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Abstract

Before the start of a shift, the dispatchers at the Western Cape Emergency

Control Centre (WC ECC) decide where to place holding sites and how

many ambulance to allocate to each holding site. During a shift they decide

when and where to relocate ambulances. At present, dispatchers make these

decisions based solely on their experience and intuition.

In this project a concept demonstrator decision support tool (DST) is de-

veloped which produces solutions for the near-optimal placement of holding

sites per shift, ambulance allocation, and relocation per hour of that shift

based on predicted ambulance demand rates. The DST is developed with

the aim of assisting the dispatchers at the WC ECC with holding site place-

ment, ambulance allocation, and relocation decisions.

The real-world instance utilised during the development of the concept

demonstrator DST consists of six months’ historical call data from the City

of Cape Town and the Cape Winelands municipalities. Singular spectrum

analysis is used to forecast ambulance demand according to incident prior-

ity. The extended queuing maximum availability location problem model is

adapted to fit the real-world instance. The model aims to simultaneously

maximise expected ambulance coverage and minimise ambulance reloca-

tions by manipulating holding site placement, ambulance allocation, and

relocation. The solution method implemented for the model as a whole is

the artificial bee colony algorithm.

The DST was solved for four planning week instances, at 95% service relia-

bility. Predicted demand for the planning week is predicted using historical

demand that precedes the planning week and a recommended schedule of

holding site placement, ambulance allocation, and relocation is generated

for the predicted ambulance demand. The performance of this schedule

is evaluated using the observed historical demand for the planning week.
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Different approaches for the classification of calls – consider all calls to be

life-threatening, or calls to be life-threatening or non-life-threatening – as

well as for the implementation of the model constraints are considered. The

results indicate that the WC ECC can improve ambulance coverage with

the current, or even smaller, ambulance fleet size if decisions are made with

the assistance of the DST that anticipates the probable future ambulance

demand.

The concept demonstrator DST’s solutions’ expected percentage coverage

compared to the actual percentage coverage exceeds 150%. However, it

is invalid to compare these values like-for-like as a significant number of

real-world factors, including the specific road conditions at the time of each

call, the responsiveness of both the ECC operator handling the call and

the ambulance team involved, and the communication connection between

the ECC call operator and the ambulance team, influence the real-world

response rate and could not be modelled in the DST. However, even when

these factors are taken into account, the discrepancy between the actual

and the predicted performance is sufficient to convincingly demonstrate the

potential of the concept demonstrator DST to assist the WC ECC in further

improving their response time.
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Opsomming

Voor die aanvang van ’n skof besluit die ambulaansversenders by die Wes-

Kaapse noodbeheersentrum (WC ECC) waar om wagstasies te plaas en

hoeveel ambulanse om by elkeen te plaas. Tydens ’n skof besluit hulle wan-

neer en waarheen ambulanse geskuif moet word. Tans, maak die versenders

staat slegs op hul eie ervaring en intüısie om hul besluitneming te lei.

In die projek is ’n konsep demonstreerder besluitsteunstelsel (DST) gebou

wat oplossings vir die naas-optimale plasing van wagstasies per skof, am-

bulaansplasing en -rondskuiwing per uur van daardie skof bepaal gebaseer

op voorspelde ambulaansaanvraag. Die konsep demonstreerder DST is on-

twikkel met die doel om die versenders by die WC ECC te help met die

besluitneming aangaande wagstasieplasing, ambulaansplasing en -rondskuiwing.

Die werklikheidsgeval, waarvoor die DST ontwikkel word, bestaan uit ses

maande se historiese oproepdata van die Stad Kaapstad en die Kaapse

Wynland munisipaliteite. ‘Singular spectrum analysis’ is gebruik om die

ambulaansaanvraag volgens voorvalprioriteit te voorspel. Die uitgebreide

‘queuing maximum availability location problem’ model is aangepas om by

die werklikheidsgeval te pas. Die model streef om die maksimum verwagte

ambulaansdekking en die minimum rondskuiwingskoste deur middel van

verbeterde wagstasieplasing, ambulaansplasing en -rondskuiwing te vind.

Die oplossingsmetode wat gebruik is vir die algehele model is die ‘artificial

bee colony’ algoritme.

Die DST is vir vier gevalle opgelos met ’n 95% diensbetroubaarheidsvlak.

Die ambulaansaanvraag vir die beplanningsweek is voorspel gebaseer op

historiese ambulaansaanvraag, wat nie die beplanningsweek se historiese

ambulaansaanvraag bevat nie. Daarna is’n aanbevole wagstasieplasing, am-

bulaansplasing en -rondskuiwing skedule gegenereer vir die voorspelde am-

bulaansaanvraag. Die skedule is gëımplimenteer vir die beplanningsweek
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se historiese ambulaans aanvraag. Die resultate is gebruik om die skedule

se prestasie the evalueer. Verskillende benaderings vir die hantering van

die oproepe volgens voorvalprioriteit – ag alle oproepe as lewensbedreigend,

of ag hulle as lewensbedreigend of nie-lewensbedreigend – en twee imple-

menterings van die ambulaansplasingsbeperking word oorweeg. Die resul-

tate dui aan dat die WC ECC die ambulaansdekking kan verbeter met die

huidige, of selfs kleiner, ambulaansvloot as besluite geneem word met be-

hulp van die konsep demonstreerder DST in afwagting van die waarskynlike

ambulaansaanvraag.

Die DST se oplossings se verwagte persentasie ambulaansdekking oorskry

die werklike persentasie ambulaansdekking wat bepaal is vir die historiese

oproepdata met 150%. Dit moet inaggeneem word dat hierdie waardes

nie dieselfde is nie. Beduidende gevalle van die werklikheidsgeval se fak-

tore, insluitend die spesifieke toestand van die paaie tydens elke oproep,

die fluksheid van die noodbeheersentrum se telefoonoperateur en die ambu-

laansbemanning, en die kommunikasie tussen die telefoonoperateur en die

ambulaansbemanning, bëınvloed die werklike reaksietyd en kon nie gemod-

elleer word nie. Tog, selfs wanneer die faktore inaggeneem word, is die

verskil tussen die waargenome en voorspelde prestasies voldoende om oor-

tuigend die potensiaal van die konsep demonstreerder DST te demonstreer

as hulpmiddel vir die WC ECC om hul reaksietye verder te verbeter.
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Nomenclature

x1 Data point suspected of being a low outlier when using

Grubb’s test.

xwti Binary decision variable that is equal to 1 if and only

if demand node i is covered by at least w ambulances

during time period t.
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Grubb’s test.

ytj Integer decision variable representing the number of am-
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riod t.
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k Subscript k refers to index of SVD coefficients.

m Subscript m refers to index of disjointed subsets I.

p Subscript p refers to index of subset of I.

T Subscript T refers to index of data points.

t Subscript t refers to index of time periods of the plan-

ning horizon.

z Subscript z refers to index of demand nodes.

Terminology

Ambulance coverage A call is classified as covered if it can be served within

the set response time standard, meaning that an idle

ambulance is close enough to the incident.

Bipartite graph A set of graph vertices separated into two unconnected

sets such that no two graph vertices within the same set

are adjacent.

Deterministic This states that the behaviour of an algorithm, model,

procedure, or process is entirely determined by its initial

state and inputs; i.e. it is not random.

Discrete data Data that can only be specific values and can be counted.

Drainage area An area around a hospital.

Dynamic model A model based on data that changes over time.

Eigenvalue Each of a set of values of a parameter for which a dif-

ferential equation has a non-zero solution (an eigenfunc-

tion) under given conditions (Oxford University Press,

2016).

Eigenvector A vector which when operated on by a given operator

gives a scalar multiple of itself (Oxford University Press,

2016).
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Nomenclature

Orthogonal matrix A square matrix which is invertible, unitary, and nor-

mal. The product of an orthogonal matrix and its trans-

pose returns an identity matrix.

Parametric model Models that require restrictive distributional and struc-

tural assumptions, such as the assumption that the data

is static (Vile et al., 2012).

Periodicity Refers to a tendency for something to happen repeatedly

at certain intervals (Oxford University Press, 2016).

Probabilistic A model that is based on a theory of probability (Oxford

University Press, 2016).

Response time The time between the taking of the call and the arrival of

an ambulance (Fitzsimmons, 1973; Poulton & Roussos,

2013).

Spatio-temporal dynamics The data changes in terms of changes in time and space

(Oxford University Press, 2016).

Static model A model based on stationary data.

Stochastic This states that the behaviour of an algorithm, model,

procedure, or process is entirely random.

Univariate data Data which consists of one data type.

Window length It is an embedding parameter used for the SSA algo-

rithm; it is an integer that has to be less than or equal

to T/2 (Golyandina et al., 2001a; Hassani, 2010; Vile

et al., 2012).

Superscripts

′ Superscript ′ refers the variable’s altered state.

b Superscript b refers to the index of the available ambu-

lances.
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k Superscript k refers to the index of the ambulance type.

T Superscript T refers to the variable’s transposed state or

the index of the last time period of the planning horizon.

t Supersript t refers to the index of time periods of the

planning horizon.

w Superscript w refers to the index of the number of am-
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Chapter 1

Introduction

In Chapter 1 background information is provided to introduce the focus of the project.

Thereafter, the problem statement and objectives are introduced and the research ap-

proach and structure of the report described. The need for the project and the process

followed to solve the problem are also explained.

1.1 Background

Two studies concerning Inter-facility Transport (IFT) in South Africa, with a specific

focus on maternal emergencies, brought the real-world problem faced by South Africa’s

ambulance system into focus. Summaries of the two studies are included in Appendix

A. The studies evaluate the impact of guidelines and policies on decreasing response

time and loss of life. The findings are significant to any professional working in the man-

agement, design, and operation of healthcare services. It demonstrates that decreasing

emergency ambulance response through the implementation of simple operational rules

has a significant, positive impact on the maternal mortality rate, which is an important

healthcare indicator that South Africa struggles to improve.

1.1.1 Ambulance service

In the Emergency Medical Services (EMS) component of the healthcare system, as

in any system, there exists critical paths, which cause damage to the whole system

if lengthened. Knight et al. (2012) stated that the ambulance service is just such a

critical path of the healthcare system. The ambulance service consists of a specific

1
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1.1 Background

chain of events that lead to the arrival of the ambulance and intervention by the on-

board personnel (Bélanger et al., 2015; Brotcorne et al., 2003), which may be described

as follows:

� Step 1: the incident detection, recognition of need for emergency assistance, and

call placement by the public;

� Step 2: the screening of the call at the Emergency Control Centre (ECC) by

call-takers;

� Step 3: the dispatching of an ambulance from its holding site by dispatchers at

the ECC;

� Step 4: the arrival of the ambulance and the intervention by the on-board per-

sonnel; and

� Step 5: patient transportation and responsibility transfer to a healthcare facility.

Step 1 can only start once an emergency is recognised and a call has been placed

by a bystander (Andersson & Värbrand, 2006). The ECC therefore has no control over

Step 1. The managers, call-takers, and dispatchers at the ECC have some control over

Step 2 and Step 3.

Step 2 starts when the call is answered by a call-taker. The call is then screened to

determine the severity and degree of urgency of the emergency, and prioritised according

to a prioritisation rule (Andersson & Värbrand, 2006). Step 3 starts when the call-

takers assign prioritised calls to dispatchers in charge of the area the call originates

from. It ends when an available ambulance is dispatched to the call site according

to a dispatching rule that determines which of the available ambulances should be

dispatched (Kergosien et al., 2011).

Only the ambulance’s on-board personnel have some control over Step 4 and Step 5.

Step 4 is the arrival of the ambulance at the scene, the assessment of the emergency, and

the intervention by the on-board personnel. Step 5 is the transportation of the patient

to a relevant healthcare facility, if necessary (Kergosien et al., 2011). The ambulance

becomes idle and available for dispatch as soon as care of the patient is taken over by

the healthcare facility personnel (Kergosien et al., 2011).

2
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1.2 Problem statement and objectives

1.1.2 Ambulance service efficiency

Ambulance efficiency is determined by implementing statistical analysis on historical

call data. The efficiency of an ambulance is generally indicated by the average response

time (Schmid, 2012) – the time between the taking of the call and the arrival of the

ambulance (Fitzsimmons, 1973; Poulton & Roussos, 2013), i.e. Step 2 and Step 4, as

indicated in Section 1.1.1 – and ambulance coverage. A call is classified as covered if it

can be served within the set response time standard, meaning that an idle ambulance

is close enough to the incident to reach it within the specified response time standard.

Fleet size, holding site location, and ambulance allocation are critical factors that

ECC managers can control in anticipation of demand in order to improve ambulance

efficiency (Lim et al., 2011). These factors are generally planned and based on static

historical or predicted ambulance demand data.

1.2 Problem statement and objectives

The problem statement, objectives, importance, limitations, assumptions, and ethical

implications of the research problem, being considered in the project, are described in

the following sections.

1.2.1 Problem statement

Since the end of 2014 the Western Cape (WC) ECC has used a Computer-aided Dis-

patch (CAD) system, CareMonX, to streamline the dispatching of ambulances to calls.

The system uses algorithms to determine the closest ambulance to a logged call in

terms of travel time. A WC ECC dispatcher then dispatches the ambulance closest to

the call, based on the information from CareMonX, which is their dispatching rule.

At the start of every shift the dispatcher determines the location of a number of

holding sites and the number of ambulances to place at each site. The premise is

that the placement of ambulances at specific sites should increase ambulance coverage.

During a shift, ambulances are also relocated to other holding sites to keep the coverage

level constant and increase it if possible. Decisions regarding holding site placement,

ambulance allocation, and relocation are currently based solely on the dispatcher’s

knowledge, experience, and intuition. The WC ECC does not forecast ambulance

3
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1.2 Problem statement and objectives

demand and has no policy in place that the dispatchers can follow and base their

decision on.

The development of a Decision Support Tool (DST) with an ambulance location

model to plan (i) holding site placement per shift; and (ii) ambulance allocation and

relocation per hour, based on predicted ambulance demand data, would provide decision

support to dispatchers. The DST’s output could help increase coverage and decrease

average ambulance response time through the near-optimal placement of holding sites

and the allocation and relocation of ambulances. The DST’s output is to be merely

a guideline to inform the decision-making process of dispatchers and not to make the

decision for them.

1.2.1.1 Aim

The research project is undertaken to create a concept demonstrator DST which can

be utilised to produce a solution for the near-optimal (i) holding site placement per

shift, and (ii) ambulance allocation and relocation per hour of that shift, for ambulance

demand from the City of Cape Town and the Cape Winelands municipalities. The DST

will contain an ambulance location model which will be the mathematical representation

of the problem. The ambulance location model will require call rate prediction as an

input. A forecasting method will be used, and coded into the DST, to predict the

probable future call rates and call classification rates based on historical call data. An

algorithm or heuristic will then be chosen and coded to determine the near-optimal

holding site locations per shift, and ambulance allocations and relocations per hour

of that shift. The DST is to be used as a planning tool to inform the dispatcher’s

decision-making process. The DST will be tailor-made to be used by the WC ECC for

application for the City of Cape Town and the Cape Winelands municipalities, i.e. the

real-world instance. Once the DST has been created, it will be validated and verified.

The primary goal of the project is to develop a concept demonstrator DST for the

real-world instance, provided by the WC ECC, and to prove the need for the DST.

The DST will be developed to be used in conjunction with the CareMonX system.

Integrating the concept demonstrator DST into the WC ECC’s system is not part of

the project’s scope. A secondary goal is to learn from the development of the DST for

the WC ECC’s real-world instance and to make suggestions for adapting the DST to

be used in other ECCs.
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1.2 Problem statement and objectives

1.2.1.2 Project objectives

The project has to fulfil certain primary objectives in order to achieve its aim. These

primary objectives are to:

1. gather, analyse, and study the historical call data for the real-world instance;

2. choose an ambulance demand forecasting method;

3. choose an ambulance location problem model on which to base the model for the

real-world instance;

4. choose a solution method to solve the model in order to produce a near-optimal

solution for the (i) holding site placement per shift, and (ii) ambulance allocation

and relocation per hour of that shift;

5. choose software to program the DST concept demonstrator in;

6. learn the programming language and code the DST concept demonstrator;

7. run the DST concept demonstrator for the real-world instance; and

8. validate and verify the DST concept demonstrator during the development and

testing processes.

1.2.2 Importance of the problem

The results of this research will be important to the WC ECC, provincial health depart-

ments, and the national Department of Health (DoH). The outcome of this research can

assist in improving response times in South Africa through improved holding site place-

ment and ambulance allocation and relocation, i.e. through improving the efficiency of

resource utilisation.

1.2.3 Limitations and assumptions of the study

A limitation of this study is that the performance of the DST will only be as good as the

predicted demand rates that the ambulance location model uses as input. Therefore,

the quality of the historical call data, the forecasting method, and the model all play a

role.

The ambulance location problem model that will be used in the DST cannot be a

dynamic model, since integrating the DST into the WC ECC’s system is not part of
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the project’s scope, as it is only meant to be a concept demonstrator. Therefore, the

DST can only be coded to use historical data as input and not dynamic data, i.e. data

in real-time.

1.2.4 Ethical implications of the research

The data that will be used in this study is to be collected from the WC ECC at

Tygerberg Hospital in Cape Town. The project is to be undertaken in association with

the WC ECC. The data does not contain personal information of any individual, and

therefore the use of the data does not have ethical implications. However, the use of

the DST to determine near-optimal holding site locations and the requisite allocation

and relocation of ambulances may have ethical implications. If implemented, the DST

may have a positive or negative effect on patient survival. The likelihood of positive

results will be increased by: informing users that the model is not dynamic; choosing an

accepted mathematical model for the real-world problem; applying a forecasting method

that has previously been used in this context; and solving the problem by making use

of solution algorithms or heuristics that have worked in similar circumstances.

1.3 Proposed research approach and strategy

In this section information on the research design and the procedure that will be fol-

lowed to complete the proposed research problem, as stated in Section 1.2, is provided.

1.3.1 Research design

The problem statement considers an empirical question. The question concerns a real-

world problem and the plan is to solve it by analysing historical data (Mouton, 2013).

The type of historical data that will be used is numerical data aggregated from data

collected by the WC ECC. Thus, the design type of this project can be identified as

statistical modelling and computer simulation studies. This type of design focusses

on the development and validation of accurate models for real-world circumstances

(Mouton, 2013).
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1.4 Structure of the report

1.3.2 Research methodology

The method that will be used to gain the knowledge required for this project is a

literature study. A number of topics will be researched:

1. ambulance efficiency;

2. operational research (OR) in the EMS context;

3. overview of DSTs;

4. ambulance demand forecasting methods;

5. overview of ambulance location problem models; and

6. ambulance location problem solution methods.

1.4 Structure of the report

In Chapter 2, significance of ambulance efficiency for trauma incidence and the role OR

has played, and still plays, in its management are described. Chapter 3 contains sum-

maries on the concepts that were researched in order to provide the knowledge required

for the creation of the DST for the WC ECC’s real-world instance. The real-world in-

stance, upon which the project is based, as well as the choice of model and solution

methods are explained in Chapter 4. The data gathering, data analysis, and data flow

through the DST are explained in Chapter 5. Chapter 6 contains descriptions of the

two scenarios, their corresponding DST solutions, and the verification and validation

of the solutions against historical call data. The project summary, research findings,

research contributions, and opportunities for further work are provided in Chapter 7.

1.5 Conclusion: Introduction

This chapter provided explanations on the origin of the project and background infor-

mation on ambulance service. The problem statement and objectives were explained,

and the research approach, strategy, and report structure was provided. Chapter 2

contains information on ambulance efficiency, and its significance, and the role OR has

played, and still plays, in the management of EMS.
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Chapter 2

Contextualisation: The

management of emergency

medical services

The research project was introduced in Chapter 1. In Section 1.1.1 an overview on

the ambulance service was provided, Section 1.2 contained the problem statement, the

project aim, and its objectives, while in Section 1.3 the research design and methodology

were described. This chapter contains an introduction to the necessity of ambulance

efficiency. Thereafter, the role that OR has played and still plays in the management

of EMS is explained.

2.1 The significance of ambulance efficiency for high sever-

ity incidents

The probability of death or lasting disability after incidents of high severity (or trauma)

can be described as a function of time until treatment, often indicated by response

time (Fitzsimmons, 1973; Lee, 2012; Poulton & Roussos, 2013). High severity incidents

include most cardiovascular incidents, head injuries, car crashes, obstetric emergencies,

and other life-threatening injuries.

The treatment of some types of cardiovascular diseases, such as stroke and my-

ocardial infarction, are time dependent (Cantwell et al., 2015; The National Institute

of Neurological Disorders and Stroke rt-PA Stroke Study Group, 1995), so ambulance
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efficiency, i.e. quick intervention, is crucial to minimise mortality. The International

Guidelines 2000 Conference on Cardiopulmonary Resuscitation and Emergency Car-

diovascular Care recommend that ambulances aim to achieve a response time of 8 to

10 minutes from the time of collapse. This would provide the maximum potential for

successful cardiac and cerebral resuscitation. Also, the use of a defibrillator within 5

minutes would be preferable (Blackwell & Kaufman, 2002).

According to Trunkey (1983) head-injury patients require surgical intervention

within four hours of injury, while patients who suffered severe haemorrhage require

surgical intervention within 20 minutes. Hoffman (1976) stated that the availability of

and quick access to medical care are early factors that affect the probability of surviving

a car crash. Therefore, the length of the response time affects the survival probability

of patients who suffered trauma.

As shown, the link between high severity incidents and shorter response times, has

been used to state that the reduction of response time would improve patient survival

in many categories of illness and injury, not only for trauma incidents. This is known

as the “golden hour” philosophy. Lerner & Moscati (2001) attempted to determine the

validity of the philosophy and to determine the term’s origin. While they were able to

determine that it was most likely originated by one of the fathers of trauma surgery

and design, R.A. Crowley; they could not prove that it was based on explicit research.

However, no large-scale, well-controlled study based on a civilian populations has been

done that strongly supports or refutes the philosophy that shorter response time is

required for all types of emergency care situations. Therefore, the general and intuitive

philosophy still stands and is still used to determine ambulance efficiency. The “golden

hour” philosophy is accepted and utilised by most ECCs, including the WC ECC.

A single type of high severity incident, obstetric emergencies, will be described as

an example to substantiate the need for more efficient ambulances.

2.2 Obstetric emergencies

In this section the example of obstetric emergencies, and the utilisation of the “golden

hour” rule, will be used to show the need for better response times in general in South

Africa. Obstetric emergencies were chosen since the lowering of obstetric emergency

mortality due to long response time is of critical importance to the South African DoH.
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2.2 Obstetric emergencies

2.2.1 Maternal mortality

The obstetric risk factor used in literature is the Maternal Mortality Rate (MMR).

MMR is the number of maternal deaths per 100,000 live births. The World Health

Organization (2013) defines maternal death as the death of a pregnant woman or of

a woman within 42 days of terminating the pregnancy, due to any cause related to,

or aggravated by, the pregnancy or the management of the pregnancy. A live birth

is the complete extraction of a baby from its mother; the baby must be breathing or

showing signs of life, such as a beating heart, pulsating umbilical cord or movement of

voluntary muscles, regardless of whether the umbilical cord has been cut or the placenta

is attached. The duration of the pregnancy and where the foetus is located in the womb

are not taken into account in either definition (World Health Organization, 2013).

In the eighth report on perinatal care in South Africa, Pattinson (2013) stated that

there are five major categories of obstetric causes of death: sudden unexplained in-

trauterine deaths; spontaneous pre-term birth; intrapartum asphyxia and birth trauma;

complications of hypertension; and antepartum haemorrhage1 (Pattinson, 2013).

It is generally assumed that the obstetric risk factor (thus, the MMR) due to the

aforementioned causes is higher in areas of lower socio-economic conditions. However,

it has been shown that these types of complications can occur during pregnancy and

labour even in the best of socio-economic conditions, at the best hospitals. Therefore,

in recent years, focus has been directed away from primary prevention of maternal

deaths, i.e. merely improving socio-economic conditions, to secondary prevention, i.e.

to prevent death once the complication has occurred (Pattinson, 2013).

Secondary prevention considers factors that affect the time interval between the

onset of obstetric complications and their outcome. The outcome tends to be highly

affected by a delay in treatment, i.e. the length of ambulance response time (Thaddeus

& Maine, 1994), meaning that the outcome tends to be satisfactory if prompt, adequate

treatment is provided. This factor is the second delay of the three delays model created

1Sudden unexplained intrauterine death: the ceasing of foetal movement, absence of foetal heart

beat (by stethoscope or sonic-aid), absence of foetal cardiac activity (real-time ultrasound); Spon-

taneous pre-term birth: babies that are born alive before the end of 37 weeks of pregnancy (World

Health Organization, 2014); Intrapartum asphyxia and birth trauma: brain injury caused by oxygen

deprivation (CerebPalsy.org, 2015); Hypertension: high blood pressure (Nordqvist, 2012); Antepartum

haemorrhage: genital bleeding after week 28 of pregnancy and before the end of the second stage of

labour (EI-Mowafi, 2008).
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2.2 Obstetric emergencies

by Thaddeus & Maine (1994): the delay of the decision to seek care, the delay of the

arrival at a healthcare facility, and the delay of the provision of adequate care.

These three factors are used to understand the gaps in access to adequate manage-

ment of emergencies. This model also attempts to show that, even if a patient does

choose to seek care in a timely fashion, the patient can still experience delay due to

inaccessibility of healthcare services, such as transport, and the lack of provision of

trained personnel (Thaddeus & Maine, 1994). This tends to be a bigger problem in

the developing world – specifically in rural areas – as a patient might find the closest

healthcare facility to be only equipped for basic treatments and education, and there

may be no way for the patient to reach a facility that does have the required resources

(Thaddeus & Maine, 1994). According to Pattinson (2013), the main purpose of the

model’s development was to create a mechanism for identifying where the required and

appropriate interventions could be made.

2.2.2 Importance of the maternal mortality rate

The leading cause of death and disability among women of reproductive age in develo-

ping countries, such as South Africa, is complications during or after pregnancy, child

birth, and/or termination of pregnancy (World Health Organization, 2013). The MMR

is therefore deemed important, as it represents obstetric risk – the risk associated with

each pregnancy – in the country.

It is not surprising that South Africa’s MMR is of concern to government. This

concern is evident in the fact that the rate was specifically published in the population

policy and the National Service Delivery Agreement of 2010-2014 (South African Gov-

ernment, 2013). The National Development Plan 2030 (South African Government,

2015) also indicates the reduction of the MMR as one of their objectives for improving

the health of South Africans (Statistics South Africa, 2013). The focus on MMR is not

limited to South Africa; it was also chosen as an indicator for the Millennium Develop-

ment Goals (MDG), demonstrating that it is an important international indicator of

the quality of healthcare provision (World Health Organization, 2013).

Between 1994 and 2010, the DoH put a number of policy initiatives in place to reduce

MMR and to improve the general quality of healthcare. South Africa is also a signatory

to a number of treatises and conventions, including the Millennium Declaration, which
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2.3 Operational research in emergency medical services

includes the MDG, which promote the improvement of maternal health (Statistics South

Africa, 2013).

2.2.3 Millennium declaration

The United Nations Millennium Summit took place between 6 and 8 September 2000.

This summit brought together 149 heads of State and government, as well as high-

ranking officials from approximately 40 countries. During the summit, a document

known as the Millennium Declaration was signed by the 189 countries present. The

Declaration consists of 8 MDG and their targets, with a deadline of 2015. The targets

and goals are inter-related and represent a partnership between developed and deve-

loping countries. By signing the Declaration, the leaders committed their countries to

reducing extreme poverty on a national and global level (United Nations, 2000).

As one of the signatories, South Africa has committed to: (1) eradicate extreme

poverty and hunger; (2) achieve universal primary education; (3) promote gender equal-

ity and empower women; (4) reduce child mortality; (5) improve maternal health; (6)

combat HIV/AIDS, malaria and other diseases; (7) ensure environmental sustainability;

and (8) develop a global partnership for development (United Nations, 2000). The fifth

MDG is the improvement of maternal health. The MMR target set for South Africa to

reach by 2015 was 38 maternal deaths per 100,000 live births (Statistics South Africa,

2013, 2015). South Africa’s final MDG country report was released in 2015, and the last

documented MMR, calculated in 2013, was 141 maternal deaths per 100,000 live births

(Statistics South Africa, 2015). South Africa, therefore, did not succeed in reaching

the fifth MDG target.

2.3 Operational research in emergency medical services

The logistics of World War II is seen as the birth of OR, and this is also part of

the reason for its rich history in the context of emergency response services. Today

emergency response services consist of fire, police, and EMS (Simpson & Hancock,

2009).

OR models and methods are used to improve the performance of organised environ-

ments, but emergencies are by definition the disruption of organised environments. The

evolution of EMS and the advancement of OR relating to emergency response have led
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2.3 Operational research in emergency medical services

to changes in the literature published on OR since 1970. (Simpson & Hancock, 2009).

Due to the ever-increasing pressure on the healthcare system to provide efficient ser-

vice, a major application of OR in the emergency response services lies in healthcare.

Coping with the growing demand for healthcare and the volatile nature of the number

of arrivals at a healthcare facility makes modelling the resource usage for healthcare

one of the most challenging fields of OR (Gillard & Knight, 2014).

A variety of traditional OR methods and techniques have been implemented to

ensure the efficiency of healthcare systems. These include the optimisation of surgery

schedules (Cardoen et al., 2010), the optimal location of healthcare clinics and facilities

(Smith et al., 2009), and the modelling of capacity requirements in critical care (Grif-

fiths, 2005). Unscheduled care is one of the many aspects of healthcare that makes

it an un-organised environment because a hospital has little control over it (Gillard

& Knight, 2014). According to Simpson & Hancock (2009), the most used OR ap-

proach to solve the difficulties of emergency response is mathematical programming,

then probability and statistics, and lastly simulation.

The public expects efficient service from any emergency response organisation, es-

pecially EMS. In order to provide efficient service a number of decisions regarding the

employed strategies have to be made. The number of resources to use, the management

of the fleet, and the location and relocation of resources all need to be discussed and

decided on. These decisions can be classified in three classic decision-making levels,

namely strategic, tactical, or operational (Bélanger et al., 2015; Simpson & Hancock,

2009).

Strategic decisions are concerned with the location of ambulance depots and the size

of the ambulance fleet. Tactical decisions are concerned with the location of potential

stations or holding sites and what areas it should cover, the crew pairing, scheduling,

and management of the fleet. Finally, operational decisions, that commonly need to be

considered in real-time, involve short term decisions, such as ambulance dispatching,

i.e. which ambulance should be sent to a call, and relocation (Aartun & Leknes, 2014;

Bélanger et al., 2015).

Initially, Emergency-related OR (EOR) work was focussed on strategic and tacti-

cal decisions, i.e. the static location problem. This is seen in practice in Brotcorne

et al.’s (2003) review, which focussed on static location problem models. The static

location problem seeks to determine the set of holding sites where ambulances should
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be positioned between missions and the number of ambulances that should be placed

at each. Once solved and implemented, the location plan remains unchanged, so each

ambulance returns to its designated holding site after each mission. However, it can be

beneficial to change ambulances’ locations during the day to account for the evolution

of the situation faced by the ambulance service or EMS. According to Bélanger et al.

(2015), a significant effort has been made in recent years to develop approaches that ex-

plicitly consider the uncertainty and dynamism that form part of the EMS context; this

has led to a considerable number of new models and management strategies. The new

models, specifically those devoted to vehicle relocation, have mainly been developed

to deal with situations where ambulances can be deployed to a large set of locations

over the service area, which includes hospitals or medical facilities. In this context,

the designated holding site of an ambulance can be changed during the course of a day

without necessitating significant cost or modifications to the system itself (Bélanger

et al., 2015).

2.4 Ambulance location model: Operational rules

As stated in Section 1.1.2 fleet size, holding site placement, and ambulance allocation

are critical factors that ECC managers can control to improve the efficiency of the

ambulance service. The required fleet size, holding site placement, and ambulance

allocation are generally determined with the help of ambulance location models, along

with other aspects if required. Ambulance location problem models are explained in

more detail in Section 3.6. To create an ambulance location problem model, information

concerning the operational rules for the real-life problem considered is required. The

most important operational rules are the service quality criteria, dispatch policy, and

relocation policy.

2.4.1 Service quality criteria

An ambulance location problem model contains an objective function that indicates

what aspect(s) of the problem the model seeks to improve. For any ambulance location

problem the two most important aspects will be the ambulance coverage and response

time (Schmid, 2012). The two also have an effect on each other, as good coverage

implies that there are enough ambulances positioned in an area to react to requests in
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that area; and, the fact that they are already positioned in the area means that the

response time target can be met and can even be lower than the target. Generally, the

objective function seeks to (i) minimise the average response time and keep the area

coverage above an acceptable level; or (ii) increase the expected coverage and minimise

the required relocations. The response time standard depends on the country, and the

coverage standard is a time or distance standard based on the response time standard.

Different countries have different response time standards and most also have service

reliability standards. In Montreal, Canada, the standard is that 90% of calls should be

served within 7 minutes. In the United States, 95% of calls in urban areas should be

served within 10 minutes, whereas in rural areas it should be served within 30 minutes.

The United Kingdom has different response times for different categories of calls; 75%

of category-A calls should be served within 8 minutes, and 95% of category-B and -C

calls should be served within 14 minutes in rural areas, and 19 minutes in urban areas,

respectively (Lim et al., 2011). In Germany the response time standard differs from one

area to another; it generally ranges between 10 to 15 minutes. The service reliability

value is generally that 95% of calls should be reached within a standard response time

(Erkut et al., 2008). In Wales the response time standard is to reach 65% of category-A

calls within 8 minutes, and to reach 95% of category-B and -C calls within 14 minutes

in urban, 18 minutes in rural, and 21 minutes in sparsely populated areas (Vile et al.,

2012). The response time standard in the Netherlands is that 95% of calls should be

reached within 15 minutes (van den Berg et al., 2015).

2.4.2 Dispatch policy

Ambulance dispatch is defined by Lim et al. (2011) as the process of assigning an

ambulance to answer an emergency call. The dispatch policy often also contains the

method of call prioritisation or queueing and the process of assigning an ambulance to

an emergency call in the queue (Lim et al., 2011).

Call prioritisation is the process of prioritising calls in a queue. However, according

to Lim et al. (2011) call prioritisation is not appropriate for developing countries with

resource-limited EMS, as additional resources are needed for implementation. The WC

is one of the few provinces that has enough resources to implement call prioritisation,

as well as a CAD system that streamlines the dispatching process.
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There are a number of ways in which calls can be prioritised. Calls can be prioritised

based on:

� centrality, most central call first (Lee, 2012);

� a first-in first-out (FIFO) basis (Schmid, 2012; Thakore et al., 2002); or

� incident type (Poulton & Roussos, 2013).

Calls that are prioritised based only on centrality would cause ambulances to be

excessively repositioned without fulfilling nearby requests (Lee, 2012). FIFO prioriti-

sation causes life-threatening calls to wait if a non-life-threatening call was first and

only one ambulance is available, purely because another call was first (Schmid, 2012;

Thakore et al., 2002). Incident type prioritisation is difficult, as generally call-takers

have only basic medical training and the caller has none (Yancey & Mould-Millman,

2015). Also, in most ECCs no protocol exists to help the call-takers determine incident

type. Even though incident type prioritisation is difficult and usually impossible to do

accurately it is still the method most often used.

The dispatch policy is what the dispatcher uses to determine which ambulance

to dispatch to the prioritised call. A general rule for any dispatch policy is that an

ambulance can only be assigned to one call (Schmid, 2012). The following are some

dispatch policies that are implemented for assigning ambulances to calls:

� closest dispatch: dispatch the idle ambulance that is the closest to the incident

location or that can get there the fastest (Lim et al., 2011; Poulton & Roussos,

2013);

� non-closest dispatch: determine what ambulance to assign by combining coverage

with probability (Lim et al., 2011; Poulton & Roussos, 2013);

� reroute enabled dispatch: used along with another policy to improve response

time of urgent calls (Lim et al., 2011);

� pseudo priority dispatch: used along with another policy to upgrade lower priority

calls with long waiting times (Lim et al., 2011);

� priority update enabled dispatch: used along with another policy to be able to

update call priority (Lim et al., 2011); and
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� pre-arrival instructions: used along with another policy to provide ambulance

crew with instructions (Lim et al., 2011).

Appendix C contains tables that show the advantages and disadvantages of the

dispatch policies mentioned, along with some that were not mentioned. According to

Lim et al. (2011) and Poulton & Roussos (2013), the most commonly used dispatch

policy is closest dispatch with incident call prioritisation. That is also what WC ECC

uses.

Euclidean distance, not road route distance, is the most used distance measure

employed by ECC dispatchers to determine the nearest ambulance (Poulton & Roussos,

2013). The reason is that it is the easiest measure to implement and to replicate,

allowing for fast computation and reaction. However, this method is inaccurate. It is

possible to use a geographic information system (GIS) to calculate the road distances.

The GIS environment has improved and become more and more accessible, but a costly

software download and license is still required to make use of it. The cost and accuracy

has to be weighed and balanced to determine which is more important. The project

could not afford such a license and will use the Haversine distance method. It is similar

to the Euclidean method, but the Haversine method does not assume that the earth is

flat and will therefore be more accurate over longer distances.

2.4.3 Relocation policy

A relocation action can be triggered by an area’s coverage falling below the minimum

(Andersson & Värbrand, 2006) or by an ambulance that becomes idle (Schmid, 2012).

The first trigger is not used often because ECCs generally have a regulation that does

not allow ambulances to be relocated directly between holding sites (Schmid, 2012);

however, it is allowed at the WC ECC. This regulation is usually in place to ensure

that ambulances are not driving around empty. The second trigger is used more often.

However, the first trigger would allow for a better average coverage over the planning

horizon than the second trigger.

The purpose of the relocation policy is to keep the ambulance coverage of the area

high (Andersson & Värbrand, 2006). Looking at it from a global perspective, if all

available ambulances are located specifically to cover future demands more effectively,

i.e. the relocation policy is implemented in an anticipatory manner whereby the current
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situation and potential future requests are taken into account, the performance of

emergency services can be improved (Schmid, 2012).

2.5 Conclusion: Contextualisation: The management of

emergency medical services

In Chapter 2 the necessity of ambulance efficiency and the role that OR has played and

still plays in the management of EMS were explained. Chapter 3 contains summaries

of the research done on DSTs, ambulance demand forecasting, resource deployment,

and solution methods.
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Chapter 3

Demand forecasting and resource

deployment methods

The need for an efficient ambulance service was explained, and the use of OR in the man-

agement of EMS systems was described in Chapter 2. This chapter contains research

on DSTs, demand forecasting, and resource deployment methods and their solution

methods, all in the context of the EMS system.

3.1 Overview: Decision support tools

In the 1960s organisations started to computerise most of their operational processes,

i.e. processing, billing, inventory control, and accounts payable. Information systems

(IS) were developed to assist this process. Management IS (MIS) was the first program

type of its kind; its purpose was to make information in transaction processing systems

available to management for decision-making purposes, but in reality most failed. Ac-

cording to Pervan & Arnott (2005) the failures were due to the Information Technology

(IT) department not understanding the nature of the work that the managers wanted

to base on the output of MIS, which lead to the creation of large and inflexible systems

that produced reports that were typically dozens of pages thick and contained little

information of worth.

DST is an area of IS that was created to be an environment that would enable

decision makers and IT to work together to solve problems, and initially a lot of the

work was experimental. The idea was that the decision-maker would deal with the
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complex unstructured parts of the problem and the computer system would provide

assistance by automating the structured parts. In general, the problems that require

the use of a DST are impossible or inappropriate to solve purely using a computer

system (Pervan & Arnott, 2005). DSTs have grown radically since its experimental

start and have become part of everyday business practices. Most are used to facilitate

and improve the effectiveness and efficiency of management, planning, and/or staff

activities (Alter, 1977; Dahl & Derigs, 2011).

Today’s DSTs can be described as interactive computer-based systems that support

decision makers in solving semi-structured problems. Generally, a DST consists of three

parts: the database, the analytical tool/model, and the user-interface (Dahl & Derigs,

2011; Rönqvist, 2012). The way the three parts are implemented and used differ for

the different types. The DST discipline is still growing, and new types are still being

created. The following is a short list of some of the types of DSTs that are used in

business:

� the personal DST (PDST) is a small-scale system used by one manager, or a small

number of managers, to support a decision-making process (Arnott & Pervan,

2008; Pervan & Arnott, 2005);

� the group support system (GSS) combines communication and DST technologies;

it is used to facilitate effective group work (Arnott & Pervan, 2008; Pervan &

Arnott, 2005);

� the negotiation support system (NSS) is used by a group when the work focusses

on the negotiations between opposing parties (Arnott & Pervan, 2008);

� the intelligent DST (IDST) uses the application of artificial intelligence techniques

to support decision-making processes (Arnott & Pervan, 2008);

� the knowledge management-based DST (KMDST) aids in knowledge storage,

retrieval, transfer, and application. It is used to support individual and organi-

sational decision-making (Arnott & Pervan, 2008);

� data warehousing (DW) provides large-scale data infrastructure often required

for decision-making (Arnott & Pervan, 2008; Pervan & Arnott, 2005); and
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� the enterprise reporting and analysis system is an enterprise focussed DST, which

includes executive IS (EIS), business intelligence (BI), and corporate performance

management systems (CPM) (Arnott & Pervan, 2008).

Many DST types make use of OR techniques in the analytical tool/model. In order

to implement these techniques Rönqvist (2012) proposes that a specific process should

be followed. The process is usually followed by an analyst and should be repeated even

after the DST is finished in order to revise and develop the DST, keeping it relevant

and useful. The steps of the process are:

1. describe the problem and any necessary assumptions and/or simplifications (Sec-

tions 4.1 and 4.2);

2. translate the simplified problem into a suitable model (Section 4.2);

3. choose and develop a method which solves the model within the time limits and

with sufficient solution quality (Section 4.3 and Chapter 5); and

4. evaluate the model and method by running tests and analysing the results (Chap-

ter 6).

The first step is based on existing written material or verbal communication with

the decision maker who is to use the DST or is responsible for it. The description of

the problem then allows the analyst to articulate the problem’s objectives, to iden-

tify the components and classify them as relevant or irrelevant, and to determine the

structure of the problem. This step also helps the analyst to determine whether it is

appropriate to formulate an optimisation model or if there are alternative methods. An

optimisation model can only be used if the relevant aspects of the problem are quan-

tifiable (Rönqvist, 2012). Ideally, the problem can be defined as structured, i.e. all

the problem’s dimensions are known, or a semi-structured problem which can be made

to be structured with help from the decision maker. The models for semi-structured

problems can be unsatisfactory if the analyst has to determine most of the dimensions

of the model without the decision maker in order to transform it into a structured

problem (Densham, 1991).

The second step requires that it be determined how the proposed DST is to interact

with other systems currently in use, the solution time available, the required solution
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quality, and the collection or generation plan for the data. The simplified problem is

then created based solely on the problem description. The optimisation model can then

be mathematically based on the simplified problem. The optimisation model consists

of the decision variables, objective function, and constraints. The decision variables

reflect the decisions that are possible, and the objective function represents the goals

that the solution need to meet and balance, while the constraints aim to create solutions

that are feasible (Rönqvist, 2012).

The third step starts with the collection (or generation) and cleaning of the data

to ensure that it does not contain erroneous data points (Rönqvist, 2012). The data

analysis process is usually implemented to fulfil this need. An added functionality of

the DST would be to include routines to filter any data before it is added to the system,

otherwise it the data has to be filtered by the decision maker. The solution method

chosen during this step depends on the complexity of the model, the solution time, and

quality requirements – all of which are determined during the previous step. During the

fourth step the model is tested and the solution produced is evaluated and transferred

into a form that the decision maker can use in the decision-making process (Rönqvist,

2012).

3.2 Importance of forecasting ambulance demand

Many studies have sought to create and/or use models to improve the efficiency of the

EMS, i.e. ambulance service. A majority of these models make use of OR to improve

their ambulance deployment with the hope of minimising response time and increasing

demand coverage. These models all differ in terms of complexity, but in order to be

effective they all require accurate ambulance demand data. Depending on the type of

the model, the data can be historical, predicted, or dynamic. Models that use historical

call data look to the past to plan for the future which can be extremely inaccurate, as

the future is not identical to the past. The ideal would be to create and use models that

can accommodate dynamic data and that have to be solved as the ambulance demand

data changes in real-time in order to make immediate decisions, but these models are

computationally intensive and not always feasible. The best option after dynamic data

is to forecast ambulance demand based on the trends seen in the historical data, which

will allow a model to plan resource deployment for the probable future. According to
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Vile et al. (2012), less study has been invested in this important field even though the

ability to predict ambulance demand accurately at short time intervals and in terms

of their location is critical for the management and near-dynamic deployment of the

ambulance fleet.

3.3 Overview: Ambulance demand forecasting

According to Vile et al. (2012), ambulance demand forecasting models are comparable

to those designed for and used by fire and police services. The models initially created

and used were extremely simplistic and had many shortcomings, as they did not ac-

count for daily or weekly trend data or other causal factors. These early models were

also parametric, requiring restrictive distributional and structural assumptions, such as

that the data is stationary. These models did prove to be useful for capacity planning

and budgeting, but recent advances in location analysis – which allow for more flexible

and dynamic ambulance deployment strategies – require more responsive demand pre-

dictions and model-free methods to forecast ambulance demand volumes (Vile et al.,

2012).

In Section 3.3.1, ambulance forecasting models are discussed, and in Section 3.3.2

a forecasting-accuracy metric is chosen.

3.3.1 Forecasting models

The method most often used for forecasting ambulance demand is a simple averaging

formula, called the MEDIC method, which is sensitive to how the area is divided. This

means that typically the one hour demand in a 1 km2 region is predicted by averaging

a small number of historical data points from the same region over the corresponding

hours from previous weeks or years (Zhou & Matteson, 2015).

The challenges experienced with forecasting ambulance demand can be explained by

looking at Zhou & Matteson’s (2015) Toronto EMS study. The Toronto EMS averages

four historical data points in the same hour of the preceding four weeks for the past

five years for which they want to forecast ambulance demand, i.e. the MEDIC method.

The identified ambulance demand forecasting challenges:
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1. the demand data at the requisite resolutions are often thinly dispersed: Toronto

receives, on average, only 23 high priority calls per hour, and 96% of the 1 km2

spatial regions have no events in any hour;

2. the demand often exhibits complex time-related dynamics and some are location-

specific: weekly and daily seasonality and serial dependencies of a few hours,

which were more pronounced in crowded neighbourhoods; and

3. the emergency call or ambulance demand data is generally large scale: Toronto

dispatches for 200,000 priority calls every year.

The aforementioned challenges and the use of the MEDIC method, by the Toronto

EMS, caused extremely noisy and fluctuating predictions, as most of the data points

will be zero. So, dispatch based on these predictions will tend to be haphazard and

inefficient. There are a number of studies that have researched methods that are better

suited to forecasting ambulance demand as a time-related and location-specific process.

The methods used in some of these studies were:

� autoregressive moving average models, where the predicted points are weighted

moving averages of the past few forecasting errors (Channouf et al., 2007);

� singular spectrum analysis (SSA), which is a non-parametric method, i.e. model-

free technique, which outperforms traditional forecasting methods (Hassani, 2010;

Vile et al., 2012);

� artificial neural networks, which forecasts demand in discrete time and space, but

does not give higher predictive accuracy than traditional forecasting methods due

to the sparseness of the data (Setzler et al., 2009);

� time-varying Ghaussian mixture model, which forecasts ambulance demand in

discrete time and continuous space by incorporating location-specific time-related

patterns in the demand, yielding higher predictive accuracy than traditional fore-

casting methods (Zhou & Matteson, 2015).

Of all the methods listed only SSA and the time-varying Ghaussian mixture method

have been proven to outperform the industry methods. SSA was chosen for the DST

because, unlike the time-varying Ghaussian mixture model, SSA does not require sta-

tistical knowledge and is easy to implement (Vile et al., 2012; Zhou & Matteson, 2015).

Also, SSA has been used to predict ambulance demand before by Vile et al. (2012).
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3.3.2 Forecast-accuracy metric

The root-mean-square error (RMSE) is a commonly used forecast-accuracy metric in

time series analysis, used to report how close the predicted data points are to the

corresponding known data points (Channouf et al., 2007; Matteson et al., 2011; Vile

et al., 2012). The RMSE equation can be seen in (3.1). Let yt be the observed value

and ỹt the predicted value, with T fitted points in the time series.

RMSE =

√∑T
t=1 (yt − ỹt)2

T
. (3.1)

Mean Absolute Error or Mean Absolute Percentage Error (MAPE) can also be

used to gather conclusions similar to RMSE. RMSE is chosen for this project, however,

since it overcomes the common problem encountered with MAPE – that the percentage

error may become inflated if the actual value in the denominator is relatively small

compared to the forecasting error. The RMSE metric also gives relatively higher weight

to large errors, i.e. large difference between the predicted and the observed, which are

particularly undesirable when forecasting EMS demand (Vile et al., 2012). The higher

weight will ensure that these errors are not missed.

3.4 Overview: Singular spectrum analysis

The origin of SSA is usually associated with the publication of papers by Broomhead

& King (1986) and Broomhead et al. (1987). SSA is a novel and powerful technique

used in the field of time series analysis. It is used for many practical problems, such as

classical time series, multivariate statistics, multivariate geometry, dynamical systems

and signal processing. Therefore, it can be applied in mathematics, physics, economics,

financial mathematics, meteorology, oceanography, social sciences, market research, and

medicine, among others. Essentially, SSA can be used for any seemingly complex time

series (Hassani, 2010). At its core, SSA is a model-free technique which can be used

without any statistical training (Golyandina et al., 2001a). The basic capabilities of

SSA can be shown by looking at the problems that can be solved (Hassani, 2010), such

as:

� finding the trends of different resolutions of data;
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� data smoothing;

� extraction of seasonality components;

� simultaneous extraction of cycles with small and large periods;

� extraction of periodicities with varying amplitudes;

� simultaneous extraction of complex trends and periodicities;

� finding structure in short time series;

� causality test; and

� forecasting.

Real time series usually go through structural changes during the time period under

consideration; therefore it is crucial that the forecasting method is not sensitive to these

variations. SSA is just such a method. Unlike the methods traditionally used for time

series forecasting, such as autoregressive and structural models that assume normality

and that the series is stationary, SSA is a non-parametric technique, i.e. model-free. It

makes use of some probabilistic and statistical concepts, but no statistical assumptions,

such as the stationariness of the series or normality of the residuals, are made (Hassani,

2010; Vile et al., 2012). Hassani (2010) found SSA to be superior to classic techniques

because of the complex structure of real-time series. SSA also works well for both

large and small sample sizes. According to Vile et al. (2012), SSA is more flexible

in approach and produces superior long term forecasts and comparable short term

forecasts compared to well established methods.

SSA forecasting can be embedded into and used alongside a number of OR methods,

i.e. queueing theory, simulation and optimisation models, in order to be used to deploy

resources to achieve an improvement of ambulance service efficiency and quality. SSA

has been shown to be an effective method of time series analysis, but Vile et al. (2012)

is seen as the first to have used it to forecast ambulance demand. However, since then

Gillard & Knight (2014) have also used SSA to forecast emergency demand and to

analyse EMS staffing level requirements.

26

Stellenbosch University  https://scholar.sun.ac.za



3.5 Singular spectrum analysis forecasting

3.5 Singular spectrum analysis forecasting

According to Hassani (2010), the basic method of forecasting with SSA consists of two

complementary stages, each with two separate steps, as seen in Figure 3.1. During

stage one the time series is decomposed, and during stage two the original series is

reconstructed without the noise components, and the reconstructed series is used to

forecast new data points. The main concept in studying the properties of SSA is

‘separability’; this defines how well different components – which show the seasonality

of the time series – can be separated from each other.

SSA decomposes a time series into a sum of time series components, where each

component can be classified as trend, periodic, quasi-periodic, or noise (Golyandina

et al., 2001a; Vile et al., 2012). The steps of the SSA algorithm shown in Figure 3.1

will now be explained.

Figure 3.1: The main stages of SSA.

Consider a real-valued non-zero one-dimensional time series YT = (y1, · · · , yT )

with T data points. During the first step, Embedding, the trajectory matrix is com-

puted. The time series, YT , is mapped to a multidimensional series of L-lagged vectors,

X1, · · · , XK , with vectors Xi = (yh, · · · , y(h+L−1))
′ ∈ <L for h = 1, 2, · · · ,K and

K = T −L+ 1. The parameter L is the embedding parameter, often called the window

length. It is an integer that has to be less than or equal to T/2 and greater than two.

It is generally selected that its value is proportional to the expected periodicity within

YT (Golyandina et al., 2001a; Hassani, 2010; Vile et al., 2012).

The trajectory matrix X = [X1, · · · , XK ], shown in (3.2), is a Hankel matrix. This

means that it is a square matrix, and all the elements along the anti-diagonal are

identical (Golyandina et al., 2001a; Hassani, 2010; Vile et al., 2012).
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X = (xhg)
L,K
h,g=1 = [X1 : · · · : XK ] =


y1 y2 y3 · · · yK
y2 y3 y4 · · · yK+1
...

...
...

. . .
...

yL yL+1 yL+2 · · · yT

 ∈ <L×K .
(3.2)

In the second step, Singular value decomposition, the XXT is computed and its

eigenvalues and eigenvectors are determined. The eigenvalues and eigenvectors are

then represented in the form XXT = PΛP T . Λ = diag(λ1, · · · , λL) is the diagonal

matrix of eigenvalues of XXT with λ1 ≥ λ2 ≥ · · · ≥ λL ≥ 0. P = (P1, P2, · · · , PL) is

the corresponding orthogonal matrix of eigenvectors of XXT (Golyandina et al., 2001a;

Hassani, 2010; Vile et al., 2012).

If Vi = X
′
iPi/
√
λi (often called the ‘principal components’) for i = 1, · · · , d, then

the singular value decomposition (SVD) of the trajectory matrix can be written as

shown in (3.3). Here d = rank (X) = max (i, such that λi > 0) and Xi =
√
λiPiV

′
i .

The matrices {Xi, i = 1, · · · , d} have a rank 1. They are therefore elementary matrices.

The collection
(√
λi, Pi, Vi

)
is called the i -th eigen-triple of the matrix X (Golyandina

et al., 2001a; Hassani, 2010; Vile et al., 2012).

X = X1 + · · ·+Xd. (3.3)

The third step is called Grouping, and it is the splitting of the elementary matrices

Xi into several groups and summing the matrices within each group. Sets of the

matrices within {Xi, i = 1, · · · d} are selected; these represent various trend or periodic

components of YT . The grouping procedure partitions the set of indices {1, · · · , d},
seen in (3.3), into m disjointed subsets I1, · · · , Im. Let I = {i1, · · · , ip}; the resulting

matrix XI is defined as XI = Xi1 + · · ·+Xip . This is calculated for I = I1, · · · , Im and

leads to the decomposition X = XI1 + · · · + XIm (Golyandina et al., 2001a; Hassani,

2010; Vile et al., 2012).

The final step, Diagonal averaging, is the reconstruction of the one-dimensional time

series. The selection of I1, · · · , Im and the computation of X = XI1 + · · ·+XIm result

in a matrix that does not have a Hankel structure. In order to find the approximate
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time series X has to be transformed into a Hankel matrix (Golyandina et al., 2001a;

Hassani, 2010; Vile et al., 2012).

The matrix X̃ = ||x̃h,g|| =
∑l

k=1 PhkP
T
hk

X is computed as an approximation to

X. It is then averaged over the diagonals of the matrix X̃ to transition to the one-

dimensional series (Golyandina et al., 2001a; Hassani, 2010; Vile et al., 2012).

3.6 Overview: Ambulance location problems

The ambulance location problem forms part of a wide set of diverse problems from the

public and private sectors that are solved by location analysis. The location analysis

field’s main focus is locating facilities across a nodal network (Knight et al., 2012).

Consider a graph Gr = (V,E) where V = D ∪ H, D and H are two vertex-sets that

represent, respectively, the demand nodes and potential facility location nodes, i.e.

ambulance station or holding site nodes, and E is the set of edges (Andrade & Cunha,

2015; Başar et al., 2012). The edges connect the nodes and represent the roads that can

be taken to move between the nodes. The edges can be used to calculated ambulance

travel times, i.e. ambulance response times from the facility nodes to the demand nodes

(Knight et al., 2012).

Ambulance location problem models generally simplify the problem by using dis-

crete demand points as input. These models can be classified as covering, p-median,

or p-center models. Covering models focus on maximising demand coverage, where a

demand point is covered if it can be reached within a predefined standard distance

or response time by at least one ambulance. The p-center models aim to minimise

the maximum service distance for all demand points and the p-median models aim to

minimise the total or average service distance for all demand points (Li et al., 2011).

There are a number of review articles on the progress of ambulance location problem

models, and the majority have mainly considered covering models, as seen in Brotcorne

et al. (2003), Başar et al. (2012), and Bélanger et al. (2015). The content of Brotcorne

et al.’s (2003) review article focussed on static models, whereas the review articles of

Başar et al. (2012) and Bélanger et al. (2015) focussed more on time-dependent models.

The research in the following sections is focussed on covering models, since, as stated in

Chapter 1, the DST’s aim is to decrease response time and therefore increase coverage.
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3.6.1 Static models

In this section deterministic single coverage, deterministic multiple coverage, and prob-

abilistic and stochastic models are considered. These types of models strive to find

either the minimum number of ambulances required to adequately cover an area or

the maximum coverage that could be obtained given a finite fleet size. The two types

of objectives formed two types of static models that are complementary, but used for

different planning purposes. The minimisation model is used to decide on the size of

the ambulance fleet, whereas the maximisation model provides an estimate of how well

the system could perform over the planning horizon with a set fleet size. These models

are used to provide solutions for the long term and demand is generally assumed to

be constant for all the periods of the planning horizon, and the models are therefore

static (Rajagopalan et al., 2008). An overview on the three types of static ambulance

location problem models are provided along with examples of each type.

3.6.1.1 Deterministic single coverage models

Deterministic location problem models ignore all stochastic (random) considerations of

the ambulance location problem and are meant to be used in the planning phase. This

type of static ambulance location problem model also does not take into account that

ambulance coverage diminishes as soon as an ambulance is dispatched to a call, i.e.

sent from the ambulance station or holding site (Brotcorne et al., 2003).

Toregas et al. (1971) were the first to explicitly formulate the ambulance location

problem using coverage. Simply defined, coverage is when a demand node can be

reached by at least one ambulance within a time or distance standard. This definition

was later expanded when queueing theory was used to determine the minimum number

of ambulances that a demand node requires within a set response time or distance

standard to be classified as covered for a specific service reliability (Farahani et al.,

2012; Li et al., 2011). Toregas et al. (1971) defined the set covering location problem

(SCLP), which strives to minimise the cost of locating ambulance stations or holding

sites while satisfying a coverage limit (Farahani et al., 2012). However, the number of

ambulances that might be needed to achieve such complete coverage may be unrealistic.

Generally, the EMS managers only want to determine the best usage of the ambulance

fleet (Bélanger et al., 2015). This is done by defining the problem in the form of
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the maximal covering location problem (MCLP), as proposed by Church & ReVelle

(1974), which aims to maximise the population covered using a set ambulance fleet size

(Farahani et al., 2012).

Both SCLP and MCLP consider only one ambulance type. Realistically, it is com-

mon for there to be more than one type of ambulance in use. Therefore, in 1979

three models were proposed that looked at maximising population coverage that is

simultaneously covered by two types of vehicles: tandem equipment allocation model

(TEAM), multi-objective equipment allocation model (MOTEM), and facility-location,

equipment-emplacement technique (FLEET) (Bélanger et al., 2015; Brotcorne et al.,

2003; Schilling et al., 1979).

3.6.1.2 Deterministic multiple coverage models

Deterministic single coverage models assume that an ambulance is always available

when a call comes in. This is not a practical assumption. An ambulance may be

unavailable due to it still serving a call when a new call in its area comes in. There-

fore, deterministic single coverage models cannot provide robust solutions in real-life

situations (Bélanger et al., 2015). To overcome this drawback two methods were used:

multiple coverage or including ambulance busy probabilities and ambulance station

reliabilities (Li et al., 2011). This section contains information on models that have

incorporated multiple coverage. In Section 3.6.1.3 information is provided on models

that explicitly consider busy probabilities and ambulance station reliabilities.

Multiple coverage models aim to increase the number of ambulances available to

cover a demand node in order to increase the probability of having a node covered

by one available ambulance at all time. These models indirectly consider the random

nature of emergency demands through vehicle availability (Bélanger et al., 2015).

Daskin & Stern (1981) proposed the hierarchical objective set covering problem

(HOSC), which aims to minimise the number of ambulances to ensure complete coverage

and to maximise the number of ambulances that can cover a demand node. Since

HOSC does not consider the population of each demand node, it will tend to regroup

ambulances around demand nodes that can be covered easily, and harder demand

nodes might then only be covered once. Eaton et al. (1986) introduced the Dominican

ambulance deployment problem (DADP) to overcome the weaknesses of HOSC, which

strives to maximise the population that can be covered by more than one ambulance
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and minimise the number of ambulances needed to guarantee complete coverage. Hogan

& ReVelle (1986) also strived to improve on HOSC by considering population density

and giving hierarchical importance to the different coverage levels. These models are

the backup coverage model 1 (BACOP1) and backup coverage model 2 (BACOP2),

where both attempt to maximise the population covered twice given a fixed number of

ambulances (Bélanger et al., 2015; Brotcorne et al., 2003).

Gendreau et al. (1997) introduced the double standard model (DSM), which con-

siders the concept of double coverage, as well as different coverage standards. DSM

determines the location of a fixed number of ambulances in order to maximise the pop-

ulation covered twice within a standard time frame. However, this model does cause

some ambulances to be overused (Bélanger et al., 2015; Brotcorne et al., 2003). Stor-

beck (1982) introduced the maximal-multiple location covering problem (MMLCP),

which aims to locate a fixed fleet of ambulances in order to minimise the population

left uncovered, while maximising the number of demand zones covered by more than

one vehicle (Bélanger et al., 2015).

3.6.1.3 Probabilistic and stochastic models

Deterministic multiple coverage models presented a significant improvement over single

coverage models, but they too have their limitations. For example, double coverage

does not guarantee a satisfying service reliability level and might not even be necessary

for an uncongested system. Probabilistic and stochastic models have been developed

to overcome the limitations and to provide better real-life representation by explicitly

considering ambulance busy probabilities (Bélanger et al., 2015; Brotcorne et al., 2003).

Expected coverage location models seek to establish the set of ambulance stations,

or holding site locations, which maximises the expected coverage and considers ambu-

lance busy probabilities, and therefore ambulance availability (Bélanger et al., 2015).

Daskin & Stern (1981) and Daskin (1983) integrated ambulance availability into MCLP,

and were among the first to do so, and so introduced the maximum expected covering

location problem (MEXCLP). The model aims to locate a given number of ambulances

in order to maximise the expected coverage that depends on the ambulance busy prob-

ability, i.e. the probability that an ambulance is unavailable to respond to a call. The

value is assumed to be the same for all vehicles, independent of their location, and to

be known (Bélanger et al., 2015; Li et al., 2011).
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Bianchi & Church (1988) proposed a variant of MEXCLP (MOFLEET) that in-

dependently considers the location of ambulance stations or holding sites and the as-

signment of ambulances to each. Daskin et al. (1988) also provided a more general

MEXCLP version that could accommodate different coverage levels. The assumptions

needed for MEXCLP to work are not generally met in practice, and that can lead to a

significant variance between the systems’s predicted and actual performance. Also, it

considers deterministic travel times, i.e. the travel times are dependent on the initial

state and inputs. Goldberg et al. (1990) proposed a model that has similar objectives

to those of MEXCLP and its variations. This model determines the location of a given

number of ambulances that maximises expected coverage, but it considers stochastic

travel times. The dispatching decisions for this model are based on a preference list

(Bélanger et al., 2015).

ReVelle & Hogan (1988) formulated the probabilistic location set covering problem

(PLSCP), which strives to minimise the number of ambulances needed to ensure that

at least one vehicle is available for each demand node with a given level of reliability.

This means node-specific busy probabilities are used, which are expressed as the ratio

between the service time for demands arising in the node and the availability of the

ambulances that can ensure their coverage. ReVelle & Hogan (1988) also proposed

a probabilistic version of MCLP, the maximal availability location problem (MALP).

MALP determines the location of a given number of ambulances that maximises the

population covered by at least one available ambulance within the planning horizon,

with a given level of service reliability. ReVelle & Marianov (1991) proposed a prob-

abilistic version of FLEET, namely PROFLEET. This model aims to maximise the

number of calls that can be covered simultaneously by two types of vehicles with a

given level of service reliability (Bélanger et al., 2015).

The MALP, PLSCP and PROFLEET models require the assumption that the busy

probabilities are vehicle independent. This could impact the busy probability estimate

and consequently the predicted system performances. Marianov & Revelle (1994) and

Marianov & ReVelle (1996) relaxed this assumption to provide a more accurate estimate

of actual system performance and proposed Q-PLSCP and Q-MALP. These two models

are straightforward extensions of the PLSCP and MALP with queuing theory used

to compute the number of ambulances required to ensure system reliability for each
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demand node (Bélanger et al., 2015; Marianov & Revelle, 1994; Marianov & ReVelle,

1996).

Recently, researchers have continued to consider the static ambulance location prob-

lem with the aim of addressing some of the issues related to randomness more explicitly.

The expected coverage definition was refined by Alsalloum & Rand (2006) to consider

random travel times. The explicit consideration of the assignment of ambulances to

emergency demands within a stochastic framework was undertaken by Beraldi et al.

(2004), Beraldi & Bruni (2009) and Zhang & Jiang (2014) (Bélanger et al., 2015).

Therefore, static location problem models are still a relevant research area. This is also

seen in that the time-dependent models, discussed in Section 3.6.2, are extensions or

modifications of static location problem models.

3.6.2 Time-dependent models

The assumption of constant demand, which is required for the static ambulance location

models described in Section 3.6.1, is unrealistic. Demand fluctuates throughout the

week, day of the week, and even hour by hour within a given day (Rajagopalan et al.,

2008). The advancements in OR and time-analysis have moved the focus of ambulance

location models towards multi-period and dynamic models. These models make use

of time-dependent variables, such as demand rate, travel time, service time, and/or

ambulance availability. Ambulance relocation also forms part of some of these models

as a method of maintaining sufficient service levels for a system over time. A relocation

decision is a dynamic response to the actual realisation of the demand (Bélanger et al.,

2015). In the following sections information on multi-period and dynamic models, some

of which are adapted to consider relocation or can be adapted, are provided.

3.6.2.1 Multi-period models

While addressing the ambulance location problem in Louisville (Kentucky), Repede &

Bernardo (1994) realised that there are no models that consider the variation of demand

over time. They then formulated the maximal expected coverage location model with

time variation (TIMEXCLP), a multi-period variation of MEXLCP (Bélanger et al.,

2015; Brotcorne et al., 2003). According to Bélanger et al. (2015), TIMEXCLP is the

first multi-period ambulance relocation model. Rajagopalan et al. (2008) introduced

a multi-period variant of the PLSCP, the dynamic available coverage location model
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(DACL). DACL strives to minimise the number of ambulances needed to guarantee the

coverage of each demand node with a given level of service reliability, while taking into

account several time periods. Neither the TIMEXCLP nor the DACL have any added

constraints that take into account the relocation of ambulances (Bélanger et al., 2015).

Schmid & Doerner (2010) introduced the multi-period double standard model (mDSM),

which considers period dependent travel times. It is an extension of DSM in that it

now considers the travel time variation between time periods due to factors such as

traffic, and it adds a penalty term to the objective function to limit the number of

relocated ambulances between periods (Bélanger et al., 2015). Başar et al. (2012) con-

sidered determining the place and time that ambulance stations or holding sites should

be open over a multi-period planning horizon. The model is called the multi-period

backup double covering model (MPBDCM), and it is a combination of BACOP and

DSM. MPBDCM differs from previous multi-period relocation problems, as it considers

that, should a station or site be opened at one period, it must remain open until the

end of the planning horizon. This addition is justified when changing the status of a

station or site involves large costs or inconvenience (Bélanger et al., 2015). Andrade &

Cunha (2015) extended the Q-MALP model to a multi-period model and incorporated

ambulance relocation. The model aims to maximise expected coverage and minimise

relocation cost per hour over a shift.

Multi-period models consider the changes in the system that occur over time during

the planning horizon, which is an improvement over the use of constant demand in static

models. Multi-period models revise the values of the variables for pre-defined time

periods of the planning horizon (Rajagopalan et al., 2008; Schmid & Doerner, 2010).

During each revision, some adjustments are required to keep each part of the model

consistent with the other parts. The fact that the revisions are done at predefined time

periods cause any change occurring between two consecutive time periods to make the

model inconsistent with the dynamic setting of the system. This inconvenience lead to

the development of dynamic models (Moeini et al., 2014).

3.6.2.2 Dynamic models

Gendreau et al. (2001) were the first to propose an ambulance relocation model that

explicitly accounts for the dynamic nature of EMS. This model, called the ambulance

location problem (RPt), is based on the DSM. The RPt still strives to maximise the

35

Stellenbosch University  https://scholar.sun.ac.za



3.6 Overview: Ambulance location problems

population covered by at least two vehicles within the standard time frame, but also to

minimise relocation costs. The objective function contains a penalty term that takes

into account the relocation history of ambulances. The penalty term ensures the avoid-

ance of overly long and round-trips, as well as moving the same ambulance repeatedly;

it is also updated each time a relocation is performed. RPt needs to be solved every

time an ambulance is dispatched, i.e. the system’s state changes. However, in the

EMS context relocations need to be decided on in real-time, and the computational

time needed to solve such a relocation problem may be too long to consider each time

an ambulance is dispatched. Gendreau et al. (2001) suggested that the time between

two calls should be used to determine the relocation plan associated with each possible

dispatching decision. Therefore, as soon as the dispatched ambulance becomes known

the corresponding relocation plan can be applied immediately (Bélanger et al., 2015).

Andersson & Värbrand (2006) proposed a dynamic ambulance relocation model,

DYNAROC, which differs from Gendreau et al. (2001) in the way that it assesses

the system’s performance. Andersson & Värbrand (2006)’s model considers the pre-

paredness measure – the capacity of the system to answer future calls – rather than a

coverage measure. In practice, the level of preparedness for each demand node is reg-

ularly checked, and when it drops below a certain value the relocation of ambulances

start (Bélanger et al., 2015).

Gendreau et al. (2006) proposed the maximal expected relocation problem (MECRP).

It determines the appropriate relocation plan for each possible system’s states. This

approach is only possible for problems with a relatively small number of ambulance

vehicles. Nair & Miller-Hooks (2009), in a similar way to Gendreau et al. (2006), pre-

sented a location-relocation model that considers the evolution of the system’s state

over time. The system’s state at a given time is defined by the incoming call probabil-

ity distributions, the number of available ambulances, and the travel time within the

road network at that particular time. This model has two objectives: to maximise the

double coverage and to minimise the location-relocation costs (Bélanger et al., 2015).

Maxwell et al. (2010) considered dynamic programming to formulate the dynamic

ambulance relocation problem. The problem is limited to the relocation of vehicles

that have just completed their mission, so it significantly reduces inconvenience and the

number of possible decisions. When an ambulance completes its mission the relocation

problem considered assists in determining the next holding site for that ambulance
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in such a manner that the number of calls that can be reached within the given time

frame is maximised (Bélanger et al., 2015). Schmid (2012) also proposed using dynamic

programming to formulate the dynamic relocation problem. The relocation decisions

are considered when an ambulance has completed its mission and the only vehicle

available for relocation is the newly idle ambulance. Its objective is to minimise the

average response time over a finite planning horizon, while considering the variation of

the travel times and demand density with respect to time (Bélanger et al., 2015).

Naoum-Sawaya & Elhedhli (2013) considered addressing the dynamic ambulance

relocation problem by means of a two-stage stochastic programming approach. The

first stage is the vehicle location and the second the assignment of vehicles to emergency

demands upon actual reception of the emergency demands. The objective is firstly to

minimise the number of relocated ambulances and then the number of demands that

cannot be served within the prescribed delay (Bélanger et al., 2015).

Mason (2013) proposed the real-time multi-view generalised-cover repositioning

model (RtMvGcRM), which is implemented within the EMS management software

called Optima Live. Optima Live provides real-time relocation recommendations. It

strives to determine the location of available ambulances in such a manner that service

quality is maximised and relocation costs are minimised. Jagtenberg et al. (2015) pro-

posed a dynamic variant of MEXCLP to address a real-time relocation problem with

the goal of minimising the expected fraction of late arrivals. It assumes that an am-

bulance is only allowed to be relocated at the end of a mission. Despite its simplicity,

it has been shown that this model performs better than the static policy where an

ambulance always returns to its home base (Bélanger et al., 2015).

3.7 Location-allocation and relocation models

It was stated in Section 1.2.1.1, that this project’s primary goal is to create a concept

demonstrator DST that can be utilised to produce a solution for the near-optimal (i)

holding site placement per shift, and (ii) ambulance allocation and relocation per hour of

that shift, for ambulance demand from the City of Cape Town and the Cape Winelands

municipalities. Therefore, a location-allocation and relocation model is required. It was

also stated in Section 1.2.3 that integrating the DST into the WC ECC’s system is not
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part of the project’s scope. Thus, dynamic models will not be considered. This leaves

static ambulance location models or multi-period models.

The ambulance location-allocation and ambulance relocation problems are extremely

similar; both aim to find the optimal locations for ambulances as a function of the sys-

tem’s demand (Nguyen, 2015). Ambulance location-allocation problems are strategic

and allow for off-line computation, while relocation problems require more realistic

data or the implementation of procedures in real-time (Nguyen, 2015). It is possible to

formulate the two problems together by considering time-dependent models, i.e. time-

dependent demand and/or travel times. The relocation of ambulances can then be

preplanned by solving for ambulance location per time period of the planning horizon

(Nguyen, 2015; Rajagopalan et al., 2008; Schmid & Doerner, 2010). This is exactly

what is possible with multi-period models. The following sections briefly describe three

multi-period models that were considered for this project. These models consider relo-

cation or can be adapted to consider ambulance relocation. The WC ECC’s real-world

instance and the choice of model will be described in Chapter 4.

3.7.1 Time-dependent MEXCLP with start-up and relocation cost

Van den Berg & Aardal (2015) introduced a time-dependent MEXCLP with start-up

and relocation cost. They based the model on Repede & Bernardo (1994)’s extension of

MEXCLP, called TIMEXCLP. The TIMEXCLP model aims to maximise the expected

coverage over the day by partitioning the day into multiple time periods. The fact

that there is no relation between the time periods allows the problem to be solve

independently for each period. Therefore, there can be huge differences in the location

of ambulances between the different time periods, resulting in high relocation costs.

Schmid & Doerner (2010) introduced an extension of DSM, a time-dependent model

which assumes time-dependent travel times. DSM had the same issue as TIMEXCLP

with high relocation costs, and to overcome it Schmid & Doerner (2010) added a penalty

to the number of relocations between periods. Van den Berg & Aardal (2015) decided

to adopt the same practice to control the movement of ambulances between periods

to different locations. Van den Berg & Aardal (2015) did not have a time-dependent

travel time model and therefore used average drive time as an indication of speed

during a time period. However, they did use time-dependent demand and ambulance

availability.
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The model was solved using CPLEX 12.5 with a time limit of 5 minutes. To test

the model it was applied to two different instances. The input for the first instance

was randomly generated with 500 demand points and 50 possible locations. The input

for the second instance was real-life data for a region of Amsterdam, Netherlands, with

161 demand points and a population of 1.2 million. The demand nodes were created

based on 4-digit postal codes. It is assumed that the demand nodes are also available

ambulance station locations. In the Netherlands 95% of all high priority calls must be

reached within 15 minutes. This response time target can only be met if ambulances

are placed in order to provide adequate coverage (Van den Berg & Aardal, 2015).

3.7.1.1 Problem model formulation

Let dti denote the demand rate at demand node i during time period t, and ptA denote

the number of available ambulances during time period t. The decision variables are ytj ,

the number of ambulances located at location j during time period t, and xwti , which

indicates whether demand node i is covered by at least w ambulances during time

period t. Due to the time-dependent demand, service time, and ambulance availability,

the model also has a time-dependent busy probability, qt. The set of ambulance stations

or holding site location nodes that can cover demand node i during time period t is

denoted by V t
i . The relation between consecutive time periods are taken into account

by adding a penalty, γ, for the number of relocations between the time periods. The

integer variable rtjj′ represents the number of ambulances that should be repositioned

from location j to location j′ between time period t and (t + 1). Another penalty

variable, θ, indicates the cost of using an ambulance station location during at least

one time period, and is added to each location used. A binary variable zj is used to

indicate whether a location j is used during at least one time period. Van den Berg &

Aardal (2015) made use of big-M constraints to ensure correct values for these variables.

These constraints use a constant, bigM , which has a very large value.

The model can then be formulated as follows:

[max]
∑
t∈τ

∑
i∈D

ptA∑
w=1

dti
(
1− qt

)
(qt)(w−1)xwti − θ

∑
j∈H

zj − γ
∑
i∈D

∑
j∈H

∑
t∈τ

rtjj′ . (3.4)

Subject to:
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∑
j∈V t

i

ytj ≥
ptA∑
w=1

xwti i ∈ D, t ∈ τ ; (3.5)

∑
j∈V t

i

ytj ≤ ptA t ∈ τ, (3.6)

∑
j∈V t

i

ytj ≤ (bigM)(zj) j ∈ H, (3.7)

ytj +
∑
i∈D

rtjj′ −
∑
i∈D

rtj′j = y
(t+1)
j t ∈ τ, j, j′ ∈ H; (3.8)

yTj +
∑
i∈D

rTjj′ −
∑
i∈D

rTj′j = y
(t+1)
j T ∈ τ, j, j′ ∈ H; (3.9)

ytj , r
t
jj′ integers; (3.10)

xwti , zj ∈ {0, 1} . (3.11)

The first term of the objective function, (3.4), calculates the expected coverage

over all demand nodes and all time periods. The second term considers the number

of locations used and penalises the use of each based on their cost. The third term

penalises the number of ambulances relocated between time periods.

Constraint (3.5) ensures that a demand node is covered by at least w ambulances if

at least w ambulances can reach this demand node within the response time or coverage

standard. Constraint (3.6) ensures that no more than ptA ambulances are used during

time period t. For this constraint to be valid bigM should be at least the value of the

left hand side. However, a too high value can result in a weak linear program relaxation

and an increase in computation time. Constraint (3.7) indicates that the number of

ambulances at a location can only be positive if the location is opened. Constraint

equations (3.8) and (3.9) ensure that the values of rtjj′ are correct and balanced for

every location. If the number of ambulances is not constant throughout the day, a

dummy location is required, off-duty ambulances are then sent to this location.

3.7.2 Dynamic available coverage location model

Rajagopalan et al. (2008) formulated the multi-period model for dynamic demand envi-

ronments, called DACL, in order to minimise the required number of ambulances while

meeting the predetermined ambulance availability requirements. DACL allows solving
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for multiple periods and incorporates ambulance busy probabilities by using Jarvis’s

(1985) hypercube approximation algorithm. Both the multi-period and ambulance busy

probabilities enhance the realism of this model (Rajagopalan et al., 2008).

The model was applied to data from 2004 for Mecklenburg County, North Car-

olina, a region spread over approximately 1,398.59 km2 with a population of 801,137.

Mecklenburg county received 77,292 calls during 2004, of which 61,630 were classified

as emergencies requiring an ambulance to be dispatched. The data for every Monday

of 2004 for Mecklenburg County was used in the model, for which there were 8,742

ambulance dispatched. The time periods were defined to consists of three hours each.

However, the time value of the time periods can easily be changed. The county was

divided into square nodes of 5.18 km wide and 5.18 km in length, which provided Ra-

jagopalan et al. (2008) with 168 demand nodes. It was assumed that the ambulances

could be stationed in any of the nodes except those that are part of the boundary. A

tabu search heuristic was developed to solve the model, and the solutions were validated

with a comprehensive simulation model (Rajagopalan et al., 2008).

3.7.2.1 Problem model formulation

Let amb be the set of available ambulance and abtj be 1 if ambulance b (b ∈ amb) is

located at node j during time period t. Then, ptA is the number of available ambulances

during time period t, dti the demand rate at node i during time period t, n the number

of nodes in the system, and ct the minimum expected coverage requirement during

time period t. qti indicates the busy probability of an ambulance at node i during

time period t, ηt the average system busy probability during time period t, P0 the

probability of having all servers free, and Pw the probability of having all servers busy

in an M/M/w/0−loss system with w ambulances. Q(ptA, η
t, i) is a correction factor for

Jarvis’s (1985) algorithm, which adjusts the probabilities for server cooperation in the

models. Let

Q(ptA, η
t, i) =

∑ptA−1
l=i

(
ptA − i− 1

)
!
(
ptA − l

) (
(ptA)l

) (
(ηt)l−i

)
P0

(l − i)!
(

1− PptA
)i
ptA!
(

1− ηt
(

1− PptA
))

∀ i = 0, 1, · · · ,m− 1. (3.12)
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Also, xti is equal to 1 if demand node i is covered by at least one ambulance with αt

service reliability during time period t, else 0. If demand node i is within a set distance

from an ambulance at node j during time period t, let distji be equal to 1, else 0.

The model can then be formulated as follows:

[min]

T∑
t=1

n∑
l=1

∑
b∈amb

abtj . (3.13)

Subject to:

[1−
ptA∏
b=1

(qti)
∑n

j=1 dis
t
jia

bt
j Q

ptA, ηt, n∑
i=1

pta∑
b=1

distija
bt
j − 1


−αt

]
xti ≥ 0 ∀ i, t; (3.14)

n∑
i=1

dtix
t
i ≥ ct ∀ t; (3.15)

xti, a
bt
j = {0, 1} ∀ i, j, b, t. (3.16)

Objective function (3.13) minimises the number of ambulances deployed. Constraint

(3.14) keeps track of the nodes that are covered and ensures it is done with the required

service reliability. Constraint (3.15) ensures that the coverage of the total system will

be greater than ct but together with constraint (3.14) it allows only the demand nodes

covered with α service reliability to be included in the system wide expected coverage

(Rajagopalan et al., 2008).

3.7.3 Extended queuing maximum availability location problem model

Andrade & Cunha (2015) modified the Q-MALP model, which was created by Marianov

& ReVelle (1996). The modifications turned the static model into a multi-period model

which considers ambulance relocation. The modified model is called the extended Q-

MALP model. The extended Q-MALP model was created to be used as an optimised-

based DST to guide ambulance station location and ambulance allocation decisions,

while also determining the best relocation of ambulances in order to cope with the

varying demand for the São Paulo EMS. A secondary purpose was to create a generic
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and flexible model that can be adapted to other large real-world problems (Andrade &

Cunha, 2015).

According to Andrade & Cunha (2015), they were the first to apply the Q-MALP

to such a large real-world problem. In order to incorporate relocation in the model a

few of the concepts developed by Schmid & Doerner (2010) regarding the relocation of

ambulances were included. The following concepts were added:

1. moveable stations;

2. multiple time periods, with optimal allocation for successive periods (not a purely

static solution);

3. time-dependent variations in travel times and the resulting changes with respect

to coverage and required vehicle relocation;

4. independent location decisions for stations and ambulances;

5. multiple types of vehicles with different coverages, basic life support (BLS), and

advanced life support (ALS); and

6. capacity constraints for each potential site location.

São Paulo is the largest city in South America with a population of up to 11.9 million

people in 2014. It is Brazil’s financial and business centre, housing the headquarters

of the largest national and multi-national corporations. São Paulo therefore attracts

daily commuters who live in the neighbouring cities. The neighbouring cities have a

population of up to 20 million people. The commuters and large population already

in São Paulo has caused traffic congestions to extend past peak driving hours. In

2007 the best feasible response time for 98% of the calls was within 27 minutes. This

lead to a restructuring in 2009, which tried to reduce the total response times and to

bring it closer to an acceptable standard. During the process it became evident that

more ambulance stations were required to reduce the travel time between the closest

ambulance and the incident. This realisation lead to an optimisation-based DST to

guide the São Paulo EMS in its strategic decisions involving the location of ambulance

stations and the allocation and relocation of ambulances in order to cope with the

varying demand of different time periods. An integer programming model was used to

represent the problem. The solution method implemented was a meta-heuristic based

on the artificial bee colony (ABC) algorithm (Andrade & Cunha, 2015).
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3.7.3.1 Problem model formulation

Let i ∈ D represent the set of demand nodes and j ∈ H the set of potential location

nodes for ambulance stations. The planning horizon consists of time periods indicated

by τ = {1, 2, · · · , t, · · · , T}. The model also considers the use of two ambulance ve-

hicles, ALS and BLS, denoted by k ∈ {1, 2}, respectively. The stochastic nature of

the problem model is indicated by three different neighbourhoods, W kt
i , V kt

j , and Nkt
i .

W kt
i represents the subset of location nodes that can be reached from demand node i

during time period t in less than rk time units. rk is the time standard possible, i.e.

coverage standard in terms of time, for an ambulance of type k. V kt
j represents the

subset of demand nodes that can be reached from location node j during time period

t in less than rk time units. Nkt
i represents the subset of all demand nodes, z ∈ D,

that can be reached from demand node i during time period t in less than rk time

units. The neighbourhood Nkt
i is assumed to be an M/G/s−loss queuing system, with

Poisson distributed call arrival rate, generally distributed service times, s ambulances

in the neighbourhood, and up to s calls being serviced at the same time. Queuing

theory solutions for steady-state equations are used to estimate the likelihood that all

servers are busy at the same time; this allows for the calculation of ambulance busy

probabilities and the minimum number of ambulances required inside Nkt
i to provide

coverage to demand node i.

The binary decision variable xwkti is equal to 1 if, and only if, demand node i is

covered by at least w ambulances of type k during time period t; otherwise it is equal

to 0. yktj is an integer variable that denotes the number of ambulances of type k located

at location j during time period t, and the binary decision variable zj is equal to 1 if, and

only if, an ambulance station is located at location node j and 0 otherwise. The integer

variable rktjj′ denotes the number of ambulances of type k that are to be repositioned

from location j to location j′ (j, j′ ∈ H) between time period (t− 1) and t.

The objective function strives to determine the best pZ locations for ambulance

stations, as well as to allocate pkA ambulances of type k among the selected stations at

each time period t such that the expected coverage over all time periods is maximised

and simultaneously the total time spent in relocating ambulances is minimised. Queu-

ing theory is used to determine the minimum number of ambulances of type k, Mkt
i ,
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required to adequately cover demand node i with an α service reliability level during

time period t.

The model can then be formulated as follows:

[max]
∑
t∈τ

 2∑
k=1

∑
i∈D

Mkt
i∑

w=0

dkti · Cwkti · xwkti − β ·
∑
j∈H

∑
j′∈H

st
jj′
· rkt
jj′

 . (3.17)

Subject to:

∑
j∈Wkt

i

yktj ≥ 1 i ∈ D, t ∈ τ, k ∈ {1, 2} ; (3.18)

∑
j∈Wkt

i

yktj ≥
Mkt

i∑
w=0

xwkti i ∈ D, t ∈ τ, k ∈ {1, 2} ; (3.19)

xwkti ≤ x(w−1)kti i ∈ D, t ∈ τ, k ∈ {1, 2} , w ∈
{

1, 2, · · · ,Mkt
i

}
; (3.20)

pk · zj ≥ yktj j ∈ H, t ∈ τk ∈ {1, 2} ; (3.21)

yktj +
∑
i∈D

rktjj′ −
∑
i∈D

rktj′j = y
k,(t+1)
j j, j′ ∈ H, t ∈ τ − {T} , k ∈ {1, 2} ; (3.22)

ykTj +
∑
i∈D

rkTjj′ −
∑
i∈D

rkTj′j = yk1j j, j′ ∈ H, k ∈ {1, 2} ; (3.23)

∑
j∈H

zj = pZ ; (3.24)

∑
j∈H

ytj = p1A t ∈ τ ; (3.25)

∑
j∈H

ytj = p2A t ∈ τ ; (3.26)

y1,tj + y2,tj ≤ Cj j ∈ H, t ∈ τ ; (3.27)

yktj ≥ 0 and integer j ∈ H, t ∈ τ, k ∈ {1, 2} ; (3.28)

xwkti ∈ {0, 1} i ∈ D, t ∈ τ, k ∈ {1, 2} , w ∈
{

0, 1, 2, · · · ,Mkt
i

}
; (3.29)

zj ∈ {0, 1} j ∈ H; (3.30)

rk,t
jj′
≥ 0, and integer

(
j, j
′
)
∈ H, t ∈ τ, k ∈ {1, 2} . (3.31)

Constraint (3.18) ensures that every demand node i is covered at least once within
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rk time units, during time period t by ambulance type k. Constraint (3.19) implies

that a demand node, i, is covered Mkt
i times only if at least Mkt

i ambulances of type

k are stationed within the given response time standard, rk, from the demand node i

(Marianov & ReVelle, 1996). Constraint (3.20) ensures demand node i is covered by w

ambulances, only if it is firstly covered by (w−1), i.e. it ensures continuity. Constraint

(3.21) specifies that all available ambulances must be assigned to selected location site

nodes. Constraint equations (3.22) and (3.23) ensure that the ambulance relocations

between consecutive time periods take place consecutively; this is based on work by

Schmid & Doerner (2010). Constraint (3.23) also guarantees that the relocation plan

is connected. Constraint (3.24) ensures that the number of selected stations is equal

to pZ . Constraint equations (3.25) and (3.26) ensure that pkA ambulances of type k

are located in all time periods. Constraint (3.27) ensures the capacity restriction at

each holding site location j is not exceeded. Constraint (3.28) ensures that the number

of ambulances of type k, yktj , to be located at each selected site j is positive and

integer. Constraint (3.29) ensures that the xwkti variable modelling the coverage is

binary. Constraint (3.30) ensures that the zj variable indicating the location site nodes

selected is binary. Constraint (3.31) indicates the number of ambulances of type k,

rktjj′ to be repositioned between time period (t− 1) and t from j to j′ ({j, j′ ∈ H}) and

ensures that the value is integer and greater than zero.

3.8 Ambulance location problems: Solution methods

An ambulance location problem can be classified as a discrete facility location problem,

where the solution space for locating pA ambulances in n nodes is n× pA (Basu et al.,

2015). There are various optimisation techniques that can be used to solve these types

of problems; the three main techniques are: heuristic and meta-heuristic algorithms,

simulation, and exact methods.

In general ambulance location problem models are formulated as integer program-

ming problems, and it is possible to apply exact methods, i.e. the branch-and-bound

algorithm, to obtain optimal solutions but only for small scale problems. This is be-

cause this type of problem tends to be NP-hard, for which exact methods are limited

(Basu et al., 2015; Rajagopalan et al., 2008). Simulation is usually used to evaluate

the system’s performance, or it is combined with heuristics and/or meta-heuristics to
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provide near optimal solutions. Therefore, if the problem is too large and simulation is

not required heuristics and/or meta-heuristics are the preferred solution technique (Li

et al., 2011).

Heuristics are generally problem specific, whereas meta-heuristics tend to have a

problem independent structures. Meta-heuristics consist of different components which

exploit problem related information, and can be implemented in many different ways to

solve a problem (Basu et al., 2015). The reasoning behind choosing one meta-heuristic

and the method of implementing its components over another is not purely objective as

is the case with exact methods. Generally, the meta-heuristic and the implementation

of its components are chosen randomly or because it was the method used in literature

to solve the basic variant of the model (Basu et al., 2015).

The solution methods that were implemented to solve the ambulance location prob-

lem models described in Section 3.6 were mostly meta-heuristics. The following is a

list of heuristics and meta-heuristics that have been used to solve these and some other

ambulance location problem models:

� integer linear programming, the MEXCLP (Jagtenberg et al., 2015);

� tabu search, minimum expected response location problem (MERLP) (Rajagopalan

& Saydam, 2009);

� artificial bee colony algorithm (ABC), the extended Q-MALP (Andrade & Cunha,

2015);

� genetic algorithm (GA), the Maximal Expected Survival Location Model for He-

terogeneous Patients (MESLMHP) (Knight et al., 2012) and DSM (Liu et al.,

2014);

� ant colony optimisation, the double coverage model (Su et al., 2015) and the

modified double coverage model (Luo et al., 2013); and

� simulated annealing (SA) and GA, the spatial queuing model (SQM) and MCLP

(Mohammadi et al., 2014).

Simulation is not part of the scope of the project, and the WC ECC’s real-world

instance is too large for the use of exact methods. The above list shows that the

preferred method for solving ambulance location problem models is meta-heuristics.
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3.9 Meta-heuristics

There are a myriad of real-life hard, NP-hard, optimisation problems, such as the

ambulance location problem being considered in this project (Rajagopalan et al., 2008),

that require high quality solutions. This led to the creation of many algorithms, of

which heuristics and meta-heuristics are the most popular.

Heuristics are experience-based techniques (Muritiba, 2010). Therefore, they tend

to be the first thing used to solve a new optimisation problem. Meta-heuristics were

developed in 1970 to replace or improve on heuristics, as they tended to easily become

stuck in local optima, which were not the global optimum. The idea was that meta-

heuristics would guide lower-level procedures, i.e. heuristics, to find good-quality (near-

optimal) solutions (Blum et al., 2008a; Lei et al., 2015).

A good meta-heuristic algorithm can be identified by how well it uses and balances

exploration and exploitation techniques to find the global optimum. A balance is

required between the two techniques, as they are contradictory. Exploration is the

investigation of new and unknown areas of the solution search space, and exploitation

is the use of knowledge of old solutions to find better solutions (Busetti, 1983).

Meta-heuristics can be classified in more than one way. The different classification

types refer to different ways in which researchers differentiate between meta-heuristics.

The following list shows the three most prominent classifications types (Blum & Roli,

2003):

1. nature-inspired versus non-nature inspired;

2. memory-based versus memory-less; and

3. single-point versus population-based meta-heuristics.

The third classification type is the one most often used. It refers to the number

of solutions that is considered by the optimisation algorithm during any iteration.

The single-point algorithms consider only one possible solution at a time and are also

referred to as trajectory methods. Population-based algorithms consider more than one

possible solution at a time (Blum et al., 2008a).
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3.10 Single-point meta-heuristic algorithms

Single-point algorithms are an extension of the iterative improvement local search pro-

cedures, i.e. a type of heuristic. This type of heuristic tends to provide unsatisfactory

solutions, as the quality of the solution depends greatly on the starting position. Single-

point algorithms have added an exploration component to the iterative improvement

local search procedure. This component guides exploration of the search space, i.e. all

possible solutions, to find better and new solutions, but the algorithm still requires a

termination criteria, such as maximum computation time and/or number of iterations.

Examples of single-point algorithms are SA (Mohammadi et al., 2014), tabu search

(Chanta et al., 2014; Rajagopalan et al., 2008), iterated local search, and variable

neighbourhood search (VNS) (Blum et al., 2008a). The two most popular algorithms

are SA and tabu search.

3.10.1 Simulated annealing

SA was proposed by Kirkpatrick et al. (1983) to be a probabilistic method for finding

the global minimum of an objective function that might have some local minima. It is

one of the oldest meta-heuristics and one of the first to explicitly incorporate a strategy

to escape local optima, called hill-climbing (Bertsimas & Tsitsiklis, 1993).

The SA algorithm imitates the metallurgic process of annealing, when metal is

heated until its melting point and slowly cooled until it freezes into a minimum energy

crystalline structure which has fewer crystal defects. If the cooling schedule is slow

enough, the end result would be a solid with superior structural integrity (Blum et al.,

2008b; Busetti, 1983; Henderson et al., 2003).

During an iteration two possible solutions are evaluated, the current and a newly

selected solution. The objective function value of these two solutions are compared.

If the new solution has a higher objective function value then it replaces the current

solution. If the new solution is worse it can still replace the current solution based

on a probability algorithm, i.e. hill-climbing; this allows a fraction of non-improving

solutions to be accepted with the hope of escaping local optima. The probability of

accepting a non-improving solution decreases as the ‘temperature’ parameter is de-

creased with each iteration. As the temperature parameter is decreased to zero, and

hill-climbing happens less and less, the solution distribution converges until all the
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probability is concentrated on the set of globally optimal solutions. This is only pos-

sible if the algorithm is convergent; otherwise the algorithm will converge to a local

optimum, which may or may not be globally optimal (Henderson et al., 2003). The

choice of the next trial solution depends exclusively on the current solution, since SA

does not use memory (Blum et al., 2008b; Henderson et al., 2003).

SA can handle highly non-linear models, chaotic and noisy data, and constrained

optimisation. It can also easily be adapted for use in more than one problem. However,

SA requires the user to make a lot of choices concerning the values of control parameters

and the cooling schedule. These decision influence the quality of the solution and the

length of the computation time required for convergence. The process of changing the

algorithm for all the different types of constraints, and to tune the parameters can be

extremely delicate work. Furthermore, the SA algorithm tends to be computationally

intensive (Busetti, 1983).

3.10.2 Tabu search

Tabu search is a local search based improvement meta-heuristic. The initial solution is

important for any local search based heuristic, as it sets up the initial search space, and

this holds true for tabu search. The strategies that are usually employed for generating

initial solutions for tabu search include randomly generating initial solutions, greedy

approach, and initial solution based on some problem characteristic (Basu et al., 2015).

The tabu search (Glover & Greenberg, 1989) framework can be used as a general

framework for a variety of iterative local search strategies for discrete optimisation.

The algorithm starts with an initial solution, calls it the current solution, and then

searches for the best solution in an acceptably defined neighbourhood around the cur-

rent solution. The best solution found in the neighbourhood then becomes the current

solution, and the search process starts again. The process terminates when the termina-

tion condition is met. The most typical termination criteria are: maximum number of

iterations, maximum number of iterations without any improvement in solution value,

and maximum execution time (Basu et al., 2015; Blum et al., 2008b; Henderson et al.,

2003).

During the search process, the algorithm keeps track of the current solution and

the best solution found thus far. To prevent the algorithm from returning to previous

solutions, or getting stuck, a list of forbidden moves are kept, and the solutions that
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can only be reached through these tabu moves are removed from the neighbourhood.

A move stays on the tabu list until the list is full; then the oldest move is deleted.

The tabu list adds a memory aspect to the tabu search algorithm and helps it to avoid

getting stuck in local optima (Blum et al., 2008b; Henderson et al., 2003).

The length of the tabu list controls the memory of the algorithm. If it is small

the search will be concentrated on small areas of the search space, and if it is large

it will force the algorithm to explore larger areas of search space. The length can be

kept constant, changed at discrete intervals, or be continuously changed during the

execution of the search (Basu et al., 2015; Blum et al., 2008b). Tabu lists are generally

implemented in a FIFO manner. The lists store the features of the recently visited

solutions. Different lists may be used for each type of solution feature, each of which

is initialised at the start of the algorithm as empty lists (Blum et al., 2008b). Often

an aspiration criteria is added which if met will allow tabu moves to be used to reach

a solution. The most common criterion states that if the solution’s quality is the best

so far then the tabu status is withdrawn (Basu et al., 2015).

Unlike the SA algorithm, tabu search uses memory but there is still no proof of

convergence existing in the literature for the general tabu search algorithm (Blum

et al., 2008b; Henderson et al., 2003). The process of creating and maintaining the

tabu list or lists can also be intensive.

3.11 Population-based meta-heuristic algorithms

Population-based algorithms consider a set of potential solutions at each iteration, and

the next set of solutions is created by applying one or more operators to the current set

of solutions. The quality of the new set of solutions and the efficiency of the method are

dependent on the operator(s) used to manipulated and change the solution set (Blum

et al., 2008a). Two of these types of algorithms that are used often for ambulance

location problems are GA, an evolutionary computation algorithm (Knight et al., 2012;

Lim et al., 2011) and ABC, a particle swarm optimisation algorithm (Andrade & Cunha,

2015).
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3.11.1 Genetic algorithm

GAs were created and developed in the 1960s at the University of Michigan by John

Hollard, his colleagues, and his students (Melanie, 1999). Hollard did not originally

plan to develop GA as an optimisation algorithm but to use it to formally study the

phenomenon of adaptation as it occurs in nature and to develop ways in which the

mechanisms of natural adaptation might be used in computer systems. The basic GA,

therefore, does not offer any statistical guarantee of convergence to a global optimum

when solving for any optimisation problem (Busetti, 1983; Melanie, 1999). However,

GAs are still used, as there is a need for an algorithm that can search through a huge

number of possibilities for good solutions. Also, many computational problems require

a program that is able to adapt and perform well in a changing environment (Melanie,

1999).

The GA algorithm is a direct, parallel, stochastic search technique based on the

process of natural selection and genetics in evolution theory (Basu et al., 2015; Blum

et al., 2008b). The algorithm considers a set of feasible solutions, called the population,

at every iteration, called a generation. The individual solutions in the population are

called chromosomes. These chromosomes evolve through successive generations in order

to produce ever improving solutions.

Three operators are used to change the solutions: crossover, mutation, and selec-

tion. The crossover operator merges two chromosomes from the current generation to

create one or two new chromosomes, i.e. off-spring, for the next generation. The muta-

tion operator modifies an existing chromosome to create a new chromosome. Crossover

and mutation operators produce a new chromosome with the help of existing ones,

but the selection operator chooses the best chromosome between two existing chromo-

somes for the next generation. The number of chromosomes on which the operators

are applied are chosen randomly. The termination criteria for GA include maximum

number of generations, maximum number of generations without any improvement,

and/or maximum computation time (Basu et al., 2015; Melanie, 1999).

The simple GA is the basis on which most of the GAs are built. However, even the

simple GA decisions have to be made concerning the size of the population and the

values of the probabilities for crossover and mutation. The success of the algorithm

depends on these chosen values. The more complicated versions of GA can work with
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representations of the solution that are not strings, or they may have different types of

crossover and mutation operators (Melanie, 1999). Even though GA is quite restrictive

in terms of its model it has been shown that GA is better suited for some optimisation

problems than SA (Busetti, 1983).

3.11.2 Artificial bee colony algorithm

Particle swarm optimisation algorithms are inspired by, and aim to imitate, the biolog-

ical behaviour found in swarms, colonies, or any cooperative group of living organisms.

The ABC algorithm, which forms part of the particle swarm optimisation family, imi-

tates the foraging behaviour of a honey bee colony. In a honey bee colony the foraging

tasks are divided, and each task is done by a specialised group of bees that self-organise.

This division of labour and organisation is essential to maximise the amount of nectar

brought to the food store in the hive (Karaboga & Basturk, 2007).

Karaboga (2005) proposed the ABC algorithm for the optimisation of unconstrained

numerical problems, where it tended to outperform other meta-heuristics, such as GA,

differential evolution, and other particle swarm optimisation algorithms (Brajevic et al.,

2011; Karaboga & Basturk, 2007). The ABC algorithm can also be modified to handle

continuous, combinatorial, constrained, multi-objective, and large-scale optimisation

problems (Karaboga et al., 2014).

In the ABC algorithm a possible solution is represented as a food source, and the

amount of nectar of a food source is the quality of the associated solution. There

are three groups of artificial bees: employed, onlooker, and scout bees. The artificial

bee colony generally consists of 50% employed and 50% onlooker bees. Scout bees are

employed bees that have become inactive. The number of solutions in the solution

population is the same as the number of employed bees. Thus, each employed bee has

an associated solution.

Every cycle of the ABC algorithm follows a sequence of phases aimed at finding

the best possible solution (Karaboga, 2005). Firstly, during the initialisation phase

every employed bee generates a solution, i.e. finds a food source, randomly. During the

employed bees phase the employed bees explore the neighbourhood of their solution to

find a new and better solution. This exploration is the application of a local search

improvement heuristic. If a newly found solution is better than an old solution the old
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solution is replaced by the new solution. An employed bee will abandon the neighbour-

hood of its solution if no new solution is found after a number of explorations; this is

called the limit. The employed bee then becomes a scout bee. The employed bees share

information about the quality of their solutions and the current best solution, with the

onlooker bees through a waggle dance. During the onlooker bees phase every onlooker

bee chooses a solution based on the waggle dance and explores its neighbourhood using

the search improvement heuristic. The probability of a solution being chosen by an

onlooker bee is proportional to its quality relative to the quality of the colony’s cur-

rent best solution. The best solution in the colony is compared to the current best

solution found so far; if an improvement is seen then the current best solution is re-

placed. During the scout bees phase the employed bees that have turned into scout

bees randomly find new solutions and the process starts again with the employed bees

phase (Karaboga, 2005). The phases are repeated until the stopping criteria is met,

i.e. maximum number of iterations (Andrade & Cunha, 2015).

The variables that affect the computation length and the efficiency of the ABC

algorithm are the colony size, the exploration failure limit, and the maximum number

of cycles. If the solution population size, i.e. 50% of the colony size, is too small it can

cause the best solution to be missed, but if it is too large it can cause the cycles to

take too long. Similar arguments can be made for the other two variables (Andrade &

Cunha, 2015; Karaboga, 2005).

It has been shown that ABC can be implemented to efficiently solve for uncon-

strained and constrained optimisation problems (Brajevic et al., 2011). Also, its flex-

ibility allows it to be easily adapted and modified to fit the needs of any optimisation

problem.

3.12 Conclusion: Demand forecasting and resource de-

ployment methods

In Chapter 3 summaries on the research conducted regarding DST, demand forecasting,

and resource deployment methods were provided. Chapter 4 will start by providing a

description of the WC ECC’s real-world instance and describe how the chosen model

is to be altered to fit the real-world instance. The decisions concerning which mathe-

matical model and meta-heuristic to use will also be explained.

54

Stellenbosch University  https://scholar.sun.ac.za



Chapter 4

The real-world instance: Western

Cape emergency control centre

Summaries on the knowledge gathered and processed were provided in Chapter 3. The

topics that were researched were DSTs, ambulance demand forecasting, and resource

deployment methods in the EMS context. In Chapter 4 the project’s real-world instance

is introduced, the choice of problem model and its required alterations are discussed,

and the choice of solution method to solve the problem is explained.

4.1 The Western Cape emergency control centre

Before the start of a shift, dispatchers at the WC ECC decide which holding sites to use

and how many ambulances to place at each, to best cover demand for their drainage

area. A drainage area is an area around a hospital. This allows for ambulances to be

placed to increase the likelihood of meeting the response time targets, which are the

WC ECC’s service quality criteria. The calls are prioritised as either Priority 1 (P1),

life-threatening, or Priority 2 (P2), non life-threatening, according to the urgency of

the incident type, i.e. incident prioritisation. The response time target for urban P1

calls is 15 minutes, for rural P1 calls is 40 minutes, and no response time target is

set for P2 calls. The holding site placement and ambulance allocation decisions are

based only on the dispatchers’ experience and intuition, since no demand forecasting

mechanism or decision-making protocol is utilised.

At the WC ECC a day is divided into two shifts. A shift consists of 12 hours; the
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two shifts are from 7 A.M. to 7 P.M., i.e. the day shift, and then from 7 P.M. to 7 A.M.,

i.e. the night shift. Cross-over of dispatchers is not allowed during the shift change.

This can cause an hour or more of uncertainty, as no protocol or plan explains the

choices made during the previous shift or helps with the choices for the new shift. Also,

the simultaneous movement of all holding sites and ambulances for the new shift may

cause unnecessary delays in meeting coverage and therefore decrease the likelihood of

meeting the response time targets, i.e. decrease the efficiency of the ambulance system.

The WC ECC dispatchers generally use petrol stations as holding sites, as they are

public and have parking and restroom facilities. Only a certain number of ambulances

and crews can be at any one holding site, as space is limited. Other options for holding

sites are hospitals, the fire department, the police station, or restaurants.

The average number of available ambulances for the City of Cape Town and Cape

Winelands municipalities is 70 for the day shift and 55 for the night shift. Back-

up ambulances are available to replace the ambulances that are unavailable due to

mechanical problems. The historical call data provided by the WC ECC for this project

is from the City of Cape Town and the Cape Winelands municipalities. The data does

not contain any information or provide any insight into the time-dependent speed of

the ambulances, but it is known that the maximum speed is 120 km/hr. The WC ECC

does use different types of ambulances, but no information is available stating what

type of ambulance is used for what type of incident. Also, the closest ambulance is

dispatched regardless of the priority type of the call or the type of ambulance.

The ambulance service chain of events described in Section 1.1.1 is seen in practice

at the WC ambulance service, and it is a critical path for the WC ECC. The ambulance

service is initiated during a shift when calls come in.

Step 1, call placement, is out of the control of the WC ECC; therefore its impact on

the ambulance response time, i.e. the WC ECC’s service quality criteria, can merely

be observed and noted. However, the data collected from the chain of events, including

that from Step 1, can be used to plan resource deployment.

During Step 2, call taking, call-takers answer the incoming calls, screen and pri-

oritise the calls according to P1 and P2, and then assign calls to the dispatcher(s) in

charge of the relevant drainage area. According to the Head of Emergency Medical

Services, the WC ECC also handles non-urgent transfer calls, which make up 44-45%

of the workload, but they are generally planned in advance.
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After the call has been assigned to a dispatcher Step 3, ambulance dispatching,

starts. The CareMonX system is used to determine the ambulance closest to the logged

call. The dispatcher makes the final choice and dispatches an ambulance. The dis-

patched ambulance then arrives at the incident location; the on-board personnel assess

the patient’s state, i.e. Step 4, and determine whether the patient needs to go to hos-

pital, and to which hospital the patient should be taken, if necessary (Schmid, 2012).

On-board personnel take care of the patient until hospital personnel take over (Lee,

2012), i.e. Step 5. Hospital allocation is not considered in this research project. As

soon as a patient’s care is taken over by hospital personnel the ambulance is idle, and

the dispatcher can send the ambulance back to its previous holding site or relocate it

to another to increase overall coverage and increase the likelihood of meeting response

time targets.

4.2 The location-allocation and relocation model

In Section 3.2 it was stated, that SSA will be used in the DST to forecast the probable

future ambulance demand. The location-allocation and relocation model and solution

method still have to be chosen. The ambulance location problem model choice was

based on two factors, namely the flexibility of the model and the similarity between

the previous real-world instance for which the model was used and the WC ECC’s

real-world instance. All three models described in Section 3.7 can be adapted to work

for different real-word instances, but only the extended Q-MALP model was tested on

a real-world instance of similar scale and description. Also, the problems solved for are

similar. The similarities of the real-world instances are explained in Section 4.2.1 and

the problem model and the changes to its formulation to fit the WC ECC’s real-world

instance are explained in Section 4.2.2.

4.2.1 The real-world instances: The São Paulo EMS and the WC

ECC

The São Paulo EMS is public and provides out-of-hospital acute medical care, timely

transport of a patient to a facility, and other medical transport of patients with serious

and life-threatening illnesses and injuries. Both South Africa and Brazil are developing

countries. Cape Town and São Paulo are two large cities faced with socio-economic
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equalities. Both cities have areas of distinct wealth and extreme poverty and ambu-

lances have to serve all areas. The roads also range from good to bad in the respective

areas for both cities (Andrade & Cunha, 2015).

In São Paulo ambulance stations are generally located in buildings, some of which

are owned by the city and others rented. There are 77 ambulance stations, and for

many years none have been added to the list or removed, as installing new ambulance

stations can be time consuming and expensive. Building availability and rising real-

estate costs have also discouraged the installation of new stations (Andrade & Cunha,

2015).

São Paulo is the largest city in South America and has kept on growing, causing the

roads to become increasingly congested. It is Brazil’s financial and business core and

attracts a significant number of commuters daily. Traffic congestion is also no longer

limited to peak time periods. This affects ambulance response times dramatically,

regardless of call priority. While the ambulances are allowed to break ordinary traffic

rules to reach calls as fast as possible, the constant traffic congestion causes impassable

gridlocks (Andrade & Cunha, 2015). Cape Town also has a great number of commuters,

which causes extensive traffic congestion on a daily basis. Ambulance drivers in South

Africa are also allowed to break traffic rules, as long as they do not endanger the lives

of the public while doing so.

Analysis of the ambulance station locations and vehicle allocations in 2007 led

Andrade & Cunha (2015) to conclude that the best feasible response time in São Paulo

was within 27 minutes, with a service reliability rate of 98% for all calls. In 2009, a

comprehensive restructuring and improvement took place in order to bring the response

time closer to international standards. The consensus during this process, according

to Andrade & Cunha (2015), was that more ambulance stations were required in order

to reduce the travel time between the ambulance station and the incident. Andrade

& Cunha (2015) believed that using moveable ambulance stations – non-permanent

buildings that can be set-up in public areas such as parks and squares – and relocating

them at intervals to ensure good coverage would help reduce response time.

The WC ECC already makes use of public areas, specifically petrol station parking

lots, for their holding sites, but they do not set-up any sort of structure and only make

use of a permanent building for their ambulance depot. The ambulances only return

to the depot after a shift or at the end of the day, depending on how long they are
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used. The holding site locations can therefore be changed during the day for every shift

without considering the moving of any sort of structure.

Similar to Andrade & Cunha (2015), the focus of this project is to create an

optimisation-based DST to guide decision-making to help in the choice of holding site

locations, ambulance allocation, and relocation in order to improve the WC ECC’s

ability to accommodate varying demand of the different time periods of a shift.

4.2.2 The extended Q-MALP model for the WC ECC’s real-world

instance

The extended Q-MALP model was developed by Andrade & Cunha (2015) and applied

to the real-world instance seen at the São Paulo EMS. The model incorporates various

ideas introduced by Marianov & ReVelle (1996) and Schmid & Doerner (2010). The

relevance of this model is that the modifications added to transform the Q-MALP

model into the extended Q-MALP model to allow for both a stochastic and dynamic

view of the problem. Therefore, the model is generic and flexible enough to deal with

many real-world large EMS problems, including practical aspects of ambulance services,

such as multilayer service levels, independent base location and vehicle allocation, and

coverage probabilities, among others (Andrade & Cunha, 2015).

The implemented location-allocation and relocation model, for the WC ECC’s real-

world instance, generally follows the same formulation as the extended Q-MALP, briefly

described in Section 3.7.3. However, changes had to be made for the model to fit the

real-world instance. These changes are explained in Section 4.2.2.3. The extended

Q-MALP model was also checked against the original Q-MALP model, created by

Marianov & ReVelle (1996), and a modified and used version of the Q-MALP model,

by Ghani (2012).

4.2.2.1 Assumptions and simplifications

Mathematical models may be used to represent real-world problems. These models are

then solved and their solutions are used in part, or as a whole, to solve the real-world

problems. These models are not 100% accurate, as the majority of the problems are

complex and not all the aspects can be modelled with ease. Therefore, the majority

of models require a number of assumptions and simplifications. In order to model this
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project’s real-world instance mathematically a number of assumptions and simplifica-

tions had to be made. Some of these assumptions and simplifications have already been

mentioned. The assumptions and simplifications will be provided in this section, along

with those that have not yet been discussed.

The extended Q-MALP model is a multi-period model which requires a number of

variables to be time-dependent. As stated in Section 3.7.1, travel time, the number

of available ambulances, service time, and demand change over the course of the day

for any ambulance service. Ignoring these variations and using averaged values may

cause aspects of reality to be ignored. It is not always possible to get time-dependent

values for all four of these. This has forced many researchers to assume stable values

(averages) for some if not all of the variables (Van den Berg & Aardal, 2015). The only

time-dependent variables that were available and could be used for this project were

demand rate, with the help of the SSA forecasting method, and ambulance availability,

with the help of queuing theory. Average values for the service time had to be used,

as the service time is made up of different times that are all time-dependent, and their

time-dependencies are not known in advance and cannot be determined, i.e. time to

register call, time to dispatch ambulance, response time, time spent on scene, drive time

to hospital, and time spent at hospital. Marianov & ReVelle (1996), Ghani (2012), and

Andrade & Cunha (2015) all used an averaged service time for similar reasons when

they utilised the Q-MALP model.

For this project, no data was available on ambulance travel time variations in the

City of Cape Town and the Cape Winelands municipalities, therefore time-dependent

travel times could not be determined. Also, the amount of data that would be required

to predict ambulance travel times in advance are not generated by the WC ECC, or

probably by any ECC. Therefore, an average speed will be used. The chosen average

speed value is explained in Section 6.2. In Section 2.4.2, it was stated that the travel

distance will be calculated using the Haversine distance method for two coordinate

locations. Along with the average speed of an ambulance these distances will then be

used to calculate travel time estimates.

The WC ECC ambulance fleet consists of more than one type of emergency vehicle,

of which an ambulance is one. The grouping term generally used for these types of

vehicles are ambulances, though the more accurate term would be emergency vehicles.

The WC ECC, however, does not have accurate data concerning when what type was
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used and exactly how many of each is in use per shift. Since resources are limited, there

are also no rules concerning which type of vehicle to dispatch to what type of emergency.

Therefore, the problem had to be relaxed to assume only one type of ambulance with

an average speed. Also, back-up ambulances are available, and the number of available

ambulances can be assumed to stay the same for the whole of the shift, as stated in

Section 4.1.

4.2.2.2 Queuing theory

The queuing theory implemented for the extended Q-MALP model was briefly men-

tioned in Section 3.7.3. This section will provide more information on how it was

incorporated and used by Andrade & Cunha (2015) to transform the Q-MALP into a

multi-period model.

Andrade & Cunha (2015) defined three neighbourhoods in order to illustrate the

stochastic nature of the location-allocation and relocation problem. Since the ambu-

lances are considered to be the same type for the WC ECC’s real-world instance the

neighbourhoods will be described without k, which indicated the ambulance type for

Andrade & Cunha (2015)’s extended Q-MALP model. The neighbourhoods can then

be defined as:

� for a given demand node i ∈ D and a time period t ∈ τ , W t
i denotes the subset of

all holding site nodes, j ∈ H, which can be reached from i in less than r minutes,

shown in (4.1) (Andrade & Cunha, 2015);

� for a given holding site node j ∈ H and a time period t, V t
j denotes the subset

of all demand nodes, i ∈ D, which can be reached from j in less than r minutes,

shown in (4.2) (Andrade & Cunha, 2015; Ghani, 2012; Marianov & ReVelle, 1996);

and

� for a given demand node i ∈ D and a time period t, the subset of all the demand

nodes, z ∈ D, which can be reached from i in less than r minutes is given by

N t
i , shown in (4.3) (Andrade & Cunha, 2015; Ghani, 2012; Marianov & ReVelle,

1996).

W t
i =

{
j ∈ H|stij ≤ r

}
∀ i ∈ D, t ∈ τ ; (4.1)

V t
j =

{
i ∈ D|stij ≤ r

}
∀ j ∈ H, t ∈ τ ; (4.2)
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N t
i =

{
z ∈ D|stiz ≤ r

}
∀ i ∈ D, t ∈ τ. (4.3)

The neighbourhood, N t
i , around i is a M/G/s− loss or M/G/s/s queuing system

(Andrade & Cunha, 2015; Ghani, 2012; Marianov & ReVelle, 1996). This type of

queuing system has a Poisson distributed call arrival rate, generally distributed service

times, s ambulances in the neighbourhood, and up to s calls being serviced at the same

time.

This division of the area into neighbourhoods means that it is not necessary to track

the state of each ambulance in the system (Marianov & ReVelle, 1996). The demand

rate dti in any neighbourhood i is assumed not to differ significantly from the demand

rate in the neighbourhoods that border i. This proposes a rough equivalence between

the calls that originate outside N t
i that require servers inside N t

i , and the number of

calls inside N t
i that require servers from adjacent neighbourhoods. Also, the travel

times within a neighbourhood are assumed to be small compared to service times, as it

is normal for the on-board personnel to have to wait for hospital personnel to become

available to take over the responsibility of the patient after reaching the hospital. This

allows the assumption that the flow of ambulances bound to and from N t
i are not too

different, which justifies treating each neighbourhood N t
i as an isolated system with a

set number of ambulances (Andrade & Cunha, 2015; Ghani, 2012; Marianov & ReVelle,

1996).

The aforementioned queueing assumptions make it possible to estimate the ambu-

lance busy probability, qti , in the neighbourhood N t
i , shown in (4.4). The sum of the

demand rates in a given neighbourhood, N t
i , are comparable to a demand rate in a

queuing system, λti. Similarly, the service rate, µti is one over the average duration

of a call, i.e. service time. If bti, which is the sum of the number of ambulances yti

in neighbourhood W t
i , is equivalent to the total number of ambulances present in the

neighbourhood during time period t then (4.4) can be rewritten to become (4.5) where

ρti is the traffic intensity, or congestion rate, of the system (Andrade & Cunha, 2015;

Ghani, 2012; Marianov & ReVelle, 1996):

qti
∼=
tcall ·

∑
z∈Nt

i
dtz

24 ·
∑

j∈W t
i
ytj

∀ i ∈ D, t ∈ τ ; (4.4)

qti −→
λti

µti ·
∑

j∈W t
i
ytj
−→ ρti

bti
∀ i ∈ D, t ∈ τ. (4.5)
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The likelihood of all servers being busy at the same time can also be estimated

with the queuing theory steady-state equations. Therefore, with the given system there

would be w ambulances, and the traffic intensity would be equal to ρ, so the probability

can be estimated by (4.6) (Andrade & Cunha, 2015; Ghani, 2012; Marianov & ReVelle,

1996).

P (w) =

(
1
w! · ρ

w
)

1 + ρ+
(
1
2!

)
· ρ2 + · · ·+

(
1
w!

)
· ρw

. (4.6)

The probability of coverage, E(w), for a random call inside N t
i can be calculated

as E(w) = [1− P (w)]. Therefore, the incremental coverage, Cwti , gained when the

number of ambulances in the system is increased from (w − 1) to w, is given by

[E(w)− E(w − 1)] resulting in (4.7) (Andrade & Cunha, 2015; Ghani, 2012; Marianov

& ReVelle, 1996).

(
1
w!

)
·
(
ρti
)w−1

1 + ρti +
(
1
2!

)
· (ρti)

2
+ · · ·+

(
1

(w−1)!

)
· (ρti)

w−1
−

(
1

(w−1)!

)
·
(
ρti
)w

1 + ρti +
(
1
2!

)
· ρt2i + · · ·+

(
1
w!

)
· (ρti)

w = Cwti · (4.7)

All of the above make it possible to calculate the minimum number of ambulances,

M t
i , required inside neighbourhood N t

i to provide coverage to a given demand node

i ∈ D during time period t ∈ τ with service reliability α. From (4.6) it can be shown

that M t
i is the smallest integer that satisfies 1− P (M t

i ) ≥ α, thus (4.8) can be derived

(Andrade & Cunha, 2015; Ghani, 2012; Marianov & ReVelle, 1996):

1− P (M t
i ) ≥ α⇔

(
1
Mt

i !

)
·
(
ρti
)Mt

i

1 + ρti +
(
1
2!

)
· ρt2i + · · ·+

(
1
Mt

i !

)
· (ρti)

Mt
i

≤ 1− α. (4.8)

4.2.2.3 Problem model formulation

The problem model formulation for the extended Q-MALP as implemented by Andrade

& Cunha (2015) was provided in Section 3.7.3.1. This section will describe how the

model was adapted to be used for the WC ECC’s real-world instance.
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A common assumption for this type of problem is H ⊆ D (Andrade & Cunha,

2015). This is at times a valid assumption for the problem model for WC ECC’s real-

world instance as implemented in this project. For this project the whole area will be

divided into blocks that represent the demand nodes and then again be divided into

blocks that will represent the holding site nodes. A holding site node might fall within

a demand node. However, this is not a mandatory assumption.

The planning horizon can be chosen to be anything from a week, a month, even

a year, but the size of the planning horizon does affect the time required to solve the

model. Therefore, a smaller planning horizon which would be solved in a shorter period

of time is suggested. Also, with a smaller planning horizon updated historical call data

can be added at shorter intervals to solve for higher accuracy. Regardless of the chosen

planning horizon each day is divided into two shifts (day and night), which are then

divided into 12 hours. The hours are represented by τ = 1, 2, 3, ..., 12 for each shift;

these are the time periods. The set of time periods represented by τ and indexed by t

depend on the shift being considered. If it is the day shift τ = 7, 8, 9, ..., 18, 19, and if

it is the night shift τ = 20, 21, 22, 23, 24, 1, 2, ..., 6, 7.

Only one type of emergency vehicle, referred to as ambulance, was considered in

the implemented model. Therefore, the k variable will not be used, as it can only

ever be assigned a value of 1. The ability of an ambulance to respond to a demand

within r minutes is therefore kept constant for all ambulances. The decision and control

variables are shown in Table 4.1 and Table 4.2, respectively. The parameters for the

implemented version of the extended Q-MALP model are shown in Table 4.3.

Table 4.1: Decision variables.

Symbol Description

xwti Binary decision variable that is equal to 1 if and only if demand

node i is covered by at least w ambulances at time period t

ytj Integer decision variable representing the number of ambulances

located at holding site node j at time period t

zj Binary decision variable that is equal to 1 if and only if a holding

site is located at node j at time period t

rjj′ Integer decision variable representing the number of ambulances

that should be repositioned from location j to location j
′

(j, j
′ ∈ H)

64

Stellenbosch University  https://scholar.sun.ac.za



4.2 The location-allocation and relocation model

Table 4.2: Control variables.

Symbol Description

pZ Number of stations to be located

pA Number of available ambulances to be allocated

α Service reliability value

β Repositioning penalty

The objective function (3.17) can be divided into two parts. The first part represents

the location-allocation phase, shown in (4.9), and the second part the relocation phase,

shown in (4.10). The phases are solved using two different solution methods, discussed

in Section 4.3. However, the relocation phase’s solution method is called within the

location-allocation phase’s solution method. This is necessary, since the relocations are

what link the location-allocation decisions made for each hour of the planning horizon,

i.e. t.

[max]
∑
t∈τ

∑
i∈D

Mt
i∑

w=0

dti · Cwti · xwti

 ; (4.9)

[max]
∑
t∈τ

−β ·∑
j∈H

∑
j′∈H

st
jj′
· rt
jj′

 . (4.10)

The goal of (4.9) is to maximise the expected coverage for each shift over the entire

planning horizon by selecting holding site nodes and allocating ambulances, while (4.10)

seeks to minimise the total time spent on relocating ambulances between consecutive

hours during each shift, with β as the relocation penalty. The constraints that are

purely relevant to the location-allocation phase are (3.18), (3.19), (3.20), (3.21), (3.24),

(3.26), (3.27), (3.28) (3.29), and (3.30). The constraints relevant to the relocation phase

are (3.22), (3.23), and (3.31). For all the constraints k is set equal to 1 and removed

for the WC ECC’s real-world instance.

The extended Q-MALP, created by Andrade & Cunha (2015), was verified against

the original Q-MALP, by Marianov & ReVelle (1996), and a modification and imple-

mentation of the Q-MALP by Ghani (2012). It was taken into account that Andrade

& Cunha (2015) made changes to the Q-MALP model in order to extend its use. The
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Table 4.3: Problem parameters.

Symbol Description

i ∈ D Set of demand nodes

j ∈ H Set of possible holding site nodes

t ∈ τ Set of time periods

G = (V,E) Undirected graph of V = H ∪D nodes and E edges; each edge

has a corresponding travel time between the different nodes at

different time periods

stij Travel time between demand node i and holding site node j

during time period t

dti Demand rate at demand node i during time period t

r Coverage time of ambulance

W t
i Subset of holding site nodes j which can be reached from demand

node i in less than r minutes during time period t

V t
j Subset of demand nodes i which can be reached from holding site

node j in less than r minutes during time period t

N t
i Subset of demand nodes z ∈ D which can be reached from demand

node i in less than r minutes during time period t

qti Busy fraction of ambulances in N t
i at time period t

tcall Average call duration

λti Total demand rate in N t
i at time period t

µti Service rate of ambulances in N t
i at time period t

bti Total number of ambulances in N t
i at time period t

ρti Traffic intensity in N t
i at time period t

Cwi Incremental coverage obtained by increasing the number of

ambulances in N t
i from (w − 1) to w

M t
i Minimum number of ambulances inside N t

i required to provide

coverage to this node at time period t with reliability α
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comparison between the models was focussed on the aspects of the model which stayed

true to the original Q-MALP model. Discrepancies were found for three of the con-

straints relevant to the location-allocation phase. The discrepancies had no impact on

two of the constraints, (3.18) and (3.20), but for the third, (3.19), it caused an increased

coverage standard requirement for the possible solutions.

The same discrepancy was found in constraint equations (3.18) and (3.19). Andrade

& Cunha (2015) summed the number of ambulances at holding site node j during

time period t by considering W t
i , while Marianov & ReVelle (1996) and Ghani (2012)

considered V t
j . This discrepancy is believed to be due to a typing error that went

unnoticed, as Andrade & Cunha (2015)’s results do not show notable errors due to the

discrepancy.

Constraint equations (3.19) and (3.20) also share a discrepancy concerning the

variable xwti . Since xwti is defined from w = 0, the discrepancies in constraint equations

(3.19) and (3.20) could have an effect. Constraint (3.19), with k = 1, is meant to be

summed from w = 1 and to ensure that demand node i is only covered M t
i times if at

least M t
i ambulances are stationed within the given response time standard, r, from the

demand node i (Ghani, 2012; Marianov & ReVelle, 1996). However, Andrade & Cunha

(2015) summed (3.19) from w = 0 and which changed the purpose of the constraint to

ensuring that a demand node i is only covered (M t
i +1) times if at least M t

i ambulances

are stationed within the given response time standard, r, from the demand node i. The

discrepancy caused the constraint to require a higher coverage level. Therefore, the

solutions tended to exceed coverage standards, since x0ti will always be equal to 1. The

fact that x0ti will always be equal to 1 does not cause a complication with constraint

(3.20) where w ∈ 1, ...,Mkt
i when it should be w ∈ 2, ...,Mkt

i .

It was decided to change the three constraints to match that which was used by

Marianov & ReVelle (1996) and Ghani (2012). The revised constraints are shown in

(4.11), (4.12), and (4.13) and are in the form that they will implemented for this project.

∑
j∈V t

j

ytj ≥ 1 i ∈ D, t ∈ τ ; (4.11)

∑
j∈V t

j

ytj ≥
Mt

i∑
w=1

xwti i ∈ D, t ∈ τ ; (4.12)
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xwti ≤ x
(w−1)t
i i ∈ D, t ∈ τ, w ∈

{
2, · · · ,M t

i

}
. (4.13)

A few of the constraints had to be relaxed for the WC ECC’s real-world instance.

The fact that the possible holding site locations are represented by nodes, each of which

can contain more than one holding site, caused the required relaxation of constraint

(3.24), the relaxed form of the constraint is shown in (4.14). The value of pZ is also

taken to equal the number of available holding site nodes. Therefore, the constraint

now only ensures that no more than the available number of holding site nodes are

chosen for the location of holding sites.

Holding site nodes rather than specific holding site locations were used, as no infor-

mation was provided by the WC ECC regarding the locations of their holding sites, and

this representation keeps the model flexible. Locations can easily be added or taken

from the set of used holding site locations. This also ensures that the final decision

concerning the selected holding site locations is made by the dispatcher, this is desirable

as the concept demonstrator DST is intended to support, not replace, the dispatchers’

discretionary decision-making.

The other constraint that was relaxed was (3.26). In its original form it ensures that

all available ambulance are allocated, in its relaxed form, shown in (4.15), it ensures

that no more than the available ambulances are allocated. Both forms of the ambulance

allocation constraint were coded, but only one was activated at a time. The results

for the two implementations will provide knowledge on whether the WC ECC’s fleet is

sufficient for the task of achieving a high ambulance coverage with a specified service

reliability value, or whether the WC ECC would be able to cope with fewer.

∑
j∈H

zj ≤ pZ ; (4.14)

∑
j∈H

ytj ≤ pA t ∈ τ. (4.15)

The relaxation of the ambulance allocation constraint caused complications with

the implementation of the solution method for the relocation problem, as the number

of ambulances allocated during a shift do not stay constant. In order to solve this,

a dummy holding site node was created to represent the ambulances not allocated

to a holding site node during time period t. The Metro Emergency Medical Service

68

Stellenbosch University  https://scholar.sun.ac.za



4.3 The solution methods

(−33.9348108, 18.4894037) was chosen as the location of the dummy node for this

project. At the point that the model provides its output the dispatchers can decide

where the ambulances located to the dummy holding sites should be placed. This again

places the final decision in the hands of the dispatcher.

4.3 The solution methods

Since the output of this research could have ethical implications if implemented, as

stated in Section 1.2.4, a robust, efficient, tried and tested solution method for the

model is required. However, the two phases of the objective function each requires its

own solution method, since they are two types of problems. The relocation phase’s solu-

tion method will be called from within the location-allocation phase’s solution method.

This will be explained in Section 5.6. Therefore, the location-allocation phase’s solution

method is also the model’s solution method, and it was determined in Section 3.8 that

it should be a meta-heuristic.

4.3.1 Location-allocation solution method

As stated in Section 3.9, meta-heuristics are problem independent and consist of differ-

ent components that can be implemented in many ways (Basu et al., 2015). Therefore,

most researchers choose a meta-heuristic, and the implementation of its components,

based on its ease of use and whether it has been used to solve that type of model before

(Basu et al., 2015). Since Andrade & Cunha (2015) used the ABC algorithm, and the

real-world instances of the São Paulo EMS and the WC ECC are comparable, a version

of the basic ABC algorithm will be implemented. An overview on the ABC algorithm

was provided in Section 3.11.2. The following explanation of the basic ABC algorithm

provides more detail.

The basic ABC algorithm considers a population of SN solutions. These solutions

are called food sources and each consists of a Z-dimensional vector. Each dimension

represents a decision parameter, and for each there is a defined minimum and maximum

bound (Li & Yang, 2016). Algorithm 1 shows the pseudo code for the basic ABC

algorithm (Bansal et al., 2013; Brajevic et al., 2011; Li & Yang, 2016). In Section

3.11.2 it was stated that 50% of the population is employed bees and 50% onlooker

bees. A food source, or solution, has Z decision parameters indexed by j. There are
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SN number of solutions considered during one cycle. The solutions are indexed by

j. Let zpjmin and zpjmax represent, respectively, the minimum and maximum bounds

of parameter zpji of food source i. Then vji represents the mutated parameter j of

food source i, and φji a random value ranging between -1 and 1. The Z-dimensional

vector of food source i is represented by beei, and newbeei represents the mutated Z-

dimensional vector of food source i. Then fiti represent the fitness of food source i

and probi the probability of food source i being selected by an onlooker bee. Obj(beei)

is the calculated objective function value for the solution represented by beei.

The basic ABC algorithm shown in Algorithm 1 is for unconstrained problems. In

Section 5.6.1 it will be described how the model or the ABC algorithm was adapted to

solve the constrained problem considered in this project. The pseudo code also shows

that the basic ABC algorithm strives to find the solution that provides the minimum

value. Thus, a negative sign had to be added to the objective function, (3.17). The

summed expected coverage and relocation cost values, in (3.17), are used as the value

that has to be minimised by the ABC algorithm.

The relocation cost is added to the expected coverage value to ensure that the

coverage lost during relocation is taken into account. The relocation cost is used to

represent the loss of coverage. Also, different holding site node locations and ambulance

allocations can provide the same coverage but required a higher or lower relocation cost.

The relocation cost’s influence on the objective function value is controlled with β, seen

in (3.17), which is kept small to allow the expected coverage part of objective function

to have the greatest influence.

4.3.2 Relocation solution method

The relocation phase of the problem requires its own solution method, as it is a different

type of problem. The relocation problem can be defined as a minimum cost flow problem

in a bipartite graph (Andrade & Cunha, 2015) and can be written as a mixed-integer

linear programming problem.

In Section 3.6 it was explained that ambulance location problem models are gen-

erally defined on a graph. The minimum cost flow problem can also be defined on a

similar graph. Let Gr = (V,E) where V denotes the graph’s vertex-set and E the set of

directed arcs (Cunningham, 1976; Kitahara & Matsui, 2012). Every node in the graph
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Algorithm 1 ABC algorithm pseudo code.

1: procedure ABC

2: Initialise;

3: for Food source i until food source SN/2 do

4: for Parameter j in food source i do

5: zpji = zpjmin + rand(0, 1).(zpjmax − zpjmin);

6: end for

7: end for

8: while Cycle ≤MCN do

9: EMPLOYED BEE PHASE:

10: for Food source i until food source SN/2 do . Neighbourhood search

11: Randomly select parameter j and a solution k, i 6= k;

12: vji = zpji + (φji × (zpji − zp
j
k));

13: if Obj(newbeei) <= Obj(beei) then

14: beei = newbeei;

15: end if

16: end for

17: for Food source i until food source SN/2 do . Fitness

18: if Obj(beei) >= 0 then

19: fiti = 1/(1 +Obj(beei));

20: else

21: fiti = 1 + |Obj(beei)|;
22: end if

23: end for

24: for Food source i until food source SN/2 do . Probability

25: probi = fiti∑SN/2
j=1 fitj

;

26: end for

27: ONLOOKER BEE PHASE:

28: Select food source based on prob and do Neighbourhood search;

29: SCOUT BEE PHASE:

30: for Food source i until food source SN/2 do . Reinitialise

31: if Food source i has not improved after trial(i) then

32: Initialise food source i;

33: end if

34: end for

35: Memorise the best solution thus far;

36: end while

37: end procedure
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has a capacity value, every arc an associated cost, and every node has a demand that

has to be met (Goldberg, 1997).

Let demj be the demand at each node (j ∈ V ), cjj′ the cost associated with moving

one unit from j to j′ across each edge (j, j′) ∈ E, and ujj′ be the capacity of unit flow

rjj′ allowed on each edge. It can be assumed for most minimum cost flow problems,

and it is a valid assumption for the relocation problem, that demj , cjj′ , and ujj′ are all

integers. The problem can then be formulated mathematically as follows:

[min]
∑

(j,j′)∈E

cj,j′rj,j′ . (4.16)

Subject to:

∑
j′:(j,j′)∈E

rjj′ −
∑

j′:(j′,j)∈E

rjj′ = demj ∀ j, j′ ∈ V ; (4.17)

0 ≤ rjj′ ≤ ujj′ ∀ (j, j′) ∈ E. (4.18)

The minimum cost flow problem seeks to find maximum flow while minimising

the cost of the flow (Edmonds & Karp, 1972; Goldberg, 1997). Depending on the

problem the graph can be symmetrical, where each arc has a corresponding reverse

arc (Goldberg, 1997). Since, the Haversine distance method is to be implemented and

the road network is not taken into account, the relocation problem is an undirected

minimum cost flow problem. However, the number of relocations between two holding

site nodes are limited by the maximum number of ambulances that can be assigned to

any holding site.

The simplex method is often used to solve for minimum cost flow problems (Cun-

ningham, 1976; Kitahara & Matsui, 2012). It is an algebraic procedure based on solving

the systems of equations that the mathematical model consists of. It was developed

by George Dantzig, who is seen as the father of linear programming, in 1946 (Hillier

& Lieberman, 2010). The simplex method is an organised approach used to evaluate

a feasible region’s vertices. This helps to determine the optimal value of the objective

function (Technopedia.inc, 2017).

The simplex method is a well researched
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field and a popular solution method. Most solution programming software that

is available has a simplex method already coded and ready to use. The relocations

required between two consecutive time periods will be solved within the ABC algorithm

with the help of Matlab’s built-in dual-simplex method. The choice of programming

software is explained in Section 5.3.

4.4 Conclusion: The real-world instance: Western Cape

emergency control centre

The project’s real-world instance was introduced in Chapter 4, along with the descrip-

tion of the choice of model, its formulation, and the choice of solution methods. In

Chapter 5, the proposed integration of the DST into the WE ECC’s operations, the

required analysis of the historical call data, and the choice of software will be described.

An overview on the processes that comprise the DST will also be provided.
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The concept demonstrator

decision support tool

The real-world instance, problem formulation, and solution methods were provided in

Chapter 4. In this chapter it is explained where the concept demonstrator DST would

fit into the WC ECC’s system if implemented, and the data analysis process and the

different processes required to finally forecast and solve the problem are described.

5.1 The decision support tool

If implemented, the DST would affect the processes followed at the start of a shift

and during a shift. As stated in Section 4.1 resource deployment can be planned in

advance with the help of historical call data, i.e. data gathered during the ambulance

service chain of events. If this planning is done well it can lead to improvements in

ambulance coverage, and response time. This type of planning is a problem area for

the WC ECC, as stated in Section 1.2. Therefore, it was deemed necessary to create

and determine the usefulness of a concept demonstrator DST to help dispatchers to

plan the deployment of resources in anticipation of probable future demand. The use

of the DST should improve the management of Step 3 and thus lead to response time

standards being met with a specified service reliability value.

It was stated in Section 3.7, that the integration of the concept demonstrator DST

into the WC ECC’s system is not part of the scope of this project. Therefore, the cho-

sen location-allocation and relocation model was the multi-period extended Q-MALP
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Figure 5.1: Model Interaction.

model. The DST is built to interact with the WC ECC’s system as shown in Figure 5.1.

The DST, if implemented, would run in parallel with the CareMonX system, since the

location-allocation and relocation model is not dynamic, like the CareMonX system.

Also, running the two in parallel would prevent unforeseen interactions between the

system and the DST which might hinder the ambulance service.

Figure 5.1 shows that the DST requires historical call data, i.e. the data collected

during the ambulance service chain of events, from the WC ECC database. Also, the

DST requires the data on a weekly basis, but this can easily be changed if managers

prefer to plan on a monthly or quarterly basis. Thereafter, the data is processed,

demand rates for the planning horizon predicted, and the extended Q-MALP model

implemented and solved. The solution is then provided, needs to be interpreted, and

used to inform dispatchers’ decisions concerning holding site placement, ambulance

allocation, and relocation.

5.2 Analysing the historical call data

To fully understand and solve a problem data is required. The data has to provide

information on the problem. The data analysis process is generally followed to ensure

that the data used provides this information and is measured correctly. The first step is

to determined what type of data needs to be measured and what measurement method

will be used. Secondly, a method for gathering the measured data must be devised.

The data then has to be analysed and filtered. In Section 5.2.1 the data collection
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process followed for this project is described, and in Section 5.2.2 how the data was

evaluated and checked for outliers are explained.

5.2.1 Data collection

It was stated in Section 1.2.4, that the project is to be done in association with the WC

ECC. The data was collected and provided by a WC ECC data analyst, and had to be

picked up at Tygerberg Hospital in Cape Town. The analyst gathered six months’ call

data, from 1 August 2015 at 7 A.M. until 29 February 2016 at 06.59 A.M., from the

City of Cape Town and Cape Winelands municipalities. The Structure Query Language

(SQL) query used by the data analyst to call the data from the WC ECC database can

be seen in Appendix B.

The data analyst only provided 6 months’ call data for a number of reasons. First,

the CareMonX system has only been in use since the end of 2014, and the system

is implemented in the emergency vehicles in phases, i.e. a group of vehicles receives

the new system at a time. The system is not yet implemented in all the vehicles.

Therefore, the data collected using the CareMonX system has become more complete

as more implementation phases have passed. The use of the CareMonX system by the

dispatchers, call-takers, and on-board personnel has also improved over time, as they

gained more experience, and so increased the accuracy of the collected data. A better

fleet GPS tracking system, called AVL track, was also brought on-line recently. Thus,

the most recent data, believed to be the most accurate, and containing at least one

peak holiday season – Christmas and New Year – were provided.

The historical call data was provided in an MS Excel file (78,265 KB) and contained

information on 233,391 calls from four EMS divisions which fall within the City of

Cape Town and the Cape Winelands municipalities. There were 62 columns with data

associated with each call, but not all were relevant for use in the DST. The columns

were filtered until only 21 columns were left; 11 of these columns were used to calculate

the service time for each call. The call information of interest in the DST was:

� incident number;

� priority;

� case type (emergency or IFT);
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� classification (urban or rural);

� incident latitude;

� incident longitude;

� service time;

� shift start date; and

� hour sequence.

The most important aspects were the shift start date, hour sequence, incident lon-

gitude and latitude, service time, and case type, i.e. emergency or IFT, of each call.

The other columns were kept to provide extra identifiable information for each call,

if needed. Each row of data in the MS Excel file represented an emergency call, i.e.

ambulance demand, with a priority type and case type, from an urban or rural neigh-

bourhood, at a specific location, logged on a specific date and at a specific hour, and

an ambulance that was out of service for a specified service time. The rows of data can

be used to determine the demand rate per hour, per day.

5.2.2 Data evaluation

Before any further processing or calculations, i.e. forecasting, could be done, the de-

mand rate per hour as-is had to be considered and evaluated to determine whether

there are any outliers that might skew the forecasting and solution algorithm’s results.

Outliers are data points that lie outside of the observed data pattern (Groulx, 2007).

The cause of outliers is linked to either incorrect measurements or correct measure-

ment but rare events that form part of the data. If an outlier is caused by incorrect

measurements then it has to be detected and removed, since it can adversely affect the

assumptions necessary to run statistical tests and/or other calculations. Outliers that

result from rare events are sometimes analysed to investigate these events and are often

removed to better calculate descriptive statistics (Seo & Gary M. Marsh, 2006).

The historical data provided by the WC ECC has to be processed to gather infor-

mation on demand frequency in terms of call priority, time, and locations. The demand

rate per hour can easily be determined from the historical data and is the data set to

be evaluated for outliers. This is necessary, since the data set will be used to calculate
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the demand rate per hour, per location, per priority type, which will be the input for

the SSA method to forecast ambulance demand.

The SSA method was chosen for its ease of use and because it is robust. SSA

also separates the trend and noise of a data set, and then uses the reconstructed time

series (consisting of the trend components) to forecast. However, outliers are a form

of extreme noise for which SSA might not be robust enough. According to Alexandrov

(2009) and Briceño et al. (2013), SSA’s reconstruction component, which is based on

the whole time series, makes it robust enough to handle outliers. De Klerk (2015), on

the other hand, stated that the presence of outliers could cause bias results, since SSA

makes use of the bootstrap method and outliers should therefore be removed before

using SSA. Due to the lack of consensus, a conservative approach was selected and the

data set evaluated to identify potential outliers.

The data set, demand rate per hour, is univariate, i.e. it consists of only one data

type. There are a number of methods available to detect outliers in univariate data

sets. In general these tests are designed to detect and remove one outlier at a time,

and then the process starts over until all the outliers have been removed. Three tests

are usually suggested for this type of data set: Grubb’s test, Dixon’s test, and Rosner’s

test (Dan Dan & Ijeoma, 2013). Dixon’s test can only be used on a data set that has

fewer than or equal to 25 data points (Solak, 2009), which is not the case here.

This leaves two popular outlier detection methods, Rosner’s test and Grubb’s test.

Rosner’s test can detect up to f outliers when there are 25 or more data points. The

test is able to identify high and low outliers; i.e. it is a two-tailed test. Grubb’s test can

be used to detect a single outlier at a time in a univariate data set. It can detect high

and low outliers, but not at the same time. Both methods require the data points to

be placed in order of increasing magnitude and for the mean and standard deviations

to be calculated (Dan Dan & Ijeoma, 2013). Rosner’s test and Grubb’s test can be

used on the data set, but based on inputs received from a subject-matter expert at the

Centre for Statistical Consultation at Stellenbosch University, Grubb’s test was chosen.

For Grubb’s test, if xn is a data point which is suspected of being a high outlier,

then the test criterion, Tn, for a single outlier, as shown in (5.1), should be calculated.

x̄ is the arithmetic mean of all the data points, and SD is the standard deviation

calculated with (n− 1) degrees of freedom (Grubbs, 1969):
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Tn =
(xn − x̄)

s
. (5.1)

If x1 is the value in doubt due to it being the smallest value, then T1 for a single

outlier, as shown in (5.2) (Grubbs, 1969), has to be calculated.

T1 =
(x̄− x1)

s
. (5.2)

The criterion value then has to be compared to the critical values shown in the

Grubb’s tables. The critical values are identified by the number of data points and the

level of significance being tested for (Grubbs, 1969). However, these days Grubb’s test

is a built-in functionality on most statistical software.

Figure 5.2: Plot of historical data per hour.

The data set was first plotted for a visual inspections for outliers. The plot is shown

in Figure 5.2, and from the plot it appears that the data set does not contain outliers,

but Grubb’s test was still implemented to ascertain this with certainty. The university’s

Dell Statistica license provided easy access, therefore it was used to run Grubb’s test

on the demand rate per hour data set. Figure 5.3 shows the results from Grubb’s test.

A p-value which is equal to 1 indicates that there are no outliers in the data. This

results supports the visual inspection, the data set does not contain outliers.
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Figure 5.3: Grubb’s test results.

5.3 Software selection

The DST was created to be a concept demonstrator and not a software package that

the WC ECC can implement as-is. The DST required software that is reliable, can

handle the calculations, memory and CPU usage, has tested codes, and a good help

forum from which to learn the programming language.

The use of MS Excel was considered, since the historical data was provided in an

MS Excel file. However, it became evident that MS Excel would not be the optimal

choice for working with the data, modelling the data, and solving the problem. The

file took long to open, and any changes to the data caused problems when the file had

to be saved. The file crashed more than once when MS Excel struggled to implement

and save changes.

To model and solve the real-world instance’s problem requires matrix multiplication

and manipulation. Therefore, two programs which are capable of doing both were

considered: Python and Matlab. Python is open source and uses a programming

language which is easy to understand. However, no codes could be found for the

implementation of the basic ABC algorithm, or SSA. Matlab is a proven technical

computing software application and makes use of a high-performance language. It has

codes for the implementation of the ABC algorithm and SSA, which have been used

and tested, and a well established help forum. Therefore, though Matlab requires a

costly license, it was chosen. The cost of the license is outweighed by the availability of

in-house functions and user created and tested codes. The fact that Matlab is capable

of importing and exporting files from and to MS Excel easily was also a consideration.

Since the historical data was provided in an MS Excel file it was decided that the

concept demonstrator DST would be formulated to print the solution to MS Excel

files.
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5.4 The decision support tool processes

The processes that comprise the DST are called from a single ‘*.m’-file, Thesis.m. The

function files of the different processes are: ImpData.m, ProcessData.m, ProcessDe-

mand.m, DemRate.m, SSAmain.m, CreateH.m, DistanceHH.m, CreateNeigh.m, ABC-

con.m, AmbAllo.m, AlgthesisAlt.m, and Relo.m. The order in which the processes are

called is shown in Figure 5.4.

Figure 5.4: Data flow: DST.

The rest of this section will briefly explain how the DST will be used by the user.

Figure 5.5 shows a screen shot of the DST’s Matlab code for Thesis.m. As stated, the

processes which comprise the DST are all called from Thesis.m. The ‘*.m’-files shown

in the ‘Current Folder’, to the left in Figure 5.5, are the functions called directly from
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Figure 5.5: Screen shot of the DST’s Matlab code for Thesis.m.

Thesis.m, and the rest of the functions are within one of the folders. The name of the

folder that a function is in depends on what function it is called from.

The user has to determine the values of a number of variables and set the values

in Thesis.m. The first, and most important, is path, which represents the address of

the folder in which Thesis.m can be found. This address tells Matlab where to find

the ‘*.m’ files, the MS Excel file with the historical call data, and where the MS Excel

solution files and the ‘*.mat’-files are to be saved – data can be written and saved to

these files. The ‘*.mat’-files contain Matlab formatted data that can later be loaded

into the Matlab workspace to be used in a ‘*.m’-file.

The first process to be called is ImpData.m, which imports the relevant historical

call data columns, mentioned in Section 5.2.1, from the MS Excel file. The user will

have to make some changes to the formatting of the MS Excel file’s cells if the cells

containing numbers are formatted as text instead of numbers. Within ImpData.m

empty cells are imported with the value of NaN (Not a Number) and their values are

changed to 0. The output of ImpData.m is a table, called ‘RawData’, which contains

only the relevant columns of all the rows of calls from the original MS Excel file. If the

historical call data from the MS Excel file had already been imported it does not have

to be done again, unless the content of the file has been updated. ImpData.m saves

the imported table to impdata.mat.
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Before ProcessData.m can be called the user needs to determine whether the DST

is to be run for Scenario 1 or Scenario 2 and provide the start date of the week to

be solved for. Scenario 1 is when all the calls are classified as P1 regardless of the

actual incident priority type, and Scenario 2 is when the calls are classified as P1 or

P2 depending on the incident priority type. The reasoning behind the two scenarios

are described in Section 6.1. The user also needs to state if the scenario is to be run

with the relaxed ambulance allocation constraint or the original ambulance allocation

constraint, by setting alloRelax to 1 or 0, respectively. It was decided to code the DST

for the two scenarios since it became evident from the historical data that the WC

ECC compares the response time of each call to the 15 minute response time target

for urban P1 calls regardless of priority type and area classification. All the variable

values input by the user are saved to scInfo.mat, which can be called by the ‘*.m’-files

that require those variables.

The user also has to choose a value for num, which determines the number of

demand nodes that will be created, where the number of nodes is equal to (num−2)2. In

ProcessData.m the data file impdata.m is loaded, and the table ‘RawData’ is converted

to an array, called ‘filterarray’. Duplicate calls were assumed to indicate that more

than one ambulance was required and dispatched. The duplicates were kept to indicate

better accuracy of ambulance demand. The service time of each call is calculated in

ProcessData.m by summing the registration time, dispatching time, response time, time

on scene, mission time, time to hospital, and the time at the hospital. The average

service time is used as an estimate for the service time per call.

Finally, num is then used to created ‘nodes’, an array which contains the demand

node number, node’s longitude and latitude coordinates, and the latitude and longitude

coordinates of its borders. The latitude and longitude coordinates of a node correspond

to the midpoint of a square, where the square’s edges are the node’s boundaries. The

node blocks are created by determining the emergency call located furthest to the left,

right, top, and bottom, when considering the world map on paper. The coordinates of

these calls are then used to created a tight square, but to encompass also the calls at the

edges of the tight square a buffer of 0.01 degrees is added to create a loose square. The

coordinates that indicate the corners of the loose square are then used to create a linear

progression of points, num points, in the longitude; then the latitude coordinate system

and these points are used draw the edges of the node blocks. The middle of each block
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is used as the location of the node. Therefore, the number of nodes are determined

by the number of points, num, chosen for the linear regression, i.e. a 52 point linear

regression would create 2,500 nodes ((52 − 2)2). It became apparent that the number

of nodes used, i.e. the size of the blocks, could adversely or beneficially influence the

accuracy of the demand rate forecast per node for each hour. The number of nodes

were initially taken to be equal to 2,500, then 10,000, and finally 5,625 to evaluate

the effect that the number of nodes has on forecasting the demand rate per node, this

is done in Section 5.5 for Scenario 1 and Section 6.3 for Scenario 2. The output of

Processdata.m is save to processdata.mat.

The same process is used to create the holding site nodes array, ‘hnodes’, in Cre-

ateH.m. The user again determines the number of points, hnum, required for the linear

regression. However, hnum should be less than num in order to create larger blocks for

the holding site nodes. The coordinates of each holding site node are then checked to

see whether the holding site node is on land. Only the holding sites that are on land are

saved in array ‘VarH’. ‘VarH’ has a similar form to the ‘nodes’ array, but it contains a

column that indicates the ambulance capacity for each holding site node. The holding

site nodes in ‘VarH’ indicate the block areas where one or more holding sites can be

placed, but to leave the actual choice of holding site placement to the experienced dis-

patcher. This allows for their own knowledge to make the final decision, since the DST

is only intended to act as support for the decision-making process and not to replace it.

DistanceHH.m is then used to calculate the Haversine distances between holding site

nodes, which is required in Relo.m. ‘VarH’, and the array with the distances between

the holding sites are saved to holdingSiteNodes.mat.

Every logged emergency call in ‘filterarray’ then has to be assigned to a demand

node in ProcessDemand.m. The calls in ‘filterarray’ are assigned to a demand node if

their incident longitude and latitude values fall within a node’s borders; the minimum

and maximum longitude and latitude values indicated by the sides of the node’s block.

This information, along with a column that indicates whether the call is P1 and another

if it is P2, is saved in an array called ‘Dem’. Arrays ‘DemP1’ and ‘DemP2’ are created

from ‘Dem’. ‘DemP1’ contains only the P1 calls and ‘DemP2’ contains only the P2

calls. DemRate.m is then called from within ProcessDemand.m with ‘nodes’ and ‘Dem’

as input. DemRate.m counts the demand rate per hour per demand node for Scenario

1 and creates an array, ‘VarD’. Also, DemRate.m creates a structure, ‘SSA VarD’,
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where each element of the structure is an array with the demand rate per hour for

a single node. The structure is in the required form for SSAmain.m, but the output

from SSAmain.m will be an array of the same from as ‘VarD’. ‘VarD’ is therefore the

observed demand rate per hour per node for Scenario 1. DemRate.m is called two

more times with ‘nodes’ and ‘DemP1’ as input to create ‘P1’ and ‘SSA P1’, and with

‘nodes’ and ‘DemP2’ as input to create ‘P2’ and ‘SSA P2’. The arrays ‘P1’ and ‘P2’

are later combined to create one array and used as the observed demand rate per node

for Scenario 2. ‘SSA P1’ and ‘SSA P2’ are used separately as input for SSAmain.m to

forecast the ambulance demand for P1 calls and P2 calls, respectively. The predicted

P1 and P2 calls are then later combined in an array used as the predicted demand rate

per node for Scenario 2.

SSAmain.m uses the first four months of observed ambulance demand to forecast

the last two months. The reason for this is explained in Section 5.5. Before SSAmain.m

can be called, two control parameter values need to be chosen. The process followed

to determine the best control parameter values for SSAmain.m when forecasting for

Scenario 1 is described in Section 5.5, but the user can still decide to test it for them-

selves. The forecasting process followed for Scenario 2 is explained in Section 6.3. The

purpose of the control parameters L and N were explained in Section 3.5. The user

can assign a value to L as long as it is less than or equal to half of the number of data

points used as input for SSAmain.m, which in this case is 3,672 data points, i.e. the

hourly demand rates for the first four months of data for a single node. The forecasting

is done one node at a time; then the predicted demand rates for each demand node

are combined in one array, called ‘ForecastVarD’ when forecasting for Scenario 1. The

value of N can be chosen more arbitrarily, but a good starting number is 10. When

forecasting for Scenario 1 the predicted demand is saved to forecastdemandS1.mat, and

for Scenario 2 it is saved to forecastdemandS2.mat.

The functions described above do not have to be repeated unless changes are made

to the MS Excel file containing the historical call data, or if new user input values are

chosen. The rest of the functions are run in a loop for each day of the week being solved

for. This is shown in Figure 5.4.

A number of variables need to be given values before CreateNeigh.m and ABCcon.m

can be called. The user needs to determine the values of the following:
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� the service reliability value, α;

� the value of β, the weight variable that determines the size of the impact that

the relocation phase will have on the objective function value;

� the maximum cycle number, MCN , allowed for the ABC algorithm to solve for

a single shift;

� the colony size, ColSiz, for the artificial bee colony used in the ABC algorithm;

� the number of ambulances available during the day shift, NumAmbDay, which

is 70 for the WC ECC’s real-world instance;

� the number of ambulances available during the night shift, NumAmbNight,

which is 55 for the WC ECC’s real-world instance;

� the average ambulance speed, ambSpd;

� the response time target for P1 calls, rP1; and

� the response time target for P2 calls, rP2.

In Section 4.2.2.2 it was stated that the extended Q-MALP model implements

queuing theory and that the stochastic nature of the location-allocation and relocation

problem is illustrated by defining three neighbourhoods. The neighbourhoods are cre-

ated in CreateNeigh.m, just before ABCcon.m is called for that day, and its inputs are

the predicted demand array, the shift date, ‘VarHn’, the response time targets, ‘nodes’,

and the average ambulance speed. The Haversine distance method is used to calculate

distances between all the nodes (demand nodes and holding site nodes), and along with

the average ambulance speed a drive time estimate is determined and checked against

the response time targets. The neighbourhoods are saved to Var.mat.

ABCcon.m solves the holding site location, ambulance allocation, and relocation

problem for both shifts of each day of the planning week. The ABC algorithm is re-

peated for a shift until the number of cycles reach the MCN value, and then it moves

on to the next shift. A single cycle consists of the different bee phases shown in Al-

gorithm 1, but changes had to be made to use the ABC algorithm for the constrained

problem, which is explained in Section 5.6.1. During initialisation the employed bees

solutions are initialised. It starts by randomly selecting holding site nodes in which to

place holding sites for the specific shift. This is then the input to AmbAllo.m where for
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each hour of that shift ambulances are assigned to the selected holding site nodes. The

holding site node locations and ambulance allocation for that hour is then the input to

AlgthesisAlt.m, which determines the expected coverage for this solution and whether

the solution is feasible. This is sent back to AmbAllo.m and it is processed to become

AmbAllo.m’s output, which is sent back to ABCcon.m. Relo.m is then called, from

ABCcon.m, to determine the best ambulance relocation possible for the solution. In

Section 4.3 it was explained that the ABC algorithm aims to minimise, and therefore a

negative sign had to be added to the expected coverage value. The value that has to be

minimised is the sum of the negative expected coverage and the corresponding reloca-

tion cost for that shift. Whenever changes are made to the solutions or new solutions

are created AmbAllo.m, AlgthesisAlt.m, and Relo.m have to be called. The Matlab

codes for Thesis.m, ABCcon.m, AmbAllo.m, and AlgthesisAlt.m are in Appendix F.

Once ABCcon.m has a near-optimal solution for the day and night shift of the shift

date the solutions are saved to a number of MS Excel files. Let the shift date be

2016/01/01, then the MS Excel files would be: ‘20160101 Performance.xls’; ‘20160101

Relocation.xls’; ‘20160101 Shift1 Demand Coverage.xls’; ‘NodesDefined.xls’; ‘20160101

Shift1.xls’; ‘20160101 Shift2 Demand Coverage.xls’; and ‘20160101 Shift2.xls’. The first

file provides data on the performance of the solution, the second provides the solution

for each hour of the day, and the third defines the demand nodes and holding sites

nodes in terms of their node numbers and longitude and latitude locations. The rest

of the files are created to provide the user with data that can be studied for further

information on the relocations and which holding site covers which demand node.

5.5 The forecasting process

As was stated in Section 5.2.1, only 6 months’ call data was provided for the project

by the WC ECC. This data is to be used partially as input for the SSA forecasting

method and the rest to internally validate the SSA method. This method cannot be

externally validated, as no access was given to a second independent sample of data.

The RMSE forecasting-accuracy equation, shown in Section 3.3.2, requires historical

data for the time period that is being predicted to compare and determine the accuracy

of the method. Therefore, a partitioning method was implemented, where the first four

months’ call data was used as input for the SSA method to forecast the last two
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months’ call data and the historical data of the last two months was used to determine

the method’s accuracy. The implemented SSA algorithm code is briefly described in

Section 5.5.1. In Section 5.5.2 the process followed to determine the control parameter

values for forecasting for Scenario 1 is explained, and in Section 5.5.3 a suggested

step-by-step process for future determination of control parameter values is described.

5.5.1 The coded singular spectrum analysis algorithm

The majority of the code used in SSAmain.m was created by Tkachev (2014) in 2014 at

MIT. The code is free to use and change, as long as the license information is provided

alongside it. The code makes use of SSA easy and explains the method well. Only

part of the code was used, since the only required functionality was forecasting. The

SSA algorithm was explained in Section 3.5 and SSAmain.m follows the same basic

structure.

To use the SSAmain.m two control parameter values have to be determined. The

two values are the window length, L, and the number of reconstructed components to

use for forecasting, N . As mentioned in Section 3.5, the value of L has to be less than

half the data points that make up the input time series, which is 3,672 data points in

this case. However, the choice of L can also improve the accuracy of the forecasting.

Generally, the value of L is chosen to represent an expected periodicity. Since the time

series looked at is provided in terms of hours, the expected periodicity might be daily,

weekly, or monthly. The value of L could therefore be 24, 168, 720, or any of their

multiples.

If the value of N is taken to be the total number of reconstructed components,

then the reconstructed time series would be equal to the input time series; i.e. it will

include the periodicity (trend) components and all the noise components. Therefore,

the value of N needs to be chosen in order to only use the components that represent the

periodicities. A scree plot can be used to determine the near best value of N . Since each

node has its own time series, the possible combination for L an N became cumbersome

when considering a different value for each node’s time series. Also, to print and

inspect the scree plot for each possible L value to gain the best N value for each node’s

time series would become too time consuming. A few L and N combinations were

therefore tested on a number of the demand nodes’ time series. The RMSE forecast-

accuracy metric, described in Section 3.3.2, was used to determine the accuracy of the
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forecasting done with the different values of L and N . The possibility of running a

simple optimisation for determining the best L and N value for each time series was

tested, but the results showed large unrealistic demand predictions for a number of

nodes. Therefore, it was decided to rather find a single L and N value to forecast all

time series.

The accuracy of the predicted ambulance demand is important, as it directly affects

the accuracy and usefulness of the solutions provided by ABCcon.m for the week plan-

ning horizon. The forecasting accuracy and choice of L and N values are also related

to the size of the demand node blocks and therefore the number of demand nodes.

The process followed to create the demand nodes was described in Section 5.4.

Initially num = 102 was chosen in order to create 100 nodes in a row and 100 nodes

in a column, i.e. 10,000 demand nodes. The value of num was later halved to be

able to see quickly how well the different processes worked. This produced 50 nodes

in each row and column, i.e. num = 52, to create 2,500 demand nodes in total. It

became evident that to fully understand the impact that node size has, the midpoint

between 100 nodes and 50 nodes in each row and column would also have to be tested.

Therefore, num was chosen as 77 to create 5,625 demand nodes in total. Three demand

node sizes were considered: 2,500, 5,625, and 10,000 demand nodes.

The best combination of number of demand nodes and the values of L and N had

to be found for both scenarios. The RMSE equation, shown in (3.1), was used to

calculate the root-mean-square error between the observed and predicted values for

all the data points. The RMSE values for different combinations were calculated and

the combinations with the lowest RMSE values were identified. Three graphs were

then plotted for a number of these identified combinations to compare the predicted

ambulance demand per hour per node to the historical demand per hour per node:

hourly demand rate graph, scatter plot showing the demand rate per hour per node,

and hourly heat maps for the first twelve hours of 2016/01/01. This process was first

tested for forecasting for Scenario 1, described in Section 5.5.2, and from there the

process was refined and described for future use in Section 5.5.3.

5.5.2 Forecasting: Scenario 1

In Section 3.5 it was stated that the value of L should be equal to or a multiple of the

expected periodicity and needs to be less than or equal to half of the data points. The
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number of data points is 3,672, i.e. the number of hours in the four months for a single

demand node. Vile et al. (2012) provided another guideline which stated that L should

also be greater than a third of the data points. However, this guideline is not present in

all the literature on SSA, but the main rule which states that L should be greater than

two and less than or equal to half of the data points is (de Klerk, 1994; Golyandina

& Korobeynikov, 2014; Golyandina et al., 2001b; Hassani, 2010). Therefore, the focus

was put on the main rule, but some choices where made that took the extra guideline

into consideration. The testing for Scenario 1 started with L equal to 24, 168, 720 and

then later the second guideline was added and tests were done with L equal to 1,248

(24 x 52), 1,344 (168 x 8), and 1,440 (720 x 2). The value of N is associated with the

L value used, and for each L value the value of N was varied.

The initial tests with L equal to 24, 168, and 720 were all run on a Dell Latitude

with an Intel Core i5-5300 CPU @ 2.30GHz and 8GB RAM. Figure 5.6 shows a graph

depicting the forecasting hours against the L value when the forecasting was done on

the Dell Latitude for 2,500, 5,626, and 10,000 demand nodes. From the figure it can be

seen that the forecasting hours increased as the value of L and the number of demand

nodes increased. However, due to an accident the computer was out of service for

several months. The last tests with L equal to 1,248, 1,344, and 1,440 were done on

a computer with an Intel Core i7-4790K CPU @ 4.00 GHz and 32 GB RAM. The

computer was able to run SSAmain.m much faster for the smaller L values, but for the

larger L values a significant increase in memory usage caused the computer to lag. The

lag only got worse with the higher number of demand nodes, specifically with 10,000

demand nodes, to the extent that the computer became unresponsive for increasingly

longer periods of time. This computer’s specifications are better than what the WC

ECC could reasonable be expected to have available, since such a computer can be

quite expensive. The assumption was made that it would be unrealistic to build or buy

a computer solely for the purpose of being able to forecast with the larger L values for

10,000 demand nodes, therefore only L equal to 24, 168, and 720 were tested for 10,000

demand nodes. However, forecasting was done with the larger values of L for 2,500

and 5,625 demand nodes; it is believed that this might also be too memory intensive

for most computers.

The RMSE values for the L and N combinations when forecasting with 2,500, 5,625,

and 10,000 demand nodes are given in Table 5.1, Table 5.2, and Table 5.3, respectively.
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Figure 5.6: Forecasting time in hours on Dell Latitude E7450.

The tables only contain the RMSE value of the L with its best N value according to

the RMSE value. L equal to 24 did not work, as it was too small and caused some of

the predicted demand rates to be NaN. L equal to 168 also caused some forecasts to

be NaN, and the RMSE values for 2,500, 5,625, and 10,000 demand nodes to be NaN

or to be greater than 50. The only acceptable RMSE values with 2,500 demand nodes

are all above one; whereas those for 5,625 and 10,000 demand nodes are below one.

The reason for this might be that the demand node blocks are too large and therefore

contain too much noise along with trend, to the extent that the noise overshadows the

trend, or it can be that too many conflicting trends are represented by a single demand

node.

Table 5.1: 2,500 demand nodes best L and N combinations.

Demand nodes L N RMSE

2,500 24 18 NaN

2,500 168 12 8,727.88

2,500 720 20 1.0367

2,500 1,248 20 1.029

2,500 1,344 20 1.026

2,500 1,440 20 1.026

The fact that the RMSE values found when forecasting for 2,500 demand nodes were

either NaN or greater than 50, excludes 2,500 demand nodes from further consideration.

The expectation is that the best forecast accuracy will be found for either 5,625 or
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Table 5.2: 5,625 demand nodes best L and N combinations.

Demand nodes L N RMSE

5,625 24 20 NaN

5,625 168 8 78.70

5,625 720 8 0.817

5,625 1,248 30 0.845

5,625 1,344 20 0.823

5,625 1,440 10 0.815

Table 5.3: 10,000 demand nodes best L and N combinations.

Demand nodes L N RMSE

10,000 24 8 NaN

10,000 168 10 NaN

10,000 720 8 0.710

10,000 demand nodes, shown in Table 5.2 and Table 5.3, respectively. The original

tables with the raw test results were reconsidered to create a table with the six best

combinations of L, N , and the number of demand nodes.

Table 5.4: The six best RMSE value combinations.

Demand nodes L N RMSE

10,000 720 8 0.710

10,000 720 20 0.746

10,000 720 40 0.749

5,625 1,440 10 0.815

5,625 1,440 18 0.822

10,000 720 80 0.850

Table 5.4 shows the combinations ranked from lowest to highest RMSE value, as

expected the table contains no combination with 2,500 demand nodes. It is interesting

to note that the L values in the table are all multiples of 720, indicating a monthly

periodicity. If the RMSE value was to be the only criteria, the best combination would
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(a) Line graph 5,625 demand nodes; L = 1,440; N = 10: Hourly demand rate.

(b) Scatter graph 5,625 demand nodes; L = 1,440; N = 10: Demand rate per hour

per node.

Figure 5.7: Graphs for forecasting with 5,625 demand nodes and L = 1,440; N = 10.

be 10,000 demand nodes with L = 720 and N = 8. However, it was decided that a

visual criterion should also be considered, since the demand rates have both a time

and location aspect. Consequently three graphs were plotted: hourly demand rate

line graph, demand rate per hour per node scatter plot, and hourly heat maps for the

first twelve hours of 2016/01/01. Graphs were plotted for the two combinations with

the lowest RMSE values. To evaluate the impact of the RMSE as a forecast-accuracy

metric for forecasting a spatio-temporal data set, graphs were also plotted for two

combinations with high RMSE values. The fourth and sixth combinations, presented

in Table 5.4, were chosen. The graphs were created for 10,000 demand nodes, L = 720,

N = 8 and N = 20 and N = 80, along with 5,625 demand nodes L = 1, 440, N = 10.

The line and scatter graphs are shown in Figures 5.7 - 5.10. The heat maps that

were created for the four combinations are shown in Figures D.1 - D.12, in Appendix

D. These figures are the visual representations of the predicted demand rates relative

to the observed demand rates.

The top graph in Figure 5.7 shows that, in terms of hourly demand rate, the com-
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(a) Line graph 10,000 demand nodes; L = 720; N = 8: Hourly demand rate.

(b) Scatter graph 10,000 demand nodes; L = 720; N = 8: Demand rate per hour

per node.

Figure 5.8: Graphs for forecasting with 10,000 demand nodes and L = 720; N = 8.

(a) Line graph 10,000 demand nodes; L = 720; N = 20: Hourly demand rate.

(b) Scatter graph 10,000 demand nodes; L = 720; N = 20: Demand rate per hour

per node.

Figure 5.9: Graphs for forecasting with 10,000 demand nodes and L = 720, N = 20.
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(a) Line graph 10,000 demand nodes; L = 720; N = 80: Hourly demand rate.

(b) Scatter graph 10,000 demand nodes; L = 720; N = 80: Demand rate per hour

per node.

Figure 5.10: Graphs for forecasting with 10,000 demand nodes and L = 720, N = 80.

bination of 5,625 demand nodes, L = 1440, and N = 10 follows the observed demand

rates for Scenario 1 well, but the bottom graph and the heat maps in Figures D.1 -

D.3 show that the demand rates in terms of nodes, i.e. position, struggles to follow the

observed demand rates. This is not surprising as this combination is the combination

with the fourth highest RMSE value in Table 5.4.

The other three combinations all consider 10,000 demand nodes and L = 720. The

line and scatter graphs for N = 8, N = 20, and N = 80 are shown in Figures 5.8, 5.9,

and 5.10, respectively. The top graphs for all three figures show that the hourly demand

rates follow the observed demand rates well, for all three values of N , except that at

the end of Figure 5.10a the amount of noise pushes the hourly demand rate to increase

too quickly. Therefore, its believed that if the graph would have been lengthened the

predicted demand rate per hour would overtake the observed demand rate per hour.

This excludes 10,000 demand nodes, L = 720, and N = 80 from further consideration,

which is not surprising as it did have the highest RMSE value of all the combinations

in Table 5.4.

The best combination is therefore 10,000 demand nodes and L = 720 with N = 8
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or N = 20. The RMSE value for N = 8 is lower than for N = 20, but looking at Figure

5.8b it can be seen that, though the predicted demand rates follow the trend of the

observed historical demand rates, it is too conservative. Figure 5.9b does contain some

noise, seen just after the 100,000 data points mark, but overall it follows the trend of

the observed demand rates better. The heat maps shown in Figures D.7 - D.9 also show

that the positioning of the demand is similar to the observed demand. Therefore, the

chosen combination for forecasting for Scenario 1 is 10,000 demand nodes, L = 720, i.e.

monthly periodicity, and N = 20.

The exclusion from selection of the two combinations with the fourth and sixth

highest RMSE values, in Table 5.4, due to their failure in the visual criterion shows

that the RMSE is a good forecast-accuracy metric for forecasting a spatio-temporal

data set. However, the chosen combination for forecasting for Scenario 1 is not the

combination with the lowest RMSE value, in Table 5.4, but the combination with the

second lowest due to it following the observed demand in terms of position better.

The selection of parameters for the SSA is a lengthy process, but it is necessary to

ensure that the predicted demand is as accurate as can be, otherwise the DST’s solution

would be incapable of supporting improved emergency response service delivery. From

this lengthy process it was seen that the smaller the demand node block size the higher

the accuracy, but also the higher the time required to forecast. The necessity of the

second L guideline (discussed at the start of Section 5.5.2) could not be proved or

disproved, though better results were seen for 5,625 demand nodes with higher L values

but this could not be tested for 10,000 demand nodes. Also, the forecasts for 10,000

demand nodes with the lower L values still outperformed the forecasts with for 5,625

demand nodes with the higher L values.

5.5.3 Recommended control parameter selection process

In Section 5.5.2 the process followed to determine the best combination of demand

nodes and L and N values when forecasting for Scenario 1 was set out. This process

has to be repeated when new observed data is added to the historical data, new time

period intervals are used, or to forecast for a new scenario. Therefore, a step-by-step

process for future implementation was deemed necessary.
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Firstly, divide the map into demand nodes. In Section 5.5.2 it was concluded that

it is beneficial to keep the demand node blocks as small as possible, since it allows for

improved accuracy when forecasting demand rates in terms of time and location.

Secondly, determine what the expected periodicity is. This will depend on the time

intervals used for the demand rate. If hourly time intervals are used, as is the case

for this project, the possible periodicities are hourly, weekly, or monthly. The results

in Section 5.5.2 showed that a good initial assumption for the real-world instance is

monthly periodicity, i.e. L equal to 720. The initial choice for the expected periodicity

should be substantiated by testing it against another assumed periodicity. The mul-

tiples of the expected periodicity values should be considered for L if the computing

power and memory of the computer is capable of handling it, since it could not be

proved or disproved that including the second L value guideline, stated in Section 5.5,

leads to more accurate forecasts.

Thirdly, forecast with L = 720 and N equal to 10, 30, and 60. Determine the RMSE

values of each and establish whether there is a trend. If, for example, it seems that a

better forecast is possible with N between 30 and 60, then forecast with a value of N

between those two values.

Finally, create visual representations for the three combinations with the lowest

RMSE values to help in determining the best combination. Create an hourly demand

line graph, a scatter plot illustrating the demand rate per hour per node, and, finally,

heat maps for every hour for the first 12 hours of a day. The hourly demand line graph

demonstrates visually whether the predicted demand rates follow the observed demand

rates in terms of its time aspect. The scatter plot and heat maps show whether the

predicted demand rates follow the location aspect of the observed demand rates. Base

the selection on a combination of the RMSE value and the three graphs. This process

should provide the user with a well substantiated choice of control parameters.

5.6 The solution process

The solution process comprises of a number of processes: ABCcon.m, AmbAllo.m,

AlgthesisAlt.m, and Relo.m. These processes are repeatedly called to solve the model

for each shift of each day of the planning horizon. The solution process firstly requires

the start date of the planning horizon, then CreateNeigh.m is called to determine the
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neighbourhoods for each hour of that day, and finally the solution process is called.

A for-loop allows this process to be repeated for each day of the planning horizon.

This is shown in Figure 5.4 and the relationships between the processes were explained

in Section 5.4. The planning horizon implemented in the DST is a week. In Section

4.2.2.3, the use of a shorter planning horizon was suggested. A shorter planning horizon

allows for shorter run times and for new call data to be added to the historical call

data regularly before solving for the next planning horizon. Therefore, a week planning

horizon was chosen, i.e. 7 days. The planning horizon can easily be changed if desired

by the user.

The location-allocation and relocation problem is a constrained problem. There-

fore, either the model has to be transformed into an unconstrained problem or the

ABC algorithm has to be adapted for constrained optimisation. In Section 5.6.1 it is

explained that the ABC algorithm had to be adapted and how it was adapted. The

implemented location-allocation phase, i.e. AlgthesisAlt.m, of the extended Q-MALP

model is described in Section 5.6.2, and the relocation phase, i.e. Relo.m, is described

in Section 5.6.3.

5.6.1 Constrained artificial bee colony algorithm

The ABC algorithm code in ABCcon.m is based on a code provided by an online aca-

demic and professional website that aims to be a resource of source codes and tutorials

in the fields of Artificial Intelligence, Machine Learning, Engineering Optimisation, OR,

and Control Engineering (Heris, 2015). Changes had to be implemented to use it for

this project, since the coded ABC algorithm was for the basic ABC algorithm, which

is used for unconstrained problems.

Constrained optimisation problems are found in structural optimisation, engineering

design, economics, and allocation-location problems. The ABC algorithm was initially

proposed for unconstrained optimisation problems, where it tended to outperform other

meta-heuristics (Brajevic, 2010; Karaboga & Akay, 2011; Karaboga & Basturk, 2007;

Karaboga et al., 2014). Most optimisation algorithms were initially designed to optimise

unconstrained problems, with constraint handling techniques added later in order to

direct the search towards feasible regions of the search space. Koziel & Michalewicz

(1999) grouped the constraint handling methods into four categories (Karaboga & Akay,

2011):
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� the use of operators to change an infeasible solution into a feasible solutions in

order to preserve feasibility;

� the use of a penalty term, added to the original objective function, to penalise

solutions that violate constraints, thus transforming the problem from constrained

to unconstrained;

� the creation and use of methods that make a clear distinction between feasible

and infeasible solutions; and

� the use of hybrid methods which combine evolutionary computation techniques

with deterministic procedures for numerical optimisation.

In Section 3.11.2 it was stated that either the ABC algorithm has to be adapted for

constrained optimisation, or the constrained location-allocation and relocation problem

had to be transformed into an unconstrained problem. The initial approach followed

was to add a penalty function to the original objective function to penalise solutions

that violate constraints and so transform the problem into an unconstrained problem.

Thus, there was initially no need to change the ABC algorithm. A possible optimal

solution for shift date 2016/01/01 was found using this method. However, changes to

the ABC algorithm’s control parameters did not improve or change the best solution

found. It was concluded that this occurred because the addition of a penalty function

forced the artificial bees into a direction with only feasible solutions, which lead to

a solution population that was not diverse enough, i.e. infeasible solutions were not

allowed into the solution population. Further research was deemed necessary to find a

method for adapting the ABC algorithm for constrained optimisation, rather than the

problem model.

Since its introduction the ABC algorithm has been adapted and modified to be

used on other problems. Karaboga & Basturk (2007) modified the ABC algorithm for

constrained optimisation and tested it on a number of constrained problems. Braje-

vic (2010) proposed improvements on the modifications implemented by Karaboga &

Basturk (2007), which were also tested on several engineering constrained problems,

some of which contained discrete and continuous variables (Karaboga et al., 2014). A

number of other modifications, which are more case specific, are: Mezura-Montes et al.

(2010)’s novel ABC algorithm for solving constrained numerical optimisation problems;
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Mezura-Montes & Velez-Koeppel (2010)’s algorithm based on the ABC algorithm to

solve constrained real-parameter optimisation problems; and Stanarevic et al. (2010)’s

modified ABC algorithm for constrained problems, which employs a memory aspect

(Karaboga et al., 2014).

All of the aforementioned adaptations modified the ABC algorithm and not the

problem model. Therefore, it was decided to base the modifications of the basic ABC

algorithm, as provided by Heris (2015), on the ABC algorithm modifications that are

not problem specific, i.e. on the work done by Karaboga & Basturk (2007), Brajevic

(2010), and Karaboga & Akay (2011). The modified ABC algorithm, which will be

used in the DST and coded in ABCcon.m, will still follow the same phases as the

basic ABC algorithm, seen in Algorithm 1. Similar rules will be implemented for the

modified ABC algorithm for constrained optimisation as for the basic ABC algorithm:

50% of the artificial bee colony is employed bees and 50% is onlooker bees; the number

of solutions is the same as the number of employed bees; and the inactive employed

bees become scout bees (Karaboga & Basturk, 2007). The modified ABC algorithm for

constrained problems will be explained in terms of the phases and how it differs from

the basic ABC algorithm for unconstrained problems.

During the initialisation phase the solution population is randomly initialised. Each

solution is a Z-dimensional vector; each dimension refers to an optimisation parameter.

It would take too long to allow only initialisation with feasible solutions, and it is not

always possible to produce feasible solutions randomly. Therefore, the initial solution

population is not considered to be feasible. The initialisation phase assigns random

values to each dimension of the solution vector, such that the value is between the lower

and upper boundaries of that specific dimension (Karaboga & Akay, 2011; Karaboga &

Basturk, 2007). The ABC algorithm can optimise for continuous or discrete parameters,

but it is initially coded to optimise for continuous parameters. For discrete parameters

the values of the dimensions are initialised as explained in Algorithm 1, but the nearest

discrete value is taken as the parameter value (Brajevic, 2010). This modification was

required for the project’s constrained location-allocation and relocation problem model.

After the initialisation phase, the employed bees, onlooker bees, and scout bees phases

are repeated for a number of cycles until the MCN cycle is reached (Karaboga & Akay,

2011; Karaboga & Basturk, 2007).
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During the employed bees phase, an employed bee modifies the position of the

solution, i.e. food source, depending on visual information and evaluates the fitness

value, i.e. nectar amount, of the new solution. In the basic ABC algorithm only one

randomly chosen parameter, i.e. dimension, is modified, while the other parameters are

just copied from the old solution. However, in the modified ABC algorithm a uniformly

distributed random real number, Rj , between 0 and 1, is produced for each parameter

j, and if Rj is less than the modification rate, MR, the parameter j is modified. If none

of the parameters are modified then one parameter is chosen randomly and modified.

The new solution is then compared to the old and either replaces the old solution or is

thrown away; this is done by ways of a selection process. For the basic ABC algorithm

a greedy selection process is usually implemented where the solution with the best

objective function or fitness value is kept and the other is discarded. This process

should not be used in constrained optimisation, as it will severely limit the solution

space explored, since only feasible solutions would be considered (Karaboga & Akay,

2011; Karaboga & Basturk, 2007).

Karaboga & Basturk (2007), Brajevic (2010), and Karaboga & Akay (2011) sug-

gested using Deb’s (2000) rules to determine which solution to keep. Deb’s (2000) rules

consist of three simple heuristic rules and a probabilistic selection scheme for feasible

solutions based on their fitness and infeasible solutions based on their constraint viola-

tion values. Deb’s (2000) rules is a tournament selection operator, where two solutions

are compared at a time with the help of the following criteria:

� any feasible solution, i.e. violation = 0, is preferred to any infeasible solution,

i.e. violation > 0;

� if both solutions are feasible the solution with the better objective function value

is preferred; or

� if both solutions are infeasible the solution with the smaller constraint violation

is preferred.

The use of Deb’s (2000) rules have been linked to a lack of diversity in the solution

population, since feasible solutions are preferred to infeasible solutions. The diversity of

the solution population is extremely important when designing a competitive constraint

handling solution approach. Karaboga & Akay (2011) stated that solution population
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diversity is ensured with the ABC algorithm, since the scout bees phase allows infeasible

solutions to be added to the population, and the onlooker bees phase allows for infeasible

solutions to be selected probabilistically and inversely proportional to the constraint

violation value. Deb’s (2000) selection mechanism therefore does not interfere with the

solution population diversity of the ABC algorithm.

After the employed bees have each completed the local search process, they share

information on the quality, fitness, and position of their solutions with the onlooker

bees through a dance. This dance is mimicked in the ABC algorithm by calculating

probability values. This process is quite simple for unconstrained problems, as seen

in Algorithm 1 (Brajevic, 2010; Karaboga & Basturk, 2007). In the modified ABC

algorithm infeasible solutions are allowed to be in the solution population; therefore a

modification is required to assign probability values for infeasible and feasible solutions.

The probabilities for the constrained ABC algorithm is calculated as shown in (5.3)

where violationi is the constraint violation penalty value; fiti is the fitness value of the

solution i (which is proportional to the nectar amount of that food source); and SN is

the colony size (Brajevic, 2010; Karaboga & Akay, 2011; Karaboga & Basturk, 2007).

pi =


0.5 +

(
fiti∑SN/2

j=1 fitj

)
× 0.5, if solution is feasible;(

1− violationi∑SN/2
j=1 violationj

)
× 0.5, if solution is infeasible.

(5.3)

The probability of choosing an infeasible solution is then between 0% and 50%,

while the probability of choosing a feasible solution is between 50% and 100%. The

chosen selection mechanism is the roulette wheel; the feasible solutions are then se-

lected probabilistically proportional to their fitness values, and the infeasible solutions

are selected probabilistically inversely proportional to their constraint violation values

(Karaboga & Akay, 2011). This mimics the onlooker bees’ evaluation and selection of

a solution based on the information provided by the employed bees, and is the start of

the onlooker bees phase. The onlooker bees also modify their selected solutions, just

like the employed bees, and determine its objective function value. If it happens that

the modified parameter exceeds the predetermined boundaries, it is set to an acceptable

value. Generally, the parameter is made to equal the closest boundary (Brajevic, 2010;

Karaboga & Akay, 2011; Karaboga & Basturk, 2007).
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After the onlooker bees phase, the solutions that have not been improved for a spec-

ified number of trials (Limit), i.e. are not worth exploiting any more, are determined.

Those solutions are then abandoned and are replaced with new solutions discovered

during the scout bees phase. This is done by randomly producing a solution, like in

the initialisation phase, and replacing the abandoned solution with it. Another dif-

ference in the modified ABC algorithm is that the scout bees phase is only activated

at a predetermined period of cycles, and at any of its multiples. The predetermined

period of cycles is called the scout production period (SPP ). At each cycle that is a

multiple of SPP , the solution population is checked to see whether any solution needs

to be abandoned, and if there are any, then the scout bees phase will be carried out.

The scout bees phase allows new, and probably infeasible solutions, to be added to the

solution population, which increases the diversity of the solution population (Karaboga

& Akay, 2011).

The modified ABC algorithm adds two control parameters to improve the conver-

gence capability of the ABC algorithm for constrained optimisation problems. The

parameters are the modification rate, MR, and the scout production period, SPP .

Another difference between the basic and modified ABC algorithm is the use of a se-

lection approach based on Deb’s (2000) rules, instead of the normal greedy selection

process. The final differences are allowing infeasible solutions into the solution pop-

ulation to provide diversity and assigning probability values inversely proportional to

the infeasible solution’s constraint violation values and so allowing them a chance to

be selected during the onlooker bees phase, i.e. roulette wheel selection (Karaboga &

Akay, 2011; Karaboga & Basturk, 2007).

Karaboga & Akay (2011) did not just modify the ABC algorithm but aimed to

determine the range of values for the control parameters that produce the best conver-

gence results. They tested different levels for the different control parameters and

created ANON tables. These tables indicated that MR should be chosen in the

range [0.3; 0.8], Limit in the range [0.5× SN × Z;SN × Z], and SPP in the range

[0.1× SN × Z; 2× SN × Z].

The control parameters used in both the basic and modified ABC algorithm are

colony size, number of employed bees, number of onlooker bees, number of scouts, and

the maximum number of cycles (MCN) (Brajevic, 2010). The colony size should be

in the range [40, 100]. The number of employed bees and onlooker bees are generally
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taken to be equal to 50% of the colony size respectively. The number of scout bees

is dependent on the number of abandoned solutions. According to Karaboga & Akay

(2011) the maximum number of cycles required is 6,000.

5.6.2 Location-allocation phase

The extended Q-MALP model was briefly described in Section 3.7.3. The real-world in-

stance and the requisite changes to the model were explained in Chapter 4. Algthesis.m

contains the coded algorithm of the location-allocation phase of the extended Q-MALP

model, but the possible solutions are initialised and manipulated in ABCcon.m and Am-

bAllo.m. The holding site selection, and later manipulation of the selection, is done in

ABCcon.m, which is to be the same for an entire shift and is sent to AmbAllo.m where

ambulance allocation is initialised and manipulated. The decision was made to hard

code the integer and binary constraints into ABCcon.m and AmbAllo.m, since they are

hard constraints. If these constraints are violated the solution cannot possibly be fea-

sible. This decision excludes the possibility of a solution that requires 1.5 ambulances

to be allocated to a holding site node which is only 49% selected.

AlgthesisAlt.m contains the coded location-allocation phase of the extended and

changed Q-MALP model, as explained in Section 4.2.2. It calculates the values of the

queuing theory parameters and the model parameters for the specific possible holding

site node locations, as provided by ABCcon.m for that shift, and possible ambulance

allocation solution, as provided by ABCcon.m for an hour of that shift, and then

calculates the expected coverage, if that solution were to be implemented. In the final

step, the possible solution is checked to see whether any constraints are violated.

In Section 4.2.2.3 it was stated that two constraints were relaxed. The relaxation

of constraint (3.24) was required to accommodate the representation of the placement

of holding site locations by holding site nodes, where each node can contain more than

one holding site. The relaxed constraint is shown in (4.14). Constraint (3.26) was also

relaxed and became (4.15). To test the impact of the number of ambulances allocated,

constraint (3.26) was relaxed. AlgthesisAlt.m was coded with both the original am-

bulance allocation constraint, (3.26), and the relaxed ambulance allocation constraint,

(4.15), but only one can be activated at a time. Each scenario will be solved with the re-

laxed ambulance allocation constraint and then with the original ambulance allocation

constraint.
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5.6.3 Relocation phase

In Section 4.3.2 it was stated that the relocation phase of the extended Q-MALP

model can be seen as a minimum cost flow problem, which is generally solved with the

simplex method. Matlab has a built-in simplex method which is easy to use when the

problem is written in the required form. In Section 4.2.2 it was explained that a dummy

holding site had to be added for the minimum cost flow problem to be solved. The

dummy holding site balances the transportation problem equations and ensures that

the number of ambulances allocated during every hour of a shift stays the same. The

dummy station was taken to represent the ambulance depot, but the dispatchers can

place the ambulances located by the model to the dummy site wherever they believe

they will be the most beneficial. The ambulance depot used in the model was taken as

the Metro Emergency Medical Service, Western Division, in Ndabeni.

5.7 Conclusion: The concept demonstrator decision sup-

port tool

In Chapter 5 how the DST fits into the WC ECC’s system and the choice of software for

use in this concept demonstrator were explained. The flow of data through Thesis.m

were described and the different processes were explained. In Chapter 6 the two sce-

narios for which the DST were run are described. The solutions and results for running

each scenario with the relaxed and the original ambulance allocation constraint, i.e.

the instances, for the scenario-specific predicted demand are provided. The results for

applying the instances’ solutions to the scenario-specific observed demand are provided

and compared and the best instances identified. Recommendations for the future use

of the DST are explained and the validation and verification process for the different

processes of the DST are described.

105

Stellenbosch University  https://scholar.sun.ac.za



Chapter 6

Scenario analysis

In Chapter 5 where the DST fits into the WC ECC’s system, the analysis process

required for the historical call data, and the programming software choice made were

explained. The flow of data through the DST and the DST’s forecasting and solution

processes were also described. In this chapter the two scenarios and two ambulance

allocation constraint implementations for which the DST was solved are described, i.e.

the four instances. The two scenarios are to evaluate the need for resource deployment

planning according to incident type. While the two ambulance allocation constraint

implementations are to evaluate whether the WC ECC requires more ambulances. The

results for applying the DST’s instance-specific solutions, created for the scenario-

specific predicted demand, to the scenario-specific observed demand are provided and

compared. Thereafter, the best instance for each scenario for the WC ECC’s real-world

instance is determined.

6.1 The four instances

As stated in Section 4.1, the WC ECC has response time targets for P1 calls according

to area, i.e. urban or rural. The urban P1 response time target is 15 minutes and the

rural P1 response time target is 40 minutes. The WC ECC does not have a response

time target for P2 calls. The historical data, however, showed that the WC ECC checks

the response times of all calls against the urban P1 target, regardless of incident type

or area. Also, the number of rural calls for the City of Cape Town and the Cape

Winelands municipalities are so small as to be negligible. The decision was made to
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reclassify the rural calls as urban calls, instead of leaving out the calls. This inclusion

provides a better overall idea of the ambulance demand.

The incident classification and the incident type and area specific response time

targets are indicative of an ambulance system that is moving away from the “golden

hour” philosophy, and yet the response times of all calls are checked against the urban

P1 response time target which is in line with the philosophy. To evaluate the utilisation

of the “golden hour” philosophy and the incident type and area specific response time

targets in terms of ambulance efficiency, the DST was set up for two scenarios. Both

scenarios look at selecting holding site nodes, allocating ambulances, and relocating

ambulances in order to simultaneously maximise the expected coverage and minimise

relocation cost, but the call classifications and response time targets differ. Scenario 1

considers all calls to be P1 and tests their response times against the 15 minute target.

Scenario 2 considers P1 and P2 calls separately and checks the response times of P1

calls against the 15 minute target and the response times of P2 calls against a 30 minute

target. Both scenarios assume that all calls are from urban areas.

Section 2.4.1 provided the response time targets implemented in other countries.

The response time targets show that the countries all strive toward low response times,

but that there is no consensus in terms of the targets set or whether the targets should

be case and/or area specific. The WC ECC’s response time target for urban P1 calls

is higher than those for the highest category of urban calls in the other countries

mentioned in Section 2.4.1. The concept demonstrator DST is created to help with

the dispatcher’s decision-making process, but it has to take into account that even

if no target is set for P2 calls they still need to be reached in as short a time as

possible without neglecting P1 calls. In Section 2.4.2 it was stated that incident type

prioritisation is difficult and usually impossible to do accurately, which can cause P1

calls to be classified as P2 or vice versa. The DST, therefore, required a target for

P2 calls to provide solutions with a better representation of the spread of ambulances

required to cover calls. The P2 target has to be lower, i.e. longer, than the P1 target,

but it has to take into account that classification errors are possible and, therefore, the

target was chosen to be 30 minutes.

In Section 1.1.2 it was mentioned that fleet size, holding site placement, and am-

bulance allocation are the critical factors that ECC managers try to control in order

to improve ambulance efficiency. The improved management of these factors, with the
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help of ambulance location models, can improve the efficiency of the overall ambulance

service system. This is exactly what the concept demonstrator DST aims to do with

two of the three factors, namely holding site placement and ambulance allocation.

In Section 4.2.2.3 the relaxed ambulance allocation constraint for the WC ECC’s

real-world instance was explained. The original ambulance allocation constraint ensures

that all available ambulances are allocated to chosen holding site nodes, but this was

relaxed only to ensure that no more than the available ambulances are allocated. This

relaxation was done to make it possible to check whether the WC ECC requires more

ambulances to achieve the desired coverage or whether they have enough. To facilitate

the testing of the ambulance fleet, the ambulance allocation constraint was implemented

in its relaxed form, (4.15), and in its original form, (3.26), for both scenarios. This

created four instances that had to be solve for:

� Instance 1: Scenario 1 with the relaxed ambulance allocation constraint;

� Instance 2: Scenario 1 with the original ambulance allocation constraint;

� Instance 3: Scenario 2 with the relaxed ambulance allocation constraint; and

� Instance 4: Scenario 2 with the original ambulance allocation constraint.

In Section 4.2.2.3 it was also mentioned that the holding site node selection con-

straint, (3.24), was relaxed. This was done, and the resulting solutions for the four

instances required more than 78% of the possible holding site nodes to be selected per

shift, and some holding site nodes’ ambulance capacity restrictions were also exceeded.

It became evident that by using the available number of holding site nodes as the

maximum number of holding site nodes that can be selected was not going to work, it

allowed a too large solution space for which there is not enough time to fully inspect.

This outcome could be mitigated by implementing a cost function which would asso-

ciate a cost to the use of a holding site node or to add a user-selected variable which

limits the maximum number of holding site nodes that can be selected. If the first

was used then its impact on the entire model would have to be considered, but the

second requires only that a user-selected variable NumSelect be created. The relaxed

holding site node selection constraint was still implemented, but the maximum number

of holding site nodes that can be selected is now controlled by the user of the DST.
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6.2 User-selected variables

In Section 5.4 it was indicated that the DST requires a number of user-selected vari-

ables to function. The user-selected variable values for the two scenarios and two

implementations of the ambulance allocation constraint, i.e. the four instances, are:

� Scenario is equal to 1 for Scenario 1 and 2 for Scenario 2;

� alloRelax is equal to 1 if the relaxed allocation constraint, and 0 if the original

allocation constraint, is to be implemented;

� hnum = 30;

� hcapacity = 10;

� NumSelect = 15;

� α = 0.95;

� β = 0.015;

� MCN = 1, 000;

� ColSiz = 40;

� NumAmbDay = 70;

� NumAmbNight = 55;

� ambSpd = 60 km/hr;

� rP1 = 15 minutes; and

� rP2 = 30 minutes, is not used when Scenario = 1.

There are three other user-selected variables that are not in the aforementioned

list: num, L, and N . The values of these variables are scenario-specific. The required

values of these variables for Scenario 1, which provided the best forecasting accuracy,

were determined in Section 5.5.2 to be num = 102, L = 720, and N = 20. The values

required for high forecasting accuracy for Scenario 2 is provided in Section 6.3.

The first two variables indicate which instance is to be implemented, the rest are

either specific to the real-world instance being solved for, or are the control parameters

for the implemented ABC algorithm. The variables specific to the real-world instance
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are: hnum, hcapacity, NumSelect, α, β, NumAmbDay, NumAmbNight, ambSpd,

rP1, and rP2. The user is not allowed access to all of the ABC algorithm’s control

parameters, because some of the variables are influenced by the values of MCN and

ColSiz. The DST was designed for users that are most likely not proficient operations

researchers, as such, it was deemed an unnecessary risk to allow the user to change the

values of variables that are dependent on other variables.

In Section 5.4 it was stated that hnum should be less than num to allow for larger

node blocks. Therefore, it is impacted by the chosen value of num. The decision was

made to use the same hnum value for Scenario 1 and Scenario 2, which means that all

four instances have the same number of, and locations for, their possible holding site

nodes. This allows for better comparison between the results of applying the instances’

solutions to the scenario-specific observed demand. A good value for hnum, based on

Scenario 1’s num = 102, is 30. This created a grid with 784 possible holding site nodes,

of which only 28 were deemed viable options, i.e. they are on land.

The ambulance capacity of the holding site nodes was set to ten, because a petrol

station holding site, which is generally what is chosen by the WC ECC dispatchers,

would on average be able to accommodate three ambulances. Therefore, if ten ambu-

lances were allocated to a holding site node then at least three holding sites would need

to be located in that node. A value had to be assigned to NumSelect, but if the value

was chosen to be too small or too large it would negatively influence the size of the

solution space. The value of NumSelect was chosen to equal 15 as it is just more than

half of the available holding site nodes.

South Africa does not have a service reliability target level. The service reliability

value most often implemented by other countries is 95%, as seen in Section 2.4.1.

It was therefore decided to run the DST with a service reliability value of 95%, i.e.

α = 0.95. The β variable determines the impact of the relocation cost on the overall

objective function value. Since the main focus of the objective function is to maximise

the expected coverage, the value of β was chosen to be 0.015 to keep the impact of

the relocation cost on the objective function value small. This was chosen after it was

determined that the magnitude of the relocation cost per shift tended to be in the

hundreds.

The MCN and ColSiz variables are two of the control parameters of the ABC

algorithm. According to Karaboga & Akay (2011), a good value for MCN is 6,000.
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Taking into account that ABCcon.m is solved per shift, the actual number of cycles

that would be required to solve for one day would be 2,000 if MCN = 1, 000, which

was observed to take approximately 20 hours to finish. Therefore, if MCN were to be

6,000 ABCcon.m would require about 42 days to solve for the week planning horizon.

It was determined that Matlab can be opened multiple times and run simultaneously

which would decrease the run time to seven days, but it is CPU and memory intensive.

Also, the user would have to ensure that the loaded ‘*.mat’-files and the user-selected

variable values are the same for each opened Matlab to ensure that the instance being

solved for is the same.

The ABC’s artificial bee colony size is indicated by ColSiz. The value of ColSiz

was chosen to equal 40. This is at the low range of Karaboga & Akay (2011)’s indicated

good range for ColSiz. It was chosen in that manner to not overly increase the required

run time, which is already heavily influenced by the value of MCN . The other control

parameter values, for those not directly determined by the user, are:

� Limit is equal to (0.6 × ColSiz × Z), with Z equal to 28, i.e. the holding site

nodes available;

� MR is equal to 0.7; and

� SPP is equal to (0.1× ColSiz × Z).

NumAmbDay and NumAmbNight are the number of ambulances available for

the day shift and the night shift, respectively. In Section 4.1 it was stated that the

WC ECC has 70 ambulances for the day shift and 55 for the night shift. The WC

ECC does not collect the data required to determine the average ambulance speed.

However, it is known that the maximum speed of an ambulance is 120 km/hr and that

ambulances are allowed to violate traffic rules in order to arrive at an incident in the

least amount of time, but it would not be possible to drive 120 km/hr around corners

and through dense traffic. The average speed was chosen to be 60 km/hr, which is

merely an estimated driving speed and has to be considered as such. The last two

variables are the response time targets for P1 and P2 calls, i.e. 15 minutes and 30

minutes respectively. If Scenario is equal to 1 then rP2 is not used, but if it is equal

to 2 then rP1 and rP2 are used.
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6.3 Forecasting: Scenario 2

The process described in Section 5.5.3 was followed to determine the best combination

of the number of demand nodes, L, and N for forecasting for Scenario 2. It was

determined in Section 5.5.2 that it is beneficial to keep the demand node blocks as

small as possible. Therefore, the num value was initially chosen to be 102 to create

10,000 demand nodes. The next step was to determine the expected periodicity and to

determine whether num = 102 is a good choice for forecasting for Scenario 2.

The results from Section 5.5.2 showed that a monthly periodicity is a good assump-

tion for the real-world instance’s Scenario 1. Therefore, it was decided to start with an

assumed monthly periodicity, i.e. L = 720, and the low RMSE values in Table 6.1 show

that it and the num = 102 were good choices. Table 6.1 contains the RMSE values

for forecasting P1 and P2 demand rates with 10,000 demand nodes and L = 720 with

varying N values. A big difference between the forecasting for Scenario 1 and Scenario

2 is that for Scenario 1 only one RMSE value had to be checked, whereas for Scenario

2 there is a RMSE value for the P1 forecasting and another for the P2 forecasting.

Table 6.1: 10,000 nodes best L and N combinations for P1 and P2 calls.

Nodes L N RMSE Nodes L N RMSE

P1

10,000 720 5 0.445

P2

10,000 720 5 0.605

10,000 720 10 0.455 10,000 720 10 0.607

10,000 720 20 0.463 10,000 720 20 0.617

10,000 720 30 0.466 10,000 720 30 0.633

10,000 720 40 0.496 10,000 720 40 0.647

10,000 720 60 1.135 10,000 720 60 0.704

If only the RMSE values were to be used to determine the best N value, then N = 5

would have been chosen. However, this does not take the location aspect of demand

into account as much as the time aspect. Line graphs and scatter graphs were created

for the P1 and P2 forecasting, as was done for Scenario 1 in Section 5.5.2, with N =

5, 10, 20, and 30. These graphs can be seen in Appendix E, along with the heat maps

for P1 and P2 when N = 30. The line and scatter graphs showed that the best N for

forecasting for Scenario 2 was 30, and this was confirmed by the heat maps for the first

12 hours of 2016/01/01, with P1 and P2 forecasting with N = 30.
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6.4 The instance specific results

The DST’s solution process, explained in Section 5.6, was used to determined the near

optimal solution for the four instances based on the scenario-specific predicted demand

rates. The results are shown in tables in Appendix G, in the order of the instances.

The results were compiled from the MS Excel files, created for each day of the planning

horizon, which are the output of ABCcon.m. The instances’ solutions were then applied

to the scenario-specific observed demand rates, as determined from the historical call

data. This is done to validate and compare the results in order to determine the best

instance for each scenario implementation for the WC ECC’s real-world instance.

Table 6.2 contains the percentage expected coverage and relocation cost results for

the entire planning week, 2016/01/01 - 2016/01/07, when each instance’s solution was

applied to the the scenario-specific predicted demand and the scenario-specific observed

demand. The planning horizon’s observed demand rates did not form part of the input

data used to forecast the demand rates for the planning horizon. The results in Table

6.2 show that for the four instances’ solutions the percentage expected coverage for the

scenario-specific observed demand is slightly lower than for the corresponding scenario-

specific predicted demand. Since, each instance’s solution was created for the predicted

demand this is not an unexpected outcome. The fact that the difference in expected

coverage is small, as seen in the ‘delta’ column in Table 6.2, is an indication that the

forecasting and model results can be trusted.

Table 6.2: The percentage expected coverage and relocation cost for the planning week.

% Expected coverage for the week Relocation cost

Predicted Observed Delta Both

Sc1 Relaxed 94.63% 92.96% 1.68% 557.27

Sc1 Original 91.39% 89.60% 1.80% 1,446.01

Sc2 Relaxed 96.62% 94.99% 1.64% 399.69

Sc2 Original 95.46% 93.97% 1.49% 1,479.45

Table 6.3 shows the average ambulance usage per hour for the day shift and the

night shift for the week for each instance’s solution. The ambulance usage is purely

dependent on the solution and stays the same for the scenario-specific predicted and
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observed demand. The average value is used, since the number of ambulances in use

per hour of a shift varies.

Table 6.3: Average hourly ambulance usage for the planning week.

Average hourly ambulance usage

Shift 1 Shift 2

Sc1 Relaxed 49.79 44.15

Sc1 Original 69.58 64.94

Sc2 Relaxed 43.10 30.07

Sc2 Original 65.94 64.39

The integer values in Table 6.4 indicate whether the instances’ solutions, for the

planning week, violate any constraints for any of the hours of the 14 shifts, this is

shown first for the scenario-specific predicted demand and then for the scenario-specific

observed demand. The binary and integer constraints were hard coded in the DST,

as they are hard constraints. Therefore, the only constraints that could have been

violated were constraint equations (3.18) - (3.23), (4.14), (3.26), and (3.27). The relaxed

ambulance allocation constraint, (4.15), could also have been violated when Instance 1

and Instance 3 were solved, but it was not.

The values in Table 6.4 were calculated by counting the violation values for each

shift of an instance, where the violation values per shift were the summed violation

values per hour. The values, however, do not indicate the number of times a constraint

is violated during an hour or how large the violation is. Consider the possibility that for

a shift the original ambulance allocation constraint, (3.26), was violated during hour

sequence 1 and 3, and the holding site node capacity constraint, (3.27), was violated

for a number of nodes during hour sequence 1, and no other constraints were violated

during these or any of the other hour sequence of that shift, then the violation value

for that shift would be three.
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Table 6.4: Constraint violations for the planning week.

Violations

Predicted demand Observed demand

Sc1 Relaxed 0 37

Sc1 Original 153 182

Sc2 Relaxed 0 51

Sc2 Original 142 185

6.5 Scenario 1

As stated in Section 6.1 Scenario 1 considers all calls to be P1 calls and implements the

15 minute response time target for each call. In Section 6.5.1 and 6.5.2, respectively, the

results for applying Instance 1’s solution and Instance 2’s solution to Scenario 1’s pre-

dicted demand and observed are provided. In Section 6.5.3 the instance-specific results

for Scenario 1’s observed demand are compared and the best instance determined.

6.5.1 Instance 1

The shift results for Instance 1’s solution, i.e. Scenario 1 with the relaxed allocation

constraint, based on the scenario-specific predicted demand rates are shown in Table

G.1. The percentage expected coverage for each of the 14 shifts, i.e. two shifts for every

day of the planning week, range between 88.24%, for 2016/01/01’s night shift, and

95.97%, for 2016/01/06’s night shift. The solution does not violate any constraints for

any of the shifts for the scenario-specific predicted demand rates. The overall expected

coverage for the week is 94.63% with a relocation cost of 557.27 and the ambulance

usage per hour is 49.79 for the day shift and 44.15 for the night shift. Instance 1’s

solution is a feasible solution for Scenario 1’s predicted demand.

Instance 1’s solution was then applied to Scenario 1’s observed demand rates, the

results for each shift are shown in Table G.3, and the percentage expected coverage

ranges from 88.03%, for 2016/01/01’s night shift, to 95.51%, for 2016/01/06’s night

shift. The percentage expected coverage result for the planning week when Instance

1’s solution is applied to the scenario-specific observed demand is 92.96% with the

same relocation cost and ambulance usage as seen for the scenario-specific predicted
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demand. The percentage expected coverage for the week for the observed demand is

not as high as for the predicted demand, but that is to be expected. The scenario-

specific predicted demand rates are merely a possible future, whereas the scenario-

specific observed demand rates are the actual future. This does not indicated that the

solution is invalid.

Instance 1’s solution when applied to the scenario-specific observed demand rates

does, however, violate constraints during each shift, but an inspection showed that

only one constraint was violated throughout, (3.18). Therefore, Instance 1’s solution

caused one or more of the scenario-specific observed demand nodes to be uncovered.

The percentage of scenario-specific observed calls that are not covered by Instance 1’s

solution is 0.67%. In terms of the bigger picture this shows that Instance 1’s solution

is a valid and viable solution for the WC ECC’s real-world instance. Even though

constraint (3.18) is violated, Instance 1’s solution is feasible for the scenario-specific

observed demand.

6.5.2 Instance 2

The shift results for Instance 2, i.e. Scenario 1 with the original ambulance allocation

constraint, for the scenario-specific predicted demand is shown in Table G.2. The values

of the percentage expected coverage ranges from 84.15%, for 2016/01/04’s night shift, to

94.29%, for 2016/01/04’s day shift. It is interesting to note that the overall percentage

expected coverage with the original ambulance allocation constraint is 91.39%, which

is lower than for Instance 1’s solution applied to the scenario-specific predicted and

observed demand. The average ambulance usage per hour is 69.85 for the day shift and

64.94 for the night shift, and the relocation cost is 1446.01. The average ambulance

usage per hour and relocation cost are higher for Instance 2 than for Instance 1, but

this is due to the implementation of the original ambulance allocation constraint.

The solution found for Instance 2, based on the scenario-specific predicted demand,

does violate a number of constraints for a number of hour sequences, as seen in Table

6.4. It was determined that 1.31% of the violations were due to one or more of the

scenario-specific predicted demand nodes being uncovered; 28.10% were due to fewer

ambulances being allocated than were available; 65.36% were due to more ambulances

being allocated than were available; and 5.23% were due to one or more holding site

node capacities being exceeded. The number of scenario-specific predicted calls which
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cannot be considered covered by the solution are two, which is 0.03% of the calls. The

violations that are due to more ambulances being allocated than were available and

holding site node capacity being exceeded, makes Instance 2’s solution infeasible for

Scenario 1’s predicted demand.

Though it was determined that Instance 2’s solution for Scenario 1’s predicted

demand was infeasible, the solution was still applied to Scenario 1’s observed demand

to determine if it provides higher expected coverage percentages than Instance 1’s

solution applied to Scenario 1’s observed demand. If it does, it could indicate that the

holding site node capacities need to be increased and that more ambulances could be

required.

The shift results for Instance 2’s solution applied to the scenario-specific observed

demand are shown in Table G.4. A greater number of shifts have percentage expected

coverage values below 90%, which was not the case when Instance 1’s solution was

applied to the scenario-specific observed demand. The percentage expected coverage

ranges from 82.15%, for 2016/01/04’s night shift, to 93.88%, for 2016/01/04’s day

shift. The overall expected coverage for the week is 89.6%, which is also lower than

when Instance 1’s solution was applied to Scenario 1’s observed demand. The average

ambulance usage per hour and relocation cost are the same as when Instance 2’s solution

was implemented for Scenario 1’s predicted demand.

As expected Instance 2’s solution did cause a number of constraints to be violated

when it was applied to the scenario-specific observed demand. After an inspection it

was determined that 17.03% of the violations were due to one or more scenario-specific

demand nodes being uncovered; 23.63% were due to fewer ambulances being allocated

than were available; 54.59% were due to more ambulances being allocated than were

available; and 4.40% were due to holding site node capacity being exceeded. The actual

percentage of calls that cannot be considered to be covered by the implemented solu-

tion is 0.64%. The high percentage of ambulance allocation constraint violations are

attributed to the fact that the solution process does not have the luxury of unlimited

running time. The violations that are due to more ambulances being allocated than

were available and holding site node capacity being exceeded, makes Instance 2’s solu-

tion infeasible for Scenario 1’s observed demand and the overall expected coverage is

not higher than when Instance 1’s solution was applied to Scenario 1’s observed demand

rates.
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6.5.3 Conclusion: Scenario 1

Comparing Instance 1 and Instance 2’s results when their solutions were applied to the

observed demand, shows that Instance 1’s solution produces a higher expected coverage,

lower relocation cost, and the solution is feasible. Instance 2’s results do not prove that

the WC ECC’s fleet size or the holding site node capacity needs to be increased. Rather,

it can be seen that with improved resource usage the WC ECC would be able to meet

expected coverage targets with a smaller fleet when implementing the “golden hour”

philosophy.

6.6 Scenario 2

As stated in Section 6.1 Scenario 2 considers calls according to their priority classi-

fication. The response time target for P1 calls is 15 minutes and the response time

target for P2 calls is 30 minutes. In Section 6.6.1 and 6.6.2, respectively, the results

for applying Instance 3’s solution and Instance 4’s solution to Scenario 2’s predicted

demand and observed are provided. In Section 6.6.3 the instance-specific results for

Scenario 2’s observed demand are compared and the best instance determined.

6.6.1 Instance 3

The shift results for Instance 3’s solution, i.e. Scenario 2 with the relaxed ambulance

allocation constraint, based on the Scenario 2’s predicted demand rates are shown in

Table G.1. The percentage expected coverage exceeds the service reliability value for

all shifts. The lowest percentage of expected coverage is 96.25%, for 2016/01/01’s night

shift. Table 6.4 shows that Instance 3’s solution does not violate any constraints for

the scenario-specific predicted demand. The week’s expected coverage is 96.62% with

a relocation cost of 399.69 and an average ambulance usage per hour of 43.10 for the

day shift and 30.07 for the night shift. These results are better than what was found

with Instance 1’s solution for Scenario 1’s predicted demand. Intuitively, this outcome

was to be expected, because the response time target for a part of the overall number

of calls (P2 calls) is lower, i.e. longer, in Scenario 2 than in Scenario 1, where all calls

have the same 15 minute response time target. Instance 3’s solution for Scenario 2’s

predicted demand is feasible and viable.
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Instance 3’s solution was then applied to the Scenario 2’s observed demand. Table

G.7 contains the results for the 14 shifts, and the percentage expected coverage ranges

from 93.94%, for 2016/01/01’s day shift, to 96.15%, for 2016/01/07’s day shift. The

coverage is not as high as when Instance 3’s solution was applied to the scenario-specific

predicted demand, this is as expected.

Instance 3’s solution did violate constraint (3.18) when it was applied to Scenario 2’s

observed demand. This indicates that one or more scenario-specific observed demand

nodes are uncovered. The percentage of calls which are not covered by the implemented

solution is 1.01%, where 2.69% is P1 calls and 0.06% is P2 calls. The expected coverage

for the week with the implemented solution is 94.99%. This is an acceptable percentage

with a low accompanied relocation cost. Also, this instance requires fewer ambulances

than Instance 1. The results for Instance 3’s solution applied to the scenario-specific

observed demand proves that, as long as a response target of 30 minutes for P2 calls is

acceptable to the WC ECC, this is a valid and viable, i.e. feasible, solution for the WC

ECC’s real-world instance. On average, the approach achieves the target response times

more effectively (although the response time target for P2 calls is of course longer than

in Scenario 1), whilst also requiring fewer resources (ambulances). The only drawback

is that the percentage of calls left uncovered is higher for Instance 3’s solution applied

to Scenario 2’s observed demand, than for Instance 1’s solution applied to Scenario 1’s

observed demand. However, the probability of reaching the calls that are covered are

higher for Instance 3’s solution.

6.6.2 Instance 4

The shift results for Instance 4, i.e. Scenario 2 with the original allocation constraint,

for Scenario 2’s predicted demand are shown in Table G.6. None of the shifts have

percentage expected coverage values below 93.30%, as seen for 2016/01/05’s day shift.

The week’s expected coverage is 95.46% which is lower than when Instance 3 was imple-

mented for the scenario-specific predicted demand. This was also seen between Instance

1 and Instance 2, where Instance 1’s expected coverage for the planning horizon was

higher than Instance 2’s when implemented for the scenario-specific predicted demand.

The average ambulance usage per hour is 65.94 for the day shift and 64.39 for the

night shift, and the relocation cost is 1,479.45. Again, as with the relationship between
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Instance 1 and Instance 2, the ambulance usage and relocation cost are higher than for

Instance 3’s solution.

Instance 4’s solution for Scenario 2’s predicted demand does violate a number of

constraints for a number of hour sequences, as seen in Table 6.4. After an inspection,

it was determined that 0.7% of the violations were due to one or more scenario-specific

demand nodes being uncovered; 39.44% were due to fewer ambulances being allocated

than were available; 55.63% were due to more ambulances being allocated than were

available; and 4.23% were due to one or more holding site node capacities being ex-

ceeded. One P1 scenario-specific predicted call cannot be considered covered by In-

stance 4’s solution, which is 0.04% of all the P1 predicted calls. The violations that

are due to more ambulances being allocated than were available and holding site node

capacity being exceeded makes Instance 4’s solution infeasible for Scenario 2’s predicted

demand.

Instance 4’s solution for Scenario 2’s predicted demand was also applied to the

scenario-specific observed demand rates, even though the solution was found to be

infeasible for the predicted demand rates. Similar results to what was found when

Instance 2’s infeasible solution was applied to Scenario 1’s observed demand, were

expected. Table G.8 contains the results for the 14 shifts. The range of percentage

expected coverage values is lower than what was found when Instance 3’s solution

was applied to Scenario 2’s observed demand rates. The percentage expected coverage

ranges from 91.51%, for 2016/01/05’s day shift, to 95.68%, for 2016/01/06’s night shift.

The overall expected coverage for the week is 93.97%, which is also lower than what was

found when Instance 3’s solution was applied to the scenario-specific observed demand

rates.

Table 6.4 shows that Instance 4’s solution violates constraints when it is applied to

Scenario 2’s observed demand rates: 23.78% were due to one or more scenario-specific

observed demand nodes being uncovered; 30.27% were due to fewer ambulances being

allocated than were available; 42.70% were due to more ambulances being allocated than

were available; and 3.24% were due to holding site node capacity being exceeded. The

percentage of scenario-specific observed calls which were not covered by the Instance

4’s solution is 0.91% calls, where 2.47% is P1 calls and 0.02% is P2 calls. The violations

that are due to more ambulances being allocated than were available and holding site

node capacity being exceeded, makes Instance 4’s solution infeasible for Scenario 2’s
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observed demand rates and the overall expected coverage is not higher than when

Instance 3’s solution was applied to Scenario 2’s observed demand.

6.6.3 Conclusion: Scenario 2

Comparing Instance 3 and Instance 4’s results when the solutions were applied to

Scenario 2’s observed demand, showed the same relationship as was found between

Instance 1 and Instance 2. Instance 3’s solution resulted in higher expected coverage,

lower relocation cost, and the solution is feasible for Scenario 2’s observed demand. As

expected the results for Instance 4’s solution applied to Scenario 2’s observed demand

did not prove a required increase in fleet size or holding site node capacity. It is

interesting to note that the percentage of calls left uncovered are lower for Instance 4,

but this might just be due to the fact that for some hours more ambulances were used

than were available. It is believed that the ABC algorithm is not given enough time to

run through the large solution space to find viable results with the original ambulance

allocation constraint, but that an increase in run time will not provide an Instance 4

solution that would provide a higher expected coverage for the observed demand rates

than the resulting Instance 3 solution. The results rather show that the WC ECC

should be able to meet expected coverage targets with a smaller fleet when calls are

handled according to their incident type, i.e. when the “golden hour” philosophy is not

implemented.

6.7 Comparison of results

Section 6.5.1 - 6.5.2 and Section 6.6.1 - 6.6.2 provided the results when the instances

were solved for the scenario-specific predicted demand rates and the results when the

instances’ solutions were applied to the scenario-specific observed demand rates. The

expected coverage results for the same instance’s solution was lower when applied to

the observed demand rates than when applied to the predicted demand rates. This

was not unexpected, since each instance’s solution was created for the scenario-specific

predicted demand. The relocation costs for the instances’ solutions when applied to

the scenario-specific predicted and observed demand are identical, since the relocations

along with the holding site node selection and ambulance allocations are specific to the

applied solution.
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Figure 6.1: Comparison graph: Instance-specific results.

Figure 6.1 shows the percentage expected coverage versus the relocation cost of the

results for the observed demand rates for the two scenarios and the two ambulance

allocation implementations. The best, and the only feasible, instance for Scenario 1’s

observed demand was determined to be Instance 1, and the best, and only feasible,

instance for Scenario 2’s observed demand was determined to be Instance 3. It is also

seen in Figure 6.1 that these two feasible solutions provided the two best results for the

expected coverage and relocation cost for the planning week.

Instance 3’s solution implemented for Scenario 2’s observed demand provided the

highest expected coverage (94.99%), and lowest relocation cost (399.69), for the plan-

ning week, shown in Table 6.2. However, the percentage calls left uncovered is 1.01%,

where 2.69% are P1 and 0.06% are P2 calls.

Instance 1’s solution implemented for Scenario 1’s observed demand provided the

second highest expected coverage (92.96%), and the second lowest relocation cost

(557.27). The percentage calls left uncovered is 0.67%, with all calls classified as P1.

In terms of the number of calls left uncovered Instance 1 is the better option.

However, the higher expected coverage found with Instance 3 means that the number

of Scenario 2 observed calls covered have a higher probability of actually being reached

within the specific response time standards. The final choice between Instance 1 and

Instance 3 for the WC ECC’s real-world instance when looking at the percentage of calls

left uncovered and the probability of the covered calls actually being reached within the
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response time target is purely a medical one and cannot be determined in this project.

The winning instance for both scenarios is the one that implemented the relaxed

ambulance allocation constraint. Therefore, it is concluded that for both Scenario 1,

when the “golden hour” philosophy is implemented, and Scenario 2, when calls are

handled according to their incident type, the WC ECC should be able to improve their

expected coverage with the current, or even smaller, fleet size if holding site placement,

ambulance allocation, and relocation decisions are made in anticipation of possible

future demand.

It could be that if the MCN value was to be increased that the results for the

original ambulance allocation constraint, i.e. Instance 2 and Instance 4, would be

better, but the choice of the MCN value is limited by the realistic run time available

for solving for the week planning horizon. In an ideal environment, the model would

be allowed to run for an exceedingly longer time in order to explore a larger part of

the solution space. This is not a feasible option for such large time specific problems,

since the time required would be greater than that which is available for the decision

to be made, i.e. when a recommended solution is finally found it would not be useful

any more as these problems are time specific.

The actual percentage calls that were covered during the planning week, 2016/01/01

- 2016/01/07, was determined from the historical data provided by the WC ECC, for the

real-world instance. The calculations were done in terms of the two scenarios to allow

for comparison with each scenario’s best instance. The actual percentage calls that were

covered are shown in Table 6.5, for Scenatio 1, 33% percent of calls were covered and

for Scenario 2, 38%. The highest expected coverage found for Scenario 1’s observed

demand with the DST was with Instance 1, i.e. the relaxed ambulance allocation

constraint, and the value was 92.96%. The highest expected coverage found for Scenario

2’s observed demand was also with the relaxed ambulance allocation constraint, i.e.

Instance 3, and the value was overall the best with 94.99%. The difference between the

actual percentage coverage and the DST’s best instance’s solution’s expected percentage

coverage is significant, exceeding 150% for both scenarios. However, it is important to

note that it is invalid to compare these values like-for-like as a significant number of

real-world factors, including the specific road conditions at the time of each call, the

responsiveness of both the ECC operator handling the call and the ambulance team

involved, and the communication connection between the ECC call operator and the
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ambulance team, influence the real-world response rate and could not be modelled in

the DST. However, even when these factors are taken into account, the discrepancy

between the historical and predicted performance presented in Table 6.5 is sufficient to

convincingly demonstrate the potential of the DST to assist the WC ECC in further

improving their response time and coverage.

Table 6.5: Actual historical performance contrasted with predicted DST-assisted per-

formance for the week 2016/01/01 - 2016/01/07.

Percentage calls covered1

Without DST-assistance2 With DST-assistance3

Scenario 1 32.56% 92.96%

Scenario 2 37.56% 94.99%

6.8 Recommendations for future use

In Section 6.7 it was concluded that Instance 1 is the best for Scenario 1 and Instance

3 is the best for Scenario 2. The final choice between these two instance for the WC

ECC’s real-world instance is purely a medical one and cannot be determined in this

project. However, it was concluded that the WC ECC should be able to improve their

expected coverage with the current, or even smaller, fleet size if holding site placement,

ambulance allocation, and relocation are done in anticipation of possible future demand.

Therefore, if the DST is to be tested at the WC ECC the relaxed ambulance allocation

constraint should be implemented for both scenarios. The instance-specific results

should be compared and medical input should be gathered to conclude which is the

best scenario for the WC ECC’s real-world instance.

If possible the DST’s coding should be improved to the point that the MCN value

of the ABC algorithm can be increased without a large increase in the run time. This

would allow for a greater exploration of the search space, which is required for Instance

1It is invalid to compare these values on a like-for-like basis, refer to the accompanying text.
2Based on historical performance data obtained from the WC ECC for the week 2016/01/01 -

2016/01/07.
3Based on the predicted performance of the DST for Instance 1 and Instance 3 respectively, on the

observed demand.
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2 and Instance 4. The expectation is that it should be possible to find a solution

for Instance 1, i.e. Scenario 1 with the original ambulance allocation constraint, and

Instance 4, i.e. Scenario 2 with the original ambulance allocation constraint, which

is feasible. However, the results are not expected to be better than those found for

Instance 1 and Instance 3, respectively. The results would provide the WC ECC with

a better idea of what is possible with their current fleet.

Finally, if the forecasting process has to be repeated for any new historical data or

scenario then the control parameter selection process, set out in Section 5.5.3, should

be followed.

6.9 Validation and verification

Validation and verification is not a step that is done only once at a certain point

during the creation of a model or simulation; it is an activity that needs to be done

continuously throughout the creation and testing processes, and even after the model

or simulation is finished (Balci, 1997). Validation deals with building the right model

and verification with building the model correctly (Balci, 1997; Robinson, 1997).

Model validation evaluates whether the model, behaves with satisfactory accuracy

according to the model’s objectives within its application environment (Balci, 1997;

Robinson, 1997). This means testing the model’s results for accuracy and comparing

the results to what was expected. Model verification is the process of substantiating

that the conceptual model has been transformed into a computer model with sufficient

accuracy (Balci, 1997; Robinson, 1997). Sufficient accuracy refers to the fact that no

model is 100% accurate. Also, this accuracy refers to the model’s purpose; therefore

the objectives of a model need to be known before it can be validated and verified

(Robinson, 1997).

The DST’s forecasting and solution processes were validated and verified during its

creation and after it was finished. The historical call data also had to be validated, to

ensure that the data is sufficiently accurate for its purpose as input for the forecasting

method, SSA. This validation was done in Section 5.2.2, where it was determined that

the data does not contain outliers. Whenever new data is added to the DST’s historical

data, it will have to be validated again.
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The validation of the forecasting method started in Section 3.2, where the decision

concerning the forecasting method was based on research. The SSA method was chosen

for its ease of use, robustness, and the fact that it has been used to forecast ambulance

demand before (Gillard & Knight, 2014; Vile et al., 2012) and was deemed to outperform

methods currently used. To improve the likelihood of implementing the SSA algorithm

correctly, i.e. verification process, it was decided to use a tested SSA Matlab code

created by Tkachev (2014). Also, the predicted demand was compared to the actual

demand using a forecast-accuracy metric, RMSE. The SSA’s user-selected values –

window length and number of components to use to reconstruct the time series – per

scenario were selected after a number of combinations were tested; the combination

with the highest accuracy, for each scenario, in terms of time and location was finally

selected. This was done in Section 5.5.2 for Scenario 1 and in Section 6.3 for Scenario

2. The validation of the accuracy of the SSA method for the project could only be done

internally, because no access was provided to a second independent data set.

The solution process of the DST consists of the problem model, i.e. the extended

Q-MALP, and the solution methods, i.e. the ABC algorithm and simplex method. The

choice of problem model was based on research done on similar problems (Section 3.7)

and on the requirements of the WC ECC’s real-world instance (Chapter 4), i.e. the

objectives.

The model formulation was validated also by comparing the extended QMALP

model, as implemented by Andrade & Cunha (2015), to the original Q-MALP (Mar-

ianov & ReVelle, 1996) and a problem-specific implemented Q-MALP (Ghani, 2012).

This was done in Section 4.2.2, therefore it was not assumed that Andrade & Cunha

(2015) adapted the model without any mistakes and the model’s formulation was vali-

dated. The functionality of the formulated model was validated during scenario anal-

ysis.

The validation of the solution method for the location-allocation phase of the ob-

jective function of the model started in Section 3.9 with research on meta-heuristics.

The ABC algorithm was chosen based on its ease of use and the fact that it had been

used to solve the model for a similar problem. The solution method’s functionality

was validated during scenario analysis. A Matlab code for the basic ABC algorithm

created by Heris (2015), was used and modified for use on constrained optimisation.
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Figure 6.2: Convergence graph: Instance 3; 2016/01/01’s night shift.

The changes were based on work done by Karaboga & Basturk (2007), Brajevic (2010),

and Karaboga & Akay (2011).

The results in Sections 6.5.1 - 6.6.3 form part of scenario analysis. This was used to

determine whether the modified ABC algorithm converged. If it does converge, it shows

that the solution method behaves with satisfactory accuracy (validation) and that it

was transformed into the coded Matlab correctly (verification). Figure 6.2 shows the

convergence graph for the modified ABC algorithm, when Instance 3 was solved for

2016/01/01’s night shift’s Scenario 2 predicted demand rates. Though the modified

ABC algorithm coded in the DST aimed to minimise the objective function value, the

negative sign was omitted for the graph. Therefore, since the plot moves towards the

maximum it can be stated that the coded ABC algorithm does converge.

The relocation phase of the objective function of the model required its own solution

method. The relocation problem was defined and described as a minimum cost flow

problem in Section 4.3.2. It was also stated that the method most often used to solve

this type of problem is the simplex method. Matlab has a built-in dual-simplex method,

which only requires the problem to be written in a specified form. The build of the

dual-simplex method was therefore verified by Matlab. The results of Matlab’s dual-

simplex method were deemed accurate after the model and solution methods were run

for small problems and the answers were checked by hand. This allowed for a small

127

Stellenbosch University  https://scholar.sun.ac.za



6.10 Conclusion: Scenario analysis

scale validation of the model and both solution methods.

The combination of the problem model and solution methods were tested in this

chapter. The results for the four instances could only be internally validated and

verified, as no access was provided to a second independent data set. The solution

process was, therefore, tested by determining a solution for the planning horizon based

on the predicted demand rates, for each of the four instances, and evaluating the

results. The instances’ solutions’ results for the scenario-specific predicted demand

were validated by applying the solutions to the scenario-specific observed demand rates

and comparing the results. The scenario-specific observed demand rates of the planning

horizon was not part of the input for forecasting the scenario-specific demand rates for

the planning horizon. The results were validated by considering the accuracy of the

solution, while remembering that the results could not be compared like-for-like. This

was done for the four instances in Sections 6.5 to 6.6.3.

If this project were to be taken further, the next step for verification and validation

would be to test the model as-is at the WC ECC. This process will allow for validation

and verification of the DST with its usefulness in reality, where this project could

only consider its usefulness in terms of static historical data. This will also provide

information on which to base improvements to the model and its programming, and

the creation of a user-interface. The process is expected to take a long time, it will most

probably require weeks of observation, tests, and interview in order to gain the required

information. Thereafter, the improvements, reprogramming, and programming of the

user-interface will require more time.

6.10 Conclusion: Scenario analysis

In Chapter 6 the use of the DST for four instances were considered, recommendations

for future use provided, and the validation and verification process followed during

the creation and testing of the DST provided. In Chapter 7 the project summary is

provided and the most significant research findings are highlighted. The value of the

DST for the EMS field and its contributions to the WC ECC in particular, will also be

explained. Finally, opportunities for further study will be discussed.
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Chapter 7

Conclusion

In Chapter 6 the two scenarios and the two implementations of the ambulance allocation

constraint, which form the four instances for which the DST was run, were explained.

The resulting solutions were then applied to the scenario-specific observed demand

rates and compared. The best instance for each scenario for the WC ECC’s real-world

instance was determined and recommendations were made for future use of the concept

demonstrator DST. Finally, the validation and verification process followed during and

after the creation and testing of the DST were explained. In this chapter the project

summary and the research findings are provided. The contributions of the research and

opportunities for further work are also described.

7.1 Project summary

The project was conducted in association with the WC ECC for the purpose of deve-

loping a concept demonstrator DST to assist the dispatchers’ decision-making process

by providing near-optimal holding site node selection per shift, ambulance allocation,

and relocation per hour of that shift, for each day of a week, for the City of Cape Town

and the Cape Winelands municipalities based on predicted ambulance demand rates.

The DST is not created to replace the dispatchers, but provide them with information

on which to base their decisions. Although the concept demonstrator DST was created

specifically for this real-world instance, it can be applied to other real-world instances

with or without minimal modifications. The design type of the project was determined

129

Stellenbosch University  https://scholar.sun.ac.za
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to be statistical modelling and computer simulation, which focusses on the development

and validation of accurate models for real-world circumstances.

Research was conducted regarding the necessity of ambulance efficiency, the role OR

plays in EMS management, DSTs in EMS, ambulance location problem models, and

solution methods. Decisions were made based on this research. The SSA method was

chosen to forecast the ambulance demand, the extended Q-MALP model was chosen

and adapted, and the ABC algorithm was coded to determine the near-optimal solution

for the constrained problem. The real-world instance on which the DST was tested is

six months’ historical call data, 1 August 2015 at 7 A.M. until 29 February 2016 at 06.59

A.M., from the City of Cape Town and the Cape Winelands municipalities, provided

by the WC ECC. The DST was programmed in Matlab, where every ‘*.m’-file contains

the code for a different process.

The completed concept demonstrator DST was run for four instances, i.e. one of

two scenarios with one of two ambulance allocation constraint implementations, and

the input data was the predicted ambulance demand rates. The predicted ambulance

demand for the planning week was predicted with the SSA method, but the historical

demand for the planning week was not part of input for the SSA method. The resulting

solutions for the predicted demand were implemented for the scenario-specific observed

demand. The expected coverage and relocation cost results for the four instances’

solutions implemented on the scenario-specific observed demand were compared and

the best instance for each scenario was identified.

7.2 Research findings

It was determined that the accuracy of the predicted demand with SSA does depend

on the size of the demand nodes and the value of L, the expected periodicity. The

conclusion is that the demand nodes should be chosen to be as small as possible, so long

as the computer can accommodate the increased memory usage required. The smaller

the demand nodes the larger the number of demand nodes for which predictions have

to be made and the more computer memory is required. The number of demand nodes

found to work best for Scenario 1 and Scenario 2 was 10,000 demand nodes. It was

also determined that the best expected periodicity assumption for the two scenarios

was monthly, but that the value for N has to be determined through trial-and-error.
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7.3 Research contributions

The best and the only feasible instance solutions for the observed demand were

found with Instance 1 for Scenario 1 and Instance 3 for Scenario 2. Instance 1 and

Instance 3 have the relaxed ambulance allocation constraint implemented. This led to

the conclusion that the WC ECC should be able to increase their expected coverage

with the current fleet, or even a smaller fleet, provided that the fleet, holding sites

chosen, and relocations are managed based on predicted ambulance demand rates. The

DST cannot replace the dispatchers, but can provide knowledge on which to base their

decisions.

For the entire planning week, Instance 3 provided the highest percentage expected

coverage, 94.99%, and the lowest relocation cost, 399.69, but left 1.01% of the calls

uncovered, where 2.69% are P1 and 0.06% are P2 calls. Instance 1 provided the sec-

ond highest percentage expected coverage, 92.96%, and the second lowest relocation

cost, 557.27, and its percentage calls left uncovered is lower than that of Instance 3,

at 0.67%, with all calls classified as P1. The higher expected coverage found with

Instance 3 means that the number of Scenario 2 observed calls covered have a higher

probability of actually being reached within the specific response time standards. It

was determined that the choice to handle holding site placement, ambulance allocation,

and relocation according to Scenario 1 or Scenario 2 is primarily a medical one and

cannot be determined in this project.

The data presented in Table 6.5 indicates that the actual percentage of calls covered

for the two scenarios, as calculated based on the historical call data, is markedly lower

than the expected percentage coverage determined to be likely for any of the instances

with the DST (refer to Table 6.5). Though it is invalid to compare these performance

statistics on a like-for-like basis, the difference is sufficiently large to conclude that

the DST holds significant potential to assist the WC ECC in further improving their

emergency responsiveness. Further development of this concept demonstrator into a

DST to be implemented at the WC ECC is therefore recommended.

7.3 Research contributions

It is possible to implement an emergency-specific response time standard in first world

countries with accurate historical data, forecasting methods, and call-takers trained

to the point of medical diagnosticians. This is not yet a possibility in most of South
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7.4 Opportunities for further work

Africa’s provinces. However, since the implementation of CareMonX in 2014, the WC

ECC has greatly improved the quality of their data. The use of the CareMonX system

along with a fully equipped version of the concept demonstrator DST emanating from

this project would bring the WC ECC closer to meeting the highest international stan-

dards. In summary, the use of the DST can help dispatchers to make decisions which

should improve the expected ambulance coverage and the efficiency of the ambulance

service.

This project demonstrates that providing dispatchers at ECCs in South Africa with

decision-support on the allocation of ambulances to holding sites based on predicted

demand, has significant potential to improve emergency responsiveness. The concept

demonstrator DST conceptualised and developed in this research provides a basis for

the development of a DST that can be implemented at ECCs in South Africa. However,

it must be made known that the DST cannot and should not replace the dispatchers.

The step-by-step process for selecting the best combination of the number of demand

nodes, L, and N for forecasting spatio-temporal data with SSA, is another contribution.

It provides a starting point from which to expand the research in implementing the SSA

method for forecasting ambulance demand. The method’s popularity is due to its ease

of use, but the control parameter selection is still a difficult and tedious process.

7.4 Opportunities for further work

The concept demonstrator DST was created and used to solve for the WC ECC’s real-

world instance when all calls are considered to be from urban areas. As it stands, the

Matlab code that comprises the DST is not user-friendly, and it requires approximately

20 hours to solve for a shift day. An interesting opportunity for further work would be

to take the concept demonstrator DST, implement it at the WC ECC, and evaluate

whether there is a sufficiently large improvement in performance when its outcome

is used to assist dispatcher decision-making to warrant the investment that would be

required to develop this concept demonstrator into a DST that can be implemented at

ECCs.

It was not possible to test the DST for calls from rural areas, due to a shortage of

rural calls in the historical call data provided by the WC ECC. Call data from a district

with a higher percentage of rural calls was requested in order to test the model in a
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rural setting. The data did contain more rural calls in a larger area than the original

historical data, but it was still deemed too few calls to test the accuracy of the DST

in a rural setting. This project can be expanded on by determining whether the DST’s

accuracy and usefulness holds true when rural call data forms part of the real-world

instance’s data.

Another opportunity, which should be explored along side the previous one, is to

code the DST to run in parallel, which would decrease the run time. Matlab does have

a package for parallel computing, but it was not part of the student license bought and

used for this project. The DST can also be coded in another programming language

which might be able to run the processes faster. The DST also does not have a user

interface, but requires the user to actually make changes in the code, which could cause

problems. If any further work is done a user interface should be added.

7.5 Conclusion

In Chapter 7 a summary of the project was described, and the research findings were

provided. Thereafter, the contributions of this research were explained, and the possible

opportunities for furthering this research were described.
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Appendix A

The inter-facility transport

studies

As mentioned in Section 1.1, the real-world problem was brought in focus by two studies

concerning IFT in South Africa, with a specific focus on maternal emergencies.

The initial focus of this research project was to create a concept demonstrator

Decision Support Tool (DST) for maternal ambulance dispatching. However, the focus

of the project changed when the WC ECC decided to be associated with it. Their needs

moved the project toward improving holding site placement and ambulance allocation.

The two IFT studies still provide necessary background information for this project.

The focus of Study 1 is proving that dedicated Maternal IFT EMS units are needed

to decrease MMR. Study 2 examines implementing the procedural changes of Study 1

for all types of maternal transport in other provinces. It also places a strong emphasis

on the placement of dedicated EMS units in order to determine the best placement for

shorter response times.

A.1 Study 1: Impact of inter-facility transport on ma-

ternal mortality in the Free State province (Schoon,

2013)

The Schoon (2013) study was undertaken to explore the potential impact of dedicated

obstetric IFT on maternal mortality. It took place after the identification of IFT as

a problem in the maternity services in the Free State. This province ranks among
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A.1 Study 1: Impact of inter-facility transport on maternal mortality in
the Free State province (Schoon, 2013)

the highest in terms of its MMR in South Africa. Consequently, the Free State DoH

decided to procure an additional 48 EMS units, of which 18 are dedicated to ma-

ternal care (Schoon, 2013). The Schoon (2013) study also focusses on transport as

a contributing factor because of the De Vries et al. (2011) article, which documents

that access to emergency obstetrics care and decreased transport times to emergency

obstetric facilities can reduce the MMR.

The De Vries et al. (2011) article deals with a retrospective study undertaken be-

tween 2006 and 2008. This study revealed that EMS units and their crews that are

specifically dedicated to maternal and neonatal responses have a significant and bene-

ficial influence on dispatch, response, and mission times. This study was conducted by

METRO EMS for the Cape Town area (De Vries et al., 2011).

It was the findings in the De Vries et al. (2011) article, along with the identification

of IFT as a problem in their maternity service, that led to the changes in the Free State.

Along with the addition of 48 EMS units, these changes included a realignment of the

Free State EMS sector, with primary calls being serviced separately from Maternal

IFT (MIFT). The implementation of dedicated EMS units for maternal and neonatal

responses allowed for a 43% improvement of the Free State’s MMR in 2012, which

decreased from 259 to 147 (Schoon, 2013).

This intervention provided more vehicles with new staff who received an average of

6 weeks of basic obstetric first aid training. Therefore, no improvement was made to

the skill level of MIFT staff, but the new staff did help to avoid depleting facilities of

their skilled midwives during the transfer of patients (Schoon, 2013).

Friction and misunderstandings between management, dispatchers, EMS person-

nel, and midwives were inevitable, and extensive discussions had to be held. These

discussions were to ensure that the dispatchers understood the need for the obstetric

emergency units to be available for MIFTs, as generally they still believed that a pa-

tient outside a healthcare facility should have a higher transportation priority than an

obstetric patient who needs to be transported between facilities (Schoon, 2013). The

findings of this study show that there is a correlation between improvements in MMR

and improved IFT.
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A.2 Study 2: The implementation status of obstetric EMS systems in
selected South African health districts with recommendations for future

development (Yancey & Mould-Millman, 2015)

A.2 Study 2: The implementation status of obstetric EMS

systems in selected South African health districts

with recommendations for future development (Yancey

& Mould-Millman, 2015)

The Yancey & Mould-Millman (2015) study also looked at the De Vries et al. (2011)

article, which considered the effects that dedicated obstetric EMS units can have on

dispatch, response, and mission times. It demonstrated that the effects are extremely

beneficial, according to Yancey & Mould-Millman (2015).

Since the De Vries et al. (2011) article did not consider the impact of the EMS units

on patient outcomes, the Yancey & Mould-Millman (2015) study was undertaken to

ascertain its effects on the MMR. The study investigates the present state of maternal

and neonatal IFT in two provinces, namely KwaZulu-Natal and Mpumalanga. The

results of the investigation in these two provinces were analysed and recommendations

for improvements were made in order for the provinces to surpass the Free State’s

results as shown in the Schoon (2013) study.

From the Schoon (2013) study it was observed that the MMR decrease for the Free

State could only be sustained with the addition of dedicated EMS MIFT units. The

results of the Schoon (2013) study proposed that government should try to replicate and

improve on the study’s results in all provinces. The Yancey & Mould-Millman (2015)

study shows that further investigations were undertaken in determining the feasibility

of implementing the recommendations in other provinces.

The Yancey & Mould-Millman (2015) study followed a predefined step-by-step

method. Firstly, a structured, scripted plan for on-site data and information gath-

ering in KwaZulu-Natal and Mpumalanga was designed. Secondly, presentations on

the challenges faced in maternal and neonatal EMS care were made by the provincial

health districts, and these presentations were audited. Thirdly, data that was collected

was analysed, with a focus on maternal emergency status. Finally, the analysed data

was used to provide generic recommendations that can be used as a framework upon

which to build improvements.
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A.2 Study 2: The implementation status of obstetric EMS systems in
selected South African health districts with recommendations for future

development (Yancey & Mould-Millman, 2015)

A.2.1 Mpumalanga province

The Mpumalanga province consists of three districts with 1 to 1.5 million inhabitants

each. The EMS programme for this province is part of the provincial DoH. This struc-

ture is viewed as beneficial for the purpose of implementing changes similar to those

implemented in the Free State, as it could facilitate the recruitment of EMS as a public

health resource and service, as well as potentially facilitate conducting a population

health survey through emergency call data and patient evaluation information. Ac-

cording to the data, the highest mortality rate and most urgent type of obstetric emer-

gencies in Mpumalanga are related to conditions such as hypertension, pre-eclampsia,

and eclampsia 2 (Yancey & Mould-Millman, 2015).

Based on data collected for the Mpumalanga province in 2013, 20% of the 17,880

emergency calls were obstetric emergency requests. This is the second highest number

of calls recorded for a medical emergency type (Yancey & Mould-Millman, 2015).

The current operational and clinical components of the EMS IFT are inadequate.

None of the districts make use of scripted protocols and no categorisation guidelines

exist for the prioritisation of calls. All ambulances are dispatched from the three dis-

tricts’ ECCs. All the calls, including obstetric calls, are prioritised within a general

pool (Yancey & Mould-Millman, 2015). This places unnecessary pressure on the un-

derstaffed dispatch centres.

A trial-phase re-arrangement of ambulances has been undertaken by the province,

but all the calls are still handled by each district’s ECC. The re-arrangement consists

of four dedicated obstetric units that are stationed at different locations every three

months (Yancey & Mould-Millman, 2015). This arrangement will establish the most

time-efficient geographic postings to achieve the shortest response time to obstetric

emergencies. It was already determined that the existing four dedicated units are not

enough, and twelve more have been ordered (Yancey & Mould-Millman, 2015).

However, this is not the only limiting factor to improving Mpumalanga’s MMR,

since it is estimated that Mpumalanga requires about 83 paramedics but currently

employs only 6. The EMS personnel also do not have scripted critical care protocols for

2Pre-eclampsia: the sudden, sharp rise in blood pressure, swelling (generally fluid retention in the

face, hands and feet), and excess protein in the urine (Nordqvist, 2012); Eclampsia: a pregnant woman,

previously diagnosed with pre-eclampsia, develops seizures, or falls into a coma (Stöppler, 2014).
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A.2 Study 2: The implementation status of obstetric EMS systems in
selected South African health districts with recommendations for future

development (Yancey & Mould-Millman, 2015)

caring for patients in-transit or for referral to institutions (Yancey & Mould-Millman,

2015).

A.2.2 KwaZulu-Natal province

KwaZulu-Natal consists of eleven health districts (DoH: Province of KwaZulu-Natal,

2001). Each district’s problems might vary in some way, but only three of the districts

were included in the Yancey & Mould-Millman (2015) study. The general problems

identified for the three are quite similar.

The most urgent type of obstetric emergency in KwaZulu-Natal stems from haemor-

rhage (Yancey & Mould-Millman, 2015), which is an extremely time-sensitive problem.

Therefore, the availability and activation of rapid response and short transport times

are extremely important to improve KwaZulu-Natal’s MMR.

The district ECCs in KwaZulu-Natal do make use of an organised, detailed protocol.

This protocol also differentiates between two types of calls; primary and IFT. However,

no scripted protocol questionnaire or instructions exists for use by dispatchers. The

dispatchers also only receive basic life support level medical training (Yancey & Mould-

Millman, 2015).

The same trial-phase re-arrangement of EMS units that was implemented in Mpuma-

langa was implemented in KwaZulu-Natal’s Uthungulu District. The conclusion again

was that four dedicated obstetric EMS units are not enough (Yancey & Mould-Millman,

2015).

A.2.3 Recommendations

The Yancey & Mould-Millman (2015) study makes a number of generic recommen-

dations concerning the procedures in the ECC, the obstetric response and transport

services, the EMS destination facilities for maternal emergencies, and the EMS quality

improvement and educational initiatives in emergency obstetric care. These recommen-

dations are intended to form a framework of improvement that can be employed in any

province. All of the recommendations made in the Yancey & Mould-Millman (2015)

study are important, but only those that are relevant to this project’s research will be

mentioned.

An interesting recommendation was to move the call processing to a provincial level,

creating a provincial ECC. The dispatching phase would then still be handled at the
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A.2 Study 2: The implementation status of obstetric EMS systems in
selected South African health districts with recommendations for future

development (Yancey & Mould-Millman, 2015)

district ECC, as it is assumed that the personnel there will be the most familiar with the

local geography, traffic, and road patterns. The implementation of this recommendation

will also provide a centralised database at provincial level, which will serve public health

surveillance. The data can then be analysed to make decisions concerning the allocation

of EMS response resource funding, geographic redistribution, and deployment of first

response and transport resources (Yancey & Mould-Millman, 2015).

The dispatch process for the dedicated obstetric EMS units, for MIFT, should be

controlled by a separate operational division at the district’s ECC. This operational

division should gather information through standardised protocols, dispatch the ambu-

lances, and record the dispatch, response, and return time.
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Appendix B

Data collection query

This appendix contains the SQL query that was used by the WC ECC data analyst to

get the 6 months’ call data from their system. The code is shown in Figures B.1 - B.3.

Figure B.1: Data query part 1.
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Figure B.2: Data query part 2.

Figure B.3: Data query part 3.
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Appendix C

Dispatch policies

In this appendix Tables C.1, C.2, and C.3 show the advantages and disadvantages of the

dispatch policies mentioned in Section 2.4.2, along with some that were not mentioned.

The most prevalent dispatch policy in ECC is closest dispatch, since the objective

is generally to minimise the response time (Lim et al., 2011; Poulton & Roussos, 2013).

The closest dispatch policy does not always result in the best choice according to

Andersson & Värbrand (2006) and Schmid (2012).

Consider the existence of two ambulances, A and B, that both have equally large

areas of responsibility. However, ambulance A’s area has a higher call frequency. If

another call from ambulance A’s area where to be received the mean response time

would be lower if B were allowed to respond to some of the calls for which A is the

closer ambulance. The reason for this is that the probability of another call coming from

ambulance A’s area is higher than for ambulance B’s area, meaning that ambulance A

would then be available to respond to the other call (Andersson & Värbrand, 2006).
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Table C.2: Dispatch Policy 2.
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Appendix D

Heat maps: Scenario 1

This appendix contains the figures depicting the heat maps for 20160101’s first twelve

hours for the four combinations of demand nodes, L, and N value discussed in Section

5.5 for Scenario 1. The 5,625 demand nodes, L = 1440, and N = 10 combination’s

heat maps are shown in Figures D.1 - D.3. The 10,000 demand nodes, L = 720, and

N = 8 combination’s heat maps are shown in Figures D.4 - D.6. The 10,000 demand

nodes, L = 720, and N = 20 combination’s heat maps are shown in Figures D.7 - D.9.

The 10,000 demand nodes, L = 720, and N = 80 combination’s heat maps are shown

in Figures D.10 - D.12.

160

Stellenbosch University  https://scholar.sun.ac.za



(a) Observed; HrSeq = 1. (b) Predicted L = 1,440; N = 10; HrSeq = 1.

(c) Observed; HrSeq = 2. (d) Predicted L = 1,440; N = 10; HrSeq = 2.

(e) Observed; HrSeq = 3. (f) Predicted L = 1,440; N = 10; HrSeq = 3.

(g) Observed; HrSeq = 4. (h) Predicted L = 1,440; N = 10; HrSeq = 4.

Figure D.1: Heat maps HrSeq 1 - 4: Nodes 5,625 Observed VS Predicted L = 1,440;

N = 10.
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(a) Observed; HrSeq = 5. (b) Predicted L = 1,440; N = 10; HrSeq = 5.

(c) Observed; HrSeq = 6. (d) Predicted L = 1,440; N = 10; HrSeq = 6.

(e) Observed; HrSeq = 7. (f) Predicted L = 1,440; N = 10; HrSeq = 7.

(g) Observed; HrSeq = 8. (h) Predicted L = 1,440; N = 10; HrSeq = 8.

Figure D.2: Heat maps HrSeq 5 - 8: Nodes 5,625 Observed VS Predicted L = 1,440;

N = 10.
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(a) Observed; HrSeq = 9. (b) Predicted L = 1,440; N = 10; HrSeq = 9.

(c) Observed; HrSeq = 10. (d) Predicted L = 1,440; N = 10; HrSeq = 10.

(e) Observed; HrSeq = 11. (f) Predicted L = 1,440. N = 10 HrSeq = 11.

(g) Observed; HrSeq = 12. (h) Predicted L = 1,440; N = 10; HrSeq = 12.

Figure D.3: Heat maps HrSeq 9 - 12: Nodes 5,625 Observed VS Predicted L = 1,440;

N = 10.
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(a) Observed; HrSeq = 1. (b) Predicted L = 720; N = 8; HrSeq = 1.

(c) Observed; HrSeq = 2. (d) Predicted L = 720; N = 8; HrSeq = 2.

(e) Observed; HrSeq = 3. (f) Predicted L = 720; N = 8; HrSeq = 3.

(g) Observed; HrSeq = 4. (h) Predicted L = 720; N = 8; HrSeq = 4.

Figure D.4: Heat maps HrSeq 1 - 4: Nodes 10,000 Observed VS Predicted L = 720; N

= 8.
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(a) Observed; HrSeq = 5. (b) Predicted L = 720; N = 8; HrSeq = 5.

(c) Observed; HrSeq = 6. (d) Predicted L = 720; N = 8; HrSeq = 6.

(e) Observed; HrSeq = 7. (f) Predicted L = 720; N = 8; HrSeq = 7.

(g) Observed; HrSeq = 8. (h) Predicted L = 720; N = 8; HrSeq = 8.

Figure D.5: Heat maps HrSeq 5 - 8: Nodes 10,000 Observed VS Predicted L = 720; N

= 8.
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(a) Observed; HrSeq = 9. (b) Predicted L = 720; N = 8; HrSeq = 9.

(c) Observed; HrSeq = 10. (d) Predicted L = 720; N = 8; HrSeq = 10.

(e) Observed; HrSeq = 11. (f) Predicted L = 720; N = 8; HrSeq = 11.

(g) Observed; HrSeq = 12. (h) Predicted L = 720; N = 8; HrSeq = 12.

Figure D.6: Heat maps HrSeq 9 - 12: Nodes 10,000 Observed VS Predicted L = 720;

N = 8.
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(a) Observed; HrSeq = 1. (b) Predicted L = 720; N = 20; HrSeq = 1.

(c) Observed; HrSeq = 2. (d) Predicted L = 720; N = 20; HrSeq = 2.

(e) Observed; HrSeq = 3. (f) Predicted L = 720; N = 20; HrSeq = 3.

(g) Observed; HrSeq = 4. (h) Predicted L = 720; N = 20; HrSeq = 4.

Figure D.7: Heat maps HrSeq 1 - 4: Nodes 10,000 Observed VS Predicted L = 720; N

= 20.
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(a) Observed; HrSeq = 5. (b) Predicted L = 720; N = 20; HrSeq = 5.

(c) Observed; HrSeq = 6. (d) Predicted L = 720; N = 20; HrSeq = 6.

(e) Observed; HrSeq = 7. (f) Predicted L = 720; N = 20; HrSeq = 7.

(g) Observed; HrSeq = 8. (h) Predicted L = 720; N = 20; HrSeq = 8.

Figure D.8: Heat maps HrSeq 5 - 8: Nodes 10,000 Observed VS Predicted L = 720; N

= 20.
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(a) Observed; HrSeq = 9. (b) Predicted L = 720; N = 20; HrSeq = 9.

(c) Observed; HrSeq = 10. (d) Predicted L = 720; N = 20; HrSeq = 10.

(e) Observed; HrSeq = 11. (f) Predicted L = 720; N = 20; HrSeq = 11.

(g) Observed; HrSeq = 12. (h) Predicted L = 720; N = 20; HrSeq = 12.

Figure D.9: Heat maps HrSeq 9 - 12: Nodes 10,000 Observed VS Predicted L = 720;

N = 20.
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(a) Observed; HrSeq = 1. (b) Predicted L = 720; N = 80; HrSeq = 1.

(c) Observed; HrSeq = 2. (d) Predicted L = 720; N = 80; HrSeq = 2.

(e) Observed; HrSeq = 3. (f) Predicted L = 720; N = 80; HrSeq = 3.

(g) Observed; HrSeq = 4. (h) Predicted L = 720; N = 80; HrSeq = 4.

Figure D.10: Heat maps HrSeq 1 - 4: Nodes 10,000 Observed VS Predicted L = 720;

N = 80.
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(a) Observed; HrSeq = 5. (b) Predicted L = 720; N = 80; HrSeq = 5.

(c) Observed; HrSeq = 6. (d) Predicted L = 720; N = 80; HrSeq = 6.

(e) Observed; HrSeq = 7. (f) Predicted L = 720; N = 80; HrSeq = 7.

(g) Observed; HrSeq = 8. (h) Predicted L = 720; N = 80; HrSeq = 8.

Figure D.11: Heat maps HrSeq 5 - 8: Nodes 10,000 Observed VS Predicted L = 720;

N = 80.
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(a) Observed; HrSeq = 9. (b) Predicted L = 720; N = 80; HrSeq = 9.

(c) Observed; HrSeq = 10. (d) Predicted L = 720; N = 80; HrSeq = 10.

(e) Observed; HrSeq = 11. (f) Predicted L = 720; N = 80; HrSeq = 11.

(g) Observed; HrSeq = 12. (h) Predicted L = 720; N = 80; HrSeq = 12.

Figure D.12: Heat maps HrSeq 9 - 12: Nodes 10,000 Observed VS Predicted L = 720;

N = 80.
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Appendix E

Forecasting graphs: Scenario 2

In Section 6.3 the reason for only testing with 10,000 demand nodes and an expected

monthly periodicity, i.e. L = 720, for Scenario 2 forecasting was described. Table 6.1

contains the RMSE values for P1 and P2 forecasting with N = 5, 10, 20, 30, 40, and 60.

The best RMSE values, i.e. the lowest, were seen with N = 5, but visual representations

were still needed in order to make a final decision. The decision was made to create line

and scatter graphs for only the four N values which produced the best RMSE values,

i.e. N = 5, 10, 20, and 30. The line and scatter graphs for forecasting for P1 and P2

calls with 10,000 demand nodes and an expected monthly periodicity, i.e. L = 720 for

scenario 2 are shown in Figures E.1 - E.8 for N = 5, 10, 20, and 30. From these figures

it is evident that the forecasting for P1 and P2 follows the observed demand rates for

P1 and P2 best with N = 30 in terms of time and location. The researcher decided to

only create heat maps for N = 30 to substantiate the findings from the line and scatter

graphs. The heat maps for P1 can be seen in Figures E.9 - E.11. The heat maps for

P2 can be seen in Figures E.12 - E.14.
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(a) Line graph 10,000 nodes; L = 720; N = 5: P1 hourly demand rate.

(b) Scatter graph 10,000 nodes; L = 720; N = 5: P1 demand rate per hour per

node.

Figure E.1: Graphs for forecasting P1 with 10,000 nodes and L = 720; N = 5.

(a) Line graph 10,000 nodes; L = 720; N = 5: P2 hourly demand rate.

(b) Scatter graph 10,000 nodes; L = 720; N = 5: P2 demand rate per hour per

node.

Figure E.2: Graphs for forecasting P2 with 10,000 nodes and L = 720; N = 5.
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(a) Line graph 10,000 nodes; L = 720; N = 10: P1 hourly demand rate.

(b) Scatter graph 10,000 nodes; L = 720; N = 10: P1 demand rate per hour per

node.

Figure E.3: Graphs for forecasting P1 with 10,000 nodes and L = 720; N = 10.

(a) Line graph 10,000 nodes; L = 720; N = 10: P2 hourly demand rate.

(b) Scatter graph 10,000 nodes; L = 720; N = 10: P2 demand rate per hour per

node.

Figure E.4: Graphs for forecasting P2 with 10,000 nodes and L = 720; N = 10.
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(a) Line graph 10,000 nodes; L = 720; N = 20: P1 hourly demand rate.

(b) Scatter graph 10,000 nodes; L = 720; N = 20: P1 demand rate per hour per

node.

Figure E.5: Graphs for forecasting P1 with 10,000 nodes and L = 720; N = 20.

(a) Line graph 10,000 nodes; L = 720; N = 20: P2 hourly demand rate.

(b) Scatter graph 10,000 nodes; L = 720; N = 20: P2 demand rate per hour per

node.

Figure E.6: Graphs for forecasting P2 with 10,000 nodes and L = 720; N = 20.
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(a) Line graph 10,000 nodes; L = 720; N = 30: P1 hourly demand rate.

(b) Scatter graph 10,000 nodes; L = 720; N = 30: P1 demand rate per hour per

node.

Figure E.7: Graphs for forecasting P1 with 10,000 nodes and L = 720; N = 30.

(a) Line graph 10,000 nodes; L = 720; N = 30: P2 hourly demand rate.

(b) Scatter graph 10,000 nodes; L = 720; N = 30: P2 demand rate per hour per

node.

Figure E.8: Graphs for forecasting P2 with 10,000 nodes and L = 720; N = 30.
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(a) Observed P1; HrSeq = 1. (b) Predicted P1 L = 720; N = 30; HrSeq = 1.

(c) Observed P1; HrSeq = 2. (d) Predicted P1 L = 720; N = 30; HrSeq = 2.

(e) Observed P1; HrSeq = 3. (f) Predicted P1 L = 720; N = 30; HrSeq = 3.

(g) Observed P1; HrSeq = 4. (h) Predicted P1 L = 720; N = 30; HrSeq = 4.

Figure E.9: Heat maps HrSeq 1 - 4: Nodes 10,000 Observed P1 VS Predicted P1 L =

720; N = 30.
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(a) Observed P1; HrSeq = 5. (b) Predicted P1 L = 720; N = 30; HrSeq = 5.

(c) Observed P1; HrSeq = 6. (d) Predicted P1 L = 720; N = 30; HrSeq = 6.

(e) Observed P1; HrSeq = 7. (f) Predicted P1 L = 720; N = 30; HrSeq = 7.

(g) Observed P1; HrSeq = 8. (h) Predicted P1 L = 720; N = 30; HrSeq = 8.

Figure E.10: Heat maps HrSeq 5 - 8: Nodes 10,000 Observed P1 VS Predicted P1 L =

720; N = 30.
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(a) Observed P1; HrSeq = 9. (b) Predicted P1 L = 720; N = 30; HrSeq = 9.

(c) Observed P1; HrSeq = 10. (d) Predicted P1 L = 720; N = 30; HrSeq = 10.

(e) Observed P1; HrSeq = 11. (f) Predicted P1 L = 720. N = 30 HrSeq = 11.

(g) Observed P1; HrSeq = 12. (h) Predicted L = 720; N = 30; HrSeq = 12.

Figure E.11: Heat maps HrSeq 9 - 12: Nodes 10,000 Observed P1 VS Predicted P1 L

= 720; N = 30.
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(a) Observed P2; HrSeq = 1. (b) Predicted P2 L = 720; N = 30; HrSeq = 1.

(c) Observed P2; HrSeq = 2. (d) Predicted P2 L = 720; N = 30; HrSeq = 2.

(e) Observed P2; HrSeq = 3. (f) Predicted P2 L = 720; N = 30; HrSeq = 3.

(g) Observed P2; HrSeq = 4. (h) Predicted P2 L = 720; N = 30; HrSeq = 4.

Figure E.12: Heat maps HrSeq 1 - 4: Nodes 10,000 Observed P2 VS Predicted P2 L =

720; N = 30.
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(a) Observed P2; HrSeq = 5. (b) Predicted P2 L = 720; N = 30; HrSeq = 5.

(c) Observed P2; HrSeq = 6. (d) Predicted P2 L = 720; N = 30; HrSeq = 6.

(e) Observed P2; HrSeq = 7. (f) Predicted P2 L = 720; N = 30; HrSeq = 7.

(g) Observed P2; HrSeq = 8. (h) Predicted P2 L = 720; N = 30; HrSeq = 8.

Figure E.13: Heat maps HrSeq 5 - 8: Nodes 10,000 Observed P2 VS Predicted P2 L =

720; N = 30.
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(a) Observed P2; HrSeq = 9. (b) Predicted P2 L = 720; N = 30; HrSeq = 9.

(c) Observed P2; HrSeq = 10. (d) Predicted P2 L = 720; N = 30; HrSeq = 10.

(e) Observed P2; HrSeq = 11. (f) Predicted P2 L = 720. N = 30 HrSeq = 11.

(g) Observed P2; HrSeq = 12. (h) Predicted L = 720; N = 30; HrSeq = 12.

Figure E.14: Heat maps HrSeq 9 - 12: Nodes 10,000 Observed P2 VS Predicted P2 L

= 720; N = 30.
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Appendix F

Matlab code

This appendix contains the Matlab code for four of the ‘*.m’-files that form part of the

DST. These ‘*.m’-files are added to provided assistance to any who might wish to do

further work on this project. The first code is that which can be found in Thesis.m.

1 clc;

2 clear;

3 close all;

4

5 %% Add subfolders to directory path to be able to access them

6 %

7

8 currentFolderContents = dir(pwd); % Returns all files and folders

9 % in the current folder

10 currentFolderContents (¬[currentFolderContents.isdir]) = [];

11 % Only keep the folders

12

13 % Start with 3 to avoid '.' and '..'

14 for i = 3:length(currentFolderContents)

15 addpath(['./' currentFolderContents(i).name])

16 end

17

18 %% Import data from Excel

19 % Check that path to file and that Excel file names is correct

20

21 path = 'C:\...\MatlabThesisFiles\';
22

23 matpath = [path 'MatFiles\'];
24
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25 if exist('impdata.mat','file')6= 2

26 tic % Start timer

27

28 filenameRaw = 'ExcelFolder\RawData.xlsx';
29 filenameMat = 'impdata.mat';

30 % Call import function

31 ImpData([path filenameRaw],[matpath filenameMat]);

32

33 importT = toc; % Stop timer and save importT

34 save([matpath 'checkImport.mat'],'importT')

35 end

36

37 %% Save scenario information

38

39 % Scenario information

40 % Save information on the scenario in writable scInfo.mat

41

42 sc = matfile('scInfo.mat','Writable',true);

43

44 % Scenario = 1 ; all demand P1

45 % Scenario = 2 ; demand P1 or P2

46 Scenario = 1; % Scenario

47 % Needed for ProcessData

48 num = 102; % Num to create (num-2)ˆ2 nodes

49

50 sc.path = path;

51 sc.matpath = matpath;

52 sc.num = num;

53 sc.Scenario = Scenario;

54 sc.StartWkDate = 20160101;

55

56 sc.alloRelax = 1; % if 0 = original constr; 1 = relaxed

57 sc.selectRelax = 1; % if 0 = original constr; 1 = relaxed

58

59 %% Process imported data

60 % Process data and create demand arrays required for forecasting

61 processY = 0;

62

63 if processY == 1

64

65 fileMatProData = 'processdata.mat';

66 % Call process imported data function

67 tic

68 ProcessData(num,[sc.matpath fileMatProData]);

69 proDataT = toc;
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70

71 fileMatProDem = 'processdemand.mat';

72 % Call process demand function

73 tic

74 ProcessDemand([sc.matpath fileMatProDem]);

75 proDemT = toc;

76

77 processT = proDataT+proDemT;

78

79 save([sc.matpath 'checkProcess.mat'],'proDataT','proDemT','processT')

80 end

81

82 %% Forecast

83 % First set SSA parameter values

84

85 forecastY = 0;

86

87 if forecastY == 1

88 % SSA parameters

89 L = 720; % Window length; L ≤ Length(Y)/2

90 N = 20; % Number of reconstructed components

91

92 % Load processed demand

93 filename = 'processdemand.mat';

94 pdem = matfile(filename);

95

96 SSA VarD = pdem.SSA VarD;

97 SSA P1 = pdem.SSA P1;

98 SSA P2 = pdem.SSA P2;

99

100 if sc.Scenario == 1

101 tic % Start timer

102 [ForecastVarD,meanRMSE,maxRMSE] = SSAmain(SSA VarD,L,N);

103 forecastT = toc; % Stop and save timer value

104

105 [RMSE,HrlyObsD,HrlyFrcD,ObsDFrcD] = calcRMSE(pdem.VarD, ...

106 ForecastVarD, sc.StartWkDate);

107 %'forecastdemandS1.mat'

108 save([sc.matpath 'forecastdemandS1.mat'],'forecastT',...

109 'ForecastVarD','meanRMSE','maxRMSE','RMSE','HrlyObsD',...

110 'HrlyFrcD','ObsDFrcD')

111 else

112 tic % Start timer

113 % Forecast P1 demand

114 [ForecastP1,meanRMSEP1,maxRMSEP1] = SSAmain(SSA P1,L,N);
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115 forecastTP1 = toc;

116 [RMSEP1,HrlyObsDP1,HrlyFrcDP1,ObsDFrcDP1] = calcRMSE(pdem.P1,...

117 ForecastP1, sc.StartWkDate);

118

119 % Forecast P2 demand

120 tic

121 [ForecastP2,meanRMSEP2,maxRMSEP2] = SSAmain(SSA P2,L,N);

122 forecastTP2 = toc;

123 [RMSEP2,HrlyObsDP2,HrlyFrcDP2,ObsDFrcDP2] = calcRMSE(pdem.P2,...

124 ForecastP2, sc.StartWkDate);

125

126 save([sc.matpath 'forecastdemandS2.mat'],'forecastTP1',...

127 'forecastTP2','ForecastP1','meanRMSEP1','maxRMSEP1',...

128 'RMSEP1','HrlyObsDP1','ObsDFrcDP1','HrlyFrcDP1',...

129 'ForecastP2','meanRMSEP2','maxRMSEP2','RMSEP2','HrlyObsDP2',...

130 'HrlyFrcDP2','ObsDFrcDP2')

131 end

132 end

133

134 %% Save scenario information

135

136 sc.alpha1 = 0.95; % Service reliability value for P1

137 sc.alpha2 = 0.95; % Service reliability value for P2

138 sc.Beta = 0.015; % Relocation influence on objv

139 sc.MCN = 1000; % max ABC cycles

140 sc.ColSiz = 40; % colony size

141 sc.NumAmbDay = 70;

142 sc.NumAmbNight = 55;

143 sc.ambSpd = 60; % Average km/hr

144 sc.rP1 = 15; % response time target P1

145 sc.rP2 = 30; % response time target P2

146 sc.hnum = 30; % (hnum-2)ˆ2 hnodes

147 sc.hcapacity = 10; % Holding site node ambulance capacity

148 sc.NumSelect = 15;

149

150 clearvars -except sc

151

152 %% Create holding site node array

153 % Create hnodes and HoldV. Base the creation of the holding site ...

nodes on

154 % the demand for Scenario 1 and use it for both scenarios

155

156 holdY = 0;

157

158 if holdY == 1
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159 tic % Start timer

160

161 % Create Holdingsite variable (mapping toolbox required)

162 [HoldV,hnodes] = CreateH(sc.hnum,sc.hcapacity,sc.matpath);

163 % holding site 648 is in the ocean

164 HoldV(any(HoldV == 648,2),:)=[];

165

166 DummyH(1,1) = size(hnodes,1)+1; % Nodenum

167 DummyH(1,2) = size(hnodes,1)+1; % Hnum

168 DummyH(1,3) = -33.9348108; % Lat

169 DummyH(1,4) = 18.4894037; % Lon

170 DummyH(1,5) = 100; % hcap

171

172 % Calculate distance between holding site nodes

173 [distHH] = DistanceHH([HoldV;DummyH],sc.ambSpd,sc.hnum);

174

175 save([sc.matpath 'holdingSiteNodes.mat'],'HoldV','distHH','hnodes'...

176 ,'DummyH')

177

178 createHT = toc;

179

180 save([sc.matpath 'checkCreateH.mat'],'createHT')

181 end

182

183 %% Holding site location and ambulance allocation and relocation

184

185 % Load processdata

186 pdat = matfile('processdata.mat');

187 nodes = pdat.nodes;

188 tcall = pdat.tcall;

189 yymmdd = pdat.yymmdd;

190

191 % Load Var

192 v = matfile('Var.mat','Writable',true);

193 v.tcall = tcall;

194

195 % Lood holdingSiteNodes

196 h = matfile('holdingSiteNodes.mat');

197 v.HoldV = h.HoldV;

198 v.hnodes = h.hnodes;

199 v.DummyH = h.DummyH;

200 v.distHH = h.distHH;

201

202 % Load scInfo

203 sc = matfile('scInfo.mat');%,'Writable',true);
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204

205 % Planning horizon

206 [rStr] = find(yymmdd == sc.StartWkDate);

207 wk = yymmdd(rStr:(rStr+6),1);

208

209 tic

210 abcT = zeros(size(wk,1),1);

211

212 for d = 1:2

213 v.ShiftDate = wk(d);

214 if sc.Scenario == 1

215 load forecastdemandS1

216 % Create neighbouthoods

217 [v.W,v.V,v.N] = CreateNeigh(ForecastVarD,v.ShiftDate,v.HoldV,...

218 sc.rP1,nodes,sc.ambSpd);

219 v.VarD = ForecastVarD(logical(ForecastVarD(:,3) == ...

v.ShiftDate),:);

220 else

221 load forecastdemandS2

222 ForecastVarD = [ForecastP1;ForecastP2];

223

224 [WP1,VP1,NP1] = CreateNeigh(ForecastP1,v.ShiftDate,v.HoldV,...

225 sc.rP1,nodes,sc.ambSpd);

226 [WP2,VP2,NP2] = CreateNeigh(ForecastP2,v.ShiftDate,v.HoldV,...

227 sc.rP2,nodes,sc.ambSpd);

228

229 P1 = ForecastP1(logical(ForecastP1(:,3) == v.ShiftDate),:);

230 sizP1 = size(P1);

231 P2 = ForecastP2(logical(ForecastP2(:,3) == v.ShiftDate),:);

232 sizP2 = size(P2);

233

234 v.VarD = [[P1 ones(sizP1(1),1) zeros(sizP1(1),1)];...

235 [P2 zeros(sizP2(1),1) ones(sizP2(1),1)]];

236 v.W = [[WP1 ones(size(WP1,1),1) zeros(size(WP1,1),1)];...

237 [WP2 zeros(size(WP2,1),1) ones(size(WP2,1),1)]];

238 v.V = [[VP1 ones(size(VP1,1),1) zeros(size(VP1,1),1)];...

239 [VP2 zeros(size(VP2,1),1) ones(size(VP2,1),1)]];

240 v.N = [[NP1 ones(size(NP1,1),1) zeros(size(NP1,1),1)];...

241 [NP2 zeros(size(NP2,1),1) ones(size(NP2,1),1)]];

242 end

243

244 % solve for v.ShiftDate

245 tic

246

247 ABCcon();
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248

249 abcT(d) = toc;

250 end

251

252 horizonT = toc;

253

254 save([sc.matpath 'WeekTime.mat'],'abcT','horizonT')

The following Matlab code shows the code found in ABCcon.m.

1 %

2 % Copyright (c) 2015, Yarpiz (www.yarpiz.com)

3 % All rights reserved. Please read the "license.txt" for license terms.

4 %

5 % Project Code: YPEA114

6 % Project Title: Implementation of Artificial Bee Colony in MATLAB

7 % Publisher: Yarpiz (www.yarpiz.com)

8 %

9 % Developer: S. Mostapha Kalami Heris (Member of Yarpiz Team)

10 %

11 % Contact Info: sm.kalami@gmail.com, info@yarpiz.com

12 %

13

14 % Adapted for constrained optimisation. For guidelines read

15 % "Improved Artificial Bee Colony Algorithm for Constrained Problems" by

16 % Brajevic et al. and "A modi?ed Arti?cial Bee Colony (ABC) algorithm for

17 % constrained optimization problems" by Karaboga et al.

18

19 function[]=ABCcon()

20 % Load Var

21 v = matfile('Var.mat');

22 HoldV = v.HoldV;

23 ShiftDate = v.ShiftDate;

24

25 % Load scInfo

26 sc = matfile('scInfo.mat');

27 Beta = sc.Beta;

28

29 % Create Structure

30 ANS.Position = [];

31 ANS.NumAmb = [];

32 ANS.pA = [];

33 ANS.Constraints = [];

34 ANS.Violation = [];
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35 ANS.HrObjV = [];

36 ANS.ShiftObjV = [];

37 ANS.Relocation = [];

38 ANS.HrReloCost = [];

39 ANS.ShiftReloCost = [];

40 ANS.TotObjVCost = [];

41 ANS.YZ = []; % Indicates which demand nodes are covered

42 % by which selected holding site nodes

43

44 % Solution structure

45 Solution = repmat(ANS,[2,1]);

46

47 sizH = size(HoldV); % Size of possible holding site nodes array

48

49 % Loop through both shifts of the ShiftStartDate

50 for sh = 1:2

51 rng('shuffle')

52 %% HOLDING SITE NODE LOCATION AND AMBULANCE ALLOCATION

53 nVar = sizH(1); % Num Decision Var (Dimensions)

54

55 VarSize = [1 nVar]; % Decision Variables Matrix Size

56

57 % Binary

58 VarMinH = 0; % Decision Variables Lower Bound

59 VarMaxH = 1; % Decision Variables Upper Bound

60

61 % Integer, may not exceed holding site node ambulance capacity

62 VarMinA = 0; % Decision Var Lower Bound

63 VarMaxA = max(HoldV(:,5)); % Decision Var Upper Bound

64

65 %% ABC SETTINGS

66

67 MCN = sc.MCN; % Maximum Cycle Number

68

69 ColSiz = sc.ColSiz; % Colony Size

70 nPop = ColSiz/2; % Population Size (Colony Size)

71

72 nOnlooker = ColSiz/2; % Number of Onlooker Bees

73

74 Limit = round(0.6*ColSiz*nVar); % Abandonment Limit Parameter

75 % [0.5*ColSiz*nVar, ColSiz*nVar]

76

77 MR = 0.7; % Modification rate ...

(determines if

78 % variable will be changed or ...
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not)

79 % between [0.3, 0.8]

80

81 SPP = round(0.1*ColSiz*nVar); % Scout Production Period ...

(was 0.5)

82 % [0.1*ColSiz*nVar, ...

2*ColSiz*nVar];

83

84 a = 1; % Acceleration Coeff Upper Bound

85

86 %% Initialization

87 % Initialize Population Array

88 pop = repmat(ANS,[nPop,1]);

89 newbee = repmat(ANS,[1,1]);

90

91 % Initialize Best Solution Ever Found

92 BestSol.TotObjVCost = inf;

93 initialise = 1;

94

95 % Create Initial Population

96 for i = 1:nPop

97 % Create possible holding site node placement

98 pop(i).Position = round(unifrnd(VarMinH,VarMaxH,VarSize));

99

100 [AmbANS] = ...

AmbAllo(pop(i),VarMinA,VarMaxA,VarSize,HoldV,sh,...

101 initialise);

102

103 pop(i).YZ = AmbANS.YZ; % Hnodes ...

coverage

104 pop(i).NumAmb = AmbANS.NumAmb; % Amb alloc for

105 % sh and ...

Position

106 pop(i).pA = AmbANS.pA; % Num avail amb

107 pop(i).Constraints = AmbANS.Constraints; % Constraints

108 pop(i).Violation = AmbANS.Violation; % Num constr

109 % violated

110 pop(i).HrObjV = AmbANS.HrObjV; % Hrly obj ...

value

111 pop(i).ShiftObjV = AmbANS.ShiftObjV; % Shift obj ...

value

112

113 % Determine relocations and cost

114 [R] = Relo(pop(i).NumAmb,pop(i).pA,Beta);

115 pop(i).Relocation = R.r; % ...
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Relocations req

116 pop(i).HrReloCost = R.ReloCost; % Hrly relo ...

cost

117 pop(i).ShiftReloCost = sum(pop(i).HrReloCost);% Shift ...

relo cost

118

119 % ShiftObjV + ShiftReloCost for all hrs

120 pop(i).TotObjVCost = pop(i).ShiftObjV + pop(i).ShiftReloCost;

121

122 if pop(i).TotObjVCost ≤ BestSol.TotObjVCost

123 BestSol = pop(i);

124 end

125 end

126

127 % Abandonment Counter

128 failure = zeros(nPop,1);

129

130 % Array to Hold Best Cost Values

131 BestTotObjVCost = zeros(MCN,4);

132 %TotObjVCost,Violation,ObjV,ReloCost

133

134 %% ABC Main Loop

135 for cycle = 1:MCN

136 %% EMPLOYED BEES

137 % Search for new food sources having more nectar within the

138 % neighbourhood of the current food source. Evaluate a

139 % neighbouring food source.

140 initialise = 0;

141 for i = 1:nPop

142 % Choose k randomly, not equal to i

143 K = [1:i-1 i+1:nPop];

144 k = K(randi(numel(K)));

145

146 % Define Acceleration Coeff. (random num between [-a, a])

147 phi = a*unifrnd(-1,+1,VarSize);

148

149 newbee.Position = pop(i).Position;

150 newbee.NumAmb = pop(i).NumAmb;

151

152 changed = 0;

153 for d = 1:nVar

154 % Uniformly distr random real number in [0,1]

155 Rd = rand;

156

157 if Rd < MR
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158 % New Bee Position

159 newbee.Position(d) = round(pop(i).Position(d) ...

+ ...

160 phi(d).*(pop(i).Position(d) - ...

161 pop(k).Position(d)));

162

163 if newbee.Position(d)<0

164 newbee.Position(d) = 0;

165 else

166 if newbee.Position(d) > 1

167 newbee.Position(d) = 1;

168 end

169 end

170

171 for tp = 1:12

172 newbee.NumAmb(tp,d) = ...

173 round(pop(i).NumAmb(tp,d) ...

174 + phi(d).*(pop(i).NumAmb(tp,d) - ...

175 pop(k).NumAmb(tp,d)));

176

177 if newbee.NumAmb(tp,d) < 0

178 newbee.NumAmb(tp,d) = 0;

179 end

180

181 end

182 changed = changed + 1;

183 end

184 end

185

186 % if no dimension value was changed change at least one

187 if changed == 0

188 d = round(1 + (nVar-1)*rand);

189 newbee.Position(d) = round(pop(i).Position(d) + ...

190 phi(d).*(pop(i).Position(d) - ...

pop(k).Position(d)));

191 for tp = 1:12

192 newbee.NumAmb(tp,d) = ...

round(pop(i).NumAmb(tp,d) ...

193 + phi(d).*(pop(i).NumAmb(tp,d) - ...

194 pop(k).NumAmb(tp,d)));

195 end

196 end

197

198 % Allocate ambulances and evaluate obj value for the ...

shift

194

Stellenbosch University  https://scholar.sun.ac.za



199 [AmbANS] = ...

AmbAllo(newbee,VarMinA,VarMaxA,VarSize,HoldV,...

200 sh,initialise);

201

202 newbee.YZ = AmbANS.YZ; % Hnodes ...

coverage

203 newbee.NumAmb = AmbANS.NumAmb; % Amb alloc for

204 % sh and ...

Position

205 newbee.pA = AmbANS.pA; % Num avail amb

206 newbee.Constraints = AmbANS.Constraints; % Constraints

207 newbee.Violation = AmbANS.Violation; % Num constr

208 % violated

209 newbee.HrObjV = AmbANS.HrObjV; % Hrly obj ...

value

210 newbee.ShiftObjV = AmbANS.ShiftObjV; % Shift obj ...

value

211

212 % Determine relocations and cost

213 [R] = Relo(newbee.NumAmb,newbee.pA,Beta);

214 newbee.Relocation = R.r; % ...

Relocations req

215 newbee.HrReloCost = R.ReloCost; % Hrly relo ...

cost

216 newbee.ShiftReloCost = sum(newbee.HrReloCost); % ...

Shift relo

217 % cost

218

219 % ShiftObjV + ShiftReloCost for all hrs

220 newbee.TotObjVCost = newbee.ShiftObjV + ...

221 newbee.ShiftReloCost;

222

223 % Comparison and tournament selection

224 if newbee.Violation == 0 && pop(i).Violation == 0

225 % if both are feasible choose the better TotObjV

226 if newbee.TotObjVCost ≤ pop(i).TotObjVCost

227 pop(i) = newbee;

228 failure(i) = 0;

229 else

230 failure(i) = failure(i)+1;

231 end

232 else

233 if newbee.Violation > 0 && pop(i).Violation > 0

234 % if both are infeasible choose smaller

235 % infeasibility

195

Stellenbosch University  https://scholar.sun.ac.za



236 if newbee.Violation < pop(i).Violation

237 pop(i) = newbee;

238 failure(i) = 0;

239 else

240 if newbee.Violation == pop(i).Violation

241

242 if newbee.TotObjVCost ≤ ...

pop(i).TotObjVCost

243 pop(i) = newbee;

244 failure(i) = 0;

245 else

246 failure(i) = failure(i)+1;

247 end

248 end

249 end

250 else

251 if newbee.Violation == 0 && pop(i).Violation ...

> 0

252 pop(i) = newbee;

253 failure(i) = 0;

254 else

255 failure(i) = failure(i)+1;

256 end

257 end

258 end

259 end

260

261 %% FITNESS AND SELECTION PROBABILITIES

262

263 fit = zeros(nPop,1);

264 vio = zeros(nPop,1);

265 sumfit = 0;

266 sumvio = 0;

267 for i = 1:nPop

268 fit(i,1) = Fitness(pop(i).TotObjVCost);

269 vio(i,1) = pop(i).Violation;

270 if pop(i).Violation == 0

271 sumfit = sumfit + fit(i,1);

272 else

273 sumvio = sumvio + vio(i,1);

274 end

275 end

276 pm = zeros(nPop,1);

277 for i = 1:nPop

278 if pop(i).Violation == 0
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279 pm(i) = 0.5 + (fit(i,1)/sumfit)*0.5;

280 else

281 pm(i) = (1-(vio(i,1)/sumvio))*0.5;

282 end

283 end

284

285 %% ONLOOKER BEES

286 initialise = 0;

287 for m = 1:nOnlooker

288 % Select Source Site

289 i = RouletteWheelSelection(pm);

290

291 % Choose k randomly, not equal to i

292 K = [1:i-1 i+1:nPop];

293 k = K(randi(numel(K)));

294

295 % Define Acceleration Coeff. (random num between [-a, a])

296 phi = a*unifrnd(-1,+1,VarSize);

297

298 newbee.Position = pop(i).Position;

299 newbee.NumAmb = pop(i).NumAmb;

300

301 changed = 0;

302 for d = 1:nVar

303 % Uniformly distr random real number in [0,1]

304 Rd = rand;

305

306 if Rd < MR

307 % New Bee Position

308 newbee.Position(d) = round(pop(i).Position(d) ...

+...

309 phi(d).*(pop(i).Position(d) - ...

310 pop(k).Position(d)));

311

312 if newbee.Position(d)<0

313 newbee.Position(d) = 0;

314 else

315 if newbee.Position(d) > 1

316 newbee.Position(d) = 1;

317 end

318 end

319

320 for tp = 1:12

321 newbee.NumAmb(tp,d) = ...

322 round(pop(i).NumAmb(tp,d) + ...
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323 phi(d).*(pop(i).NumAmb(tp,d) - ...

324 pop(k).NumAmb(tp,d)));

325

326 if newbee.NumAmb(tp,d) < 0

327 newbee.NumAmb(tp,d) = 0;

328 end

329 end

330 changed = changed + 1;

331 end

332 end

333

334 % if no dimension value was changed change at least one

335 if changed == 0

336 d = round(1 + (nVar-1)*rand);

337 newbee.Position(d) = round(pop(i).Position(d) + ...

338 phi(d).*(pop(i).Position(d) - ...

pop(k).Position(d)));

339 for tp = 1:12

340 newbee.NumAmb(tp,d) = ...

round(pop(i).NumAmb(tp,d) + ...

341 phi(d).*(pop(i).NumAmb(tp,d) - ...

342 pop(k).NumAmb(tp,d)));

343 end

344 end

345

346 % Allocate ambulances and evaluate obj value for the ...

shift

347 [AmbANS] = ...

AmbAllo(newbee,VarMinA,VarMaxA,VarSize,HoldV,...

348 sh,initialise);

349

350 newbee.YZ = AmbANS.YZ; % Hnodes ...

coverage

351 newbee.NumAmb = AmbANS.NumAmb; % Amb alloc for

352 % sh and ...

Position

353 newbee.pA = AmbANS.pA; % Num avail amb

354 newbee.Constraints = AmbANS.Constraints; % Constraints

355 newbee.Violation = AmbANS.Violation; % Num constr

356 % violated

357 newbee.HrObjV = AmbANS.HrObjV; % Hrly obj ...

value

358 newbee.ShiftObjV = AmbANS.ShiftObjV; % Shift obj ...

value

359
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360 % Determine relocations and cost

361 [R] = Relo(newbee.NumAmb,newbee.pA,Beta);

362 newbee.Relocation = R.r; % ...

Relocations req

363 newbee.HrReloCost = R.ReloCost; % Hrly relo ...

cost

364 newbee.ShiftReloCost = sum(newbee.HrReloCost); % ...

Shift relo

365 % cost

366

367 % ShiftObjV + ShiftReloCost for all hrs

368 newbee.TotObjVCost = newbee.ShiftObjV + ...

369 newbee.ShiftReloCost;

370

371 % Comparison and tournament selection

372 if newbee.Violation == 0 && pop(i).Violation == 0

373 % if both are feasible choose the better TotObjV

374 if newbee.TotObjVCost ≤ pop(i).TotObjVCost

375 pop(i) = newbee;

376 failure(i) = 0;

377 else

378 failure(i) = failure(i)+1;

379 end

380 else

381 if newbee.Violation > 0 && pop(i).Violation > 0

382 % if both are infeasible choose smaller

383 % infeasibility

384 if newbee.Violation < pop(i).Violation

385 pop(i) = newbee;

386 failure(i) = 0;

387 else

388 if newbee.Violation == pop(i).Violation

389

390 if newbee.TotObjVCost ≤ ...

pop(i).TotObjVCost

391 pop(i) = newbee;

392 failure(i) = 0;

393 else

394 failure(i) = failure(i)+1;

395 end

396 end

397 end

398 else

399 if newbee.Violation == 0 && pop(i).Violation ...

> 0
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400 pop(i) = newbee;

401 failure(i) = 0;

402 else

403 failure(i) = failure(i)+1;

404 end

405 end

406 end

407 end

408

409 %% SCOUT BEES

410 out =¬rem(cycle,SPP)*(cycle/SPP);
411 if out 6= 0

412 initialise = 1;

413 for i = 1:nPop

414 if failure(i) ≥ Limit

415 pop(i).Position = ...

round(unifrnd(VarMinH,VarMaxH,...

416 VarSize));

417

418 [AmbANS] = AmbAllo(pop(i),VarMinA,VarMaxA,...

419 VarSize,HoldV,sh,initialise);%,alpha1,alpha2);

420

421 pop(i).YZ = AmbANS.YZ; % Hnodes cov

422 pop(i).NumAmb = AmbANS.NumAmb; % Amb ...

allo for

423 % sh and Pos

424 pop(i).pA = AmbANS.pA; % Num avail

425 % amb

426 pop(i).Constraints = AmbANS.Constraints; % Constr

427 pop(i).Violation = AmbANS.Violation; % Num constr

428 % violated

429 pop(i).HrObjV = AmbANS.HrObjV; % Hrly ...

obj val

430 pop(i).ShiftObjV = AmbANS.ShiftObjV; % Shift ...

obj v

431

432 % Determine relocations and cost

433 [R] = Relo(pop(i).NumAmb,pop(i).pA,Beta);

434 pop(i).Relocation = R.r; % Relo req

435 pop(i).HrReloCost = R.ReloCost; % Hrly cost

436 pop(i).ShiftReloCost = sum(pop(i).HrReloCost);

437 % Shift ...

cost

438

439 % ShiftObjV + ShiftReloCost for all hrs

200

Stellenbosch University  https://scholar.sun.ac.za



440 pop(i).TotObjVCost = pop(i).ShiftObjV + ...

441 pop(i).ShiftReloCost;

442

443 failure(i) = 0; % Restart abandonment ...

array

444 end

445 end

446 end

447

448 %% UPDATE BEST SOLUTION EVER FOUND

449 % Comparison and tournament selection

450 if pop(i).Violation == 0 && BestSol.Violation == 0

451 % if both are feasible choose the better TotObjV

452 if pop(i).TotObjVCost ≤ BestSol.TotObjVCost

453 BestSol = pop(i);

454 end

455 else

456 if pop(i).Violation > 0 && BestSol.Violation > 0

457 % if both are infeasible choose smaller

458 % infeasibility

459 if pop(i).Violation < BestSol.Violation

460 BestSol = pop(i);

461 else

462 if pop(i).Violation == BestSol.Violation

463 if pop(i).TotObjVCost ≤ BestSol.TotObjVCost

464 BestSol = pop(i);

465 end

466 end

467 end

468 else

469 if pop(i).Violation == 0 && BestSol.Violation > 0

470 BestSol = pop(i);

471 end

472 end

473 end

474

475 %% STORE BEST TotObjVCost EVER FOUND

476 BestTotObjVCost(cycle,1) = BestSol.TotObjVCost;

477 BestTotObjVCost(cycle,2) = BestSol.Violation;

478 BestTotObjVCost(cycle,3) = BestSol.ShiftObjV;

479 BestTotObjVCost(cycle,4) = BestSol.ShiftReloCost;

480

481 %% DISPLAY CYCLE INFORMATION

482 disp(['ABC Cycle ' num2str(cycle) ' ' num2str(ShiftDate)...

483 ' Shift ' num2str(sh) ...
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484 ': Best TotObjVCost = ' ...

num2str(BestTotObjVCost(cycle)) ...

485 '; ObjV = ' num2str(BestSol.ShiftObjV) ...

486 '; ReloCost = ' num2str(BestSol.ShiftReloCost) ...

487 '; Violation = ' num2str(BestSol.Violation) ]);

488 end % End of ABC

489

490 ANS = BestSol;

491 Solution(sh) = BestSol;

492

493 FName = sprintf('%d Solution Shift %d.mat', ShiftDate, sh);

494 save([[sc.path 'FinalAnswer\'] FName],'BestTotObjVCost')

495

496 end

497 FilName = sprintf('%d Solution.mat', ShiftDate);

498 save([[sc.path 'FinalAnswer\'] FilName],'Solution')

499

500 Performance;

501 Answer;

502 end

The following Matlab code shows the code found in AmbAllo.m.

1 function [AmbANS] = AmbAllo(popsol,VarMinA,VarMaxA,VarSize,HoldV,sh,...

2 initialise)

3

4 sizH = size(HoldV); % Size of possible holding site nodes array

5

6 % Create answer structure

7 AmbANS.Position = [];

8 AmbANS.NumAmb = [];

9 AmbANS.pA = [];

10 AmbANS.Constraints = [];

11 AmbANS.Violation = [];

12 AmbANS.HrObjV = [];

13 AmbANS.ShiftObjV = [];

14 AmbANS.YZ = [];

15

16 AMB = repmat(AmbANS,[12,1]);

17

18 H.Hlocation = [];

19 H.AmbAllocation = [];

20 H.YZ = [];

21 H.Amb = [];
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22

23 Hcov = repmat(H,[12,1]);

24

25 % Ambulance allocation

26 for tp = 1:12

27 AMB(tp).Position = popsol.Position;

28

29 if initialise == 1

30 AMB(tp).NumAmb = ...

31 round(unifrnd(VarMinA,VarMaxA,VarSize)).*AMB(tp).Position;

32 popsol.NumAmb(tp,:) = AMB(tp).NumAmb;

33 else

34 AMB(tp).NumAmb = popsol.NumAmb(tp,:);

35 end

36

37 % Evaluate obj value

38 [AMB(tp).ObjV,AMB(tp).pA,AMB(tp).Constraints,yz,Amb] = ...

39 AlgthesisAlt(popsol.Position,popsol.NumAmb(tp,:),sh,tp);

40

41 AMB(tp).Violation = sum(AMB(tp).Constraints(2:end,:));

42 AMB(tp).YZ = yz;

43 Hcov(tp).Hlocation = AMB(tp).Position;

44 Hcov(tp).AmbAllocation = AMB(tp).NumAmb;

45 Hcov(tp).YZ = AMB(tp).YZ;

46 Hcov(tp).Amb = Amb;

47 end

48

49 ShiftObjV = 0;

50 HrObjV = zeros(12,1);

51 ShiftNumAmb = zeros(12, sizH(1));

52 ShiftConstr = zeros(13, 11);

53 ShiftpA = zeros(12,1);

54

55 % Constraint numbers as header

56 ShiftConstr(1,:) = AMB(1).Constraints(1,:);

57

58 for tp = 1:12

59 ShiftObjV = ShiftObjV + AMB(tp).ObjV;

60 HrObjV(tp,1) = AMB(tp).ObjV;

61 ShiftConstr(tp+1,:) = AMB(tp).Constraints(2,:);

62 ShiftpA(tp,1) = AMB(tp).pA;

63 for h = 1:sizH(1)

64 ShiftNumAmb(tp,h) = AMB(tp).NumAmb(h);

65 end

66 end
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67

68 AmbANS.Position = popsol.Position;

69 AmbANS.NumAmb = ShiftNumAmb;

70 AmbANS.pA = ShiftpA;

71 AmbANS.Constraints = ShiftConstr;

72 AmbANS.Violation = sum(sum(AmbANS.Constraints(2:end,:)));

73 AmbANS.HrObjV = HrObjV;

74 AmbANS.ShiftObjV = ShiftObjV;

75 AmbANS.YZ = Hcov(1:12);

76 end

The following Matlab code shows the code found in AlgthesisAlt.m.

1 function [objV,pA,Constraints,yz,Amb] = AlgthesisAlt(z,y,sh,tp)

2

3 % Load Var

4 v = matfile('Var.mat');

5 VarD = v.VarD; % Demand nodes and demand rate

6 V = v.V; % {hnum,dnum,t {hd}<r}
7 W = v.W; % {dnum,hnum,t {dh}<r}
8 N = v.N; % {dnum,dnum,t {dd}<r}
9 tcall = v.tcall; % service time (average)

10 HoldV = v.HoldV; % Holding site nodes

11

12 % Load scInfo

13 sc = matfile('scInfo.mat');

14 Scenario = sc.Scenario; % if 1 demand is P1, if 2 demand P1 ...

or P2

15 alpha1 = sc.alpha1; % service reliability for P1

16 alpha2 = sc.alpha2; % service reliability for P2

17 NumSelect = sc.NumSelect;

18

19 alloRelax = sc.alloRelax; % specify whether relaxed allocation

20 % constraint or original

21 selectRelax = sc.selectRelax;

22

23 sizPosition = size(z); % Size of array with possible holding ...

sites

24

25 sh1 = [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]; % Shift 1 Hrs

26 sh2 = [19, 20, 21, 22, 23, 24, 1, 2, 3, 4, 5, 6]; % Shift 2 Hrs

27

28 if sh == 1

29 shift = sh1; % hrs equal to shift 1 hrs
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30 pA = sc.NumAmbDay; % Number of ambulances available for ...

shift1

31 else

32 shift = sh2; % hrs equal to shift 2 hrs

33 pA = sc.NumAmbNight; % Number of ambulance available for ...

shift2

34 end

35

36 obj = zeros(1,2);

37 %obj(tp,objective function value)

38

39 VarD t = VarD(logical(VarD(:,2) == shift(tp)),:);

40 % all i \in D at tp (all demand at tp)

41

42 if Scenario == 1

43 Dnode t = VarD t(:,1); % Demand nodes with demand at tp

44 else

45 Dnode t = [VarD t(:,1),VarD t(:,5),VarD t(:,6)];

46 % Dnode t(Demand node num, 1 if Priority1, 1 if Priority 2)

47 end

48 sizD t = size(VarD t); % Size of VarD t

49

50 if isempty(Dnode t) == 1

51 objV = 0; % objective function value

52 fprintf(1, 'No demand, exiting early.\n');
53 return;

54 else

55 M = zeros(sizD t(1),3); % Min num of amb needed to cover each

56 % Dnum at tp

57 %M(i,M,Rho(i,tp))

58 %M(Dnum, Min num of amb, congestion rate)

59

60 IC = zeros(pA,sizD t(1)); % Calculate incremental coverage

61 %IC(pA = 0: Dnum1, Dnum2, Dnum3,...)

62 %IC(pA = 1: Dnum1, Dnum2, Dnum3,...)

63 %IC(pA = etc....)

64

65 %% INITIALISE NEIGHBOURHOODS

66 % V(j,tim) (subset of all dnum, i, that can be reached from

67 % hnum, j, in less than r at tp)

68 V t = V(logical(V(:,3) == shift(tp)),:);

69 sizV t = size(V t);

70

71 % W(i,tim) (subset of all hnum, j, that can be reached

72 % from dnum, i, in less than r at tp)
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73 %W t = W(logical(W(:,3) == shift(tp)),:);

74

75 % N(i,tim) (subset of all dnum, z, that can be reached

76 % from dnum, i, in less than r at tp)

77 N t = N(logical(N(:,3) == shift(tp)),:);

78

79 %% QUEUEING THEORY

80 % Loop through i \in D with demand at tp

81 for i = 1:sizD t(1)

82 if Scenario == 1 % All demand calssified as P1

83 N it = N t(logical(N t(:,1) == Dnode t(i)),:); % N iˆtp

84 alpha = alpha1; % Service reliability for P1

85 else % Demand classified as P1 or P2

86 N it = N t(logical(N t(:,1) == Dnode t(i,1) & ...

87 N t(:,8) == Dnode t(i,2) & N t(:,9) == ...

88 Dnode t(i,3)),:);

89 if Dnode t(i,2) == 1

90 alpha = alpha1; % Service reliability for ...

Priority 1

91 else

92 alpha = alpha2; % Service reliability for ...

Priority 2

93 end

94 end

95

96 lambda it = sum(N it(:,7));

97 % Sum of demrates of z = demand rate in a queueing system

98 % z \in N(Dnode t(i),tim) that can be reached from i in less

99 % than r minutes

100

101 rho it = lambda it/(24/tcall); % Traffic intensity of system

102

103 QT = zeros(1000,2); % Queuing theory

104 %QT(number of ambulances, numerator/denomenator)

105

106 AmbW = zeros(1000,2); % w - number of ambulances

107 %AmbW(number of ambulances, numerator/denomenator)

108

109 denom = 0; % Denomenator

110 % Loop though 0 to max num of ambulances available in system

111 % Taylor series

112 for pp = 0:pA

113 denom = denom + (rho itˆpp)/(factorial(pp)); % ...

Denomenator

114 numer = (1/factorial(pp))*(rho it)ˆpp; % Numerator
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115 QT(pp+1,1) = pp; % Num amb

116 QT(pp+1,2) = numer/denom;

117 if numer/denom ≤ (1-alpha)

118 AmbW(pp,1) = pp; % Num amb

119 AmbW(pp,2) = numer/denom;

120 end

121 end

122

123 QT(all(QT==0,2),:)=[]; % Delete rows with all 0's

124 AmbW(any(AmbW==0,2),:)=[]; % Delete rows with any 0's

125

126 M(i,1) = Dnode t(i); % Dnum

127 M(i,2) = AmbW(1,1); % Min num of amb needed ...

in N it

128 M(i,3) = rho it; % Traffic intensity of system

129

130 % Calculate incremental coverage

131 for jj = 1:pA

132 IC(jj+1,i) = QT(jj,2) - QT(jj+1,2);

133 end

134 end

135

136 newIC = IC([1:max(M(:,2))+1],:);

137

138 % Loop through demand nodes with demand at tp

139 for i = 1:sizD t(1)

140 for w = 1:max(M(:,2)) % Loop through newIC

141 if w ≥ M(i,2)+1

142 newIC(w+1,i) = 0;

143 end

144 end

145 end

146

147 %% Hold suggested solution

148 yz = zeros(sizPosition(2),3 + sizD t(1));

149 % yz(Hnum,1 if chosen, num amb placed at Hnum,...

150 % print dnum1 if t hd ≤ r, print dnum2 if t hd ≤ r, etc)

151

152 % Loop through hnum

153 for kk = 1:sizPosition(2)

154 yz(kk,1) = HoldV(kk,1); % Hnum

155 yz(kk,2) = z(kk); % 1 if holding site chosen

156 yz(kk,3) = y(kk); % num of amb at Hnum

157 end

158
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159 sizYZ = size(yz);

160

161 % Loop through subset of all dnum that can be reached from

162 % hnum at tp; V t.

163 for pp = 1:sizV t

164 % Loop through Dnum

165 for i = 1:sizD t(1)

166 if Scenario == 1

167 % If V t's Dnum = Dnode t's Dnum

168 if V t(pp,2) == Dnode t(i)

169 % Loop through yz

170 for kk = 1:sizYZ(1)

171 % If yz's Hnum = V t's Hnum and z(Hnum) = 1

172 if yz(kk,1) == V t(pp,1) && yz(kk,2) == 1

173 yz(kk,i+3) = V t(pp,2);

174 % Dnum is within r min from selected Hnum

175 end

176 end

177 end

178 else

179 % If V t's Dnum = Dnode t's Dnum

180 if V t(pp,2) == Dnode t(i,1) && ...

181 V t(pp,8) == Dnode t(i,2) && ...

182 V t(pp,9) == Dnode t(i,3)

183 % Loop through yz

184 for kk = 1:sizYZ(1)

185 % If yz's Hnum = V t's Hnum and z(Hnum) = 1

186 if yz(kk,1) == V t(pp,1) && yz(kk,2) == 1

187 yz(kk,i+3) = V t(pp,2);

188 % Dnum within r min from Hnum

189 end

190 end

191 end

192 end

193 end

194 end

195

196 %% Determine obj of suggested solution

197

198 x = zeros(max(M(:,2))+1,sizD t(1));

199 % x(x(w,Dnum), x(w,Dnum), x(w,Dnum), x(w,Dnum)...)

200 % 1 if Dnum is covered by at least w ambulances; first row is ...

w = 0

201

202 numc = zeros(sizD t(1),1);
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203 % number of ambulance covering the demand node

204

205 % Loop through demand

206 for i = 1:sizD t(1)

207 % Loop through yz

208 for kk = 1:sizYZ(1)

209 % if yz's Dnum = Dnode t Dnum and yz's Hnum is selected

210 if yz(kk,i+3) == Dnode t(i) && yz(kk,2) == 1

211 numc(i) = numc(i) + yz(kk,3);

212 % num amb covering Dnum

213 end

214 end

215 end

216

217 % Loop through demand

218 for i = 1:sizD t(1)

219 % Loop through minimum required amb

220 for w = 0:max(M(:,2))

221 if numc(i) ≥ w

222 x(w+1,i) = 1; % within reach of w amb

223 else

224 x(w+1,i) = 0; % not within reach of w amb

225 end

226 end

227 end

228

229 % Loop through demand

230 for i = 1:sizD t(1)

231 % Loop through newIC, incremental coverage

232 for w = 1:max(M(:,2))

233 if w ≥ M(i,2)+1 % if w ≥ minimum needed amb + 1

234 x(w+1,i) = 0;

235 end

236 end

237 end

238 %%

239 d = zeros(1, sizD t(1));

240 % d(demand rate(Dnum))

241

242 % Loop through Demand

243 for jj = 1:sizD t(1)

244 % Loop through Demand

245 for pp = 1:sizD t(1)

246 if Scenario == 1

247 if VarD t(jj,1) == Dnode t(pp)
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248 d(1,pp) = VarD t(jj,4);

249 end

250 else

251 if VarD t(jj,1) == Dnode t(pp,1) && ...

252 VarD t(jj,5) == Dnode t(pp,2) && ...

253 VarD t(jj,6) == Dnode t(pp,3)

254 d(1,pp) = VarD t(jj,4);

255 end

256 end

257 end

258 end

259

260 icx = zeros(1,sizD t(1)); % incremental coverage * x

261

262 % Loop through Demand

263 for kk = 1:sizD t(1)

264 icx(1,kk) = sum(x(:,kk).*newIC(:,kk));

265 end

266

267 % objective function value (minimisation)

268 obj(1,1) = shift(tp); % HrSeq

269 obj(1,2) = sum(-d(1,:).*icx(1,:));% Expected coverage

270

271 %% Inequality constraints (constraints must be converted to ≤ 0)

272 Constraints = zeros(11,2);

273 %Constraints(Constraint number, 1 if constraint is violated)

274

275 % CONSTRAINT (10), ensure that every dnum, i, is covered at

276 % least once within r minutes, at every tp

277

278 % \sum {j \in V {i}ˆ{tp}} y {j}ˆ{t} ≥ 1

279 % - \sum {j \in V {i}ˆ{tp}} y {j}ˆ{t} + 1 ≤ 0

280

281 con1 = zeros(sizD t(1),1);

282 %Amb = zeros(sizD t(1),3);

283 Amb = zeros(sizD t(1),4);

284 %Amb(Dnum, Priority, #Demand, Min Amb, #Amb)

285

286 % Loop through demand

287 for i = 1:sizD t(1)

288 if Scenario == 1

289 V it = V t(logical(V t(:,2) == Dnode t(i)),:);

290 else

291 V it = V t(logical(V t(:,2) == Dnode t(i,1) & ...

292 V t(:,8) == Dnode t(i,2) & V t(:,9) == ...
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293 Dnode t(i,3)),:);

294 end

295 sizVit = size(V it);

296

297 numy = 0;

298 % Loop through yz

299 for kk = 1:sizYZ(1)

300 % Loop through V it

301 for jj = 1:sizVit(1)

302 %if yz's Hnum = V it's Hnum, then count Amb num

303 if yz(kk,1) == V it(jj,1)

304 numy = numy + yz(kk,3);

305 % number of ambulances covering i

306 end

307 end

308 end

309 con1(i,1) = -numy + 1;

310

311 %Amb(Dnum, Priority, #Demand, Min Amb, #Amb)

312 Amb(i,1) = Dnode t(i,1);

313 if Scenario == 1

314 Amb(i,2) = 1;

315 else

316 if Dnode t(i,2) == 1

317 Amb(i,2) = 1;

318 else

319 Amb(i,2) = 2;

320 end

321 end

322 Amb(i,3) = VarD t(i,4);

323 Amb(i,4) = M(i,2); % minimum amb required to ...

cover i

324 Amb(i,5) = numy; % number of amb covering i

325 end

326

327 n1 = max(con1); % if any of con1 is positive it means one or more

328 % demand nodes are uncovered

329

330 conrow = 1;

331 Constraints(conrow,1) = 10; % Constraint number

332 if n1 > 0

333 Constraints(conrow,2) = 1;

334 %No ambulance covering one or more demand nodes at tp

335 conrow = conrow + 1;

336 else
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337 Constraints(conrow,2) = 0;

338 conrow = conrow + 1;

339 end

340

341 % CONSTRAINT (11), ensure that enough ambulances are ...

allocated to

342 % ensure proper coverage to each Dnum i

343

344 % \sum {j \in V iˆtp} y jˆtp ≥ \sum {w = 1}ˆ{M iˆtp} x iˆw.tp

345 % -\sum {j \in V iˆtp} y jˆtp + \sum {w = 1}ˆ{M iˆtp} ...

x iˆw.tp ≤ 0

346

347 con2 = zeros(sizD t(1),1);

348

349 % Loop through demand

350 for i = 1:sizD t(1)

351 numy = Amb(i,5); % num of amb covering i

352 con2(i,1) = -numy + sum(x(2:end,i));

353 end

354

355 % count by how many ambulances demands are uncovered

356 n2 = 0;

357 % Loop through demand

358 for i = 1:sizD t(1)

359 if con2(i,1) > 0

360 n2 = n2 + con2(i,1);

361 end

362 end

363

364 Constraints(conrow,1) = 11;

365 if n2 > 0

366 Constraints(conrow,2) = 1;

367 % Not enough amb to ensure proper coverage of a demand node

368 conrow = conrow + 1;

369 else

370 Constraints(conrow,2) = 0;

371 conrow = conrow + 1;

372 end

373

374 % CONSTRAINT (12)

375 % Demand node i is covered by w amb only if its is covered by

376 % w-1 (w \in {2,3,...,M iˆtp})
377

378 % x iˆw.tp ≤ x iˆ(w-1).tp

379 % x iˆw.tp - x iˆ(w-1).tp ≤ 0
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380

381 sizx = size(x);

382 con3a = zeros(sizx(1)-1,sizx(2));

383

384 % Loop through x-axis (Demand)

385 for pp = 1:sizx(2)

386 % Loop through y-axis (num amb)

387 for jj = 2:(sizx(1)-1)

388 con3a(jj-1,pp) = (x(jj+1,pp) - x(jj,pp));

389 if con3a(jj-1,pp) < 0

390 con3a(jj-1,pp) = 0;

391 end

392 end

393 end

394

395 con3 = sum(con3a,1); % if constr not violated it ...

should be 0

396 n3 = sum(con3);

397

398 Constraints(conrow,1) = 12;

399 if n3 > 0

400 Constraints(conrow,2) = 1;

401 % A Dnum is covered by w, but not by (w-1) ambulances

402 conrow = conrow + 1;

403 else

404 Constraints(conrow,2) = 0;

405 conrow = conrow + 1;

406 end

407

408 % CONSTRAINT (13)

409 % Specify that available ambulances must be assigned to selected

410 % stations

411

412 con4 = zeros(sizYZ(1),1);

413

414 % Loop through yz's Hnum

415 for kk = 1:sizYZ(1)

416 con4(kk,1) = -pA*yz(kk,2) + yz(kk,3);

417 end

418

419 n4 = max(con4);

420

421 Constraints(conrow,1) = 13;

422 if n4 > 0

423 Constraints(conrow,2) = 1;

213

Stellenbosch University  https://scholar.sun.ac.za



424 % Not all amb are assigned to selected holding site nodes

425 conrow = conrow + 1;

426 else

427 Constraints(conrow,2) = 0;

428 conrow = conrow + 1;

429 end

430

431 % CONSTRAINT (19)

432 % Ensure that capacity restrictions at each holding site node is

433 % not exceeded

434

435 cap = zeros(sizYZ(1),2);

436 % cap(Hnum, Capacity)

437

438 con5 = zeros(sizYZ(1),1);

439

440 % Loop through yz's Hnum

441 for pp = 1:sizYZ(1)

442 cap(pp,1) = yz(pp,1); % Hnum

443 % If y(j) 6= 0 unequal to 0, i.e. 1

444 if yz(pp,3)6= 0

445 cap(pp,2) = HoldV(pp,5); % Capacity

446 end

447 con5(pp) = yz(pp,3) - cap(pp,2);

448 if con5(pp) < 0

449 con5(pp) = 0;

450 end

451 end

452

453 n5 = sum(con5); % num amb over limit

454

455 Constraints(conrow,1) = 19;

456 if n5 > 0

457 Constraints(conrow,2) = 1;

458 % One ore more Hnum capacity restrictions exceeded

459 conrow = conrow + 1;

460 else

461 Constraints(conrow,2) = 0;

462 conrow = conrow + 1;

463 end

464

465 % CONSTRAINT (20)

466 % Ensure that num amb placed at Hnum j is greater than or

467 % equal to 0 (the integer part of this constraint is done inside

468 % ABCcon)
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469

470 con6 = zeros(sizYZ(1),1);

471

472 % Loop through yz's Hnum

473 for kk = 1:sizYZ(1)

474 con6(kk) = -yz(kk,3);

475 if con6(kk) < 0

476 con6 = 0;

477 end

478 end

479

480 n6 = sum(con6);

481

482 Constraints(conrow,1) = 20; % Constraint number

483 if n6 > 0

484 Constraints(conrow,2) = 1;

485 %Num ambulances at chosen Hnum is less than 0

486 conrow = conrow + 1;

487 else

488 Constraints(conrow,2) = 0;

489 conrow = conrow + 1;

490 end

491

492 % Relaxed constraint 16

493 % CONSTRAINT (16)

494 % Number of stations placed less than or equal to pz

495 % sum(yz(:,2)) - pZ == 0 => sum(yz(:,2)) - pZ ≤ 0

496

497 if selectRelax == 1

498 con7alt = sum(yz(:,2)) - NumSelect;

499

500 Constraints(conrow,1) = 16;

501 if con7alt > 0

502 Constraints(conrow,2) = 1;

503 %Num of Hnum selected > num of Hnum available

504 conrow = conrow + 1;

505 else

506 Constraints(conrow,2) = 0;

507 conrow = conrow + 1;

508 end

509 end

510

511 % Relaxed constrant 18

512 % CONSTRAINT (18)

513 % Specify that less than or exactly pA amb have to be located in
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514 % all time periods

515 % sum(yz(:,3)) - pA == 0 => sum(yz(:,3)) - pA ≤ 0

516 if alloRelax == 1

517 con8alt = sum(yz(:,3)) - pA;

518

519 Constraints(conrow,1) = 18;

520 if con8alt > 0

521 Constraints(conrow,2) = 1;

522 % More ambulances located than is available

523 conrow = conrow + 1;

524 else

525 Constraints(conrow,2) = 0;

526 conrow = conrow + 1;

527 end

528 end

529 %% Equality constraints (X=0)(, become X≥0 and -X≤0)

530

531 % CONSTRAINT (16)

532 % Number of stations placed equal to pz

533 % sum(yz(:,2)) - pZ == 0

534

535 if selectRelax == 0

536 if sum(yz(:,2)) - NumSelect == 0

537 con7 = 0;

538 else

539 con7 = 1;

540 end

541

542 Constraints(conrow,1) = 16;

543 if con7 > 0

544 Constraints(conrow,2) = 1;

545 %Num of Hnum selected > num of Hnum available

546 conrow = conrow + 1;

547 else

548 Constraints(conrow,2) = 0;

549 conrow = conrow + 1;

550 end

551 end

552

553 % CONSTRAINT (18)

554 % Specify that pA ambulaces have to be located in all time ...

periods

555 % sum(yz(:,3)) - pA == 0

556

557 if alloRelax == 0
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558 if sum(yz(:,3)) - pA == 0

559 con8 = 0;

560 else

561 con8 = 1;

562 end

563

564 Constraints(conrow,1) = 18;

565 if con8 ==1

566 Constraints(conrow,2) = 1;

567 %Less than or more than pA ambulances are located

568 conrow = conrow + 1;

569 else

570 Constraints(conrow,2) = 0;

571 conrow = conrow + 1;

572 end

573 end

574

575 %% Integer constraints

576

577 % CONSTRAINT (20)

578 % Ensure that int num of ambulances are placed at each ...

selected j

579

580 con11 = zeros(sizYZ(1),1);

581

582 % Loop through yz's Hnum

583 for pp = 1:sizYZ(1)

584 if mod(yz(pp,3),1) == 0

585 con11(pp,1) = 0;

586 else

587 con11(pp,1) = 1;

588 end

589 end

590

591 n11 = sum(con11);

592

593 Constraints(conrow,1) = 20;

594 if n11 > 0

595 Constraints(conrow,2) = 1;

596 %Number of ambulances placed is not integer

597 conrow = conrow + 1;

598 else

599 Constraints(conrow,2) = 0;

600 conrow = conrow + 1;

601 end
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602

603 %% Binary constraints

604

605 % CONSTRAINT (21)

606 % Check that all values of x() are 0 or 1

607

608 sizx = size(x);

609

610 con12 = zeros(sizx(1)*sizx(2),1);

611

612 % Loop through y-axis

613 for kk = 1:sizx(1)

614 % Loop through x-axis

615 for mm = 1:sizx(2)

616 if x(kk,mm) 6= 0 && x(kk,mm) 6= 1

617 con12(kk*mm,1) = 1;

618 else

619 con12(kk*mm,1) = 0;

620 end

621 end

622 end

623

624 n12 = sum(con12);

625

626 Constraints(conrow,1) = 21;

627 if n12 > 0

628 Constraints(conrow,2) = 1;

629 %x iˆtp is not binary

630 conrow = conrow + 1;

631 else

632 Constraints(conrow,2) = 0;

633 conrow = conrow + 1;

634 end

635

636 % CONSTRAINT (22)

637 % Check that all values of z(Hnum) is 0 or 1

638

639 con13 = zeros(sizYZ(1),1);

640

641 for kk = 1:sizYZ(1)

642 if yz(kk,2) 6= 0 && yz(kk,2) 6= 1

643 con13(kk,1) = 100;

644 else

645 con13(kk,1) = 0;

646 end
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647 end

648

649 n13 = sum(con13);

650

651 Constraints(conrow,1) = 22;

652 if n13 > 0

653 Constraints(conrow,2) = 1;

654 %z j is not binary

655 else

656 Constraints(conrow,2) = 0;

657 end

658

659 %% Objective function value

660 objV = obj(1,2);

661

662 Constraints = Constraints';

663 end

664 end

————————————————————————
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Appendix G

Results

This appendix contains the result tables for the four instances. The results were dis-

cussed in Chapter 6.
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Table G.1: Scenario 1 results with relaxed ambulance allocation constraint, (4.15).

V
io

la
tio

n
#

D
e
m

a
n
d

E
x
p

e
c
te

d
c
o
v
e
ra

g
e

%
E

x
p

e
c
te

d
c
o
v

#
R

e
lo

c
a
tio

n
s

R
e
lo

C
o
st

2
0
1
6
0
1
0
1

S
h

ift1
0

510
477.25

93.58%
187

64.73

S
h

ift2
0

435
383.85

88.24%
236

89.14

2
0
1
6
0
1
0
2

S
h

ift1
0

531
506.40

95.37%
160

42.02

S
h

ift2
0

427
406.51

95.20%
125

32.12

2
0
1
6
0
1
0
3

S
h

ift1
0

514
488.07

94.96%
177

52.77

S
h

ift2
0

431
405.50

94.08%
171

46.76

2
0
1
6
0
1
0
4

S
h

ift1
0

526
502.32

95.50%
175

45.17

S
h

ift2
0

461
427.32

92.69%
197

58.65

2
0
1
6
0
1
0
5

S
h

ift1
0

545
522.75

95.92%
91

22.43

S
h

ift2
0

474
454.48

95.88%
73

16.08

2
0
1
6
0
1
0
6

S
h

ift1
0

493
472.57

95.86%
50

12.04

S
h

ift2
0

443
425.14

95.97%
79

17.40

2
0
1
6
0
1
0
7

S
h

ift1
0

518
491.77

94.94%
145

37.54

S
h

ift2
0

451
432.27

95.85%
77

20.43
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Table G.2: Scenario 1 results with original ambulance allocation constraint, (3.26).

V
io

la
tio

n
#

D
e
m

a
n
d

E
x
p

e
c
te

d
c
o
v
e
ra

g
e

%
E

x
p

e
c
te

d
c
o
v

#
R

e
lo

c
a
tio

n
s

R
e
lo

c
o
st

2
0
1
6
0
1
0
1

S
h

ift1
1
3

510
469.84

92.13%
374

136.27

S
h

ift2
1
1

435
389.27

89.49%
325

120.04

2
0
1
6
0
1
0
2

S
h

ift1
1
2

531
483.32

91.02%
277

89.38

S
h

ift2
1
0

427
402.45

94.25%
256

81.49

2
0
1
6
0
1
0
3

S
h

ift1
1
0

514
473.02

92.03%
288

94.13

S
h

ift2
1
1

431
403.19

93.55%
265

96.26

2
0
1
6
0
1
0
4

S
h

ift1
1
1

526
495.97

94.29%
316

105.21

S
h

ift2
1
1

461
387.92

84.15%
322

120.70

2
0
1
6
0
1
0
5

S
h

ift1
1
0

545
492.10

90.29%
313

89.94

S
h

ift2
1
0

474
445.02

93.89%
243

85.41

2
0
1
6
0
1
0
6

S
h

ift1
1
1

493
416.63

84.51%
292

110.25

S
h

ift2
1
0

443
415.50

93.79%
306

102.56

2
0
1
6
0
1
0
7

S
h

ift1
1
1

518
482.85

93.21%
301

104.90

S
h

ift2
1
2

451
420.21

93.17%
310

109.49
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Table G.3: Scenario 1 results for observed data, if solution for relaxed ambulance

allocation constraint, (4.15), was implemented.

V
io

la
tio

n
#

D
e
m

a
n
d

E
x
p

e
c
te

d
c
o
v
e
ra

g
e

%
E

x
p

e
c
te

d
c
o
v

#
R

e
lo

c
a
tio

n
s

R
e
lo

c
o
st

2
0
1
6
0
1
0
1

S
h

ift1
3

672
609.58

90.71%
187

64.73

S
h

ift2
6

522
459.52

88.03%
236

89.14

2
0
1
6
0
1
0
2

S
h

ift1
1

604
565.99

93.71%
160

42.02

S
h

ift2
0

519
484.62

93.38%
125

32.12

2
0
1
6
0
1
0
3

S
h

ift1
1

545
509.67

93.52%
177

52.77

S
h

ift2
4

481
440.53

91.59%
171

46.76

2
0
1
6
0
1
0
4

S
h

ift1
4

633
596.89

94.30%
175

45.17

S
h

ift2
3

520
465.71

89.56%
197

58.65

2
0
1
6
0
1
0
5

S
h

ift1
1

618
589.09

95.32%
91

22.43

S
h

ift2
2

524
494.71

94.41%
73

16.08

2
0
1
6
0
1
0
6

S
h

ift1
2

501
478.52

95.51%
50

12.04

S
h

ift2
5

509
475.62

93.44%
79

17.40

2
0
1
6
0
1
0
7

S
h

ift1
2

527
492.72

93.50%
145

37.54

S
h

ift2
3

426
402.45

94.47%
77

20.43
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Table G.4: Scenario 1 results for observed data, if solution for original ambulance

allocation constraint, (3.26), was implemented.

V
io

la
tio

n
#

D
e
m

a
n
d

E
x
p

e
c
te

d
c
o
v
e
ra

g
e

%
E

x
p

e
c
te

d
c
o
v

#
R

e
lo

c
a
tio

n
s

R
e
lo

c
o
st

2
0
1
6
0
1
0
1

S
h

ift1
1
6

672
603.90

89.87%
374

136.27

S
h

ift2
1
7

522
447.12

85.65%
325

120.04

2
0
1
6
0
1
0
2

S
h

ift1
1
2

604
539.82

89.37%
277

89.38

S
h

ift2
1
2

519
479.30

92.35%
256

81.49

2
0
1
6
0
1
0
3

S
h

ift1
1
0

545
495.75

90.96%
288

94.13

S
h

ift2
1
3

481
449.19

93.39%
265

96.26

2
0
1
6
0
1
0
4

S
h

ift1
1
2

633
594.25

93.88%
316

105.21

S
h

ift2
1
7

520
427.18

82.15%
322

120.70

2
0
1
6
0
1
0
5

S
h

ift1
1
3

618
545.78

88.31%
313

89.94

S
h

ift2
1
2

524
484.68

92.50%
243

85.41

2
0
1
6
0
1
0
6

S
h

ift1
1
1

501
412.85

82.41%
292

110.25

S
h

ift2
1
2

509
458.24

90.03%
306

102.56

2
0
1
6
0
1
0
7

S
h

ift1
1
2

527
482.94

91.64%
301

104.90

S
h

ift2
1
3

426
389.29

91.38%
310

109.49
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Table G.5: Scenario 2 results with relaxed ambulance allocation constraint, (4.15).

V
io

la
tio

n
#

D
e
m

a
n
d

E
x
p

e
c
te

d
c
o
v
e
ra

g
e

%
E

x
p

e
c
te

d
c
o
v

#
R

e
lo

c
a
tio

n
s

R
e
lo

c
o
st

2
0
1
6
0
1
0
1

S
h

ift1
0

436
421.29

96.63%
111

30.79

S
h

ift2
0

372
358.05

96.25%
66

15.57

2
0
1
6
0
1
0
2

S
h

ift1
0

444
428.41

96.49%
89

21.59

S
h

ift2
0

359
347.65

96.84%
84

18.96

2
0
1
6
0
1
0
3

S
h

ift1
0

460
444.11

96.54%
115

27.39

S
h

ift2
0

361
348.80

96.62%
23

5.74

2
0
1
6
0
1
0
4

S
h

ift1
0

440
425.69

96.75%
203

65.59

S
h

ift2
0

372
359.89

96.74%
37

7.30

2
0
1
6
0
1
0
5

S
h

ift1
0

464
448.15

96.58%
188

58.54

S
h

ift2
0

394
380.29

96.52%
51

11.60

2
0
1
6
0
1
0
6

S
h

ift1
0

447
432.95

96.86%
131

40.58

S
h

ift2
0

363
349.83

96.37%
126

34.03

2
0
1
6
0
1
0
7

S
h

ift1
0

437
422.78

96.75%
182

50.57

S
h

ift2
0

362
350.14

96.72%
50

11.45
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Table G.6: Scenario 2 results with original ambulance allocation constraint, (3.26).

V
io

la
tio

n
#

D
e
m

a
n
d

E
x
p

e
c
te

d
c
o
v
e
ra

g
e

%
E

x
p

e
c
te

d
c
o
v

#
R

e
lo

c
a
tio

n
s

R
e
lo

c
o
st

2
0
1
6
0
1
0
1

S
h

ift1
1
0

436
417.45

95.75%
311

114.45

S
h

ift2
1
1

372
358.02

96.24%
275

93.03

2
0
1
6
0
1
0
2

S
h

ift1
1
1

444
416.21

93.74%
345

136.74

S
h

ift2
8

359
341.85

95.22%
297

92.15

2
0
1
6
0
1
0
3

S
h

ift1
1
0

460
443.66

96.45%
299

119.71

S
h

ift2
1
1

361
349.13

96.71%
371

116.70

2
0
1
6
0
1
0
4

S
h

ift1
9

440
419.11

95.25%
254

87.13

S
h

ift2
9

372
354.62

95.33%
292

92.50

2
0
1
6
0
1
0
5

S
h

ift1
9

464
432.89

93.30%
346

122.78

S
h

ift2
1
1

394
379.35

96.28%
363

124.17

2
0
1
6
0
1
0
6

S
h

ift1
1
2

447
419.06

93.75%
335

119.92

S
h

ift2
1
1

363
349.97

96.41%
241

80.00

2
0
1
6
0
1
0
7

S
h

ift1
1
0

437
422.68

96.72%
261

84.73

S
h

ift2
1
0

362
347.71

96.05%
267

95.43
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Table G.7: Scenario 2 results for observed data, if solution for relaxed ambulance

allocation constraint, (4.15), was implemented.

V
io

la
tio

n
#

D
e
m

a
n
d

E
x
p

e
c
te

d
c
o
v
e
ra

g
e

%
E

x
p

e
c
te

d
c
o
v

#
R

e
lo

c
a
tio

n
s

R
e
lo

c
o
st

2
0
1
6
0
1
0
1

S
h

ift1
5

672
631.28

93.94%
111

30.79

S
h

ift2
5

522
490.69

94.00%
66

15.57

2
0
1
6
0
1
0
2

S
h

ift1
4

604
575.63

95.30%
89

21.59

S
h

ift2
8

519
490.79

94.56%
84

18.96

2
0
1
6
0
1
0
3

S
h

ift1
2

545
519.27

95.28%
115

27.39

S
h

ift2
6

481
455.14

94.62%
23

5.74

2
0
1
6
0
1
0
4

S
h

ift1
4

633
600.13

94.81%
203

65.59

S
h

ift2
1

520
498.07

95.78%
37

7.30

2
0
1
6
0
1
0
5

S
h

ift1
1

618
593.47

96.03%
188

58.54

S
h

ift2
6

524
493.46

94.17%
51

11.60

2
0
1
6
0
1
0
6

S
h

ift1
2

501
478.28

95.46%
131

40.58

S
h

ift2
2

509
481.53

94.60%
126

34.03

2
0
1
6
0
1
0
7

S
h

ift1
2

527
506.71

96.15%
182

50.57

S
h

ift2
3

426
405.38

95.16%
50

11.45
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Table G.8: Scenario 2 results for observed data, if solution for original ambulance

allocation constraint, (3.26), was implemented.

V
io

la
tio

n
#

D
e
m

a
n
d

E
x
p

e
c
te

d
c
o
v
e
ra

g
e

%
E

x
p

e
c
te

d
c
o
v

#
R

e
lo

c
a
tio

n
s

R
e
lo

c
o
st

2
0
1
6
0
1
0
1

S
h

ift1
1
5

672
634.42

94.41%
311

114.45

S
h

ift2
1
1

522
493.90

94.62%
275

93.03

2
0
1
6
0
1
0
2

S
h

ift1
1
8

604
555.44

91.96%
345

136.74

S
h

ift2
1
0

519
489.16

94.25%
297

92.15

2
0
1
6
0
1
0
3

S
h

ift1
1
5

545
516.34

94.74%
299

119.71

S
h

ift2
1
7

481
457.84

95.19%
371

116.70

2
0
1
6
0
1
0
4

S
h

ift1
1
2

633
596.19

94.18%
254

87.13

S
h

ift2
1
1

520
484.74

93.22%
292

92.50

2
0
1
6
0
1
0
5

S
h

ift1
1
1

618
565.55

91.51%
346

122.78

S
h

ift2
1
2

524
498.39

95.11%
363

124.17

2
0
1
6
0
1
0
6

S
h

ift1
1
5

501
460.87

91.99%
335

119.92

S
h

ift2
1
3

509
487.01

95.68%
241

80.00

2
0
1
6
0
1
0
7

S
h

ift1
1
4

527
497.73

94.45%
261

84.73

S
h

ift2
1
1

426
405.01

95.07%
267

95.43
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