
An Investigation of Dead-Zone Pattern

Matching Algorithms

by
Melanie Barbara Mauch

Thesis presented in fulfilment of the requirements for the degree
of Master of Arts in the Faculty of Arts and Social Sciences at

Stellenbosch University

Supervisor: Prof.Dr.Dr. Bruce W. Watson
Co-supervisor: Dr.Ir. Loek Cleophas

March 2016

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and pub-
lication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any qualification.

Date: .March 2016.

Copyright c© 2016 Stellenbosch University
All rights reserved

i

Stellenbosch University https://scholar.sun.ac.za

Abstract

Pattern matching allows us to search some text for a word or for a sequence
of characters—a popular feature of computer programs such as text editors.
Traditionally, three distinct families of pattern matching algorithms exist: the
Boyer-Moore (BM) algorithm, the Knuth-Morris-Pratt (KMP) algorithm, and
the Rabin-Karp (RK) algorithm. The basic algorithm in all these algorithmic
families was developed in the 1970s and 1980s. However a new family of pattern
matching algorithms, known as the Dead-Zone (DZ) family of algorithms, has
recently been developed. In a previous study, it was theoretically proven that
DZ is able to pattern match a text with fewer match attempts than the well-
known Horspool algorithm, a derivative of the BM algorithm.

The main aim of this study was to provide empirical evidence to determine
whether DZ is faster in practice. A benchmark platform was developed to com-
pare variants of the DZ algorithm to existing pattern matching algorithms.
Initial experiments were performed with four C implementations of the DZ
algorithm (two recursive and two iterative implementations). Subsequent to
this, DZ variants that make use of different shift functions as well as two
parallel variants of DZ (implemented with Pthreads and CUDA) were devel-
oped. Additionally, the underlying skeleton of the DZ algorithm was tweaked
to determine whether the DZ code was optimal.

The benchmark results showed that the C implementation of the iterative DZ
variants performed favourably. Both iterative algorithms beat traditional pat-
tern matching algorithms when searching natural language and genome texts,
particularly for short patterns. When different shift functions were used, the
only time a DZ implementation performed better than an implementation of
the traditional algorithm was for a pattern length of 65536 characters. Con-
trary to our expectations, the parallel implementation of DZ did not always
provide a speedup. In fact, the Pthreaded variants of DZ were slower than
the non-threaded DZ implementations, although the CUDA DZ variants were
consistently five times faster than a CPU implementation of Horspool. By us-
ing a cache-friendly DZ algorithm, which reduces cache misses by about 20%,
the the original DZ can be improved by approximately 5% for relatively short
patterns (up to 128 characters with a natural language text). Moreover, a cost
of recursion and the impact of information sharing were observed for all DZ
variants and have thus been identified as intrinsic DZ characteristics.

ii

Stellenbosch University https://scholar.sun.ac.za

Further research is recommended to determine whether the cache-friendly DZ
algorithm should become the standard implementation of the DZ algorithm.
In addition, we hope that the development of our benchmark platform has
produced a technique that can be used by researchers in future studies to
conduct benchmark tests.

iii

Stellenbosch University https://scholar.sun.ac.za

Abstrak

Patroonpassing word gebruik om vir ’n reeks opeenvolgende karakters in ’n blok
van teks te soek. Dit word breedvoerig programmaties in rekenaarenaarpro-
gramme gebruik, byvoorbeeld in teksredigeerders. Tradisioneel is daar drie
afsonderlike patroonpassingalgoritme families: die Boyer-Moore (BM) familie,
Knuth-Morris-Pratt (KMP) familie en Rabin-Karp (RK) familie. Die basisal-
goritmes in hierdie algoritmefamilies was reeds in die 1970s en 1980s ontwikkel.
Maar, ’n nuwe patroonpassingsalgoritme familie is egter onlangs ontwikkel. Dit
staan as die Dooie Gebied (DG) algoritme familie bekend. ’n Vorige studie het
bewys dat DG algoritmes in staat is om patroonpassing uit te voer met min-
der passingpogings as die welbekende Hoorspool algoritme, wat ’n afgeleide
algortime van die BM algoritme is.

Die hoofdoel met hierdie studie was om die DG familie van algoritmes empiries
te ondersoek. ’n Normtoets platform is ontwikkel om veranderlikes van die DG
algoritme met bestaande patroonpassingsalgoritmes te vergelyk. Aanvanklike
eksperimente is met vier C implementasies van die DG algoritme uitgevoer.
Twee van die implementasies is rekursief en die ander twee is iteratief. Daarna
was DG variante ontwikkel wat van verskillende skuif-funksies gebruik maak
het. Twee parallelle variante van DG was ook ontwikkel. Een maak gebruik
van “Pthreads’ en die ander is in CUDA geimplementeer. Verder was die C
kode weergawe van die basiese DG algoritme fyn aangepas om vas te stel of
die kode optimaal was.

Die normtoetsresultate dui aan dat die C-implementasie van die iteratiewe DG
variante gunstig presteer bo-oor die tradisionele patroonpassingsalgoritmes.
Beide van die iteratiewe algoritmes klop die tradisionele patroonpassingsalgo-
ritmes wanneer daar met relatiewe kort patrone getoets word. Die verrigting
van verskeie skuif-funksies was ook geondersoek. Die enigste keer wanneer
die DG algoritmes beter presteer het as die tradisionele algoritme, was vir
patroonlengtes van 65536 karakters. Teen ons verwagtinge, het die parallelle
implementasie nie altyd spoedtoename voorsien nie. Tewens, die “Pthread”
variante van DG was stadiger as die nie-gerygde DG implementasies. Die
CUDA DG variante was egter telkens vyf keer vinniger as die konvensionele
SVE implementasie van Horspool. Die normtoetse het ook aangedui dat die
oorspronklike DG kode naby aan optimaal was. Egter, deur ’n kas-vriendelike
weergawe te gebruik wat kas oorslane met omtrent 20% verminder, kon die
prestasie met naastenby 5% verbeter word vir relatiewe kort patrone (tot by

iv

Stellenbosch University https://scholar.sun.ac.za

128 karakters met natuurlike taal teks). Verder was daar vir al die DG variante
‘n rekursiekoste en ‘n impak op inligtingdeling waargeneem wat as interne DG
kenmerke geidentifiseer is.

Verdere navorsing word aanbeveel om vas te stel of die kas-vriendelike DG
algoritme die standaard implementasie van die DG algoritme behoort te word.
Bykomstiglik, hoop ons dat die ontwikkeling van ons normtoets platform ’n
tegniek geproduseer het wat deur navorsers in toekomstige studies gebruik kan
word om normtoetse uit te voer.

v

Stellenbosch University https://scholar.sun.ac.za

vi

Stellenbosch University https://scholar.sun.ac.za

Preface

Before I acknowledge the people who have contributed to the production of
this thesis, some background information needs to be provided. This is my
master’s thesis, submitted in fulfilment of the MA Socio-Informatics degree
at Stellenbosch University. It is the result of my research for the FASTAR
(Finite Automata Systems — Theoretical and Applied Research) group, from
which I had three advisors: Prof.Dr.Dr. B.W. Watson, Dr.Ir. L. Cleophas and
Prof.Dr. D. Kourie.

One of the core research interests of the FASTAR group is pattern match-
ing. I joined the FASTAR research group in 2012 during my BSc (Honours)
Computer Science degree at the University of Pretoria. My Honours project
focused on benchmarking a new pattern matching algorithm (known as Dead-
Zone) that was developed by members of the FASTAR group. I created a
benchmarking framework for the Dead-Zone code that was written by Bruce
Watson. The framework enabled us to compare Dead-Zone to already existing
algorithms based on how long they took to find all occurrences of a pattern in
a string. This study serves as a continuation of my Honours research.

I want to thank Bruce Watson and Derrick Kourie for allowing me to continue
my Dead-Zone research and for guiding me through this research project (as
well as previous projects). I also want to thank Loek Cleophas for his excep-
tionally helpful comments during the review process. I must also acknowledge
Tinus Strauss for the parallelism advice at times of critical need.

I would also like to thank David Gregg from Trinity College Dublin and Jorma
Tarhio from Aalto University for their contributions to the Dead-Zone code-
base and for their comprehensive advice on how the Dead-Zone algorithm could
be improved.

My sincere thanks also goes to my employer, Mike Love, not only for supporting
me throughout the project, but also for letting me work part-time so that I
could devote my time to my studies.

I must express my gratitude to my close friends and colleagues who provided
a much needed escape from my studies and helped me stay sane through these
difficult years. I am also grateful to my friends and family in Stellenbosch and
Cape Town that helped me adjust to life in a new city.

A very special thanks goes out to the National Research Foundation (NRF) as

vii

Stellenbosch University https://scholar.sun.ac.za

well as Stellenbosch University. I recognise that this research would not have
been possible without the financial assistance and bursaries provided to me by
these institutions.

Finally, I would like to thank my parents and Johann Koekemoer for their
persistent encouragement, love and assistance. Completing this work would
have been all the more difficult were it not for their precious support.

viii

Stellenbosch University https://scholar.sun.ac.za

ix

Stellenbosch University https://scholar.sun.ac.za

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 Related Work . 1
1.2 Thesis Aims . 2
1.3 Thesis Structure . 2

2 Pattern Matching 4
2.1 Traditional Algorithms . 5
2.2 Dead-Zone Algorithms . 8

3 Dead-Zone Performance 13
3.1 Introduction . 13
3.2 Experimental Design . 13
3.3 The Data . 14
3.4 Test Procedure . 15
3.5 Implementation . 17
3.6 High Resolution Timer . 18
3.7 Output Data . 19
3.8 Overview of Results . 20
3.9 SMART Results . 20
3.10 Cost of Object-Orientation . 21
3.11 Cost of Recursion . 23
3.12 Impact of Information Sharing 23
3.13 Best Performing Algorithms . 24
3.14 Effect of Smaller Alphabets . 25
3.15 Conclusion . 27

4 Multiple Shifters 29
4.1 Introduction . 29
4.2 Shifters Used . 29
4.3 Experimental Design . 30
4.4 The Data . 30
4.5 Implementation . 31
4.6 Test Procedure . 31

x

Stellenbosch University https://scholar.sun.ac.za

CONTENTS

4.7 Output Data . 32
4.8 Overview of Results . 32
4.9 Assessing Berry-Ravindran Shifters 34
4.10 Cost of Recursion . 34
4.11 Impact of Information Sharing 36
4.12 Assessing Shifter Pairs . 36
4.13 Comparison with Standard Versions 38
4.14 Conclusion . 39

5 Parallel Dead-Zone 41
5.1 Introduction . 41
5.2 Experimental Design . 41
5.3 The Data . 44
5.4 Implementation . 45
5.5 Test Procedure . 47
5.6 Output Data . 48
5.7 Pthreaded Dead-Zone Results 50
5.8 CUDA Dead-Zone Results . 52
5.9 Conclusions . 59

6 Dead-Zone Skeletons 61
6.1 Introduction . 61
6.2 Code Adjustments . 62
6.3 Experimental Design . 64
6.4 The Data . 65
6.5 Implementation . 65
6.6 Test Procedure . 66
6.7 Results . 66
6.8 Impact of 2-grams . 68
6.9 Conclusion . 69

7 Conclusion 70
7.1 Results . 70
7.2 Potential Future Research . 71

A Traditional Pattern Matching Algorithms Code 73

B Dead-Zone Code 76

C Multiple Shifters Benchmark Figures 81

D Parallel Benchmark Figures 92

E Dead-Zone Skeletons Benchmark Figures 96

Bibliography 97

xi

Stellenbosch University https://scholar.sun.ac.za

List of Figures

2.1 Brute force pattern matching 4
2.2 Knuth-Morris-Pratt pattern matching 5
2.3 Boyer-Moore pattern matching 7
2.4 Horspool pattern matching . 7
2.5 Dead zones created in live zones 8

3.1 Test procedure in pseudo-code 16
3.2 Illustrative raw averaged minimum time data 21
3.3 Cost of Object-Orientation . 22
3.4 Cost of Recursion . 23
3.5 Best Performing Algorithms . 24
3.6 Best Performing Algorithms for Genome Text 25
3.7 Box plots of minimum results from pattern matching with the

smaller alphabet . 26

4.1 Illustrative raw averaged minimum time data of multiple shifter
DZ . 33

4.2 Cost of Recursion of DZ(*,*,h-b) 35
4.3 DZ(iter,*,h-h) compared to standard Horspool 39

5.1 Raw averaged minimum time data with Pthreads and a genome
text . 51

5.2 No compiler optimisations with Pthreads 51
5.3 Number of active threads . 52
5.4 Raw averaged minimum time data of CUDA DZ 53
5.5 Splitting the text with DZ(rec,nsh) versus division into equal-

sized chunks . 53
5.6 Impact of recursion depth on iterative DZ CUDA implementation 55
5.7 Optimised CUDA implementations 56
5.8 Optimised CUDA implementations with a genome text 58

6.1 Performance of iterative sharing DZ skeletons 67
6.2 Impact of 2-grams . 68

C.1 Illustrative raw averaged minimum time data of multiple shifter
DZ using a natural language text 82

xii

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES

C.2 Illustrative raw averaged minimum time data of multiple shifter
DZ using a genome text . 83

C.3 Cost of Recursion of multiple shifter DZ variants using a natural
language text . 86

C.4 Cost of Recursion of multiple shifter DZ variants using a genome
text . 89

C.5 DZ(iter,*,b-b) compared to the standard Berry-Ravindran . . . 90
C.6 DZ(iter,*,q-q) compared to standard Quick Search 91

D.1 Raw averaged minimum time data with Pthreads and a natural
language text . 92

D.2 Splitting a genome text with DZ(rec,nsh) versus division into
equal-sized chunks . 93

D.3 Optimised CUDA implementations with a natural language text 94
D.4 Optimised CUDA implementations with a genome text 95

E.1 Impact of 2-grams when matching a genome text 96

xiii

Stellenbosch University https://scholar.sun.ac.za

List of Tables

3.1 Overview of captured data . 20
3.2 Differences between SMART’s timings and our timings (expressed

as a percentage of our implementations). 22

5.1 Overview of captured CUDA data 50

6.1 DZ skeletons grouped by iterative implementation type. 62

xiv

Stellenbosch University https://scholar.sun.ac.za

xv

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

The ability to search some text for a word or for a sequence of characters is a
common function that is incorporated into a wide array of computer programs.
This search functionality is made possible through the use of pattern matching
algorithms. Pattern matching also has a number of practical application ar-
eas, ranging from computer security (virus scanning) to bioinformatics (DNA
sequencing).

Until now, there existed three main families of pattern matching algorithms,
all three of which were developed during the 1970s and 1980s. These are
the Knuth-Morris-Pratt (KMP) algorithm [21], the Boyer-Moore (BM) algo-
rithm [9] and the Rabin-Karp (RK) algorithm [19]. Newer pattern matching
algorithms are based on techniques that were first introduced in these three
algorithms.

The recently developed Dead-Zone (DZ) algorithm performs pattern matching
in a unique way that differs from these algorithms and can be viewed as a
unique family of pattern matching algorithms. In a previous study [37], it was
theoretically proven that, in the best case, the DZ algorithm requires fewer
match attempts than an existing pattern matching algorithm (Horspool) to
perform pattern matching, however empirical evidence produced by benchmark
experiments is needed to determine whether DZ can be faster in practice. This
is the area addressed by the research described in this thesis.

1.1 Related Work

It is evident that there is a lack of rigour involved in scientific benchmark
experiments. Kalibera and Jones [18] examined 122 papers published at lead-
ing conferences in 2011 and found that the majority of those papers reported
their experiments in a way that make them seemingly impossible to repeat.
Mytkowicz et al. [25] also examined more than one hundred research papers
and determined that measurement bias is significant and commonplace in pa-

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION

pers with experimental results. Similarly, Vitek and Kalibera [36] found that
it is common for computer science publications to have unclear benchmarking
goals, measurement bias, inappropriate benchmarks and no comparisons with
the state of the art.

To improve the quality of software benchmark experiments, Vitek and Kalibera
[36] recommend that empirical evaluations should be properly documented,
thus making the research study repeatable and reproducible. This is supported
by Pieterse and Flater [32], who also suggest that the measurement of software
performance should be conducted in such a way that others will be able to
corroborate the validity of the findings.

1.2 Thesis Aims

The general aim of this research is to determine the empirical performance of
new variants of the Dead-Zone algorithm and how they compare to existing
pattern matching algorithms. In order to do this, original variants of the Dead-
Zone family of algorithms must be developed and implemented such that their
performance can be assessed.

The following questions needed to be answered about the Dead-Zone imple-
mentations:

• Will the performance of the Dead-Zone algorithm improve if different
shift functions (such as those used by the Boyer-Moore algorithm and
variants) are used?

• Can parallel implementations of the Dead-Zone algorithm perform effi-
ciently and achieve a speedup?

• Is the Dead-Zone code optimal—i.e. will the performance improve if the
code skeletons are tweaked?

The main aims of the benchmark experiments were:

• To identify the time taken for an algorithm to find all occurrences of a
pattern in a text.

• To analyse the captured data in order to establish the properties of the
algorithms.

• To produce a technique that could be used by researchers to conduct
benchmark tests.

1.3 Thesis Structure

This text consists of seven chapters and four appendices. The following para-
graphs give an overview of each chapter.

2

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION

Chapter 2 gives an introduction to pattern matching. It discusses a few of
the traditional pattern matching algorithms and introduces the Dead-Zone
family of algorithms. It concludes by stating the four basic variants of Dead-
Zone.

Chapter 3 contains a summary of existing Dead-Zone research that was con-
ducted during my Honours year. It describes the implementation of the four
basic variants of Dead-Zone. It also describes the implementation of a bench-
mark platform and how the benchmark results influenced the iterative and
incremental design of the benchmark platform. The subsequent chapters ex-
tend the work given in this chapter.

Chapter 4 investigates the performance of the Dead-Zone algorithm when dif-
ferent shift functions are used. The choice of shifters is explained and the
implementation of the algorithms is given.

Chapter 5 describes two parallel implementations of Dead-Zone, one with
POSIX Threads and the other using CUDA. The differences between the two
implementations are highlighted. Performance results of the benchmark ex-
periments are also discussed.

Chapter 6 provides nine new Dead-Zone skeletons that attempt to improve
the performance of the original variants of the Dead-Zone algorithm. Also, for
each skeleton, the modifications that were made to the code are discussed. It
also examines the results of the benchmark experiments and makes a recom-
mendation on which Dead-Zone skeleton to use.

Chapter 7 summarises the contributions of the thesis and provides possible
directions for future work.

Appendix B provides the code for the four basic variants of the Dead-Zone
algorithm.

Appendix C displays graphs pertaining to the multiple shifter implementations
of Dead-Zone.

Appendix D displays graphs for both parallel Dead-Zone implementations.

Appendix E contains graphs relating to the performance of the different Dead-
Zone skeleton implementations.

3

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Pattern Matching

The exact string matching problem is defined as finding all occurrences of a
given pattern p = p0p1...pm−1 in a text t = t0t1...tn−1 where t and p are finite
sequences from some finite character set Σ.

The exact string matching problem was first solved in 1975 by Aho and Cora-
sick [1] and later by Boyer and Moore [9] and Knuth, Morris and Pratt [21]
in 1977. Although more pattern matching algorithms have since appeared
[12], many of which derived from the Aho-Corasick, Boyer-Moore (BM) and
Knuth-Morris-Pratt (KMP) algorithms, the originals are still the most well-
known.

Figure 2.1 displays the naive way to match a pattern in a string. The pattern
is aligned at the beginning of the text and each character is compared from left
to right. In the case of a mismatch, the pattern is always shifted one character
to the right and characters are again compared starting with the first letter
of the pattern. These redundant character comparisons are the reason for the
brute force algorithm’s time complexity of O(nm) [10].

Figure 2.1: Brute force pattern matching

4

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PATTERN MATCHING

2.1 Traditional Algorithms

In order to perform clever shifts that skip character comparisons in t or p,
one or more shift tables are used to determine the number of positions that
P will be shifted. For each pattern, the shift tables are precomputed prior to
performing the pattern matching. The details of computing shift tables can
be found in a number of articles and books such as [9, 21, 26] and will not be
discussed in this thesis.

KMP improves on the brute force approach and achieves a time complexity
of O(n) [26]. It uses the concept of a string prefix and suffix: given that a
and b are strings, a is a prefix of ab and b is a suffix of ab. When a mismatch
occurs, the characters in p that were successfully matched with characters in
t make up the characters of the prefix. p is shifted a precomputed number
of positions to the right to align the prefix in p with the longest suffix of the
current alignment window in t that is also a prefix in p. The next comparison
will start at the character of p immediately following the prefix and go again
from left to right.

Figure 2.2 illustrates how the KMP algorithm uses this prefix information to
avoid redundant character comparisons. p is aligned at the beginning of t and
matching occurs from left to right. A mismatch occurs for a at p1 and for b
at t1. The prefix a in p cannot be aligned with b in t, thus p is shifted two
positions to the right. Note that we already know the prefix aa in p matches
the prefix aa in t; matching begins from p2 and a mismatch is detected. The
prefix aa in p matches the suffix aa in the current alignment window in t and
p is shifted one position to the right.

Figure 2.2: Knuth-Morris-Pratt pattern matching

Although the KMP algorithm attempts to minimise the number of characters
in p involved in pattern matching, it is not possible to skip any characters in
t. All characters in t are read from left to right when KMP pattern matching
is performed. The BM algorithm, however, is able to skip over characters in
t by searching for suffixes and matching p with t from right to left, not from

5

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PATTERN MATCHING

left to right. Rules are used to precompute tables that determine the number
of positions that p will shift.

Given that a mismatch occurs at ti and pj, the following bad-character heuris-
tics apply:

1. If the mismatched character in ti does not appear in p, align p0 with ti+1.

2. If the mismatched character in ti occurs to the right of pj, shift p to the
right by one position.

3. If the mismatched character in ti occurs only to the left of pj, align ti
with the closest character to pj that matches ti.

Given that a mismatch occurs at ti and pj, the following good-suffix heuristics
apply:

1. If p contains a suffix pj+1...pm−1 that is equal to a substring beginning
to the left of pj and not preceded by the mismatched character pj, align
the suffix in t with the right-most substring in p to the left of pj that
matches the suffix.

2. If the above rule does not apply, align the longest suffix after after ti
in the current alignment window of t with the closest prefix to pj that
matches the suffix.

When a mismatch is detected, the number of positions that p will shift is
determined by the maximum between the shifts given by the bad-character
and good-suffix rules.

The rules are highlighted in Figure 2.3. p is aligned with the beginning of t
and matching occurs from right to left. A mismatch occurs for b at p3 and a
at t3. Both the bad-character shift and good-suffix shift are equal to one. The
good-suffix rule aligns b at p3 with the suffix b at t4 and p shifts one position
to the right. Characters are compared from right to left and a mismatch is
found for b at p4 and c at t5. c does not occur in p, thus, according to the
bad-character rule, p shifts |p| = 5 positions to the right. Characters are again
compared from right to left until a mismatch is detected for b at p3 and a at
t9. Again, both the bad-character shift and the good-suffix shift are one. We
align the prefix b at p1 with the suffix b at t10. Characters are compared from
right to left and a mismatch immediately occurs for b at p4 and a at t11. The
bad-character rule aligns a at position t11 with the closest a in p and p shifts
two positions to the right.

The time complexity of the BM algorithm is O(mn), although in the average
case it performs sub-linearly [26]. When using a large alphabet such as a
natural language text, the bad-character heuristics produce the longest shifts.
Horspool [17] used this notion to develop the first simplified version of the BM
algorithm. To determine the number of positions that p will shift, the Horspool
algorithm uses only the bad-character shift, and uses it on the last character
in the current window in t instead of on the mismatched character. While

6

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PATTERN MATCHING

Figure 2.3: Boyer-Moore pattern matching

this modification yields on average longer shifts than the bad character shift
of BM and has one less shift table, it has the same search time complexity as
the original BM algorithm [6].

Figure 2.4: Horspool pattern matching

Horspool ’s bad-character shifts are shown in Figure 2.4. As in the BM algo-
rithm, P is aligned with the beginning of t and matching occurs from right to
left. A mismatch occurs for b at p3 and for a at t3. The last character in the
text window, b at position t4, is aligned with the closest b in p which shifts p
one position to the right. A mismatch is found for b at p4 and c at t5. c does
not occur in p, therefore p shifts |p| = 5 positions to the right. Characters are

7

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PATTERN MATCHING

compared from right to left until a mismatch is found for b at p3 and for a at
t9. The closest a in p is aligned with a at t9, shifting p one position to the
right. Matching begins on the right and a mismatch is immediately found for
b at p4 and a at t11. The closest a in p is aligned with a at t11 and p shifts two
positions to the right.

2.2 Dead-Zone Algorithms

The Dead-Zone (DZ) algorithms are a new family of single keyword pattern
matching algorithms by Watson and Watson [38] that require less match probes
than Horspool to determine whether p occurs in t [37].

The main DZ idea comprises of a growing number of dead zones: live zones
in the text are searched and dead zones are generated as searching progresses.
A dead zone is an area in the text where matching does not need to happen.
Conversely, a live zone is an area in the text that has not been inspected—
where matching still needs to occur. Prior to matching, t can be seen as one
live zone. As matching occurs, p is placed somewhere in the middle of the live
zone and then shifts both to the left and to the right in t, creating a dead
zone.

It should be noted that because DZ is a family of algorithms, there are many
versions of the abstract algorithm where the following parameters differ: match
orders, shift functions and the match attempt point [37].

The DZ implementation in this study matches from left to right and uses the
mid-point as a match attempt point. A Horspool -like shift function is used,
unless otherwise stated. Chapter 4 discusses the performance of DZ when
other shift functions are used.

Figure 2.5: Dead zones created in live zones

8

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PATTERN MATCHING

Algorithm 1 (Abstract DZ Matcher)
proc dzmat(live low, live high)→

if (live low ≥ live high)→ skip
[] (live low < live high)→

j := b(live low + live high)/2c;
i := 0;
{ invariant:

(∀ k : k ∈ [0, i) : pmo(k) = tj+mo(k)) }
do ((i < |p|) cand (pmo(i) = tj+mo(i)))→

i := i + 1
od;
{ post: (∀ k : k ∈ [0, i) : pmo(k) = tj+mo(k))

∧ ((i < |p|)⇒ (pmo(i) 6= tj+mo(i))) }
if i = |p| → print(‘Match at ’, j)
[] i < |p| → skip
fi;
new dead left := j − shift left(i, j) + 1;
new dead right := j + shift right(i, j);
dzmat(live low, new dead left);
dzmat(new dead right + 1, live high)

f i
corp

The abstract recursive DZ algorithm from [24] is duplicated in Algorithm 1
such that an explanation of the algorithm can be given here. The recur-
sive function is called dzmat. It searches the text t between the indices
[live low, live high) for all occurrences of the pattern p.

There cannot be a match in an area of text smaller than |p|, therefore the last
|p|−1 characters immediately become part of the dead zone. This means that
the first invocation of dzmat uses a live zone with the dimensions [0, |t| − |p|+
1).

The recursion terminates if the index of beginning of the live zone passes (or is
equal to) the index of the end of the live zone i.e. (live low ≥ live high). This
is the recursive base case of Algorithm 1. Otherwise, if (live low < live high),
the index of the live zone’s mid-point is computed and stored as variable j.
The first match attempt will occur at this index.

A loop matches characters in p with characters in t using variable i to reference
an index in p, and i and j to reference an index in t. Matching is performed
in the order specified by the match order function mo. As an aside, note that
the code used in this study uses a left-to-right match order. This is in contrast
to the BM and Horspool algorithms given in Section 2.1.

If a complete match is found, the loop terminates and j, the starting index for
this iteration of matching, is printed out. Likewise, the loop terminates when

9

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PATTERN MATCHING

the first mismatch occurs.

The new dead zone needs to be computed based on the characters that were
successfully matched and, if a mismatch occurred, the position of the mis-
matched character. Two shift tables, shift left and shift right, determine how
many characters to the left and to the right of j will become part of the dead
zone. The variable new dead left is the lower bound of the dead zone, while
variable new dead right is considered the upper bound of the dead zone.

To search the live zone areas that occur on either side of the newly com-
puted dead zone, dzmat gets invoked twice. The first invocation attempts to
match in the interval [live low, new dead left), and the second invocation at-
tempts to match in the remaining live zone in the interval [new dead right +
1, live high).

Algorithm 2 (DZ Matcher with sharing)
proc dzmat sh(live low, live high)→

if (live low ≥ live high)→ d := live low
[] (live low < live high)→

j := b(live low + live high)/2c;
i := 0;
{ invariant:

(∀ k : k ∈ [0, i) : pmo(k) = tj+mo(k)) }
do ((i < |p|) cand (pmo(i) = tj+mo(i)))→

i := i + 1
od;
{ post: (∀ k : k ∈ [0, i) : pmo(k) = tj+mo(k))

∧ ((i < |p|)⇒ (pmo(i) 6= tj+mo(i))) }
if i = |p| → print(‘Match at ’, j)
[] i < |p| → skip
fi;
new dead left := j − shift left(i, j) + 1;
new dead right := j + shift right(i, j);
dzmat sh(live low, new dead left);
dzmat sh(max(d, (new dead right + 1)), live high)

f i
corp

While attempting to match in the left live zone, a dead zone may develop that
is so large it overlaps with the right live zone. In Algorithm 1, information is
not shared between the live zones, yet monitoring the growth of the left live
zone and sharing this information with the right live zone limits the size of the
right live zone when matching occurs there.

Algorithm 2 shows that information sharing is easily implemented with an in-
teger variable d to keep track of the upper bound of the left live zone. However,

10

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PATTERN MATCHING

sharing information incurs a running-time penalty [24] because variable d is
updated in once in the code and also read once in the code.

Additionally, there exists an iterative version of the DZ algorithm, as shown
in Algorithm 3. The first recursive call (into the left live zone) is eliminated
and a stack is manually implemented for the second recursive call (into the
right live zone).

Algorithm 3 (DZ Matcher with iteration)
proc dzmat iter(〈live low, live high〉)→

var Todo : stack of low/high index pairs;
push 〈live low, live high〉onto Todo;
do Todo 6= ∅ →

pop 〈live low, live high〉onto Todo;
if (live low ≥ live high)→ skip
[] (live low < live high)→

j := b(live low + live high)/2c;
i := 0;
{ invariant:

(∀ k : k ∈ [0, i) : pmo(k) = tj+mo(k)) }
do ((i < |p|) cand (pmo(i) = tj+mo(i)))→

i := i + 1
od;
{ post: (∀ k : k ∈ [0, i) : pmo(k) = tj+mo(k))

∧ ((i < |p|)⇒ (pmo(i) 6= tj+mo(i))) }
if i = |p| → print(‘Match at ’, j)
[] i < |p| → skip
fi;
new dead left := j − shift left(i, j) + 1;
new dead right := j + shift right(i, j);
push 〈(new dead right + 1),live high〉 onto Todo;
push 〈live low, new dead left 〉 onto Todo

f i
od

corp

A version of Algorithm 3 with sharing also exists.

This dissertation predominantly focuses on four basic variants of the DZ family
of algorithms:

DZ(rec,nsh) This is a recursive non-sharing implementation, as shown in
Algorithm 1.

DZ(rec,sh) This is a recursive sharing implementation, as shown in Algo-
rithm 2.

11

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. PATTERN MATCHING

DZ(iter,nsh) This is an iterative non-sharing implementation, as shown in
Algorithm 3.

DZ(iter,sh) This is an iterative sharing implementation that combines the
sharing of DZ(rec,sh) with the iterative loop of DZ(iter,nsh).

12

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Dead-Zone Performance

3.1 Introduction

Theoretically, it has been proven that (in the best case) the DZ algorithm
requires fewer match attempts than the Horspool algorithm to find all occur-
rences of a pattern in a text [37] because of DZ ’s ability to doubly claim real
estate to both the left and the right of the pattern. Empirical evidence is,
however, required to see whether it outperforms the Horspool algorithm in
practice.

The aim of this chapter is to explore the actual empirical processing speed of
DZ algorithms compared to the KMP, BM and Horspool algorithms.

This chapter begins by examining the experimental design of the study and
arguing the choice of data used. Then, the test procedure and implementations
used in the study are explained in detail. Subsequently, the results of the study
are analysed and discussed.

It should be noted that this chapter is a summary of joint work with Bruce
Watson, Derrick Kourie and Tinus Strauss that has been previously published
as [24].

3.2 Experimental Design

The experiment was carried out on a 2011 model MacBook Pro with the fol-
lowing specifications:

• Operating System: Mac OS X version 10.7.4

• Processor: Intel Core i7

• Processor speed: 2.8 GHz

• Number of cores: 2

13

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEAD-ZONE PERFORMANCE

• L2 Cache (per core) : 256 KB

• L3 Cache (per core): 4 MB

• Memory: 4 GB, 1333 MHz, DDR3

The executables for the benchmark experiment were compiled with Xcode 4.2
into Release builds. This corresponds to -O3 optimisation on GCC and most
other compilers. Input symbols (chars) are used to index the shift tables, thus
a compiler option for unsigned char was also used. All benchmark tests were
performed using only one core with hyper-threading disabled. Furthermore,
all unnecessary processes were terminated such that the process performing
the benchmarking was the only user process utilising the core.

The experiment was conducted in two phases. In the first phase, a C++
version of the recursive sharing DZ algorithm given in Algorithm 2 was imple-
mented. It made heavy use of object-oriented and template features of a C++
framework that was set up. This DZ implementation will be referred to as
DZ(rec,sh,OO) because it relies on recursion, information sharing (as explained
in Section 2.2) and object-orientation. Additionally, C++ versions of BM, Hor-
spool and KMP were implemented and compared to DZ(rec,sh,OO). In this
phase, apart from using the optimising compiler, no further attempts were
made to optimise the processing time of the DZ algorithm. Thus, DZ(rec,sh,OO)
would serve as the upper bound on DZ ’s empirical performance.

In the second phase, DZ(rec,sh,OO) was optimised by removing the object-
oriented and template features. This resulted in four different DZ variants:

• DZ(rec,sh),

• DZ(rec,nsh),

• DZ(iter,sh) and

• DZ(iter,nsh).

The code for these four different DZ variants can be found in the appendix.

Because the implementations of the BM, Horspool and KMP algorithms are
uncomplicated they could be regarded as C implementations within a C++
benchmarking environment. Sanity checks were performed against the SMART
platform [23] and it was established that the BM, Horspool and KMP imple-
mentations did not require optimising.

3.3 The Data

Pattern matching was performed using selected texts from the SMART corpus
[23]. To determine the effects of alphabet size on the performance of the
algorithms, we wanted to use a small alphabet as well as a large alphabet.
Therefore, we chose a genome text, with an alphabet size of four, and a natural

14

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEAD-ZONE PERFORMANCE

language text (the Bible in English), with a theoretical alphabet size of 256.
However, a sed script that was run on the Bible text established that exactly 63
different characters appeared in it. Both the genome text file and the natural
language text file have a size of approximately 4 MB.

Although the alphabet size of the two selected texts differed, patterns of the
same length from both alphabets occupied the same amount of storage. This
is because characters from both texts were stored as C++ int values, even
though genetic data only requires 2 bits per symbol.

Patterns were chosen in two ways:

1. Patterns were randomly generated from the alphabet using the built-in
C++ pseudo-random number generator.

2. Patterns were randomly chosen from the input text.

The first approach has a high chance of generating a pattern that does not
appear in the text, especially if the alphabet size is large or the pattern is
long. The latter case guarantees that at least one instance of the pattern will
be found in the text and is the generally preferred method.

Initially, pattern lengths of 2n were used where n = 2, . . . , 12. However, in
later benchmarks this was increased to n = 2, . . . , 14 to see what effect larger
patterns would have on the algorithms’ performance.

3.4 Test Procedure

The SMART framework [23] was investigated as a possible platform for running
the benchmark tests. However, for several reasons we decided to create our
own benchmarking platform that would allow us to achieve more precise results
with more control and repeatability.

Firstly, SMART requires C code. The starting point for implementing the DZ
algorithms made use of object-orientation in C++ where different variations
of the base abstract DZ algorithm could be implemented as subclasses using
inheritance.

Secondly, we required a high resolution timing mechanism. SMART captures
time in milliseconds, yet we did not know a priori whether measuring time
with millisecond resolution would sufficiently discern the differences between
the performance of the algorithms. The overhead of setting up shift tables is
also in the SMART timing data. Furthermore, SMART runs a number of tests
for each algorithm and returns the mean value for the runs. No other timing
data is available.

Moreover, while experimenting with the SMART framework we experienced a
number of difficulties. These are discussed in Section 3.9.

15

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEAD-ZONE PERFORMANCE

We developed a standard test procedure (described in Figure 3.1) that gets ap-
plied to each algorithm (BM, Horspool, DZ(rec,sh,OO) DZ(rec,sh) DZ(rec,nsh)
DZ(iter,sh) and DZ(iter,nsh)) using each of the texts (genome and natural lan-
guage) and each of the two approaches to choosing patterns (randomly gener-
ated from the alphabet or randomly chosen from the text). Pattern matching
is performed with the algorithms and the time taken for each algorithm to find
all occurrences of a pattern p is recorded in nanoseconds.

Be advised that the setting up of shift tables is precomputed prior to pattern
matching and is not included as part of the timing data.

for n = 2 to psize
for i = 1 to pnum

Generate pi such that |pi| = 2n

Set up algorithm tables
for j = 1 to pmin

Start timer
Search s for pi
Accumulate number of hits
Stop timer and record time as t(s, pi, j)
Record total hits

rof
tmin(s, pi) := MIN : j ∈ [1, pmin] : t(s, pi, j)

rof

tavg(s, n) := (
∑pmin

i=1 tmin(s, pi))/pnum
rof

Figure 3.1: Test procedure in pseudo-code

The loop maxima have been parameterised in the pseudo-code because the
technicalities changed slightly as testing proceeded. As explained in Sec-
tion 3.3, during the initial tests psize was chosen as 12, but was subsequently
increased to 14. Likewise, pnum was chosen as 500 and pmin as 1 — i.e.
500 different patterns were tested for each pattern length. The reason for this
was because we did not want to deviate too much from the SMART frame-
work [23] which, by default, generates sets of 500 patterns. These 500 results
are analysed for average behaviour over the 500 runs as well as for minimum
behaviour with respect to the 500 runs. However, this is not shown in the
pseudo-code.

During the initial tests, it was found that it took a long time to complete
the 500 runs. Moreover, 500 runs seemed needlessly large for the experiment
when 30 observations are regarded as large enough to draw statistically valid
conclusions. Thus, pnum was changed to 100 and pmin to 30 — i.e. 30 runs
of the same pattern repeated 100 times for each pattern length. The minimum
of the thirty runs, captured as tmin(s, pi), is used as the result for a given
algorithm and pattern combination. This is repeated one hundred times and

16

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEAD-ZONE PERFORMANCE

the average of the hundred minimum values is then computed as tavg(s, n). The
decision to repeat each algorithm thirty times on the same data and record the
minimum time was a precaution, expected to minimise the effect of outliers
that could occur from unpredictable operating system behaviour.

A subsequent study by Kourie et al. [22] found that “[computing the average
of minimum times taken over several iterations on the same data] appears to
be a fairly robust and accurate performance metric for comparing minimum
time behaviour of algorithms”. This corroborates our experimental design.
Consequently, a similar experimental design was used for all of the experiments
discussed in this dissertation.

A sanity check was done to ensure that all of the algorithms find the same
number of occurrences of p for all of the runs.

Note that, in the case of our experiments, it was identified that the optimising
compiler optimised out all code that does not produce a side effect. Therefore,
we needed to include a counter for the number of times a pattern is found
and also record this count. This is shown in the pseudo-code in Figure 3.1
with “Accumulate number of hits” and “Record total hits”. Without them
the search code is removed by the optimiser.

3.5 Implementation

It has already been mentioned that the BM, Horspool and KMP algorithms
were implemented in C code within a C++ environment. As an aside, note
that, in regard to Horspool, the size of the shift table depends on the size of
the alphabet being used, while in the case of KMP, the size of the shift table
depends on the length of the pattern being tested. BM has one shift table
that depends on the alphabet size and another shift table that depends on the
length of the pattern.

In addition to the BM, Horspool and KMP algorithms, five variants of the DZ
algorithm were benchmarked:

DZ(rec,sh,OO) This is a C++ implementation of Algorithm 2 using the ar-
chitecture described in [37]. It makes use of object-oriented programming
and C++ best practices from [14], including:

• The string class from the C++ standard library.

• The vector class from the C++ Standard Template Library (STL),
used for shift tables.

• Emphasising code readability and relying on the optimising com-
piler.

• Hardly any virtual functions, for performance reasons.

17

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEAD-ZONE PERFORMANCE

• Preferring template parameterisation over inheritance, for perfor-
mance reasons.

• Separate classes for different match orders, used as template param-
eters to the main pattern-matcher class.

• Separate classes for different probe choosers (where to make match
attempts), used as template parameters to the main pattern-matcher
class.

• Separate classes for different shifters, representing various shift func-
tions.

DZ(rec,nsh) This is a C implementation of Algorithm 1. As opposed to
DZ(rec,sh,OO), almost all aspects were coded manually and without the
use of libraries such as STL or string. For example, instead of division
by two, the probe chooser that computed the average between low and
high used a binary right shift.

DZ(rec,sh) This is a C implementation of Algorithm 2 in the same style as
DZ(rec,nsh).

DZ(iter,nsh) This is a C implementation of Algorithm 3 in the same style
as DZ(rec,nsh).

DZ(iter,sh) This is a C implementation that combines the iterative loop of
DZ(iter,nsh) with the sharing of DZ(rec,sh).

All five variants relied on Horspool ’s right shift table (shift-right in Algo-
rithm 1) and a left shift table (shift-left in Algorithm 1) that looks at the
current text character aligned with the first pattern character and specifies
how many characters can be safely shifted to the left — i.e. the left shift table
is the mirror of Horspool ’s right shift table.

3.6 High Resolution Timer

In order to accurately measure the performance of the algorithms, our experi-
ments required a high precision timer with nanosecond resolution. The Mach
3.0 kernel of Mac OS X provides an efficient way to do time management on
Apple computers [4]. It provides a monotonic clock that uses the Mach abso-
lute time unit. This unit is CPU dependent and is converted to other units of
time (such as nanoseconds) by using the mach timebase info API. However,
since the CPU increments the absolute time unit, the monotonic clock stops
when the CPU is powered down—which includes when the system goes to
sleep. Consequently, the computer performing the benchmark experiment was
prevented from going into sleep mode by using the caffeinate [3] terminal
command.

Timers belong to the real time scheduling thread in the Mach kernel [5]. If

18

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEAD-ZONE PERFORMANCE

there are a large number of real time threads trying to be executed then there
will be contention over which thread executes first, and the timers will lose
precision. To avoid this situation, we only create one timer object in the test
harness and reuse it to capture the time taken for each of the algorithms to
find all the patterns in the text.

3.7 Output Data

An overview of the benchmarking data that was captured for this study is
presented in Table 3.1. Fourteen different benchmark experiments were con-
ducted using the testing harness developed in this study. Each benchmark test
generated a separate set of data that was captured in its own file. In total,
430 MB of raw data was stored and analysed. The resulting data was used to
change the DZ implementations over the course of the study, as mentioned in
the preceding sections. Moreover, based on the results of the benchmarking,
the benchmarking platform was also improved and developed further.

Benchmark
Number

Text Patterns Description of Data

1 Ecoli Up to a length of 64 char-
acters, randomly generated
with pseudorandom number
generator

Initial tests.

2 Ecoli Up to a length of 64 char-
acters, randomly generated
with pseudorandom number
generator

100 runs per pattern length.
Discovered that the code
in the loops where matches
were found was being opti-
mised away.

3 Ecoli Up to a length of 256 char-
acters, randomly generated
with pseudorandom num-
ber generator and randomly
chosen from text

100 runs per pattern
length. First tests with
DZ(rec,sh,OO).

4 Ecoli Up to a length of 4096, ran-
domly chosen from text

100 runs per pattern length.

5 Ecoli Up to a length of 4096, ran-
domly chosen from text

100 runs per pattern length.
Optimised version of DZ.

6 Ecoli Up to a length of 4096, ran-
domly chosen from text

500 runs per pattern length.
Optimised version of DZ.

7 Ecoli Up to a length of 4096, ran-
domly chosen from text

500 runs per pattern length
as well as the average of
30 minimums over 100 runs.
Improved DZ.

8 Ecoli Up to a length of 4096, ran-
domly chosen from text

500 runs per pattern length.
Improved DZ.

19

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEAD-ZONE PERFORMANCE

9 Ecoli Up to a length of 4096, ran-
domly chosen from text

500 runs per pattern length.
3 versions of DZ.

10 Ecoli Up to a length of 4096, ran-
domly chosen from text

500 runs per pattern length.
6 versions of DZ.

11 Ecoli Up to a length of 4096, ran-
domly chosen from text

500 runs per pattern length.
7 versions of DZ.

12 Ecoli Up to a length of 16384,
randomly chosen from text

Average of 30 minimums
over 100 runs. 4 refined ver-
sions of DZ mentioned in
the preceding sections.

13 Bible Up to a length of 4096, ran-
domly chosen from text

Average of 30 minimums
over 100 runs. 4 refined ver-
sions of DZ mentioned in
the preceding sections.

14 Bible Up to a length of 16384,
randomly chosen from text

Average of 30 minimums
over 100 runs. 4 refined ver-
sions of DZ mentioned in
the preceding sections.

Table 3.1: Overview of captured data

3.8 Overview of Results

The graph in Figure 3.2 shows a broad overview of the timing data. It is not
intended to give a detailed evaluation of the data at this point, as this will
be discussed later. The graph represents the time taken for six of the eight
algorithms (DZ(rec,sh,OO) and KMP are not shown) to search the natural lan-
guage text for all occurrences of a given pattern. The minimum time of thirty
runs with the same data averaged over one hundred different patterns of the
same length is depicted. Patterns were chosen randomly from the text.

The general trend had only a slight variation when the smaller alphabet was
used. It also remained similar when patterns were randomly generated instead
of chosen from the text. Therefore, the subsequent discussions will assume
that the data set refers to the natural language text where patterns have been
randomly chosen from the text, and where the average minimum time over one
hundred observations for the same pattern length, with the minimum taken
from thirty runs with the same data, has been used.

3.9 SMART Results

Section 3.4 already highlighted some of the reasons why the SMART framework
[23] was not suitable for our tests. Furthermore, while experimenting with

20

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEAD-ZONE PERFORMANCE

1.0E+05	

2.1E+06	

4.1E+06	

6.1E+06	

8.1E+06	

1.0E+07	

1.2E+07	

1.4E+07	

4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	

BM	 Horspool	 DZ(rec,sh)	 DZ(rec,nsh)	 DZ(iter,sh)	 DZ(iter,nsh)	

Figure 3.2: Illustrative raw averaged minimum time data
Source: [24]

SMART, we found our implementations of BM and Horspool to be faster than
the SMART implementations.

Table 3.2 shows the difference in timing between the BM and Horspool im-
plementations in the SMART platform (tSMART) and the BM and Horspool
implementations in our platform (tus). The difference is expressed as a per-
centage of our times — i.e. 100 × (tSMART − tus)/tus. The comparisons are
drawn from the mean time (in milliseconds) to find all occurrences of a pat-
tern in 1 MB of genome data. As pattern length increases, the percentage
difference in time between the two BM implementations increases, and the
percentage difference in time between the two Horspool implementations stays
fairly constant, except for one outlier. This outlier suggests that the SMART
timings have a somewhat erratic quality — something that was also detected
in subsequent tests.

3.10 Cost of Object-Orientation

Figure 3.3 shows the performance of DZ(rec,sh,OO) and KMP using the
performance of DZ(rec,sh) as a base line. The only difference between the
DZ(rec,sh,OO) and DZ(rec,sh) implementations is that the former uses C++
templates and object-oriented features discussed in Section 3.5.

Note that the vertical axis uses a logarithmic scale. It is evident that the
performance difference between DZ(rec,sh,OO) and DZ(rec,sh) gets larger as
pattern length increases. In the best case (pattern length of 4), DZ(rec,sh,OO)
is three times slower than DZ(rec,sh), and with a pattern length of 16384
(the longest pattern we tested), DZ(rec,sh,OO) is thirty-three times slower

21

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEAD-ZONE PERFORMANCE

Table 3.2: Differences between SMART’s timings and our timings (expressed
as a percentage of our implementations).

Pattern
Length BM Horspool

4 44 60
8 79 66

16 100 69
32 114 101
64 128 68

128 148 62
256 161 50
512 178 61

1024 205 56
2048 229 58
4096 276 63

than DZ(rec,sh). Every time the pattern length is doubled, the performance
difference between DZ(rec,sh,OO) and DZ(rec,sh) can be expected to increase
by approximately 250% [24].

4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	
DZ(rec,sh)	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	
KMP	 -‐1.6	 62.1	 128.2	 190.6	 271.4	 336.1	 386.9	 466.0	 555.9	 672.8	 798.4	 891.5	 1050.9	
DZ(rec,sh,OO)	 300.9	 459.6	 618.9	 769.2	 1044.1	 1204.0	 1300.3	 1449.6	 1655.7	 2051.9	 2928.1	 3159.5	 3300.3	

1	

10	

100	

1000	

10000	

%
	 o
f	 D

Z(
re
c,
sh
)	

DZ(rec,sh,OO)	 and	 KMP	 as	 %	 of	 DZ(rec,sh)	 -‐	 Logarithmic	 Y	 scale	

Figure 3.3: Cost of Object-Orientation
Source: [24]

Although KMP outperformed DZ(rec,sh,OO), it performed poorly compared
to DZ(rec,sh), particularly with longer patterns. Moreover, it was found that
KMP had a fairly constant performance as pattern length increased, unlike
most of the other algorithms that had performance improvements as patterns
got longer. In hindsight, KMP was not a notably interesting algorithm for our
tests, and has been accordingly excluded from most of the results.

22

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEAD-ZONE PERFORMANCE

3.11 Cost of Recursion

Figure 3.4 shows the performance of DZ(rec,nsh), DZ(iter,sh) and DZ(iter,nsh)
relative to DZ(rec,sh). It is evident that the iterative sharing version (DZ(iter,sh))
is consistently between 31% and 36% faster than its recursive counterpart
(DZ(rec,sh)). Similarly, the iterative non-sharing version (DZ(iter,nsh)) is
also quicker than the recursive non-sharing version (DZ(rec,nsh)).

We expected that the optimiser would recognise the relatively simple recursive
calls and produce machine code similar to that of DZ(iter,sh) and DZ(iter,nsh)
using the tail-recursion elimination transform. However, it is apparent that re-
quiring the compiler to maintain a stack of live zone boundaries for the recur-
sive calls instead of doing it oneself is time intensive and costs approximately
one third of the total DZ pattern matching time.

4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	
DZ(rec,sh)	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	
DZ(rec,nsh)	 -‐18.8	 -‐19.4	 -‐13.3	 -‐5.4	 2.4	 11.6	 25.1	 41.3	 54.3	 79.9	 103.4	 130.8	 159.2	
DZ(iter,sh)	 -‐34.0	 -‐35.6	 -‐34.2	 -‐33.8	 -‐33.2	 -‐35.5	 -‐35.1	 -‐34.8	 -‐34.0	 -‐33.3	 -‐33.9	 -‐32.1	 -‐31.6	
DZ(iter,nsh)	 -‐44.8	 -‐44.9	 -‐42.5	 -‐38.7	 -‐33.1	 -‐28.2	 -‐18.1	 -‐7.5	 1.6	 23.3	 39.6	 60.5	 81.4	

-‐100.0	

-‐50.0	

0.0	

50.0	

100.0	

150.0	

200.0	

%
	 	 D

Z(
re
c,
sh
)	

DZ	 Algorithms	 as	 %	 of	 DZ(rec,sh)	 -‐	 excludes	 DZ(rec,sh,OO)	

Figure 3.4: Cost of Recursion
Source: [24]

3.12 Impact of Information Sharing

In Figure 3.4, the impact of information sharing is also shown. Informa-
tion sharing makes use of a variable d that gets updated in two places (dis-
cussed in Section 2.2), thus incurring a running-time penalty. Because of this
penalty, when patterns are small, the non-sharing versions of DZ outperform
their sharing counterparts. With a pattern length of about 64, DZ(rec,sh)
and DZ(rec,nsh) have an almost identical performance. The same applies

23

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEAD-ZONE PERFORMANCE

to DZ(iter,sh) and DZ(iter,nsh) with a pattern length of 64. When pattern
lengths get larger than 64, the non-sharing versions perform progressively worse
than the sharing versions. The reason is that longer patterns generally pro-
duce longer shifts, which are statistically more likely to grow the dead zone
discovered during match attempts in the left live zone into the right live zone.
It is evident that a pattern length of about 64 is the break-even point be-
tween sharing live zone information and suffering running-time penalties or
not sharing live zone information.

3.13 Best Performing Algorithms

The results discussed thus far clearly show that the two iterative variants of DZ,
DZ(iter,sh) and DZ(iter,nsh), perform the best. Figure 3.5 shows DZ(iter,sh)
and DZ(iter,nsh) compared to BM and Horspool for pattern lengths up to
64. It illustrates that DZ(iter,sh) only manages to outperform BM with a
pattern length of 4, but after that it starts to perform steadily worse while
BM performs better, until BM surpasses the performance of Horspool at a
pattern length of 1024 (not shown in Figure 3.5).

4	 8	 16	 32	 64	
BM	 12.6	 11.6	 8.7	 6.2	 7.4	
Horspool	 0.0	 0.0	 0.0	 0.0	 0.0	
DZ(iter,sh)	 9.2	 15.4	 31.7	 46.9	 62.0	
DZ(iter,nsh)	 -‐8.7	 -‐1.4	 14.9	 35.9	 62.1	

-‐20.0	

-‐10.0	

0.0	

10.0	

20.0	

30.0	

40.0	

50.0	

60.0	

70.0	

%
	 H
or
sp
oo

l	

DZ(iter)	 and	 BM	 as	 %	 of	 Horspool	

Figure 3.5: Best Performing Algorithms
Source: [24]

Under the best of circumstances (with a pattern length of 4), DZ(iter,nsh) out-
performs Horspool by 8%, and continues to outperform Horspool for all pattern
lengths up to about 9. Moreover, DZ(iter,nsh) performs better than BM for

24

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEAD-ZONE PERFORMANCE

pattern lengths less than approximately 14. This indicates that DZ(iter,nsh)
might be useful for natural language processing when relatively short patterns
will be searched for.

3.14 Effect of Smaller Alphabets

Benchmark experiments were also performed using the genome text to explore
the effects of smaller alphabets on the performance of the DZ algorithms. In
these tests, the parameters in Figure 3.1 differ to what has been previously
described—i.e. psize = 12, pnum = 500, pmin = 1. Thus 500 different
patterns were selected for each pattern length from 22to212, and the tests were
not repeated 30 times using the same data. This decision was supported by
noting that the timing data obtained from rerunning the tests using the same
data usually only had slight variations. Two data sets were computed from
the test results: the mean time per pattern length over the 500 observations,
and the minimum time per pattern length over the 500 observations.

4 8 16 32 64 128 256 512 1024 2048 4096

BM 4,9 -4,9 -16,4 -28,3 -36,8 -45,7 -52,3 -56,6 -61,7 -65,7 -68,6

Horspool 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

DZ(iter,shr) -1,3 1,4 7,8 -2,8 -5,1 -1,1 -1,7 2,3 0,1 0,9 1,9

DZ(iter,nshr) -13,9 -10,5 -4,0 -12,3 -14,8 -10,2 -10,4 -7,6 -7,4 -9,8 -9,1

-80,0

-70,0

-60,0

-50,0

-40,0

-30,0

-20,0

-10,0

0,0

10,0

20,0

%
 H

or
sp

oo
l

DZ(iter) & BM as % of Horspool (Four-letter Alphabet)

Figure 3.6: Best Performing Algorithms for Genome Text
Source: [24]

Figure 3.6 shows that DZ(iter,nsh) consistently outperformed Horspool by be-
tween 4% and 14%, and it outperformed BM up to a pattern length of about 9.
Although BM started off slower than the other algorithms, it increasingly out-
performed the rest as pattern length increased. The performance of Horspool
and the performance of DZ(iter,sh) were very much alike.

Figure 3.6 also illustrates that the sharing of information does not have as much
of an impact when using a small alphabet as it does with a large alphabet. The
performance of DZ(iter,sh) does not improve and eventually surpass that of

25

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEAD-ZONE PERFORMANCE

B
M

H
or

sp
oo

l

D
Z(

ite
r,s

h)

D
Z(

ite
r,n

sh
)

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

(a) Pattern length 4

B
M

H
or

sp
oo

l

D
Z(

ite
r,s

h)

D
Z(

ite
r,n

sh
)

1e+07

2e+07

3e+07

4e+07

(b) Pattern length 16

B
M

H
or

sp
oo

l

D
Z(

ite
r,s

h)

D
Z(

ite
r,n

sh
)

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

(c) Pattern length 64

B
M

H
or

sp
oo

l

D
Z(

ite
r,s

h)

D
Z(

ite
r,n

sh
)

0e+00

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

(d) Pattern length 1024

Figure 3.7: Box plots of minimum results from pattern matching with the
smaller alphabet

Source: [24]

DZ(iter,nsh) as pattern length increases. This differs from the results discussed
in Section 3.12 that were collected from the 256 letter alphabet.

The best-case performance of each of the four algorithms at pattern lengths
4, 16, 64 and 1024 can be seen in Figure 3.7. It shows that, when looking
at the minimum time per pattern length over the 500 observations, Horspool
consistently outperformed DZ(iter,nsh) and DZ(iter,sh). In fact, only the
behaviour of the BM algorithm corresponded to what is shown for the average
case in Figure 3.6. Note that the circles in Figure 3.7 represent outliers. Also,
each subfigure is drawn to a different scale and should not be compared against
one other. It is, however, interesting to note that only the bottom whisker in
the Horspool plots is lower than that of DZ(iter,nsh) as well as DZ(iter,sh).
These box plots highlight that statistical claims about performance (whether
best-, worst- or average-case) should not be allowed to obscure the possibility

26

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEAD-ZONE PERFORMANCE

of significant deviations in terms of outliers [24].

3.15 Conclusion

Many lessons were learned during this study, not all of which are related to
pattern matching. It is informative to briefly mention the knowledge gained to
highlight how it influenced the studies mentioned in Chapters 4, 5 and 6:

• Earlier research proved that the DZ algorithm requires fewer probes than
the Horspool algorithm to find all occurrences of a pattern in a text [37].
For this reason, we expected that this experiment would simply be a
matter of comparing the performance of the existing C++ implemen-
tation of DZ(rec,sh,OO) to the performance of the BM and Horspool
algorithms, anticipating a good DZ performance. The “cost of object-
orientation” was an unforeseen discovery. We suspect that researchers
and the computer science community are not aware of how substantial
this cost is for such fundamental algorithms.

• Making use of our own benchmark platform (written in C++) instead
of the SMART platform [23] (written in C) was a good decision. The
SMART platform was not flexible enough and the timings were too er-
ratic for our requirements. In addition, algorithms coded in C and ex-
ecuted in our C++ benchmarking environment were as efficient as the
standard C executions.

• We did not expect that the compiler would optimise out all code that
did not produce any side effects. Because of this, we hoped that it
would optimise out all the effects of the “two-tail recursive” calls, but
we were, however, disappointed. This can be achieved manually with
code, so there should be an optimising compiler that can handle a class
of “doubly tail-recursive” problems, which suggests a possible research
topic for compiler researchers.

• Because of the running-time penalties, we did not know whether the
sharing of information would be at all beneficial in the DZ algorithm.
Incidentally, the payoff for sharing dead-zone boundary information be-
comes increasingly noticeable as pattern length increases. The sharing
variants perform better than the non-sharing variants at a pattern length
of approximately 64 characters.

• When matching a genome text, the DZ(iter,nsh) algorithm performed
consistently better the Horspool algorithm and outperformed the BM
algorithm for short patterns. With a natural text, the DZ(iter,nsh) algo-
rithm outperformed both the Horspool algorithm and the BM algorithm
for shortish patterns.

• The performance of the DZ algorithms showed a tendency to be similar to
the performance of the Horspool algorithm, rather than the performance

27

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. DEAD-ZONE PERFORMANCE

of the BM algorithm. This can be easily explained by the fact that
Horspool -based shift tables were used. The impact of different shift tables
is explored in Chapter 4

• The DZ algorithm can be simply converted to a threaded implementation
by executing the two recursive calls in parallel. This is presented in the
study in Chapter 5.

28

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Multiple Shifters

4.1 Introduction

Each iteration (or recursion) of a DZ algorithm entails a right shift and a left
shift. The use of Horspool ’s right shift table and a Horspool -based left shift
table explains why the performance of the DZ algorithms tended to be similar
to that of Horspool in Chapter 3. However, shift tables from algorithms other
than Horspool could also be used in implementations of DZ because DZ al-
gorithms are not restricted to using Horspool -based shift tables. Furthermore,
shifters from various algorithms can be used in different combinations—i.e.
determining the shift distance using a right shift table from some pattern
matching algorithm and a left shift table based on another algorithm.

Accordingly, the aim of this chapter is to find out whether there would be any
significant changes in the behaviour of the DZ algorithms when different left
and right shifters are used.

First, this chapter explains the shifters that were used in the benchmark ex-
periments. Then, the details of the experiment are discussed. Finally, this
chapter reports on the impact of using different combinations of shift tables in
DZ implementations.

4.2 Shifters Used

There are a wide variety of pattern matching algorithms in the literature [11],
each having strengths and weaknesses and each associated with its own right
shift table(s). However, symmetry arguments can convert right shift tables
into left shift tables. Consequently, each shift table found in the literature can
therefore be used as the basis for the left- and right shift tables required in the
DZ algorithm.

29

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MULTIPLE SHIFTERS

We considered using shift tables from the best performing character compar-
ison based algorithms identified in [12], however, most have shift table imple-
mentations which are incompatible with the test harness used in this study
(for example, one algorithm makes use of hashing). As a result, we used shift
tables, each in their respective left and right shifter versions, from three tra-
ditional algorithms that were compatible with the C implementation of DZ
used in this study. Specifically, shift tables from Sunday’s Quick Search (QS)
algorithm [33] (denoted by q), the Berry-Ravindran (BR) algorithm [8] (de-
noted by b) and the Horspool algorithm [17] (denoted by h) were used. Nine
left-right shifter combinations can be formed out of these shifters, namely
{h-h, h-q, h-b, q-h, q-q, q-b, b-h, b-q, b-b}. The details of the various shift tables
can be found in the respective literature and will not be discussed in this
paper.

4.3 Experimental Design

The experiment was carried out on a 2012 model MacBook Pro with the fol-
lowing specifications:

• Operating System: Mac OS X version 10.8.5

• Processor: Intel Core i7

• Processor speed: 2.6 GHz

• Number of cores: 4

• L2 Cache (per core): 256 KB

• L3 Cache (per core): 6 MB

• Memory: 8 GB, 1600 MHz, DDR3

All executables were compiled with the GCC compiler, using the optimisation
option -O3.

4.4 The Data

Two texts from the SMART corpus [23] were used to carry out the pattern
matching experiments, namely a genome text and a natural language text (the
Bible). These texts are described in Section 3.3.

Patterns of length 2n were used, where n = 1, . . . , 16 to determine the effect
of very short (21 = 2) and very long (216 = 65536) patterns. Patterns were
selected randomly from the text by using a pseudorandom number generator
to provide an index into the text as the start of a pattern of a given length. To
ensure a cross-comparison of performance, different implementations used the

30

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MULTIPLE SHIFTERS

same randomly generated patterns for matching by seeding the pseudorandom
number generator with the same number.

4.5 Implementation

Each of the nine left-right shifter pairs {h-h, h-q, h-b, q-h, q-q, q-b, b-h, b-q, b-b}
was used to implement four instantiations of the abstract algorithm: DZ(rec,sh,
-), DZ(rec,nsh,*-*), DZ(iter,sh,*-*) and DZ(iter,nsh,*-*). Thus we had
4 × 9 = 36 different implementations of the DZ algorithm. As an aside, the
experiments discussed in Chapter 3 were based on DZ(*,*,h-h).

The DZ variants were implemented in C code (in a C++ environment) with
each variant having three separate files for its skeleton, left shifter and right
shifter. Instead of explicitly coding 36 different versions of DZ, we made us of
the C preprocessor in the test harness to define 36 different combinations of
skeletons, left shifters and right shifters.

Data structures were not space-optimised to account for different alphabet
sizes. The patterns and texts to be searched were all treated as const unsigned

char arrays, although the number of characters occurring in these arrays would
be limited by the alphabet size of the data set. One-dimensional arrays of type
int with a size of 256 were used to implement the h and q shift tables, and
two-dimensional arrays of type int with a size of 256 in each dimension were
used to implement the b shift tables. Again, this ignored the potential space
gains that would have been possible by tuning these.

Additionally, C versions of the Horspool, QS and BR algorithms were imple-
mented and compared to the 36 different DZ variants. In this chapter, we
refer to these Horspool, QS and BR implementations as the standard versions
of the algorithms.

4.6 Test Procedure

The same test harness described in Section 3.4 and shown in Figure 3.1 was
applied to each of the 36 DZ variants (DZ(iter,sh,h-q), DZ(rec,nah,q-b), etc.),
using each of the texts (bible and genome). Pattern matching is performed with
the algorithms and the time taken for each algorithm to find all occurrences
of a pattern p is recorded in nanoseconds. This happens for patterns of length
2n where n = 1, . . . , 16, pnum = 100 and pmin = 30.

The harness provides access to the shift tables appropriate for a given DZ vari-
ant by invoking the corresponding version of a static inline int function

that returns the required integer shift value.

31

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MULTIPLE SHIFTERS

4.7 Output Data

A file that captures the data of the benchmark run gets written for each variant
of DZ. Hence, each file contains 16× 100× 30 = 48000 run times for each DZ
variant.

Given the large amount of output data generated by the benchmarking exper-
iments, it was important that we had sanity checks to ensure that no error
had occurred. Firstly, we confirmed that all of the algorithms found the same
number of occurrences of p for all of the runs.

A second sanity check was based on the fact that theoretical time taken for
a DZ algorithm to process a pattern p on a string S is given by O(|S||p|) [37].
Therefore, one would anticipate a roughly positive linear relationship between
processing time and the reciprocal of the pattern length when a fixed search
text is used. Consequently, for each variant of DZ the (Pearson product-
moment) correlation coefficient was computed between the two variables: the
raw averaged minimum time and the inverse of the pattern length. The mini-
mum coefficient value over all 36 values computed was 0.97, indicating a highly
significant statistical correlation in all cases.

4.8 Overview of Results

The graph in Figure 4.1 illustrates the general trend of the timing data. The
minimum time of thirty runs with the same data averaged over one hundred
different patterns of the same length is shown. Patterns were chosen randomly
from the text.

Figure 4.1(a) depicts the time taken for each of the nine left-right shifter combi-
nations of the DZ(iter,sh,*-*) algorithm to find all patterns in the natural lan-
guage text. creffig:trendEcoliMultiShift shows related data corresponding to
the genome text. All left-right shifter combinations perform better as pattern
size increases, with the three DZ(iter,nsh,*-b) combinations being amongst the
top performers. This is true for both alphabets. However, it should be noted
that, although the general shape of the graphs are similar, the scales applied
on the vertical axes of the respective subfigures are different. It is clear that
the averaged minimum times of pattern matching using the genome alphabet
(shown in Figure 4.1(b)) are significantly higher than the corresponding ones
for natural language data (shown in Figure 4.1(a)). This is to be expected, as
smaller alphabets typically result in smaller shifts.

The complete set of graphs for all multi shifter DZ variants can be found in
the appendix.

32

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MULTIPLE SHIFTERS

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

2	 4	 8	 16
	

32
	

64
	

12
8	

25
6	

51
2	

10
24
	
20
48
	
40
96
	
81
92
	

16
38
4	

32
76
8	

65
53
6	

Na
no

se
co
nd

s	

Pa+ern	 length	

DZ(iter,nsh,*-‐*)	 using	 natural	 language	 text	

b-‐b	

b-‐h	

b-‐q	

h-‐b	

h-‐h	

h-‐q	

q-‐b	

q-‐h	

q-‐q	

(a) Natural Language: DZ(iter,nsh,*-*)

0	

5000000	

10000000	

15000000	

20000000	

25000000	

2	 4	 8	 16
	

32
	

64
	

12
8	

25
6	

51
2	

10
24
	
20
48
	
40
96
	
81
92
	

16
38
4	

32
76
8	

65
53
6	

Na
no

se
co
nd

s	

Pa+ern	 length	

DZ(iter,nsh,*-‐*)	 using	 genome	 text	

b-‐b	

b-‐h	

b-‐q	

h-‐b	

h-‐h	

h-‐q	

q-‐b	

q-‐h	

q-‐q	

(b) Genomic Data: DZ(iter,nsh,*-*)

Figure 4.1: Illustrative raw averaged minimum time data of multiple shifter
DZ

33

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MULTIPLE SHIFTERS

4.9 Assessing Berry-Ravindran Shifters

To determine the shift distance the Horspool and Quick Search algorithms
both rely on one symbol of the search text and a one-dimensional array for the
respective shift table [17][33]. Contrastingly, the Berry-Ravindran algorithm
uses the two adjacent characters that occur just beyond the current window in
the search text [8]. These two adjacent characters index into a two-dimensional
array which implements its shift tables. It is therefore not surprising that DZ
variants using Berry-Ravindran shifters generally deliver better time efficiency
than their Horspool and Quick Search counterparts. However, the Berry-
Ravindran shifters make use of a time and space trade-off—improved time
efficiency is bought at the cost of space efficiency that depends quadratically
rather than linearly on alphabet size.

In essence, the data relating to b shifters is essentially incommensurate with
the data derived from the other two shifters, since the latter have not made
the performance trade-off between time and space.

4.10 Cost of Recursion

The graphs for all the different shifter combinations are too numerous for all
of them to be included here, however, it should be taken into account that
they all have the same general trend. The graph for DZ(*,*,h-b) is shown
in Figure 4.2(a), and is used to give an explanation of the data. It shows
the impact of recursion using a natural language text, with DZ(rec,sh,h-b)
used as the base line. Figure 4.2(b) illustrates equivalent data for the genome
text. Note that the graphs for other shifter combinations can be found in the
appendix.

When a natural language text is used, all variants of DZ(iter,sh,*-*) perform
approximately 20% to 35% better than DZ(rec,sh,*-*). The difference between
DZ(iter,nsh,*-*) and DZ(rec,nsh,*-*) starts off relatively small at about 10%.
However, as pattern size gets larger the difference increases to approximately
60% to 150%. Moreover, DZ(iter,*,*-*) variants are, in general, more efficient
than DZ(rec,*,*-*) ones.

These findings are consistent with what is described in Section 3.11 (where
many experiments were based on DZ(*,*,h-h) applied to a natural language
text), despite the experimental design of the study described in Chapter 3
differing from this one in numerous ways—for example, different hardware
was used. In both studies it was found that iterative DZ implementations are
generally more efficient than recursive DZ implementations.

In an attempt to make sense of the vast amount of data that was gathered
during the multiple shifter experiments, the genome data set was also analysed
to compare iterative implementations with recursive implementations. Inter-

34

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MULTIPLE SHIFTERS

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,h-‐b)	 -‐36,8	 -‐36,4	 -‐36,1	 -‐35,3	 -‐32,8	 -‐26,4	 -‐19,7	 -‐3,9	 19,7	 56,5	 105,6	 157,5	 230,1	 305,6	 373,4	 383,8	
DZ(iter,sh,h-‐b)	 -‐28,1	 -‐29,1	 -‐29,8	 -‐30,0	 -‐30,6	 -‐30,1	 -‐31,8	 -‐31,5	 -‐30,0	 -‐28,0	 -‐27,2	 -‐26,1	 -‐25,1	 -‐23,7	 -‐20,9	 -‐16,4	
DZ(rec,nsh,h-‐b)	 -‐18,0	 -‐19,1	 -‐16,6	 -‐13,6	 -‐8,3	 0,6	 12,5	 35,4	 69,7	 120,5	 187,7	 257,0	 356,2	 458,8	 546,2	 549,5	
DZ(rec,sh,h-‐b)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐100,0	

0,0	

100,0	

200,0	

300,0	

400,0	

500,0	

600,0	

%
	 D
Z(
re
c,s

h,
h-‐
b)
	 	

DZ(*,*,h-‐b)	 variants	 as	 %	 of	 DZ(rec,sh,h-‐b)	

(a) Cost of Recursion of DZ(*,*,h-b) using a natural language text

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,h-‐b)	 -‐25,8	 -‐26,3	 -‐22,9	 -‐14,6	 -‐3,6	 2,9	 6,2	 7,7	 7,6	 7,6	 7,5	 7,0	 8,0	 9,0	 7,0	 7,8	
DZ(iter,sh,h-‐b)	 -‐23,6	 -‐23,8	 -‐24,7	 -‐25,0	 -‐24,9	 -‐24,9	 -‐25,3	 -‐25,3	 -‐25,3	 -‐25,1	 -‐24,4	 -‐24,5	 -‐24,2	 -‐23,9	 -‐23,7	 -‐23,5	
DZ(rec,nsh,h-‐b)	 -‐7,4	 -‐7,0	 -‐1,8	 10,3	 24,9	 33,3	 37,8	 39,4	 39,1	 38,9	 37,6	 37,4	 37,9	 38,7	 35,5	 36,6	
DZ(rec,sh,h-‐b)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐30,0	

-‐20,0	

-‐10,0	

0,0	

10,0	

20,0	

30,0	

40,0	

50,0	

%
	 D
Z(
re
c,s

h,
h-‐
b)
	

DZ(*,*,h-‐b)	 variants	 as	 %	 of	 DZ(rec,sh,h-‐b)	

(b) Cost of Recursion of DZ(*,*,h-b) using a genome text

Figure 4.2: Cost of Recursion of DZ(*,*,h-b)

estingly, the results of the genome data set follow the same pattern as that

35

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MULTIPLE SHIFTERS

of the natural language data set. All variants of DZ(iter,*,*-*) perform ap-
proximately 15% to 40% better than DZ(rec,*,*-*). However, in the case of
the genome data, the difference between DZ(iter,nsh,*-*) and DZ(rec,nsh,*-*)
stays constant and does not become larger as pattern length increases.

This suggests that the cost of recursion is a characteristic of the DZ family of
algorithms, and is irrespective of the alphabet and shifter being used.

4.11 Impact of Information Sharing

The impact of information sharing using a natural language text is also illus-
trated in Figure 4.2(a). Note that the sharing of data incurs a running-time
penalty (discussed in Section 3.12). In Chapter 3, a pattern length of 64 char-
acters was found to be the break-even point between sharing information and
not sharing information. However, the results from this experiment imply that
the break-even point is dependent on the left-shifter being used. The break-
even points for the three left-shifter variants of DZ(*,*,b-*), DZ(*,*,h-*) and
DZ(*,*,q-*) are approximately 256, 64 and 32 characters respectively.

As mentioned in Section 4.10, the experimental design of this study differed
from the one described in Chapter 3, yet these findings are also consistent with
what is described in Section 3.12. For example, in both studies DZ(iter,sh,h-
h) improves over DZ(iter,nsh,h-h) for pattern lengths greater than or equal to
64.

However, the same result does not apply to the genome data set, which is illus-
trated in Figure 4.2(b). Variants of DZ(iter,sh,*-*) generally perform better
than DZ(iter,nsh,*-*) variants up to a pattern length of about 8 characters, al-
though variants of DZ(rec,sh,*-*) and DZ(rec,nsh,*-*) do not follow a similar
trend. Under certain circumstances DZ(rec,nsh,*-*) variants always perform
better than DZ(rec,sh,*-*) variants by 5% to 15%. By contrast, at times
DZ(rec,sh,*-*) performs worse than DZ(rec,nsh,*-*) for small pattern lengths
but starts to perform better as pattern length increases, eventually beating
DZ(rec,nsh,*-*) at a pattern length of about 8 characters.

This highlights a level of unpredictability of information sharing when match-
ing is performed with a genome text and a recursive implementation of DZ.
Nevertheless, the break even point between sharing information and not shar-
ing information when using a genome text and an iterative DZ implementation
is roughly expected to be at a pattern length of 8 characters.

4.12 Assessing Shifter Pairs

To get a sense of the trends and preferred options for the various shifter
pair possibilities, we consider here the relative performance differences ex-

36

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MULTIPLE SHIFTERS

hibited by the data for DZ(iter,nsh,*-*), DZ(iter,sh,*-*), DZ(rec,nsh,*-*) and
DZ(rec,sh,*-*). It should be noted that, as discussed in Section 4.9, the data
relating to b shifters is incompatible with the data derived from the h and q
shifters, since the Berry-Ravindran algorithm makes a performance trade-off
between time and space. Therefore, the b shifter data has been excluded from
this section.

1. DZ(*,*,h-h) vs. DZ(*,*,h-q): Instead of using the hh shifter pair, it is
always slightly better to use the hq shifter pair for all variants excluding
DZ(iter,nsh,*-*). The genomic data behaviour is nearly the same as the
above and the differences between the two shifter pairs are also slight.
However, for a pattern length of 2, the hh shifter pair should be used.

2. DZ(*,*,h-h) vs. DZ(*,*,q-h): If pattern lengths are very short, the
qh pairing has a marginal advantage over the hh pairing for all vari-
ants, although this advantage is lost as pattern length increases. The
genomic data demonstrates a far more decisive picture: the hh pairing
is significantly better than the qh pairing for all pattern lengths and all
variants.

3. DZ(*,*,h-h) vs. DZ(*,*,q-q): Neither of the shifter pairs has a clear
advantage over the other for all patterns lengths. Rather, for short pat-
terns, the qq shifter pair is better than the hh shifter pair, although this
advantage is lost as pattern length increases. However, in the genome
case the hh shifter pair is better than the qq shifter pair for all vari-
ants and for all patterns lengths (except for very short patterns in the
case of non-sharing variants). Performance gains can be quite significant,
sometimes manifesting differences in the region of 10 percentage points.

4. DZ(*,*,h-q) vs. DZ(*,*,q-h): For all variants, excluding pattern
lengths of 2, it is always slightly better to use the hq shifter pair instead
of the qh shifter pair. The genomic data behaviour is almost identical to
the above, except that the hq shifter pair is also superior for patterns of
length 2, but the advantage is again marginal in terms of percentage point
differences—the same order of magnitude as for the natural language
data.

5. DZ(*,*,h-q) vs. DZ(*,*,q-q): If pattern lengths are relatively short
the qq pairing is the preferred option, but the hq pairing performs bet-
ter on larger strings. In general, for a given variant, the performance
differences between the two shifter pairs are relatively small, but the dif-
ferences for DZ(rec,nsh,*-*) are fairly large. The genomic data reinforces
these observations, manifesting larger percentage differences between the
respective shifter pairs. For example, for long patterns, DZ(iter,sh,q-q)
is more than 10 percentage worse off than DZ(iter,sh,h-q).

6. DZ(*,*,q-h) vs. DZ(*,*,q-q): Excluding DZ(iter,nsh,*-*) variants
and also excluding the marginal case of DZ(iter,sh,*-*) with a pattern
length of 2, it is always slightly better to use the qq shifter pair then the

37

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MULTIPLE SHIFTERS

qh shifter pair. The genomic data behaviour is similar to the above in
the case of recursive variants. However, for the iterative variants, the
behaviour is only similar to the above for shorter patterns, while, for
longer patterns, a qh shifter pair is slightly better—i.e. for |p| > 4 for
DZ(iter,sh,*-*) and for |p| > 64 for DZ(iter,nsh,*-*).

4.13 Comparison with Standard Versions

To determine whether using a DZ algorithm with the same shifter to shift both
to the left and to the right in the text performs better than the equivalent stan-
dard version of the algorithm, we compare the performance of DZ(iter,*,b-b),
DZ(iter,*,h-h) and DZ(iter,*,q-q) to the performance of the standard imple-
mentation of the corresponding algorithm (i.e. the implementations ofBM,
Horspool and QS found in Appendix A. This can be seen in the graphs in Fig-
ure 4.3, which illustrates the performance of DZ(iter,nsh,h-h) and DZ(iter,sh,h-
h) relative to performance of the standard Horspool implementation. It was
shown in Section 4.10 that DZ(rec,nsh,h-h) and DZ(rec,sh,h-h) perform worse
than their iterative counterparts, and have therefore been excluded from the
graphs. Note that similar graphs for BR and QS can be found in the ap-
pendix.

Figure 4.3(a) shows the results when a natural language text is used. It is
evident that DZ(iter,nsh,h-h) is approximately 10% slower than the standard
Horspool implementation when patterns are of length 2. However, the perfor-
mance of DZ(iter,nsh,h-h) gets worse as pattern length increase, until it peaks
at 560% slower at a pattern length of 32768. With a pattern length of 65536,
it performs marginally better, but is still 520% slower than standard Horspool.
Similarly, DZ(iter,sh,h-h) is 30% slower than the standard Horspool imple-
mentation with a pattern length of 2 and performs worse as pattern length in-
creases, until patterns reach a length of 256 characters. Then, its performance
stays consistent at approximately 100% slower than standard Horspool.

Although the performance of the two DZ(iter,*,h-h) variants when matching
a genome text, which can be seen in Figure 4.3(b), is not quite as poor, it
is still disappointing. DZ(iter,nsh,h-h) is about 4% slower than the standard
Horspool implementation at a pattern length of 2, and is approximately 28%
slower at a pattern length of 4. It performs consistently between 45% and 55%
slower than standard Horspool for patterns longer than 4 characters. Similarly,
DZ(iter,sh,h-h) is 11% slower than standard Horspool for a pattern length
of 2, and 23% slower for patterns with a length of 4 characters. Then, for
pattern lengths larger than 4, it has a similar behaviour to DZ(iter,nsh,h-h),
and performs consistently between 46% and 61% slower than the standard
Horspool implementation.

38

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MULTIPLE SHIFTERS

0	

100	

200	

300	

400	

500	

600	

2	 4	 8	 16
	
32
	
64
	
12
8	
25
6	
51
2	
10
24
	
20
48
	
40
96
	
81
92
	

16
38
4	

32
76
8	

65
53
6	

%
	 s
ta
nd

ar
d	
H
or
sp
oo

l	

Pa.ern	 length	

DZ(iter,*,h-‐h)	 variants	 as	 %	 of	 standard	 Horspool	

Standard	 Horspool	

DZ(iter,nsh,h-‐h)	

DZ(iter,sh,h-‐h)	

(a) DZ(iter,*,h-h) compared to standard Horspool using a natural language
text

0	

10	

20	

30	

40	

50	

60	

70	

2	 4	 8	 16
	

32
	
64
	
12
8	

25
6	

51
2	
10
24
	
20
48
	
40
96
	
81
92
	

16
38
4	

32
76
8	

65
53
6	

%
	 s
ta
nd

ar
d	
H
or
sp
oo

l	

Pa.ern	 length	

DZ(iter,*,h-‐h)	 variants	 as	 %	 of	 standard	 Horspool	

Standard	 Horspool	

DZ(iter,nsh,h-‐h)	

DZ(iter,sh,h-‐h)	

(b) DZ(iter,*,h-h) compared to standard Horspool using a genome text

Figure 4.3: DZ(iter,*,h-h) compared to standard Horspool

4.14 Conclusion

For all of the algorithms used in this study, the standard implementation of
the algorithm performed better than the corresponding DZ implementation

39

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. MULTIPLE SHIFTERS

with the same left and right shifter. In fact, there is only one case when the
standard implementation does not beat the corresponding DZ implementation:
For a pattern length of 65536, DZ(iter,sh,b-b) performs about 8% better than
the standard BR implementation.

Although the standard implementations of the algorithms are generally faster
than the multiple shifter DZ implementations, it is evident, however, that
certain combinations of shifters perform better than others.

Furthermore, this study established that the cost of recursion and the impact
of information sharing are intrinsic DZ characteristics that are, in general,
independent of the shifter being used.

This study also taught us about the importance of choosing the correct al-
gorithms for the experiment. In particular, selecting the Berry-Ravindran
algorithm for this study meant that a large chunk of our data was not compat-
ible with the rest of the data. It was significant to realise that not all pattern
matching algorithms are comparable.

40

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Parallel Dead-Zone

5.1 Introduction

Chapter 2 explains that the recursive version of the DZ algorithm has two
recursive calls: one call spawns a left live-zone, and a later call spawns a right
live-zone. There is no interaction between these two recursive calls. This
presents the recursive DZ algorithm as a good candidate for parallelisation.
According to Amdahl’s Law [2], if S is the fraction of a calculation that is serial
and 1−S the fraction that can be parallelised, then the greatest speedup that
can be achieved using P processors is: 1

(S+(1−S)/P)
. Therefore, we know that

the greatest speedup that can be achieved using 2 processors on code that is
20% sequential is 1.6.

This chapter aims to determine whether a parallel version of DZ can be imple-
mented, and also, if it can be implemented, then what performance increase
can be achieved.

First, two types of parallel implementations of DZ are introduced and the de-
tails of their experiments discussed, including the data set used as well as the
implementation details. Then, the data resulting from the CUDA benchmark
experiments are given in a table. The results of the Pthreaded experiments
are presented, which is followed by a discussion of the CUDA benchmark re-
sults.

5.2 Experimental Design

The parallelism experiments were carried out in two distinct stages that made
use of different parallelisation techniques, each producing unique parallel DZ
implementations.

Because a C implementation of DZ exists, it was possible to use POSIX threads
(Pthreads)[27], one of the most efficient models of parallelisation in C [7]. In

41

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

the first stage, the C implementation of DZ(rec,nsh) discussed in Chapter 3
was modified to create three threaded versions of DZ. This was achieved by
utilising POSIX threads to parallelise the two recursive calls of DZ(rec,nsh) in
the following ways:

• Both recursive calls are parallelised. Two threads get spawned to perform
pattern matching in the new left live-zone and the new right live-zone.

• The left recursive call is parallelised. A thread is spawned that performs
pattern matching in the new left live-zone. The recursive call to create
a right live-zone remains unchanged, and pattern matching in the right
live-zone continues with the current thread.

• The right recursive call is parallelised. A thread is spawned that performs
pattern matching in the new right live-zone. The recursive call to spawn
a left live-zone remains unchanged, and pattern matching the left live-
zone continues with the current thread.

When recursion is used, the parent process has to wait for its children pro-
cesses to complete. Rather than having the parent wait for its children, it
seemed sensible to spawn a new thread and let the parent thread continue
with some processing. In the cases where one recursive call was modified to
spawn a new thread, the parent thread would continue pattern matching the
live-zone that did not get processed by the new thread. Thus, thread re-use
was achieved.

The Pthreaded experiment was carried out on a 2011 model MacBook Pro
with the following specifications:

• Operating System: Mac OS X version 10.7.4

• Processor: Intel Core i7

• Processor speed: 2.8 GHz

• Number of cores: 2

• L2 Cache (per core) : 256 KB

• L3 Cache (per core): 4 MB

• Memory: 4 GB, 1333 MHz, DDR3

The executables for the Pthreaded benchmark experiment were compiled with
Xcode 4.2 into Release builds, which corresponds to -O3 optimisation on GCC
and most other compilers. The benchmark tests were performed on two CPU
cores with hyper-threading disabled.

It should be noted that the benchmark experiments involving the Pthreaded
versions of DZ(rec,nsh) occurred prior to the experiments examined in Chap-
ter 2 and Chapter 4, thus it was not possible to apply what was learned in
those studies.

42

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

The second stage involved developing an implementation of DZ(rec,nsh) that
would execute on a Graphics Processing Unit (GPU) using the CUDA parallel
computing platform [28]. As discussed in Chapter 3, the DZ algorithm was
implemented in C code and benchmarked in a C++ environment, therefore
the original code and testing harness would be compatible with CUDA [20].
To execute CUDA code, a computer must have an NVIDIA GeForce, NVIDIA
Quadro or NVIDIA Tesla graphics card [29].

A hybrid version of DZ that makes use of both iteration and recursion was im-
plemented with C code and CUDA. This hybrid DZ was benchmarked against
a CUDA implementation of the Horspool algorithm as well as the C imple-
mentation of Horspool from Chapter 3, executed on the CPU.

The CUDA implementation was developed iteratively, with the results of each
benchmark test bringing about code changes in an attempt to optimise the
CUDA code. Therefore, two rounds of experimentation (each consisting of
multiple benchmark tests) occurred in order to benchmark the CUDA imple-
mentations. First, the experiments were performed on a 2012 model MacBook
Pro with the following configuration:

• Operating System: Mac OS X version 10.9.5

• Processor: Intel Core i7

• Processor speed: 2.6 GHz

• Number of cores: 4

• L2 Cache (per core): 256 KB

• L3 Cache (per core): 6 MB

• Memory: 8 GB, 1600 MHz, DDR3

This MacBook Pro had the CUDA driver version 6.0 and the CUDA runtime
version 6.0 installed, as well as an NVIDIA GeForce GT 650M graphics card
with these specifications:

• CUDA cores: 384 cores

• Multiprocessors: 2

• Global memory: 1024 MB

• Constant memory: 65536 bytes

• Shared memory per block: 49152 bytes

• Warp size: 32

• Maximum number of threads per processor: 2048

• Maximum number of threads per block: 1024

The performance of the CUDA version of DZ was disappointing when exe-
cuted on the MacBook Pro. Therefore, a second round of experiments were

43

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

conducted on a desktop computer with a better GPU and the following spec-
ifications:

• Operating System: Fedora 20

• Processor: Intel Core i3

• Processor speed: 3.3 GHz

• Number of cores: 2

• L2 Cache (per core): 256 KB

• L3 Cache (per core): 3 MB

• Memory: 8 GB, 1333 MHz, DDR3

The desktop computer had the CUDA driver version 6.0 and the CUDA run-
time version 6.0 installed, as well as an NVIDIA GeForce GTX 460 graphics
card with these specifications:

• CUDA cores: 336 cores

• Multiprocessors: 7

• Global memory: 1073 MB

• Constant memory: 65536 bytes

• Shared memory per block: 49152 bytes

• Warp size: 32

• Maximum number of threads per processor: 1024

• Maximum number of threads per block: 1024

The executables were compiled with the NVCC compiler driver, which calls
the GCC compiler for C code and the NVIDIA PTX compiler for the CUDA
code. Optimisation level O3 was specified for the C code.

5.3 The Data

The data set used to conduct the Pthreaded DZ pattern matching experiments
was similar to that used in the experiments discussed in Chapter 2 and Chap-
ter 4. Two texts from the SMART corpus, a natural language text (the Bible)
and a genome text, were utilised for the benchmark experiments. Patterns
were randomly selected from the text for pattern lengths of 2n characters,
where n = 2, . . . , 12.

The natural language and genomic data sets were also used during the CUDA
benchmark experiments. Patterns were randomly selected from the text for
pattern lengths of 2n characters, where n = 1, . . . , 10. Furthermore, one sup-
plementary text was used to additionally determine the performance of the

44

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

algorithms in the best case and in the worst case. This text consists of 4 MB
worth of the letter a. Because a pattern consisting entirely of the letter b
cannot be found in a text containing only the letter a, the best case involved
matching patterns that were only comprised of the letter b. Conversely, a
pattern consisting entirely of the letter a will match every character of a text
containing only the letter a, thus the worst case involved matching patterns
that were only comprised of the letter a.

5.4 Implementation

In the Pthreaded DZ version, all threads other than the main thread are
explicitly created and passed the parameters necessary to process the new
live-zone—i.e. the boundary information. The C struct data structure is
used to setup and pass multiple parameters to the threads, and each thread
receives a unique instance of the struct. Moreover, for each thread to receive
the correct parameters it was important to keep track of the thread IDs with
a thread ID counter.

All threads perform the same function, therefore all threads could potentially
spawn other threads. One consequence of this it that a mutex lock is needed
to manage thread creation, which could negatively affect performance due to
lock contention [34]. The thread ID counter is locked whenever a struct

for a new thread is constructed with the correct parameters and while a new
thread is being created. Likewise, the mutex lock is unlocked after the newly
created thread has been created with the correct parameters. This prevents
two threads from creating new threads at the same time and their initialisation
parameters getting mixed up.

Whenever a new thread is spawned it is created using the pthread create

subroutine provided by the Pthreads standard API [13]. Furthermore, no
upper bound is given to the number of threads that could be spawned.

All threads have read access to the pattern being matched and the text to be
searched for possible matches. During the experiments discussed in Chapter 3
with the non-threaded DZ(rec,nsh), the compiler optimised out all code that
does not produce a side effect, and we assumed that this compiler optimisation
would also be apparent in the threaded version. Therefore, all threads have
write access to a global variable that keeps track of the number of matches
across all the threads for a given run. However, this meant that an additional
mutex lock would be necessary to lock the global count variable whenever a
thread wants to read from or write to the count variable. Similarly, the count
variable also has to be unlocked when the thread is done reading from or
writing to the variable. The addition of the extra lock could possibly result in
even greater lock contention.

POSIX makes use of the most common style of parallel programming, the Sin-
gle Program, Multiple Data (SPMD) parallel programming model [31]. This is

45

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

in contrast to CUDA, which uses the Single Instruction, Multiple Data (SIMD)
parallel programming model [28]. This means that a single function (known as
a kernel in CUDA) performs the same action simultaneously on multiple pieces
of data. Consequently, the CUDA programming paradigm is different to that
of POSIX, and the two implementations of parallel DZ are unique.

The CUDA implementation is a hybrid version of DZ in that the solution
makes use of both the recursive and iterative DZ algorithms. The C imple-
mentation of DZ(rec,nsh) from Chapter 3 is reused, and only DZ(iter,nsh) and
DZ(iter,sh) are implemented as CUDA kernels that get executed in parallel
on the GPU. Pattern matching is performed on the entire text using a divide
and conquer method.

When pattern matching begins, the C function of DZ(rec,nsh) is called. How-
ever, instead of recursively pattern matching the whole text, the recursion
stops once a certain recursion depth has been reached. This results in the text
being broken up into smaller chunks of text (all of which are live-zones still
to be searched). The entire text is copied to the GPU, as well as the live-
zone boundary information. A CUDA kernel function is called that will spawn
the specified number of threads to execute the iterative DZ function on the
GPU. To determine which chunk of the text to match, each thread uses the
boundary information copied to the GPU. Pattern matching the whole text
has concluded once all threads have completed pattern matching their chunk
of text.

In addition to the DZ(rec,nsh) partitioning function, a method that simply
divides the text into equal-sized sections was also implemented in C code such
that the best technique for dividing the text into chunks could be determined.
In Section 5.8 this method is referred to as the standard partitioning technique.
It should be noted that partitioning the text with DZ(rec,nsh) is the default
partitioning technique used, unless otherwise stated.

Using the cudaMalloc function, GPU memory is allocated for the int array
of live-zone indices, the global match count int array (each thread stores its
count in one entry in the array), the unsigned char array storing the text
and the unsigned char array for the pattern. The data is then transferred
to the GPU and stored in the corresponding GPU memory with cudaMemcpy,
which copies the data to global memory on the GPU. The left shift table and
the right shift table are copied to constant memory on the GPU with the
cudaMemcpyToSymbol function. Once pattern matching has completed, the
GPU copies the global match count data back to the host program running on
the CPU. This serves as a sanity check to ensure that all algorithms find the
same number of matches.

The high resolution timer discussed in Section 3.6 was used for benchmarking
the Pthreaded experiments as well as the recursive step executed on the CPU
in the CUDA experiments conducted on the MacBook Pro. However, the
mach timebase info API is only compatible with Apple computers and could
not be used for the experiments conducted on the desktop computer running

46

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

a Fedora operating system. Consequently, a Linux version of a high resolution
timer was implemented using a monotonic clock and clock gettime() [30].
The high resolution CPU timer is started immediately before the first recursive
function is called and is stopped once the desired recursion depth has been
reached and the recursive stack is empty.

In addition to the high resolution CPU timer, a cudaEventRecord timer was
implemented to capture the time taken for all the threads in one run to execute
the parallel iterative step on the GPU. Using the specialised CUDA event
API ensures that host-device synchronisation time is not recorded [16]. The
cudaEventRecord timer is started immediately prior to the CUDA kernel being
called, and is stopped as soon as all the threads on the GPU associated with
this kernel have finished executing.

During one run with the same pattern, recursively splitting the text with
the same depth of recursion will always result in the chunks of text being
identical. Therefore, the recursive function is only called once per run and the
CUDA implementations of DZ(iter,nsh) and DZ(iter,sh) both make use of the
same chunks of text produced by the recursive function. The time taken to
recursively split the text is recorded and added to the CUDA kernel timing
data for both iterative DZ implementations. The overall time taken to perform
pattern matching is the sum of the time taken to perform the recursive step
and the time taken for all threads to perform the iterative step, excluding the
the preprocessing step.

5.5 Test Procedure

The benchmarking platform that is described in Section 3.4 and used to bench-
mark the non-threaded DZ(rec,nsh) was also used for benchmarking the version
of DZ(rec,nsh) with Pthreads. The benchmark tests compared the C imple-
mentation of DZ(rec,nsh) as described in Chapter 2 to the three threaded
variants of DZ(rec,nsh). The benchmark time is the average of the 30 mini-
mums over 100 runs.

Benchmark tests for the Pthreaded version were also conducted to determine
the total time taken to create a new thread. Furthermore, the Pthreaded
version was benchmarked with the high resolution timer detailed in Section 3.6,
which uses the Mach absolute time unit. Consequently, over 30 runs and for
every thread, the mach absolute time was captured immediately before and
immediately after a Pthread was created. Additionally, the number of active
threads for a given a run were also recorded. This was achieved by recording
the number of currently active threads every time a thread was created. In this
context, an active thread is a thread that is currently alive, either performing
pattern matching or waiting for a child thread to complete.

The same benchmarking platform was also used to benchmark the CUDA
implementation. Initially, the benchmark tests compared the performance of

47

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

a CUDA implementation of DZ(iter,nsh) executing on the GPU to a CUDA
implementation of the Horspool algorithm also running on the GPU as well as
a C implementation of Horspool running on the CPU. However, in subsequent
tests a CUDA implementation of DZ(iter,sh) was also benchmarked. The
benchmark time is the average of the 30 minimums over 100 runs.

For the benchmark experiments executed on the MacBook pro, the recursive
step executed until a recursion depth of 10 was reached, splitting the text up
into 1024 live-zone chunks. The total size of all the texts used in the bench-
mark experiment is approximately 4 MB. Because this was divided into 1024
chunks, each chunk was about 4 KB depending on the dead-zone that was
generated. The CUDA architecture is built around Streaming Multiproces-
sors (SMs). When a program running on the CPU host calls a CUDA kernel,
the blocks of the grid are distributed to unused multiprocessors. One block
is executed on a multiprocessor at a time, and the threads in the block exe-
cute concurrently on the same multiprocessor. Each thread was allocated one
live-zone chunk to pattern match, thus a total of 1024 threads were executed
on the GPU. The threads were divided into two blocks of 512 threads each
and each block was executed on a different multiprocessor, thus utilising both
multiprocessors of the GPU.

The benchmark experiments executed on the more powerful computer exe-
cuted the recursive step until a recursion depth of 12 was reached. This split
the text up into 4096 chunks, each with a size of approximately 1 KB, with one
thread per chunk. The threads were divided into four blocks of 1024 threads
each, thus utilising four multiprocessors of the GPU and leaving three multi-
processors unutilised. Because a maximum of 1024 threads can be executed
concurrently on a multiprocessor on this particular GPU, this is the maximum
recursion depth and multiprocessor utilisation that can be achieved for this
GPU. The optimal number of GPU threads and blocks are highly dependent
on the algorithm and the GPU. For example, a recursion depth of 13 can be
achieved on a GPU with 8 multiprocessors, which splits the text into 8192
chunks and, with one thread per chunk, 8 blocks of 1024 threads each could
be executed simultaneously on 8 multiprocessors.

Lastly, multiple recursion depths were tested to determine the effect of recur-
sion depth (and therefore the number of threads and the size of the chunks of
text) on the performance of the hybrid DZ CUDA implementation. A bench-
mark experiment was conducted with recursion depths of 3, 6, 9 and 10.

5.6 Output Data

An overview of the benchmarking data that was captured for this study is
presented in Table 5.1. Twelve different benchmark experiments were con-
ducted using the testing harness. Each benchmark test generated a separate
set of data that was captured in its own file. In total, 87 MB of raw data

48

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

was stored and analysed. As described in the preceding sections, the resulting
data was used to change the CUDA DZ implementations over the course of
the study.

Benchmark
Number

Text Max
Pattern
Length

Recursion
Depth

Description of Data

1 Bible
and
ecoli

65536 9 and 10 Initial tests with one
block on one GPU mul-
tiprocessor.

2 Bible
and
ecoli

65536 9 and 10 Two blocks on two GPU
multiprocessors with
shifters in shared thread
memory.

3 Bible
and
ecoli

65536 9 and 10 Two blocks on two GPU
multiprocessors with
shifters in thread local
memory.

4 Bible
and
ecoli

65536 9 and 10 Two blocks on two
GPU multiprocessors
with shifters in constant
thread memory.

5 Bible
and
ecoli

65536 9 and 10 Two blocks on two
GPU multiprocessors
with shifters in constant
thread memory using the
cudaEventRecord timer.

6 Bible
and
ecoli

512 10 Two blocks on two
GPU multiprocessors
with shifters in constant
thread memory using
the cudaEventRecord

timer, preprocessing
time included.

7 Bible
and
ecoli

512 10 Two blocks on two
GPU multiprocessors
with shifters in constant
thread memory using the
cudaEventRecord timer,
excluding preprocessing
time.

8 Bible
and
ecoli

512 10 The same as 7 executed
on the desktop computer.

49

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

9 Bible
and
ecoli

2048 10 Unoptimised desktop
computer experiments
with larger patterns.

10 Bible 256 3, 6, 9, 10 Unoptimised desktop
computer experiments
with different recursion
depths.

11 Bible
and
ecoli

256 10 Unoptimised desktop
computer best case and
worst case experiments.

12 Bible
and
ecoli

1024 12 Optimised desktop com-
puter with best case,
worst case and average
case experiments.

Table 5.1: Overview of captured CUDA data

5.7 Pthreaded Dead-Zone Results

The performance gains that we expected to achieve by parallelising the DZ
algorithm with Pthreads was not apparent in the benchmarking data. Fig-
ure 5.1 illustrates the benchmark time for finding all patterns in the genome
text with the DZ(rec,nsh) algorithm as well as the three Pthreaded variants.
It is evident that DZ(rec,nsh) always performs better than the Pthreaded im-
plementations. The performance of using a thread for the left recursive call
is similar to the performance when threading the right recursive call. The
DZ(rec,nsh) variant with both sides threaded only performs better than the
left-threaded and right-threaded DZ variants with a pattern size of 4 charac-
ters, and the performance deteriorates with larger patterns. Similar results
were observed with the experiments involving the natural language text.

Removing the global match count and, consequently, one of the mutex locks
from the code did not have much effect on the performance of the Pthreaded
variants of DZ(rec,nsh). Figure 5.2 shows the benchmark time for pattern
matching the genome text with the DZ(rec,nsh) algorithm and the three
Pthreaded variants of DZ(rec,nsh) without a global counter to keep track of
the number of matches. Our assumption about code optimisation also being
apparent in the threaded version was incorrect. Code that did not produce
a side effect was not optimised, and there was no need to keep track of the
number of matches.

Figure 5.3 shows the number of active threads during one benchmark run of
DZ(rec,nsh) with both sides threaded. The number of active threads quickly
increases to 2048 and then plateaus until threads start terminating as the
pattern matching comes to an end. The number of active threads during a

50

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

0	

5E+09	

1E+10	

1,5E+10	

2E+10	

2,5E+10	

4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	

N
an

os
ec
on

ds
	

Pa+ern	 length	

Performance	 of	 threaded	 and	 non-‐threaded	 implementa6ons	
of	 DZ(rec,nsh)	 (Four-‐le+er	 alphabet)	

Non-‐threaded	 DZ(rec,nsh)	

Both	 calls	 threaded	

LeA	 call	 threaded	

Right	 call	 threaded	

Figure 5.1: Raw averaged minimum time data with Pthreads and a genome
text

benchmark run presented similar behaviour for all patterns sizes and for all
three versions of Pthreaded DZ(rec,nsh). In this study no upper bound for the
number of threads that could be spawned was given. The maximum number
of 2048 threads has been introduced by the hardware on which the benchmark
tests were performed.

0	

5E+09	

1E+10	

1,5E+10	

2E+10	

2,5E+10	

4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	

N
an

os
ec
on

ds
	

Pa+ern	 length	

Performance	 of	 Pthreaded	 and	 non-‐threaded	
implementa6ons	 of	 DZ(rec,nsh)	 (no	 global	 match	 count)	

Non-‐threaded	 DZ(rec,nsh)	

Both	 calls	 threaded	

LeA	 call	 threaded	

Right	 call	 threaded	

Figure 5.2: No compiler optimisations with Pthreads

For each run, although a maximum of 2048 threads were only ever active at
one time, a very large number of threads were created—more than eighteen
thousand, in fact. There is an overhead associated with thread creation, and

51

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

our data shows a wide range of time taken to create threads in our benchmark
runs. The minimum time required to create a thread was 1646 nanoseconds,
whereas the maximum time was 31230780 nanoseconds. However, 50% of
the recorded times fell between 3583 nanoseconds and 140144 nanoseconds.
This extremely wide range of time required to create threads highlights the
unpredictabilities brought on by the operating system that are associated with
multithreading.

0	

500	

1000	

1500	

2000	

2500	

A
c#
ve
	 th

re
ad

s	

Time	

Number	 of	 ac#ve	 threads	 during	 one	 run	 of	 DZ(rec,nsh)	
with	 both	 recursive	 calls	 threaded	

Threads	

Figure 5.3: Number of active threads

5.8 CUDA Dead-Zone Results

Figure 5.4 displays the time taken for identical implementations of the DZ(iter,nsh)
CUDA code to pattern match the natural language text on the GPU of the
MacBook Pro and the GPU of the desktop PC. In both cases, a recursion
depth of 10 was used and 1024 chunks of text were matched on two blocks of
512 threads. Note that exactly the same code was executed on both GPUs;
the code made use of only two GPU multiprocessors and was not optimised for
the desktop computer with better specifications, yet the two GPUs performed
differently. The GPU of the MacBook Pro performed consistently worse than
the GPU of the desktop computer. Consequently, subsequent benchmark tests
were all executed on the desktop computer.

The performance of the hybrid DZ(iter,nsh) CUDA implementation with DZ(rec,nsh)
partitioning with a recursive depth of 10 compared to the performance of the
the hybrid DZ CUDA implementation using standard partitioning to split the
text into 1024 chunks is shown in Figure 5.5. Our data shows that splitting
the text with DZ(rec,nsh) takes slightly longer than standard partitioning, but
results in quicker pattern matching performed on the GPU with the iterative

52

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

0	

5000000	

10000000	

15000000	

20000000	

25000000	

30000000	

2	 4	 8	 16	 32	 64	 128	 256	 512	

N
an

os
ec
on

ds
	

Pa+ern	 length	

Hybrid	 CUDA	 DZ	 using	 a	 natural	 language	 text	

Hybrid	 DZ	 CUDA	 MacBook	

Hybrid	 DZ	 CUDA	 PC	

Figure 5.4: Raw averaged minimum time data of CUDA DZ

DZ CUDA kernel because dead-zones have already been created in the text.
However, the total pattern matching times using both partitioning methods
are extremely similar and both times are remarkably faster than the Horspool
algorithm executed on the CPU. Similar results are observed for the genome
data set.

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

14000000	

16000000	

18000000	

20000000	

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	

N
an

os
ec
on

ds
	

Pa+ern	 length	

Natural	 language	 text	 par44oning	 techniques	

CPU	 Horspool	

Hybrid	 CUDA	 DZ	 Recursive	 Split	

Hybrid	 CUDA	 DZ	 Standard	 Split	

Figure 5.5: Splitting the text with DZ(rec,nsh) versus division into equal-sized
chunks

The performance of the hybrid DZ(iter,nsh) CUDA implementations with
DZ(rec,nsh) partitioning and varying depths of recursion and a natural lan-
guage text are illustrated in Figure 6.1. Different depths of recursion result

53

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

in a different number of chunks of text to be search and, consequently, a dif-
ferent number of GPU threads performing the iterative pattern matching on
the chunks of text. Figure 5.6(a) shows the performance of the CUDA imple-
mentation of DZ(iter,sh), whereas Figure 5.6(b) shows the performance of the
CUDA implementation of DZ(iter,nsh). Due to the experiments taking a long
time to complete, especially for shorter recursion depths, they were only con-
ducted for shortish patterns (8 characters in length) as well as slightly longer
patterns (256 characters in length). As recursion depth increases, it is evident
that the performance of both iterative DZ CUDA implementations improves
for both pattern lengths that were tested.

Figure 5.7 presents selected graphs showing the best case, worst case and
average case performance of hybrid DZ CUDA implementations compared
to a CUDA implementation of Horspool as well as a C implementation of
Horspool executed on the CPU with a natural language text. The code has
been optimised for the desktop PC such that it uses 4 multiprocessors of the
GPU with a recursion depth of 12 and 4096 chunks of text running on 4096
GPU threads. It should be noted that the vertical axes of the subfigures make
use of a logarithmic scale. Also, each subfigure is drawn to a different scale
and should not be compared against one other.

Shown in Figure 5.7(a), for a pattern length of 2, the CUDA DZ implementa-
tions have a very similar best case, worst case and average case performance.
The CUDA implementation of Horspool is clearly the best performing algo-
rithm, with its best case performance approximately 1.5x better than the best
case performance of both CUDA DZ implementations. Also, the worse case
performance of CUDA Horspool is almost the same as the best case perfor-
mance of both CUDA DZ implementations. The CPU Horspool implementa-
tion performs the worst, with its best case performance more than 2x slower
than the best case performance of the CUDA DZ implementations. Further-
more, the performance of the CPU Horspool and CUDA Horspool algorithms
are not as consistent as the CUDA DZ implementations, as depicted by the
larger box plots.

For patterns of length 8, Figure 5.7(b) illustrates that the performance of
both CUDA DZ implementations is again similar, and the best case perfor-
mance for both algorithms is slightly better than the best case performance
of CUDA Horspool and almost 4x faster than the CPU Horspool implementa-
tion. However, the average case performance of CUDA Horspool is still better
than the average case performance of both CUDA DZ implementations, al-
though the average case CUDA DZ implementations are also 4x faster than
the average case CPU Horspool implementations. Somewhat surprisingly, the
worst case performance of the CPU Horspool implementation is the best. The
range between the best case performance and worst case performance of all
the algorithms are larger when compared to the results with patterns of length
2.

The range increase between the best case performance and worst case perfor-

54

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

0	

50000000	

100000000	

150000000	

200000000	

250000000	

8	 256	

N
an

os
ec
on

ds
	

Pa+ern	 length	

CUDA	 DZ(iter,sh)	 depths	 of	 recursion	

Recursion	 Depth	 3	

Recursion	 Depth	 6	

Recursion	 Depth	 9	

Recursion	 Depth	 10	

(a) Performance of DZ(iter,sh) CUDA implementation

0	

50000000	

100000000	

150000000	

200000000	

250000000	

8	 256	

N
an

os
ec
on

ds
	

Pa+ern	 length	

CUDA	 DZ(iter,nsh)	 depths	 of	 recursion	

Recursion	 Depth	 3	

Recursion	 Depth	 6	

Recursion	 Depth	 9	

Recursion	 Depth	 10	

(b) Performance of DZ(iter,nsh) CUDA implementation

Figure 5.6: Impact of recursion depth on iterative DZ CUDA implementation

mance of all the algorithms continues when patterns of length 128 are used, as
shown in Figure 5.7(c), where the difference between the best case or CUDA
DZ implementations performs approximately 30 times better than the worst
case. Again, the best case performance of both CUDA DZ implementations
is marginally better than the best case performance of CUDA Horspool. The
average case of both CUDA DZ implementations perform approximately 5x
better than the CPU Horspool implementation, but are slightly slower than
the CUDA Horspool implementation. Moreover, the average case performance
of the DZ(iter,sh) CUDA implementation is slightly better than the average

55

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

6.
7

6.
8

6.
9

7.
0

7.
1

7.
2

7.
3

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 2
Natural language text

Logarithmic Scale

Algorithm

(a) Pattern length 2

6.
2

6.
4

6.
6

6.
8

7.
0

7.
2

7.
4

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 8
Natural language text

Logarithmic Scale

Algorithm

(b) Pattern length 8

5
6

7
8

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 128
Natural language text

Logarithmic Scale

Algorithm

(c) Pattern length 128

5
6

7
8

9

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 1024
Natural language text

Logarithmic Scale

Algorithm

(d) Pattern length 1024

Figure 5.7: Optimised CUDA implementations

case performance of the DZ(iter,nsh) CUDA implementation.

For patterns of length 1024, Figure 5.7(d) shows that the average case perfor-
mance of the DZ(iter,sh) CUDA DZ implementation is slightly better than
the average case performance of the DZ(iter,nsh) CUDA DZ implementation,
and both are again approximately 5x better than the average case perfor-
mance of CPU Horspool. The best case performance of the CPU Horspool
implementation is almost as good as the best case performance of the CUDA
DZ implementation, however the best case of the CUDA Horspool implemen-
tation performs the best. Again, the range increase between the best case
performance and worst case performance of all the algorithms is evident when
compared to smaller patterns.

It is interesting to note that, with a natural language text, the CUDA imple-
mentation of DZ(iter,nsh) performs better than the CUDA implementation of

56

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

DZ(iter,sh) when pattern lengths are small, but as pattern lengths increase the
performance of the CUDA implementation of DZ(iter,sh) eventually surpasses
that of CUDA DZ(iter,nsh). This corresponds to the findings in the previous
chapters, with a pattern length of about 32 characters being the break even
point between sharing and non-sharing of information.

Figure 5.8 presents the same selection of graphs using the genome data set.
Note that, again, the vertical axes of the subfigures make use of a logarithmic
scale and that each subfigure is drawn to a different scale and should not be
compared against one other.

For patterns of length 2, shown in Figure 5.8(a), the best case, worst case
and average case performance of the two CUDA DZ implementations are ex-
tremely similar, although their best case performances are approximately as
good as the average case performance of CUDA Horspool. Their worst case
(and average case) performances are almost identical to the best case perfor-
mance of the CPU Horspool implementation. The median line of the CUDA
DZ(iter,nsh) implementation is slightly lower than the median line of CUDA
DZ(iter,sh), which means that at least half of the average case runs for CUDA
DZ(iter,nsh) performed better than CUDA DZ(iter,sh). Note the very large
box plot representing the average case performance of CPU Horspool, which
indicates the broad range of times obtained in the average case benchmark
tests.

Shown in Figure 5.8(b), for a pattern length of 8, the performance of both
CUDA DZ implementations is almost identical. The best case performance
of both CUDA DZ implementations is approximately the same as the best
case performance of CUDA Horspool, however, the average case performance
of CUDA Horspool is 2x faster than that of the CUDA DZ implementations.
Nonetheless, both CUDA DZ average case performances are about 5x faster
than the average case of CPU Horspool, although the worst case performance of
CPU Horspool is the best. The sharing DZ implementation performed better
than the non-sharing DZ implementation because the median line of CUDA
DZ(iter,sh) is lower than the median line of CUDA DZ(iter,nsh).

For a pattern length of 128, illustrated in Figure 5.8(c), the best case perfor-
mance of both CUDA DZ implementations performs marginally better than
the best case performance of CUDA Horspool. The average case performance
of both CUDA DZ implementations is approximately 5x faster than the CPU
Horspool implementation, although the average case performance of CUDA
Horspool is the fastest. The range between the best case and worst case per-
formances is very large, with the best case performance of both CUDA DZ
implementations about 35x faster than the worst case performance. The worst
case performance of CPU Horspool is faster than the worst case performances
for all the CUDA algorithms.

The range increase between the best case performance and worst case perfor-
mance of all the algorithms continues when patterns of length 1024 are used,
as shown in Figure 5.7(d), where the best case performance of both CUDA DZ

57

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

6.
8

7.
0

7.
2

7.
4

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 2
Genome text

Logarithmic Scale

Algorithm

(a) Pattern length 2

6.
2

6.
4

6.
6

6.
8

7.
0

7.
2

7.
4

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 8
Genome text

Logarithmic Scale

Algorithm

(b) Pattern length 8

5
6

7
8

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 128
Genome text

Logarithmic Scale

Algorithm

(c) Pattern length 128

5
6

7
8

9

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 1024
Genome text

Logarithmic Scale

Algorithm

(d) Pattern length 1024

Figure 5.8: Optimised CUDA implementations with a genome text

implementations is almost 50x faster than the worst case performance. The
best case performances of all the algorithms are very similar, but the CUDA
Horspool best case performs marginally better than the others. Again, the
worst case performance of CPU Horspool is better than that of the other algo-
rithms, but the average case performance of CPU Horspool is 5x slower than
the average case performance of both CUDA DZ implementations.

When a genome text is used, the CUDA implementation of DZ(iter,nsh)
performs better than the CUDA implementation of DZ(iter,sh) with small
patterns. However, as pattern length increases, the performance of CUDA
DZ(iter,sh) improves and performs better than CUDA DZ(iter,nsh). The
break even point between sharing and non-sharing information when using
a genome text is approximately a pattern length of 16 characters.

58

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

5.9 Conclusions

Partly due to the vast magnitude and length of this study, several conclusions
were obtained:

• Based on our findings on the non-threaded implementation of DZ in
Chapter 3, we assumed that the compiler would also optimise the Pthreaded
code that did not produce a side effect. A global match count variable
was locked with a mutex lock and used by all threads to keep track of
the number of matches. However, our initial assumption was incorrect:
threaded code was not optimised like the non-threaded code and remov-
ing the global match count (and its mutex lock) from the algorithm had
little effect on the performance. Thus, it seems probable that the com-
piler is not as proficient at optimising threaded code. Another possibility
is that the compiler is just overly conservative, as it may not be as good
at analysing parallel code.

• Although there was no limit to the maximum number of threads that
could be spawned during the Pthreaded experiments, there were never
more than 2048 threads running at a given time. It should be emphasised
that this upper bound has been introduced by the hardware on which
the benchmark tests were performed.

• It was observed in the Pthreaded experiments that an extremely wide
range of time was required to create threads. This highlights the over-
head and unpredictabilities brought on by the operating system that are
associated with multithreading.

• The CUDA implementation was designed specifically for the GPUs that
it would run on. Each algorithm should be tailored for the specific GPU,
as different GPUs might require different block counts and distribution
of the threads on those block that could be more efficient. As was evident
in the CUDA study, the GPU specifications could determine whether or
not a CUDA implementation improves the performance of an algorithm.
Therefore, the GPU as well as the algorithm should be assessed to de-
termine the most suitable implementation of the algorithm in CUDA, or
if a CUDA implementation of the algorithm is even feasible.

• Further investigation of parallel implementations of DZ is a concern
for the future. The Pthreaded study focused on a non-sharing imple-
mentation of DZ ; future studies could implement a threaded version
of DZ(iter,sh). Moreover, different parallel variations, such as upper
bounds on the number of threads as well as the coding language used for
threading, should also be considered for future research.

• Finally, it was surprising to see that parallelisation does not always
achieve the speedup that is expected. In fact, parallelising the DZ code
with Pthreads decreased the performance of the DZ algorithm. Although
an algorithm may appear to be a good candidate for parallelisation at

59

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. PARALLEL DEAD-ZONE

first, careful consideration should be taken to determine whether this is
actually true and what implementation of parallelisation will be used.

60

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Dead-Zone Skeletons

6.1 Introduction

It was shown in Chapter 4 that is it not immediately obvious whether a multiple
shifter implementation of DZ is better than the standard implementation of
the Horspool, BR and QS algorithms. This could be due to the structure
of the DZ algorithm, which this chapter will refer to as the skeleton of the
algorithm.

All of the DZ skeletons mentioned in this chapter represent one of the four DZ
variants identified in Section 2.2.

• Recursive non-sharing implementations, whose code corresponds to the
pseudocode in Algorithm 1.

• Recursive sharing implementations, whose code corresponds to the pseu-
docode in Algorithm 2.

• Iterative non-sharing implementations, whose code corresponds to the
pseudocode in Algorithm 3.

• Iterative sharing implementations, whose code corresponds to the pseu-
docode in Algorithm 2 and uses the iterative loop from Algorithm 3.

Each of the four DZ variants has a corresponding basic DZ algorithm, dis-
cussed in Chapter 3:

• DZ(rec,nsh),

• DZ(rec,sh),

• DZ(iter,nsh), and

• DZ(iter,sh).

In this chapter, these four algorithms are referred to as the original DZ skele-
tons.

61

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEAD-ZONE SKELETONS

The aim of this chapter is to ascertain whether the DZ skeletons can be opti-
mised such that they have a better performance.

This chapter does not introduce any new DZ variants; only new DZ skeletons
produced by code changes made to the existing variants are discussed. Then,
it explains how the benchmark experiments were conducted. This chapter also
examines the performance of the four original skeletons of the DZ algorithm
and compares it to the performance of the new DZ skeletons.

6.2 Code Adjustments

The code for the original DZ skeletons was sent to Professor Jorma Tarhio at
Aalto University as well as to Dr David Gregg at Trinity College Dublin. They
slightly tweaked the code of the original DZ skeletons, thus they generated nine
new DZ skeletons:

1. cache-friendly DZ,

2. stack-caching DZ,

3. stack-sentinel DZ,

4. stack-unrolled DZ,

5. 2-gram DZ,

6. reduced-pop DZ,

7. byte-order DZ,

8. explicit 2-gram DZ, and

9. compressed-table DZ.

Algorithms 1 to 4 were developed by Dr David Gregg, while algorithms 4 to 9
were developed by Professor Jorma Tarhio.

The new DZ skeletons are modifications of the iterative variants of DZ. Ta-
ble 6.1 shows the DZ skeletons categorised by iterative implementation type
(iterative non-sharing and iterative sharing).

Table 6.1: DZ skeletons grouped by iterative implementation type.

Iterative non-sharing
DZ skeletons

Iterative sharing DZ
skeletons

DZ(iter,nsh) DZ(iter,sh)
2-gram DZ cache-friendly DZ
reduced-pop DZ stack-caching DZ
byte-order DZ stack-sentinel DZ
explicit 2-gram DZ stack-unrolled DZ
compressed-table DZ

62

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEAD-ZONE SKELETONS

A detailed discussion on the four original DZ skeletons can be found in Sec-
tion 2.2 and will not be discussed in this chapter. This section will accordingly
focus on the new DZ skeletons. It should also be noted that the code of the
four original DZ skeletons can be found in the appendix.

The following paragraphs are acquired from an email discussion with Dr David
Gregg [15] and provide an overview of his DZ skeletons as well as how they
were developed.

Unlike DZ(iter,sh), which divides the text array into equal sized
parts, the cache-friendly DZ skeleton rather uses constant size
chunks of text, and searches the chunks with the iterative sharing
algorithm in DZ(iter,sh). In preliminary experiments (searching for
the pattern “camel” in the Bible text), this reduced cache misses
by around 20%.

Stack-sentinel DZ is similar to DZ(iter,sh), but it eliminates a
tiny inefficiency in checking for the stack being empty by putting
a sentinel value on the bottom of the stack.

The stack-caching DZ and stack-unrolled DZ skeletons consider
branch mispredictions. There is a major decision to be made in the
DZ algorithm, and that is whether the left segment is empty. If
you profile your code, you will see that the left segment is empty
around half the time. Therefore, we can expect to take a lot of
branch mispredictions on the branch that determines whether the
left segment is empty.

Moreover, if the left segment is empty then the right segment is
also usually empty. The reason is that whether a segment is empty
or not depends very heavily on the depth of the recursion. As a
result, if we are at a depth of recursion where the left segment is
empty, we are probably also at a level where the right segment is
empty.

This means that when we are at a shallow level of recursion, the
branch will mostly go the direction where the left segment is not
empty. Furthermore, at deeper levels of recursion the left segment
will generally be empty, so the branch will go the other way. If we
could separate the branch into multiple branches — one for each
level of recursion — then we could expect that each would be much
more predictable than a single branch that is shared between all
levels of recursion.1

Stack-unrolled DZ unrolls the loop so that we have a different
version of the code for each depth of the stack. The code uses a
variable tos of type int to keep track of the depth of recursion,
which starts out as tos = 0. When something gets pushed onto
the stack, tos gets incremented, and tos gets decremented when

1It should be noted that, although these branch mispredictions are associated with the
recursive DZ versions, they are also applicable to the iterative versions of DZ where recursion
is implemented manually with the use of a stack (as discussed in Section 2.2)

63

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEAD-ZONE SKELETONS

something gets popped off of the stack.
Stack-caching DZ is a variant of stack-unrolled DZ that elimi-

nates some of the stack manipulation operations and makes it easier
for the compiler to promote stack locations to registers, should it
choose to.

A summary of the other five DZ skeletons, based on email communication
with Professor Jorma Tarhio [35], is given in the paragraphs that follow.

2-gram DZ applies the 2-gram shift to both directions. Testing
an alignment window is made faster by first testing the leftmost
2-gram of the pattern (stored as variable patstart) with the left-
most 2-gram of the window, x = (T [probe] << 8) + T [probe + 1].
If it matches, the rest of the pattern is checked and x is further
used in shifting to the left. If t denotes the text to be searched
and ti, . . . , ti+m−1 is the alignment window, the tested 2-grams for
shifting are titi+1 and ti+m−1ti+m. The former could also be ti−1ti,
which would provide longer shifts, but it is advantageous to use the
same 2-gram for occurrence checking. Both the 2-grams could also
be taken one position further (i.e. outside the alignment window),
but that would lead to shorter shifts on average and the number of
read characters will increase.

Reduced-pop DZ is a variation of 2-gram DZ that reduces the
number of POP operations. The loop while ((TOP.first) >=

(TOP.second)) POP; has been removed and PUSH has been slightly
modified: if (kdright<hi) PUSH(kdright,hi);.

Byte-order DZ is a variant of 2-gram DZ with a different byte
order in a 2-gram with x = (T [probe]) + (T [probe + 1] << 8).

Explicit 2-gram DZ is a variant of byte-order DZ with explicit
2-gram reading with x = ∗((uint16t∗)(T + probe)).

Compressed-table DZ uses compressed shift tables with x =
((T [probe] << 1) + T [probe + 1])%256. If x matches, the whole
pattern is checked. The average shift is slightly shorter than in
2-gram DZ.

6.3 Experimental Design

The experiment was carried out on a 2012 model MacBook Pro with the fol-
lowing specifications:

• Operating System: Mac OS X version 10.9.5

• Processor: Intel Core i7

• Processor speed: 2.6 GHz

• Number of cores: 4

64

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEAD-ZONE SKELETONS

• L2 Cache (per core): 256 KB

• L3 Cache (per core): 6 MB

• Memory: 8 GB, 1600 MHz, DDR3

All executables were compiled with the GCC compiler using the optimisation
option -O3. Additionally, the -DNDEBUG compiler flag was specified because
the code for some of the DZ skeletons made use of assertions.

6.4 The Data

The data set discussed in the preceding chapters is similar to the data set
that was used to conduct this round of pattern matching benchmark experi-
ments.

Two texts from the SMART corpus were used to perform the experiments,
namely a genome text and a natural language text (the Bible).

In this experiment we yet again wanted to determine the effect of very short
and very long patterns on the performance of the skeletons. Patterns of length
2n were used, where n = 1, . . . , 16. Patterns were selected randomly from
the text with a pseudorandom number generator. Additionally, the pseudo-
random number generator was seeded with the same number to ensure that
different implementations always used the same randomly generated patterns
for matching.

6.5 Implementation

Each of the DZ skeletons identified in Section 6.2 were implemented in C
code by Jorma Tarhio and David Gregg. In order for their code to be ex-
ecuted on our benchmark platform we had to modify their code slightly by
changing the signature of each algorithm’s search function to match the fol-
lowing function signature: int search(const unsigned char *P, int m,

const unsigned char *T, int n). Thus, the C code of the DZ skeletons
was executed in the C++ environment of the benchmark platform.

Although all the DZ skeletons use two shift tables (a left-shifter and a right-
shifter), they do not all use the same preprocessing function to set up their
shift tables. Hence there were several different preprocessing function imple-
mentations. We did not want the time of these preprocessing functions to be
included as part of a DZ skeleton’s pattern matching time. Therefore, the
preprocessing functions were called prior to calling the corresponding search
functions, and were excluded from the timing data.

65

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEAD-ZONE SKELETONS

6.6 Test Procedure

The same test harness used for the experiments conducted in Chapter 3 and
Chapter 4 (discussed in Section 3.4) was applied to the 2 original DZ skeletons
as well as each of the 9 new DZ skeletons, using both of the texts (bible and
genome).

The search function of each of the skeletons gets called and the time taken for
each skeleton to find all occurrences of a pattern p is recorded in nanoseconds
using a high-resolution timer. This occurs for patterns of length 2n where
n = 1, . . . , 16, pnum = 100 and pmin = 5.

It should be noted that the benchmark experiments from Chapter 3 and Chap-
ter 4 had pmin set to thirty—i.e. thirty runs of the same pattern. Because we
take the minimum value from these runs, statistically five runs with the same
pattern is enough to minimise the impact of outliers caused by the operating
system. In hindsight, pmin = 30 was needlessly large and caused unnecessarily
long runtimes for the benchmark experiments.

6.7 Results

The performance of the iterative sharing DZ skeletons is shown in Figure 6.1,
relative to the original iterative sharing DZ skeleton, DZ(iter,sh).

Figure 6.1(a) displays the results for a natural language text. Evidently, cache-
friendly DZ is the only new skeleton that performs better than DZ(iter,sh).
Despite the cache-friendly DZ skeleton reducing cache misses by 20%, the over-
all execution time only improves by up to 5.8%. It is therefore apparent that
cache misses do not make up a major part of overall execution time and that
the DZ(iter,sh) skeleton is already moderately cache efficient. However, the
cache-friendly DZ skeleton only performs better than the original DZ(iter,sh)
skeleton for pattern lengths up to approximately 128 characters. As patterns
get longer, the cache-friendly DZ skeleton performs steadily worse until it is
almost 100% slower than DZ(iter,sh) with a pattern length of 16384.

The use of a sentinel in stack-sentinel DZ has no effect on overall execution
time. In fact, the performance is a few percentage points worse than the
performance of DZ(iter,sh).

The stack-unrolled DZ skeleton and stack-caching DZ skeleton reduce branch
mispredictions by around 10%, yet both skeletons perform slightly worse than
DZ(iter,sh). In hindsight, the reason that branch mispredictions do not fall
by more than 10% is obvious, but was not obvious when the code for the
skeletons was written. The reason is that stack depth in the code version with
the explicit stack (iterative DZ skeletons) is not the same thing as recursion
depth in the simple recursive algorithm. In the simple recursive algorithm most
empty left partitions will be found at quite deep levels of recursion, but that

66

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEAD-ZONE SKELETONS

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	
DZ(iter,sh)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
Cache-‐friendly	 DZ	 -‐4,6	 -‐5,8	 -‐5,2	 -‐3,5	 -‐3,4	 -‐2,5	 -‐0,8	 1,9	 7,5	 16,0	 36,4	 62,6	 84,9	 99,1	
Stack-‐caching	 DZ	 2,7	 3,6	 2,1	 2,7	 1,8	 1,4	 1,3	 1,2	 1,0	 1,2	 1,4	 1,5	 1,5	 1,2	
Stack-‐senCnel	 DZ	 0,8	 1,1	 1,1	 1,8	 2,9	 3,7	 4,0	 4,0	 4,2	 4,1	 4,0	 4,0	 3,9	 3,6	
Stack-‐unrolled	 DZ	 3,2	 3,7	 2,3	 2,7	 1,7	 1,8	 1,3	 1,2	 1,0	 1,0	 0,9	 0,7	 0,6	 0,2	

-‐20	

0	

20	

40	

60	

80	

100	

120	

%	
DZ

(it
er
,sh

)	

Itera0ve	 sharing	 DZ	 skeletons	 as	 %	 of	 DZ(iter,sh)	

(a) Performance of iterative sharing skeletons using a natural language
text

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	
DZ(iter,sh)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
Cache-‐friendly	 DZ	 0,1	 0,4	 -‐2,2	 -‐2,3	 -‐2,3	 -‐2,3	 -‐2,3	 -‐2,3	 -‐2,3	 -‐2,1	 -‐2,5	 -‐2,3	 -‐2,3	 -‐2,3	
Stack-‐caching	 DZ	 13,2	 7,9	 5,6	 5,1	 5,0	 5,1	 4,9	 4,9	 4,9	 4,7	 4,7	 5,0	 4,8	 5,0	
Stack-‐senCnel	 DZ	 -‐0,5	 0,8	 1,5	 1,6	 1,7	 1,7	 1,8	 1,8	 1,8	 1,8	 1,6	 1,7	 1,7	 1,8	
Stack-‐unrolled	 DZ	 12,9	 7,3	 5,2	 4,7	 4,6	 4,7	 4,6	 4,6	 4,5	 4,4	 4,4	 4,6	 4,4	 4,7	

-‐4	

-‐2	

0	

2	

4	

6	

8	

10	

12	

14	

%	
DZ

(it
er
,sh

)	

Itera0ve	 sharing	 DZ	 skeletons	 as	 %	 of	 DZ(iter,sh)	 (Four-‐le;er	
alphabet)	

(b) Performance of iterative sharing skeletons using a genome language
text

Figure 6.1: Performance of iterative sharing DZ skeletons

can correspond to a place in the iterative algorithm with a relatively shallow
stack, because the stack is deeper when following left recursions, and shallower
when following right recursions.

67

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEAD-ZONE SKELETONS

The results when using a genome text are shown in Figure 6.1(b). The perfor-
mance of the cache-friendly DZ skeleton is almost identical to the performance
of DZ(iter,sh) for patterns with a length of up to 8 characters. For very short
patterns (pattern lengths less than 2 characters), stack sentinel DZ performs
marginally better than DZ(iter,sh). When pattern lengths are 8 characters
and longer, the cache-friendly DZ skeleton is consistently about 2.3% faster
than DZ(iter,sh).

6.8 Impact of 2-grams

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	
DZ(iter,nsh)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2-‐gram	 DZ	 2,9	 -‐24,9	 -‐30,7	 -‐47,0	 -‐58,5	 -‐68,8	 -‐75,6	 -‐80,3	 -‐83,3	 -‐85,4	 -‐86,9	 -‐87,4	 -‐87,8	 -‐87,8	
Recuded-‐pop	 DZ	 8,9	 -‐20,4	 -‐28,5	 -‐45,3	 -‐57,4	 -‐68,2	 -‐75,6	 -‐80,8	 -‐84,0	 -‐86,1	 -‐87,5	 -‐88,0	 -‐88,5	 -‐88,4	
Byte-‐order	 DZ	 3,3	 -‐24,8	 -‐30,8	 -‐47,3	 -‐59,0	 -‐69,1	 -‐76,1	 -‐80,8	 -‐83,9	 -‐86,0	 -‐87,5	 -‐88,0	 -‐88,5	 -‐88,5	
Explicit	 2-‐gram	 DZ	 -‐5,8	 -‐29,6	 -‐34,7	 -‐50,1	 -‐61,7	 -‐72,2	 -‐78,2	 -‐82,3	 -‐85,0	 -‐86,8	 -‐88,2	 -‐88,6	 -‐89,0	 -‐89,0	
Compressed-‐table	 DZ	 71,3	 -‐26,2	 -‐34,0	 -‐47,6	 -‐58,4	 -‐66,5	 -‐71,1	 -‐74,2	 -‐75,7	 -‐76,4	 -‐77,3	 -‐76,9	 -‐77,3	 -‐77,1	

-‐100	

-‐80	

-‐60	

-‐40	

-‐20	

0	

20	

40	

60	

80	

%	
DZ

(it
er
,n
sh
)	

Itera1ve	 non-‐sharing	 DZ	 skeletons	 as	 %	 of	 DZ(iter,nsh)	

Figure 6.2: Impact of 2-grams

The study described in Chapter 4 explores the use of Berry-Ravindran (BR)
shift tables in DZ algorithms. It was concluded that the BR data was in-
compatible with the rest of the data because BR uses 2-grams to perform the
shifts—i.e. two consecutive characters are looked at to determine the shift
distance—they make a performance trade-off between time and space (see the
discussion in Section 4.9).

Because 2-gram DZ, reduced-pop DZ, byte-order DZ, explicit 2-gram DZ and
compressed-table DZ also make a trade-off between space and time by using
2-grams to do the shifting, the data relating to these skeletons are, in essence,
incommensurate with the data derived from the other DZ skeletons. However,
to highlight the impact of utilising 2-grams in pattern matching algorithms,
the graph comparing DZ(iter,nsh) to the DZ skeletons that make use of 2-
grams has been included in Figure 6.2. It shows the results when a natural

68

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 6. DEAD-ZONE SKELETONS

language text is used. The results for the genome text are similar, and can be
seen in the appendix.

When pattern lengths are short, the advantages of using 2-grams are not en-
tirely obvious. In fact, for very short pattern lengths (|p| = 2) only the ex-
plicit 2-gram DZ skeleton performs better than the DZ(iter,nsh) skeleton. For
longer patterns, the performance benefits of using 2-grams in pattern match-
ing becomes apparent. The 2-gram DZ skeletons perform increasingly bet-
ter than DZ(iter,nsh) as pattern length increases, until their performances
peak at between 87% and 89% from a pattern length of about 2048 char-
acters. The compressed-table DZ skeleton performs slightly worse than the
other 2-gram DZ skeletons—at its peak it performs 77% to 79% better than
DZ(iter,nsh).

6.9 Conclusion

Although the iterative DZ skeletons are near optimal, they can be optimised
such that they have performance improvements. The use of cache-friendly
DZ skeleton over the DZ(iter,sh) skeleton should be preferred, except when
searching a natural language text for patterns with more than 128 characters,
as well as when searching a genome text for very short patterns.

It is evident that, instead of looking at only one character to determine the shift
distance, looking at two consecutive characters can improve the performance
of DZ(iter,nsh) by up to 89%.

69

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Conclusion

7.1 Results

This text presented a study on a variety of DZ implementations and their
performance during benchmark experiments. These implementations are all
based on the four basic variants of the DZ family of algorithms as described
in Section 2.2. The main objective of this study is to determine the empirical
performance of new variants of the DZ algorithm and how they compare to
existing pattern matching algorithms

Initial experiments involved comparing the performance of an object-oriented
version of DZ implemented in C++ to versions of DZ with no object-orientation
(essentially plain C code), thus a C++ benchmarking environment was devel-
oped for this purpose. Consequently, C implementations of the four basic vari-
ants of the DZ family of algorithms were benchmarked using the same C++
benchmarking platform. The iterative implementations performed favourably,
with both algorithms beating traditional pattern matching algorithms when
searching natural language and genome texts, particularly for short patterns.
In fact, for both the natural language as well as the genome experiments, the
DZ(iter,nsh) algorithm was the best performing algorithm for patterns up to 8
characters in length. A cost of recursion and the impact of information sharing
in the DZ algorithms were also identified.

The benchmarks revealed that the general behaviour of the DZ algorithms was
similar to that of the Horspool algorithm, thus they were extended such that
various left shifters and right shifters were used in all four DZ variants. We
hoped that significant changes in the behaviour of the DZ algorithms would
be observed when different left and right shifters are used—this was the case,
because certain combinations of shifters performed better than others during
the experiment. Overall benchmark results were, however, disappointing, as
there was only one case where our DZ implementation performed better than
an implementation of the traditional algorithm: For a pattern length of 65536,
DZ(iter,sh,b-b) performs about 8% better than the standard BR implementa-

70

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. CONCLUSION

tion. Nevertheless, it was observed that the cost of recursion and the impact
of information sharing are intrinsic DZ characteristics that are independent
of the shifter being used. The selection of the Berry-Ravindran algorithm as
a shifter was, in hind sight, a poor choice, as it was essentially incommensu-
rate with the other shifters because it makes a trade-off between space and
time.

Because the recursive DZ implementations make use of double tail recursion,
they were identified as good candidates for parallelisation and parallel im-
plementations of the DZ algorithms were thus developed and benchmarked.
Three implementations of DZ(rec,nsh) using Pthreads all performed poorly
compared to the non-threaded version of DZ(rec,nsh). This can be explained
by the lack of upper bound given to the number of threads that can be spawned
during the experiment. Consequently, more than eighteen thousand threads
were created during every benchmark run, resulting in enormous overhead
costs for the operating system when creating all the threads, and causing the
performance to be even slower than the CPU implementation.

A second attempt was made at implementing and benchmarking a parallel
version of DZ executing on the GPU with CUDA (instead of on the CPU). The
solution was a hybrid DZ implementation that made use of both recursion and
iteration. Benchmark results were poor during the initial experiments and did
not beat a CPU implementation of Horspool. However, the performance greatly
improved when a better GPU was used—i.e. the CUDA implementation was
consistently 5x faster than a CPU implementation of Horspool.

Throughout the preceding experiments, the following question was asked: is it
possible to modify the skeletons of the original DZ algorithms such that there
is an improvement in performance? DZ code with slight tweaks was obtained
from Dr David Gregg and Professor Jorma Tarhio and benchmark experiments
were conducted. The benchmark tests revealed that when a natural language
text is used the cache-friendly DZ skeleton beats all other DZ skeletons for
pattern lengths up to approximately 128 characters. Furthermore, with a
genome text the cache-friendly DZ skeleton beats all other DZ skeletons for all
patterns with a length of 4 or more characters. Therefore, in general, the orig-
inal implementation of DZ is near-optimal, but a cache-friendly DZ skeleton
slightly improves the performance of the original DZ(iter,sh) implementation.
Unfortunately, the skeletons received from Jorma Tarhio all had a space time
trade-off by using 2-grams, and the data obtained from their benchmarks was
incompatible with the data obtained from the other skeletons.

7.2 Potential Future Research

Although this dissertation reports on several implementations of DZ, there are
still plenty of possible extensions. Possible future work includes:

• Further investigation of David Gregg’s cache-friendly DZ skeleton to

71

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 7. CONCLUSION

determine if it should become the standard skeleton for DZ(iter,nsh).
Additionally, the use of David Gregg’s cache-friendly DZ skeleton in
DZ(iter,sh), DZ(rec,sh) and DZ(rec,nsh) is a key concern for future
benchmarking.

• Designing a more efficient technique to define shifter combinations. In
this research effort, C preprocessor macros were used to define the differ-
ent shifter combinations in the multiple shifter DZ implementation. To
determine whether this implementation was the reason for the poor per-
formance of all the multiple shifters, a straightforward multiple shifter
implementation without macros could be developed, although this will
be time-consuming.

• Further investigation of parallel implementations of DZ, with particular
regard to different parallelisation models and coding languages.

• An implementation of a version of DZ that performs approximate pattern
matching.

• An implementation of a version of DZ that performs multiple keyword
pattern matching.

72

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Traditional Pattern Matching
Algorithms Code

Code A.1: Boyer-Moore

#define SIGMA 256

// Shift tables:

static int brBc[SIGMA][SIGMA];

void preBR(const unsigned char *P, int m) {

int a, b, i;

for (a = 0; a < SIGMA; ++a)

for (b = 0; b < SIGMA; ++b)

brBc[a][b] = m + 2;

for (a = 0; a < SIGMA; ++a)

brBc[a][P[0]] = m + 1;

for (i = 0; i < m - 1; ++i)

brBc[P[i]][P[i + 1]] = m - i;

for (a = 0; a < SIGMA; ++a)

brBc[P[m - 1]][a] = 1;

}

int search(const unsigned char *P, int m, unsigned char *T, int n) {

int i, j;

int count;

count =0;

/* Searching */

T[n + 1] = ’\0’;

j = 0;

while (j <= n - m) {

for (i=0; i<m && P[i]==T[j+i]; i++);

if (i>=m) count++;

73

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. TRADITIONAL PATTERN MATCHING ALGORITHMS
CODE

j += brBc[T[j + m]][T[j + m + 1]];

}

return count;

}

Code A.2: Horspool

#define SIGMA 256

// Shift tables:

static int hbc[SIGMA];

void preHorspool(const unsigned char *P, int m) {

int i;

for (i=0;i<SIGMA;i++) hbc[i]=m;

for (i=0;i<m-1;i++) hbc[P[i]]=m-i-1;

}

int search(const unsigned char *P, int m, unsigned char *T, int n) {

int i, s, count;

/* Searching */

s = 0;

count = 0;

while(s<=n-m) {

i=0;

while(i<m && P[i]==T[s+i]) i++;

if (i==m) count++;

s+=hbc[T[s+m-1]];

}

return count;

}

Code A.3: Quick Search

#define SIGMA 256

// Shift tables:

static int qsbc[SIGMA];

void preQS(const unsigned char *P, int m) {

int i;

for (i=0;i<SIGMA;i++) qsbc[i]=m+1;

for (i=0;i<m;i++) qsbc[P[i]]=m-i;

}

int search(const unsigned char *P, int m, const unsigned char *T,

int n) {

int i, s, count;

s = 0;

74

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. TRADITIONAL PATTERN MATCHING ALGORITHMS
CODE

count = 0;

while(s<=n-m) {

i=0;

while(i<m && P[i]==T[s+i]) i++;

if (i==m) count++;

s+=qsbc[T[s+m]];

}

return count;

}

75

Stellenbosch University https://scholar.sun.ac.za

Appendix B

Dead-Zone Code

Code B.1: Recursive non-sharing DZ

static int searchrec(int lo, int hi) {

int count = 0;

int probe;

{

int i;

probe = (lo+hi)>>1;

assert(probe == (lo+hi)/2);

assert(lo <= probe);

assert(probe < hi);

for (i=0; i<m && P[i] == T[probe+i]; i++) {

// Intentionally empty;

}

if (i == m) {

count = 1;

}

}

{

int kdleft = probe - shl[T[probe]] + 1;

if (lo < kdleft) {

count += searchrec(lo, kdleft);

}

}

{

int kdright = probe + shr[T[probe+m-1]];

if (kdright < hi) {

count += searchrec(kdright, hi);

}

}

return count;

}

int search(const unsigned char *Patt, int emm, const unsigned char

*Text, int enn) {

76

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. DEAD-ZONE CODE

// These two should be set already.

assert(P == Patt);

assert(m == emm);

T = Text;

n = enn;

if (n < m) {

return 0;

} else {

return searchrec(0, n-(m-1));

}

}

Code B.2: Recursive sharing DZ

static int searchrec(int lo, int hi) {

if (lo >= hi) {

d = lo;

return 0;

} else {

int i;

int count = 0;

int probe = (lo+hi)>>1;

assert(probe == (lo+hi)/2);

assert(lo <= probe);

assert(probe < hi);

for (i=0; i<m && P[i] == T[probe+i]; i++) {

// Intentionally empty;

}

count = (i==m);

count += dzRecShareRec(lo, probe - shl[T[probe]] + 1);

count += dzRecShareRec(MAX(d, probe + shr[T[probe+m-1]]), hi);

return count;

}

}

int search(const unsigned char *Patt, int emm, const unsigned char

*Text, int enn) {

P = Patt;

m = emm;

d = 0;

T = Text;

n = enn;

if (n < m) {

return 0;

} else {

return dzRecShareRec(0, n-(m-1));

}

}

77

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. DEAD-ZONE CODE

Code B.3: Iterative non-sharing DZ

int search(const unsigned char *P, int m, const unsigned char *T,

int n) {

struct {

int first, second;

} todo[32];

int i, count=0;

int tos=0;

int lo=0, hi=n-(m-1);

int kdleft, kdright;

int probe;

if (n < m) {

return count;

}

#define EMPTY (tos==0)

#define POP (--tos)

#define TOP (todo[tos])

#define PUSH(x,y) ++tos; TOP.first=(x); TOP.second=(y)

PUSH(0,INT_MAX);

for(;;) {

probe=(lo+hi)>>1;

assert(probe == (lo+hi)/2);

assert(lo<hi);

assert(lo<=probe && probe<hi);

for (i=0; i<m && P[i]==T[probe+i]; i++) {

// Intentionally empty

}

if (i==m) {

count++;

}

// Do shifts

{

kdleft = probe - shl[T[probe]] + 1;

kdright = probe + shr[T[probe + m - 1]];

if (lo < kdleft) {

// Left is good, so enstack right, regardless if it’s

good.

PUSH(kdright, hi);

hi = kdleft;

} else {

// Left is empty.

assert(lo >= kdleft);

// ...consider using the right...

78

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. DEAD-ZONE CODE

if ((lo=kdright) >= hi) {

// Right is also bad...

assert(lo >= hi);

assert(!EMPTY);

while ((TOP.first) >= (TOP.second)) {

assert(!EMPTY);

POP;

}

if (TOP.second == INT_MAX) {

return count;

} else {

lo = TOP.first;

hi = TOP.second;

POP;

}

}

}

assert(lo < hi);

}

}

#undef EMPTY

#undef POP

#undef TOP

#undef PUSH

}

Code B.4: Iterative sharing DZ

int search(const unsigned char *P, int m, const unsigned char *T,

int n) {

struct {

int first, second;

} todo[32];

int i, count=0;

int tos=0;

int lo=0, hi=n-(m-1);

int kdleft, kdright;

int probe;

if (n < m) {

return count;

}

#define EMPTY (tos==0)

#define POP (--tos)

#define TOP (todo[tos])

#define PUSH(x,y) ++tos; TOP.first=(x); TOP.second=(y)

for(;;) {

79

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. DEAD-ZONE CODE

probe=(lo+hi)>>1;

assert(probe == (lo+hi)/2);

assert(lo<hi);

assert(lo<=probe && probe<hi);

for (i=0; i<m && P[i]==T[probe+i]; i++) {

// Intentionally empty

}

if (i==m) {

count++;

}

// Do shifts

{

kdleft = probe - shl[T[probe]] + 1;

kdright = probe + shr[T[probe + m - 1]];

if (lo < kdleft) {

// Left is good, so enstack right, regardless if it’s

good.

PUSH(kdright, hi);

hi = kdleft;

} else {

// Left is empty.

assert(lo >= kdleft);

// ...consider using the right...

lo = kdright;

if (kdright >= hi) {

// Right is also bad...

assert(kdright >= hi);

while (!EMPTY && !((lo=(MAX(TOP.first, lo))) <

(hi=TOP.second))) {

assert(!EMPTY);

POP;

}

if (EMPTY) {

return count;

} else {

POP;

}

}

}

assert(lo < hi);

}

}

#undef EMPTY

#undef POP

#undef TOP

#undef PUSH

}

80

Stellenbosch University https://scholar.sun.ac.za

Appendix C

Multiple Shifters Benchmark
Figures

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

14000000	

2	 4	 8	 16
	

32
	

64
	

12
8	

25
6	

51
2	

10
24
	
20
48
	
40
96
	
81
92
	

16
38
4	

32
76
8	

65
53
6	

Na
no

se
co
nd

s	

Pa+ern	 length	

DZ(iter,sh,*-‐*)	 using	 natural	 language	 text	

b-‐b	

b-‐h	

b-‐q	

h-‐b	

h-‐h	

h-‐q	

q-‐b	

q-‐h	

q-‐q	

(a) DZ(iter,sh,*-*)

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

14000000	

2	 4	 8	 16
	

32
	

64
	

12
8	

25
6	

51
2	

10
24
	
20
48
	
40
96
	
81
92
	

16
38
4	

32
76
8	

65
53
6	

N
an

os
ec
on

ds
	

Pa+ern	 length	

DZ(rec,nsh,*-‐*)	 using	 natural	 language	 text	

b-‐b	

b-‐h	

b-‐q	

h-‐b	

h-‐h	

h-‐q	

q-‐b	

q-‐h	

q-‐q	

(b) DZ(rec,nsh,*-*)

81

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. MULTIPLE SHIFTERS BENCHMARK FIGURES

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

14000000	

16000000	

18000000	

20000000	

2	 4	 8	 16
	

32
	

64
	

12
8	

25
6	

51
2	

10
24
	
20
48
	
40
96
	
81
92
	

16
38
4	

32
76
8	

65
53
6	

Na
no

se
co
nd

s	

Pa+ern	 length	

DZ(rec,sh,*-‐*)	 using	 natural	 language	 text	

b-‐b	

b-‐h	

b-‐q	

h-‐b	

h-‐h	

h-‐q	

q-‐b	

q-‐h	

q-‐q	

(c) DZ(rec,sh,*-*)

Figure C.1: Illustrative raw averaged minimum time data of multiple shifter
DZ using a natural language text

0	

5000000	

10000000	

15000000	

20000000	

25000000	

2	 4	 8	 16
	

32
	

64
	

12
8	

25
6	

51
2	

10
24
	
20
48
	
40
96
	
81
92
	

16
38
4	

32
76
8	

65
53
6	

Na
no

se
co
nd

s	

Pa+ern	 length	

DZ(iter,sh,*-‐*)	 using	 genome	 text	

b-‐b	

b-‐h	

b-‐q	

h-‐b	

h-‐h	

h-‐q	

q-‐b	

q-‐h	

q-‐q	

(a) DZ(iter,sh,*-*)

82

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. MULTIPLE SHIFTERS BENCHMARK FIGURES

0	

5000000	

10000000	

15000000	

20000000	

25000000	

30000000	

35000000	

2	 4	 8	 16
	

32
	

64
	

12
8	

25
6	

51
2	

10
24
	
20
48
	
40
96
	
81
92
	

16
38
4	

32
76
8	

65
53
6	

Na
no

se
co
nd

s	

Pa+ern	 length	

DZ(rec,nsh,*-‐*)	 using	 genome	 text	

b-‐b	

b-‐h	

b-‐q	

h-‐b	

h-‐h	

h-‐q	

q-‐b	

q-‐h	

q-‐q	

(b) DZ(rec,nsh,*-*)

0	

5000000	

10000000	

15000000	

20000000	

25000000	

30000000	

35000000	

2	 4	 8	 16
	

32
	

64
	

12
8	

25
6	

51
2	

10
24
	
20
48
	
40
96
	
81
92
	

16
38
4	

32
76
8	

65
53
6	

Na
no

se
co
nd

s	

Pa+ern	 length	

DZ(rec,sh,*-‐*)	 using	 genome	 text	

b-‐b	

b-‐h	

b-‐q	

h-‐b	

h-‐h	

h-‐q	

q-‐b	

q-‐h	

q-‐q	

(c) DZ(rec,sh,*-*)

Figure C.2: Illustrative raw averaged minimum time data of multiple shifter
DZ using a genome text

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,b-‐b)	 -‐30,0	 -‐29,4	 -‐29,8	 -‐29,5	 -‐29,1	 -‐28,3	 -‐28,4	 -‐24,5	 -‐17,9	 -‐5,7	 12,3	 31,0	 56,3	 83,8	 108,6	 116,2	
DZ(iter,sh,b-‐b)	 -‐21,9	 -‐22,4	 -‐22,9	 -‐22,9	 -‐22,6	 -‐22,3	 -‐24,3	 -‐24,9	 -‐24,6	 -‐25,8	 -‐26,0	 -‐26,8	 -‐27,5	 -‐28,0	 -‐26,5	 -‐22,1	
DZ(rec,nsh,b-‐b)	 -‐16,0	 -‐16,1	 -‐15,4	 -‐13,2	 -‐11,5	 -‐10,6	 -‐7,7	 -‐0,6	 9,3	 26,5	 51,1	 76,5	 110,6	 147,0	 177,4	 183,9	
DZ(rec,sh,b-‐b)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐50,0	

0,0	

50,0	

100,0	

150,0	

200,0	

%
	 D
Z(
re
c,
sh
,b
-‐b
)	 	

DZ(*,*,b-‐b)	 variants	 as	 %	 of	 DZ(rec,sh,b-‐b)	

(a) Cost of Recursion of DZ(*,*,b-b)

83

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. MULTIPLE SHIFTERS BENCHMARK FIGURES

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,b-‐h)	 -‐33,6	 -‐31,1	 -‐32,2	 -‐31,3	 -‐30,4	 -‐29,4	 -‐28,5	 -‐23,7	 -‐21,2	 -‐14,8	 -‐7,3	 2,5	 9,9	 17,2	 24,7	 23,8	
DZ(iter,sh,b-‐h)	 -‐25,7	 -‐24,6	 -‐25,6	 -‐25,7	 -‐26,1	 -‐26,7	 -‐28,6	 -‐28,5	 -‐28,4	 -‐28,1	 -‐28,0	 -‐28,1	 -‐28,2	 -‐28,2	 -‐27,9	 -‐27,0	
DZ(rec,nsh,b-‐h)	 -‐21,9	 -‐18,9	 -‐18,4	 -‐16,7	 -‐14,5	 -‐12,3	 -‐9,5	 -‐4,2	 -‐1,1	 6,3	 15,0	 26,4	 35,2	 44,2	 54,1	 52,3	
DZ(rec,sh,b-‐h)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐40,0	

-‐30,0	

-‐20,0	

-‐10,0	

0,0	

10,0	

20,0	

30,0	

40,0	

50,0	

60,0	

%
	 D
Z(
re
c,
sh
,b
-‐h
)	 	

DZ(*,*,b-‐h)	 variants	 as	 %	 of	 DZ(rec,sh,b-‐h)	

(b) Cost of Recursion of DZ(*,*,b-h)

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,b-‐q)	 -‐33,0	 -‐31,2	 -‐32,0	 -‐31,7	 -‐30,5	 -‐29,7	 -‐28,8	 -‐24,1	 -‐21,2	 -‐15,0	 -‐7,3	 2,6	 10,3	 17,0	 24,3	 24,0	
DZ(iter,sh,b-‐q)	 -‐22,2	 -‐23,4	 -‐25,2	 -‐25,2	 -‐25,3	 -‐26,5	 -‐28,4	 -‐28,1	 -‐27,8	 -‐27,4	 -‐27,2	 -‐26,9	 -‐26,7	 -‐26,4	 -‐26,0	 -‐24,9	
DZ(rec,nsh,b-‐q)	 -‐20,9	 -‐17,2	 -‐15,4	 -‐14,2	 -‐12,3	 -‐10,3	 -‐7,7	 -‐2,3	 0,8	 8,2	 17,5	 30,0	 39,0	 47,8	 57,1	 55,6	
DZ(rec,sh,b-‐q)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐40,0	

-‐30,0	

-‐20,0	

-‐10,0	

0,0	

10,0	

20,0	

30,0	

40,0	

50,0	

60,0	

70,0	

%
	 D
Z(
re
c,
sh
,b
-‐q
)	 	

	

DZ(*,*,b-‐q)	 variants	 as	 %	 of	 DZ(rec,sh,b-‐q)	

(c) Cost of Recursion of DZ(*,*,b-q)

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,h-‐h)	 -‐40,2	 -‐34,3	 -‐34,9	 -‐34,0	 -‐29,8	 -‐22,7	 -‐14,9	 -‐2,9	 8,8	 26,6	 48,7	 79,1	 101,8	 123,4	 151,5	 142,6	
DZ(iter,sh,h-‐h)	 -‐30,1	 -‐27,6	 -‐27,9	 -‐28,6	 -‐29,2	 -‐28,8	 -‐29,7	 -‐29,8	 -‐30,3	 -‐29,8	 -‐29,2	 -‐28,8	 -‐28,6	 -‐28,3	 -‐27,7	 -‐26,9	
DZ(rec,nsh,h-‐h)	 -‐25,0	 -‐19,9	 -‐18,8	 -‐14,3	 -‐5,5	 4,6	 16,3	 32,4	 49,3	 72,9	 101,8	 142,0	 172,4	 201,0	 236,0	 223,9	
DZ(rec,sh,h-‐h)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐50,0	

0,0	

50,0	

100,0	

150,0	

200,0	

250,0	

%
	 D
Z(
re
c,
sh
,h
-‐h
)	 	

	

DZ(*,*,h-‐h)	 variants	 as	 %	 of	 DZ(rec,sh,h-‐h)	

(d) Cost of Recursion of DZ(*,*,h-h)

84

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. MULTIPLE SHIFTERS BENCHMARK FIGURES

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,h-‐q)	 -‐35,2	 -‐32,2	 -‐33,8	 -‐32,5	 -‐27,9	 -‐20,4	 -‐12,8	 -‐0,4	 11,1	 29,6	 52,6	 82,6	 106,0	 126,9	 156,5	 148,9	
DZ(iter,sh,h-‐q)	 -‐28,5	 -‐29,5	 -‐30,7	 -‐31,8	 -‐32,3	 -‐31,8	 -‐32,8	 -‐33,1	 -‐33,6	 -‐33,2	 -‐32,5	 -‐31,8	 -‐31,7	 -‐31,3	 -‐30,5	 -‐29,5	
DZ(rec,nsh,h-‐q)	 -‐22,9	 -‐19,1	 -‐18,1	 -‐13,9	 -‐5,4	 4,5	 15,4	 31,5	 47,4	 71,1	 99,2	 137,7	 167,5	 194,4	 230,0	 219,5	
DZ(rec,sh,h-‐q)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐50,0	

0,0	

50,0	

100,0	

150,0	

200,0	

250,0	

%
	 D
Z(
re
c,
sh
,h
-‐q
)	

	

DZ(*,*,h-‐q)	 variants	 as	 %	 of	 DZ(rec,sh,h-‐q)	

(e) Cost of Recursion of DZ(*,*,h-q)

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,q-‐b)	 -‐34,5	 -‐34,7	 -‐34,6	 -‐33,8	 -‐31,3	 -‐24,6	 -‐17,7	 -‐1,6	 22,8	 59,6	 109,4	 162,6	 235,6	 311,9	 378,5	 396,4	
DZ(iter,sh,q-‐b)	 -‐25,3	 -‐27,4	 -‐29,3	 -‐29,8	 -‐30,4	 -‐29,2	 -‐30,9	 -‐31,0	 -‐30,0	 -‐28,7	 -‐28,4	 -‐28,1	 -‐28,0	 -‐27,9	 -‐26,1	 -‐21,3	
DZ(rec,nsh,q-‐b)	 -‐12,7	 -‐13,5	 -‐10,8	 -‐8,6	 -‐3,6	 5,4	 16,7	 40,6	 76,2	 127,3	 195,9	 267,8	 368,7	 473,0	 560,3	 575,9	
DZ(rec,sh,q-‐b)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐100,0	

0,0	

100,0	

200,0	

300,0	

400,0	

500,0	

600,0	

%
	 D
Z(
re
c,
sh
,q
-‐b
)	 	

	

DZ(*,*,q-‐b)	 variants	 as	 %	 of	 DZ(rec,sh,q-‐b)	

(f) Cost of Recursion of DZ(*,*,q-b)

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,q-‐h)	 -‐36,2	 -‐35,4	 -‐35,3	 -‐34,3	 -‐29,4	 -‐21,9	 -‐14,5	 -‐1,3	 9,8	 27,3	 49,8	 81,1	 105,1	 124,6	 152,2	 145,5	
DZ(iter,sh,q-‐h)	 -‐28,9	 -‐30,2	 -‐30,5	 -‐31,2	 -‐31,3	 -‐30,8	 -‐31,8	 -‐32,3	 -‐32,8	 -‐32,4	 -‐31,9	 -‐31,4	 -‐31,3	 -‐31,1	 -‐30,5	 -‐29,6	
DZ(rec,nsh,q-‐h)	 -‐16,5	 -‐10,9	 -‐10,6	 -‐7,4	 2,0	 12,7	 24,5	 43,4	 60,4	 85,1	 116,1	 159,8	 193,7	 221,5	 260,0	 249,5	
DZ(rec,sh,q-‐h)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐50,0	

0,0	

50,0	

100,0	

150,0	

200,0	

250,0	

300,0	

%
	 D
Z(
re
c,
sh
,q
-‐h
)	 	

	

DZ(*,*,q-‐h)	 variants	 as	 %	 of	 DZ(rec,sh,q-‐h)	

(g) Cost of Recursion of DZ(*,*,q-h)

85

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. MULTIPLE SHIFTERS BENCHMARK FIGURES

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,q-‐q)	 -‐32,5	 -‐32,0	 -‐32,2	 -‐31,0	 -‐26,3	 -‐18,7	 -‐11,1	 2,6	 14,1	 32,8	 56,3	 88,4	 113,0	 131,7	 162,5	 152,8	
DZ(iter,sh,q-‐q)	 -‐23,9	 -‐25,2	 -‐26,1	 -‐26,8	 -‐27,3	 -‐26,8	 -‐27,8	 -‐27,8	 -‐28,4	 -‐27,9	 -‐27,3	 -‐26,6	 -‐26,5	 -‐26,3	 -‐25,7	 -‐24,9	
DZ(rec,nsh,q-‐q)	 -‐16,9	 -‐13,7	 -‐13,1	 -‐10,1	 -‐1,7	 8,7	 19,5	 37,8	 53,6	 78,1	 107,8	 149,5	 181,6	 206,6	 247,1	 233,5	
DZ(rec,sh,q-‐q)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐50,0	

0,0	

50,0	

100,0	

150,0	

200,0	

250,0	

300,0	

%
	 D
Z(
re
c,
sh
,q
-‐q
)	 	

	

DZ(*,*,q-‐q)	 variants	 as	 %	 of	 DZ(rec,sh,q-‐q)	

(h) Cost of Recursion of DZ(*,*,q-q)

Figure C.3: Cost of Recursion of multiple shifter DZ variants using a natural
language text

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,b-‐b)	 -‐19,9	 -‐20,5	 -‐19,1	 -‐15,5	 -‐9,2	 -‐4,6	 -‐2,8	 -‐3,2	 -‐1,6	 -‐2,1	 -‐2,3	 -‐0,7	 -‐0,5	 -‐0,1	 -‐2,0	 -‐1,7	
DZ(iter,sh,b-‐b)	 -‐18,5	 -‐20,2	 -‐21,1	 -‐21,6	 -‐21,6	 -‐21,4	 -‐22,2	 -‐22,5	 -‐22,3	 -‐22,3	 -‐21,7	 -‐21,3	 -‐20,7	 -‐20,7	 -‐20,9	 -‐20,8	
DZ(rec,nsh,b-‐b)	 -‐7,6	 -‐5,3	 -‐2,9	 2,3	 10,6	 16,4	 19,5	 18,5	 20,2	 19,1	 17,8	 20,0	 19,6	 19,8	 18,0	 18,5	
DZ(rec,sh,b-‐b)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐25,0	

-‐20,0	

-‐15,0	

-‐10,0	

-‐5,0	

0,0	

5,0	

10,0	

15,0	

20,0	

25,0	

%
	 D
Z(
re
c,
sh
,b
-‐b
)	 	

DZ(*,*,b-‐b)	 variants	 as	 %	 of	 DZ(rec,sh,b-‐b)	

(a) Cost of Recursion of DZ(*,*,b-b) using a genome
text

86

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. MULTIPLE SHIFTERS BENCHMARK FIGURES

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,b-‐h)	 -‐26,5	 -‐24,0	 -‐23,3	 -‐22,3	 -‐22,4	 -‐22,5	 -‐22,2	 -‐22,4	 -‐22,5	 -‐22,0	 -‐21,8	 -‐21,5	 -‐21,7	 -‐21,4	 -‐22,0	 -‐21,7	
DZ(iter,sh,b-‐h)	 -‐24,1	 -‐21,8	 -‐23,0	 -‐23,6	 -‐23,6	 -‐24,3	 -‐23,9	 -‐24,1	 -‐24,1	 -‐24,0	 -‐23,8	 -‐23,8	 -‐23,4	 -‐23,4	 -‐23,3	 -‐23,3	
DZ(rec,nsh,b-‐h)	 -‐15,9	 -‐13,0	 -‐11,0	 -‐10,4	 -‐10,4	 -‐10,2	 -‐9,7	 -‐9,8	 -‐10,2	 -‐9,6	 -‐9,7	 -‐9,3	 -‐10,0	 -‐9,5	 -‐10,4	 -‐9,9	
DZ(rec,sh,b-‐h)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐30,0	

-‐25,0	

-‐20,0	

-‐15,0	

-‐10,0	

-‐5,0	

0,0	

%
	 D
Z(
re
c,
sh
,b
-‐h
)	

DZ(*,*,b-‐h)	 variants	 as	 %	 of	 DZ(rec,sh,b-‐h)	

(b) Cost of Recursion of DZ(*,*,b-h) using a genome
text

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,b-‐q)	 -‐26,5	 -‐25,7	 -‐25,2	 -‐23,9	 -‐23,3	 -‐23,1	 -‐23,5	 -‐23,7	 -‐23,7	 -‐23,6	 -‐23,2	 -‐22,9	 -‐23,1	 -‐22,7	 -‐23,4	 -‐23,0	
DZ(iter,sh,b-‐q)	 -‐23,6	 -‐22,6	 -‐23,3	 -‐23,3	 -‐23,1	 -‐23,0	 -‐23,4	 -‐23,5	 -‐23,4	 -‐20,7	 -‐21,9	 -‐23,0	 -‐22,8	 -‐22,6	 -‐22,7	 -‐22,5	
DZ(rec,nsh,b-‐q)	 -‐10,3	 -‐8,6	 -‐7,8	 -‐7,2	 -‐7,0	 -‐6,4	 -‐6,2	 -‐6,5	 -‐6,6	 -‐6,6	 -‐6,6	 -‐6,2	 -‐6,7	 -‐6,1	 -‐7,3	 -‐6,5	
DZ(rec,sh,b-‐q)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐30,0	

-‐25,0	

-‐20,0	

-‐15,0	

-‐10,0	

-‐5,0	

0,0	

%
	 D
Z(
re
c,
sh
,b
-‐q
)	

DZ(*,*,b-‐q)	 variants	 as	 %	 of	 DZ(rec,sh,b-‐q)	
	

(c) Cost of Recursion of DZ(*,*,b-q) using a genome
text

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,h-‐h)	 -‐29,7	 -‐28,4	 -‐27,1	 -‐24,9	 -‐25,1	 -‐24,0	 -‐24,7	 -‐24,4	 -‐25,3	 -‐24,3	 -‐24,2	 -‐24,6	 -‐24,8	 -‐24,1	 -‐24,9	 -‐24,2	
DZ(iter,sh,h-‐h)	 -‐24,2	 -‐25,2	 -‐25,2	 -‐25,4	 -‐25,3	 -‐25,2	 -‐25,4	 -‐25,6	 -‐25,7	 -‐25,6	 -‐25,4	 -‐25,5	 -‐25,3	 -‐25,3	 -‐17,9	 -‐25,1	
DZ(rec,nsh,h-‐h)	 -‐18,9	 -‐12,5	 -‐10,0	 -‐6,9	 -‐7,2	 -‐5,5	 -‐6,4	 -‐6,1	 -‐7,1	 -‐6,0	 -‐6,1	 -‐6,7	 -‐7,3	 -‐6,3	 -‐7,6	 -‐6,7	
DZ(rec,sh,h-‐h)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐35,0	

-‐30,0	

-‐25,0	

-‐20,0	

-‐15,0	

-‐10,0	

-‐5,0	

0,0	

%
	 D
Z(
re
c,
sh
,h
-‐h
)	

DZ(*,*,h-‐h)	 variants	 as	 %	 of	 DZ(rec,sh,h-‐h)	

(d) Cost of Recursion of DZ(*,*,h-h) using a genome
text

87

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. MULTIPLE SHIFTERS BENCHMARK FIGURES

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,h-‐q)	 -‐24,3	 -‐25,4	 -‐24,2	 -‐22,5	 -‐22,2	 -‐21,5	 -‐21,8	 -‐21,7	 -‐22,1	 -‐21,9	 -‐21,4	 -‐22,1	 -‐21,9	 -‐21,2	 -‐21,9	 -‐21,0	
DZ(iter,sh,h-‐q)	 -‐24,1	 -‐26,0	 -‐26,5	 -‐25,9	 -‐26,7	 -‐26,5	 -‐26,6	 -‐26,8	 -‐26,7	 -‐26,7	 -‐26,5	 -‐26,7	 -‐26,5	 -‐26,5	 -‐26,3	 -‐26,4	
DZ(rec,nsh,h-‐q)	 -‐13,4	 -‐12,7	 -‐10,3	 -‐7,9	 -‐8,3	 -‐7,0	 -‐6,7	 -‐6,8	 -‐7,3	 -‐7,3	 -‐7,0	 -‐7,4	 -‐7,8	 -‐6,6	 -‐8,2	 -‐6,9	
DZ(rec,sh,h-‐q)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐30,0	

-‐25,0	

-‐20,0	

-‐15,0	

-‐10,0	

-‐5,0	

0,0	

%
	 D
Z(
re
c,
sh
,h
-‐q
)	

DZ(*,*,h-‐q)	 variants	 as	 %	 of	 DZ(rec,sh,h-‐q)	

(e) Cost of Recursion of DZ(*,*,h-q) using a genome
text

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,q-‐b)	 -‐27,8	 -‐25,6	 -‐21,5	 -‐12,6	 -‐1,0	 7,3	 10,0	 11,0	 12,4	 11,1	 10,7	 13,1	 12,5	 13,2	 9,8	 10,5	
DZ(iter,sh,q-‐b)	 -‐23,9	 -‐23,9	 -‐24,4	 -‐24,7	 -‐24,8	 -‐24,6	 -‐25,0	 -‐25,1	 -‐25,0	 -‐24,7	 -‐23,9	 -‐24,0	 -‐23,7	 -‐23,6	 -‐23,3	 -‐23,1	
DZ(rec,nsh,q-‐b)	 -‐5,0	 -‐1,4	 4,2	 17,3	 33,4	 44,4	 48,4	 49,4	 51,2	 49,2	 47,6	 50,6	 49,2	 50,0	 45,3	 46,2	
DZ(rec,sh,q-‐b)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐40,0	

-‐30,0	

-‐20,0	

-‐10,0	

0,0	

10,0	

20,0	

30,0	

40,0	

50,0	

60,0	

%
	 D
Z(
re
c,
sh
,q
-‐b
)	

DZ(*,*,q-‐b)	 variants	 as	 %	 of	 DZ(rec,sh,q-‐b)	

(f) Cost of Recursion of DZ(*,*,q-b) using a genome
text

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,q-‐h)	 -‐31,0	 -‐28,3	 -‐25,8	 -‐23,7	 -‐19,4	 -‐22,4	 -‐23,2	 -‐23,1	 -‐23,7	 -‐22,6	 -‐22,1	 -‐22,5	 -‐23,1	 -‐22,6	 -‐23,6	 -‐23,2	
DZ(iter,sh,q-‐h)	 -‐27,5	 -‐26,1	 -‐26,4	 -‐26,7	 -‐26,6	 -‐26,5	 -‐26,7	 -‐26,8	 -‐26,8	 -‐26,8	 -‐26,6	 -‐26,7	 -‐26,5	 -‐26,5	 -‐26,3	 -‐26,4	
DZ(rec,nsh,q-‐h)	 -‐10,3	 -‐5,8	 -‐2,2	 1,2	 0,8	 3,0	 1,8	 1,9	 1,1	 1,9	 1,9	 2,3	 1,1	 1,9	 0,3	 1,1	
DZ(rec,sh,q-‐h)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐35,0	

-‐30,0	

-‐25,0	

-‐20,0	

-‐15,0	

-‐10,0	

-‐5,0	

0,0	

5,0	

%
	 D
Z(
re
c,
sh
,q
-‐h
)	

DZ(*,*,q-‐h)	 variants	 as	 %	 of	 DZ(rec,sh,q-‐h)	

(g) Cost of Recursion of DZ(*,*,q-h) using a genome
text

88

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. MULTIPLE SHIFTERS BENCHMARK FIGURES

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	
DZ(iter,nsh,q-‐q)	 -‐23,7	 -‐24,0	 -‐22,3	 -‐20,4	 -‐20,3	 -‐19,5	 -‐19,5	 -‐19,7	 -‐19,6	 -‐19,7	 -‐19,9	 -‐18,7	 -‐19,4	 -‐18,6	 -‐19,7	 -‐19,0	
DZ(iter,sh,q-‐q)	 -‐19,7	 -‐20,3	 -‐21,0	 -‐21,2	 -‐21,0	 -‐21,0	 -‐21,1	 -‐21,2	 -‐21,1	 -‐21,2	 -‐21,6	 -‐21,0	 -‐20,8	 -‐20,8	 -‐20,7	 -‐20,6	
DZ(rec,nsh,q-‐q)	 -‐9,7	 -‐7,6	 -‐4,8	 -‐1,6	 -‐2,1	 -‐1,0	 2,6	 -‐0,2	 -‐1,3	 -‐1,6	 -‐2,0	 -‐0,5	 -‐1,6	 -‐0,6	 -‐2,3	 -‐1,3	
DZ(rec,sh,q-‐q)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

-‐30,0	

-‐25,0	

-‐20,0	

-‐15,0	

-‐10,0	

-‐5,0	

0,0	

5,0	

%
	 D
Z(
re
c,
sh
,q
-‐q
)	

DZ(*,*,q-‐q)	 variants	 as	 %	 of	 DZ(rec,sh,q-‐q)	

(h) Cost of Recursion of DZ(*,*,q-q) using a genome
text ecoli

Figure C.4: Cost of Recursion of multiple shifter DZ variants using a genome
text

-‐50	

0	

50	

100	

150	

200	

250	

2	 4	 8	 16
	

32
	

64
	
12
8	

25
6	

51
2	
10
24
	
20
48
	
40
96
	
81
92
	

16
38
4	

32
76
8	

65
53
6	

%
	 s
ta
nd

ar
d	
BR

	

Pa,ern	 length	

DZ(iter,*,b-‐b)	 variants	 as	 %	 of	 standard	 BR	

Standard	 BR	

DZ(iter,nsh,b-‐b)	

DZ(iter,sh,b-‐b)	

(a) DZ(iter,*,b-b) compared to standard Berry-
Ravindran using a natural language text

89

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. MULTIPLE SHIFTERS BENCHMARK FIGURES

0	

20	

40	

60	

80	

100	

120	

140	

2	 4	 8	 16
	

32
	

64
	
12
8	

25
6	

51
2	
10
24
	
20
48
	
40
96
	
81
92
	

16
38
4	

32
76
8	

65
53
6	

%
	 s
ta
nd

ar
d	
BR

	

Pa,ern	 length	

DZ(iter,*,b-‐b)	 variants	 as	 %	 of	 standard	 BR	

Standard	 BR	

DZ(iter,nsh,b-‐b)	

DZ(iter,sh,b-‐b)	

(b) DZ(iter,*,b-b) compared to standard Berry-
Ravindran using a genome text

Figure C.5: DZ(iter,*,b-b) compared to the standard Berry-Ravindran

0	

100	

200	

300	

400	

500	

600	

2	 4	 8	 16
	

32
	

64
	
12
8	

25
6	

51
2	
10
24
	
20
48
	
40
96
	
81
92
	

16
38
4	

32
76
8	

65
53
6	

%
	 s
ta
nd

ar
d	
Q
S	

Pa,ern	 length	

DZ(iter,*,q-‐q)	 variants	 as	 %	 of	 standard	 QS	 	 	

Standard	 QS	

DZ(iter,nsh,q-‐q)	

DZ(iter,sh,q-‐q)	

(a) DZ(iter,*,q-q) compared to standard Quick Search
using a natural language text

90

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. MULTIPLE SHIFTERS BENCHMARK FIGURES

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

2	 4	 8	 16
	

32
	

64
	
12
8	

25
6	

51
2	
10
24
	
20
48
	
40
96
	
81
92
	

16
38
4	

32
76
8	

65
53
6	

%
	 s
ta
nd

ar
d	
Q
S	

Pa,ern	 length	

DZ(iter,*,q-‐q)	 variants	 as	 %	 of	 standard	 QS	

Standard	 QS	

DZ(iter,nsh,q-‐q)	

DZ(iter,sh,q-‐q)	

(b) DZ(iter,*,q-q) compared to standard Quick Search
using a genome text

Figure C.6: DZ(iter,*,q-q) compared to standard Quick Search

91

Stellenbosch University https://scholar.sun.ac.za

Appendix D

Parallel Benchmark Figures

0	

2E+09	

4E+09	

6E+09	

8E+09	

1E+10	

1,2E+10	

4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	

N
an

os
ec
on

ds
	

Pa+ern	 length	

Performance	 of	 Pthreaded	 and	 non-‐threaded	
implementa6ons	 of	 DZ(rec,nsh)	

Non-‐threaded	 DZ(rec,nsh)	

Both	 calls	 threaded	

LeA	 call	 threaded	

Right	 call	 threaded	

Figure D.1: Raw averaged minimum time data with Pthreads and a natural
language text

92

Stellenbosch University https://scholar.sun.ac.za

APPENDIX D. PARALLEL BENCHMARK FIGURES

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

14000000	

16000000	

18000000	

20000000	

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	

N
an

os
ec
on

ds
	

Pa+ern	 length	

Genome	 text	 par55oning	 techniques	

CPU	 Horspool	

Hybrid	 CUDA	 DZ	 Recursive	 Split	

Hybrid	 CUDA	 DZ	 Standard	 Split	

Figure D.2: Splitting a genome text with DZ(rec,nsh) versus division into
equal-sized chunks

93

Stellenbosch University https://scholar.sun.ac.za

APPENDIX D. PARALLEL BENCHMARK FIGURES

6.
4

6.
6

6.
8

7.
0

7.
2

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 4
Natural language text

Logarithmic Scale

Algorithm

(a) Pattern length 4
6.
0

6.
5

7.
0

7.
5

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 16
Natural language text

Logarithmic Scale

Algorithm

(b) Pattern length 16

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 32
Natural language text

Logarithmic Scale

Algorithm

(c) Pattern length 32

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 64
Natural language text

Logarithmic Scale

Algorithm

(d) Pattern length 64

5
6

7
8

9

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 256
Natural language text

Logarithmic Scale

Algorithm

(e) Pattern length 256

5
6

7
8

9

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 512
Natural language text

Logarithmic Scale

Algorithm

(f) Pattern length 512

Figure D.3: Optimised CUDA implementations with a natural language text

94

Stellenbosch University https://scholar.sun.ac.za

APPENDIX D. PARALLEL BENCHMARK FIGURES

6.
4

6.
6

6.
8

7.
0

7.
2

7.
4

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 4
Genome text

Logarithmic Scale

Algorithm

(a) Pattern length 4
6.
0

6.
5

7.
0

7.
5

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 16
Genome text

Logarithmic Scale

Algorithm

(b) Pattern length 16

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 32
Genome text

Logarithmic Scale

Algorithm

(c) Pattern length 32

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 64
Genome text

Logarithmic Scale

Algorithm

(d) Pattern length 64

5
6

7
8

9

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 256
Genome text

Logarithmic Scale

Algorithm

(e) Pattern length 256

5
6

7
8

9

DZ(iter,sh) DZ(iter,nsh) CUDA Hors CPU Hors

Pattern length 512
Genome text

Logarithmic Scale

Algorithm

(f) Pattern length 512

Figure D.4: Optimised CUDA implementations with a genome text

95

Stellenbosch University https://scholar.sun.ac.za

Appendix E

Dead-Zone Skeletons
Benchmark Figures

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	
DZ(iter,nsh)	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2-‐gram	 DZ	 -‐13,9	 -‐43,7	 -‐57,7	 -‐69,6	 -‐75,8	 -‐77,1	 -‐77,8	 -‐77,4	 -‐77,4	 -‐77,8	 -‐77,6	 -‐77,1	 -‐77,7	 -‐76,5	
Recuded-‐pop	 DZ	 -‐9,4	 -‐40,4	 -‐55,9	 -‐68,9	 -‐75,5	 -‐76,8	 -‐77,4	 -‐77,0	 -‐77,0	 -‐77,3	 -‐77,2	 -‐76,8	 -‐77,4	 -‐76,3	
Byte-‐order	 DZ	 -‐13,7	 -‐43,6	 -‐57,7	 -‐69,5	 -‐75,7	 -‐77,0	 -‐77,7	 -‐77,3	 -‐77,3	 -‐77,7	 -‐77,5	 -‐77,0	 -‐77,5	 -‐76,4	
Explicit	 2-‐gram	 DZ	 -‐16,8	 -‐45,8	 -‐59,2	 -‐70,2	 -‐76,3	 -‐77,8	 -‐78,3	 -‐77,9	 -‐77,9	 -‐78,3	 -‐78,2	 -‐77,8	 -‐78,3	 -‐77,4	
Compressed-‐table	 DZ	 25,3	 -‐40,9	 -‐54,8	 -‐67,3	 -‐73,7	 -‐75,1	 -‐75,5	 -‐75,4	 -‐75,6	 -‐75,5	 -‐75,5	 -‐75,2	 -‐76,0	 -‐74,7	

-‐100	

-‐80	

-‐60	

-‐40	

-‐20	

0	

20	

40	

%
	 D
Z(
ite

r,n
sh
)	

Itera1ve	 non-‐sharing	 DZ	 skeletons	 as	 %	 of	 DZ(iter,nsh)	 (Four-‐
le;er	 alphabet)	

Figure E.1: Impact of 2-grams when matching a genome text

96

Stellenbosch University https://scholar.sun.ac.za

Bibliography

[1] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An
aid to bibliographic search. Commun. ACM, 18(6):333–340, June 1975.

[2] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference, AFIPS ’67 (Spring), pages 483–485,
New York, NY, USA, 1967. ACM.

[3] Apple. caffeinate(8) Mac OS X Manual Page, 2012. Avail-
able at https://developer.apple.com/library/mac/documentation/

Darwin/Reference/ManPages/man8/caffeinate.8.html.

[4] Apple. Kernel Programming Guide: Mach Overview, 2012. Available
at https://developer.apple.com/library/mac/#documentation/

Darwin/Conceptual/KernelProgramming/Mach/Mach.html.

[5] Apple. High Precision Timers in iOS / OS X, 2013. Available at https://
developer.apple.com/library/ios/technotes/tn2169/_index.html.

[6] Mikhail J. Atallah and Marina Blanton. Algorithms and Theory of
Computation Handbook. Chapman & Hall/CRC, 2nd edition, 2009.

[7] K. Berlin, J. Huan, M. Jacob, G. Kochhar, J. Prins, B. Pugh, P. Sadayap-
pan, J. Spacco, and C.W. Tseng. Evaluating the Impact of Programming
Language Features on the Performance of Parallel Applications on Cluster
Architectures. Languages and Compilers for Parallel Computing, pages
194–208, 2004.

[8] Thomas Berry and Somasundaram Ravindran. A fast string matching
algorithm and experimental results. In Jan Holub, editor, Proceedings of
the Prague Stringology Club Workshop ’99, pages 16–26, Czech Technical
University in Prague, Czech Republic, 1999.

[9] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm.
Commun. ACM, 20(10):762–772, October 1977.

[10] Adam Drozdek. Data Structures and Algorithms in Java. Delmar Learn-
ing, 3rd edition, 2008.

97

Stellenbosch University https://scholar.sun.ac.za

https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man8/caffeinate.8.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man8/caffeinate.8.html
https://developer.apple.com/library/mac/#documentation/Darwin/Conceptual/KernelProgramming/Mach/Mach.html
https://developer.apple.com/library/mac/#documentation/Darwin/Conceptual/KernelProgramming/Mach/Mach.html
https://developer.apple.com/library/ios/technotes/tn2169/_index.html
https://developer.apple.com/library/ios/technotes/tn2169/_index.html

BIBLIOGRAPHY

[11] Simone Faro and Thierry Lecroq. The exact string matching problem: a
comprehensive experimental evaluation. arXiv preprint arXiv:1012.2547,
2010.

[12] Simone Faro and Thierry Lecroq. The exact online string matching prob-
lem: A review of the most recent results. ACM Comput. Surv., 45(2):13:1–
13:42, March 2013.

[13] International Organization for Standardization (ISO Working Group 15 of
Subcommittee SC 22). Portable operating system interface (POSIX) base
specifications. ISO/IEC/IEEE 9945, 7, 2009.

[14] International Organization for Standardization (ISO Working Group 21 of
Subcommittee SC 22). Technical report on C++ performance. ISO/IEC
TR 18015, E, 2006.

[15] David Gregg. personal communication, June 2012. Trinity College Dublin,
Ireland.

[16] Mark Harris. How to implement performance metrics in
cuda c/c++. http://devblogs.nvidia.com/parallelforall/

how-implement-performance-metrics-cuda-cc/, 2012.

[17] R. Nigel Horspool. Practical fast searching in strings. Software Practice
and Experience, 10:501–506, 1980.

[18] Tomas Kalibera and Richard Jones. Rigorous benchmarking in reasonable
time. In Proceedings of the 2013 International Symposium on Memory
Management, ISMM ’13, pages 63–74, New York, NY, USA, 2013. ACM.

[19] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-
matching algorithms. IBM J. Res. Dev., 31(2):249–260, March 1987.

[20] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1st edition, 2010.

[21] D. Knuth, J. Morris, Jr., and V. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6(2):323–350, 1977.

[22] Derrick G. Kourie, Bruce W. Watson, Tinus Strauss, Loek Cleophas,
and Melanie Mauch. Empirically assessing algorithm performance. In
Proceedings of the Southern African Institute for Computer Scientist
and Information Technologists Annual Conference 2014 on SAICSIT 2014
Empowered by Technology, SAICSIT ’14, pages 115:115–115:125, New
York, NY, USA, 2014. ACM.

[23] Thierry Lecroq and Simone Faro. SMART: a string matching algorithm
research tool, 2011. Available at http://www.dmi.unict.it/~faro/

smart/.

[24] Melanie Mauch, Derrick G. Kourie, Bruce W. Watson, and Tinus Strauss.
Performance assessment of dead-zone single keyword pattern matching. In

98

Stellenbosch University https://scholar.sun.ac.za

http://devblogs.nvidia.com/parallelforall/how-implement-performance-metrics-cuda-cc/
http://devblogs.nvidia.com/parallelforall/how-implement-performance-metrics-cuda-cc/
http://www.dmi.unict.it/~faro/smart/
http://www.dmi.unict.it/~faro/smart/

BIBLIOGRAPHY

Proceedings of the South African Institute for Computer Scientists and
Information Technologists Conference, SAICSIT ’12, pages 59–68, New
York, NY, USA, 2012. ACM.

[25] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. Producing wrong data without doing anything obviously wrong!
In Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
XIV, pages 265–276, New York, NY, USA, 2009. ACM.

[26] Gonzalo Navarro and Mathieu Raffinot. Flexible Pattern Matching in
Strings: Practical On-line Search Algorithms for Texts and Biological
Sequences. Cambridge University Press, New York, NY, USA, 2002.

[27] Bradford Nichols, Dick Buttlar, and Jacqueline Farrell. Pthreads
Programming: A POSIX Standard for Better Multiprocessing. ” O’Reilly
Media, Inc.”, 1996.

[28] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device
Architecture Programming Guide. NVIDIA Corporation, 2007.

[29] NVIDIA Corporation. CUDA parallel computing platform,
2015. Available at http://www.openbsd.org/cgi-bin/man.cgi/

OpenBSD-current/man2/clock_getres.2?query=clock_gettime.

[30] OpenBSD. OpenBSD manual pages, 2015. Available at http://www.

nvidia.com/object/cuda_home_new.html.

[31] Vreda Pieterse and Paul E. Black. Algorithms and theory of computa-
tion handbook. In Dictionary of Algorithms and Data Structures. CRC
Press LLC, 1999. Available at http://xlinux.nist.gov/dads//HTML/

singleprogrm.html.

[32] Vreda Pieterse and David Flater. The ghost in the machine: don’t let
it haunt your software performance measurements. Technical Note 1830,
National Institute of Standards and Technology, Doi http://dx.doi.

org/10.6028/NIST.TN.1830, April 2014.

[33] Daniel M. Sunday. A very fast substring search algorithm. Commun.
ACM, 33(8):132–142, August 1990.

[34] Nathan R. Tallent, John M. Mellor-Crummey, and Allan Porterfield. An-
alyzing lock contention in multithreaded applications. In Proceedings
of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’10, pages 269–280, New York, NY, USA,
2010. ACM.

[35] Jorma Tarhio. personal communication, May 2015. Aalto University,
Helsinki, Finland.

[36] Jan Vitek and Tomas Kalibera. R3: Repeatability, reproducibility and
rigor. SIGPLAN Not., 47(4a):30–36, March 2012.

99

Stellenbosch University https://scholar.sun.ac.za

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/clock_getres.2?query=clock_gettime
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man2/clock_getres.2?query=clock_gettime
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://xlinux.nist.gov/dads//HTML/singleprogrm.html
http://xlinux.nist.gov/dads//HTML/singleprogrm.html
http://dx.doi.org/10.6028/NIST.TN.1830
http://dx.doi.org/10.6028/NIST.TN.1830

BIBLIOGRAPHY

[37] Bruce W. Watson, Derrick G. Kourie, and Tinus Strauss. A sequential
recursive implementation of dead-zone single keyword pattern matching.
In W. F. Smyth, editor, Proceedings of the International Workshop on
Combinatorial Algorithms (IWOCA 2012), Tamil Nadu, India, July 2012.

[38] Bruce W. Watson and Richard E. Watson. A new family of string pattern
matching algorithms. South African Computer Journal, 30:34–41, June
2003. For rapid access, a reprint of this article appears on www.fastar.

org. This journal remains the appropriate citation reference.

100

Stellenbosch University https://scholar.sun.ac.za

www.fastar.org
www.fastar.org

	List of Figures
	List of Tables
	Introduction
	Related Work
	Thesis Aims
	Thesis Structure

	Pattern Matching
	Traditional Algorithms
	Dead-Zone Algorithms

	Dead-Zone Performance
	Introduction
	Experimental Design
	The Data
	Test Procedure
	Implementation
	High Resolution Timer
	Output Data
	Overview of Results
	SMART Results
	Cost of Object-Orientation
	Cost of Recursion
	Impact of Information Sharing
	Best Performing Algorithms
	Effect of Smaller Alphabets
	Conclusion

	Multiple Shifters
	Introduction
	Shifters Used
	Experimental Design
	The Data
	Implementation
	Test Procedure
	Output Data
	Overview of Results
	Assessing Berry-Ravindran Shifters
	Cost of Recursion
	Impact of Information Sharing
	Assessing Shifter Pairs
	Comparison with Standard Versions
	Conclusion

	Parallel Dead-Zone
	Introduction
	Experimental Design
	The Data
	Implementation
	Test Procedure
	Output Data
	Pthreaded Dead-Zone Results
	CUDA Dead-Zone Results
	Conclusions

	Dead-Zone Skeletons
	Introduction
	Code Adjustments
	Experimental Design
	The Data
	Implementation
	Test Procedure
	Results
	Impact of 2-grams
	Conclusion

	Conclusion
	Results
	Potential Future Research

	Traditional Pattern Matching Algorithms Code
	Dead-Zone Code
	Multiple Shifters Benchmark Figures
	Parallel Benchmark Figures
	Dead-Zone Skeletons Benchmark Figures
	Bibliography

