-to-back converter creates
harmonics in the systems. LCL and L filters are mostly used to mitigate the
harmonics.

DFIGs are mainly connected to the grid, however, they can be used in
stand-alone mode in isolated rural areas, where there are low loads with no
grid connection. DFIGs in the stand-alone mode have to be controlled such
that they provide voltage and frequency stability at varying load conditions
and changing wind speeds.

In this thesis, the power control of the grid-connected DFIG systems in
wind turbine applications is presented. Power factor regulation is conducted
since it helps in the reduction of the costs linked to the capacitor bank. Max-
imum power point tracking is also investigated. DC-link voltage control is
analysed whereby the grid-side converter is controlled as a voltage-source con-
verter.

A comparative analysis of the LCL filter and L filter for switching frequen-
cies below 5 kHz is done and described in this thesis. This is important for
systems with low sampling frequencies. Furthermore, in this thesis, the control
of a stand-alone DFIG together with simulation result, is presented. Experi-
mental results are also given to demonstrate the effectiveness of the developed
rotor-side control algorithm on a DFIG test bed.
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Opsomming

Die behoefte om die wéreld se koolstof spoor te verminder het gelei tot 'n
groot toename in die windopwekking van energie. Die dubbel-gevoerde induk-
sie generator is een van die mees gewilde wind-turbine opwekkers, gedeeltelik
weens die lae kapasiteit rug-aan-rug omsetter. Die konstante GS-bus spanning
in die induksie generator sisteem se rug-aan-rug omsetter maak twee-rigting
vloei van die rotordrywing moontlik. Daarom is doeltreffende beheer van die
GS-bus spanning nodig. Die teenwoordigheid van die skakelelemente in die
rug-aan-rug omsetter skep harmoniek in die sisteme. LCL en L filters word
meestal gebruik om die harmoniek te verminder.

Dubbel-gevoerde induksie generators word meestal aan die network gekon-
nekteer, maar kan ook in alleen-staan modus gebruik word vir verafgeleé¢ lan-
delike gebiede met lae las en sonder network konneksies. Hierdie alleenstaande
generators moet so beheer word dat hulle stabiele spanning en frekwersie onder
verskillende lastoestande en windspoede kan verskaf.

In hierdie tesis word die beheer van die drywing in die network-verbinde
Dubbel-gevoerde induksie generator sisteme in die windturbine toepassings
bespreek. Regulering van die arbeidsfaktor word toegepas aangesien dit by-
dra tot die verlaging van kostes wat gekoppel is aan die kapasitorbank. Die
maksimum drywingspunt opsporing word ook ondersoek. Die GS-bus span-
ningsbeheer word geanaliseer waar tyders die netwerk-kant se omsetter as 'n
spanningsbron beheer word.

'n Vergelykende ontleding van die LCL en die L filters vir skakel frekwen-
sies onder 5 kHz is gedoen en in hierdie tesis beskryf. Dit is belangrik, veral in
sisteme met lae monster frekwensies. Die beheer van 'n alleenstaande Dubbel-
gevoerde induksie generator en die simulasie resultate word beskryf. Die resul-
tate van die eksperimente word gegee om die doeltreffendheid van die ontwerpte
rotor kant beheer algoritme op n Dubbel-gevoerde induksie generator toetsbed
demonstreer.
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Chapter 1

Introduction

In recent years, there has been an incredible rise in wind energy generation
due to factors such as; the state policies on reducing the carbon footprint, the
competitive cost of the wind-generated electricity and the environmental at-
tributes [1]. A significant growth of the wind generation worldwide is depicted
in Figure [I.1] It can be seen that there is a forecast of an increase in wind
energy generation between year 2017 and 2020 of about 200 GW.

According to [4], South Africa is an ideal country for wind energy gen-
eration due to its plentiful wind resources, ample suitable sites and modern
high voltage infrastructure. By the end of 2013, the installed wind energy
capacity in South Africa was at 10 MW [4]. The South African Wind Energy
Association estimates that by 2025, the wind energy might supply as much as
20 percent of the country’s demand [4]. Furthermore, the country’s long-term
plan is to reach 8.4 GW in wind energy generation by 2030 [3,4].

| | | |
800 00 Current 0 Forecast |

700 -

600

500* H
a0 L

2015 2016 2017 2018 2019 2020
Years

Cumulative Capacity |[GW]

Figure 1.1: Estimated global cumulative installed capacity of wind energy [2]
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CHAPTER 1. INTRODUCTION 2

B Wind energy
O Solar PV

O Solar CSP
O Others

6.15%

Figure 1.2: Projection of the installed renewable energy in South Africa by

2030

By 2030, the projection of the installed renewable energy in South Africa is
depicted in Figure It can be clearly seen that out of a total of 18.4 GW of
renewable energy generation both the wind energy generation and solar pho-
tovoltaic (PV) accounts for 46.15 %. The concentrating solar power (CSP)
represents 5.4 % while the electrical energy coming from other renewable en-
ergy sources (biomass, bio-gas, landfill gas, small hydro) represents 2.17 %.

Polinder et al. discussed the trends in wind turbine generator systems
whereby the doubly-fed induction generator is the most popular wind turbine
generators . It is also argued that the doubly-fed induction machine remains
one of the most sought after generator for the coming years [5] since it has the
advantage of having the back-to-back converter rated at 30 % of the rated
power of the generator [6].

Because of this popularity, especially in wind turbine applications, there
has been extensive research on control systems of the doubly-fed induction
generator. In the literature, research on pitch control and yawning control
system of the wind turbines and the control systems of stand-alone and grid-
connected wind energy conversion systems based on the doubly-fed induction
generator (DFIG) can be found. In this thesis, only the control systems of wind
energy conversion systems based on the DFIG (stand-alone mode and grid-
connected mode) are considered. This thesis addresses the issues of the power
regulation together with the power factor regulation and that of maximum
power point tracking linked to the wind energy generation. Also, the stability
of the voltage and frequency in stand-alone mode is discussed.
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1.1 Literature Review

1.1.1 Grid-Connected DFIG System

The main components of the DFIG system is depicted in Figure It can
be seen that the grid-connected DFIG system is composed of the back-to-
back converter. The rotor-side converter (RSC) is directly connected to the
rotor of the DFIG. The grid-side converter (GSC) is connected to the grid
through a filter in order to mitigate the harmonics generated by the back-to-
back converter. The stator side of the DFIG and the output of the filter are
connected to the grid through a transformer, as depicted in Figure The
transformer allows the doubly-fed induction generator system to match the
grid voltage level. The switching elements of the grid-side converter and the
rotor-side converter are controlled by the grid-side converter control and the
rotor-side converter control, as depicted in Figure (1.4}

1.1.1.1 Rotor-Side Converter Control

There has been several vector control techniques discussed and presented for
grid-connected DFIG systems in wind turbine applications. Generally, the
vector control of the grid-connected doubly-fed induction generator system
in wind energy conversion system consists of controlling the rotor currents
using the alignment of the rotating dqO-reference frame along the stator flux
space vector (field-oriented control) [7H10] or the stator voltage space vector
(voltage-orientated control) [11L|12].

The field-oriented control technique is the most popular vector control tech-
nique used in WECS based on the DFIG [7]. Vector control based on stator
flux-oriented control of WECS based on the DFIG was developed in [8]. Al-
though, field-oriented vector control is popularly used, a discussion on the
feasibility of the stator voltage-oriented control (VOC) is proposed in [11], but

Transformer

\ (
/ \

Grid
Back-to-back converter

AC DC -
T
DC ACL |

Filter

Figure 1.3: Grid-connected DFIG system schematic
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Figure 1.4: Control scheme of the DFIG system

only speed control was considered [11]. Through various operating conditions,
a good performance of the proposed control strategy is also shown.

The stability study of the DFIG control using the VOC was conducted
in 12|, where the authors concluded that for the inner current control, the
size of the magnetising inductance is critical for the area where the DFIG is
stable and that of the stator resistance is critical for the tuning of the inner PI
controller where better damping of the poles of the systems can be achieved.
In [13], the authors discussed an encoder-less control of the active and reactive
powers of the grid-connected DFIG using a rotor position phase locked loop.
Also, the MPPT is achieved with the proposed control strategy [13]. A sensor-
less control of a single voltage-source converter (VSC) of a grid-connected
DFIG using the stator flux-based model reference adaptive system algorithm
is discussed in [14], where it is found that when comparing the traditional
configuration of the DFIG and that of a single VSC, the generated active and
reactive powers are almost similar.

A survey of the control techniques in grid-connected DFIG systems was
conducted in order to satisfy the grid code in [15], where it is highlighted that
the advanced control using the field-oriented control (FOC), the direct torque
control (DTC) and the direct power control (DPC) are still necessary to im-
prove the performance of the DFIG system during steady state and transient
operating conditions [15]. However, the new grid code requires the wind tur-
bines to remain connected during grid faults. Hence, the fault-ride-through
control strategies are also important |[15]. The fault-ride-through grid code of
the grid-connected DFIG system is discussed in [16].

For a typical variable-speed wind turbine, the optimum power captured by
the wind turbine is directly proportional to the cubic of the rotational speed
of the turbine [8,9,17]. The MPPT control algorithm for power regulation is
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discussed in [17], where the aim is to regulate the power factor of the overall
wind turbine.

1.1.1.2 Grid-Side Converter Control

The aims of the grid-side converter (GSC) control in DFIG systems are to
maintain the DC-link voltage approximately to a constant value in order to
allow a bidirectional power flow of the rotor power. Another aim of the GSC
is the power factor regulation. Here, the vector control technique is mostly
adopted to this end. The grid-side converter control is similar to that of the
voltage-source converters (VSC) [8]. The GSCs operate mostly under unity
power factor and the GSC in WECS based on the DFIG are mostly pulse
width modulation (PWM) converter current regulated [7,|18]. An analysis of
the decoupled d-q control of the DFIG control algorithm was conducted in [19],
where the authors found that the active and reactive powers control of the GSC
depends on the nature of the line to which the DFIG system is connected.

1.1.2 Stand-Alone DFIG System

The stand-alone DFIG system schematic is depicted in Figure As shown
in the figure, an auxiliary DC source which provides the initial excitation
current is connected to the DC bus. Further, the stand-alone DFIG system is
connected directly to the loads ( linear loads, non-linear loads). The control
of the load-side converter (LSC) in stand-alone DFIG systems is similar to
that of the grid-side converter in grid-connected DFIg systems except that
in stand-alone mode the LSC control can be extended to include harmonic

mitigation.

Transformer

\ (
/ \

PCC
Back-to-back converter

AC/IYLPC/ 7] 2
DO T, | /Ac|
Filter
Ky
Auxiliary [—
DC source

Figure 1.5: Stand-alone DFIG system schematic



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 6

1.1.2.1 Rotor-Side Converter Control

In stand-alone operating conditions the voltage and frequency stability are
amongst the main issues since the system is not connected to a grid anymore.
Pena et al investigated the stand-alone operation of DFIG system in wind
turbine operation [20]. They proposed the control of the voltage magnitude
by regulating the magnetising current using the rotor current [20]. Given the
fact that there is no synchronisation needed the same authors suggested that
the system frequency can be fixed by assigning a constant value using the
control algorithm.

On the other hand, the direct voltage control (DVC) is suggested in [21],
where the voltage magnitude is directly regulated. The advantage of this con-
trol method is that it does not depend on the system parameters as they change
during the functioning of the machine |21]. Besides, the control strategy on
for the frequency stability is similar to that discussed in [20]. They found that
the direct voltage control shows better accuracy than the method discussed
in [20].

In |22], the authors discussed about the control of the stand-alone opera-
tions of the DFIG system in an isolated island. Aktarujjaman et al. analysed
the DFIG system in stand-alone mode with a battery energy storage system
(BESS). The BESS permitted an optimal frequency stability with the use of
f—P and Q-V droop characteristics together with a dump load [22]. The draw-
back of this control method is the cost of the BESS and the so called advantage
of the DFIG systems with 30 % of the rated power of the generator since the
back-to-back converter should handle the extra-power of the BESS. Similar
approach is discussed in [23|, where Ooi and Zhang analysed the synchronisa-
tion when there is lost of the main grid and how the stand-alone DFIG system
has to maintain the voltage and frequency [23]. They included a secondary
control algorithm in case the main grid is lost [23]. A good performance of the
control algorithm is shown.

Other issues in stand-alone mode are the power quality since the load in
stand-alone are mostly unbalanced and non-linear. In order to address these
issues together with the voltage and frequency stability, Koczara and Iwanski
proposed a control system which includes the positive sequence and negative
sequence [24]. The positive sequence consists of the main control (voltage
frequency and magnitude regulation). The secondary control system focuses
on voltage asymmetry correction. Similar to the DVC used in |21], Jain and
Ranganathan proposed not only a control algorithm to maintain the voltage
and frequency stability but also they included an active filtering using the
shunt active filtering [25]. An experimental implementation of the stand-alone
DFIG system is described in 26|, where the authors compare the stand-alone
DFIG system with and without a BESS. It was found that the stand-alone
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DFIG system with a BESS is able to extract maximum power compared to
the conventional ones.

1.1.3 Harmonic Filtering

The back-to-back converter are one of the components of the doubly-fed induc-
tion generator systems. The back-to-back converter is composed of switching
elements that are the main source of harmonics in the power system. In order
to connect the VSCs to the grid, it is mandatory to comply with the IEEE
standard 519-2014 in terms of the harmonics. Passive filters are the most pop-
ular option, when it comes to mitigate the harmonics in the power system.
The most common filter is the L filter which consists of only an inductance.
Although the LC filter can be used in order to mitigate high frequency har-
monics, the LCL filter is the most sustainable filter. The LCL filter is the
most suitable due to its low cost because of the reduced size of the inductance
compared to the L filter.

There are two different trends in terms of the design of the LCL filter.
Some authors use the LCL conventional filter based on the LCL filter having its
resonant frequency between ten times the line frequency and half the switching
frequency [27-30]. On the other hand, some authors suggested the LCL filter
design using optimisation methods [2831] where Piasecki et al. used the
multi-objective optimisation while Zeng et al. considered the optimisation of
the quality index which includes all the performance factors of the LCL filter.
Compared to the the conventional LCL filter deign method, the latest method
takes into consideration the physical filter size (core, conductor size...).

In addition, there have been research on the topology of the LCL filters
in order to reduce the inductance sizes. in 32|, an LCL-LC filter topology is
suggested together with parameters design methods. Compared to the conven-
tional LCL filter topology, the proposed topology provides better performance
with smaller inductance size. Wang and Wu suggested a L-LCL filter topology
together with is design method [33|. The proposed L-LCL filter shows good
performance.

Recently, a review on LCL filter is discussed in [34] where it is highlighted
that most research on LCL filter has been done for switching frequencies higher
than 5 kHz. The performance of the LCL filter for the switching frequencies
less than 5 kHz has not been investigated yet. Hence, an investigation on the
LCL filter performance for lower switching frequencies and the design of the
LCL filter is investigated in this thesis. In addition a comprehensive design
procedure is given, together with the control of the grid connected voltage-
source converter based on the design LCL filter.
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1.2 Aims and Objectives

The aims of this research project are the modelling of the wind energy con-
version system (WECS) based on DFIG system (in grid-connected and stand-
alone mode); the design of the control strategies of the WECS based on the
DFIG (in grid-connected and stand-alone mode); and, the experimental imple-
mentation of the proposed control algorithm of the WECS based on the DFIG.
In order to achieve these aims the objectives of this thesis are as follows;

e Model of the wind energy conversion system based on the DFIG system;
e Design of the LCL filter;

e Comparative study of the L and LCL filter for switching frequencies less
than 5 kHz;

e Control of the grid/load-side converter ;

e Control of the rotor-side converter of the WECS based on the DFIG (in
stand-alone mode and grid-connected mode);

e Test the developed control algorithm of the rotor-side converter in grid-
connected WECS based on the DFIG in the laboratory.

1.3 Scope of the Research Project

Due to the time constraint, only the inner current controller of the RSC in
grid-connected WECS based on the DFIG was implemented in the laboratory.

1.4 Contributions

The contributions of this thesis are:

e A comparative study based of effectiveness factors between the LCL filter
and the L filter designed for switching frequencies lower than 5 kHz is
discussed in Chapter 3.

e A control algorithm of the rotor-side converter based on voltage-oriented
control without the sensors of the three-phase stator current is proposed
in Chapter 4. The proposed control algorithm regulates the stator active
and reactive powers using the three-phase rotor current in grid-connected
mode. The regulation of the stator power factor is also provided by the
proposed control algorithm.
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1.5

List of Publications

MWK. Mbukani, N. Gule, “Analysis and control of a grid-connected three-
phase PWM voltage-source converters based on LCL filter,” Southern African
Universities Power Engineering Conference (SAUPEC) (accepted for publica-

tion).

MWK. Mbukani, N. Gule, “Investigation of the stator voltage-oriented vector
control of the rotor side converter in DFIG systems,” Southern African Univer-
sities Power Engineering Conference (SAUPEC) (accepted for publication).

1.6

Thesis Outline

The remainder of the thesis is organised as follows;

Chapter 2: In this chapter, a thorough model of the wind energy con-
version system based on the DFIG is described. Further, the DFIG
dynamic model is simulated in MATLAB/SIMULINK.

Chapter 3: The control algorithm of the grid-side converter is discussed.
In addition, a comprehensive LCL filter design procedure and a design
example are also presented. The design procedure of the PI controllers
is also discussed. Moreover, Simulation of the grid-side converter during
dynamic operating conditions are also displayed. Furthermore, a com-
parative study of L filter and LCL filter for switching frequency less than
5 kHz is also presented.

Chapter 4: The control strategies of the rotor-side converter in both
stand-alone and grid-connected WECS based on the DFIG are pre-
sented in this chapter. Further, a design method for the PI controller
is also described. Finally, the performances of the RSC for both stand-
alone and grid-connected DFIG systems through simulations in MAT-
LAB/SIMULINK are provided.

Chapter 5: In this chapter, the description of the test bench is pro-
vided. The hardware and software details are also described. Further,
the testing of the performance of the inner current controller of the grid-
connected WECS based on the DFIG discussed in Chapter 4 is provided.

Chapter 6: The conclusion is drawn with regards to the findings. More-
over, the possibilities of future research are also discussed.
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Chapter 2

DFI1G-Based WECS Modelling

An overview of the modelling of a doubly-fed induction generator (DFIG)
system is presented in this chapter. Also, the dynamic models of the relevant
systems helping in the control algorithm of the DFIG system are given. The
modelling of the DFIG systems described in this chapter is based on [35L:36].

2.1 Wind Turbine Systems

Several wind energy conversion system (WECS) topologies exist depending
on the generator technology and the intended applications. The WECSs can
also be distinguished by the fact that some operate at fixed speed and some
at variable speed. The fixed-speed WECS are directly connected to the grid
and they achieve optimum aerodynamic efficiency at a single wind speed while
the variable-speed WECS are connected to the grid through a back-to-back
converter and can achieve optimum aerodynamic efficiency with several wind
speeds. Also, one can distinguish between direct-drive WECSs and geared
WECSs by the presence or not of a gearbox.

2.1.1 Fixed-Speed Wind Turbine

The fixed-speed wind turbine based on the induction generator (IG) is de-
picted in Figure 2.1, where the wind turbine generator is connected to the grid
through a soft starter and a transformer. Also, a capacitor bank connected in
parallel to regulate the power factor of the fixed-speed wind turbine generator,
as displayed Figure 2.1 The rotor speed depends directly on the gearbox and
the pole-pairs of the IG. Hence, this results on a reduced magnetising losses at
low wind speed. However, the downside of the fixed-speed wind turbine is that
it has to operate with a constant speed even when the wind speed varies. The
fixed-speed wind turbine based on the IG led the wind market until 2003 [37].
The absence of the gearbox reduces considerably the weight and the losses
associated with the gearbox [38§].

10
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Figure 2.1: Fixed-speed wind turbine with an induction generator

2.1.2 Variable-Speed Wind Turbine

The variable-speed wind turbine with a gearbox is shown in Figure The
wind turbine is connected to the grid through the transformer and the back-
to-back converter. The presence of the back-to-back converter allows the wind
turbine to operates at fixed frequency regardless of the wind speed. They are
mostly equipped with DFIGs and PMGs [37]. The advantage of the system
depicted in Figure is its well developed robust control.

l =2
bOX pcl T AC

Back-to-back converter Transformer
Figure 2.2: Variable-speed wind turbine
Since the gearbox makes the wind turbine heavier, it has a lower reliability.
The system shown in Figure [2.3|is more reliable for wind generators that have

more pole-pairs such as the synchronous generator and the permanent magnet
synchronous generator whereby the rotor speed will depend on the pole-pairs.

%AC T |pC
pcl T | /AC

Back-to-back converter Transformer

Figure 2.3: Variable-speed wind turbine (gearbox-less)
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2.1.3 Variable-Speed Wind Turbine based on the DFIG

The variable-speed wind turbine equipped with the DFIG is shown in Fig-
ure [2.4 This system consists of the doubly-fed induction generator (DFIG),
the back-to-back converter (grid-side converter and rotor-side converter), the
DC-link bus, and the transformer. In this configuration, the back-to-back con-
verter is rated at 30 % of the rated power of the generator. However, the
downside of this system is that since the stator of the DFIG is directly con-
nected to the grid, there is a need for synchronisation compared to the system
discussed in Section [2.1.2] Also, since the rotor of the DFIG consumes power
at sub-synchronous operating conditions, this system has a lower efficiency
when operating at that particular operating condition.

Transformer

AC

Back-to-back converter

Figure 2.4: Common configuration of DFIG system

2.2  Wind Turbine Generators

In WECS, the DFIG, the permanent mangent generator (PMG) and the syn-
chronous generator (SG) are the most popular wind turbine generators [39]. A
comparison of three generators in WECS (the 3-stage (3S) geared DFIG, the
direct-drive (DD) SG and the DD PMG with regards to weight, cost and losses
is displayed in Table 2.1} It can be seen that the weight of the WECS-based
direct-drive PMG is roughly four times higher than that of the WECS-based

Table 2.1: Comparison between three generators published in [40]

3S geared DFIG | Direct drive SG | Direct drive PMG
Weight 100% ~850 % ~450 %
Stator radius 100% ~600 % ~600 %
Estimation of the total cost 100% 120% ~105%
Power losses 100% 95% ~65%
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of the 3-stage geared DFIG. For the same power, the stator diameter of the
WECS-based on direct-drive PMG is about six times higher than that of a
DFIG, as shown in Table The typical composition of wind turbine is dis-
played in Figure 2.5 where each component of the WECS is clearly highlighted.

Low Speed High Speed
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Pitch Control \ |
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Hub e
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/ |
/-{ Yaw Bearings
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Power Convert- /
Foundation —‘ |
l

\ [

[
| T

Figure 2.5: Schematic diagram of wind turbine component
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2.3 Aerodynamic Conversion

The mechanical power captured by the wind turbine is given by
1 213
P, = §Cp,07rr Vs (2.1)

where C), is the power coefficient; r is the radius of the turbine propeller; Vi,ing
is the wind speed; and, p is the air density. The power coefficient expresses
the ratio between the power captured by the wind turbine and the total wind
power available. This power coefficient (C,) is a function of the tip-speed
ratio and the pitch angle. It is worth noticing that there is a maximum power
coefficient which optimises the capture of mechanical power for a given wind
turbine. The tip-speed ratio is given by

Q,.r
)
mvwind

A= (2.2)

where €1, is the mechanical shaft speed of the generator; m is the gear-box
ration. The power coefficient can be approximated as [41];

151
C, = 0‘73<T —0.586 — 000251 — 13.2) e~185M (2.3)
k

with
1 1

o = I___ 0003’
k 2—0.028 ~ B3+l

(2.4)

where ) is the tip speed ratio and [ is the pitch angle. The power coefficient
is a specific characteristic of a given wind turbine. An example of a typical
relationship between the power coefficient and the tip-speed ratio is depicted
in Figure [2.6

0 5 10 15
Tip-speed ratio

Figure 2.6: Tip-speed ratio(\) versus power coefficient(C),)
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2.4 Working Principle of The Doubly-Fed
Induction Machine

The doubly-fed induction machine (DFIM) is an induction machine that can be
fed from the stator terminals as well as from the rotor terminals at the same
time. For the following discussions, it is assumed that the stator and rotor
windings are sinusoidally distributed and the air gap is uniform. When the
stator windings are directly connected to a stiff grid in case of grid-connected
DFIM, the stator voltage pulsates at the grid/stator frequency. The working
principle of a doubly-fed induction machine with different frequency levels
(with fs for the stator/grid side and f, for the rotor side) is displayed in
Figure The frequency of the stator voltage is given by

Ws = 27Tfs; (25)

where f, is the fixed grid/stator frequency. When the rotor of the DFIM
rotates, there is an induced electromotive force (EMF) in the rotor windings
that rotates at slip frequency. Since the induced EMF in the rotor windings
depends on the relative speed between the stator frequency and the electrical
rotor shaft speed, both the current and voltage in the rotor windings will
depend on the slip angular speed. The slip angular frequency is given by

Wslip = Ws — W, (26)

where wy;, is the slip angular frequency and w, is the electrical angular shaft
speed. The common term used to describe the relationship between the stator
angular speed and the electrical angular shaft speeds is given by

§=—"T (2.7)

where s is the slip. The relationship between the mechanical and the electrical
angular shaft speed is given by

(2.8)

Figure 2.7: Single-phase doubly-fed induction machine representation
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where P represents the number of poles in the stator of the DFIG and (2,
denotes the mechanical shaft speed.

There are three operating conditions of the DFIM depending on the rotor
shaft speed. They are the sub-synchronous mode , the super-synchronous
mode and the synchronous mode. The relationship between the angular slip
frequency and the stator angular frequency is given by

Wslip = SWs. (2.9)

Furthermore, the relationship between the stator frequency and slip frequency
can be expressed as

fslip = $f87 (210)

where fg;, is the slip frequency.

2.5 Power Flow in DFIG Systems

As mentioned in Section three operating modes with each having a spe-
cific power flow can be distinguished. These are the synchronous operating
mode, the super-synchronous operating mode and the sub-synchronous oper-
ating mode. The signs of different power according to the operating mode in
DFIG system are displayed in Table P, is the electrical stator power, s is
the slip and P, is the rotor electrical power, and P, is the mechanical power.
Without going any deeper, the rotor electrical power can be expressed as a
function of the stator power. The rotor power can be expressed as

P. = —sP,. (2.11)
And, the total power generated by the lossless DFIG system is given by
P,=P,+ P =(1-5s)F;, (2.12)

where P, is the total power generated by the DFIG system. From Equa-
tion (2.11]), it can be seen that, the sign of the rotor active power (generated
or consumed) depends on the sign of the slip. It is negative when the system
operates in super-synchronous operating mode and positive when the system
operates in sub-synchronous mode.

Table 2.2: Generated Power signs

slip range Operating modes Power sign

0 <s<1]| sub-synchronous mode P,>0,P.<0and P,, >0
s=0 synchronous mode P,>0,PFP. =0and P, >0
s>0 super-synchronous mode | P, >0 ,P, >0and P, >0
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A. Synchronous Operating Mode

In synchronous mode, the slip is zero, the electrical angular shaft speed is
equal to the stator angular speed. As a consequence, there is no induced
EMF in the rotor windings since this EMF in the rotor windings depends on
the relative speed between the stator angular speed and the electrical shaft
speed. Thus the DFIG acts as a synchronous generator. This operating
mode does not allow for the production of power from the rotor side of the
DFIG. For a lossless DFIG system, the power flow in this operating mode
is illustrated in Figure . From Equation (2.11)), it can be seen that the
total power generated by the lossless DFIG system is composed only of the
stator power.

1| stator s P

'
| rotor 1 | Converters
L—]

Figure 2.8: Power flow scheme in synchronous operating mode

B. Sub-synchronous Operating Mode

In sub-synchronous operating mode, the electrical angular shaft speed is
less than that of the stator lux. Hence the slip is positive. In this operating
mode, the rotor consumes the power coming from the grid. The power flow
scheme of the sub-synchronous operating mode is depicted in Figure [2.9
When the DFIG operates in sub-synchronous mode the slip is positive

' stator ; P

'
!| rotor 1 | Converters

Figure 2.9: Power flow scheme in sub-synchronous operating mode
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and therefore the rotor consumes the power passing through the DC-link
capacitor from the grid. The DC-link capacitor is used as the storage
element in the DFIG system.

C. Super-synchronous Operating Mode

In super-synchronous operating mode the slip is negative. Both the stator
and rotor side of the DFIG supply active power to the grid. The total power
is composed of the stator power and the rotor power. In super-synchronous
operating mode, the rotor side of the DFIG provides the active power to the
grid through the DC-link bus. As a consequence, the DC-link voltage tends
to increase, this is the reason why the control of the grid-side converter is
meant to maintain the DC-link voltage constant.

' stator ; P,

'
1| rotor i Converters
' L

Figure 2.10: Power flow scheme in super-synchronous operating mode

2.6 Modelling of the Doubly-Fed Induction
Generators

In this section, it is assumed the DFIG is symmetrical and that its windings
are ideal. The relationships between different entities are given in the ABC ref-
erence frame as well as in the synchronous dq0-reference frame. Furthermore,
an example of how the machine behaves during free acceleration is given.

2.6.1 DFIG modelling in ABC reference frame

The induction machine scheme is illustrated in Figure 2.11} In Figure 2.11]
Vgabe and Vpqpe are the instantaneous three-phase stator and rotor voltages,
respectively; and, 2sgpe and %,qpc are the three-phase stator and rotor currents,
respectively. Using Faraday and Kirchoff’s laws in the stator and rotor wind-
ings of the DFIG, the voltage equations of the induction machine are given

by
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. dsap
Vsabe = Rs"'sabc + ;ta = (213)
and o
. b
Vrabe = errabc + 6;: c7 (214)

where Ysape and P,.qpe €xpress the three-phase rotor and stator flux linkages,
respectively; In the above equations where

(fsabc)T: [fsa fsb fsc} (215)
(.fsabc)T - [fra frb frc} ) (216)

where f denotes the current, the voltage and the flux linkage. The superscript
T expresses the transpose term. The subscripts s and r denote the parameters
from the stator and rotor. R, and R, are the diagonal matrix with stator

bs axis

br axis

cs axis
cr axis

(a) Induction machine scheme

<

ire

(b) Wye-connected symmetrical induction machine windings scheme

Figure 2.11: Induction machine scheme:
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resistance and rotor resistance as elements, respectively. The rotor resistance
and stator resistances are given by

R, 0 0
R,=|0 R, O (2.17)
0 0 R,
and
R, 0 0
R.=|0 R. 0], (2.18)
0 0 R,

where R, and R, are the per-phase stator and rotor resistances. When referring
all the rotor parameters to stator, the expression of the rotor voltage is given
by

’

’ . d
Vrabe = errabc + %7 (219)
where
’ NS J Nr . ’ NS

Vyeabe = Ev'rabc: Lrabe — Ezraba 1/)mbc - ﬁr"ab'rabm (220)

and N2

R. - (—) R,. 2.91

= (¥ 221)

where the superscript > denotes the rotor parameters referred to the stator.
The three-phase flux linkages can be expressed as a function of the three-
phase currents and the inductances by

¢sabc:| |: Ls L’ :| |:’i'sabc:|
’ = ’ S/T o/ . 222
|:1/)rabc (L'rs)t L'r Lrabe ( )
In Equation (2.22)), the winding inductances of the DFIG are given by
le + Lsm _%Lsm _%Lsm
Lo=| YLww LutLen —iLuw |, (2.23)
1 1
_§Lsm _§Lsm le + Lsm
, N, cos b, cos(0, + 2) cos(0, — 3F)
L, = FLST = Ly |cos(0, — 27) cos 0, cos(f, +3) |, (2.24)
r cos(f, + &) cos(f, — 3F) cos 0,
and
, Ns 2 L,-l i’ Lsm /_%Lsm _%Lsm
L,,, = (m) Lr = _§Lsm Lrl + Lsm _iLsm . (225)

1 1 4
_§Lsm _§Lsm Lrl + Lsm
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In Equation (2.23)—((2.25))), Ly and L, are the leakage and magnetis-
ing inductances of the stator windings, respectively. L;r is the amplitude of
the mutual inductance of the stator and rotor windings. L., is the leakage
inductance of the rotor windings referred to the stator windings. From Equa-
tion , it can be noted that the mutual inductance of the stator windings
and the rotor windings depend on the rotor angle. The electrical rotor angle
is given by

t
6, — / wrdt + 0,(0), (2.26)
0

where 60,(0) is the initial value of the electrical rotor angle. The electrical
rotor angle is time dependant. Hence, it is necessary to transform the ma-
chine variables and parameters into a reference frame that makes the mutual
inductances of the stator and rotor windings to be considered constant.

2.6.2 DFIG Modelling in dqO-reference Frame

The reference frames can be used for machine variable transformation in order
to eliminate the time dependency of the mutual inductance of the machine.
Some reference frames are displayed in Figure In Figure .12} (o, B) is
the stationary reference frame which can be considered as the stator reference
frame; (ds, qs) is the synchronous reference frame; and, (d,, ¢,) is the rotating
reference frame linked to the rotor.

The transformation of stator variables into an arbitrary dqO-reference frame
is given by

fsqu = f: Tsfsabm (227)
where
5 [ cos O4g) c08(0ag — 3F) cos(Ogg + %)
T, = /3 [sin(ba) sin(a, — %) sin(by, + %) (2.28)
1 1 1
V2 V2 V2
q: “ﬁ
ds '\
\\\ W .
\\ 0, »wr_,
\\\ slip \_-- ‘: i dr
A v
= - > (Y

Figure 2.12: Reference frame schemes
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and ,
g = / Cagdt + 0y (0). (2.29)
0

In the above equations f is the vector notation of the machine parameters
into the synchronous reference frame; 6,4, is the angle between the stationary
reference frame and the arbitrary dq0-reference frame; wgy, is the angular speed
at which the arbitrary dqO-reference frame rotates; Ty is the transformation
matrix from ABC reference frame to the arbitrary dq0-reference frame; and,
64,(0) is the initial value of the angle between the stationary reference frame
and the arbitrary dqO-reference frame.

When the arbitrary dqO-reference frame is rotating at synchronous angular
frequency, it yields
Wdg = Ws (2.30)

and
qu = 6)37 (231)

where 6, = fot wsdt + 05(0) is the angle between the stationary reference frame
and the synchronous reference frame, as shown in Figure Hence, the
arbitrary dqO-reference frame rotating at synchronous angular speed is called
the synchronous reference frame.

Expressing Equation into synchronous dq0-reference frame using the
transformation in Equation (2.28]) yields

Vg isd d | s —Psq
Vsq | = R Z:sq + % wsq + Wws ¢sd ) (232)
Vs0 150 %0 0

where v,q and vy, are the d-axis and qg-axis stator voltage; i54 and ¢, are the
d-axis and g-axis stator current; and, ¥, and 1), are the d-axis and g-axis
stator flux linkages.

On the rotor side, the transformation of rotor variables into the syn-
chronous dq0-reference frame is given by

frqu = TV‘.f'rabc (233)
where , )
5 cos(6,.) cos(6, — 2?”) cos(f, + 2?”)
T, =5 |sin(@) sin(®: %) sin(6, +3) (2.31)
1 1 1
V2 V2 V2
and

t
gslip = / wslipdt + Qslip(o)- (235)
0
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In Equation , Wslip = Ws — w, is the relative angular speed between
the rotating rotor frame and the synchronous dqO-reference frame; and, 6y,
denotes the relative angle between the synchronous reference frame and the
rotating rotor reference frame.

The expression of the three-phase rotor voltage into the synchronous dq0-
reference frame yields

/ ’ /

val [l g [V Yy
Upg | = R, lg + pr 7’03"1 +(ws —wp) | Yy | (2.36)
UTO ZTO w’r() 0

where v, and v, are the d-axis and g-axis rotor voltages reported to the stator
windings; z';d and i;q are the d-axis and g-axis rotor currents reported to the
stator windings; and, @/J;d and w;q are the d-axis and g-axis rotor flux linkages
reported to the stator windings.

The three-phase stator and rotor flux linkages into the synchronous dq0-
reference frame are given by

{«plsdqo} :{ T,L,(T,)"! TsL;T(Tr)-l] limqo}’ (2.37)

o

wrqu T"‘(L;T)T(TS)_I T'I‘LIT(T"‘)_I Zrqu
where ~ _
Lg+ L 0 0
T,L,(T,)"* = 0 Lgy+Ln 0], (2.38)
0 0 Ly
(L, + Lo 0 0
T.L.(T,) "t = 0 L,+L, 0], (2.39)
0 0 L,
and
Ln, 0 0
T, (L. ) (T,) *=T,L, (T,)™*=| 0 L, 0f. (2.40)
0 0 0

In Equation — 1) Ly and L, = %Lsm denote the leakage inductance
and the magnetising inductance; and, L, is the leakage inductance referred to
the stator windings.

Substituting Equations (2.39)), (2-38) and (2.40) into Equations (2.37)), the
expressions of the stator and rotor flux linkages becomes

77Z)Sd = leisd + Lm(isd + Z;d) (241)
Usq = Lytisg + Lin(isq + 1) (2.42)

Q1050 = leisO (243)
Urg = Lyging + Lin(isa + i) (2.44)
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/ .SWS,IE; ’ 'WS )
Rr g ~ Lrl nd Ly - jis s

e, A4 O

Figure 2.13: DFIG Equivalent Circuit in dq0-reference Frame

qu = L;‘llqu + Lm(isq + Z;q) (245)

Yo = L i (2.46)
The equivalent circuit of the DFIG resulting from the voltage and flux linkage

expressions is depicted in Figure [2.13]

Equation (2.32) and Equation (2.36) can be rewritten by replacing the

operator % with the Laplace operator p. Hence, the stator voltage space

vector and the rotor voltage space vector become
Vsd = Rsisd + pwsd - wswsd

Vsq = Rsisq + p%q + wswsq
Vso = Rsiso + pqujs()

'U;d = R;ird + pw;d — (ws — w?")w;d
U;q = R;Z;q + p¢;q + (ws - Wr)¢£‘q

/

Upo = RrirO + pQ/JTO'
The stator active and reactive powers of the DFIG are given by

-\ 3
P, = %((3)51) = 5 (Vdisa + Vgisg) (2.53)

and

> 3
Qs = %(<%)Usls> = §(Usqisd - USCﬂS(])? (254)

where P; is the stator active power; (), is the stator reactive power; and, iy is
the conjugate of the stator current space vector.
In the rotor side, the rotor active and reactive powers are given by

/

= 3 ’ ro
P = %((g)m> = 5 (Uring + Vlying) (2.55)
and B 3
QT = %((%)U;;’T) = §(vrqi7”d - Urdirq)7 (256)
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where P, is the rotor active power; (), is the rotor reactive; and, i, is the
conjugate of the rotor current space vector.
The electromagnetic torque can be given by

Tem = (%) (g) (Vsdisg — Vsqlisa) (2.57)
or
e = (3) (5 ) Whdivg = Biva) (2.58)

where 7., is the electromagnetic torque and P is the number of poles of the
machine.

2.6.3 Mechanical Equation

The relationship between the electromagnetic torque and the mechanical torque

can be expressed by
s,
J—— 4+ BQy = Ton — Tem, (2.59)
dt
where J is the inertia; €, is the shaft angular speed; 7,, is the mechanical

torque of the machine; and 7., is the electromagnetic torque.

2.6.4 Simulink Implementation of The DFIG Model

The expressions of stator and rotor currents of the DFIG into the synchronous
dqO0-reference frame are obtained by rewriting Equation (2.41))—(2.46) as fol-

lows;

. 1
lsd = L_l(de - wmd) (260)
) 1
lsqg = L_l<¢sq - wmq) (261)
. 1
1s0 = L—l¢so (262)
i 1 ’
brd = L—/(%d — Yma) (2.63)
rl
¥ 1 ’
brg = L_/l(qu)rq - wmq) (264)
! 1 !
o= TV (265)
rl
where )
1 wsd w d
Yrma = (7 -5 (2.66)
o+ \La Ly
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and /
1 VYog  Ur

Vg = 1 (22 - 7). (2.67)
L 1], " Ia sl rl

By substituting Equation (2.60)—(2.65) into Equation (2.47)—(2.52) and re-

arranging these expressions, yields

R,
pl/}Sd = Vgq — wswsq -+ L_l(wmd - wsd) (268)
p%q Vsqg + Wstsd + (¢mq wsq) (269>
p¢30 = Vg0 + L_Sws() (270)
Pra = Vna = (s = W)y, + 77 (dde ) (2.71)
pw;q = U;q - (w ),lvbrd + (¢mq @erq) (272)
, R, .
Do + 7V (2.73)
rl
| @) @62) — O
Vsq
(PN E—
[ l ([2-66)
Vsd .
[2.68) T p— E50) isd
. ) A
B L 2.63 ira
R71) :
C :
Ws (2.64) q
iy
273) [.65)

Tem w’l’
[ @58 259

Figure 2.14: Induction machine implementation
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From the current expressions displayed in Equations — (2.65)), the flux
linkage expressions depicted in Equations (2.68)—(2.73), (2.66) and (2.67), and
the mechanical shaft speed given in Equation together with the torque
expression displayed in Equation (2.58), a MATLAB/SIMULINK model of the
DFIG is built, as depicted in Figure [2.14]

2.6.4.1 Free Acceleration Characteristics

The free acceleration characterisitics observed in this simulation were con-
ducted in MATLAB/SIMULINK, are that of a 3 hp, 4 pole, 60 Hz, 3 phase
induction motor. The machine parameters of that induction machine are taken
from [35]. The machine parameters are displayed in Table B.5] The DFIG
model presented in Section is used for the simulation of the induction
motor, since short-circuiting the rotor of this DFIG model leads to a normal
induction machine. Hence, the simulation is conducted with the rotor voltages
being equal to zero.

The three-phase stator and rotor current characteristics during free acceler-
ation is illustrated in Figure The torque and speed characteristics during
free acceleration are displayed in Figure 2.16] These figures are obtained from
applying a rated three-phase stator voltage to the stator windings of the in-
duction motor initially stalled. The mechanical shaft speed increases until it
reaches the synchronous speed of 1800 rpm, as shown in Figure due to
the fact that losses (friction and windage losses) are not taken into consider-
ation. At stall, the impedance of the induction machine is composed only of
the the stator resistance and stator leakage reactance in series with the rotor
resistance and rotor leakage reactance, which implies that the starting current
is almost ten times higher than their rated values as displayed in Figure [2.15]
Besides, the applied stator voltage is at its at rated value as well.

h

|

”j’&'l'v'l'»ﬂ't't'r

Figure 2.15: Free Acceleration test: three-phase stator current ; three-
phase rotor current
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Figure 2.16: Free acceleration test: l@ electromagnetic torque ; @ rotor
angular shaft speed

Another noticeable pattern is that the envelope of the machine currents
varies only during the transient period, as displayed in Figure [2.15] The start-
ing torque is also quite high, as shown in Figure 2.16[(a)] The starting torque
is at about ten times the rated torque and the electromagnetic torque decays
with time as shown in Figure Also, from Figure it can be seen
that the electromagnetic torque at the starting of the induction machine varies
at a frequency of about 60 Hz between a relatively positive range of values.

2.7 Back-to-back converter Modelling

Assume that the grid-side converter (GSC) of the back-to-back converter of
the DFIG system consists of a three-phase two-level voltage-source converter
(VSC), as depicted in Figure 2.17 It can be seen that the VSC is composed
of six power switches. Each power switch is composed of two semi-conductors
connected as depicted in Figure Generally, a free-wheeling diode is used
for the protection of the main semi-conductor (IGBTs, GTOs, MOSFETs,...).
In addition, each phase leg is composed of two power switches. In order to

I,
+ o—>——

%b
S

Cae —— X S, Sh
> T 0 VUcq
V;lc L" [ o Uch
= 0 Vce
Ge —— ‘3< s ‘>< s, ‘>< s
— O

Figure 2.17: Schematic of the power switches of a VSC
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e

Figure 2.18: Power switch composition

avoid short-circuiting the DC link at the same leg, when the upper power
switch is closed (ON or 1), the lower power switch should be open (OFF or 0).
Hence, the switching state of the upper power switch and lower switch of the
same leg are complementary with dead time included.

From Figure [2.17] the instantaneous three-phase leg voltage are given by

Vae = Van(t) + vnn (1), (2.74)

Vpe = Upn(t) + vpn (1) (2.75)
and

Vee = Ven(t) + vnn (1). (2.76)

In Equations (2.74) — (2.76]), vac(t), vpe(t) and v..(t) are the instantaneous phase
A, B and C leg voltages of the VSC, respectively; van(t), vp,(t) and v.,(t) are

the phase A B,C to neutral voltages, respectively; and v,y is the common
mode voltage. Assume that the VSC is connected to a symmetrical three-
phase resistive load yields

Van(t) + Vpn(t) + ven(t) = 0. (2.77)

By summing Equation (2.74) — (2.76)), the voltage between the negative point
of the DC-link bus and the neutral is given by

1

UnN = §<Uac(t) + 'ch(t) + Ucc(t))' (278)

Substituting Equation (2.78) into Equation (2.74) — (2.76)), the instantaneous
line-to-neutral voltage yields

2 1

Van = gvac(t) - g(vbc(t) + vee(t)), (2.79)
2 1
Vpp = gvbc(t) - g(vac(t) + vee(1)) (2.80)
and 5 ]
Ven = gvcc(t) — g(vac(t) + Upe(t)). (2.81)
The dynamic behavior of the DC-link voltage is given by
WVae _ _p (2.82)

dt
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where V. is the DC-link voltage; I, is the DC current coming from the rotor-
side converter; and I. is the current heading to the grid-side converter.

The value of the converter voltage is obtained using the Equations
— (2.81)), knowing that the leg voltages are given by

Ve

=S,— 2.
Vae = Sa 5 (2.83)
Vie
Vbe = S ; (2.84)
and v
Vee = Sc 2dc‘ (285)

In Equations (2.83)—(2.85), S., Sy and S. are the switching function of the
upper power switches. It is important to notice that when S, is ON, S, =1
and when S, = 0 is OFF. The eight switching states and different values of
the line-to-neutral converter voltage are displayed in Table 2.3] It can be seen
from Table that the maximum amplitude of the line- to-neutral reference
voltage is 2?5.

On the other hand, the vector representation of the instantaneous reference
three-phase converter voltage is given by
2 -4

Uref = § (Uan(t)ejo + Ubn(t)e(j%ﬁ) + Ucn(t)e(j3)> = Vo + jvﬁ' (2‘86)

It is worth noticing that the reference voltage space vector rotates at line
angular frequency on the hexagonal plan, shown in Figure Equating the
real part and the imaginary part in Equation (2.86) yields

Vo = §<van(t) + Vpn (1) cos (2?7?) + Ve (t) cos (%)) (2.87)
and
vg = %(vbn(t) sin (%T) — Ve (t) sin (%)) (2.88)

Table 2.3: Switching states

Switching gates | S, | Sp | Se | Van(t) | Van(t) | Van(t) | vap(t) | Vpe(t) | vea(t)
K oJoJo] o 0 0 0 0 0
K, 1[o]o| Zae | =R | = [V | 0 | Vg
K, 1[1]o0] % Yie | e | Viae | —Vac
K 0|10 | == | Ze | == | Voo | Vo | O
Ky 011 [ e Y | Y | _V,| 0 | Vg
K 001 = [t | T 0 | Vi | Va
K 1[0 |1 | % | =] T [V [—Ve| O
K, Lf1]1] o0 0 0 0 0
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Table 2.4: Reference voltage space vectors with switching states

Space vector | Switching state | Space vector value

U [000] Up =

U [100] Uy = 2Vgee!”

Ty [110] Uy = 2Vyeels

s [010] Ty = Vel s
A [011] Ty = Vel S
7 [001] U5 = 2Vl s
Tis [101] Us = 2Vl s
Uy [111] vy =0

In Equation (2.87) and Equation (2.88), v, and vg are the real and imag-
inary parts of the reference voltage space vector. From Table it can be
seen that the reference converter voltage space vector varies at a rate of sixty
degree. Tt is worth noticing that the reference voltage space vector comes from
the control algorithm. The schematic of the RSC is depicted in Figure 2.19]
The modelling of the RSC is similar to that of the GSC.

k< Src L< Srb L< Sra — Cac
| -

2
DFIG Y 1

Figure 2.19: Machine Side Converter Scheme

2.8 Passive Filter models

The reason for using a filter is to attenuate the harmonics produced by the
back-to-back converter. In this subsection two types of filters are modelled,
the LCL filter and the L filter. In addition the LCL design procedure is also
discussed.

2.8.1 LCL Filter

The per-phase LCL filter configuration is depicted in Figure 2.20 The math-
ematical model of the wye-connected LCL filter is given by
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dv - o
Of% =iy — iy — jw,Cyi;, (2.89)
di, . , -
LQE =0, — U — (R, + jwsLy)i, (2.90)
and -
di, . ) -
LcE = Uf — U, — (Re + jwsLe)ie. (2.91)

In Equations —, Uy is the filter capacitor voltage space vector; U, is
the grid voltage space vector; v, denotes the converter voltage space vector; Zg
is the grid current space vector and i.. is the converter current space vector; L,
L, and C} are the converter inductance, the grid inductance and the capacitor
filter of the LCL filter, respectively; and, ws, R. and R, are the synchronous
angular speed, the converter resistance and the grid resistance, respectively.
The Laplace operator can be expressed in terms of frequency as follows;

p=jw, (2.92)

where p = jw represents a harmonic angular frequency. From Equation (2.89),
Equation (2.90) and Equation together with the assumption that only
the converter voltage is the harmonics source (i.e the grid voltage is being
considered short-circuited), the transfer function of the LCL filter is deduced.
The LCL filter scheme at high harmonic components is depicted in Figure 2.21]
Neglecting the damping resistance in the LCL filter, the transfer function of
the LCL filter is given by
ig 1
Hialp) =2, = LLyCyp3 + (Le + Ly)p’

where Hy(p) is the transfer function of the undamped LCL filter.

(2.93)

On the other hand, when the damping resistance is taken into considera-
tion, the damped LCL filter transfer function is given by

i C de+ 1
Hy g f , 2.94
ailt) = = I Lt Ot L Ra? + (Lo Ly 2
R, ig Lyg L Re g,
. AMA—> MTM—AN\,—»—O
Cy
if
Vg vf Ve
R,

Figure 2.20: Per-phase LCL filter scheme
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Lo i, (h) Le ; (n)
— N e MMM

— ve(h)
ir(h)y

Figure 2.21: Per-phase LCL filter at harmonic frequency

where H g (p) is the transfer function of the damped LCL filter. The harmonic
attenuation of the LCL filter without damping is given by

ig(h) ‘ 1
= 2.95
v~ nL Ly Oyl — ] (299
ic(h) 1
~ 2.96
Uc(h) ‘ thc ( )
and ) .
ig ‘
~ ) 2.97
o)~ L0 — ] 290
In Equation (2.95)—(2.97)), w2, = LLCLJ;%QJ is the angular resonant speed; Sub-

script h denotes the harmonic order; and, wy, = 27 f} is the angular frequency
at harmonic frequency h. Those LCL filter attenuation is effective when the
LCL filter is properly damped [27].

2.8.2 L Filter

The per-phase scheme of the L filter is shown in Figure 2.22] where Ry and
Ly denote the filter resistance and the filter inductance, respectively; and, v,
and v, are the grid and converter voltages respectively. At first glance, from
Figure it can be seen that, in contrast to the LCL filter, the three-phase
converter current is the same as the three-phase grid current.

The mathematical model of the single-phase L filter is given by

- d;c —
vy = Rpig + LTE + U,. (2.98)

The transfer function is deduced from Equation (2.98)), assuming that only
the converter is the source of harmonics components in the system, as shown

in Figure This yields
ie 1

Hp) == 9.
l(p) Ve LTp+RT7 ( 99)
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Figure 2.22: Per-phase L filter scheme

where H;(p) is the transfer function of the L filter.

Substituting Equation (2.92)) into Equation (2.99) and assuming a higher
frequency Liw? >> RZ%, the filter attenuation is given by

|Hy(jwn)| =~ (2.100)

VLW

where |H;(jwy,)| denotes the L filter attenuation; and, wy, is the angular speed
of at harmonic frequency.

ve(h)

O

Figure 2.23: Per-phase L filter scheme at harmonic frequency

2.9 Conclusion

An overview of different configurations of wind turbine systems and the mod-
elling of the whole DFIG system in wind turbine applications were presented.
A DFIG model was built in MATLAB/SIMULINK and the performance of
that model during free acceleration is satisfactory.
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Chapter 3

Grid/Load Side Converter Control

In this chapter, the implementation of the phase locked loop and that of the
space vector pulse width modulation are discussed. Moreover, a design proce-
dure of the LCL filter is given and a control algorithm of the grid/load side
converter is proposed. Also, the design of the PI controller parameters is also
presented. Further, a comparative study of the L filter and the LCL filter is
conducted from an effectiveness point of view and the simulation of the grid-
connected grid-side converter is presented. Since the control of the grid-side
converter and that of the load-side converter in DFIG system are both similar,
only the grid-side converter is treated in this chapter.

3.1 GSC Configuration

The grid-side converter (GSC) of DFIG systems can be seen as a three-phase
grid-connected voltage-source converter (VSC). The per-phase schematic of
the GSC and its control system are depicted in Figure The grid-side

Z'g ic ](lu ]l
Transformer Filter J_
o °
1 ]
2 || ™ 4@: e
T e
VSC

i

Vgs

Lﬂ Modulation and control system |v
de

Figure 3.1: Schematic of the per-phase grid-connected VSC

35
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converter is composed of the AC side, the DC side and the control system.
The AC side consists of the grid, the transformer, the filter as well as the
voltage-source converter. The filter enhances the power quality of the GSC
by mitigating high harmonic frequencies generated by the switching elements
of the VSC. Hence, the design of the LCL filter is discussed in the following
section. On the other hand, the DC side is composed of a DC-link capacitor
and the load. In this thesis, the grid voltage is assumed purely sinusoidal and
without internal impedance.

The control system of the GSC is composed of several modules such as
the PI controllers, the phase locked loop and the SV-PWM function and the
variable transformation functions (Clark transformation, Park transformation,
inverse Clark transformation). All These functions are discussed in the follow-
ing sections.

3.2 LCL Filter Design Procedure

The algorithm of the LCL filter design is depicted in Figure [3.2 The con-
ventional LCL filter design procedure used in this thesis is similar to the LCL
design procedure that is discussed in [27,/42]. In the above-mentioned LCL
filter design procedure, the line frequency, the power rating of the converter
and the switching frequency are used as inputs. This approach consists of
five steps that enable the proper design of the LCL filter parameters. This
approach is very dependent on the rated values of the system.

1. Select the current ripple on the converter side in order to design the
converter inductance (L), then the value of the converter inductance is
calculated using an index s for their relationship. The total inductance
Ly = L.+ L, should be lower than or equal to 0.1 per-unit (pu) in order
to reduce the losses in the system. The expressions of the converter
inductance and the grid inductance are given by [43]

Vie
Le=——% 3.1
24 f o Aty (3.1)
and
L, =kL,. (3.2)

In Equation and Equation (3.2), Ai,, is the current ripple; L. and
L, are the converter and grid inductance, respectively; and,  is the index
of the relation between the grid inductance and the converter inductance.
The grid inductance L, is found using the Equation ((3.2)).

2. Choose the reactive power to be consumed at rated conditions. Then,
determine the filter capacitor value by selecting k as a percentage of the
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consumed rated reactive power in the system. Hence, the LCL filter
capacitor is given by
Cp = kCy, (3.3)

where C is the filter capacitor and C} is the base capacitor of the system.
This value of k should not exceed 5% of the rated reactive power.

3. Select the desired current ripple attenuation by using the the expression
below ;

o (Psw 1
iy (o) _ . (3.4)
ic(hsw) |1+ k(1 —x.k)|
In Equation (3.4), hs, = “2* indicates the harmonic order of switching
frequency of the electrical variable; wy, is the angular speed at switching
frequency; wy is the angular speed of the system; i,(h,) is the the grid

Input P, few,
fs: Vdcy ng Imaa:

converter inductance
ripple % = L.

|

Filter capacitor
size Cp < 0.05C

|

Required attenuation

|

converter induc-
tance k = L4

10fs < fres < %fﬁu?

Yes

damping resistor core, number of
= R4 = éRres turns, windings

Figure 3.2: Algorithm of the LCL filter design
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current harmonic at switching frequency; i.(hs, ) is the converter current
at switching frequency; and, z = L.Cyw? is a constant.

4. Verify the resonant frequency by using the expression below;

1 [L.+1L,
res — o _ T - 3.5
f 2m LchCf ( )

In Equation (3.5)), fres is the resonant frequency of the filter. It is ad-
vised that the resonant frequency should range from ten-times the line
frequency to half of the switching frequency [27,42]. If this condition is
not fulfilled then return to step 2) or 3) to change the value of either the
filter capacitor or the value of the harmonic attenuation.

5. Select the passive damping so that the efficiency remains within accept-
able range. The value of the damping resistor is limited since it can
cause losses that affect the efficiency of the system. It is advised that
this value should be one-third of the capacitor impedance at resonance
frequency [27]. The damping resistor (R4) is given by

1 1

Rd = _Rres

37T 67 fresCy (3.6)

where R,.s is the capacitor filter impedance at resonant frequency.

3.2.1 LCL Filter Design Example

The parameters of the inverter to be used in the laboratory are displayed in
Table |3.1] Besides the information about the per-unit system to be used in the
LCL filter design, an example is displayed in Table[3.2] Given these parameters
a design example is conducted as follows;

1. Choose a current ripple which is 13.5 % of the maximum current of the
system, the converter inductance is determined using Equation (3.1,
then the L, =4 mH .

Table 3.1: VSI parameters to be used in the Lab

Parameters Values
Power 8.7kV A
Line-to-line voltage 380 V
Current 12 A

Switching frequency | 2.5 kHz
Frequency 50 Hz
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Table 3.2: VSI per-unit system

Base parameter value
Base power 8.7kV A
Base voltage 310.26 V
Base current 18.69 A

Base impedance | 16.596 ()

Base inductance | 52.8 mH

Base capacitor | 191.799 uF

Base frequency 50 Hz

2. Choose a filter capacitor that is Cy = 9.6 uI' with regards to the con-
straint that the filter capacitor should be less or equal to 5 % of the rated
capacitor of the system.

3. Choose the filter current attenuation to be 18.66 % in Equation (3.4)
lead to a value of kK = 0.75. Using the relationship between the grid and
converter inductances displayed in Equation (3.2)), the grid inductance
value is L, = 3 mH. Notice that by choosing this current attenuation the
total inductance of the filter Ly =~ 0.132 pu which is beyond the limit
of proposed total inductance which should be less or equal to 0.1 pu
due to the losses in the system. However, the design of the filter is a
trade-off between the power losses and the harmonics level in the sys-
tem. Furthermore, the choice of the switching frequency is a trade-off
between harmonics and the burden computation of the computer in the
laboratory.

4. Verifying the resonant frequency obtained using Equation (3.5)) yields the
resonant frequency f,.s = 1.24013 kHz which is well within the range.

5. The the value of the damping resistor is chosen to be 5 €) .

The resistance values of the grid inductance and converter are R. = R, = 0.1
since it is suggested in [44] that the Joule losses to be set to a value under 1 %
of the rated power. From the design above, the LCL filter parameters depicted
in Table [3.3| are obtained. The bode plot of the LCL filter without a damping

Table 3.3: LCL parameters

Filter parameter | values
L. 4 mH
L, 3 mH
Of 9.6 ,uF

Ry 5Q
Rr=R.+ R, 0.20Q
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Filters Bode Plot
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Figure 3.3: Filter bode plots

resistor, the L filter and the damped LCL filter are depicted in Figure and
were obtained using the parameters displayed in Table The L filter in
Figure is obtained by summing the grid and converter inductances. It can
be seen that there is an attenuation of the resonance peak when applying the
damping resistor. Moreover, at the lower frequencies the LCL filter behaviour
is similar to that of the L filter, as shown in Figure 3.3

3.3 Phase Locked Loop Implementation

The phase locked loop (PLL) provides the grid voltage angle necessary when
using the concept of vector alignment along a chosen reference frame axis. The
phase locked loop is largely discussed in [45]. Assume that the grid voltage

space vector is expressed by
Uy = Vime?%, (3.7)

where 7, is the grid voltage space vector; 0, is the angle of the grid voltage;
and, V,, is the maximum amplitude of the phase to neutral grid voltage. From
Figure [3.4] the grid voltage vector can be represented in the synchronous dq0-

q ‘

Figure 3.4: Grid voltage Representation
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ref
94 K (1+pT) | ﬁ}‘ 1 0;
_ pT ‘ S

Figure 3.5: PLL control loop

reference frame using the expressions below;

] < [fpemteo =) o5

In Equation (3.8), vyq and vy are the d-axis and g-axis grid voltage; and, 0, is
the angle of the synchronous dq0-reference frame; and, 6, is the angle of the
grid voltage space vector.

At small signal with the approximation of the sine and cosine in Equa-

tion (3.8) )
BZZZ] ~ lvmém@e)ﬂ] 7 (3.9)

is obtained, where 60 = 6, — 0, is a small variation of the angle between the
grid voltage and the synchronous dq0-reference frame. From Equation (3.9),
it can be seen that dvy, is equal to zero when the grid voltage angle and the
reference frame angle are equal 6, = 0. Then, the synchronous dq0-reference
frame is said to be aligned along the d-axis of the synchronous dq0-reference
frame.

When accounting a sample delay, the plant of the PLL is given by

Fyap) = (72 ) (7). (3.10)

1+pTs/ \ p

The closed loop of the PLL is depicted in Figure [3.5] From Figure the
open loop transfer function of the PLL control loop is given by

() = (FULPIY (L) (Y, 3.11)

1 1+pls/ \ p
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Table 3.4: Grid parameters

Parameters | values
Vi 311V
fq 50 Hz

T
Ts m S

where K; and T; are the proportional gain and the integral time constant of the
PI controller; and 75 is the sampling time. The parameters of the PI controller
of the PLL are tuned using Symmetrical Optimum as below [18];

T, = a’T,, (3.12)
1
K = 3.13
YAV Ty (3.13)
and .
.= , 3.14
We =T (3.14)

In Equation (3.14)), w. is the cross-over frequency of the PI controller and a is
the normalisation factor.

3.3.1 Calculation of the PI parameters

It is advised that the cross-over frequency of the PI controller of the PLL
should be close to the grid frequency [45]. The design of the PI controller
should be done for a cross-over frequency value of w, ~ 314 rad/s. Given the

parameter of the grid as shown in Table the parameters of the PI controller
of the PLL are deduced as shown below;

5000
a=—>——=1591, (3.15)
27150
Phase Angle Step Response
2 T T
— 04y
: : —0, -
= :
S.,
<
e
g
<
CO 0.5 1 15 2

Time [s]

Figure 3.6: Step response of the voltage phase angle and dqO-reference frame
phase angle
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Bode Diagram
Gm = -Inf dB (at 0 rad/s) , Pm = 85.5 deg (at 312 rad/s)

15 - - T - r

Magnitude (dB)

Phase (deg)
N
@
&

-180 - - ~ .
107" 10° 10' 107 10° 10* 10° 10°
Frequency (rad/s)

Figure 3.7: Bode plot of the open PLL open loop

15.91
legz 5.9
we 2750

= 0.051 (3.16)

and
1 5000

T aVuT,  (15.91)(v2)(220)

The time response of the PLL control loop (small signal analysis) is illustrated
in Figure It can be seen despite the high overshoot at the start, there is a
good response to disturbance of the PI controller at 1 s. The fact that 0, = 0
implies that the PLL works properly as shown in Figure The cross over
frequency and phase margin are displayed in Figure It can be seen that
the cross-over frequency is near the value expected when using Symmetrical
Optimum method. The bandwidth is w. = 312 rad/s. It can also be seen that
the phase margin of the open loop PLL control loop is symmetrical at about
the cross-over frequency.

K = 1.0067. (3.17)

3.4 Continuous Space Vector Modulation
Implementation

In Section it is shown that a three-phase two-level VSC offers eight switch-
ing states (six active switching states and two non-active). It can be seen from
Figure that these switching states form a hexagon with six sectors with
60 degree each. The space vector pulse width modulation (SV-PWM) consists
of the mapping of the reference voltage space vector onto a hexagonal plan,
as shown in Figure The adjacent space vectors relate to each switching
state of the VSC (active voltage space vectors), as shown in Table B.5] At
each sampling time, the reference voltage space vector is approximated with
a combination of adjacent space vectors (active and non-active) applied with
specific durations depending on the sector the reference vector is in. Bearing
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Figure 3.8: Space vector schemes for SVPWM

in mind that the non-active voltage space vectors are placed at the origin, the
linear region is located in the circle inside the hexagon, as shown in Figure |3.8|
The maximum reference voltage that can be properly approximated should be
contained inside that circle, otherwise there will be some missing information.
Hence, the radius of the circle inside the hexagon is the maximum magnitude
of the reference voltage space vector; it is given by

2 s

Urer| = =Vye.cos (=). 3.18

Fresl = 5 Vaccos (3) (318)

The modulation index is defined as the ratio of the maximum reference voltage

over the the fundamental of the voltage square wave. The modulation index
is given by

_ %Vdc cos(§)

2Viae
ks

= 0.904, (3.19)

where m is the modulation index. The modulation index determines the op-
erating region of the SV-PWM function. The SV-PWM function in the over-
modulation region is not discussed in this thesis. This is why in terms of control
it is necessary to limit the output of the inner control to avoid operating in
the over-modulation region.
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Table 3.5: Swiching segments according to each sector

Sectors Switching segments

I | 3,[000] | 71,[100] | Go,[110] | @,[111] | ©o,[110] | 71,[100] | @o,[000]

11 Up,]000] | T5,]010] | To,[110] | T7,[111] | Ta,[110] | T5,]010] | Tp,[000]

I | ©,[000] | @5,[010] | @,,[011] | @7,[111] | ©4,[011] | @5,]010] | @io,[000]

IV 0o,]000] | ¥5,]001] | ¥y,[011] | T7,[111] | ¥4,[011] | 5,[001] | Tp,[000]

V| G,[000] | @s,[001] | G6,[101] | &, [111] | di,[101] | @s,[001] | To,[000]

VI | 5,[000] | @1,[100] | @,[101] | &7,[T11] | @i, [101] | @1, [100] | G0, [000]

The aim of the SV-PWM function is to provide the switching patterns with
regard to the predefined space vectors depending on the sector the reference
voltage space vector is in. The binary sequence in Figure represents the
switching patterns.

Assume that ¥, is constant during the switching period (7%,). When the
reference voltage vector (t.s) is located in sector I, it can be approximated
using the space vectors composing the sector I with a specific duration. In
Sector I, the reference voltage space vector can be approximated by applying
vp for a time period of T3, ¥, for a time period of the T5 and both v7 = 0 and
vy = 0 for a time period Ty as follows;

Tﬂ)l + TQUQ = Tswvref (320)
Tow

PWM,
PW M,
PW M,

T P e R Ty

E 2 ! 2 ! 2 ! 2 ! 2 4

vo 0 !

[060] | [160] | [150] | [1;1] | [1110] | [1610] | [000]

Figure 3.9: Symmetrical SVPWM waveforms
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with
Tsw - T1 + T2 + To. (321)
Splitting Equation (3.20]) into its real component and its imaginary com-
ponent yields
— — ™ —
Ty 01| + da|vs] cos(g) = Tow|Ures| cOS(Ores) (3.22)
and -
T5| 05| sin(g) = Tow|Ures| sin(Ores)- (3.23)

Solving Equation (3.23)) and Equation (3.23)) means that the time periods in
Sector I are given by

’ﬁref| Sin(@ref - %)
T, =T,
! ") sin(%)

(3.24)

and |Urer| Sin(Orer)
Uref| S\ Uref

T, =T, —_—

2 " || sin(%)

(3.25)

The same rules apply to Sectors II to VI when it comes to calculating the
time periods. The time periods at any sector in a generalised way are given

by
Ty | V3T, sin %’r —cos ¥ 7 Tu,
= v

Tri1 2V |—sin (k;)” COS (kjﬁw

where £=1,2,...,6. The time period for the application of non-active vectors is
given by

(3.26)

Ty = Tyw — (Tir — Thsr). (3.27)

The symmetrical sequence of the SV-PWM signals allows the reduction
of the harmonics as discussed in [46]. The symmetrical SVPWM scheme for
sector I is displayed in Figure 3.9 It is important to notice that the most
significant bit in the binary sequence relates to the phase A converter leg,
while the least significant bit relate to the phase C converter leg, as depicted
in Figure 3.9 The middle bit relates to the phase B converter leg, as shown
in Figure The symmetrical sequence of the SV-PWM allows only one leg
to change state at a time. The symmetrical sequence consists of starting with
a non-active vector, then switching one bit amongst the voltage space vectors
with regard to the sector in which the reference voltage space vector is located
in. A similar approach can be used for other sectors.

3.5 Control Strategy of the Grid-Side
Converter

In this control strategy, an L. approximation of the LCL filter (;g ~ ;c) is
assumed [27]. The mathematical models of the LCL filter and the L filter
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Figure 3.10: VOC scheme

are discussed in Section and Secton 2.8.2l The aim of the GSC control
is to maintain the DC link voltage constant and guarantee the unity power
factor regardless of the disturbances in the system. In order to achieve these
goals, most researchers use the concept of vector control in the synchronous
dqO0-reference frame with voltage-oriented control of the LSC [1827,47]. The
concept of voltage-oriented (VOC) control as shown in Figure [3.10] allows a
decoupled control of the active and reactive power by regulating the d-axis
and g-axis converter currents. In this control concept the PI controllers use is
usually made. The expression of the PI controller is given by

pr = i, L)

—_— 3.28
p pj'vl ) ( )

where K, is the proportional gain of the PI controller while 7; is the integral
time of the PI controller. Also, the cascaded control structure is adopted where
the control system consists of two control loops. These control loops are the
inner control loop and outer control loop.

The control algorithm of the GSC is illustrated in Figure At first
glance, it can be seen from Figure [3.11] that the control system of the GSC
requires accurate measurement of the three-phase grid voltage, the three-phase
converter current and the DC-link voltage. In case where a power transformer
is used to match the voltage level of the grid at the point of common cou-
pling (PCC), the voltage at the secondary side is measured instead [27]. The
locations of all the sensors of the needed electrical parameters for the control
algorithm are displayed in Figure 3.11] The grid voltage angle is calculated
by the phase locked loop. The phase locked loop implementation is discussed
in Section [3.3] The measured electrical parameters are then transformed into
the synchronous dqO-reference frame. The DC-link set value is compared to
the measured DC-link voltage to provide the error to be processed by the PI
controller of the outer DC-link voltage loop.

It is important to note that in the GSC the DC-link increases or decreases
depending on the power coming from the grid with regards to the load. The
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Figure 3.11: Control strategy scheme of the grid-connected VSC

relationship between the active power and the converter current is given by

Py = g(vgdigd + Ugﬂyq)a (3.29)
where P, is the active power from the grid; v,y and vy, are the d-axis and
g-axis grid voltages, respectively; and, i,q and ¢4, are the d-axis and g-axis
grid currents. When aligning the synchronous dqO-reference frame along the
d-axis grid voltage, the d-axis converter current is directly proportional to the
grid active power. From Equation (3.29)) it can be seen that if the d-axis grid
voltage is constant, then the grid active power depends only on the d-axis grid
current since vy, = 0. Hence, the power regulation can be done through the
d-axis current.

On the other hand, The grid reactive power is given by

3

Qg = 2 (quicd - Ugdicq)a (3.30)

where @), is the reactive power coming from the grid. From Equation (3.30)),
it can be seen that setting the reference g-axis current to zero implies that
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the reactive power is zero as well since vy, = 0. Hence by doing so, the
unity power factor is achieved using the inner g-axis grid current loop. The
outputs of the PI controllers v,, and véq are subtracted to feed-forward com-
pensation terms in order to guarantee good tracking of the grid currents, as
shown in Figure The feed-forward compensation terms are displayed in
Equation Then the command converter voltages (vzjf and v7) are
transformed into a30-reference frame (v"¢/ and vzﬁef ). as shown in Figure .
These are inputs of the SV-PWM function which provides switching patterns
to the grid-side converter. The implementation of the SV-PWM function is
discussed in Section

3.5.1 Inner Converter Current Control

The dynamic behaviour of the AC side of grid-connected converter into the
synchronous dqO-reference frame with the concept of voltage-oriented control
is described by

Ved ) d d 1 d 1 Vgd
=Ry |9 —Ly— | 7|+ wsL 9T I 3.31
|:ch:| N T [ZQQ] Tdt |:qu:| \ st —ng 0 | ( )
Plant Feed-forward cogpensation terms

where v.qq are the d-axis and g-axis converter voltages, respectively; Rp is
the total filter resistance; 4444 are d-axis and g-axis grid current, respectively;
Ly = L+ L. is the total filter inductance; and, w; is the synchronous angular
speed. A block diagram of the current control loop is displayed in Figure [3.12]

From Equation (3.31)), it can be seen that the d-axis and g-axis grid currents
hold the same plant. This means that the transfer function of the PI controller
in the inner current loop can be expressed by

, K, (1+pT;)\,. .
Vedq = (%) ('L;% — gdq)- (3.32)
The design of the PI controller parameters is done using Magnitude Optimum.
This tuning method is extensively discussed in [18]. The proportional gain of
the PI controller can be expressed by

Tre

K, = , 3.33
" 2T Kpwu KL (3.33)
PI controller Inverter Plant
.ref .
Ydq , Ki(1+pT;) Kpwum Kri Ldg
pT; 1+pTs 1+pTrL

Figure 3.12: Block diagram of the inner current loop
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Step Response of d-axis Grid Current
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Figure 3.13: Step response of the d-axis grid current

where Tg; = % is the time constant of the plant; Kpy s is the gain of the
SV-PWM function ; Kgy, is the gain of the plant; and, T,; = T + Tpw s is
the total delay time introduced by the modulation technique (Tpy ) and the
sampling time (75). In order to cancel the dominant pole in the plant, the

integral time constant of the PI controller is given by
T, =TgyL, (3.34)

where T; is the integral time constant of the PI controllers of the inner controller
loop.

However, for better response to disturbance, it has been proposed in [18]
that the integral time constant should be as shown below;

T, = 15T, (3.35)

The information about the dynamic response to disturbance of the inner d-
axis and g-axis current are illustrated in Figure [3.13] It can be seen that the
dynamic response of the PI controller of the inner current loop that makes use
of the integral time constant of Txy, the response time is very large compared
to that of 157 at t=0.65s. However, there is a high overshoot at roughly
25 % when both integral time constants are used. This is a drawback when
the design of the PI controller is done using Magnitude Optimum. Hence, it
is necessary to limit the outputs of the PI controller. However, limiting the
outputs of the PI controllers alone will lead to larger overshoot therefore to
the saturation of the converter. This problem is solved by applying an anti-
windup algorithm. The anti-windup algorithm and limitations of the output
of the PI controller are discussed in Section Besisdes, tuning the PI
parameters obtained from design method can also reduce the overshoot during
disturbances. The design of the PI controller using Magnitude Optimum leads
to the cross-over frequency of f. ~ f;—(‘)‘f [18].



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. GRID/LOAD SIDE CONVERTER CONTROL 51

3.5.2 Outer DC-Link Voltage Control

The dynamic behaviour of the DC side of the grid-side converter in synchronous
dqO-reference frame is expressed by

dVae
Coe—— = 14 — I, 3.36
de™ gy d ! ( )
where Cy. is the DC-link capacitor; V. is the DC-link voltage ; I; the DC link
load current; and, I;. the current coming out of the converter at the DC side.

The subscript dc relates to DC-link parameters.

In order to reduce harmonics in the system it is advised that the active
power at the DC side should be equal to the active power at the AC side. this
relationship is given by

3 Ucdicd
Iy = = . 3.37
“T 2 Vi (3.37)
Substituting Equation (3.37)) into Equation (3.36)) yields
dvdc 3 icdvcd
Cie == — 1. 3.38
a2 Ve (3.38)

In Equation (3.38]), it can be seen that this equation is non-linear. In this way,
a linearisation around the operating point (around V) can be considered.
The transfer function of the DC side is given by

AVdC . 3 Ved 1

== . 3.39
AZ.cal 2 ‘/chef pCdc ( )
Rewriting Equation (3.39) as below;

AV, 1
= 3.40
Aicd pTc ’ ( )

ref

where T, = %% is constant. Another way of linearising Equation (3.38]) is
to use a change of variable by multiplying Equation (3.36) by V. which yields

1, dWye

—Cyo—— = Py — B, 3.41

27 g ¢ : (341)
where Wy, is the energy in the DC link; P, is the active power of the DC link;
and, P is the active power consumed by the load. The linearisation as shown
in Equation (3.40)) is the one that is considered in this work. The transfer

function of the outer PI controller is given by

.ref (Kv(l +pTv>

i = (5 ) Vil = Vi) (3.42)
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Figure 3.14: Block diagram of the voltage control loop

The tuning of the PI controller parameters of the outer DC-link voltage control
loop is conducted using Symmetrical Optimum design method. The Symmet-
rical Optimum allows good disturbance rejection and the cross-over frequency
resulting from that design method. It is a design method in which the am-
plitude and the phase of the bode plot of the open outer DC-link voltage
control loop are symmetrical around the cross-over frequency. The cross-over
frequency resulting from the Symmetrical Optimum design is approximate to
feo = fg—g [18]. This is a considerable advantage since in a cascaded control
system, the cross-over frequency in the inner loop should be at twice higher
than the cross-over frequency of the inner control loop. However, this de-
sign method results to higher proportional gain. Hence, a tuning of the PI
parameters determined by Symmetrical Optimum method is necessary.

The block diagrams of the outer DC-link voltage closed loop are illustrated
in Figure[3.14] The outer DC-link voltage closed loop includes the inner current
closed loop as shown in Figure [3.14] The inner current control closed loop can
be approximated as a first order transfer function. The inner current control

closed loop is given by
1

He ™ 1
where T,. is the time constant of the inner current closed loop and H,; is the
transfer function of the inner current control closed loop. The integral time
constant (T,) and the proportional gain (K,) of the PI controller in the outer
DC-link voltage control loop are given by

(3.43)

T, = 4a*T,. (3.44)

and T
K, = —, 3.45
4aT.,, ( )

where a is the normalisation factor, chosen to be a = 2.4 [18].

3.5.3 Filter Effectiveness Factors

In order to compare the designed LCL filter and the designed L filter from an
effectiveness point of view, the following effectiveness factors are used |27]:
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3.

The total harmonic distortion (THD) of the grid current and converter
current, with
50
—, I%(h)
h=2
THD = V———; 3.46
The average of the absolute value of the DC voltage error AV

Power factor PF = (@) COS ¥;

. The largest side band current harmonics around the switching frequency

I(hsw);

The overall efficiency n = %;

where I, I(h) and ¢ are the total rms value of the current, the rms value
of the h current harmonic and the angle between the fundamental current
and voltage, respectively; and, Py and P, are the output and input powers,
respectively.

3.6 Analysis of Simulation Results

The overall system using the LCL filter is investigated in MATLAB/SIMULINK
with ODE 3, as solver. The GSC parameters are displayed in Table The
PI parameters used in the GSC are depicted in Table The LCL filter
parameters are displayed in Table [3.7 The design example of the LCL filter is
discussed in Section The SIMULINK models of the grid-connected VSC
using either an L or LCL filters are depicted in Section and Section [E.2]

respectively.
Table 3.6: VSC Parameters and Pl parameters
(a) VSC parameters (b) PI parameters of the control system
VSC parameters | values Inner current PI controller values
Sp 8.7 kVA K; 1.6283
fsw 4 kHz T; 0.001875 s
g 50 Hz Outer DC link PI controller values
Uag 380 V K, 3.689
T, 0.0216 s
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Table 3.7: L and LCL filter Parameters

(a) LCL filter parameters (b) L filter parameters

Filter parameter | values Filter parameter | values
L. 4 mH L 7 mH
L, 3 mH Rr 0.2 Q
Cf 9.6 ,uF
Ry 5€Q
Rr=R.+ R, 0.2Q

3.6.1 Comparative study between an L filter and an
LCL filter from the effectiveness point of view

In this section, a comparative study is conducted between the LCL filter de-
signed and the L filter with different load conditions. The comparative study
is conducted considering the performance factors discussed in Section [3.5.3]

The information about the THD wvalues of the grid currents in the grid-
connected VSC based on the L filter and the LCL filter are given in Table [3.8
and Table respectively. It can be seen that the lowest THD is 8.5 % for the
grid-connected VSC using the LCL filter at rated conditions for a switching
frequency of 4 kHz. This THD of 8.5 % is near the THD limit recommended
in the IEEE standard 519-2014 (THD < 8 %). In addition, compared to the L
filter, the LCL filter performs better from a THD point of view at the different
switching frequencies as well as different load conditions, as shown in Table|3.9
and Table 3.8

On the other hand, one can notice that at switching frequency, the pres-

Table 3.8: Grid current THD with varying load when using an L filter

fw [He | P, P, P,
2500 | 14.45% | 20.46% | 38.25%
3000 | 12.02% | 16.69% | 35.26%
3500 | 10.04% | 16.41% | 31.32%
1000 | 9.02% | 15.81% | 30.27%

fsw [Hz] by %Pn %Pn
2500 14.36% | 16.81% | 31.32%
3000 10.88% | 18.42% | 35.43%
3500 10.8% | 16.64% | 32.9%
4000 8.5% 12.4% | 25.35%

Table 3.9: Grid current THD with varying load when using an LCL filter
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Table 3.10: LCL filter versus L filter

Effectiveness factors | LCL Filter | L filter
Inw(A) 0.03 0.11
PF ~ 1 ~1

AV [V] ~ 0.55 ~ 0.63

n 96.8 % 98.77 %

ence of the filter capacitor of the LCL filter reduces the harmonic current by
roughly a third compared to the system with the L filter, as displayed in Ta-
ble |[3.10] Further, for both filters, unity power factor is achieved, as depicted
in Table In addition, it can be seen that for both L and LCL filters, the
average absolute DC link voltage errors (AVg) are inferior to one, as shown
in Table [3.10] Moreover, when neglecting the losses in the voltage-source con-
verter, the overall efficiency of the system using the L filter is slightly better
than that of the system using the LCL filter due to the presence of the damping
resistor, as shown in Table [3.10

3.6.2 Performance of the system (with LCL filter)
under full load conditions

The results in Figure [3.15]and Figure were obtained by running the grid-
connected VSC under rated load conditions. It can be seen from Figure
and Figure that the presence of the filter capacitor helps in the miti-
gation of harmonics in the converter current. In addition, it can be seen from
Figure that the unity power factor is achieved since the phase A cur-
rent and voltage start at the same point. The pattern of the DC link voltage

is shown in Figure

201

10

-10

=20

_%.42 0.425 0.43 0.435 0.44 _%.42 0.425 0.43 0.435 0.44
Time [s] Time [s]
(a) (b)

Figure 3.15: Test of VSC under rated operating conditions: l@‘ Phase A converter
current; phase A grid current.
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Figure 3.16: Test of VSC under rated operating conditions: @ phase A grid
current and voltage; and, @ DC link voltage.

3.6.3 Performance of the system (with LCL filter)
under change in grid voltage amplitude

The results in Figure [3.17] and Figure [3.18 were obtained by changing the am-
plitude of the grid voltage between t=0.5s and t=1s (from 1 pu to 0.8 pu),
as depicted in Figure [3.17(a) . It is worth noticing that the DC-link voltage
increases or decreases depending on the active power drawn from the grid with
regard to the load. Therefore, when the grid voltage magnitude decreases at
t=0.5 s, the power coming from the grid decreases while the load remains con-
stant. Hence, the DC-link voltage should decrease, as shown in Figure [3.17(b)|
at t=0.5s. But, the control algorithm increases the three-phase grid current,
instead, as depicted in Figure [3.18] in order to maintain the DC-link voltage
by providing the rest of the power needed to maintain the DC-link voltage as
the load remains constant. And when the grid voltage magnitude is back to
normal at t=1s, the control algorithm reduces the grid current, as shown in

0.5 1 15 2
Time [s] Time [s]

(a) (b)

Figure 3.17: Test of VSC under rated operating conditions: @ three-phase
grid voltage; and, @ DC link voltage.
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Figure 3.18: Three-phase grid current

Figure |3.18

3.6.4 Conclusion

The implementation of different modules of the control system of the GSC was
presented. Moreover, the design of the control strategy was presented. The
conventional design procedure of an LCL filter with a design example were
also presented.

Also, the design of the PI parameters was presented. Further, a compara-
tive study between the L filter and LCL filter in the grid-connected VSC was
conducted. It was found that the LCL filter perform slightly better than the
L filters for switching frequencies less than 5 kHz which is different at high
switching frequencies where the LCL filters outperform the L filters. The per-
formance of the overall system was also investigated with the discussed control
algorithm. It was shown that the presented control algorithm performs well
under dynamic operating conditions.
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Chapter 4

Rotor-Side Converter Control
System

4.1 Introduction

In this chapter, control strategies of the grid-connected DFIG and the stand-
alone DFIG system in WECS is discussed, and the design procedure of the PI
controller is discussed. The simulations under dynamic operating conditions of
the stand-alone DFIG system and grid-connected DFIG system are conducted
to verify the performance of the proposed control strategies.

4.2 Control Strategy of the Rotor-Side
Converter in Stand-Alone DFIG Systems

In stand-alone wind energy systems, keeping the voltage magnitude of the
point of common coupling (stator voltage magnitude) and frequency constant
become major issues since this system is connected directly to the load. Also,
the power quality in the stand-alone DFIG system is a major issue. How-
ever, the power quality issues are not discussed in this thesis. In this way, the
purpose of control strategy in the particular system presented here, is to main-
tain the voltage magnitude and the frequency constant regardless of the load
connected to the standalone system and a change in wind as long as the gener-
ated power is higher than the load. In order to achieve these goals, a cascaded
structure together with the field-orientation control theory (FOC) are used for
this control algorithm. The field-orientation vector diagram and the voltage-

orientation control diagram are depicted in Figure 4.1((b)| and Figure |4.1j(a)]
respectively.

The control algorithm of the stand-alone DFIG system is depicted in Fig-
ure It can be seen that first, the three-phase stator voltage, three-phase
stator current and the three-phase rotor current are measured. The position-

58
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Figure 4.1: Vector diagram: @ grid voltage-oriented control scheme; and, @
stator flux-oriented control scheme

ing of each sensor is depicted in Figure Since the stand-alone system is
not connected to a stiff grid, there is no need of a phase locked loop (when
using the VOC theory) or a stator flux angle calculation (when using the FOC
theory). Instead, a reference synchronous angular frequency is set by the user
depending on the operating frequency. Then, the stator angular angle of the
flux is deduced from the integral of the set value of the synchronous angular
frequency. Further, an encoder is used in order to measure the mechanical
rotor angle which is converted to its electrical equivalent using the number of
pair-poles. The three-phase parameters measured are then transformed into
a synchronous dqO-reference frame. It is worth noticing that the three-phase
rotor current is transformed into a synchronous dq0-reference frame using the
slip angular phase 0;, = 0, — 0,. The control algorithm makes use of the PI
controller. The transfer function of the PI used in this chapter is given by
Kpp + Kz)

PI(p) = (T’ (4.1)

where K, and K; are the proportional and the integral constant of the PI
controller, respectively. Besides, the standard PI controller, the anti-windup
algorithm and limitation of the output of the PI controller are also applied as
shown in Section in order to avoid the saturation converter and current
flowing in the system beyond the rated electrical parameters.

The set value of the stator voltage magnitude is compared to the measured
stator voltage magnitude obtained by the square root of the sum of the square
of the d-axis stator voltage and the square of the g-axis stator voltage, as
shown in Figure The error of the stator voltage magnitude is the input of
the outer PI controller. The output of the outer PI controller is the reference
d-axis rotor current, as depicted in Figure [£.2] The reference d-axis rotor
current is then compared to the d-axis rotor current then inputted to the
inner PI controller. The reference d-axis rotor voltage is obtained form the
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Figure 4.2: Control strategy scheme of the rotor side converter for stand-alone
DFIG system

subtraction of the output of the PI controller by the compensation terms, as
shown in Figure [4.2]

On the other hand, the reference g-axis current is chosen so as to force the
d-axis flux linkage to aligne along the d-axis of the synchronous dq0-reference
frame. This choice of g-axis reference current implies that the control algo-
rithm chosen cannot achieve the maximum power point tracking (MPPT).
The reference g-axis rotor current is then compared to the measured g-axis
then inputted to the inner PI controller. The output of the PI controller is
then added to the compensation terms as depicted in Figure to obtain the
reference g-axis rotor voltage.
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Both the reference d-axis and g-axis rotor voltages are then transformed
into the af0-reference frame. These reference a-axis and [-axis rotor voltage
quantities are inputted to the SV-PWM function in order to obtained the
actuating signals. The SV-PWM implementation is discussed in Section

4.2.1 Inner Rotor Current Control

The expressions of the three-phase rotor voltage into the synchronous dq0-
reference frame are given by

’

’oa d ’
Upg = errd + Ewrd - (WS - wr)¢rq (42)

and p
U;’q - R;Z;q + Edj;q + (ws - wT')qu)v/"d (43)

The expressions of the rotor flux linkages into the synchronous dq0-reference
frame are given by

wrd - LTird + Lmisd (44)
and

Ury = Lyivg + Linisg. (4.5)

The expression of stator flux linkage space vector into the synchronous dq0-
reference frame is given by

wsd = Lsisd + Lmz;d = Lmisma (46)
and
¢sq - Lsisq + Lmirq‘ (47)

In Equation (4.6)), ims is the magnetising current. Aligning the d-axis flux
linkage 154 along the d-axis of the synchronous dqO-reference frame implies
that Equation (4.7) becomes

2ﬂsq =0. (48)
Rewriting Equation (4.8) in terms of g-axis rotor current yields
. Lm J
isqg = — I g (4.9)

Substituting Equation (4.4)-(4.8)) into Equation (4.2)) and Equation (4.3)) to-

gether with replacing % with the Laplace operator p yields

U;d _ Z;d L' Z;d _ _O-L;"Z;"q 4.1
o i 8 e A [aL;z-;dw;:zms o

rq
- /

A vV
Plant Feed-forward compensation terms
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’

rdq 18 the d-axis and g-axis

’ . . .
where v, are the d-axis and q-axis rotor voltage; ¢

L2, . . .
rotor current; o = 1 — -2~ is a constant; and, w, is the electrical rotor angular

speed. From Equations, the plant and the feed-forward compensation

terms can be deduced. The transfer function of the inner PI controller is given

by

’ Krcp + Krci ./ .
(F ) @ = ) (4.11)

where K. and K, are the proportional and integral constant of the inner PI
controller.

4.2.1.1 Design of the Inner Rotor Current PI Parameters

The PI controller transfer function can be rewritten as follows;

PI(p) = w (4.12)

p

where ¢ = ;((L The closed loop of the inner current controller is depicted in

Figure The transfer function of the plant is given by

K
Kty

Hpe(p) (4.13)

where K and K, are the parameters of the plant. By choosing ¢ as shown

below
¢ = K, (4.14)

the open loop transfer function becomes

KKrcp

Hy(p) = (4.15)
p
The closed loop transfer function for negative feedback is given by
Hy (p)
H,(p) = —2 2. 4.16
l(p) 1+H01(p) ( )

PI controller Plant

i .
rdq ] K.,,cp(p-i-ci) K zT‘dq

Figure 4.3: Block diagram of the inner rotor current loop
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Hence, substituting Equation (4.15)) into Equation (4.16]) implies that the close
loop transfer function is given by

KKrcp

Hep) = ——2—.
V= R 1

(4.17)
Since the closed loop transfer function of the inner current controller is a first
order transfer function as shown in Equation (4.17), the bandwidth is given
by

We = KKrcpa (418)
where w, is the bandwidth of the closed loop transfer function. The relationship

between the rising time and the cross over frequency for a first order transfer
function is given by

e = , 4.19
e == (4.19)
where ¢, is the rising time which should be chosen as

t, = 0.01s. (4.20)

Substituting Equation (4.18)) into Equation (4.19) yields

In(9)

Koy = 1 d), 4.21
)= 1+ %) (4.21)

where %d is added so as the required rise time is achieved. Then, knowing
the expression of the proportional constant K,. and c¢;, the expression of the
integral constant of the inner PI controller is given by

Kr‘ci = Krcpci- (422)

4.2.2 QOuter Stator Voltage Amplitude Control

As mentioned above in Section the aim of the control strategy is to main-
tain the stator voltage magnitude and the line frequency. The expression of
the stator voltage space vector into the synchronous dqO-reference frame is
given by

Vsd = Rglsa + %%d — Wstsq (4.23)
and J

Vsg = flstsg + 2 ¥sa + Wsthsa- (4.24)
In order to force the d-axis flux linkage space vector to be aligned along the

d-axis synchronous dqO-reference frame, one can make use of Equation (4.8)
by setting the reference g-axis rotor current, as shown below;

Jref
ZT'q = L—qu.
s

(4.25)
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Again, from Equation , it can be seen that in the stand-alone DFIG
system, the maximum power power point tracking is not achieved since the
g-axis rotor current depends essentially on the g-axis stator current, and here
it is used to guarantee the field-orientation control theory. Substituting Equa-
tion into Equation and Equation (4.24]) and neglecting the stator
resistance yields

Vg = 0 (4.26)

and
Vsg = WsWPsd- (4.27)

Substituting Equation (4.6 into Equation (4.27)) yields
Vsg = Ws(Liisqg + Linig) = WsLunism. (4.28)

By assuming that the magnetisation of the DFIG comes from only the rotor
side of the DFIG implies that the magnitude of the rotor voltage is totally
dependent on the d-axis rotor current. Using Equation and Equa-
tion (4.27), the peak magnitude of the stator voltage is given by

Vsm = 1/ V2 + V2, R Vg, (4.29)

where vy, is the peak magnitude of the stator voltage.

4.2.2.1 Design of the Outer PI Parameters

From Equation (4.29) and Equation (4.28]), the transfer function of the outer
control loop is deduced. This transfer function is given by

Vsm
pv(p) = = wsLm' (430)

Hence, as it is shown in Figure the transfer function of the open loop
considering the inner current control loop is given by

Krvp(c'u +p) KKrcp H
p KKy +p ™7

Hopo(p) = (4.31)

PI controller Current loop  Plant

U;ilf Krop(ptco) Usm
D H, Hy, (P)

Figure 4.4: Block diagram of the voltage control loop
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where K,,, and ¢, = ?“ are PI parameters. similar approach is used for the
design of the PI controller used in Section [£.2.1.1] When choosing ¢, = KK,
yields that the outer open loop power controller is given by

In(9)
K. ——(1 d 4.32
TUp — tKKGCH ( +% )7 ( 3 )
and
Krvi = DNpypCy- (433)

It is important to notice that for the outer PI controller, it is better to choose
the rising time given below;
t, =0.1s. (4.34)

Once the design of the outer PI controller parameters is finished, one can use
MATLAB for the tuning of the outer PI parameters.

4.3 Control Strategy of the Rotor-Side
Converter in Grid-connected DFIG
Systems

Since the inner current control loop for both stand-alone and grid-connected
DFIG systems are similar, the inner current control is not discussed in this
section. The control strategy for the grid-connected DFIG system is depicted
in Figure The cascaded control structure with PI controller is chosen with
the inner current controller and outer control loop with the regulation of stator
active and reactive power.

Py,

Pmax

Pmin

0 Wimin Wrated Weutout Waind

Figure 4.5: Mechanical power versus wind speed



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ROTOR-SIDE CONVERTER CONTROL SYSTEM 66

The chosen control structure is similar to that chosen in Section It
can be seen that the three-phase stator voltage, the three-phase rotor cur-
rent, three-phase stator current are measured, as shown in Figure [£.6] The
rotor parameters( the three-phase rotor current is then referred into stator
quantity using the turn-ratio n). There are two popular way of orienting the
synchronous dqO-reference frame. These are the FOC and the VOC. In the
FOC, the three-phase stator voltage and current are transformed into the a50-
reference frame in order to calculate the stator flux linkage angle. The stator
flux linkage space vector transformed into the aS0-reference frame is given by

wsa = /(Usa - Rsisa) (435)

and
wsﬁ = /(Usﬁ - Rsisﬁ>7 (436)

where 15, and 1,5 are the o-axis and the g-axis stator flux linkage; vy, and
Usq are the a-axis and [-axis stator voltages; i5, and isp are the the a-axis and
the [-axis stator currents; and, R, is the stator resistance. The flux linkage
angle is calculated using Equation and Equation (4.36)). The flux angle
is given by

6, = arctan (igﬁ), (4.37)

s«

where 6, is the stator flux linkage angle. However, the FOC is not used in this
thesis.

However, in this thesis, the voltage-oriented control along the g-axis of
the dqO-reference frame is used. Hence, the use of the phase locked loop
is necessary. The implementation of the phase locked loop is discussed in
Section The only difference is that the grid vector angle is to be used.
The grid voltage angle is given by

T
s =0, + 5 (4.38)
where 6, is the angle when aligning the stator voltage space vector along the
g-axis of the synchronous reference frame. Since the VOC is used, the stator
active power is proportional to the g-axis rotor voltage and the stator reactive
power depends on the g-axis rotor voltage, as will be seen below.

The reference generation of the stator active power is done following the
MPPT algorithm. In this control strategy only region II as shown in Figure [4.5
is considered. So, no pitch control is activated. Hence the reference active
power is deduced from the rotor speed (wind speed). The reference stator
active power is given by

Pret = kppw?, (4.39)
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where k,,; depends on the characteristics of the wind turbine. The reference
stator reactive power is deduced using the chosen stator power factor. Hence
the reference reactive power is given by

1 — cos? qﬁpref

Qrl = (4.40)

cos ¢ s
where cos ¢ is the stator power factor. As mentioned above the control strat-
egy make use of two loops (inner and outer), with the outer loop regulating
the power and the inner loop regulating the current as shown in Figure [4.6]
Depending on the operating condition ( stator power factor and wind speed),
the references of the active and reactive powers are calculated and compared to
the measured stator active and reactive powers. The stator active and reactive
powers can also be approximated using Equation (4.43]) and Equation (4.44)).
Then the outputs of outer PI controllers are the reference g-axis rotor current
and the reference d-axis rotor current, respectively. The inner rotor current
control of the RSC in grid-connected DFIG systems is similar to that discussed
in Section 4.2.11

4.3.1 Outer Power Control

The orientation of the q-axis synchronous reference frame along the stator
voltage space vector is similar to the alignment of the synchronous d-axis
reference frame along the flux linkage space vector since aligning the stator
voltage along the synchronous q-axis reference frame means that v,y ~ 0 and
sq = 0. Using Equation (4.8) implies that the g-axis stator current can be
written as an expression of the g-axis rotor current as shown below;

Ly, .

g = —F g (4.41)

The expression of the stator active power is given by

3 . .
Ps = é(vsdzsd + Ustsd)' (442)

Substituting Equation (4.29), Equation (4.41]) and Equation (4.26)) into Equa-
tion (4.42) yields

3L, Y 3L, y
P, = —§L—S(Usq%«q) ~ —§L—S(Usm"rq)- (4.43)

It can be seen from Equation (4.43) that the stator active power is directly
proportional to the g-axis rotor current. On the other hand the stator reactive
power is given by

3 , .
Qs = i(vsqzsd - vsdzsq)- (444)
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Figure 4.6: Control strategy scheme of the rotor side converter of the grid-
connected DFIG system

Rewriting Equation (4.6)) in order to have an expression in terms of the d-axis
stator current yields

. 1 y
tsa = 7~ (Ysa = Lintyq)- (4.45)
Substituting Equation (4.26) and Equation (4.45)) into Equation (4.44) yields
3L, Vsqg 4 3L, Vsq s
Qs - 2L5 Usq(m - Zrd) ~ 2Ls vsm(m - Zrd)‘ (446)

Assuming that the d-axis stator flux linkage is constant, it can be seen from
Equation (4.46), that the stator reactive power depends on the d-axis rotor
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Figure 4.7: Block diagram of the voltage control loop

current.
From Equation (4.42) and Equation (4.46)), it can be seen that both the ac-
tive and reactive powers hold the same transfer function. The transfer function

of the outer power control is given by
3L,
pr(p) = 2L Usq- (447)

The outer power control loop is displayed in Figure 4.7 The design of the
parameters of the PI controllers is done in similar manner as in Section [4.2.2.1
by just replacing H,,(p) with H,,(p).

4.4  Analysis and Simulation of a Stand-alone
DFIG System in WECS

The simulation in stand-alone DFIG system is conducted in MATLAB/SIMULINK.
The start-up of the DFIG system in stand-alone system is not considered in
this thesis. The machine parameters are displayed in Table The parame-
ters of the PI controllers are depicted in Table The SIMULINK model of

the stand-alone RSC is displayed Section [E.3]

Table 4.1: PI parameters

Inner rotor current PI controller values

Ko 0.87

Ky 464
Outer stator voltage amplitude PI controller | values
K 0.0062

K 109

4.4.1 Super-Synchronous Operating Mode

Figure Figure Figure [4.10| and Figure were obtained by applying
a constant speed of 1576 rpm, as shown in Figure The stand-alone

DFIG system was connected to a balanced resistive load of 13 kW.
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Figure 4.8: Testing of a stand-alone DFIG system at super-synchronous speed: @
measured mechanical shaft speed; and, @ measured three-phase rotor current.
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Figure 4.9: Testing of a stand-alone DFIG system at super-synchronous speed: @
measured three-phase stator current; and, @ measured stator voltage magnitude.

The rotor current is pulsating at slip frequency f,. = 2.52 Hz and the sta-
tor current is pulsating at fs = 50 Hz as depicted in Figure |4.§(b)| and Fig-
ure(4.9(a)| respectively. One of the aims of the control algorithm in stand-alone
system is to maintain the frequency constant since the stand-alone system is
not connected to a stiff grid. Furthermore the stator voltage magnitude is kept
at a voltage amplitude of roughly Vj,, = 230 V, as shown in Figure Ac-
cording to the IEEE standard 519-2014 where the voltage magnitude should
be at the range of more or less 5 % of the rated voltage magnitude.  The
three-stator voltage pattern is illustrated in Figure |4.10(a)| where it can be
seen that the envelope of the three-phase stator voltage remains constant, and
as expected since the stator magnitude voltage is constant as depicted in Fig-
ure [4.9Y(b)l Also, from Figure 4.10(b)| obtained by zooming in the three-phase
stator voltage, it can be noted that the three-phase stator voltage is pulsating
at fs = 50 Hz. Since the stand-alone system is connected to a resistive load it
can be seen from Figure that the stator current and voltage start at the
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Figure 4.10: Test of a stand-alone DFIG system at super-synchronous speed : @
Measured three-phase stator voltage ;@Measured three-phase stator voltage.
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Figure 4.11: Three-phase stator current

same point which means that the unity power factor is achieved.

4.4.2 Sub-Synchronous Operating Mode

In sub-synchronous mode as can be seen in Figure 4.12(a), the DFIG runs at
Q,,, = 1200 rpm. The envelope of the three phase rotor current and that of the
current voltage remains constant since there is no change in load, as depicted

in Figure |4.12(b)|and Figure In addition, the stator voltage frequency
is kept at 50 Hz as shown in Figure The stator voltage magnitude
remains constant as set by the control algorithm, as shown in Figure [4.12(d)

As can be seen in Figure 4.12(d)| the three phase voltage envelop is kept
constant in Figure [4.13(a)l Figure [4.13|(b)| was obtained by zooming in the

three-phase stator voltage in order to see its frequency which is at fs = 50 Hz.
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Figure 4.12: Testing of stand-alone DFIG system at sub-synchronous speed: @
measured mechanical shaft speed; @ measured three-phase rotor current; |(¢)| mea-
sured zoomed three-phase rotor current; and, @measured stator voltage magnitude.

Again, since the load is resistive, the stator voltage and the stator current
should start at the same point, as is shown in Figure [4.14(a)l The three-
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Time [s]
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Figure 4.13: Testing of stand-alone DFIG system at sub-synchronous speed : @
measured three-phase stator voltage ;@ measured zoomed three-phase stator volt-
age.
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Figure 4.14: Testing of a stand-alone DFIG system at sub-synchronous speed: @
measured stator phase A voltage and current; @ measured zoomed three-phase
rotor current.

phase rotor current is pulsating at slip frequency of f,. = 8.5 Hz as shown in

Figure [14(D]

4.4.3 Steady Change in Rotor Shaft Speed

Figure 4.15| was obtained by steadily varying the mechanical shaft speed from
1715 rpm to 1257 rpm, as shown in Figure[d.15(a)l Tt can be seen that the mag-
nitude voltage remains constant regardless of the change in speed, as depicted
in Figure |4.15(b)l Concerning the three-phase rotor current, it can be seen in
Figure 4.16((a), that it slows down near the synchronous speed as its frequency
results from the difference of the stator frequency and the electrical mechani-
cal frequency. The three-phase stator current envelop remains constant even
if the speed changes from super-synchronous speed to sub-synchronous speed,

as illustrated in Figure [4.16(b)|
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Figure 4.15: Testing of a stand-alone DFIG system at sub-synchronous speed:
@neasured mechanical shaft speed; and, @ measured stator voltage magnitude.



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. ROTOR-SIDE CONVERTER CONTROL SYSTEM 74

10 ; ; ; ; 10

50r

© IO .- -
n'lmtt'6't'&"'&"’H’t’t’t’t’t’t’tu't’fumn _

(a) (b)

Figure 4.16: Testing of a stand-alone DFIG system during steady change in
speed: measured three-phase rotor current; and, measured three-phase stator

current.

4.5 Simulation of a Grid-Connected DFIG
Systems in WECS

The simulation in grid-connected DFIG system is conducted in MATLAB/SIMULINK.
The machine parameters are displayed in Table [B.6] The parameters of the

PT controllers is are depicted in Table 4.2l The SIMULINK model of the
grid-connected RSC is displayed Section [E.4]

Table 4.2: PI parameters

Inner rotor current PI controller values
Ko 0.89
K, 3.04534
Outer stator voltage amplitude PI controller | values
K, pp 0.0727
Kopi 17.54

4.5.1 Performance of the WECS under Steady Wind
Speed Change

The performance of the WECS under constant power factor (cos ¢ = 0.8 lag-
ging) together with the steady wind speed change is depicted in Figure m
and Figure [4.18 The WECS starts with a wind speed of 7.6 m/s and it op-
erates under constant stator power factor, as shown in Figure 4.17(a)| and
Figure 4.17(b)l The corresponding MPPT mechanical shaft speed set point of

the generator is at 860 rpm, as shown in Figure [4.18(a)
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Figure 4.17: Test of WECS under steady wind speed change: @ wind speed; and,
@ stator power factor.

The DFIG operates under sub-synchronous operating conditions. At this
speed (€2, =875 rpm), when the DFIG starts, there is a short transient period
before the stator and rotor powers settle to the steady-state values correspond-

ing to the MPPT, as shown in Figures 4.1§(b)H(d)|and Figure 4.19(a). These
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Figure 4.18: Test of WECS under steady wind speed change: @ Mechanical shaft
speed; @ stator active power; stator reactive power; and, @ rotor active power.
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Figure 4.19: Testing of the WECS under steady wind speed change: @ reactive
rotor power; @ three-phase rotor current; three-phase stator current; and, @
three-phase stator current.

transient patterns of the generated stator active and reactive powers lead to
a surge of the stator power factor before it settles at a steady-state value of
cos ¢ = 0.8 (lagging), as shown in Figure [4.17(b)l After the transient period,
the generated active power and reactive powers are 15.5 kW and 11.6 KVar, re-
spectively. On the rotor side, the active and reactive powers consumed by the
DFIG are -7.5 KW and -2.5 KW. Between t = 3 s and t = 6 s, the wind speed
varies from 7.6 m/s to 10.2 m/s. The WECS operates from sub-synchronous
to super-synchronous operating conditions. During that period, the stator ac-
tive and reactive powers increase since they are directly proportional to the

wind speed as depicted in Figure 4.18(b)| and Flgure 4.18(c)l Similar patterns

are observed from Figure [4.18(d) and Figure 4.19(a)| as the rotor active and
reactive powers are portions of the stator actlve and reactive powers, respec-

tively. In addition, one can see from Figure 4.19(b)| that the rotor current
frequency slows down around the synchronous speed as the slip eventually be-
comes zero and picks up again after the synchronous speed (€2, = 1000 rpm).
In addition, both three-phase rotor and stator current envelops increase since
the power generated by the DFIG increases due to the rise in wind speed, as

shown in Figure 4.19(b)|and Figure[4.19(c). The zoom on the three-phase sta-
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tor current is displayed in Figure where it can be seen that it pulsates
at 50 Hz.

At a wind speed of 10.2 m/s, the DFIG operates under super-synchronous
operating conditions. The corresponding mechanical shaft speed of the gen-
erator is at 1150 rpm. At this speed (€2, =1150 rpm), the DFIG generates
powers at the stator and rotor sides as can be seen from Figures
and Figure In addition, the stator active and reactive power gener-
ated by the DFIG are 35 KW and 26.2 KVar, respectively. On the other hand,
the rotor active and reactive powers generated by the DFIG are 10.2 KW and
6 KVar, respectively.

4.5.2 Performance of the WECS based on DFIG under
Change in Stator Power Factor

The performance of the WECS under change in stator power factor with steady
wind speed is depicted in Figure Between t = 0s and ¢ = 5, the

—cos* ¢ S
0.7] “COS O 1

0.6
0% 2 4 6 8 10 % 2 4 6 8 10
Time [s] Time 3]
(a) (b)
925 . . . . 3
20t
920t 10 (
= 20
S ~
915} -10|
_20.
910 2 4 6 8 10 35 2 4 6 8 10
Time [s] Time [s]

(c) (d)

Figure 4.20: Test of the WECS under steady wind speed change: l@‘ mechanical
shaft speed; stator active power; m stator reactive power; and, rotor active

power.
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Figure 4.21: Test of WECS under steady wind speed change: @ Reactive power;
and, @ three-phase rotor current.

DFIG operates with a reference power factor of 0.8 (lagging), as shown in
Figure 4.20(a)l After a few cycles, the measured stator power factor settles
to the reference stator power factor value, as shown in Figure 4.20(a)l During
the test, the WECS operates with a wind speed of 8.2 m/s, as shown in Fig-
ure{d.20(b)l At this speed, the stator active and reactive powers are 18 KW and
13.5 KVar, as depicted in Figure [4.2(J(d)| and Figure while the DFIG
consumes power from the rotor side as depicted in Figure [1.22] The three-
phase rotor current pulsates at a constant slip frequency of 4.15 Hz since the
mechanical shaft speed of the DFIG is constant, as displayed in Figure .

At t = 5s, there is a step change in reference stator power factor (from
cos* ¢ = 0.8 to cos* ¢ = 1). The measured stator power factor settles to the
reference stator power factor after a few cycles, as displayed in Fig. |4.20(a)|
The generated stator power remains constant, since it depends exclusively on
the wind speed. The generated stator reactive power settles to zero after a few

2 95
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Figure 4.22: Test of WECS under steady wind speed change: @ reactive power;
and, @ three-phase rotor current.
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cycles since the DFIG operates under unity power factor. As a consequence the
three-phase current drops slightly at t = 5 s, as shown in Fig.[4.21}(b)l Further,
the rotor active and reactive power reduces since the d-axis current is set to
zero in order to achieve a unity power factor, as displayed in Figure

and Figure [4.22(Db)

4.6 Conclusion

The control strategies of stand-alone and grid-connected WECS based on the
DFIG were designed and implemented in MALAB/SIMULINK. It is shown
that the performance of those control strategies under various operating con-
ditions are satisfactory. In grid-connected mode, the power regulation and that
of the unity power factor were satisfactory. In stand-alone mode, the voltage
and frequency stability was guaranteed under various operating conditions.
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Chapter 5

Laboratory Experiments of the
Grid-Connected RSC

5.1 Introduction

In this chapter, the DFIG test bench is described. Further, the inner controller
of the control strategy discussed in Section is implemented. It is worth
noticing that all modules of the control system discussed in Section have
been coded from scratch in LabVIEW. Furthermore, the performance of the
inner current control under various operating conditions is investigated.

5.2 DFIG Test Bench Description

The DFIG test bench is composed of the 18.5 KW DFIG directly coupled to
a 22 KW induction machine as depicted in Figure The 22 KW induction
machine helps in emulating the wind turbine. An encoder is fixed on the shaft
of the 22KW induction machine. A torque sensor is mounted on the 22 KW
induction machine, as depicted in Figure 5.1l The test bench is also composed
of two VSCs connected in back-to-back configuration as shown in Figure [5.2]
Also, these are the rotor-side converter and the grid-side converter, as shown
in Figure [5.2] Each VSC includes IGBT power switches and their associated
protections, the current sensors, the DC-link voltage sensor and a three-phase
diode rectifier. The AC side of the rotor-side converter is directly connected
to the rotor windings of the DFIG whilst the stator windings of the DFIG
is connected to the point of common coupling. The AC side of the grid-side
converter is connected to the grid through an L filter in order to mitigate the
harmonics generated by the switching elements of the grid-side converter. The
design of the physical L filter is discussed in Appendix [C]

The basis of the DFIG test bench is the National Instrument (NI) PXIe-
8115 embedded real-time controller. Two FPGA expansion modules are used

80
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Induction machinﬂe i 1

Figure 5.1: Picture of test bench with the Induction machine and DFIG

to input and output signals into or from the real time controller. These signals
are the measurements (encoder measurement, torque sensor, current sensors,
DC-link voltage sensors and grid voltage sensors) and the PWM signals. The
host PC monitor is used for the development of the virtual instruments (VIs)
that are executed on the PXIe-8115 embedded real-time controller. A picture
of the host PC monitor is displayed in Figure[5.2] The user codes for the control
purposes are written and compiled using LabVIEW. LabVIEW is a platform

L

Back-to-back converter

= fost PC|

Figure 5.2: Picture of test bench
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for the development of the software for the (NI) PXIe-8115 controller. The
user codes are added to the main VI as subVIs. LabVIEW figures showing the
control strategy are given in Appendix [D}

5.3 Experimental Test of the RSC

The test set-up of the conducted experimental test is depicted in Figure It
can be seen that the grid is directly connected to a three-phase diode rectifier.
The presence of the three-phase diode rectifier implies a unidirectional power
flow from the grid to the rotor side of the DFIG. Therefore, in this experiment
only the sub-synchronous mode and the synchronous operating conditions are
described. The DC side of the three-phase diode rectifier is connected to the
VSC through the DC-link capacitor of 500 uF.

On the other hand, the induction machine is connected to a variable fre-
quency AC drive, as depicted in Figure The speed of the induction machine
is regulated through the AC drive. The stator of the DFIG is connected to a
three-phase variable-source through a switch, as depicted in Figure [5.3| By de-
fault this switch is open. It is closed only when the synchronisation conditions
are fulfilled.

The needed measurements for the control algorithm are the three-phase

AC drive K Variac
AC /
AC \
Rectifier
Encoder Y 7 vga AC
— © rid
V:gb \ g
A 'Ugc =
400 V
ira Ve
| NI PXIe [
ol o815 [

Figure 5.3: Schematic of the RSC set-up
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grid voltage measurement; the three-phase rotor current measurement, the
mechanical shaft speed measurement and the DC-link voltage measurement.
The locations of these sensors are depicted in Figure All the measurements
are inputted to the PXIe-8115 controller, as depicted in Figure [5.3

5.3.1 Measured Rotor, Grid and Slip Angles

In vector control, the angle of the synchronous reference frame is of all im-
portance. The PLL is used in the calculation of the grid voltage angle. The
three-phase diode rectifier is connected directly to the grid. The implementa-
tion of the PLL is discussed in Section and its implementation in LabVIEW
is depicted in Appendix [D] The measured line-to-line three-phase grid voltage
is shown in Figure It can be seen that this line-to-line three-phase grid
voltage pulsates at 50 Hz. The line-to-neutral voltage angle (6,) is determined

by -
91} == 0“ - g (51)

where 6;; is the line-to-line voltage angle. The line-to-line grid voltage angle
and the line-to-neutral grid voltage angles are shown in Figure . From
Figure it can be seen that the line-to-line grid voltage angle is lagging
compared to the line-to-neutral grid voltage angle. Also, one can see that
those two angles are pulsating at a frequency of about 50 Hz. In the control
strategy proposed in Section the g-axis of the synchronous dq0O-reference
frame is aligned along the grid voltage grid space vector. The line-to-neutral
grid voltage angle calculated by the PLL assumes the alignment along the
d-axis dqO-reference frame along the grid voltage space vector. Hence, the
synchronous angle (6;) is given by

s
1
600
400k T 5
=N
= 200 =
< 0
-200 —,
\/ — 0
—a00
01 012 014 016 018 02 01 0.15 02 0.25 03
Time [s] Time s
(a) (b)

Figure 5.4: Performances of the implemented PLL: m three-phase grid voltage;
and, @ line-to-line voltage and line-to-phase voltage angles.
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Figure 5.5: Performances of the implemented PLL: @ Line-to-phase voltage and
synchronous angles; and, @ d-axis and qg-axis grid voltages.

The synchronous angle and the line-to-neutral voltage are shown in Figure[5.5(a)|
The d-axis and g-axis grid voltages are presented in Figure |5.5(b)l It can be
seen that the g-axis grid voltage is about 220 V and the d-axis grid voltage is
zero. This shows that the implemented PLL works perfectly.

On the other hand, when the DFIG is run at synchronous speed the mea-
sured mechanical shaft speed is presented in Figure 5.6(a)l It can be seen
from Figure [5.6(a)| that the measured mechanical shaft speed is not properly
measured by the encoder. Hence, there is a need of filtering the measured me-
chanical shaft speed. The measured DC-link voltage is shown in Figure [5.6(b)|

Consider the transfer function of a first order filter as given below;

ylp) 1
u(p) 14 pTy’

(5.3)

where y(p) and u(p) are the output and input of the filter; T is the filter time

2000,

1800

1600

Q,, and Q,, f [rpm)]

15 2 25 3
Time [s] Time [s]

(a) (b)

Figure 5.6: Measurement from the test bench: @ Mechanical shaft speed and
filtered mechanical shaft speed; and, @ measured DC-link voltage.
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Figure 5.7: Performances of the slip angle and rotor angle modules: l@‘ rotor angle;
and, slip angle and filtered slip angle.

constant. Rewriting Equation (5.3) in terms of time and using the backward
Euler theorem yields

Y = aYp—1 + buy, (5.4)
where y, and wu, are the input and output of the filter at time tx; y,_1 is the
output of the filter at ¢;,_q; and,a = % and b = Tf% The implementation

of the filter in LabVIEW is straightforward by using a shift register in a while
loop. The time constant is determined by choosing the cut-off frequency.
The filtered mechanical shaft speed is shown in Figure |5.6(a)l It can be seen
that even the filtered mechanical shaft speed still fluctuates. Hence, during
synchronous operating conditions it is necessary to filter the slip angle due to
the fact that the slip angle depends on both the synchronous angle and the
electrical rotor angle which in turn depends on the mechanical shaft speed.

The expression of the electrical rotor angle is given by

t
6, — / wndt, (5.5)
0

By discretising the expression in Equation (5.5) using the backward Euler
theorem yields

erk = erkfl + Tswm (56)
where 6, and 6, are the electrical rotor angle at time ¢, and t,_1, respec-

tively. Again, in LabVIEW, the implementation of such an expression is done
using a shift register in a while loop.

The expressions of the rotor angle and that of slip angle presented in Fig-

ure [5.7(a)| and Figure |5.7(b)| were calculated when the DFIG was running at

nearly synchronous speed. It can be seen that the electrical rotor angle pulsates
at about 50 Hz, as depicted in Figure [5.7(a)
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Figure 5.8: Transient Performances of the filter modules: @ filtered and measured
mechanical shaft speeds; and, @ slip angle and filtered slip angle.

The performance of the implemented filters (for the mechanical shaft speed
and that of the slip angle) during change in mechanical shaft speed are shown
in Figure [5.8(a) and Figure [5.8(b)l Both figures were obtained by varying the
mechanical shaft speed from 1350 rpm to 1500 rpm. From Figure [5.8(a)| Tt
can be seen that the measured mechanical shaft speed fluctuates more at a
speed of 1500 rpm leading to the fluctuation of the filtered mechanical shaft.
On the other hand, the filter of the slip angle was designed to be activated only
when the DFIG is about to operate under synchronous operating conditions.
At about t=19.5 s, This special feature of the filter of the slip angle is shown

in Figure [5.8(b)|

5.3.2 Testing of the inner rotor current control during
synchronous operating conditions

The DFIG parameters were determined in order to design the PI parameters
of the control system. The determination of the DFIG parameters is discussed
in Appendix[Bl The implementation of the PI in LabVIEW is discussed in Ap-
pendix [A] The PI parameters of the inner controller are displayed in Table [5.1]
The testing of the set-up displayed in Figure [5.3|is conducted when the DFIG
system is not connected to the grid.

Table 5.1: Inner PI parameters

Inner rotor current PI controller | values
Kep 7.49
K, 399.6

Figure [5.9 and Figure [5.10| were obtained by running the DFIG at syn-
chronous speed and adjusting the reference d-axis and g-axis rotor currents,



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. LABORATORY EXPERIMENTS OF THE GRID-CONNECTED
RSC 87

[er]

2000,

1800

1600

— i
—Urdref

irares and i.q [A]
D

Q,, and Q,, f [rpm)]

lOOCO Ol 1I.5 2 2I.5 3 3I.5 4
Time [s] Time [s]
(a) (b)

Figure 5.9: Testing under synchronous operating conditions: @ filtered and mea-
sured mechanical shaft speeds; and, @reference and measured d-axis rotor currents.

as presented in Figure [5.9(b){and Figure [5.10(a)l The mechanical shaft speed
used in the control system is the filtered mechanical shaft speed, as presented
in Figure |5.9(a)l The d-axis and g-axis rotor currents were adjusted to 4.8 A
and 0 A respectively, as can be seen in Figure |5.9(b)[ and Figure [5.10(a)l The
adjustment aims at reaching a line-to-line stator voltage of 150 V. The three-
phase rotor current is presented in Figure [5.10[(b)l It can be seen that the
three-phase rotor current pulsates at a slip frequency of 0 Hz. This confirms
the theory concerning the three-phase rotor current of the DFIG under syn-
chronous operating conditions. Exciting the rotor windings with the d-axis and

g-axis rotor currents presented in Figure [5.9(b)| and Figure [5.10(a)| induces a

three-phase stator voltage, as shown in Figure [5.11]

irgreg and ipq [A

1 1.5 2 2.5 3 35 4
Time [s] Time [s]

(a) (b)

Figure 5.10: Testing under synchronous operating conditions: @ reference and
measured g-axis rotor currents; and, @ three-phase rotor current.
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Figure 5.11: Three-phase stator voltage

5.3.3 Testing of the inner current control during
sub-synchronous operating conditions

Figure and Figure [5.13] were obtained by running the DFIG at about
1350 rpm, as depicted in Figure [5.12(b); and by setting the d-axis current
and g-axis current to 4.8 A and 0 A, as shown in Figure [5.12(a)l In addition,
one can see from Figure |5.12(b)| and Figure [5.13(a)| that the control system
shows good performances when it comes to tracking the d-axis and g-axis
rotor currents. Further, a closer look at Figure [5.13(b)| one can see that
the frequency of the three-phase rotor current correspond to that of the slip
frequency (fqi, = 5 Hz). The three-phase rotor current pulsates at a slip
frequency of 5 Hz. This confirms the theory about the rotor current that

suggests that the three-phase rotor current in a DFIG should pulsate at slip
frequency.

irgrey and 4,4 [A]

16 17 18 19 20 21
Time [s]

(b)

Figure 5.12: Testing under sub-synchronous operating conditions: @ﬁltered and

measured mechanical shaft speeds; and, @ reference and measured d-axis rotor
currents.
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Figure 5.13: Testing under sub-synchronous operating conditions: @ reference and
measured g-axis rotor currents ; and, @ three-phase rotor current.

5.3.4 Testing of the inner current control during change
in mechanical wind speed

Figure and Figure were obtained by steadily varying the mechanical
shaft speed from 1350 rpm to 1500 rpm together with the d-axis and g-axis
rotor currents set at 2.4 A and 0 A, as presented in Figure |5.14(a)| and Fig-
ure 5.15(b)l From Figure 5.14(a)}, it can be seen that the DFIG reached the
synchronous speed at about 19.5 s. It can be seen from Figure[5.14{(a)|and Fig-
ure [5.15(b)| that the inner rotor current control helps in tracking the reference
d-axis and g-axis rotor currents set by the user.

On the other hand, the three-phase rotor current is shown in Figure [5.15(b)
It can be seen from Figure [5.15(b)| that as the mechanical shaft speed ap-
proaches the synchronous speed, the three-phase rotor current slows down.
Furthermore, at about t=19.4 s, the DFIG runs at about the synchronous

[63]

Q,, and Q,,f [rpm]
irdrep and ipq [A]
o

|
a

6 17 18 19 20 21

Figure 5.14: Performances of the inner rotor controller modules: @ filtered and
measured mechanical shaft speeds; and, @ reference and measured d-axis rotor
currents.
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Figure 5.15: Transient Performances of inner rotor controller modules: @ Reference
and measured g-axis rotor currents; and, @ three-phase rotor current.

speed which means that the slip frequency is nearly zero. This also means
that the three-phase rotor current is a DC signal, as shown in Figure [5.15(b)}

5.4 Conclusion

A brief overview on the test bench was given in this chapter. In addition,
the performance of the inner rotor current despite that the measurement of
the encoder needed filtering was investigated. The implemented inner rotor
controller shows satisfactory performance. It is shown that the d-axis and ¢-
axis rotor currents are DC signals which means that there is a correct tracking
of the rotor angle. The inner current control helps for a soft connection to the
grid by the adjustment of the d-axis and g-axis rotor current as seen in this
chapter.



Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Conclusion and Future
Recommendations

6.1 Conclusion
Based on the findings in this thesis, the following conclusions can be drawn;

e The modelling of the the whole wind energy conversion system based on
the DFIG (DFIG, back-to-back converter, filter, wind turbine) was pre-

sented. It was found that the DFIG model built in MATLAB/SIMULINK
showed satisfactory performances during free acceleration.

e The design of the LCL filter for switching frequencies lower than 5000
Hz was conducted. Further, a comparative study of the LCL filter and
L filter in grid-connected VSC was also conducted based on some effec-
tiveness factors. It was shown that even for switching frequencies lower
than 5000 Hz, the LCL filter outperformed the L filer. And, the grid-
connected VSC complied with the required THD of 8 %.

e A control strategy of the grid-side converter based on the L approx-
imation of the LCL filter was developed, then implemented in MAT-
LAB/SIMULINK. The performances of the proposed control strategy
were verified under various operating conditions. It was found that the
control algorithm showed satisfactory performances during change in grid
voltage amplitude and during full load operating conditions.

e A control strategy of the stand-alone DFIG system in wind turbine ap-
plications aiming at the voltage and frequency stability was developed
then implemented in MATLAB/SIMULINK. The performances of the
proposed control strategy in stand-alone WECS based on the DFIG was
verified through simulations under various operating conditions. It was
shown that the developed control strategy showed good performances.
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e A control strategy of the grid-connected WECS based on the DFIG sys-
tem was developed. The aims of this control strategy are the stator power
regulation and that of stator power factor. Further, the stator power reg-
ulation is done without measuring the three-phase stator current. The
performances of the developed control strategy were investigated under
change in speed and change in stator power factor. It was shown that
the developed control strategy showed good performances.

e The inner current controller of the proposed control strategy on grid-
connected WECS based on the DFIG was implemented in the laboratory
using LabVIEW. Through various operating conditions, it was shown
that the implemented inner current controller showed good performances.

6.2 Future Recommendations

There are many aspects of the control of WECS based on the DFIG that can
be further investigated. However, a few recommendations are as follows;

e The design of a physical LCL filter would improve the power quality of
the voltage and current generated by the DFIG.

e An encoder-less vector control can be investigated since the signal mea-
sured by the encoder needs to be filtered. This has the advantage con-
sisting to avoid the dependency of the control system on the measured
mechanical shaft speed or the measured rotor angle.

e The design of the sensors for the three-phase stator voltage and the three-
phase stator current would provide many options in terms of the control
methods to be investigated on the test bench.
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Appendix A

Lab Implementation of PI
Controller

The PI current controller can be expressed by

Kyp+ K, 0 } (A1)

1
Pl(p) = -

)=~ [ 0  Kp+K,
where K, and K; are the proportional and integral constants of the PI con-
troller. The mathematical expression of the PI controller using state vector is
given by

. K; 0

ZL’c(t) - |:0 Kz:| e(t)v (A2)
where e(t) is the error signal which is the difference between the output of the
PI controller and the set value. Using Equation (A.2)), the output of the PI
controller is given by

ult) = o(t) + Vgp [gp] e(t) + Wylt), (A.3)

Kp

where u(t) = {ngﬂ is the output of the PI controller; z.(t) is the state vector
q

of the controller; e(t) = r(t) — y(t) is the error signal of the PI controller;

and, Wy(t) is the compensation terms of the inner controller. Discretising

Equation (A.3) and Equation (A.2) using the backward Euler theorem yields

K, 0
Lok = Lek—1 + Ts |: 0 K:| (&7% (A4)
K;
and

K 0
Uk = Tk + { Op K } er + Wk, (A.5)

P

K
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where subscript & indicates the time instant and 7§ is the sampling time at
instant t = kT%.

A.1 Anti Wind-up and Limitations

Since any system to be controlled has physical limitations such as the maximum
current allowed, it is important to limit this current in the system. In order to
avoid saturation when using PI controllers for the control of VSC, the outputs
of the PI controller can be limited as expressed below;

<
[u| < |t|max (A.6)

[u| > |t|mae

U:f(u):{ um

Ul

where @ is the limited output of the PI controller. In Equation (A.6)), only the
magnitude of the output of the PI controller is limited while its angle can still
vary.

However, limiting only the output of the PI controller leads to high over-
shoot when a disturbance occurs. This fact is called the wind-up phenomenon
which has to be dealt with. The controller output limitation can be considered

as expressed below;
u=1u-—u, (A7)

where u is the disturbance entering between the PI controller and the plant.

The above problems can be solved by using back-calculation method in the
following way:

1. At a sampling instant k, compute the ideal output of the PI controller,
Up = Te—1 + (TSKZ + Kp)ek -+ Wyk (AS)
and limit the output of the PI controller using u = f(u).

2. In order to avoid the above-mentioned problems, the limit of the output
of the PI controller is moved to the controller input, it yields

er = (T.K; + Kp) g — vep1 — Wurl, (A.9)

where € is the limited error. Then, €, to update the controller state
vector as shown below;

xc,k = ZL‘C71€_1 + T‘SI(,L(ZLI(vz + Kp)_l[ﬂk — xc,k—l — Wyk} (AlO)
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System Parameters

B.1 Determination of DFIG Parameters

In order to determine the parameters of the three-phase, 400 V, 4 poles 18.5
kW DFIG to be used in the test bench, some tests were conducted. Those
tests include the DC test, the No-load test and the locked rotor test. It is
worth noticing that the rotor of the DFIG was short-circuited for all these
tests. The simplified equivalent circuit of the DFIG is depicted in Figure [B.1]
The above-mentioned tests are discussed in the following sections.

B.1.1 DC Test

The DC test is performed so as to determine the DC resistance value of stator
resistance. The DC test consists of connecting two terminals of the stator to
a DC source. Adjust the DC source voltage until the current flowing into the
stator windings of the DFIG reaches its nominal value. Then, the value of
the DC resistance is deduced from those measurements. Depending on the
connection of the stator windings, the value of the per-phase stator resistance
R, is deduced, as shown in Table The measured parameters of the DFIG
during the DC test is depicted in Table The subscript dc indicates the
parameter values recorded during the DC test.

O

Figure B.1: Equivalent Circuit of the Induction Generator
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Table B.1: DC Test Measurement

Measured parameters | values
Vie 135V
Ly 35 A
Ry 0.3857 Q

B.1.2 Blocked Rotor Test

The simplified equivalent circuit of the DFIG during the locked rotor test is
shown in Figure [B.2] The locked rotor test helps in determining the stator
leakage inductance (Lg), rotor leakage inductance (L,;) and the rotor resis-
tance (R.). All these machine parameters are referred to the stator side.
When the rotor is blocked, the slip is one. Since the vertical impedance of the
simplified equivalent circuit of the DFIG is far higher than that of the hori-
zontal impedance, the vertical impedance of the simplified equivalent circuit
is neglected. The short-circuited DFIG is connected to a three-phase variable-
voltage source. The voltage is adjusted until the rated current is reached.
The measurement from the blocked rotor test are displayed in Table The
expressions below allow the calculation of the above-mentioned parameters

/ Pbr
pr— = —-— B.l
Rs + Rr Rbr 311)27‘7 ( )
oy = (B2)
Ibr

and

Xy =1/ 22 — R2.. (B.3)

In the above equations, Z, is the equivalent impedance of the equivalent circuit
of the DFIG during the blocked rotor test; X, is the imaginary part of Z,;
and, Ry, is the real part of Z,,.. In case the machine is a wound induction
machine the expression below is suggested;

(B.4)

Figure B.2: Equivalent Circuit of the Induction Generator during Blocked
Rotor Test
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Table B.2: Blocked Rotor Measurement

Measured parameters values
Vir 36.982 V
Iy, 36.49 A
Py, 1285.48 W

where w is suggested to be 25% of the line frequency. It is worth noticing that
in this thesis, only the line frequency has been used in that test due to logistic
problem.

B.1.3 No-Load Test

The simplified equivalent circuit of the DFIG during the no-load test is dis-
played in Figure [B.3] The stator of the DFIG is connected to the variable
three-phase supply. The supply voltage is adjusted to its rated value causing
the machine to rotate at about the synchronous frequency. Hence, the slip is
zero. The rotor circuit at the equivalent circuit is open. Assuming that the
current flowing through the core resistor Ry, is very small, the value of the
magnetising inductance will be found using the expressions below, similar to

those of Section [B.1.2]

Snl = 3anlnl7 (B5)
in = Sﬁl - Pfl, (B'G)

in

X, = - X X B.
nl 31721[ sl + m ( 7)
and X

L, =—"=. B.8
- (B.5)

where S,; is the apparent power; and @),; is the reactive power during the
test; The subscript nl denotes parameters recorded during the no-load test.
Table displays the measured parameters during the no-load test.

/

/ R

Rs le L/'/ T’
s AN T
Inl
Pnl
an - Rfe Lm

O

Figure B.3: Equivalent circuit of the induction generator during no-load test
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Table B.3: No-Load Test Measurement

Measured parameters values
Vi 230.07 V
Iy 1721 A
P 1165.4 W

B.1.4 DFIG Parameters In The Lab

The parameters of the DFIG resulting from the tests mentioned in Section [B.1.1]
Section and Section [B.1.3] are displayed in Table [B.4].

Table B.4: Parameters of the DFIG to be used in the laboratory

Measured parameters values
R, 0.19285
Ly, 0.04138 H
La=1L, 0.00145 H
R, 0.147595 Q
stator-rotor windings turns ration 1.7264
B.2 Simulated System Data
Table B.5: IM Parameters
P 3 hp
Measured parameters values
rated voltage 220V
shaft speed 1710 rpm
Torque 11.9 Nm
I 5.8 A
Ry 0.435 Q2
X 26.13 Q
Xa =X, 0.754
R 0.816 Q
J 0.089 Kg m?
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Table B.6: DFIG Parameters

Name-plate:
Numbers of poles 6
Power 37300 W
Line to line voltage 415V
speed 1015 rpm
Base values:
Current 73.386 A
Frequency 50 Hz
voltage 338.846 V
Impedance 4.617 Q
inductance 0014697 H
Machine paramters:
Ly, 0.03039 H
Lg= Ly 0.000867 H
R, 0.09961 (2
R, 0.05837 Q
Turbine paramters:
power 55000 W
Wind speed range | 6.1-11.35 ms™*
Inertia 13.5 Kgm?
r 6.862 m
m 14.48
Cpope 0.4412
5.66
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Appendix C
Design of the AC RL filter

C.1 Design procedure L Filter

It is necessary to point out that the design procedure followed in this section is
slightly different from that of the Area product method. The difference lies on
the fact that in the Area Product method, after determining the area product
value, one can go and found the dimensions of the mechanical E core in the
tables. However in this special case where the maximum current is 18.5 A no
predefined dimension in the tables are able to satisfy the mechanical constraint.
Hence in terms of determining the dimension of the E core, a trial and error
method has been used to satisfy the mechanical constraints (when choosing
the dimensions of the E cores) as it will be seen in the following sections.

C.1.1 Electrical Analysis

Assume the voltage across the inductor shown in Figure and current flow-
ing through it, are sinusoidal waveform pulsating at line frequency w. The
maximum voltage across the inductor is given by

V,, = wd,, N, (C.1)

where V,,,, w and ®,, are the maximum voltage amplitude, the line frequency
and the maximum magnetic flux in the core of the inductance, respectively.

Ly
0 m o
v
Vge
Vg Ve
o o

Figure C.1: Per-phase L filter scheme
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The magnitude of the flux is given by
®,, = A.Bp, (C.2)

where A, is the cross-sectional area of the magnetic core; B,, is the magnetic
flux density. Substituting Equation (C.2) into Equation ((C.1]) then rearranging
it in terms of the cross-sectional area of the magnetic core yields

LI,

A= N—Bmv (C3)

where [,,, is the maximum current through the conductor.

C.1.2 Mechanical Analysis

For the EE core configuration, not only all the N conductors should fit into
the windows area but also, the bobbin, the air area, etc. Therefore, the factor
of utilisation of the window area should be less than one. This leads to the
expression below;

NA, < K,W,, (C.4)

where A, is the cross sectional area of the conductor; 0.3 < K,, < 0.7 is the
utilisation factor; W, is the window area.

By multiplying the Equation (C.4) and Equation (C.3)), it yields that the
area product is given by

LI, A,
BmKu ,

A, =W, A, = (C.5)

where A, is the area product. In Equation (C.5|), one can found that the area
product includes mechanical and electrical constraints.

Wa

NN

Figure C.2: EE core frontal scheme



Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. DESIGN OF THE AC RL FILTER 108

C.1.3 Magnetic Analysis

Whenever a core is excited the fringing flux appears around the air gap since
the line flux bulge outward when passing through non-magnetic materials.
The fringing flux effect is displayed in Figure The magnetic equivalent
circuit of the EE core is displayed in Figure |C.3(b)l The magnetic analysis
takes the fringing flux effect into consideration. Using the continuity of the
flux inside the core yields

¢c - ¢g + ¢f: (06)

where ¢, is the flux in the core; ¢, is the flux in the air-gap; ¢y is the fringing
flux. The permeance of the core is given by

_ 1 7:“7“;“0140
Po= g = BrbeZe, (©7)

where P, is the permeance of the core; R, is the reluctance of the core; p,. is
the relative permeability; g is the free-space permeability; [, is the flux path
length in the core.

The permeance of the the air-gap is given by
1 _ IJ’OAC

PR

(C.8)

where P, is the permeance of the air gap; R, is the reluctance of the air-gap;
ly is the air-gap length. The permeance of Fringing area is given by

1 pody
Pr= = : (C.9)
Ry
Pe
. . Re
P AT
;! AN
r AN
K / ) [As \ Y
T R
Vol I I [
NN ol Ry Ry
v [
N ‘s
N w
N -
wf:clg
(a) (b)

Figure C.3: Fringing flux effect: Fringing flux illustration ; Magnetic

equivalent circuit
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where Py is the permeance of the fringing area; Ry is the reluctance of the
fringing area; [; is the effective path length of the fringing flux; Ay is the
fringing flux area. The total permeance at the air-gap is given by
P
Por =Py (1+ 2. (C.10)
i

N——
Fy

A closer look at Figure [C.3|(a)l shows that the air-gap length is proportional
to the mean width of the fringing as well as to the effective path length of the
fringing flux. From Equation (C.10), The fringing flux factor (F) is deduced
as shown below;

Ay
At
where ¢ is the ratio of the effective length of the fringing area (/;) and the air
gap length. The total reluctance of the EE core is given by

Fr=1+ (C.11)

1
Rr=Re+R, || Ry=1+—. (C.12)
ng

Substituting the Equation (C.10) into Equation (C.12)) yields

l l 1
Rp=—2-(—+—). C.13
T uﬁxmg+ﬂ> (C.13)

The inductance value including the fringing flux effect is given by

N2
L= C.14
= (C.14)
The cross-sectional area of the core is given by
A.=ED, (C.15)

where F and D are the mechanical dimensions of the E core displayed in
Figure ?7. The cross-sectional area of the fringing area is given by

Ap = (E+2cly)(D +2cly) — ED (C.16)
where C',F' are he mechanical dimensions of the E core displayed in Figure [C.4}
cis the ratio of the mean width of the fringing area (ws) and the air-gap length.
Substituting Equation (C.13) into Equation (C.14)) without considering the
fringing flux effect then rearranging it in terms of the air-gap length, it yields

B fo A N? l.

Iy 7 = (C.17)
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G
lgi
1

Figure C.4: E core mechanical scheme

On the other hand, when considering the fringing flux effect, the air-gap length

is given by
_ ,UOACFf (N2 _ lCL

L MTMOAC .

Substituting Equation (C.15) and Equation (C.16) into Equation (C.11]), the

fringing factor is given by

lg

(C.18)

B 2cly(D + E2cl,)
Fr=1+ ED . (C.19)

C.2 AC Filter Design Procedure

The design procedure is as follows;

1. For a fixed I,,, N, B,,, L the cross sectional area A. is deduced using

Equation (C.3));

2. The window area W, is deduced using Equation (C.4)) with the choice of
the conductor, then the dimensions of the E core are deduced;
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3. Determination of the air gap length without considering the fringing flux

effect using Equation (C.17));

4. An iterative calculation between Equation (C.19)) and Equation (C.18))
is conducted until the air-gap length and the fringing flux converge.

C.3 Design Results

The filter has been designed to meet the following specifications: L; = 8.75 mH,
I, =185A, f =50 Hz. The E core is made from M 400-50A material type.
The E core dimensions are given in Table It can be seen from Table
that the measured inductance (L,, =8.8 mH) is approximately similar to that
of the design specifications. The picture of the built filter is depicted in Fig-
ure

Table C.1: E core dimensions

E core dimensions | Values

12.11 cm
9.42 cm
5.055 cm
3.695 cm
2.69 cm
0.105 cm

Q| Q| |

&
I
S

o~
<

Table C.2: Inductance values

Inductance values | Values
L, 8.75 mH
L, 8.8 mH

Figure C.5: Built Filter
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Figure D.1: Inner PI controller software in LabVIEW
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D.1 Grid-Side Controller Software in
LAbVIEW

|Vdcref and Vde_m
-Idcref
VdcPI_Gain |z #? -
e laefld e
Gl

vae -
=
1 Doncijid
vosi||Iq
=)
=
Iabc_s@
Tref [(TELY [ved
Isdq PL_gains (S5 e @ W[Fals <]
- =i Vo]
- ' —poeL] Vbeta
PLL gain [Ef-= [Valpha™}— [i5ei1|valpha

' pobL|theta

Three phase grid terminal [Z=4

M

Figure D.2: Grid-side controller software in LabVIEW
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Figure D.4: Phase locked loop VI in LabVIEW
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Figure D.7: ABC to af components VI in LabVIEW



Stellenbosch University https://scholar.sun.ac.za

APPENDIX D. SOFTWARE OF THE PROPOSED CONTROL STRATEGY118

D.2 Rotor-side controller software in
LabVIEW
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Figure D.9: Clark transformation VI in LabVIEW
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Appendix E

The SIMULINK Models

E.1 GSC with LCL Filter
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E.2 GSC with L Filter
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Figure E.4: Control system

E.3 Stand-Alone RSC

Figure E.5: Rotor-side converter in Stand-alone DFIG system
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Figure E.6: Control system

E.4 Grid-Connected RSC

Figure E.7: Rotor-side converter of a grid-connected DFIG system
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