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Abstract 

Strigolactones are a novel group of phytohormones reported to control branching in plants. 

Strigolactones also plays a pivotal role in the establishment of symbiotic relationships between 

plants and symbiotic fungi. Furthermore, its presence in the soil is responsible for the 

germination of the seeds of devastating plant parasitic plants known as broomrapes and 

witchweeds. They have also been implicated in playing roles in root development and 

architecture, secondary growth, adventitious root formation and leaf senescence. These 

phytohormones are derived from the carotenoid synthetic pathway, with β-carotene as the 

precursor. Several genes and the proteins (enzymes) they code for have been identified by 

reverse and forward genetics. A few components of the perception and signalling mechanism 

have been identified, but most of the pathway remains unknown. This highlights the need for 

more innovative scientific tools in order to fully elucidate the role of strigolactones in higher 

plants. A specific inhibitor of strigolactone signalling and strigolactone-responsive reporter are 

two tools that could aid in the further characterization of this poorly defined pathway.   

In this study, the effects of furanone-derivatives, with the main focus being on 

trimethylbutenolide (TMB), on the growth of Arabidopsis thaliana were investigated. The aim 

of this study was to determine if TMB is a competitive inhibitor of strigolactone signalling, 

because currently there are no known inhibitors of strigolactone signalling available. Having 

such an inhibitor would enable researchers to study the effects of strigolactones in non-model 

plant species where no mutants are available. Such an inhibitor would also aid in the further 

elucidation of the strigolactone signalling pathway. For the second part of this study, an 

attempt was made to create a strigolactone-response reporter construct in A. thaliana that is 

activated only in the presence of exogenously applied strigolactone. Having such a reporter-

construct in A. thaliana would be valuable, as strigolactones are difficult to detect and quantify 

in these plants due to them being bioactive at picomolar concentrations in the plant. Such a 

reporter-construct would also aid in the further elucidation of the strigolactone pathway, the 

discovery of more functions and any interactions with other phytohormones and biochemical 

processes in the plant.  

During this study, it was found that the presence of TMB induced an increase in lateral root 

formation in wild-type A. thaliana seedlings, suggesting that it may act as a competitive 

inhibitor of strigolactone signalling, at least in terms of lateral rooting. It was also found that 

TMB affects the expression of a small group of strigolactone-responsive genes in an opposite 

way than GR24, a racemic mixture of strigolactone analogues. This effect on gene expression 

was observed after prolonged treatment of A. thaliana seedlings with TMB.  For the second 

part of the project, we were unable to create a strigolactone-specific reporter construct, 
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although the results suggest that the 990 bp region immediately upstream of AtBRC1 does 

respond more strongly to the presence of GR24 than the full, native promoter. It was also 

found that the 1480 bp and 990 bp regions immediately upstream of AtBRC1 is already 

severely deregulated version of the native AtBRC1 promoter. From these results, it was 

concluded that DNA binding motif/s for SMAX-like repressor proteins probably lie upstream of 

the 1480 bp promoter region of AtBRC1, while possible strigolactone-responsive motif/s lie 

downstream of the 990bp promoter region of AtBRC1. 
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Opsomming 

Strigolaktone is ‘n nuwe groep fitohormone waaroor daar berig is dat hul vertakking in plante 

reguleer en beheer. Strigolaktone speel ook ‘n deurslaggewende rol in die aanknoping van 

simbiotiese verhoudings tussen plante en arbuskulêre mikorisaie swamme. Verder is die 

teenwoordigheid van strigolaktone in die grond ook verantwoordellik vir die ontkieming van 

die saadjies van verwoestende parasitiese plante beter bekend as besemrape en 

kopseerblomme. Daar word geïmpliseer dat hulle rolle speel in wortelontwikkeling en 

argitektuur, sekondêre groei, onverwagte wortelformasie en blaarveroudering. Hierdie 

fitohormone word afgelei van die karotenoïed sintese padweg, met beta-karoteen as die 

voorloper molekule. Verskeie gene en die proteine (ensieme) waarvoor hulle kodeer is reeds 

geidentifiseer met behulp van keer en stuur genetika. ‘n Paar komponente van die persepsie 

en sein meganismes is reeds geïdentifiseer, maar meeste van die padweg bly grootliks 

onbekend. Dit beklemtoon die behoefte vir meer innoverende wetenskaplike gereedskap om 

die volledige rol van strigolactone in hoër plante te ontrafel. ‘n Strigolaktoon sein-inhibeerder 

en strigolaktoon-spesifieke verklikker is twee instrumente wat kan help met die verdere 

karakterisering van hierdie swak gedefinieërde padweg. 

 Deur die loop van hierdie studie is die effek van furanoon-afgeleides, met trimetielbutenoliet 

(TMB) as die hoof fokus, op die groei van Arabidopsis thaliana ondersoek. Die doel van hierdie 

studie was om te bepaal of TMB ‘n kompeterende inhibeerder van strigolaktoon-seine is, want 

tans is daar geen bekende inhibeerder van strigolaktoon-seine beskikbaar nie. Met so ‘n 

inhibeerder sal wetenskaplikes in staat wees om die effek van strigolaktone in nie-model plant 

spesies waar geen mutante beskikbaar is nie te ondersoek. So ‘n inhibeerder sal ook help met 

die verdure ontrafeling van die strigolaktoon sein padweg. Vir die tweede gedeel van hierdie 

studie is ‘n poging aangewend om ‘n strigolaktoon-reagerende verklikkerkonstruk te skep in 

A. thaliana wat slegs geaktiveer word in die teenwoordigheid van eksogene toegevoegde 

strigolaktone. So ‘n verklikker-konstruk in A. thaliana sal waardevol wees, want strigolaktone 

is moeilik om te bepaal en te kwantifiseer in hierdie plante, te danke aan die feit dat hul aktief 

is by piko-molêre konsentrasies in die plant. So ‘n verklikker-konstruk sou ook help met die 

verdure ontrafeling van volledige strigolaktoon-padweg, die ontdekking van meer funksies en 

enige interaksies met ander fitohormone and biochemiese prosesse in die plant.   

Tydens hierdie studie is daar bevind dat die teenwordigheid van TMB ‘n toename in laterale 

wortelvorming in wilde-tipe A. thaliana saailinge veroorsaak, wat daarop dui dat dit kan dien 

as ‘n kompeterende inhibeerder van strigolaktoon-seine, ten minste in terme van laterale 

wortels. Dit is ook bevind dat TMB ‘n invloed het op ‘n klein groupie van strigolaktoon-

reagerende gene in ‘n teenoorgestelde manier as GR24, ‘n rasemiese mengsel van 
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strigolaktoon-analoë. Hierdie effek op die uitdrukking van gene was waargeneem na 

langdurige behandeling van A. thaliana saailinge met TMB. Vir die tweede gedeelte van 

hierdie projek, was ons nie in staat gewees om ‘m strigolaktoon-spesifieke verklikker-konstruk 

te skep nie, alhoewel die resultate daarop dui dat die 900 bp streek onmiddellik stroomop van 

AtBRC1 sterker reageer in die teenwordigheid van GR24 as die volle, inheemse promotor. 

Daar is ook bevind dat die 1480 bp en 990 bp streke onmiddellik stroomop van AtBRC1 reeds 

‘n dereguleerde weergawe van die inheemse AtBRC1 promotor is. Vanaf hierdie resultate is 

die gevolgtrekking gemaak dat DNS-bindende motief/motiewe vir SMAX-agtige onderdrukker 

proteïne waarskynlik verder stroomop van die 1480 bp promotor streek van AtBRC1 lê, terwyl 

moontlike strigolaktoon-reagerende motief/motiewe stroomaf van die 990 bp promoter streek 

geleë is.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 
 

vii 
 

Acknowledgements 

I would like to thank my supervisor Dr Paul Hills for the guidance and wisdom he has provided 

me over the past two years. Five years ago I sat in one of your first year classes listening 

about the amazing world of biotechnology, in Afrikaans! And today I am privileged to have had 

the opportunity to be your student. I am looking forward on embarking the next part of my 

journey and to more frequent conversations. 

‘’If you’re the smartest one in the room, you’re in the wrong room.’’ – Richard Tirendi  

Then I would like to thank everyone at the IPB, especially the academic staff that made sure 

that the above statement was never true. Thank you for playing a role in my learning curve 

and also asking the right questions. If it’s not challenging and there is no struggle then there’s 

no point being here. I am really privileged to be able to further my studies. Also, all my fellow 

students, you have made the long hours in the lab always interesting.  Bianke, baie dankie vir 

die hulp met al die molekulêre kloning, maar ‘n groter dankie vir al die stimulerende gesprekke. 

Jens, thank you for the opportunity I was given to be part of the IPB.   

Then I would like to thank my peers, who stood by my since honours, supporting me with 

EVERY presentation I had to do. It has been difficult, but without your support I would’ve 

thrown in the towel long ago. Lionel, thank you for the inappropriate conversations. Jacques, 

your dry comments were priceless. Suzane, dankie vir vriendskap en gebede, ek gaan jou 

baie mis. The next three years will not be the same without you.  

Dan wil ek graag hierdie geleentheid gebruik om vir Sumine Marais te bedank vir die al die 

bystand en ondersteuning hierdie afgelope drie jaar. Sonder jou sou hierdie afgelope drie jaar 

moeiliker gewees het, selfs ondraaglik.  

‘n Finale dankie aan al my ander vriende en familie wat altyd ondersteunend was en geluister 

het selfs wanneer julle miskien nie verstaan het nie.  

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 
 

viii 
 

Dedication 

Ek dra graag hierdie tesis op aan my ouers, Marius en Denise Loubser en ons Almagtige God. 

Sonder U is sal NIKS moontlik wees nie, alle eer aan U.  

Ma, Pa, ‘n blote erkenning vir alles wat julle vir my gedoen en beteken het is nie genoeg nie. 

Ek is ewig dankbaar vir julle aanhoudende ondersteuning en bemoediging terwyl ek die 

vryheid gegun is om my passies uit te leef. Ek sal vir ewig dankbaar wees. Ek is baie lief vir 

julle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 
 

ix 
 

TABLE OF CONTENTS 

Declaration           ii 

Abstract           iii 

Opsomming           v 

Acknowledgements          vii 

Dedication           viii 

List of Tables           xii 

List of Figures          xiii 

List of Abbreviations         xvi 

Chapter 1: General introduction        1 

1.1 Background          1 

1.2 Strigolactone and molecules with similar structure and/or activity   2 

1.3 Detection and quantification of strigolactones     5 

1.4 Importance of project        6 

 

Chapter 2: Literature review        7 

2.1 Introduction           7 

2.2 Strigolactones         9 

2.3 Strigolactone, smoke, karrikins and TMB     17 

2.4 Strigolactones : More than just branching inhibitors    18 

2.5 Strigolactone interaction with other phytohormones    21 

2.6 BRC1 (BRANCHED1)        25 

2.7 The aims and objectives of the study      27 

2.7.1 Part 1          27 

2.7.2 Part 2          27 

 

Chapter 3: Effect of TMB on the growth of Arabidopsis thaliana              29 

3.1 Introduction          29 

3.2. Materials and Methods       31 

3.2.1 Chemicals         31 

3.2.2 Surface sterilization of A. thaliana seeds     31 

3.2.3 In vitro growth conditions and physiological growth quantification  31 

3.2.4 In vitro application of treatments      32 

3.2.5 Semi-quantitative RT-PCR analysis      32 

3.2.6 Agarose gel electrophoresis       33 

3.2.7 Statistical analysis        34 

Stellenbosch University  https://scholar.sun.ac.za



 
 

x 
 

3.3 Results and Discussion       35 

3.3.1 Optimization of growth conditions       35 

3.3.2 Effect of different furanone-derivatives on A. thaliana   38 

in vitro 

3.3.3 Effect of different furanone-derivatives on the expression   39 

of strigolactone-responsive genes 

3.4 Concluding remarks and future prospects   44  

 

Chapter 4: Development of a strigolactone-responsive reporter-construct  46 

4.1 Introduction          46 

4.2 Material and Methods        48 

4.2.1 At3g18550 (AtBRC1) in silico promoter analysis    48 

4.2.2 Chemicals         48 

4.2.3 Extraction of genomic DNA (gDNA) from A. thaliana   48 

4.2.4 Preparation of chemically competent E. coli    49 

4.2.5 Preparation of electro competent Agrobacterium tumefaciens   49 

4.2.6 Promoter isolation and cloning into pMDC163.gb    49 

4.2.7 Transforming A. tumefaciens GV3101 by electroporation   52 

4.2.8 Agrobacterium-mediated transformation of A. thaliana    52 

   Col-0, max4 and max2 

4.2.9 Transformant selection and confirmation     53 

4.2.10 Treatments of T2 transformants      53 

4.2.11 Histochemical GUS staining of T2 transformants     54 

4.2.12 Semi-quantitative RT-PCR analysis     54

   4.3 Results and Discussion       55 

4.3.1 At3g18550 promoter analysis      55 

4.3.2 Selection of transgenic lines      59 

4.3.3 Transgenics response to GR24 in vitro     59 

4.3.4 GUS expression of plants grown in peat disks   63 

4.3.5 Semi-quantitative RT-PCR analysis     68 

4.4 Concluding remarks and future prospects   71  

 

Chapter 5: Final conclusions and future prospects     73 

5.1 Conclusions         73 

5.2 Future work         74 

 

References           75 

Stellenbosch University  https://scholar.sun.ac.za



 
 

xi 
 

Addenda           92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 
 

xii 
 

 
 

 
 

33 
 

50 
 

50 
 

54 
 

57 
 

59 
 

65 
 

33 
 

List of Tables 

 

Table 3.1: Primers used for semi-quantitative RT-PCR analysis of strigolactone-

responsive genes in the absence and presence of GR24.  

Table 3.2: PCR cycle conditions for semi-quantitative RT-PCR analysis of 

strigolactone-responsive genes.  

 
Table 4.1: PCR cycle conditions for the amplification of the 1480, 990 and 500 bp 

fragments immediately upstream of AtBRC1 for both GoTaq® and 

Phusion® reactions.  

Table 4.2: Primer sequences used to isolate the 1480, 990 and 500 bp fragments 

immediately upstream of AtBRC1, as well as the T7 and GUS forward and 

reverse primer sequences.  

Table 4.3: Primer sequences used to perform semi-quantitative RT-PCR analysis on 

T2 transformants treated with GR24, Nijmegen-1, NAA and BAP.  

Table 4.4: Most frequently occurring putative promoter binding elements in the 1500 

bp immediately upstream of At3g18550.  

Table 4.5: The number of individual transgenic lines obtained for every individual 

transformation event.  

Table 4.6: Relative levels of expression of AtBRC1 in mature A. thaliana plants 

(Mashiguchi et al., 2009).  

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 
 

xiii 
 

37 
 

3 
 

13 
 

16 
 

22 
 

25 
 

35 
 

List of Figures 

Figure 1.1: Molecular structures of (A) furanone, (B) trimethylbutenolide (TMB), 

naturally occurring strigolactone (C) (+)-strigol, (D) GR24 and (E) KAR1 (3-

methyl-2H-furo[2,3-c]pyran-2-one).  

Figure 2.1: Proposed strigolactone biosynthesis pathway as defined and characterized 

in Arabidopis thaliana (adapted from a figure by de Saint Germain et al., 

2013).  

Figure 2.2: Hypothetical model of strigolactone signalling, starting with the binding of a 

strigolactone molecule binding, followed by the binding of the MAX2 protein 

and subsequently the SMAX1 protein. This is recognized by the SCF 

complex and ubiquitination and proteasome-mediated degradation of D14 

and SMAX1 proteins occurs. An unknown mechanism downstream of this 

cascade then results in strigolactone activity (Zhou et al., 2013).  

Figure 2.3: Schematic diagram of how auxins, cytokinins and strigolactones influence 

one another to eventually regulate bud outgrowth that leads to increased 

branching. Auxin inhibits bud outgrowth through its transport and by 

inhibiting cytokinins biosynthesis through AXR1, while cytokinin export 

stimulates bud outgrowth but stimulates auxin biosynthesis as well. Auxins, 

also through AXR1, stimulates strigolactone biosynthesis while 

strigolactones inhibits bud outgrowth and auxin transport through PIN1.  

Figure 2.4: Phenotypes of A. thaliana brc1 and brc2 versus wild-type (Col-0) (Aguilar-

Martínez et al., 2007). The wild-type plant has the normal apical dominance 

phenotype, while both brc1 and brc2 have numerous secondary branches, 

characteristic of strigolactone biosynthesis and perception mutants.  

Figure 3.1: The effect of a mock treatment (control) and three different concentrations 

of furanone on lateral root formation in A. thaliana max4 seedlings. Bars 

represent the mean of 50 replicates (n=50) ± standard error. Different 

letters indicate values that were determined by one-way ANOVA with 

Fisher’s LSD post-hoc test to be significantly different (P < 0.05) from the 

control.  

Figure 3.2: The effect of a mock treatments and three different concentrations of TMB 

on lateral root formation in A. thaliana Col-0 seedlings. Bars represent the 

mean of 50 replicates (n=50) ± standard error. Different letters indicate 

Stellenbosch University  https://scholar.sun.ac.za

file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443254506
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443254506
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443254506
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443254506
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443254506
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443254506


 
 

xiv 
 

38 
 

40 
 

43 
 

55 
 

56 

60 

63 

65 

66 

values that were determined by one-way ANOVA with Fisher’s LSD post-

hoc test to be significantly different (P < 0.05) from the control.  

Figure 3.3: The effect of different furanone derivatives on lateral root formation in Col-

0 A. thaliana seedlings. Bars represent the mean of 50 replicates (n=50) ± 

standard error. Different letters indicate values that were determined by 

one-way ANOVA with Fisher’s LSD post-hoc test to be significantly different 

(P < 0.05) from the control.  

Figure 3.4: Gene expression of four different strigolactone-responsive genes in A. 

thaliana Col-0 seedlings after being treated with different furanone-

derivatives and a control for 2 weeks. The expression of Actin2 was used 

as a control.  

Figure 3.5: Gene expression of four different strigolactone-responsive genes in two-

week old A. thaliana seedlings after being treated with different furanone-

derivatives and a control for 6 h. The expression of Actin2 is used as a 

control.  

Figure 4.1: Location of At3g18550 on chromosome 3, obtained from The Arabidopsis 

Information Resource (TAIR), tairvm17.tacc.utexas.edu/cgi-

bin/gb2/gbrowse /arabidopsis/?name=AT3G18550, on 

www.arabidopsis.org, Aug 22, 2015.  

Figure 4.2: The 1500 bp region upstream of At3g18550 with putative promoter binding 

elements obtained from three different transcription factor databases.  

Figure 4.3: The presence and location of GUS in pBRC1(-1480):GUS:Col-0, pBRC1(-

1480):GUS:max4, pBRC1(-1480):GUS:max2, pBRC1(-990):GUS:Col-0, 

pBRC1(-990):GUS:max4, pBRC1(-990):GUS:max2 seedlings untreated 

(mock) versus treated with 0.1 µM GR24 for 6 h.  

Figure 4.4: Native expression of GUS in of three four-week old (A) pBRC1(-

1480):GUS:Col-0 and (B) pBRC1(-990):GUS:Col-0 transformants grown in 

peat disks.  

Figure 4.5: Native expression of GUS in three six-week old (A) pBRC1(-

1480):GUS:Col-0 and (B) pBRC1(-990):GUS:Col-0 transformants grown in 

peat disks.  

Figure 4.6: Small symmetrical sites of GUS expression in the serrations of actively 

growing leaves of both pBRC1(-1480):GUS:Col-0 and pBRC1(-

990):GUS:Col-0 transformants.  

Stellenbosch University  https://scholar.sun.ac.za

file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314823
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314823
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314824
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314824
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314824
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314824
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314825
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314825
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314825
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314826
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314826
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314826


 
 

xv 
 

67 

69 

69 

70 

68 

Figure 4.7: Two-week old (A) Untransformed Col-0 and (B) pMDC163 (empty):max4 

plants after being subjected to GUS staining.  

Figure 4.8: The expression of GUS, Actin2 and BRC1 in pooled samples of (A) 

pBRC1(-1480):GUS and (B) pBRC1(-990):GUS in a Col-0 background.  

Figure 4.9: The expression of Actin2 in ten two-week old A. thaliana Col-0 seedlings. 

A dilution series of the same cDNA sample was prepared and the PCR 

reaction repeated for 35 PCR cycles using the different dilutions of the one 

cDNA sample.  

Figure 4.10: Expression of BRC1, GUS and Actin2 in (A) pBRC1(-1480):GUS:Col-0  

(B) pBRC1(-990) and (C) Col-0 wild type plants. All the PCR reactions were 

performed for 35 cycles. The template for the GUS and Actin2 PCR 

reactions were 10 µL of a 1000-time diluted cDNA sample. Half (25 µL) of 

the total PCR reaction volume was loaded onto the agarose gel.  

Figure 4.11: Expression of BRC1, GUS and Actin2 in (A) pBRC1(-1480):GUS:Col-0 

and (B) pBRC1(-990):GUS:Col-0 plants. The PCR reactions were repeated 

for 35 cycles. The template for the GUS and Actin2 PCR reactions was 10 

µL of a 1000-time diluted cDNA, while the template for the BRC1 PCR 

reactions was 2 µL of undiluted cDNA.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stellenbosch University  https://scholar.sun.ac.za

file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314828
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314828
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314829
file:///C:/Users/Hanno/Desktop/Johannes%20Loubser%20MSc%20thesis%20Examinor%20corrections%2011%20Feb%202016.docx%23_Toc443314829


 
 

xvi 
 

List of Abbreviations 

 

ºC degrees Celsius 

µg micro-gram 

µL micro-litre 

µM micromolar (10-6) 

AM arbuscular mycchorhizal (fungi) 

ANOVA analysis of variance 

BAP 6-benzylaminopurine 

bp base pairs 

cDNA complementary deoxyribonucleic acid 

Col-0 Columbia-0 

CTAB cetyl trimethylammonium bromide 

ddH20 deionised distilled water 

DAG days after germination 

DNA deoxyribonucleic acid 

dNTP deoxyribonucleotide triphosphate 

EDTA ethylene diamine tetraacetic acid 

FAA formaldehyde-acetic acid-ethanol 

gDNA genomic deoxyribonucleic acid 

GM genetic modification 

GMO genetically modified organism 

GUS β-glucuronidase 

KAR1 karrikinolide 

kPa kilopascals  

KOH potassium hydroxide 

L litre 

LB Luria Broth 

LRE light responsive element 

M molar 

m/v mass/volume 

mg milligram 

mM millimolar 

MS Murashige and Skoog 

NAA 1-naphthaleneacetic acid 

ng nanogram 
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pg picogram 

pM picomolar 

PCR polymerase chain reaction 

PVP polyvinylpyrrolidone 

RNA ribonucleic acid 

rpm revolutions per minute  

RT-PCR reverse transcription polymerase chain reaction 

s seconds 

SOC super optimal broth with catabolite repression 

T-DNA transfer deoxyribonucleic acid 

TMB trimethylbutenolide 

U units 

V volt 

v/v volume per volume 

WT wild type 

YEP yeast extract phosphate 

xg times gravitational force  

X-Gluc 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid 
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Chapter 1: General Introduction 

‘’To avoid criticism, say nothing, do nothing, be nothing’’ – Fred Shero 

 

1.1 Background 

Strigolactones, molecules consisting of a tricyclic lactone connected to an α,β-unsaturated 

furanone moeiety via an enol ether bridge (Humphrey and Beale, 2006),  were first determined 

to stimulate the germination of broomrapes and witchweeds (Cook et al., 1966), both well-

known root hemiparasites belonging to the Orobanchaceae family. Later it was discovered 

that strigolactones are also the signal responsible for the establishment of a symbiotic 

relationship with arbuscular mycorrhizal fungi (Akiyama et al., 2005) and that they play a role 

in the inhibition of shoot branching (Gomez-Roldan et al., 2008; Umehara et al., 2008). These 

ground-breaking discoveries in plant biology paved the way for a booming increase in 

strigolactone research. Since then, functions other than those described above have been 

connected to strigolactones. Some of these functions include increased resistance to biotic 

(Ha et al., 2014) and abiotic stress, root architecture and development (Koltai, 2011; Ruyter-

Spira et al., 2011), adventitious root formation (Rasmussen et al., 2012a; Rasmussen et al., 

2012b), secondary growth through increased cambium activity (Agusti et al., 2011), 

senescence (Yamada et al., 2014; Ueda and Kusaba, 2015), flowering (Niwa et al., 2013), 

branching of moss protonema (Proust et al., 2011) and light-regulated development (Tsuchiya 

et al., 2010).  

This rapid accumulation of new information on strigolactones has laid an important 

groundwork for further discoveries to be made, in order to fully elucidate the biosynthesis and 

signalling pathway of strigolactones and its subsequent physiological responses. However, 

studying a phytohormone such as strigolactones is challenging owing to it acting at sub-

picomolar (pM) concentrations in plants. In Gossypium hirsutum (cotton) cotton, an average 

of 15 pg strigol are produced each day (Sato et al., 2005). Research tools, such as forward 

and reverse genetics, have been critical in elucidating the components of this unique metabolic 

pathway, but many aspects of the research and components of the biosynthesis and signalling 

pathways remain unknown, highlighting the need for new and/or improved scientific tools. 
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1.2 Strigolactones and molecules with similar structure and/or activity 

The functions of strigolactones, as described above, effectively defined it as a phytohormone 

involved in growth and development, which resulted in studies being directed towards finding 

analogues of strigolactones. Not only would these analogues be an important asset to 

strigolactone research, but they could also hold potential to be used in agriculture. In a 

previous study, such analogues provided important information on branching and hormonal 

activity in Pisum sativum (Boyer et al., 2012; Fukui et al., 2013). The two chemicals of interest 

for the first part of this project are furanone (Fig. 1.1A) and trimethylbutenolide (TMB) (Fig. 

1.1B). Initially, TMB was known as 3,4,5-trimethylbutenolide-2(5H)-one and was also 

purchased as such, but in literature it is referred to as trimethylbutenolide (TMB). The 

molecular structure of furanone is identical to the structure of the D-ring of naturally-occurring 

strigolactones (Fig. 1.1C) and GR24 (Fig. 1.1D), a synthetic strigolactone molecule mixture 

often used in strigolactone research. Trimethylbutenolide (TMB), isolated from smoke, is of 

interest because it is a trimethylated version of furanone and is known to inhibit seed 

germination of Lactuca sativa (Soós et al., 2012). A recent study provided evidence that TMB 

also has the ability to inhibit the germination of certain weed species (Papenfus et al., 2015a). 

The inhibitory characteristics of TMB is due to its antagonistic effect to karrikins (Ghebrehiwot 

et al., 2013a), also isolated from smoke, which are known to positively stimulate germination 

on several plant species, with the most potent germination karrikin being KAR1 (Flematti et al., 

2004; Stevens et al., 2007) (Fig. 1.1E).  

Strigolactones are also known to stimulate germination of parasitic weed species (Cook et al., 

1966). Strigolactones and karrikins share a component in their signalling pathways known as 

MAX2 (Nelson et al., 2011; Waters et al., 2012a). Strigolactones are perceived by an 

enzyme/receptor known as D14, while karrikin are perceived a paralogue of D14, known as 

KAI2 (Guo et al., 2013) With the signalling pathways of these two groups of chemicals being 

intertwined, TMB might also have an antagonistic effect on strigolactone signalling. 
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Figure 1.1: Molecular structures of (A) furanone, (B) trimethylbutenolide (TMB), naturally occurring 

strigolactone (C) (+)-strigol, (D) GR24 and (E) KAR1 (3-methyl-2H-furo[2,3-c]pyran-2-one). 

. 

Biosynthesis inhibitors for strigolactones have been identified and used in strigolactone 

research, including TIS108 (Ito et al., 2010) and TIS13 (2,2-dimethyl-7-phenoxy-4-1H-1,2,4-

triazol-1-yl)heptan-3-ol) (Ito et al., 2011). Fluridone, a carotenoid biosynthetic inhibitor has also 

been used in research aimed at discovering more strigolactone functions and elucidating the 

MAX-pathway (Matusova et al., 2005; Jamil et al., 2010; López-Ráez et al., 2011; Rasmussen 

et al., 2012a). Pleiotropic effects were observed when plants were treated with these 

chemicals, which can be explained by the fact that the carotenoid pathway provides precursors 
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for several downstream metabolic pathways, many of which are still unknown. There are 

currently no known inhibitors of strigolactone signalling. A strigolactone-signalling inhibitor 

would be beneficial, specifically to determine more functions of strigolactones and aid in 

furthering the elucidation of strigolactone signalling. Studying the possible resulting feedback 

mechanisms would also provide valuable insight into strigolactone biosynthesis. Both TMB 

and furanone could also hold great agricultural potential by altering the growth of crops in a 

non-genetically modified (non-GM) manner, by using them as agro-chemicals.  

Agro-chemicals in general refer to herbicides, insecticides and fertilizers, but growth-

promoting agro-chemicals that stimulate plant growth or alter plant architecture in novel ways 

are modern means for growth-promotion that excludes any form of genetic modification. 

Genetically modified organisms (GMO’s) and their use remain a heavily debated subject. This 

non-GMO strategy of altered shoot architecture that could potentially lead to a yield-increase 

by using a compound like TMB or furanone would be a valuable asset to the agricultural and 

food production industries. 

In theory, the use of strigolactones as agro-chemicals does have some potential, as evidenced 

by the fact that plants treated with GR24, are generally sturdier than untreated plants owing 

to an increase in secondary growth (Agusti et al., 2011), with a reduction in shoot branching 

(Gomez-Roldan et al., 2008; Umehara et al., 2008). The exudation of strigolactones in the soil 

can often be detrimental, because it stimulates the germination of certain parasitic plants 

(Cook et al., 1966). In an effort to address this problem, both GR24 and Nijmegen-1, another 

synthetic analogue of strigolactones, have been used in a study where soil was treated with 

these analogues to stimulate a process known as suicidal germination of Striga species 

(Zwanenburg et al., 2009; Kgosi et al., 2012). After germination, these plant parasites need to 

attach themselves to a host plant in order to survive. If the soil is treated with these analogues 

before sowing, it reduces the presence of these parasites in the soil.Although GR24 is more 

stable than naturally occurring strigolactone, it is not a viable agrochemical owing to its short 

half-life of approximately ten days (Akiyama et al., 2010). In a more recent study it was 

determined that GR24 actually has a much shorter half-life, ranging from 22-26h, than 

previously described, especially at higher temperatures and at a higher pH (Rasmussen et al., 

2013). If a molecule that mimics the functions of strigolactones were to be found and remains 

relatively stable, it could be used as an agro-chemical to condition the soil before sowing or 

improve the growth of crops that have shown to have an increase in yield when a strong apical 

dominance phenotype is observed Similarly, if a molecule that has an antagonistic effect on 

strigolactone activity were to be found, it could also be used as an agro-chemical. 
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After studying the structures of the different strigolactone-molecules, it was determined that 

the presence of the D-ring of strigolactone molecules (Fig. 1.1C,D) is needed for biological 

activity (Yoneyama et al., 2009; Zwanenburg et al., 2009; Xie et al., 2010; Yoneyama et al., 

2010).  The structure of the D-ring of bio-active strigolactone molecules is identical to the 

structure of furanone Furanone, also known as 3-methyl-2(5H)-furanone, is more stable than 

both GR24 and Nijmegen-1. The B-ring of KAR1 (Fig. 1.1E) is also identical to the D-ring and 

furanone. A study in Oryza sativa (rice) plants revealed that high concentrations of this purified 

D-ring (50 µM) inhibited the outgrowth of the second tiller bud when applied directly to the bud 

(Nakamura et al., 2013). GR24 are active at concentrations of 0.1 µM. Another molecule with 

similar structure is TMB, which has two additional methyl groups in this ring (Fig. 1.1B). 

Strigolactones and KAR1 both stimulate germination in a MAX2-dependant manner (Nelson 

et al., 2011), but strigolactones are perceived by a receptor known as D14, while KAR1 is 

perceived by the KAI2 receptor. Both strigolactones and karrikins are known to stimulate 

germination, while TMB is an inhibitor of germination. This raises the question of whether TMB 

inhibits germination by binding to either the D14 or the KAI2 receptor, or via a novel 

mechanism not involving either of these two receptors. Since TMB inhibits germination, 

presumably through interference with karrikin signalling, it is possible that it may also inhibit 

strigolactone signalling, either by competitive binding to the D14 receptor or via another, 

unknown mechanism.   

Shoot branching is a very important agricultural trait, which has been selected for in crops 

such as Zea mays (maize) and rice since their domestication by humans, where increased 

branching has led to an increase in crop yield. If TMB increases branching owing to an 

antagonistic effect to strigolactones, it could have potential to be used as an agro-chemical to 

be sprayed on crops.  

 

1.3 Detection and quantification of strigolactones in Arabidopsis thaliana  

Phytohormones are difficult to detect and quantify, owing to being present in low 

concentrations in plants (Spartz and Gray, 2008). Strigolactones are produced and 

synthesized at even lower concentrations than other phytohormones, such as auxins and 

cytokinins, which makes them difficult to detect using the currently available technology. 

Natural strigolactones have been isolated from sorghum (Xie et al., 2009), rice and cotton 

(Sato et al., 2005) root exudates, but not from A. thaliana. The likely explanation for this is that 

plants which form mycorrhizal associations exude large amounts of strigolactones from their 

roots to attract the mycorrhizal fungal partner, but contain only minute amounts of 

strigolactones within the plant that perform the hormonal function. Arabidopsis thaliana does 
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not exude strigolactones owing to the fact that it is a non-mycotrophic plant, and thus contains 

only very small amounts of strigolactones which are difficult to accurately quantify (Ruyter-

Spira et al., 2011; Seto et al., 2014).  For a model organism, this poses a problem and restricts 

the further characterization of this pathway within A. thaliana. One possible means of detecting 

the presence of a phytohormone other than investigating a genetic response or isolating and 

quantifying the metabolite, is via the use of a reporter-construct. A widely used example is 

DR5:GUS, a reporter-construct that is activated in plants in the presence of auxins (Ulmasov 

et al., 1997). This reporter construct consists of a seven-time repeat of a known auxin-

responsive motif fused to the coding sequence of β-glucuronidase (GUS). This reporter 

construct has been useful in the elucidation of auxin-responses not only in Arabidopsis, but 

also other to study auxin accumulation in the organs of Pisum sativum (DeMason and 

Polowick, 2009), auxin distribution in Physcomitrella patens (Bierfreund et al., 2003) and the 

presence of auxin in the leaves, stem and roots of Populus species (Chen et al., 2013). If a 

similar reporter could be developed for the detection of strigolactones, it would greatly aid in 

the elucidation of strigolactone function in a variety of plant species. 

 

1.4 Importance of project 

Although there are several strigolactone biosynthesis and -signalling mutants available in A. 

thaliana, rice, Pisum sativa (pea) and Petunia hybrida (petunia), it is generally accepted that 

many components of both the biosynthesis and signalling pathways of strigolactones have yet 

to be discovered and characterized.  Furthermore, in other plants and trees where no mutants 

are available, it is difficult to study strigolactones and their effects. Developing tools to study 

these effects would not only be agriculturally and industrially, but also academically valuable. 

Having a strigolactone-responsive reporter would be beneficial as it can be used to determine 

the presence of strigolactones without isolating the metabolites. Having an inhibitor of 

strigolactone signalling would be valuable as it would enable simpler strigolactone research in 

species for which no genetic mutants are available. This project has the potential to aid in 

closing the gaps between strigolactone biosynthesis, signalling and the physiological 

response.  
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Chapter 2: Literature review 

“Everything must be made as simple as possible. But not simpler.” – Albert Einstein 

 

2.1 Introduction 

All plants are rooted to the soil, with only a few exceptions such as bryophytes, epiphytes and 

seaweeds. Mosses and liverworts are bryophytes and root themselves using rhizoids, while 

epiphytes grow harmlessly on other plants for physical support. Seaweed can take up nutrients 

through their entire body, a useful adaptation because of their complete submergence. 

Nevertheless, plants are sessile organisms. This physical limitation in terms of movement 

poses a challenge to these eukaryotes, because the water, nutrients and light they require to 

survive and thrive have to be obtained from their immediate environment. The conditions of 

this immediate environment can change. In contrast to animals, plants do not have the option 

of rapidly relocating themselves to more favourable growth conditions. They cannot run 

towards more nutritious soil or increased light, away from an insect, fungal infection or any 

other biotic or abiotic factor which may be hazardous to their survival.  

As early as 1880, Charles Darwin and his brother observed that plants were able to ‘sense’ 

their environment, and change certain aspects of their growth in response to different 

environmental conditions in order to grow and develop as optimally as possible. One such 

aspect is known as positive phototropism, described as growing towards the light when 

exposed to a lateral light source by Darwin in the 1880’s. More than a century later we are still 

only beginning to understand some of the mechanisms a plant has to rely on to compensate 

for its sessility.  

 

2.1.1 Phytohormones 

All processes and major events during the lifetime of a plant, such as germination, root growth 

and development, shoot elongation and branching, flowering and seed dispersal, are directly 

or indirectly subjected to endogenous hormonal signals. Hormones excreted by neighbouring 

plants and microorganisms in the soil can also affect plants in the same way and alter their 

growth. In plants, these aforementioned signals that regulate growth and development are 

known as phytohormones, defined as a collection of small organic molecules shown to be 

derived from essential primary metabolic pathways (Rohilla et al., 2011). These small organic 

molecules are biosynthesized and perceived by plants at low concentrations and regulate 
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important processes such as cell division, differentiation, division and programmed cell death 

(Spartz and Gray, 2008). 

Auxins are a well-researched group of phytohormones. An example and key auxin in plants is 

indole-3-acetic acid (IAA) (Went and Thimann, 1937). It was first described by Dutch scientist 

Frits Warmolt Went and subsequently isolated by Kenneth Thimann. Auxin is well 

characterized, because it was the first phytohormone discovered and isolated. It is implicated 

in almost all aspects of plant growth and development (Woodward and Bartel, 2005; Vanneste 

and Friml, 2009; Overvoorde et al., 2010), ranging from root growth to shoot elongation to leaf 

expansion. The discovery of other phytohormones, such as cytokinins, gibberellins, ethylene 

and abscisic acid, soon followed.  

Although each phytohormone is generally associated with a specific function, research has 

indicated that there is definite interaction and cross-talk between the different groups of 

phytohormones. Together, they act in a complex network to direct and redirect physiological 

and developmental processes during the entire lifetime of the plant in the form of cell division 

stimulation, lateral bud outgrowth, induction of germination, fruit ripening and shoot growth 

inhibition (reviewed by Herold, 2009). Environmental stresses, both biotic and abiotic, 

significantly affect the amounts and composition of the phytohormones by promoting or 

suppressing their biosynthesis and/or efflux (Xie et al., 2010), confirming the stimulatory effect 

of the environment on phytohormones. In this way, plants detect environmental stimuli through 

hormone signals, and the response is transduced through changes in gene expression, pre- 

and posttranscriptional changes and protein degradation. Such responses can also be halted 

quickly if the external stimulus is not prolonged (Krasensky and Jonak, 2012).  

 

2.1.2 Other phytohormones – newly discovered role-players  

Apart from the classical phytohormones described in the previous section, five other chemicals 

have also been discovered and determined to be phytohormones. These are brassinosteroids 

(Grove et al., 1979), salicylic acid,  jasmonates, oligosaccharides (Creelman and Mullet, 1997) 

and strigolactones (Gomez-Roldan et al., 2008; Umehara et al., 2008). Although 

phytohormones and their functions during plant growth and development have been 

extensively studied and described, many components, especially in signalling, remain poorly 

understood. Taking this into account, as well as evidence that there is a definite interaction in 

terms of feedback regulation between phytohormones; the scientific community is still far from 

understanding the complete picture of phytohormone control and all its effects on plant growth. 
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2.2 Strigolactones 

The basic structure of a strigolactone molecule consists of a tricyclic lactone (ABC ring) 

connected to an α,β-unsaturated furanone moiety via an enol ether bridge, also known as a 

methylbutenolide ring (D ring) (Fig. 1.1B) (Humphrey and Beale, 2006).  Strigolactones are 

mainly synthesized in the roots and some parts of the stem and move upwards towards the 

shoot apex (Foo et al., 2001; Brewer et al., 2009; Ferguson and Beveridge, 2009; Kapulnik et 

al., 2011b). Strigol (Fig. 1.1C) was the first strigolactone-molecule isolated and it was 

determined that it is responsible for stimulating the germination of Striga lutea, commonly 

known as witchweed (Cook et al., 1966). More than fifteen different types of strigolactones 

have been isolated from a wide variety of mono- and dicotyledonous plant species (Yoneyama 

et al., 2009; Rameau, 2010)  and characterized to date. A synthetic strigolactone analogue, 

GR24 (Fig 1.1D), has been synthesized and used in strigolactone-research. 

 

2.2.1 First known function of strigolactones 

Strigolactones obtained their name from Striga lutea, but are also known to stimulate the 

germination of another parasitic weed named Orobanche (broomrape). There are two main 

classes of strigolactones, namely strigol and orobanchol type strigolactones. Strigol, the first 

germination stimulant isolated from Gossypium hirsutum (Cook et al., 1972), is a known 

stimulant of Striga spp, while orobanchol type strigolactones stimulate the germination of 

Orobanche spp. In the presence of strigolactones, the small seeds of these parasites are 

stimulated to germinate and develop an organ known as the haustorium. Strigolactones are 

only needed for initial establishment of the parasitic relationship with S. hermonthica and play 

no further role in the infection process (Umehara et al., 2008). The fact that strigolactone-

detection by the parasites occurs at picomolar (pM) concentrations (Sato et al., 2005) and that 

the infection is irreversible means that it is almost impossible for the plant to avoid this 

unwanted relationship. The seeds of the parasites contain very little in terms of storage 

reserves, which means that the presence of a host is essential for the survival of the parasites 

after germination. The interaction of roots with parasites has a negative effect on the plant, 

because the parasite deprives its host of water and nutrients, effectively suppressing growth 

and development (Joel, 2000) and leading to a major decrease in harvest yields. 

This phenomenon has a high occurrence in soil with low concentrations of nitrogen and 

phosphates, which is a direct result of farmers being unable to supplement the soil with 

nutrients. This effect worsens when the soil is over-used and not given enough recovery time 

after the harvest (Humphrey et al., 2006). Striga is found in up to two-thirds of sub-Saharan 
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Africa, representing a big challenge to food security in this region (Humphrey et al., 2006). 

Striga spp. affect maize, millet, rice and sorghum in Asia, sub-Saharan Africa and the Middle 

East, while Orobanche species target dicotyledonous species including tomato, carrot, 

cucumber and sunflower (Yoneyama et al., 2010). Farmers often lose all or most of their 

harvest when the soil is heavily infested with these parasites.  

A proposed method to counteract this devastating effect is known as suicidal germination 

(Kgosi et al., 2012), where the soil is treated with strigolactones or strigolactone-analogues 

which result in the germination of large numbers of parasitic seeds from the soil seedbank, 

which then cannot survive without immediate attachment to a host. The result will therefore 

be the death of these parasites. Thereafter, the desired seeds can be sowed with reduced risk 

of being infected. 

 

2.2.2 A new role for strigolactones 

For several decades after the discovery by Cook et al. (1966), strigolactones were solely 

defined as being the signal for root parasite infestation. However, they are also synthesized 

and exuded by plants that are not hosts of Striga and Orobanche spp. Since the discovery by 

Cook et al. (1966) many scientists have been puzzled as to why plants would synthesize and 

exude strigolactones if they only have a negative and very often fatal effect on the survival of 

the plant. If the parasitic plants evolved to detect strigolactones, there had to be a reason why 

the plants would synthesize and exude them into the soil.  

Three natural strigolactones, exuded by the roots of Lotus japonicus, stimulated the extensive 

branching of the hyphae of arbuscular mycorrhizial (AM) fungi (Akiyama et al., 2005). A 

synthetic analogue of strigolactones, GR24, had the same effect. This was the first publication 

implicating strigolactones in another function other than providing the detrimental signal for 

root parasitic infestation. This symbiotic relationship was not a new discovery, but Akiyama et 

al. (2005) determined that the establishment of this mutually beneficial relationship is 

dependent on the presence of strigolactones.  

The mechanism of root colonisation by AM fungi occurs by means of an organ known as the 

arbuscules (Parniske, 2008), similar to the haustorium organ produced by Striga and 

Orobanche to attach to the roots of their hosts (Estabrook and Yoder, 1998; Joel, 2000). Up 

to 80% of all plant species have been shown to be involved in such symbiotic relationships 

(Humphrey et al., 2006), which have proven to be essential for the growth of both parties. The 

plant benefits from this relationship because the AM fungi aids in the acquisition of phosphates 
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(P) and nitrogen (N), while improving pathogen resistance and drought tolerance (Humphrey 

et al., 2006). The fungi, which rely on the critical developmental step of hyphal branching 

(Akiyama et al., 2005), is provided with carbohydrates derived from photosynthesis. In tomato 

plants, AM symbiosis induces a decrease in strigolactone production, which decreases the 

plants susceptibility to parasitic infestation (López-Ráez et al., 2011).   

 

2.2.3 A novel class of phytohormones 

The detection of strigolactones in the root exudates of non-mycotrophic plant species was an 

interesting discovery, indicating that these chemicals possibly had functions other than 

stimulating the germination of parasitic plants and establishing a symbiotic relationship with 

AM fungi. A. thaliana, belonging to the non-mycotrophic family Brassicacea, exude 

strigolactones at a lower concentration in comparison to mycotrophs (Akiyama et al., 2005). 

The first suggestion that strigolactones act as phytohormones was made after observing 

hyper-branched pea mutants which could not be explained by a response to, or altered levels 

of, known phytohormones (Beveridge et al., 1997). An unknown signal responsible for this 

phenotype was subsequently suggested. 

It was only in 2008 that two independent research groups reported that strigolactones inhibit 

the outgrowth of axillary buds in A. thaliana (Gomez-Roldan et al., 2008) and Oryza sativa 

(Umehara et al., 2008). The outgrowth of axillary buds leads to more a branched phenotype. 

This novel function of strigolactones is different and independent to those previously 

established, because strigolactones here act as an endogenous hormone. The mutants used 

in the two studies are classified as either biosynthetic or signalling mutants. Biosynthetic 

mutants are able to resume a wild-type phenotype when treated with exogenous 

strigolactones, while signalling mutants are unaffected by the same treatment. The conclusion 

that was made is that strigolactones also serve as a long-distance signal to suppress 

branching.   

Although the specific mode of action has not yet been fully elucidated, strigolactones may 

inhibit the outgrowth of axillary buds by negatively regulating cell division, leading to the 

inhibition of mesocotyl elongation (Hu et al., 2010; Yamaguchi and Kyozuka, 2010). The down-

regulation of AtBRC1 (At3g18550) in response to the absence of strigolactone leads to an 

increase in branching in A. thaliana (Aguilar-Martínez et al., 2007). The AtBRC1 gene codes 

for a TCP transcription factor (TCP18) which prevents the outgrowth of axillary buds by 

arresting growth in the organ. Using a yeast one-hybrid screening, it was determined that the 

BRC1 protein specifically recognizes the DNA sequence TGGGC(C/T) (Giraud et al., 2010). 
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This binding sequence can be found in Arabidopsis ribosomal genes and cyclin B (reviewed 

by Giraud et al., 2010). 

 

2.2.4 Strigolactone biosynthesis  

The pathway responsible for shoot branching is commonly known as the MAX/RMS/D 

pathway (Beveridge and Kyozuka, 2010), as it is described in A. thaliana, garden pea and 

petunia. The MAX acronym stands for more axillary growth, descriptive of the phenotype 

observed in plants where any of the MAX genes are non-functional. The most likely initial 

precursor for strigolactone synthesis was proposed to be β-carotene (Schwartz et al., 2004), 

which was confirmed a few years later (Alder et al., 2012). Using carotenoid biosynthetic 

mutants, plants that are unable to synthesize carotenoid due to the silencing or knockout of 

one gene, and inhibitors of isoprenoid pathways on different plant species, it was determined 

that strigolactones are mainly synthesized in roots (Matusova et al., 2005), which is also the 

site of synthesis of abscisic acid and cytokinins. Hypothetical biochemical pathways have been 

proposed by a number of research groups, with general consensus on the key steps (Fig. 2.1).  

 

 

Figure 2.1: Proposed strigolactone biosynthesis pathway as defined and characterized in Arabidopis 

thaliana (adapted from a figure by de Saint Germain et al., 2013). 

Stellenbosch University  https://scholar.sun.ac.za



 
 

13 
 

The strigolactone biosynthesis pathway, characterized to date, is conserved across Pisum 

sativum, Oryza sativa, Petunia hybrida and Arabidopsis thaliana (de Saint Germain et al. 

2013). The first enzyme that acts within this pathway is a carotene isomerase, encoded in 

Arabidopsis by AtD27 (At1g03055). The gene was first identified as D27 (Os08g02210) in rice 

(O. sativa). This carotene isomerase reversibly converts all-trans-β-carotene into 9-cis-β-

carotene (Alder et al., 2012). The next two enzymes of the pathway, carotenoid cleavage 

dioxygenase 7 (CCD7) and CCD8, were also discovered in rice and are encoded by the genes 

D17 (Ps04g0550600) and D10 (Os01g54270) respectively (Umehara et al., 2008). In A. 

thaliana, they are known as MAX3 (At2g44990) and MAX4 (At4g32810). These two CCD 

enzymes are involved in a series of cleavage reactions using 9-cis-β-carotene as substrate 

and eventually yielding carlactone. They are non-heme iron enzymes that cleave C-C bonds 

by incorporating a dioxygen (Alder et al., 2012). The intermediate produced by the cleavage 

reaction of β-carotene is then oxidized, a process mediated by a cytochrome P450 (CYP450), 

encoded by MAX1 (At2g26170) (Matusova et al., 2005; Kohlen et al., 2011). To form the entire 

ABC-skeleton of the strigolactones probably involves a series of enzymatic oxidations, which 

have yet to be discovered and studied (Humphrey et al., 2006). An enzyme known as NCED1 

(9-cis-epoxycarotenoid dioxygenase), is also suggested to be involved in the biosynthesis of 

strigolactones in tomato plants (López-Ráez and Bouwmeester, 2008). This enzyme has 

cleavage activity, known to catalyse the first step of abscisic-acid biosynthesis from 

carotenoids in response to water stress in Phaseolus vulgaris (Qin and Zeevaart, 1999). It 

remains unclear if NCED1 affects strigolactone biosynthesis directly or through its effect on 

ABA production (López-Ráez et al., 2008). 

As mentioned, there is general consensus that the aforementioned components do not include 

all of the enzymes that act within the strigolactone biosynthetic pathway, mostly since the 

currently known enzymes are unable to explain the wide variety of strigolactone structures 

that have been isolated from plants thus far. Methylation and acetylation are also two 

enzymatic reactions that have not yet been accounted for and the enzymes responsible for 

these reactions have not yet been identified. 

 

2.2.5 Regulation, perception and signalling  

The deciphering of the mechanism by which strigolactones transmits the signal to inhibit shoot 

branching is one of the central unanswered questions in modern plant biology (Kagiyama et 

al., 2013). In an effort to start answering this question, Kagiyama and his team provided the 

first evidence for the direct binding of strigolactones to a receptor known as DWARF14 (D14). 
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Only a few components of the proposed strigolactone perception/signalling pathway have 

been identified yet. 

The D14 protein, encoded by D14 (At3g03990), was also first discovered in rice. This protein, 

believed to be the receptor of strigolactone molecules, has both enzymatic and receptor 

activities (de Saint Germain et al., 2013). The D14 protein is an α/β hydrolase enzyme. In a 

knockout study, a d14 mutant was created in rice. This mutant had enhanced tillering 

outgrowth, a bushy phenotype that can be seen in any of the biosynthetic mutants. However, 

the d14 mutant was insensitive to exogenous application of GR24, which did not rescue the 

d14 phenotype (Arite et al., 2009; Goulet and Klee, 2010). This implicates D14 as part of the 

signalling pathway and not biosynthesis as previously thought. 

The next component, MAX2, is one of the best characterized components of the strigolactone 

signalling pathway. The MAX2 protein, encoded by the MAX2 (At2g42620) gene in 

Arabidopsis, acts downstream of the biosynthesis pathway (Fig. 2.1) and D14. This protein is 

an F-box leucine-rich repeat protein (Stirnberg et al., 2002; Stirnberg et al., 2007), generally 

accepted to be recognized by D14 (de Saint Germain et al., 2013). D14 can only recognize 

MAX2 once a strigolactone molecule has bound to it, suggesting that a conformational change 

of D14 induced by the binding of the strigolactone molecule enables it to recognize MAX2 and 

bind to it. The F-box protein MAX2 forms part of the SCF ubiquitin E3 ligase complex that 

recognizes substrates for proteolysis by the proteasome (Stirnberg et al., 2002; Johnson et 

al., 2006). Target proteins of MAX2 and other F-box proteins are typically poly-ubiquitinated 

and subsequently recognized and degraded by the 26S proteasome.  

The target protein for MAX2 appears to be a repressor protein known as SMAX1 (Fig. 2.2), 

encoded by SMAX1 (At1g07200), initially discovered as D53, encoded by D53 (Os11g01330) 

in rice, and its degradation is essential for strigolactone signalling (Zhou et al., 2013). The 

smax1 mutant has a similar phenotype to wild-type A. thaliana plants treated with 

karrikins/strigolactones (Stanga et al., 2013a), suggesting an opposite role to D14 and MAX2. 

Another phenotype observed in smax1 is the lack of seed dormancy and long hypocotyl 

phenotypes displayed by the max2 mutant, but both smax1 and max2 display the same bushy 

phenotype (Smith and Li, 2014a). However, SMAX1 does not replace the requirement for 

MAX2 in responses to karrikins and strigolactones, which suggests that SMAX1 acts 

downstream of MAX2 in the karrikin/strigolactone signalling pathway (Smith and Li, 2014b).  
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Proteosome mediated degradation of 
D14 and SMAX1 proteins 

 
Figure 3  Hypothetical model of 

strigolactone signalling, 
starting with the binding of 
aProteosome mediated 
degradation of D14 and 
SMAX1 proteins 

 

 

 

 

Ubiquitin protein 

 

D14 protein 

 Strigolactone molecule 

 SMAX1 protein 

 MAX2 protein 

 SCF complex 

 

Figure 2.2: Hypothetical model of strigolactone signalling, starting with the binding of a strigolactone 

molecule binding, followed by the binding of the MAX2 protein and subsequently the SMAX1 protein. 

This is recognized by the SCF complex and ubiquitination and proteasome-mediated degradation of 

D14 and SMAX1 proteins occurs. An unknown mechanism downstream of this cascade then results in 

strigolactone activity   (Zhou et al., 2013). 
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2.3 Strigolactones, smoke, karrikins and TMB  

Fires and the resulting smoke have been a part of plant growth, development and evolution 

since before the existence of mankind. With the high oxygen levels, spontaneous fires were 

frequent and the assumption is that this imposed selective pressures on plant genotypes to 

adapt to fire and the resulting smoke. For a full review of this phenomenon, refer to Nelson et 

al. (2012). The effect of smoke on plant growth and development have been largely limited to 

germination studies (Brown, 1993; Calder et al., 2010; Light et al., 2010; Ghebrehiwot et al., 

2013b). A famous example is the effect of fire and the resulting smoke on Fynbos seed 

germination. The heat generated by the fires fracture the hard seed coats and stimulate seed 

embryos, while ethylene, ammonia and karrikins (unknown at the time) stimulate germination 

(Brown, 1993).  Without the fires, the seeds would most likely be unable to germinate. Apart 

from focussing on the effect of smoke on seed germination, numeral studies have been 

conducted to determine the component/s that are responsible for germination stimulation. The 

breakthrough came when a group of molecules known as karrikins were discovered (Flematti 

et al., 2004) and the structure of these molecules described (van Staden et al., 2004). The 

primary germination stimulant is known as 3-methyl-2H-furo[2,3-c]pyran-2-one (KAR1) 

(Nelson et al., 2009). Karrikins, specifically KAR1 (Fig. 1.1E), are perceived by KAI2, an α/β-

hydrolase that is a paralogue of D14 (Brewer et al., 2013; Guo et al., 2013). The most common 

correlation between strigolactones and karrikins is that both are stimulators of seed 

germination, which is regulated in a MAX2-dependant manner. The second correlation is the 

D-ring that forms part of all bioactive strigolactones (Fig. 1.1C) and which also forms part of 

the molecular structure of KAR1 (Fig. 1.1E). Apart from the similarities, there are also some 

clear differences between KAI2 and D14 and the roles they play in karrikin signalling and 

strigolactone signalling. The D14 protein is destabilized by the presence of strigolactones and 

subsequently hydrolysed/degraded (Fig. 2.2), whilst KAI2 is not degraded following 

recognition of KAR1. The catalytic site of KAI2 is also smaller than the catalytic site of D14 

(Bythell-Douglas et al., 2013). 

Smoke water is formed when it rains after bush fires. This smoke water solution then gets 

integrated into the soil. Interestingly, high concentrations of smoke water inhibit seed 

germination, while diluted smoke water stimulates germination (Light et al., 2002). The reason 

for this is the presence of another molecule known as trimethylbutenolide (TMB, Figure 1B), 

which is now known to inhibit the seed germination of Lactuca sativa (Soós et al., 2012) by 

inhibiting the stimulatory effect of karrikins (Light et al., 2010). It also inhibits the germination 

of certain weed species (Papenfus et al., 2015a). In smoke, TMB concentrations are 

considerably higher than those of karrikins (Ghebrehiwot et al., 2013a). After rainfall, the high 

concentrations of TMB are greatly diluted or washed away and the seeds can subsequently 
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germinate (reviewed by Ghebrehiwot et al., 2013a). It has been reported that TMB inhibits 

certain metabolic processes by down-regulating genes that are involved in plant metabolism, 

while up-regulating genes associated with maturation and abscisic acid (Soós et al., 2012) 

Very recently it has been shown that this chemical not only inhibits germination, but also 

affects the development rate index of Ansellia africana seeds (Papenfus et al., 2015b).  

It is clear that TMB has an antagonistic effect to karrikins, which leaves the possibility that it 

might have the same effect on strigolactones. There is, however, no verified model that 

describes the interaction between karrikins and TMB. No model of the effect of TMB on 

strigolactones have also been reported.  

 

2.4 Strigolactones – More than just branching inhibitors 

The major studies relating to the functions of strigolactones defines them as being germination 

stimulators of parasitic plants (Cook et al., 1966), initiators of symbiotic relationships with 

arbuscular mycorrhizal fungi (Akiyama et al., 2005) and inhibitors of shoot branching (Gomez-

Roldan et al., 2008; Umehara et al., 2008). However, several other studies have shown that 

strigolactones play a very diverse role in plant growth and development. Strigolactones are 

implicated in functions ranging from leaf senescence to root hair elongation. 

 

2.4.1 Root growth and architecture 

Similarly to controlling shoot architecture by inhibiting shoot branching, recent studies have 

indicated that strigolactones also controls root-architecture and growth in several ways. The 

first evidence suggesting that strigolactones are involved in root-growth was the observation 

that max3 and max4 biosynthetic mutants and the max2 signalling mutant had more lateral 

roots than wild-type plants under the same conditions (Kapulnik et al., 2011a), while GR24 

increased the primary root length (Ruyter-Spira et al., 2011) and root hair length in wild-type 

and max3 Arabidopsis (Kapulnik et al., 2011a; Ruyter-Spira et al., 2011). The same mutants 

also struggle to increase root hair density when subjected to low concentrations of phosphates 

after germination (Mayzlish-Gati et al., 2012). Lateral root formation is inhibited by GR24 when 

sufficient phosphates are available (Kapulnik et al., 2011a; Koltai, 2011; Ruyter-Spira et al., 

2011). Low concentrations of GR24 have been shown to increase the primary root length of 

Arabidopsis plants in vitro grown in nutrient-sufficient conditions, while higher concentrations 

had an opposite effect. When carbohydrates were limited and primary root length 

subsequently reduced (Jain et al., 2007), both low and high concentrations of GR24 led to an 
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increase of primary root length. It appears that strigolactones are vital integrators of root 

growth and abiotic conditions, because under nutrient-deficient conditions (especially low 

phosphates), the root architecture of plants are modified in response to strigolactones.  

 

2.4.2 Adventitious rooting 

The initiation and formation of roots from non-root tissue types like the stem or leaves is known 

as adventitious rooting (Rasmussen et al., 2012b), and is induced by environmental factors 

like light and wounding. This complex process is controlled by a variety of phytohormones, of 

which auxins play a central role. Auxin over-producing mutants supperroot1, supperroot2 and 

yucca all have an increase in the production of adventitious roots. In contrast to auxin, light 

inhibits adventitious root formation in Eucalyptus saligna (Fett-Neto et al., 2001; Mckhann and 

Garcion, 2005), a common hardwood tree found in Australia. 

Inhibition of strigolactone biosynthesis by fluridone in Arabidopsis and pea plants led to an 

increase in the formation of adventitious roots (Rasmussen et al., 2012b). This result suggests 

that strigolactones inhibit the formation of adventitious roots, at least in the early stages. 

However, fluridone inhibits the biosynthesis of carotenoids, upstream of the first step of 

strigolactones biosynthesis, leading to pleiotropic effects which made it difficult to explain the 

exact mechanism of inhibition. In rice, adventitious root formation is positively regulated by 

strigolactones via the D3 (Os06g0154200) (MAX2) pathway (Sun et al., 2015). Dark grown 

Psccd7 (Abd67496.1) and Psccd8 (Aas66906.1) pea mutants had significantly reduced 

adventitious root formation versus the wild-type (Urquhart et al., 2015). 

 

2.4.3 Responses to biotic and abiotic stress conditions 

The symbiotic relationship between plants and arbuscular mycorrhizal fungi increases the 

plants’ resistance to a variety of stresses. Logically, the increased nutrient uptake facilitated 

by this symbiotic relationship would make for stronger plants that are better able to fend off 

fungi, viruses and insects just by natural defence responses. More specifically, it is proposed 

that plant tissue is conditioned after mycorrhizal establishment to more quickly activate 

jasmonic-acid-dependent defence responses that lead to enhanced resistance to wounding 

and necrotrophs (Pozo and Azcón-Aguilar, 2007). 

Drought and salinity stress are two of the biggest abiotic stresses leading to major crop losses 

owing to a decrease in plant growth and development (Yamaguchi and Blumwald, 2005; 
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Farooq et al., 2009; Shahbaz and Ashraf, 2013; Shrivastava and Kumar, 2015). In A. thaliana, 

max2, max3 and max4 are significantly more sensitive to drought and salt stress in 

comparison to their wild-type counterparts (Ha et al., 2014). In that study the susceptibility to 

these stresses was reversed by exogenous application of 5 µM GR24 in max3 and max4, but 

not max2. In another experiment in the same study that complemented these results, wild-

type plants treated with GR24 had a 100% survival rate against drought conditions in 

comparison to wild-type plants only treated with water. Together, these results suggest that 

strigolactones positively regulate drought and high salinity responses. In correlation with these 

findings, osmotic stress-induction of LjNCED2 transcription was prevented by GR24 treatment 

in Lotus japonicas (Liu et al., 2015). The LjNCED2 ABA biosynthetic gene is expressed in the 

roots in response to polyethylene glycol (PEG) treatments, which puts the plant under water 

stress by changing the osmotic potential of the soil or solution that the plants are in.   

 

2.4.4 Leaf Senescence 

Leaf and flower senescence are both processes promoted by ABA, jasmonic acid and 

ethylene, while being repressed by polyamines and cytokinins (Gan, 2003). In response to 

limiting phosphate-availability, leaf senescence is promoted in rice plants (Yamada et al., 

2014). As previously stated, limiting phosphates is known to increase the biosynthesis and 

exudation of strigolactones, an effort by plants to acquire more nutrients via root development 

(Kapulnik and Koltai, 2014) or symbiotic relationship with AM fungi (Umehara et al., 2008). 

Several previous studies have shown that leaf senescence is delayed in strigolactone-

biosynthetic and strigolactone-signalling mutants of Arabidopsis, rice and petunia plants (Woo 

et al., 2001; Snowden et al., 2005; Yan et al., 2007; Hamiaux et al., 2012; Yamada et al., 

2014). A key component in leaf senescence is also MAX2, an F-box protein described in 

Section 2.2.5. Initially, MAX2 was identified as ORE9 (Woo et al., 2001), where the ore9-1 

mutant displayed a delayed senescence phenotype.  

 

2.4.5 Secondary growth 

Wild-type Arabidopsis (Col-0) plants are generally sturdier than strigolactone-biosynthetic or 

signalling mutants. This is mainly owing to increased secondary growth in the stem. 

Strigolactone-biosynthetic mutants had reduced secondary growth owing to reduced cambium 

activity and local treatments with GR24 induced secondary growth, suggesting that 

strigolactone signalling positively regulates cambium activity (Agusti et al., 2011). This makes 

sense as strigolactones probably inhibit branching to thicken the roots and shoots, ultimately 
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resulting in a non-bushy, sturdy phenotype. This stimulation of secondary growth is auxin-

dependant (Agusti et al., 2011; Cheng et al., 2013).   

 

2.4.6. Reproductive development   

The Slccd8 strigolactone biosynthesis mutant of tomato plants resulted in a phenotype that 

displayed smaller flowers that were quantified by measuring the length of petals, sepals and 

anthers during anthesis (Kohlen et al., 2012). After fruit development, the tomato fruits and 

seeds of the Slccd8 mutant were also significantly smaller than the fruits borne by the wild-

type plants. This phenomenon could be explained by the lack of apical dominance observed 

in strigolactone-deficient mutants. More nutrients are directed towards the formation of new 

branches than towards developing fruits. 

 

2.5 Strigolactone interaction with other phytohormones 

The major gaps within strigolactone-research are partly owing to its late discovery as a 

phytohormone and its biosynthesis and activity at pM concentrations, but mostly owing to the 

complex nature of the interactions with other phytohormones. These gaps occur at the 

biosynthesis, perception, and the signalling and response levels. Strigolactones are known to 

regulate branching together with auxins and cytokinins. Two models of this exact mechanism 

have been proposed to date.  

 

2.5.1 Shoot branching – Regulation by auxins, cytokinins and strigolactones 

Shoot branching can be defined as the outgrowth of axillary buds to form new branches and 

flowers (Ongaro and Leyser, 2008). Before the discovery of strigolactones as a novel group 

of phytohormones (Gomez-Roldan et al., 2008; Umehara et al., 2008), auxins and cytokinins 

were the only two groups of phytohormones known to influence branching. Auxins are 

transported basipetally from the apex to suppress the outgrowth of axillary buds in 

higher/vascular plants (Agusti et al., 2011), a process defined as apical dominance. The first 

hypothesis was that auxins move downward in the stem and are transported into the buds 

where they directly inhibit bud outgrowth. Cytokinins, produced in the roots, travel acropetally 

to promote the activation of lateral buds, which results in the formation of shoot branches 

(Ferguson and Beveridge, 2009).  
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However, a third unknown hormone of carotenoid-derived origin was also suggested to 

participate in the regulation of shoot branching and architecture (Booker et al., 2005; Simons 

et al., 2007; Ongaro and Leyser, 2008). It has now been confirmed that strigolactones are 

those carotenoid-derived chemicals (Gomez-Roldan et al., 2008; Umehara et al., 2008).  

Currently there are two models aiming to describe the regulation of bud outgrowth that leads 

to an increase in shoot branching. The first is known as the auxin canalization model and the 

second is known as the secondary messenger model. Auxins, cytokinins and strigolactones 

have an effect on one another and on bud outgrowth (Fig. 2.3), which eventually leads to 

increased or decreased branching in plants. This diagram (Fig. 2.3) does not specifically 

represent one of the models, but rather elements of both. 

 

 

Figure 2.3: Schematic diagram of how auxins, cytokinins and strigolactones influence one another to 

eventually regulate bud outgrowth that leads to increased branching. Auxin inhibits bud outgrowth 

through its transport and by inhibiting cytokinins biosynthesis through AXR1, while cytokinin export 

stimulates bud outgrowth but stimulates auxin biosynthesis as well. Auxins, also through AXR1, 

stimulate strigolactone biosynthesis while strigolactones inhibits bud outgrowth and auxin transport 

through PIN1. 

 

Bud outgrowth in higher plants are controlled by the TCP18 transcription factor, encoded by 

AtBRC1 (At3g18550), a homologue of TEOSINTE BRANCHED 1 (TB1) (Finlayson, 2007). In 

response to several stimuli, BRC1 is either up-regulated, leading to axillary bud arrest, or 

down-regulated, leading to the outgrowth of these buds. The expression of BRC1 is influenced 

by dense growth conditions affecting light, cytokinins, auxins (Aguilar-Martínez et al., 2007) 

and strigolactones (Rameau et al., 2015). Even before the discovery of strigolactones as a 
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novel phytohormone (Gomez-Roldan et al., 2008; Umehara et al., 2008), it was suggested 

that BRC1 and MAX genes act within the same pathway (Aguilar-Martínez et al., 2007). As 

mentioned, auxins and cytokinins were used to formulate two models that aimed to describe 

the regulation of shoot branching in higher plants. They are known as the auxin-canalization 

and second messenger model. We now know that strigolactones also play a central role in 

shoot branching, acting directly in the bud to inhibit its outgrowth. 

 

2.5.2 Auxin-canalization model 

This auxin-canalization model was first proposed by Sachs (1991). Auxins are produced in the 

apex of higher plants. They were implicated in the regulation of branching because an increase 

in shoot branching was observed in plants where the apex was removed. In max4 mutants, 

exogenous application of auxins did not inhibit the outgrowth of axillary buds (Sorefan et al., 

2003; Bennett et al., 2006), suggesting that auxin-mediated inhibition of branching is max4-

dependent. In return, auxin levels were elevated in max4 rice mutants (Arite et al., 2007). 

During these studies, it was still unknown that MAX4 is involved in strigolactone-biosynthesis 

and that strigolactones are involved in regulating shoot branching. Strigolactones inhibit the 

synthesis of PIN-FORMED proteins by inhibiting the expression of expression of PIN1 

(At1g73590) (Fig. 2.3), leading to a reduction of these proteins and the inhibition of auxin 

transport (Crawford et al., 2010). These PIN proteins are transmembrane protein known to 

transport auxin in a polar manner (Krecek et al., 2009). Owing to the decrease of auxin within 

the stem, auxins are exported out of the bud. This alleviates the suppression of the bud, 

allowing bud outgrowth. It is proposed that this process is regulated by PAT (polar auxin 

transport) in the stem (Li and Bangerth, 1999; Domagalska and Leyser, 2011), which is in turn 

regulated by strigolactones.  

 

2.5.3 Secondary messenger model 

This simplistic and classical model implies the direct action of strigolactones and/or cytokinins 

in the axillary buds of plants, with auxin controlling the biosynthesis of strigolactones and/or 

cytokinins Auxins regulate strigolactone and cytokinins synthesis in an AXR1 (AUXIN 

RESISTANT 1) (At1g05180) -dependent manner (Fig. 2.3) (Nordström et al., 2004). Through 

this mechanism, cytokinin biosynthesis is reduced, leading to less cytokinins being transported 

into the bud, preventing bud outgrowth. Auxins stimulate strigolactone biosynthesis.  

Strigolactones move directly into the bud to inhibit bud outgrowth (Gomez-Roldan et al., 2008; 
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Umehara et al., 2008). Evidence for strigolactones and cytokinins affecting bud outgrowth 

directly is that direct application of cytokinins to a bud is sufficient to stimulate its outgrowth, 

while strigolactone application in the same manner inhibits the outgrowth of the bud. In this 

model, it is difficult to conclude whether strigolactones, cytokinins or both are the secondary 

messenger. In one study, strigolactones were able to directly inhibit bud outgrowth 

independently of auxins (Brewer et al., 2009). Very little is known as to how cytokinins and 

strigolactones affect one another, which is one of the major reasons why neither one of the 

models have been rejected, although the canalization model has more support in the scientific 

community.  

 

2.5.4 Interactions with ethylene, jasmonic acid, salicylic acid and gibberellic acid  

Several interactions between auxin and ethylene have been described, with one example 

being that ethylene regulates root growth through auxin biosynthesis and transport (Růzicka 

et al., 2007). However, very little is known about possible interactions between ethylene and 

strigolactones. A common denominator between auxin, strigolactones and ethylene is their 

positive effect on root-hair elongation (Kapulnik et al., 2011b). The first observation was that 

root hair length increased when max2-1 signalling mutants were exposed to the ethylene 

precursor ACC. This suggests that an ethylene response is dependent on strigolactone 

signalling. In the same study, it was observed that ethylene-signalling deficient mutants 

responded less effectively to GR24 in comparison to wild-type plants, suggesting that ethylene 

signalling is needed for a strigolactone-response. 

Both jasmonic acid and salicylic acid are known to be involved in plant defence mechanisms. 

In tomato plants, the Slccd8 strigolactone biosynthesis mutant, which has reduced levels of 

strigolactones, also had reduced levels of jasmonic acid, salicylic acid and abscisic acid, as 

determined by HPLC (High Performance Liquid Chromatography) (Torres-Vera et al., 2014). 

In the same study, wild-type plants were more resistant to Botrytis cinerea than the Slccd8 

mutant. This is suggestive of interactions between strigolactones and the three 

aforementioned phytohormones. However, with the strigolactone biosynthesis pathway not 

yet fully elucidated, the CCD8 gene could prove to be more directly involved in the 

biosynthesis of these phytohormones and not just in strigolactone biosynthesis. Therefore, 

more research needs to be conducted in order to elucidate the role that strigolactones play in 

plant defence mechanisms. The bioactive gibberellin GA1 is suggested to modulate 

decapitated pea plants response to applied GR24, possibly by affecting bud sensitivity (Luisi 

et al., 2011).    
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2.6 BRC1 (BRANCHED1) 

Shoot branching as a common indicator of strigolactone activity can be directly linked to the 

expression of BRC1 (BRANCHED1) in axillary buds. BRC1 expression is up-regulated in the 

presence of strigolactones, leading to a decrease in branching. The brc1 mutant in Arabidopsis 

(Fig. 2.4) has a bushy phenotype similar to that of max1, max3, max4 and max2.  AtBRC1 

(BRANCHED1), locus ID At3g18550, is the most well characterized strigolactone-responsive 

gene to date. Although brc2 has a similar phenotype to brc1 (Fig. 2.4), it has been determined 

that BRC1 plays a more relevant role in controlling branching than BRC2 (At1g68800)(Aguilar-

Martínez et al., 2007; Finlayson, 2007; Martín-Trillo et al., 2011). 

 

 

Figure 2.4: Phenotypes of A. thaliana brc1 and brc2 versus wild-type (Col-0) (Aguilar-Martínez et al., 

2007). The wild-type plant has the normal apical dominance phenotype, while both brc1 and brc2 have 

numerous secondary branches, characteristic of strigolactone biosynthesis and perception mutants. 

 
BRANCHED 1 (BRC1) is orthologous to TEOSINTE BRANCHED 1 (TB1), a gene expressed 

in maize (Zea mays) axillary meristems. Expression of TB1 prevents the outgrowth of buds at 

lower nodes and promotes female florescence at the upper nodes in maize plants (Cubas et 

al., 1999). Both TB1 and BRC1 encode putative transcription factors of the TCP family (Cubas 

et al., 1999; Martín-Trillo et al., 2011). TCP transcription factors, consisting of two subfamilies, 

are known to negatively regulate the expression of boundary-specific genes to control the 

morphogenesis of shoot organs (Koyama et al., 2007). The acronym TCP stands for TB1, 
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CYCLOIDEA and PCF, three types of proteins known to control cell cycling and cell division 

(reviewed by Choi et al., 2012). 

TB1 is one of the few genes known to be involved in maize domestication, playing a role in 

maize apical dominance. The ancestor of modern domesticated maize, known as teosinte, is 

small and highly branched (Rameau, 2010). The TB1 gene has unknowingly been selected 

for since the first domestication of maize plants. Less valuable nutrients are invested in the 

formation of branches and more nutrients are directed towards the formation and development 

of corn cobs. 

In rice, FINE CULM 1 (FC1), also known as OsTB1 (Ab088343), is orthologous to TB1. An 

excess branching phenotype is observed in loss-of-function mutants of FC1 (Minakuchi et al., 

2010). In the same study, it was shown that the transcription of FC1 was not up-regulated by 

exogenous application of GR24, but was down-regulated by cytokinin application. When 

maize TB1 and rice TB1 (OsTB1) were overexpressed in rice plants, the number of panicles 

and tillers were significantly reduced when compared to wild-type plants (Choi et al., 2012). In 

the same study, an increase in panicles and tillers was observed when OsTB1 was silenced 

through an RNAi-mediated strategy. 

In tomato, two paralogues, named SIBRC1a and SIBRC1b, resembling BRC1 have been 

identified. In dormant vegetative axillary buds, SIBRC1b was highly expressed, as detected 

by quantitative Real-Time PCR analysis (Martín-Trillo et al., 2011). When subjected to stimuli 

known to promote branching (Table 2.4), expression of SIBRC1b was significantly down-

regulated. In domesticated tomato, lateral shoot branching is an unwanted trait, because it 

diverts nutrients and water away from developing fruits, negatively affecting development 

(Martín-Trillo et al., 2011).  

The expression of PsBRC1, the pea (Pisum sativum) homologue of AtBRC1 and TB1, was 

up-regulated by GR24 (Braun et al., 2012), which contrasts with what was observed in rice 

(Minakuchi et al., 2010) but correlates to the situation in Arabidopsis thaliana (Gomez-Roldan 

et al., 2008) when GR24 was directly applied to the axillary bud. When 6-benzylaminopurine 

(cytokinin) was applied in the same way, expression of PsBRC1 was down-regulated. 

According to these authors, PsBRC1 is almost exclusively expressed within the axillary bud. 

In 2008, Finlayson investigated the expression of TCP18, a synonym for AtBRC1, in A. 

thaliana and found that although the highest expression is in non-elongated rosette-buds, it is 

also expressed in rosette leaves and flowers. Low to no expression was detected in stems 

and roots. These expression levels were detected using northern blot analysis. Using qRT-

PCR analysis, it was confirmed that AtBRC1 is highly expressed in flowers, but not in seeds, 

roots, cauline leaves, stems and whole seedlings (Mashiguchi et al., 2009). However, treating 
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whole seedlings with GR24 resulted in a four-fold increase in expression of AtBRC1 after just 

6 hours. 

Apart from being upregulated by strigolactones, it is known that the expression of BRC1 is 

also up-regulated by auxin and low R:FR (red:far-red) light (González-Grandío et al., 2013) 

and down-regulated by the application of cytokinins and presence of sucrose (Mason et al., 

2014; Barbier et al., 2015). A decrease in the R:FR light ratio is owing to an increase in shading 

by neighbouring plants (González-Grandío et al., 2013). This stimulus leads to the up-

regulation of BRC1, leading to a shade avoidance response that results in a taller plant.  

 

2.7 The aims and objectives of this study 

2.7.1 Part 1 

Due to TMB’s antagonistic effect to karrikins and the similarity between the strigolactone 

receptor (D14) and the karrikin receptor (KAI2), it is hypothesized that TMB might have an 

antagonistic effect on strigolactone signalling either by binding to the D14 receptor affecting 

the KAI2 receptor that is also known to modulate some strigolactone-responses (Scaffidi et 

al., 2014). The aim of this part of the study was to determine if TMB is an inhibitor of 

strigolactone signalling.  

The first objective was to find the optimal concentration at which TMB and furanone have any 

effects on the growth of Arabidopsis in vitro, by using lateral root formation as an indicator of 

strigolactone activity. The second objective was to determine the effect of TMB, furanone and 

GR24 on strigolactone-responsive genes, after short term and long term exposure.  

 

2.7.2 Part 2 

Identifying and quantifying strigolactones in A. thaliana has been challenging, and to date it 

has been almost impossible to accurately quantify strigolactone levels in this species due to 

the extremely low levels at which they are produced (Ruyter-Spira et al., 2011; Seto et al., 

2014). Current methods used in strigolactone-research, such as forward- and reverse-

genetics are limiting and slowing down the knowledge-gaining process. Because Arabidopis 

is a genetic and physiological model for higher plants, a tool that could ease the detection of 

strigolactones would aid in the further elucidation of the strigolactone pathway and provide 

further insight into strigolactone signalling and responses.    
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Having a reporter-construct in A. thaliana that is activated in the presence of strigolactones 

would be a valuable tool to further characterize the strigolactone pathway in model plant 

species. It could also be used in plant species where there is no available genetic data 

(sequence) and/or available mutants. Therefore, the aim of this part of the study was to 

develop a reporter-construct that is activated in the presence of strigolactones, using the 

promoter region of a known strigolactone-responsive gene, AtBRC1.  

The first objective was to identify a well-known, well-characterized strigolactone-responsive 

gene and perform in silico analysis in order to identify a region of interest that might be a 

downstream target of the strigolactone pathway. The second objective was to isolate different 

sizes of the region directly upstream of BRC1 (the strigolactone-responsive gene used in this 

project), clone them individually upstream of the GUS gene and transform the constructs into 

A. thaliana using Agrobacterium tumefaciens. The third objective was to analyse the 

transformants in order to investigate whether any of the constructs display strigolactone-

responsiveness.  
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Chapter 3: Effect of TMB on the growth of Arabidopsis 

thaliana 

 

‘’Progress is made by trial and failure; the failures are generally a hundred times more 

numerous than the successes; yet they are usually left unchronicled’’ – William Ramsay 

 

3.1 Introduction 

Branching is an important trait in plants, as it can determine not only the survival and 

dominance, but ultimately the yield of certain crops. A plant with an increased branching 

phenotype might direct its acquired nutrients away from developing fruits, resulting in a lower 

yield. However, the bushy phenotype might be a survival tactic for more sustainable growth 

during its lifetime. The BRC1 gene is known to play a central regulatory role in branching and 

ultimate architecture of plants (Aguilar-Martínez et al., 2007). Very recently, a group of 

chemicals known as strigolactones have been described as a novel group of phytohormones 

that inhibit shoot branching in higher plants (Gomez-Roldan et al., 2008; Umehara et al., 

2008). Since this discovery,  it has been determined that BRC1 is highly expressed in the 

axillary buds where it arrests growth and subsequently prevents the outgrowth of the bud  

(Martín-Trillo et al., 2011) and many other functions of strigolactones have been uncovered.  

Although many functions other than the regulation of shoot branching has been linked to 

strigolactones (Chapter 2), there are general consensus amongst the scientific community that 

not all of the components of the biosynthetic and signalling pathways have been elucidated, 

as is the case for many other phytohormone pathways. The reason for this is that 

phytohormones are active at relatively low concentrations in plants and they are involved in 

complex regulatory networks. The use of biosynthetic, perception and signalling mutants has 

been instrumental in uncovering important components of the strigolactone pathway. This 

strategy has its limitations, because some mutants may be unable to survive, or have 

phenotypes that could be a result of a deletion of a gene that is part of a completely different 

biochemical pathway (Matusova et al., 2005). With strigolactones seeming to play such a 

central and pivotal role in plant growth and development, it is important to not only characterize 

and describe the pathway in model plants, but also in plant species where no genetic data or 

mutant phenotypes are available, as it is possible that strigolactones have very different and 

unique roles in different plants. 

A possible way of further characterization of strigolactone-signalling and studying 

strigolactone-responses in non-model plant species is by using a strigolactone signalling 
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inhibitor. Currently, only strigolactone-biosynthesis inhibitors are available (Ito et al., 2010). 

The need for such an antagonist, and even more agonists, of strigolactone-activity has been 

described, with the proposed strategy being to modify current strigolactone agonists using the 

3D structure of D14 and an in silico drug design method to screen for novel chemicals 

(Nakamura and Asami, 2014). 

For this study, trimethylbutenolide (TMB) was investigated as a possible inhibitor of 

strigolactone signalling. TMB has mostly only been described as a germination inhibitor of 

certain plant species, specifically as a direct antagonist of karrikin activity (Soós et al., 2012; 

Ghebrehiwot et al., 2013a; Papenfus et al., 2015a). Two different studies on TMB have 

described it as a stimulator of pollen growth in three different plant species (Kumari et al., 

2015) and an inhibitor of both germination and seedling development of Ansellia africana 

(Papenfus et al., 2015b). Other than the aforementioned studies, no research has been 

conducted on TMB, and its effect(s) on A. thaliana remains unknown.  

The antagonistic effect of TMB on karrikin activity means that it could have a similar effect on 

strigolactone activity. Strigolactone and karrikins both act through the MAX2 pathway, but are 

perceived by two paralogues, D14 and KAI2 respectively. There have been reports that both 

D14 and KAI2 can mediate GR24 (strigolactone) responses, but only KAI2 can mediate 

karrikin responses (Waters et al., 2012b). The specific mechanism of how TMB inhibits 

karrikins is still unknown, but if it does block the KAI2 receptor, it could possibly block the D14 

receptor as well. Even though TMB only affects KAI2, it could still act as an inhibitor of the 

strigolactone functions mediated via KAI2.   

In this chapter, the effect of different furanone-derivatives were investigated, with a particular 

focus TMB. As a starting point to investigate the effect of these chemicals on the growth of A. 

thaliana, an in vitro approach was used to treat A. thaliana seedlings in controlled manner. 

The formation of lateral roots was used as an indicator of increased or reduced strigolactone 

activity. A small group of strigolactone-responsive genes were also used in a semi-quantitative 

reverse-transcription PCR (sqRT-PCR) gene expression analysis to determine if an increase 

of decrease in strigolactone-responsiveness was observed in the presence of TMB.  
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3.2 Materials and Methods 

3.2.1 Chemicals 

Phyto-agar as solidifying agent for media used for in vitro experiments was purchased from 

DUCHEFA Biochemie. GR24 (racemic) was obtained from Prof B Zwanenburg of the 

Department of Organic Chemistry, Radboud University, Nijmegen, The Netherlands. All other 

chemicals, including tissue culture media, were bought from Sigma-Aldrich unless explicitly 

otherwise stated. Primers used for semi-quantative RT-PCR analysis were designed by 

Marthinus Jacob Rossouw, using Oligo Explorer (version 1.1.2), and synthesized by Inqaba 

Biotechnical Industries (Pty) Ltd (South Africa). 

 

3.2.2 Surface sterilization of Arabidopsis thaliana seeds 

A. thaliana seeds were surface decontaminated by placing open microcentrifuge tubes 

containing the seed under a glass dome with a beaker containing 100 mL sodium hypochlorite 

and 2 mL hydrochloric acid (37%) for at least 4 h.  

 

3.2.3 In vitro growth conditions and physiological growth quantification 

Surface decontaminated seed was sown onto petri dishes containing ½ strength Murashige 

and Skoog (MS) media (2.2 g.L-1) solidified with 9 g.L-1 Phytoagar with the pH adjusted to 5.8 

using potassium hydroxide (KOH). Growth media were sterilized by autoclaving for 20 min at 

a temperature of 121ºC and pressure of 103 kPa. Five days after germination (DAG), 

seedlings were transferred to a Greiner petri dish (120 mm x 120 mm) with media 

supplemented with the specific chemicals/treatments to be tested. These plates were placed 

almost vertically under cool white fluorescent tubes (Osram L 58V/740) with a light intensity of 

50 µmoles photons.m-2.s-1 in 16h light/8h dark growth conditions. The temperature of the 

growth room was 23ºC. Ten days later the plates were opened and photographed with a Nikon 

camera. The images were analysed using ImageJ (version 1.49) software. Physiological 

parameters investigated were lateral root number and primary root length.  
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3.2.4 In vitro application of treatments 

The synthetic strigolactone analogue GR24 (racemic mixture of both enantiomers) was 

dissolved in acetone to a concentration of 500 µM and further diluted to 100 µM with ddH20. 

The concentration of GR24 used in all the in vitro experiments was 0.1 µM. The second 

molecule, furanone (3-methyl-2(5H)-furanone), was obtained from Sigma-Aldrich in an 11.5 

mM liquid solution and further diluted using ddH20. The third molecule, TMB (3,4,5-trimethyl-

2(5H)-furanone), was obtained as a 6.2 M solution (Key Organics Ltd., United Kingdom) and 

further diluted using ddH20. All treatments were filtered sterilized using a 0.22 µm syringe filter 

unit directly into sterile ½ MS medium without sucrose. Optimal concentrations of TMB and 

furanone were determined by testing the effect of a range of different concentrations on the 

formation of lateral roots.  

 

3.2.5 Semi-quantitative RT-PCR analysis 

A. thaliana wild-type seedlings were surface decontaminated (Section 3.2.2) and grown 

vertically for 10 days on ½ MS media as described in Section 3.2.3, but with the addition of 

2% (m/v) sucrose. Ten seedlings were submerged in a solution containing the appropriate 

treatment for 6 h, before being gently blotted dry, flash frozen in liquid nitrogen and ground to 

a fine powder in a microfuge tube using a plastic pestle. The RNA extractions were performed 

using the RNEasy Mini Kit (QIAGEN), according to the manufacturer’s protocol. The 

concentration of total RNA was determined by a NanoDropTM Lite Spectrophotometer (Thermo 

Scientific). Genomic DNA was removed by a DNase I (RNase-free) kit (Thermo Fisher 

Scientific), according to the manufacturer’s protocol. The DNase I enzyme was inactivated by 

adding 1 µL 25 mM EDTA and incubating at 65ºC for 10 min. The mRNA was converted to 

cDNA using a RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific), according 

to manufacturer’s protocol. Oligo(d)T primers were used for the reverse transcriptase reaction.  

Each PCR reaction used 1 µL of cDNA, unless otherwise specified. The group of genes used 

were previously shown to be up- or down-regulated in response to GR24 treatment 

(Mashiguchi et al., 2009). The components of the optimization PCR reactions were 1X GoTaq® 

Reaction Buffer, 0.3 µM forward primer, 0.3 µM reverse primer, 0.3 mM dNTPs, 1 µL cDNA, 

0.01 U.µL-1 GoTaq® DNA Polymerase and ddH20 to a final volume of 50 µL. Specific primer 

sequences (Table 3.1) and PCR cycle conditions (Table 3.2) were used for each PCR 

reaction.  
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Table 3.1: Primers used for semi-quantitative RT-PCR analysis of strigolactone-responsive genes in 

the absence and presence of GR24. 

Gene name Response to GR24 Forward (5’-3’) Reverse (5’-3’) Tm 

(At1g64380) AP2  Up-regulated GCCGCAAAACAG

AATGAGGG 

GAACGATGGCAT

CCTCGCTA 

62ºC 

(At2g42620) F-box Up-regulated CGTGAATCAATGT

CAACCAC 

GATCGAAAATTAA

CGGGTGA 

56ºC 

(At4g14560) IAA1 Down-regulated ATGGAAGTCACC

AATGGGCT 

GGCAGTAGGAGC

TTCGGATC 

60ºC 

(At4g39070) STH7 Up-regulated ATGAAGATTTGGT

GTGCTGT 

GCTCGTAAATACC

TCATTGG 

56ºC 

(At3g18780) Actin2 Unchanged ATGGCTGAGGCT

GATGATAT 

CCATCACCAGAAT

CCAGCAC 

58 ºC 

 

 

Table 3.2: PCR cycle conditions for semi-quantitative RT-PCR analysis of strigolactone-responsive 

genes. 

Step Temperature Duration Number of cycles 

Initial Denaturation 95ºC 2 min  1 

Denaturation 95ºC 1 min 

25 Annealing * 1 min 

Elongation 72ºC 2 min 

Final extension 72ºC 5 min  1 

* Annealing temperatures were adjusted to the Tm described for each primer pair (Table 3.1) 

 

3.2.6 Agarose gel electrophoresis 

To visualize amplified DNA fragments, 25 µL of each of the PCR amplification products were 

loaded into the wells of an agarose gel (1% [m/v] agarose, 0.5x TBE buffer [5.4g.L-1 Tris base; 

2.75 g.L-1 boric acid; 0.465 g.L-1 EDTA, pH 8.0]) stained with 2.5 µL per 50mL gel of Pronosafe 

(Laboratorios Conda). The amplified DNA fragments were separated in the gel at 110 V for 

approximately 35 minutes. The DNA was visualized and photographed under ultraviolet (UV)-

light using the Alpha Imager 2000 (Alpha Innotech).  
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3.2.7 Statistical analysis 

All experiments were replicated three times to ensure reproducibility.  The one-way ANOVA 

function in Excel was utilized to determine any significant differences between the 

control/mock group and the treated groups.  
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3.3 Results and Discussion 

 

3.3.1 Optimization of growth conditions 

Standard in vitro growth conditions were used for all of the following experiments, as described 

in Section 3.2.2. Sucrose was excluded from the media as its presence can have confounding 

effects on strigolactone treatments (Jain et al., 2007). When investigating strigolactone activity 

in an in vitro setting with the addition of sucrose, some discrepancies occur between plants 

treated with low concentrations of GR24 versus plants treated with high concentrations of 

GR24 (Jain et al., 2007). With the addition of sucrose to the media, low concentrations of 

GR24 increase primary root length of A. thaliana, while higher concentrations of GR24 

decrease the primary root length (Jain et al., 2007). All of the in vitro growth experiments in 

this chapter were repeated three times to ensure reproducibility.  

Following experimentation to determine the best stage at which to transfer seedlings to new 

plates (data not shown), it was determined that 5 days after germination (DAG) was optimal. 

In order to determine  the effect of different concentrations of furanone on lateral root 

formation, as well as to identify the optimal concentration to use in future experiments, max4 

seedlings  were grown for 7 d on media containing 1 µM, 10 µM and 100 µM furanone (Fig. 

3.1). The max4 genotype, rather than the Col-0 wild type, was used since it would be easier 

to observe a change in phenotype as a result of strigolactone-like activity in this completely 

strigolactone-deficient mutant background.  

 

 

Figure 3.1: The effect of a mock treatment (control) and three different concentrations of furanone on 

lateral root formation in A. thaliana max4 seedlings. Bars represent the mean of 50 replicates (n=50) ± 

standard error. Different letters indicate values that were determined by one-way ANOVA with Fisher’s 

LSD post-hoc test to be significantly different (P < 0.05) from the control. 
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A reduction in lateral root number was observed when furanone was supplied at 

concentrations of 10 µM or 100 µM. Similar results were obtained when rice plants were 

treated this molecule (Nakamura et al., 2013). In that study, 50 µM of furanone slightly, but 

significantly, reduced the length of the second tiller of the rice plants, but not as much as 1 µM 

GR24. The hydrolysis of strigolactones by the enzymatic activity of D14, liberating the  D-ring 

from the ABC-ring, seems to provide the energy needed to destabilize the D14 molecule, 

which starts the strigolactone-signalling process that eventually leads to the degradation of 

D53 proteins. The high concentration of furanone needed (100 µM) to simulate some 

strigolactone-activity might be explained by the lack of energy release because of the absence 

of the hydrolysis reaction. In Petunia hybrida, it was reported that neither the ABC-ring nor the 

D-ring (i.e. furanone) can stimulate D14-MAX2 interaction or modulate branching (Hamiaux et 

al., 2012). In that study, the concentration at which furanone was tested is not stipulated, which 

might explain the report of furanone’s complete inactivity. Because there are numeral studies 

already published on the effect of furanone on plants growth, as described in Chapter 1 

(General Discussion), this molecule was further utilized as a control in conjunction to GR24.  

The use of furanone as a control in downstream experiments could prove to be valuable, 

because furanone has the  same ring structure as TMB, without the additional two methyl 

groups. In this experiment, the effect of furanone on lateral root formation was only 

investigated on the max4 phenotype, because max4 is a strigolactone biosynthesis mutant 

and would show a greater effect in the presence of a treatment containing strigolactones or a 

strigolactone analogue. In the future, however, the wild-type should be included in order to 

make any definitive conclusions about the results.    

To determine the optimal concentration of TMB for use in future experiments, A. thaliana Col-

O wild type plants were treated with three different concentrations of TMB (Fig. 3.2).  Since 

the overall aim of these experiments was to determine whether TMB is able to inhibit 

strigolactone signalling, wild type plants were used for this experiment instead of the max4 

phenotype, because the wild type Col-0 synthesizes strigolactones, whilst the max4 

biosynthetic mutant does not.   
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Figure 3.2: The effect of a mock treatments and three different concentrations of TMB on lateral root 

formation in A. thaliana Col-0 seedlings. Bars represent the mean of 50 replicates (n=50) ± standard 

error. Different letters indicate values that were determined by one-way ANOVA with Fisher’s LSD post-

hoc test to be significantly different (P < 0.05) from the control. 

 

At all concentrations tested (0.1-10 µM), TMB slightly but significantly enhanced lateral 

rooting. The effect of TMB has never been investigated on A. thaliana, while most studies that 

have investigated this molecule mainly investigated its effect on germination (Light et al., 2010; 

Soós et al., 2012; Papenfus et al., 2015a; Papenfus et al., 2015b). It is often described as a 

direct antagonist to karrikins, because karrikins are known to stimulate germination 

(Ghebrehiwot et al., 2013a), but its possible interaction with strigolactone have never been 

described. In one of the germination studies, a range a TMB concentrations (1 µM-1 mM) 

inhibited the germination of Lactuca sativa (lettuce) seeds in a non-dose-dependent manner 

(Pošta et al., 2013), but clearly at higher concentrations than what was investigated in this 

study. This suggests that investigating the effect of TMB at concentrations higher than 10 µM 

would not have a greater effect on lateral root formation (Fig. 3.2). Also, TMB was obtained 

from the manufacturer in very low quantities (10 mg), which limited its uses for these 

experiments to concentrations of 10 µM and lower. The fact that TMB enhanced lateral rooting 

at the same concentration that strigolactones usually reduce lateral rooting does suggest that 

TMB may be acting here to inhibit strigolactone activity. In comparison, mock-treated max4 

seedlings (Fig. 3.1) also had more lateral roots than untreated (mock) Col-0 seedlings (Fig. 

3.2). Without the synthesis of strigolactones, an increase in lateral root density is always 

observed (Kapulnik et al., 2011a).   
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3.3.2 Effect of different furanone-derivatives on A. thaliana in vitro 

 

In order to provide further evidence that TMB inhibits strigolactone activity, A. thaliana Col-0 

seedlings were treated not only with TMB (0.1 µM), but also GR24 (0.1 µM) and furanone (100 

µM) (Fig. 3.3). Seedlings were grown for 10 d, as opposed to 7 d in the optimization 

experiments (Fig. 3.1, Fig. 3.2).  

 

 

 

Figure 3.3: The effect of different furanone derivatives on lateral root formation in Col-0 A. thaliana 

seedlings. Bars represent the mean of 50 replicates (n=50) ± standard error. Different letters indicate 

values that were determined by one-way ANOVA with Fisher’s LSD post-hoc test to be significantly 

different (P < 0.05) from the control  

 

 
At a concentration of 0.1 µM, GR24 reduced lateral root formation, while furanone (100 

µM)had the same effect but to a lesser extent and TMB (0.1 µM) slightly enhanced lateral root 

formation. In literature, GR24 is often used at the slightly higher concentration of 1 µM, while 

some research groups used it at 2.5 – 5 µM for a greater effect (Ruyter-Spira et al., 2011). In 

the max4 phenotype, but not Col-0, a concentration of 0.01 µM GR24 significantly reduced 

lateral root formation (Kapulnik et al., 2011a). The fact that GR24 and TMB had the opposite 

effect on lateral root formation at the same concentration (0.1 µM) is interesting and suggests 

that TMB might be a competitive inhibitor of strigolactone signalling at the same concentration. 

In order to gain a deeper insight, a combined treatment of GR24 and TMB should also be 

tested on lateral root formation in the future.  If TMB is in fact an inhibitor of strigolactone-

activity, or more specifically an inhibitor of strigolactone signalling, it would be expected to 

either inhibit or ameliorate the reduction of lateral root formation by GR24. Unfortunately this 

experiment could not be performed due to time constraints.     
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3.3.3 Effect of furanone-derivatives on the expression of strigolactone-responsive 

genes 

Using literature as reference, a set of genes that are known to be up- or down-regulated by 

GR24 (Mashiguchi et al., 2009) was selected.  A wide variety of genes was tested, and only 

those that were clearly up-regulated after 25 cycles in a semi-quantitative manner were 

selected (Rossouw, 2015; unpublished data). Other genes were excluded due to inconsistent 

results and/or because their expression was unchanged in the presence of GR24 under the 

sqRT-PCR conditions tested. 

The seedling tissue from the last growth experiment (Fig. 3.3) were flash frozen, RNA isolated, 

cDNA manufactured and the effect of GR24, furanone and TMB were tested on the expression 

of At1g64380 (AP2), At2g42620 (F-box), At4g14560 (STH7) and At4g14560 (IAA1) (Fig. 3.4).  

The expression of At3g18780 (Actin2) was used as a reference gene.  

  
Figure 3.4: Gene expression of four different strigolactone-responsive genes in A. thaliana Col-0 

seedlings after being treated with different furanone-derivatives and a control for 2 weeks. The 

expression of Actin2 was used as a control. 

 

During the development of the protocol, AP2, F-box and STH7 were clearly up-regulated by 

GR24, while IAA1 was down-regulated under the same conditions (Rossouw, 2015; 

unpublished data), which correlated with what was reported in literature (Mashiguchi et al., 
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2009). In this experiment, of the genes supposed to be up-regulated by GR24, only AP2 and 

STH7 were very slightly up-regulated, while F-box seemed to remain unchanged under the 

same conditions. For AP2 expression, all three treatments seemed to induce the expression 

of AP2 in comparison to the mock treatments, which is unexpected if the assumption is that 

TMB has an antagonistic effect to strigolactones. For F-box expression, none of the treatments 

appeared to have any visible effect on expression levels. This, too, is the opposite to what 

was seen during the development of this protocol, because is believed to be antagonistic to 

any strigolactone-activity, based on its antagonistic effect on KAR1 (Soós et al., 2012; 

Ghebrehiwot et al., 2013a) and the high degree of homology between the strigolactone 

receptor (D14) and the karrikin receptor (KAI2) (Kagiyama et al., 2013). For STH7, whilst 

GR24 induced expression as expected, TMB clearly down-regulated expression in 

comparison to the mock treatment, whilst furanone had no effect.   

 

The expression of STH7 is not only strongly induced by strigolactones, but also by KAR1 

(Smith and Li, 2014a; Waters et al., 2015).  For IAA1, TMB induced its expression in 

comparison to the mock treatment, whilst a slight reduction in expression following treatment 

with GR24 was observed. The expression of IAA1 is known to be repressed by GR24 (Waters 

et al., 2012b), but also by karrikins (Nelson et al., 2011). It is therefore clear that the expression 

of both STH7 and IAA1 is affected by both GR24 and karrikins in a similar way. For greater 

clarity on whether the effect of TMB is specific to strigolactones and not karrikins, d14 and 

kai2 mutants can be included in a future experiment to exclude either strigolactone or karrikin 

signalling. From what has been seen in literature and in this study, TMB might affect the 

expression of STH7 and IAA1 in a similar way. Karrikins can also be used in the same 

experiment as a further control.    

 

The expression analysis thus offered some support for the possibility that TMB can inhibit 

strigolactone signalling, since TMB induced the opposite effect on expression compared with 

GR24 in two of the four genes tested (STH7 and IAA1).    However, unexpected results were 

observed for both the AP2 and the F-box genes.  No changes in expression of the F-box gene 

were observed for any of the treatments, whilst the expression of the AP2 gene was slightly 

increased by all three treatments. If TMB is in fact an inhibitor of strigolactone activity, it would 

not have the same effect on a strigolactone-responsive gene as GR24. The F-box gene has 

previously been shown to be up-regulated by GR24 treatment (Mashiguchi et al., 2009). 

Before this experiment was conducted, the assumption was made that TMB would have an 

opposite effect on the expression of strigolactone(GR24)-responsive genes. It is, however, 

possible that TMB could still be an inhibitor of strigolactone activity without affecting the 

expression of every single strigolactone-responsive gene in an opposite way. Another 
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explanation could be that this may be due to the short half-life (approximately 7 d) of GR24 

(Zwanenburg and Pospísil, 2013). A recent study even suggested that the half-life of GR24 is 

even shorter than previously described (Rasmussen et al., 2013). The sqRT-PCR analysis 

was optimised using 2 week old seedlings that were treated by immersion in a fresh GR24 

solution for 6 h and then immediately tested for the expression of the genes (Rossouw, 2015; 

unpublished data).  However, since this experiment lasted two weeks, it is possible that the 

physiological effect (decreased lateral root formation) remained, but that changes in gene 

expression could no longer be easily detected due to the breakdown of GR24 during the 

course of the experiment. Although the half-life of TMB has not been investigated, the 

assumption is that it is stable for long periods of time, because in nature, its antagonistic effect 

on germination is only alleviated after rainfall, which washes away the high concentration of 

TMB to increase the concentration of karrikins which leads to germination (Ghebrehiwot et al., 

2013b). The implication is that TMB did not become inactive in experiments that run for as 

long as two weeks. In the future, this experiment can be repeated where the effect of TMB 

after medium term exposure can be investigated, for example after periods of 24h, 48h, 72h 

and one week, whilst repeating the experiment at 6 h and two weeks. Another synthetic 

analogue of strigolactones, Nijmegen-1, could also be included for verification of the obtained 

results.  

      

From the first semi-quantitative RT-PCR analysis results (Fig. 3.4), not many conclusions 

could be made, with the exception that TMB repressed the expression of STH7 and induced 

the expression of IAA5. Since it was initially determined that the up- or –down-regulating of 

these genes is optimal after 6 h (Rossouw, 2015; unpublished data), a similar experiment was 

conducted using ten 14-day old A. thaliana Col-0 seedlings per treatment to investigate the 

effects of GR24 (0.1 µM), furanone (100 µM), TMB (0.1 µM), GR24 (0.1 µM) in conjunction 

with furanone (100 µM) and GR24 (0.1 µM) in conjunction with TMB (0.1 µM) on the 

expression of the aforementioned genes after 6 h (Fig. 3.5).      
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Figure 3.5: Gene expression of four different strigolactone-responsive genes in two-week old A. 

thaliana seedlings after being treated with different furanone-derivatives and a control for 6 h. The 

expression of Actin2 is used as a control. 

 

The expression of AP2, F-box and STH7 was up-regulated in the presence of GR24 in 

comparison to the mock treatment, while the expression of IAA1 was down-regulated. This 

correlated exactly with what has been seen before (Mashiguchi et al., 2009) and during the 

development of the protocol (Rossouw, 2015; unpublished data). Furanone, on its own, 

appeared to have no effect on the expression of any of the genes in comparison to the mock 

treatments. Treatment with TMB alone also had no effect on the expression of any of the gene 

in comparison to the mock treatment, except for a slight induction of AP2. It is possible that 

TMB acts over a longer time frame, and that the 6h treatment used here was too short to 

observe any effects of TMB on gene expression.  For the combined treatments, GR24 in 

conjunction with furanone followed the same general pattern as for GR24 alone, except that 

the double treatment showed a greater reduction in the expression of IAA1, which suggests 

that furanone slightly enhances the effect of GR24. However, this enhancing effect was not 

observed at the expression of the other strigolactone-responsive genes.  Seedlings treated 

with a combination of GR24 and TMB showed similar changes in gene expression for all genes 

as did seedlings treated with GR24 alone, suggesting that TMB was not able to inhibit the 
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effects of GR24 when the two compounds were applied in tandem.  As stated earlier, it is also 

possible that TMB may only exert an effect over a longer term and so would not have affected 

gene expression, as GR24 did, at this point. 

 

3.4. Concluding remarks and future prospects 

This part of the study was aimed at determining whether TMB could act as a specific inhibitor 

of strigolactone signalling, using furanone and GR24 as indicators of strigolactone-activity. 

Parts of the results do suggest that TMB might have an antagonistic effect on strigolactone 

activity, at least in terms of lateral root formation and the expression of some strigolactone-

responsive genes. The presence of TMB enhanced lateral root formation in comparison to a 

mock treatment, while GR24 reduced lateral root formation under the same conditions. 

Although the lateral root experiments suggest that TMB might have an inhibitory effect on 

strigolactones, it is also possible that this effect could be modulated through a completely 

different pathway. One such an example is that of auxins, whose role in lateral root formation 

have previously been investigated and partly characterized (Laskowski et al., 2006; Mayzlish-

Gati et al., 2012).  

From these results, it can be concluded that TMB could have some strigolactone inhibitory 

activity, but it does not seem to outcompete a similar amount of exogenous strigolactones. In 

a future experiment, different concentrations of GR24, as well as TMB, could be tested against 

one another. The racemic mixture, GR24, used in this study is a synthetic analogue of natural 

occurring strigolactone, but only one enantiomer is similar to naturally occurring 

strigolactones, which means that racemic GR24 may elicit responses that might not actually 

be elicited naturally by strigolactones (Mangnus et al., 1992; Rasmussen et al., 2013; Scaffidi 

et al., 2014).  

In other future experiments, it would be valuable to investigate the same treatments and 

combinations of treatments (Fig. 3.5) in on the growth of A. thaliana in more in vitro growth 

experiments. The use of furanone as a control in these experiments was valuable, since 

furanone has an identical ring structure to TMB, without the addition of two methyl groups. In 

the initial experiments, its effect on lateral root formation was only investigated on the max4 

phenotype, because max4 is a strigolactone biosynthesis mutant. In the future, however, the 

wild-type should be included in order to make any definitive conclusions about the results. 

Also, because the aim of this study was to determine if TMB inhibits strigolactone signalling, 

a few mutant phenotypes should be incorporated in both the growth and sqRT-PCR analysis 

experiments. One or more biosynthetic mutants (max4, max3 or max1) and the perception 

and signalling mutants, max2 and d14, can be used to provide evidence that TMB inhibits 
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strigolactone signalling. A karrikin-perception mutant, kai2, could also be used as a control, 

as it would remove karrikin signalling from the equation. If TMB elicits an effect in the kai2 

mutant and wild-type, but not in d14, it would mean that it only involves strigolactone signalling. 

If a similar effect is seen in both d14 and kai2, it would mean that it is modulated through KAI2, 

because KAI2 is known to modulate some strigolactone signalling, while D14 only modules 

strigolactone signalling (Scaffidi et al., 2014).   If TMB enhances lateral root formation in A. 

thaliana Col-0 plants, but not in the max2 and d14 mutants, it would be further evidence that 

TMB is in fact an inhibitor of strigolactone signalling. 

 

The effect of TMB on both of the enantiomers in GR24 should also be tested, separately. The 

use of natural strigolactones, strigol, would be best, but the half-life of these molecules are 

only 12-24 h (Akiyama et al., 2010; Chen et al., 2010; Rasmussen et al., 2013) and the results 

does suggest that the effect of TMB can only be seen after longer exposure. In the future, 

these experiments can be repeated where the effect of TMB after medium term exposure can 

be investigated. This could include measurements after 24h, 48h, 72h and one week, whilst 

also repeating the experiment at 6 h and two weeks. Both the growth experiments, along with 

gene expression analysis, possibly including more genes, should be performed at these time 

points. In conjunction with these experiments, A. thaliana plants grown ex vitro can also be 

treated with optimized concentrations of TMB to investigate whether a change in growth and 

shoot architecture may be observed.  

 

Another proposed method is to perform similar experiments in plant species in which higher 

concentrations of strigolactones are produced. In conjunction with this, proteomic experiments 

could also be used. One aspect that can be focussed on is to investigate the presence of D14 

proteins. If strigolactones are prevented from binding to the D14 receptor by TMB, more D14 

proteins would remain stable, therefore increasing the concentration of D14 proteins in plants 

treated with TMB.  

 

In conclusion, the results could be interpreted that TMB elicited a response suggestive of a 

strigolactone inhibitor. However, the results are very preliminary and further investigation, 

using these introductory findings, is needed to make a definitive conclusion of the effect of 

TMB on the growth of A. thaliana.  
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Chapter 4: Developing a strigolactone-responsive reporter 

construct 

 

“There is no way around the hard work. Embrace it.” – Roger Federer 

 

4.1 Introduction 

In the last ten years, strigolactones as a novel phytohormone has been further described and 

functions ranging from the root to the shoot linked to it. The biosynthetic and signalling 

pathways have also been partially elucidated (de Saint Germain et al., 2013), with general 

consensus among the scientific community that more components of this pathway are yet to 

be identified. Strigolactones, although a phytohormone like auxins and cytokinins, are 

bioactive at much lower concentrations than most other phytohormones (Sato et al., 2005). 

Strigolactones have been isolated and quantified in some plants, usually from root exudations 

in mycorrhizal species. This is because they are biosynthesized in the roots (Seto and 

Yamaguchi, 2014) and exuded from the organ where they play a vital role in the establishment 

of the symbiotic relationship with arbuscular mycorhizal fungi (Akiyama et al., 2005). However, 

in A. thaliana, the most widely-used plant model, the detection and quantification of 

strigolactones is challenging (Kohlen et al., 2011), with some research groups unable to isolate 

them (Goldwasser et al., 2008; Seto and Yamaguchi, 2014). Because Arabidopsis is a non-

mycorrhizal plant, strigolactones are produced only as a phytohormone in this species and 

consequently at levels which are too low for consistent isolation or analysis. This poses a 

problem and major limitation to further the characterization of the strigolactone pathway in A. 

thaliana. The expression of BRC1, a TCP transcription factor known to inhibit the outgrowth 

of branches, is currently used by research groups as an indicator of increased strigolactone 

activity, as its expression is consistently up-regulated by strigolactones, mostly in the axillary 

buds in plants (Aguilar-Martínez et al., 2007; Mashiguchi et al., 2009; Finlayson et al., 2010; 

Domagalska and Leyser, 2011; Braun et al., 2012; González-Grandío et al., 2013; Bennett 

and Leyser, 2014). The up-regulation of BRC1 is indicative of enhanced strigolactone-activity, 

while its down-regulation is indicative of the opposite (Aguilar-Martínez et al., 2007). Other 

genes have also been identified that are known to be up- or down-regulated in the presence 

of strigolactones (Mashiguchi et al., 2009; Mayzlish-Gati et al., 2010; Ito et al., 2015). 

The use of reporter constructs in plant biology have been instrumental in determining the 

localization of specific transcripts at particular stages of development and under specific 

conditions.  Similarly, a reporter construct has also been developed and used for the detection 
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of auxins in plants (Ulmasov et al., 1997). This reporter construct consists of a tandem repeat 

of the auxin-responsive TGTCTC DNA binding element, fused to the GUS reporter gene. A 

similar reporter construct that is activated only in the presence of strigolactones would be a 

valuable research tool for strigolactone-research groups, because of the challenges faced in 

isolating and quantifying this phytohormone. Unfortunately, there are no known strigolactone-

responsive motifs. A starting point to create a strigolactone-responsive promoter construct 

would be to use the promoter region/s of strigolactone-responsive genes. Two obvious 

candidate genes for this purpose would be BRC1, involved in the regulation of shoot branching 

(Aguilar-Martínez et al., 2007; Gomez-Roldan et al., 2008; Umehara et al., 2008; Martín-Trillo 

et al., 2011) and already widely used as a genetic marker for strigolactone signalling in 

Arabidopsis, and PDR1, the Petunia hybrida ABC transporter which has been shown to 

transport strigolactones in planta (Kretzschmar et al., 2012). For this part of the project, an 

attempt was thus made to create a strigolactone-responsive reporter construct that is only 

activated in the presence of strigolactones, using the 1500 bp regulatory region immediately 

upstream of AtBRC1 (At3g18550).  
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4.2 Materials and Methods 

4.2.1 At3g18550 (AtBRC1) in silico promoter analysis 

The promoter and intergenic sequence upstream directly upstream of the start codon from the 

coding sequence of AtBRC1 (At3g18550) was retrieved from the Athena Pantheon online 

database (http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/home.pl). The Arabidopsis 

Gene Regulatory Information Server (AGRIS) (http://arabidopsis.med.ohio-state.edu/), the 

Anthena Pantheon motif analysis tool and The Database of Arabidopsis Transcription Factors 

(DATF) (http://datf.cbi.pku.edu.cn/) were used to predict the occurrence of putative 

transcription factor binding sites in this 1500 bp upstream region.  

 

4.2.2 Chemicals 

All primers were designed using the Primer3 online tool (http://simgene.com/Primer3) and 

synthesized by Inqaba Biotechnical Industries (Pty) Ltd. Enzymes and vectors used for 

Gateway® cloning were purchased from InvitrogenTM. All other chemicals were purchased from 

Sigma-Aldrich, unless explicitly otherwise stated. 

 

4.2.3 Extraction of genomic DNA (gDNA) from A. thaliana 

Wild-type A. thaliana Col-0 seedlings were grown on ½ strength MS media supplemented with 

2% (m/v) sucrose and solidified with 9 g.L-1 Phytoagar. Ten two week-old seedlings that had 

been grown under white fluorescent tubes (Osram L 58V/740) with a light intensity of 50 

µmoles photons.m-2.s-1, temperature of 25ºC and a 16h light/8h dark photoperiod were 

collected, flash frozen using liquid nitrogen and ground to a fine powder using a pre-chilled 

mortar and pestle. Approximately 500 mg of the powdered tissue was incubated with 5 mL 

CTAB buffer (2% [m/v] CTAB; 2% [m/v] PVP; 100 mM Tris-HCl, pH 8.0; 25 mM EDTA; 2M 

NaCl; 0.5 g.L-1 spermidine) at 65ºC for 30 min. A chloroform:iso-amyl alcohol (24:1) extraction 

was performed and centrifuged for 15 min at 3000 xg. The DNA was precipitated by incubating 

2.5 mL isopropanol with the aqueous phase at -20ºC for 60 min. After centrifugation for 5 min 

at 10 000 xg, the supernatant was removed and the pellet resuspended in 500 µL ddH20. The 

gDNA was precipitated by adding 0.1 volume 5M NaCl and 2 volumes ice-cold absolute 

ethanol and incubating the tube overnight at -20ºC. The gDNA was spun down at 10 000 xg 

at 4ºC for 60 min and the pellet briefly washed with 70% ethanol and resuspended in 20 µL 

ddH20. The integrity and concentration of the gDNA was determined by a NanoDrop Lite 

Spectrophotometer and gel electrophoresis on a 1% (m/v) agarose gel. 

4.2.4 Preparation of chemically competent E. coli 
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Chemically competent E. coli were manufactured and transformed according to the method 

described by Sambrook et al. (1989). Aliquots of chemically component cells were flash frozen 

and stored at -80 ºC. 

 

4.2.5 Preparation of electro competent Agrobacterium tumefaciens  

A single colony of Agrobacterium tumefaciens GV3101 was inoculated into 100 mL LB 

medium (10 g.L-1 bacterial peptone; 5 g.L-1 yeast extract; 10 g.L-1 NaCl; 10 g.L-1) containing 

25 µg.mL-1 rifampicin and 25 µg.mL-1  gentamycin and grown for 18 h at 28 ºC with shaking at 

200 rpm. Cells were harvested by centrifugation at 4000 xg for 10 min at 4 ºC and washed 

three times in 40 mL ice-cold ddH20. Cells were again harvested by centrifugation at 4000 xg 

for 5 min at 4 ºC, resuspended in 40 mL ice-cold 10% glycerol, re-centrifuged and finally 

resuspended in 1 mL ice-cold 10% (v/v) glycerol. Aliquots of 40 µL were flash frozen by liquid 

nitrogen and stored at -80 ºC.      

 

4.2.6 Promoter isolation and cloning into pMDC163.gb vector 

Three different promoter sizes (1480, 990 and 500 bp fragments immediately upstream of 

AtBRC1) were amplified via PCR using A. thaliana gDNA as template. The components of the 

optimization PCR reactions were 1X GoTaq® Reaction Buffer, 0.3 µM forward primer, 0.3 µM 

reverse primer, 0.3 mM dNTPs, 4 ng.µL-1 gDNA, 0.01 U.µL-1 GoTaq® DNA Polymerase 

(Promega) and ddH20 to a final volume of 50 µL. The components of the PCR reactions used 

for cloning were 1X Phusion HF Buffer, 0.5 µM forward primer, 0.5 µM reverse primer, 0.3 mM 

dNTPs, 4 ng.µL-1 gDNA, 0.02 U.µL-1 Phusion® DNA Polymerase (Thermo Fisher Scientific) 

and ddH20 to a final volume of 50 µL. The PCR cycle conditions in Table 4.1 and primer 

sequences in Table 4.2 were used for all PCR reactions.  

 

The DNA fragments (1480bp, 990bp and 500bp fragments immediately upstream of AtBRC1) 

were initially PCR amplified using GoTaq® DNA Polymerase, in order to optimise the PCR 

conditions. Following successful amplification, the PCR reaction was repeated using Phusion® 

High-Fidelity DNA Polymerase.  
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Table 4.1: PCR cycle conditions for the amplification of the 1480, 990 and 500 bp fragments 

immediately upstream of AtBRC1 for both GoTaq® and Phusion® reactions. 

*Annealing temperatures were determined according to the specific annealing temperature (Tm) for each primer 

set (Table 4.2) for the GoTaq® PCR reactions. The annealing temperatures for the Phusion® PCR reactions were 

3ºC higher than the Tm indicated in Table 4.2. 

 

 
Table 4.2: Primer sequences used to isolate the 1480, 990 and 500 bp fragments immediately upstream 

of AtBRC1, as well as the T7 and GUS forward and reverse primer sequences. 

 

Amplified fragments were isolated after the PCR reaction using the Wizard® SV Gel and PCR 

Clean-Up System (Promega) according to the manufacturer’s recommendations. To prepare 

the fragments for cloning into the pCR®8/GW/TOPO® vector (Invitrogen), adenine-overhangs 

were attached by mixing adding 5 µL of the purified PCR product, 2 µL deoxyadenosine 

triphosphate (dATP), 2 µL 5X Colorless GoTaq® Reaction Buffer and 1 µL GoTaq® DNA 

Polymerase to a PCR tube and incubating at 72ºC for 20 min. The fragments were again 

purified using the Wizard® SV Gel and PCR Clean-Up System before cloning the PCR product 

into the pCR®8/GW/TOPO® vector. The purified A-tailed PCR product was then ligated into 

the pCR®8/GW/TOPO® vector, according to manufacturer’s protocol.  

 

Two microliters of the ligation reaction was added to 40 µL One Shot® TOP10 Escherichia coli 

competent cells (Section 4.2.4) and incubated at a temperature of 4ºC for 20 min before the 

Step Temperature Duration Cycles 

 GoTaq Phusion GoTaq Phusion  

Initial Denaturation 95ºC  98ºC 2 min 30 s 1 

Denaturation 95ºC 98ºC 1 min 10 s 

35 Annealing * 1 min 

Elongation 72ºC 2 min 

Final extension 72ºC 5 min 1 

 Forward (5’-3’) Reverse (5’-3’) Tm 

1480 bp  TGAAGTCATAAGAATTACACCAAAA GCCTTTTTAGGGGTTTTTGAA 55 ºC 

990 bp AAGATCTGTTTATTTAAAGTGAAATGT GCCTTTTTAGGGGTTTTTGAA 56 ºC 

500 bp CCCCCATAATGATCTCTTTGC GCCTTTTTAGGGGTTTTTGAA 55 ºC 

T7 TAATACGACTCACTATAGGG - 45 ºC 

GUS AGTGGATCCATGTTACGTCCTG TGCGAGCTCTCATTGTTTGCCTC 56 ºC 
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cells were heat shocked at 42ºC for 45 s. The vial was incubated again at 4ºC for another 2 

min. One millilitre Super Optimal Broth with Catabolite repression (SOC) medium (20 g.L-1 

bacterial peptone; 5 g.L-1 yeast extract; 0.6 g.L-1 NaCl; 0.5 g.L-1 KCl; 10 mM MgCl2; 10 mM 

MgSO4; 20 mM glucose) was added to the vial and the culture incubated at 37ºC with shaking 

at 200 rpm. The culture was centrifuged for 15 s at maximum speed in a desktop centrifuge, 

resuspended in 150 µL fresh SOC and spread on Luria Broth (LB) plates (10 g.L-1 bacterial 

peptone; 5 g.L-1 yeast extract; 10 g.L-1 NaCl; 10 g.L-1 bacteriological agar) supplemented with 

50 µg.mL-1 spectinomycin. The plates were incubated at 37ºC for 18 h until colonies appeared.  

Three colonies were selected and inoculated into 2mL liquid LB medium.  The cultures were 

incubated at 37ºC with shaking at 200 rpm for 18 hours. Pure plasmid DNA was isolated from 

the 2 mL cultures using the Thermo Scientific GeneJET Plasmid Miniprep Kit, according to 

manufacturer’s protocol. Plasmid DNA concentration was determined using a NanoDrop Lite 

Spectrophotometer (Thermo Scientific). To determine the orientation of the fragment inserted 

into the pCR®8/GW/TOPO® vector, the T7 vector-specific forward primer and promoter-

specific reverse primer (Table 4.2) were used in the same PCR conditions for GoTaq®DNA 

Polymerase as previously described (Table 4.1). The PCR products were visualised via 

electrophoresis on a 1% (m/v) agarose gel. 

Seven microliters (150 ng) of the confirmed pCR®8/GW/TOPO® vector with the promoter 

inserted in the correct orientation was then added to 1 µL (150 ng) of the pMDC163.gb binary 

vector (Addendum C) and 2 µL of the LR ClonaseTM II enzyme and incubated at room 

temperature for 1 h. One microliter of proteinase K solution was added and the reaction 

incubated at 37ºC for 10 min.    

A 1 µL aliquot of the LR Clonase reaction was used to transform chemically competent One 

Shot® OmniMAX™ 2 T1 Phage-Resistant Cells (Thermo Fisher Scientific) as described 

previously. Transformed cells were plated out onto selective LB plates containing 50 µg·mL-1 

kanamycin. After incubating at 37ºC for 18 h, bacterial colonies were selected and incubated 

at 37ºC in liquid LB containing 50 µg·mL-1  kanamycin. The purified final construct was isolated 

using the Thermo Scientific GeneJET Plasmid Miniprep Kit. To determine the success of the 

LR Clonase reaction and confirm the construct, two PCR reactions were set up using GUS-

specific and promoter-specific primers (Table 4.2).  

 

4.2.7 Transforming A. tumeficiens GV3101 by electroporation  

A total of 1 µg of the confirmed construct was added to 40 µL of electrocompetent A. 

tumeficiens GV3101 cells (Section 4.2.5) and gently mixed in by pipetting up and down.  The 
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cells were incubated on ice (4ºC) for 20 min. The mixture was then transferred to a Gene 

Pulser®/MicroPulser™ Electroporation Cuvettes (0.1 cm gap) (Bio-Rad) and electroshocked 

using the Agrobacterium pre-set protocol on the Gene Pulser Xcell™ Electroporation System 

(Bio-Rad). Immediately after the shock pulse had been applied, 1 mL liquid SOC medium was 

added directly to the mixture, which was then transferred to a 1.5 mL microfuge tube. 

After 1.5 h of shaking at 200 rpm and a temperature of 28ºC, different volumes of the small 

cell culture were plated out on YEP medium (10 g.L-1 bacterial peptone; 10 g.L-1 yeast extract; 

5 g.L-1 NaCl) solidified with 12 g.L-1 bacteriological agar and supplemented with 10 µg.mL-1 

rifampicin, 30 µg.mL-1 gentamicin and 50 µg.mL-1 kanamycin. Plates were incubated at 28ºC 

for 48 h. To confirm the presence of the pMDC163 expression vector containing the promoter 

sequences, individual bacterial colonies visible on the plates were selected and inoculated 

into fresh liquid YEP medium. After 12 h of growth, a total of 500 µL of the cell culture was 

centrifuged at 10 000 xg for 20 s and resuspended in ddH2O before being boiled at 100ºC for 

5 min. A 5 µL aliquot of the boiled suspension was used in a PCR reaction using promoter 

gene-specific primers and/or GUS-specific primers. Where the PCR procedure described 

above failed, an alkaline plasmid isolation was performed and the resulting plasmid(s) 

transformed into chemically competent E. coli DH5ɑ. Standard colony PCR reactions, where 

the PCR reaction was prepared without the addition of a DNA template but rather adding the 

E. coli cells from the colony directly to the reaction using a pipette tip, were then performed on 

a few the resulting colonies. 

 

4.2.8 Agrobacterium-mediated transformation of A. thaliana Col-0, max4 and max2  

Arabidopsis thaliana Col-0, max4 and max2 plants were grown in a 10h light/ 14h dark growth 

environment with a light intensity of 90 µE.ms-2.s-1, temperature of 25 ºC and relative humidity 

of 90% in peat disks (Jiffy-7® bags, Jiffy Products Int.). Primary inflorescences were clipped of 

at the base 7 days before transformation, to allow for the production of fresh, young 

inflorescences. Confirmed A. tumefaciens colonies containing the desired constructs were 

inoculated into 50 mL YEP medium containing 10 µg.mL-1 rifampicin, 30 µg.mL-1 gentamicin 

and 50 µg.mL-1 kanamycin and incubated at 28ºC for 48 h. This starter culture was used to 

inoculate 500 mL YEP medium containing the aforementioned antibiotics. This culture was 

incubated at 28ºC with shaking at 200 rpm for 24 h. The cell culture was centrifuged at 4000 

xg for 10 min at room temperature and resuspended in 500 mL 5% (m/v) sucrose. Silwet- L-

77 was added to the solution to a concentration of 0.02% (v/v). Plants were inverted and 

dipped into the Agrobacterium-sucrose cell suspension for 10 s, before being wrapped in 

plastic film and placed on their side in the dark at ambient temperatures for 18 h. The plastic 
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film was then removed and the plants were transferred back to the growth room. This entire 

procedure was repeated one week later to improve the transformation efficiency.    

As an alternative to floral dipping, individual buds were treated directly with the Agrobacterium 

culture.  The transformed A. tumefaciens were grown as described in Section 4.2.8, but 1.5 

mL of the starter culture was centrifuged for 20 s at 10 000 xg and resuspended in 2 mL 5% 

(m/v) sucrose. Silwet-L77 was added to a concentration of 0.02 % (v/v). Each closed floral 

bud was treated with 10 µl of this suspension. Plants were placed in a closed box for 18 h 

before being transferred back to the growth room. This procedure was repeated one week 

later to improve the transformation efficiency. 

 

4.2.9 Transformant selection and confirmation 

Seeds were collected after seed maturation, surface decontaminated (Section 3.2.2) and 

sown on ½ strength MS media supplemented with 17.5 µg.mL-1 hygromycin B. After two 

weeks, primary transformants were transferred to peat disks. Owing to the fact that all seeds 

germinated in the presence of hygromycin B, only seedlings that developed a complete root 

system and true leaves were selected. Transformants were grown until the emergence of 

primary bolts, which were clipped to stimulate inflorescence growth to produce more seed. 

The T2 seed was collected and used for further analysis. T2 seeds were also selected on ½ 

MS media supplemented with 2% (m/v) sucrose and 17.5 µg.mL-1 hygromycin B. Seedlings 

were grown for two weeks under white fluorescent tubes (Osram L 58V/740) with a light 

intensity of 50 µmoles photons.m-2.s-1, temperature of 25ºC and a 16h light/8h dark day period 

before either being transplanted to a peat disk or analysed by GUS staining.   

 

4.2.10 Treatments of T2 transformants  

The two-week old seedlings were placed on sterile filter-paper soaked by a solution containing 

GR24 (0.1 µM), Nijmegen-1 (0.1 µM, also a synthetic strigolactone analogue), 6-

benzylaminopurine (BAP, 0.5 µM) or 1-naphthaleneacetic (NAA, 0.5 µM) or only ddH20 (mock) 

for 6 h. Seedling tissue was either analysed by GUS staining or blotted dry and flash frozen 

for semi-quantitative RT-PCR analysis. 
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4.2.11 Histochemical GUS staining of T2 transformants  

In vitro grown seedlings were placed in ice-cold 90% acetone and fixed at room temperature 

for 25 min. The acetone was removed and the seedlings submerged in GUS staining buffer 

(50 mM NaPO4 buffer, pH 7.2; 0.2% [v/v] Triton X-100; 2 mM Ferricyanide; 2 mM ferrocyanide) 

without 5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid (X-Gluc) and incubated at room 

temperature for 25 min. The NAPO4 buffer (200 mL) was prepared by mixing 28 mL 0.2 M 

NaH2PO4, 72 mL 0.2 M Na2HPO4 and 100 mL ddH20.  The GUS staining solution was removed 

and replaced with the same staining solution containing 2 mM X-Gluc and incubated at 37ºC 

for 18 h. The staining buffer was removed and the samples incubated successively in 20%, 

35% and 50% (v/v) ethanol at room temperature for 30 min. The samples were incubated in 

FAA solution (50% [v/v] ethanol; 3.7% [v/v] formaldehyde; 5% [v/v] acetic acid) for 30 min at 

room temperature to fix the tissue. The FAA solution was removed and 70% ethanol added to 

the samples. Plants grown on peat disks were stained in a similar manner to that described 

above, except that the plants were subjected to a constant 160 Torr vacuum for 20 min at 

room temperature. 

 

4.2.12 Semi-quantitative RT-PCR analysis 

Seedling tissue was flash frozen using liquid nitrogen. Total RNA isolation, DNAse treatment 

and cDNA synthesis were performed as described in Section 3.2.7. The primer sequences in 

Table 4.3 were used to perform semi-quantitative RT-PCR analysis (Section 3.2.6). The GUS 

primer sequences were as described by Ditt et al. (2001). 

 

Table 4.3: Primer sequences used to perform semi-quantitative RT-PCR analysis on T2 transformants 

treated with GR24, Nijmegen-1, NAA and BAP. 

 

 

 

 

 

 Forward (5’-3’) Reverse (5’-3’) Tm 

GUS   TATCAGCGCGAAGTCTTTATACC CAGTTGCAACCACCTGTTGAT 56ºC 

BRC1 ATTCCTCACAACCATTGCTC TCAAATCCAAGCATGTCTTG 56ºC 

Actin2 ATGGCTGAGGCTGATGATAT CCATCACCAGAATCCAGCAC 58ºC 
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Figure 4.1: Location of At3g18550 on chromosome 3, obtained from The Arabidopsis Information 

Resource (TAIR), tairvm17.tacc.utexas.edu/cgi-bin/gb2/gbrowse/arabidopsis/?name=AT3G18550, on 

www.arabidopsis.org, Aug 22, 2015. 

4.3 Results and Discussion 

4.3.1 At3g18550 promoter analysis 

To start analysing the intergenic region of AtBRC1 (At3g18550) in order to identify a possible 

promoter region or regions of interest, The Arabidopsis Information Resource (TAIR) database 

was consulted. According to this database, the AtBRC1 gene is situated on chromosome 3, 

upstream of At3g18535 and the intergenic region between these coding sequences is 6.3 kb 

(Fig. 4.1) 

 

 

 

 

 

 

 

 

 

 

A promoter can be defined as a DNA region that directs the transcription of a downstream unit 

(Sandelin et al., 2007; Juven-Gershon and Hsu, 2008). In one study, it was determined that 

the average effective promoter length in Arabidopsis is 500 bp (Korkuc et al., 2014). It was 

therefore decided to start by isolating the 1500 bp upstream of the AtBCR1 starting codon to 

ensure that all promoter elements that might influenced its expression are included.  Since the 

first genome sequencing project was completed and researchers started to characterize 

genes, the main focus has been on protein coding sequences, which means that intergenic 

regions remain largely uncharacterized. There is also no literature available describing any 

strigolactone-responsive promoter binding element. This gap between the signalling 

components and the physiological effects made it almost impossible to select the size of the 

upstream region of AtBRC1 that might contain a binding site for a transcriptional factor 

downstream of the strigolactone signalling pathway. Any conclusions based on the in silico 

analysis of the 1500 bp intergenic region would have been purely speculative. It was therefore 

estimated that the 1500 bp region directly upstream of AtBRC1 should be an adequate starting 

point. Using databases of promoter elements (Section 4.2.1), putative motifs of the 1500 bp 

region directly upstream op AtBRC1 were mapped (Fig. 4.2; Addendum A), and each motif 

defined, described and described according to literature (Addendum B). 
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Figure 4.2: The 1500 bp region upstream of At3g18550 with putative promoter binding elements obtained from three different transcription factor databases. 
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A wide variety of putative promoter binding sites were discovered and mapped, none of which 

have been experimentally verified within this promoter region. Most of the promoter binding 

sites only occur once, although others occur in multiple copies (Table 4.4).  

The most recent component of strigolactone-signalling that has been characterized is SMAX- 

and SMAX-like proteins (SMXLs), with the degradation of SMAX1 (D53) acting downstream 

of strigolactone perception as a prerequisite for strigolactone signalling (Zhou et al., 2013). 

Currently it has only shown to be protein-binding (Stanga et al., 2013b; Rameau et al., 2015; 

Wang et al., 2015), which means that it is most likely not directly involved in binding to the 

promoters of strigolactone-responsive genes.  However, this does not preclude the possibility 

that it exerts some degree of control by binding to other transcription factors, activators or 

repressors. From this in silico analysis, no motif/s or specific region was identified that could 

be important for the development of a strigolactone-responsive reporter construct.   

 
Table 4.4: Most frequently occurring putative promoter binding elements in the 1500 bp immediately 

upstream of At3g18550. 

 

Other regions of interest might be those containing binding sites for proteins involved in the 

signalling pathways of other phytohormones. Strigolactones have only been defined as 

phytohormones since 2008 (Gomez-Roldan et al., 2008; Umehara et al., 2008). The 

complexity of the interactions between strigolactones and other phytohormones (Chapter 2, 

Literature Review) means that motifs that have previously been identified are downstream 

targets for the signalling pathway of other phytohormones might in fact be strigolactone-

responsive motifs as well. During the discovery and characterization of phytohormones, 

functions that were connected to one phytohormone, were often reassigned to another. For 

the same reason, it is also possible that some of these previously identified motifs might also 

be strigolactone-responsive.   

Promoter element Copies Function 

GATA promoter motif 10 Light-responsive element (LRE) 

TATA-gbox 6 Initiates transcription through RNA Pol recognition 

DPBF1 & 2 binding site 

motif 

3 Binding site for the putative transcription factor family 

bZIP 

CARGCW8GAT 3 AGAMOUS-like 15 binding site 

RAV1-A binding site motif 3 Binding site for RAV1 

MYB4 binding site motif 2 The MYB4 protein is responsive to jasmonic- and 

salicylic-acid. 
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The GATA promoter motif, which is a light responsive element (LRE), occurs 10 times in the 

1500 bp region directly upstream of AtBRC1, which was to be expected owing to the fact that 

AtBRC1 is also controlled by light intensity and wavelength, specifically up-regulated by shade 

(decrease in red:far-red light) (Martín-Trillo et al., 2011; González-Grandío et al., 2013). 

Shade, which could be due to neighbouring plants, induces the expression of BRC1, which 

leads to the repression of bud outgrowth and branching and the plant growing taller in order 

to avoid the shade. However, it is unclear whether the LREs in the 1500 bp promoter region 

is responsive to low R:FR or high R:FR light. With the aim of the project in mind, to develop a 

reporter construct that is only activated in the presence of strigolactones, it might be essential 

to remove these LREs to ensure that the construct only responds in the presence of 

strigolactones. The decision to determine the length of the region upstream of AtBRC1 to use 

was difficult, due to no prior literature or knowledge on strigolactone-responsive promoter 

elements. The in silico analysis of the region also did not provide any clear insight. In fact, the 

presence of motifs that are related to other phytohormones (gibberellic acid, jasmonic acid, 

salicylic acid, and ethylene) and light-responses already highlighted the complexity of the 

promoter region.  

To enable us to identify a strigolactone-responsive promoter region, it was decided to start at 

approximately 1500 bp and shorten the promoter in fragments of 500 bp in order to remove 

any promoter binding elements that might respond to any biochemical process other than 

strigolactone signalling. This incremental deletion would also help to narrow down the search 

areas for possible strigolactone-responsive motifs, based on potential differences in 

expression driven by these different constructs. 
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.4.3.2 Selection of transgenic lines 

Following Agrobacterium transformation with the various reporter constructs (Section 4.2.6), 

T1 plants were selected (Section 4.2.9) and grown until seed set. Seeds were collected by 

Cedrick Matthys at the Flanders Institute for Biotechnology (VIB), Belgium. The seeds of the 

several individual transgenic lines (Table 4.5) obtained were planted out in soil and grown until 

the production of T2 seeds.  

 

 

No transformants were obtained for the pBRC1(-500):GUS construct in any of the genotypes. 

More transformations were performed after retransforming A. tumefaciens and confirming the 

presence of the expression vector via colony PCR. At the time, the Silwet L-77 used as a 

surfactant for the floral dip transformation became comprised (turned a cloudy brown colour). 

Other surfactants such as tween20 and glycerol were used as alternatives, but no 

transformants were obtained. Once a fresh stock of Silwet-L77 was obtained, floral bud 

inoculation as an alternative method was used for transformation. To date, no transformants 

have been obtained for this construct.   

One individual line each of pBRC1(-1480):GUS:Col-0, pBRC1(-1480):GUS:max4, pBRC1(-

1480):GUS:max2, pBRC1(-990):GUS:Col-0, pBRC1(-990):GUS:max4, pBRC1(-

990):GUS:max2 were used for further analysis. A second line for each was also used for 

certain downstream experiments.  

 

4.3.3 Transgenics response to GR24 in vitro 

As a pilot experiment, six seedlings of six different transgenic lines were grown on ½ strength 

MS media supplemented with 2 % (m/v) sucrose and 17.5 µg.mL-1 hygromycin B. Three were 

left untreated, while the other three were treated with 0.1 µM GR24 for 6 hours, before GUS 

staining was performed (Fig. 4.3)

Table 4. 5: The number of individual transgenic lines obtained after every individual transformation 
event. 

 Col-0 max4 max2 

                      Number of transformants 

pBRC1(-1480):GUS 15 15 11 

pBRC1(-990):GUS 15 3 15 

pBRC1(-500):GUS - - - 
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mock +GR24 

Col-0 1480 

mock 

Col-0 1480 Col-0 1480 Col-0 1480 Col-0 1480 Col-0 1480 

mock mock +GR24 +GR24 +GR24 

+GR24 +GR24 +GR24 mock mock mock 

mock mock mock 

mock mock mock 

mock mock mock 

mock mock 

+GR24 +GR24 +GR24 

+GR24 +GR24 +GR24 

+GR24 +GR24 +GR24 

+GR24 +GR24 

max4 1480 max4 1480 max4 1480 max4 1480 max4 1480 max4 1480 

max2          1480 max2          1480 max2 1480 max2 1480 max2 1480 max2 1480 

Col-0 990 Col-0 990 Col-0 990 Col-0 990 Col-0 990 Col-0 990 

max4 990 max4 990 max4 990 max4 990 max4 990 max4 990 

max2 990 max2 990 max2 990 max2 990 max2 990 max2 990 
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Figure 4. 3: The presence and location of GUS in pBRC1(-1480):GUS:Col-0, pBRC1(-1480):GUS:max4, 

pBRC1(-1480):GUS:max2, pBRC1(-990):GUS:Col-0, pBRC1(-990):GUS:max4, pBRC1(-

990):GUS:max2 seedlings untreated (mock) versus treated with 0.1 µM GR24 for 6 h. 
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Across all of the lines tested in this experiment, GUS expression was high and not localized 

to a specific part of the seedling. This high expression of pBRC1(-1480):GUS and pBRC1(-

990):GUS was unexpected, because AtBRC1 is not known for its high expression in A. 

thaliana, especially in seedlings (Mashiguchi et al., 2009). According to The Arabidopsis 

Information Resource (TAIR), 

[https://www.arabidopsis.org/servlets/TairObject?id=37813&type=locus], on 

www.arabidopsis.org, Nov 24, 2015, the expression of BRC1 is almost exclusively restricted 

to the axillary bud. It should be noted that GUS expression was not quantitatively measured 

and the term ‘high expression’ only refers to the clear presence and ubiquitous presence of 

the GUS protein in the T2 transformants grown in vitro (Fig. 4.3).  

The genotype background (Col-0, max4 and max2) of the transformants played no role in 

expression of the construct, with only a slight deviation seen in the lines pBRC1(-

1480):GUS:max2 and pBRC1(-990):GUS:max2. A slight induction of GUS expression was 

observed in pBRC1(-990):GUS:max2 seedlings treated with GR24. With the max2 mutant 

being a strigolactone-perception mutant, it was expected that GUS expression would be less 

than in transformants with a Col-0 background in the absence of GR24, but this was not the 

case. With the max2 mutant being a strigolactone-signalling mutant, it is known that 

strigolactones are still synthesized, but not perceived. There is also no known feedback 

perception, which means that the strigolactone concentration will only increase in the max2 

mutant (Foo et al., 2005; Hayward et al., 2009). The high expression of GUS could also have 

been induced by the growth conditions in an in vitro environment, but because the 1500 bp 

region upstream of AtBRC1 is uncharacterized, any of the promoter elements could be 

responsible for the high expression of GUS.    

According to literature, AtBRC1 is a downstream component of the strigolactone signalling 

pathway (Zhou et al., 2013), which means that its expression in a signalling mutant such as 

max2 would be expected to be unchanged in the presence of GR24. This contradicts to what 

is seen in this result and highlights the fact that even the 1480 bp immediately upstream of 

AtBRC1 is already a shortened version of the full promoter region of AtBRC1. The high 

expression of GUS in the max2 background could mean that the main strigolactone-dependant 

motifs lie further upstream of -1480 bp or that the in vitro growth condition stimulated higher 

expression, or a combination of both.  The fact that such high expression was observed 

without the addition of GR24, in all three backgrounds, means that both reporter-constructs 

are highly responsive to other expression cues in the plant, but also that possible silencer 

motifs lie further upstream of -1480, resulting in major deregulation of the promoter. If such a 

major regulatory motif lies so far upstream of the starting codon of AtBRC1, it is possible be 
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that motifs responsible for the stimulation of AtBRC1 by strigolactones also lies further 

upstream. At this stage, the deregulation of the AtBRC1 has been achieved, but the presence 

of many other promoter binding elements resulted in a highly responsive reporter-construct 

that seems unchanged in the presence of GR24.    

From the high expression of GUS by these transformants, it is clear that the expression of 

BRC1 is already de-regulated by shortening the promoter region to 1480 bp and 990 bp. This 

shortening of the promoter seems to have removed binding sites for transcriptions factors that 

would repress expression. Further investigation of the intergenic region upstream of the -1500 

bp may be required to reveal the presence of binding sites for SMX-like proteins, which are 

known to repress AtBRC1 expression (Wang et al., 2015). Very recently, SMXLs in 

Arabidopsis have shown to play an opposite role to D53-like proteins, with SMXLs acting with 

the TPR2 protein to repress transcription and allowing bud outgrowth, while D53-like proteins 

plays a role in activating transcription to inhibit bud outgrowth (Wang et al., 2015). With this 

information, the DNA region of interest would have been a DNA binding site that is recognized 

by a D53-like protein/transcription factor, but, as mentioned, this information is still unknown. 

It is also unknown whether D53-like proteins are DNA-binding, with the only evidence being 

that they are protein binding (Zhou et al., 2013). Therefore, the proteins/transcription 

factors/mechanisms downstream of proteosome-mediated degradation of D53 is yet to be 

identified. When this project was started, the existence of D53 / SMXLs was known, but detail 

of its downstream activity remained largely unknown (Zhou et al., 2013). The results thus far 

suggest that potential binding site(s) or regions of interest downstream of SMXL degradation 

might have been removed already and therefore lie upstream of -1480 bp of AtBRC1.  
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4.3.4 GUS expression of plants grown in peat disks  

With the high expression of GUS and redundancy among all the genotype backgrounds in 

seedlings grown in vitro, it was decided to include only transformants with a Col-0 background 

in all the downstream experiments. In order to analyse the expression of GUS in older 

pBRC1(-1480):GUS:Col-0 and pBRC1(-990):GUS:Col-0 plants grown under different 

conditions, seedlings were sown and selected in vitro on hygromycin B and transferred to peat 

disks after two weeks. After growing for another two weeks on the peat disks in a short 

daylength environment (10 h light: 14 h dark), GUS staining analysis was performed on the 

untreated plants (Fig. 4.4).  

 

 

 

 

  

 

Replicate 1 Replicate 2 Replicate 3 

B 

A 

Figure 4.4: Native expression of GUS in of three four-week old (A) pBRC1(-1480):GUS:Col-0 and (B) 

pBRC1(-990):GUS:Col-0 transformants grown in peat disks. 

Stellenbosch University  https://scholar.sun.ac.za



 
 

62 
 

For the two different constructs, GUS expression was almost indistinguishable between the 

two different promoter sizes (1480 bp and 990 bp). However, the intensity of the GUS 

expression was considerably less than was observed in the in vitro grown plants, suggesting 

that the in vitro environment was at least partially responsible for the intense GUS expression 

that was observed in that experiment. The highest expression of GUS in this experiment was 

in the axillary buds and the shoot meristem region. Young rosette leaves were also darkly 

stained and therefore sites of high GUS expression. Some GUS staining could also be seen 

in rosette leaves, flowers and cauline leaves. The fact that literature has reported only low 

levels of BRC1 expression in cauline leaves (Mashiguchi et al., 2009) also points towards at 

least partial de-regulation of the control of spatial expression by the BRC1 promoter in these 

shortened promoter constructs.  

Because it was difficult to separate the root system from the wet, expanded peat disk and 

these had to be left out of the analysis. Based on the GUS staining results of in vitro grown 

two-week old seedlings (Fig. 4.3), it is at least possible that the construct might have been 

expressed in the roots in this experiment as well. With the major differences between in vitro 

growth conditions and the ex vitro growth conditions, a difference in the staining pattern was 

anticipated. Plants grown in vitro (Fig. 4.3) and GUS stained directly thereafter, were subjected 

to a longer day-length and lower light intensity (50 µmol.m-2.s-1) in comparison to plants grown 

in peat disks (90 µmol.m-2.s-1). This might be explained by the presence of the LREs previously 

described, but it is unknown whether these motifs are responsive to a certain light intensity 

and/or wave length. The higher light intensity might be responsible for the significantly lower 

GUS expression in this experiment, as BRC1 expression is usually stimulated by low R:FR 

light and low intensity light and repressed in opposite light conditions (González-Grandío et 

al., 2013).  The 1480 bp reporter construct contains 10 LREs, while the 990 bp reporter 

construct contains 7. In these 990 bp transformants, there was no clear indication of reduced 

GUS expression compared with those containing the 1480 bp construct. The 500 bp reporter-

construct, of which no transformants were obtained, contains only one LRE and it would 

suggest that an increase in GUS expression would have been seen.   
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Figure 4.5: Native expression of GUS in three six-week old (A) pBRC1(-1480):GUS:Col-0 and (B) 

pBRC1(-990):GUS:Col-0 transformants grown in peat disks. 

Table 4.6: Relative levels of expression of AtBRC1 in mature A. thaliana plants (Mashiguchi et al., 

2009). 

High Low None 

Axillary bud meristem Cauline leaves Seeds 

Flowers Whole seedlings  

Rosette leaves Stem  

 Roots  

   

In order to observe GUS expression in full grown plants, T2 transformants were selected on 

hygromycin B as previously described and transferred to expanded peat disks after two weeks. 

Four weeks after the transfer, GUS staining were performed on three untreated plants from 

the pBRC1(-1480):GUS:Col-0 and pBRC1(-990):GUS:Col-0 lines (Fig. 4.5). 

 

 

 

 

A 

B 

Replicate 2 Replicate 3 Replicate 1 
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Again, the highest expression of GUS was in the axillary buds and shoot meristem regions, 

and also in young, developing leaves. Overall, GUS expression appeared to be much lower 

than in either the in vitro grown or four-week old plants (Fig. 4.4), but quantitative analysis 

needs to performed to accurately determine GUS activity. Full grown leaves also had no to 

very little GUS expression, with traces of the GUS protein found on the edges of these mature, 

but still expanding leaves. In some of the bigger, actively growing leaves, small symmetrical 

sites of GUS expression was observed (Fig. 4.6). These sites are leaf margins protrusions, 

also known as serrations, and have shown to a play a vital role in the determining the final 

shape of the leaf (Bilsborough et al., 2011) 

 

 

Figure 4.6: Small symmetrical sites of GUS expression in the serrations of actively growing leaves of 

both pBRC1(-1480):GUS:Col-0 and pBRC1(-990):GUS:Col-0 transformants. 

 

High expression of GUS could be seen at these serrations of almost mature leaves. In full 

grown leaves, the staining pattern was not observed, suggesting that the leaf has completed 

its expansion and formation. Leaf expansion is controlled by both auxins (Keller et al., 2011) 

and cytokinins (Werner et al., 2003; Vercruyssen et al., 2015), two groups of phytohormones 

known to have interactions with strigolactones, specifically in controlling bud outgrowth in 

plants (Aguilar-Martínez et al., 2007; Ferguson and Beveridge, 2009; Prusinkiewicz et al., 

2009; Hu et al., 2014; de Jong et al., 2014) . Cytokinins are known to promote mitotic cell 

division in leaves, but also inhibit leaf senescence and delay leaf differentiation (Fregni et al., 

2011). As discussed in Chapter 2, strigolactones and cytokinins generally have opposite 

functions, for example strigolactones would inhibit bud outgrowth in plants while cytokinins 

would stimulate it. The transcription factors known to control these actively expanding sites 

are also TCP factors (Koyama et al., 2007). An increase in serrations was observed when 

TCP activity was observed (Bilsborough et al., 2011; Ballester et al., 2015). Increased TCP 
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Figure 4.7: Two-week old (A) Untransformed Col-0 and (B) pMDC163 (empty):max4 plants after being 

subjected to GUS staining. 

activity would therefore lead to a decrease in serrations, subsequently inhibiting the expansion 

of the leaves. In the context of the aim of this project, to develop a strigolactone-responsive 

reporter construct, this staining pattern is probably irrelevant, but further investigation into the 

promoter regions of these TCP factors compared with the promoter region of AtBRC1 (also a 

TCP factor) might reveal an overlapping promoter binding element that could be used in future 

studies. 

Literature suggests that this GUS staining pattern is an auxin-response, because auxins are 

known to control leaf expansion during vegetative growth (Ljung et al., 2001; Koyama et al., 

2007; Keller et al., 2011). To date, no evidence linking strigolactones to leaf expansion has 

been reported. In a recent study using pea plants, the possible link between strigolactones 

and photomorphogenesis (leaf expansion and elongation) was investigated, but no supporting 

evidence was found (Urquhart et al., 2015). As discussed in Chapter 2, auxins and cytokinins 

were the only phytohormones implicated in the regulation of shoot branching before the 

discovery that strigolactones are also involved. This could mean that strigolactones play a 

similar role in leaf growth in development that has yet to be discovered. 

After the initial GUS staining results of transformants grown in vitro (Fig. 4.3), it was decided 

to create a transgenic plant that contains an empty pMDC163.gb vector to demonstrate that 

the vector alone induces no GUS expression. Only one transgenic line, with a max4 

background was obtained (Fig. 4.7) 

 

 

 

 

 

After GUS staining, no GUS protein was observed in either of the untransformed Col-control 

or the pMDC163(empty):max4 transformant. It was concluded that the pMDC163.gb binary 

vector with an inserted fragment is unable to induce GUS expression, which was to be 

expected, as no promoter elements are present in the empty pMDC163.gb ((The Arabidopsis 

B A 
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Figure 4.8: The expression of GUS, Actin2 and BRC1 in pooled samples of (A) pBRC1(-1480):GUS 

and (B) pBRC1(-990):GUS in a Col-0 background.  

Information Resource (TAIR), 

[https://www.arabidopsis.org/servlet/TairObject?id=501100123&type=vector], on 

www.arabidopsis.org, Nov 24, 2015). Any GUS staining patterns and GUS expression 

(Section 4.3.6) are therefore entirely due to the promoter fragments fused to GUS. 

 

 

4.3.5 Semi-quantitative RT-PCR 

With the GUS staining analysis not giving any indication of GR24-responsiveness by the 1480 

bp or 990 bp promoter fragments, a different approach was sought to accurately determine if 

these constructs are indeed strigolactone-responsive. As previously described, plants were 

subjected to different treatments before being flash frozen, ground, RNA isolated, cDNA 

manufactured and semi-quantitative RT-PCR analysed focussing on the expression of BRC1, 

GUS and Actin2 (Fig. 4.8).   

 

 

 

 

  

The expression of Actin2 in pBRC1(-1480):GUS:Col-0 and pBRC1(-990):GUS:Col-0 was 

consistent at 25 cycles. In pBRC1(-1480)GUS:Col-0, a slight reduction of GUS expression 

was observed in plants treated with GR24, Nijmegen-1 and NAA, whilst GUS expression levels 

in the mock- and BAP-treated plants were similar. The expression of BRC1 is not known to be 

inhibited by these treatments (de Jong et al., 2014), but is known to be inhibited by cytokinins 

(BAP). These sqRT-PCR results are thus in complete contrast to what would have been 

expected, but the fact that a clearly reduced promoter of AtBRC1 was investigated could 

explain the slight reduction in GUS expression to some extent, especially because this 

A B 
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promoter region and strigolactone signalling as a whole remains largely uncharacterized.  In 

an attempt to compare the expression of BRC1 with GUS, cDNA was diluted to obtain the 

optimal dilution where Actin2 is not saturated at 35 cycles (Fig. 4.9). This was done because 

BRC1 expression occurs naturally at such low levels that it can only detected at 35 cycles, 

while it appears that Actin2 reaches saturation after 25 cycles.   

 

 

Figure 4.9: The expression of Actin2 in ten two-week old A. thaliana Col-0 seedlings. A dilution series 

of the same cDNA sample was prepared and the PCR reaction repeated for 35 PCR cycles using the 

different dilutions of the one cDNA sample. 

 

Using the diluted cDNA as a template, PCR reactions was set up to compare BRC1, GUS and 

Actin2 expression in two-week old A. thaliana Col-0 seedlings. Ten microliter of 10-3 dilutions 

for each sample was used a template for PCR reactions for 35 cycles. The cDNA used as 

template for BRC1 expression was left undiluted, but the PCR reactions were still repeated for 

35 cycles (Fig. 4.10). 

 

 

 

 

 

 

 

 

 

Figure 4.10: Expression of BRC1, GUS and Actin2 in (A) pBRC1(-1480):GUS:Col-0 (B) pBRC1(-990) 

and (C) Col-0 wild type plants. All the PCR reactions were performed for 35 cycles. The template for 

the GUS and Actin2 PCR reactions were 10 µL of a 1000-time diluted cDNA sample. Half (25 µL) of the 

total PCR reaction volume was loaded onto the agarose gel. 

A B C 
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A B 

It is unclear whether the GUS expression was induced by GR24 in pBRC1(-1480):GUS:Col-0 

transformants, but a slight induction of GUS expression by GR24 in pBRC1(-990):GUS:Col-0 

was observed. The expression of Actin2 was consistent in pBRC1(-1480):GUS:Col-0 and 

pBRC1(-990):GUS:Col-0 transformants and Col-0 plants for both untreated and GR24-treated 

samples. This apparent strigolactone-responsiveness was not observed by GUS staining 

analysis in this study. In a repeat experiment, using the same cDNA as previously synthesized 

(Fig. 4.8), the expression of BRC1 (using undiluted cDNA as template), GUS (using 10 µL of 

1000x diluted cDNA) and Actin2 (using 10 µL of 1000x diluted cDNA) for analysed at 35 PCR 

cycles (Fig. 4.11).    

 

 

 

 

Figure 4.11: Expression of BRC1, GUS and Actin2 in (A) pBRC1(-1480):GUS:Col-0 and (B) pBRC1(-

990):GUS:Col-0 plants. The PCR reactions were repeated for 35 cycles. The template for the GUS and 

Actin2 PCR reactions was 10 µL of a 1000-time diluted cDNA, while the template for the BRC1 PCR 

reactions was 2 µL of undiluted cDNA. 

 

The expression of GUS was consistent for all the treatments and the mock treatment in 

pBRC1(-1480):GUS:Col-0 plants, but a slight increase in GUS expression is observed in 

GR24-treated pBRC1(-990):GUS:Col-0 plants, which correlates with the previous analysis 

(Fig. 4.14; Fig. 4.16). Even by using a cDNA dilution of 10-2, the expression of GUS was still 

much higher when compared to BRC1 expression in PCR reactions using 2 µL undiluted 

cDNA. This, again, highlights the degree of deregulation that the AtBRC1 promoter has 

undergone during the construction of these reporter-constructs. The dilution of cDNA to 

achieve the gene expression results observed (Fig. 4.16; Fig. 4.17) is not an ideal method for 
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sqRT-PCR and quantitative RT-PCR (qRT-PCR) would have been a superior method to 

accurately determine the levels BRC1 expression.  However, from these sqRT-PCR analyses 

it can be concluded that the expression of GUS is slightly induced in pBRC1(-990):GUS:Col-

0 plants. This suggests that at least one strigolactone-responsive motif may be present in the 

990 bp region immediately upstream of AtBRC1. 

In these experiments, the expression of GUS was compared to the expression of BRC1. The 

expression of BRC1, in planta, is controlled by numerous biochemical pathways (Chapter 2), 

as it regulates the outgrowth of axillary buds that result in a major change in plant architecture. 

The expression of TCP genes, a synonym for BRC1 is TCP18, are generally controlled in 

plants at both transcriptional and post-transcriptional levels (Koyama et al., 2007) This control 

of bud outgrowth does not only occur during the development and initiation, but also 

throughout the development of the branch, with BRC1 being the central role player (González-

Grandío et al., 2013). With such tight regulation, BRC1 transcriptional levels can be controlled 

and regulated at the post-transcriptional level, as is the case during biosynthesis of 

strigolactones as well (Marzec and Muszynska, 2015). In a recent review paper, the authors 

also described BRC1 as target for multiple stimuli at both the transcriptional and post-

transcriptional level (Rameau et al., 2015). These regulation mechanisms can explain why 

such low levels of BRC1 were observed, in comparison to GUS. The expression of GUS would 

not be subjected to the same post-transcriptional regulation mechanisms, and therefore would 

appear relatively high in comparison to BRC1 expression.  

 

4.4 Concluding remarks and future prospects 

The aim of this part of the project was to develop a reporter construct that is activated only in 

the presence of strigolactones. The strategy to shorten the promoter of At3g18550 was to 

remove promoter binding elements that are binding sites for proteins (transcription factors) 

downstream of any other pathway except the strigolactone signalling pathway. This strategy 

was challenging because there is no information in literature about strigolactone-specific 

promoter binding elements. The fact that the strigolactone signalling pathway is so poorly 

understood also made it impossible to predict regions of interest immediately upstream of 

AtBRC1, even with recent studies filling in some of the gaps in our understanding of 

strigolactone signalling and physiological effects (Zhou et al., 2013; Wang et al., 2015).  

The first conclusion that can be made by the results obtained is that promoters generated from 

both the 1480 bp and 990 bp regions immediately upstream of AtBRC1 are severely 
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deregulated in comparison to the natural BRC1 promoter. This can be seen from both the 

GUS staining and sqRT-PCR analysis. This means that the promoter binding element/s 

downstream of the action of SMX-like protein, known to repress the expression of AtBRC1 

(Wang et al., 2015), probably lies further upstream from -1480. The second conclusion is that 

the 990 bp region immediately upstream of AtBRC1 might contain a strigolactone-responsive 

motif/s which has yet to be identified.  

For future experiments, the pBRC1(-500):GUS needs to be transformed into wild-type, max4 

and max2 A. thaliana plants, in order to determine if this construct is still strigolactone-

responsive and if less background GUS expression can be seen. In the broader context, these 

results can then be used as a starting to point to identify possible strigolactone-specific motif/s 

that are responsible for the up-regulation of AtBRC1. The same can be done with the region -

3000 to -1480 in order to identify any strigolactone-specific motif/s in that region. This/these 

motif/motifs could even be used to create a synthetic reporter-construct, in a similar way to 

which the auxin-responsive reporter-construct was made (Ulmasov et al., 1997). The motif/s 

responsible for repression can be used in a relief of restraint promoter whereby strigolactone 

signalling would destroy the SMXL repressor proteins to allow for the expression of GUS. 

Other reporter genes should also be experimented with, as it seems like the use of the GUS 

reporter system would not allow for the detection of changes in a sensitive system like 

strigolactone signalling. 

Other future experiments could include the investigation of other strigolactone-responsive 

genes. The use of AtBRC1 was motivated by the fact that it is mostly used as an indicator of 

strigolactone-activity, but because of wide variety of external stimuli and biochemical reactions 

in the plants that also affects its expression (Aguilar-Martínez et al., 2007; Finlayson et al., 

2010; González-Grandío et al., 2013), it is clear that its regulation is a complex process as 

evidence from studying parts of its promoter region and an extensive literature search 

(Addendum B).    
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Chapter 5: Final conclusions and future prospects 

“If your experiment needs statistics, you ought to have done a better experiment.’’  

– Ernest Rutherford 

 

5.1. Conclusions 

Since the discovery that strigolactones are a novel group of phytohormones and not just the 

detrimental signal that stimulates the germination of the seeds of parasitic plants (Cook et al., 

1966; Cook et al., 1972), numerous research groups have embarked on the journey to 

elucidate the strigolactone biochemical pathway. Biosynthesis inhibitors, forward and reverse 

genetics and yeast-two-hybrid methods have been instrumental in the determination and 

characterization of key components in the strigolactone biosynthesis and signalling pathway. 

Although more functions have been connected to strigolactones, the discovery of more role-

players in especially the signalling pathway has been halted to a certain extent. There is a 

need for novel tools that could aid in the elucidation of the full strigolactone pathway. One 

such a tool that currently does not exist is an inhibitor of strigolactone signalling. Another 

valuable tool would be a reporter-construct that is activated only in the presence of 

strigolactones.  

The aim of part one of this project was to determine if TMB inhibits strigolactone signalling. 

The hypothesis was generated by the observation that TMB is known to have an antagonistic 

effect to karrikins, which are known to stimulate seed germination. It is also known that the 

receptor for karrikins, KAI2, can modulate some strigolactone responses (Scaffidi et al., 2014).  

Strigolactones are also known to stimulate germination, albeit mainly the seeds of parasitic 

plants. Both karrikins and strigolactones affect plants in other ways as well. This resulted in 

the question of whether the fact that TMB has an antagonistic role to karrikins could mean that 

there is a possibility that it also has an inhibitory effect on strigolactones, particularly at the 

signalling level. The receptor for strigolactones is D14, while KAI2 is the receptor for karrikins 

(Kagiyama et al., 2013), effectively inhibiting the binding of karrikins. TMB could therefore 

either bind D14 to inhibit strigolactone signalling, or block strigolactone effects modulated by 

KAI2. From the preliminary results of this study, there are some indications that TMB might be 

an inhibitor of strigolactone signalling, although perhaps not as potent an inhibitor as would 

be desirable.  

For the second part of this study, the aim was to develop a strigolactone-responsive reporter 

construct that is only activated in the presence strigolactones. The results observed during 
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this study suggests that at least one possible strigolactone-responsive motif may lie in the 990 

bp region upstream of At3g18550. It is possible that more copies of this or motifs, which might 

represent the binding site/s for targets downstream of the SMX-like proteins (Wang et al., 

2015), lie upstream of -1480 bp, as evident from the deregulation of the promoter seen in this 

study. There is, of course, also the possibility that these elements lie downstream of the start 

codon of At3g18550.  

Before and during the course of this study, some limitations of this study was identified. One 

such limitation if the fact that strigolactones are synthesized at low concentrations (pg).  

Another limitation is the lack of any experimentally verified promoter binding elements related 

to a strigolactone response, making it nearly impossible to identify regions of importance 

without experimental verification. Later in this study it became clear that the GUS reporter 

system also has some limitations, especially in terms of responding to such a tightly regulating 

system like strigolactone signalling. The use of the AtBRC1 promoter region was also limiting, 

owing to the fact that its expression can be influenced by a wide variety of biological processes.  

 

5.2. Future work 

In order to fully understand the effect of TMB on the growth on A. thaliana, more experiments 

need to be conducted, including the incorporation of mutants such as d14 and kai2 into the 

experimental trials. The use of karrikins in these experiments would also possibly indicate if 

TMB is indeed an inhibitor of strigolactone signalling. For the second part of this project, it 

would be valuable to investigate the GUS expression pattern of the 1480 bp and 990 bp 

construct in the max4 and max2 background as well, as it could provide further insight into the 

promoter region of AtBRC1. These transformants have already been created. In future efforts 

to create a strigolactone-responsive reporter construct, further investigation into the genomic 

region upstream of the region already cloned, -3000 to -1480, must be performed until a 

strigolactone-response is observed in the form of increased GUS expression. The 500 bp 

construct already created must also be transformed into A. thaliana.   

A method known as Chromatin immunoprecipitation (ChIP) could be implemented to 

determine the binding sites of a particular protein, such as SMX1 or D53. This could prove to 

be vital in the quest to identify strigolactone-responsive motifs. When strigolactone-responsive 

motifs are identified, a synthetic reporter construct, similar to that of the auxin-responsive 

reporter-construct, can be created. The use of reporter systems other than GUS should also 

be investigated. 
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Addendum A: Promoter diagram of the 1500 bp upstream 

of AtBRC1 
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Addendum B: Explanations of some of the putative motifs 

in the upstream region of At3g18550 

 

-1500 bp to -991 bp immediately upstream of the starting codon (ATG) of At3g18550 

TATA-box (4x) 

Usually situated 25-35 base-pairs downstream of the start site of a gene  

(http://www.nature.com/scitable/). The TATA-box DNA motif occur very abundantly in 

promoter sequences of all types of organisms.  

 

MYB binding-site 

MYB-proteins are a large family of transcription factors that are known to control development, 

metabolism and stress (both biotic and abiotic) responses in plants (Dubos et al., 2010). 

 

MYB4 binding-site  

The MYB4 protein is a repressor of transcription and is involved in the regulation of UV-

protection. This protein is responsive to jasmonic- and salicylic-acid (Chen et al., 2002).  

 

W-box 

Two W-boxes is found in the promoter sequence of a salicylic acid responsive gene (Rocher 

et al., 2005) and specifically recognized by salicylic acid-induced WRKY DNA binding proteins 

(http://bioinfo.cau.edu.cn/ProFITS/). 

 

GATA promoter motif (3X) 

This promoter element is known to be responsive to light and found in many light responsive 

genes (Reyes et al., 2004). This was to be expected, due to the fact that BRC1 is a light 

responsive gene.  
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L1-box 

This promoter element is found within the promoter of AtPDF1, involved in L1 layer-specific 

expression (http://bioinfo.cau.edu.cn/ProFITS/).  

 

CARGCW8GAT 

This promoter element provides a binding site for AGL15 (AGAMOUS-like 15), a MADS 

domain protein that is highly expressed directly after germination during embryo development 

(Tang and Perry, 2003).  

 

Bellringer/replumless/pennywise BS1 IN AG 

In a study by Bao et al., (2004), it was proposed that expression of the BELLRINGER gene 

represses AGAMOUS, a gene responsible for the formation of stamens and carpels in 

flowers.    

 

CCA1 binding site 

The CCA1 (Circadian associated 1) protein is closely related to the MYB-transcription factor. 

(http://bioinfo.cau.edu.cn/ProFITS/). This protein plays a central role alongside MYB-

transcription factors in the very complex circadian clock.  

 

-990 bp to -501 bp immediately upstream of the starting codon (ATG) of At3g18550 

TATA-box (2X)  

Usually situated 25-35 base-pairs downstream of the start site of a gene 

(http://www.nature.com/scitable/). Very abundant sequence found in promoter sequences.  

 

CARGCW8GAT (2X) 

This promoter element provides a binding site for AGL15 (AGAMOUS-like 15), a MADS 

domain protein that is highly expressed directly after germination during embryo development 

(Tang and Perry, 2003).  
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SORLREP3 

This motif is over-represented in promoters that is repressed by light 

(http://bioinfo.cau.edu.cn/ProFITS/).  

 

RAV1-A binding site motif (2X) 

Binding site for the RAV1-A protein that is highly expressed in the rosette leaves and roots 

(http://bioinfo.cau.edu.cn/ProFITS/). RAV1-A is implicated in lateral root and leaf 

development, playing a role in ethylene-signalling, negative regulation of flower development 

and is down-regulated in response to brassinosteroids and zeatin 

(http://www.uniprot.org/uniprot/). 

 

GATA promoter motif (6X) 

This promoter element is known to be responsive to light and found in many light responsive 

genes (Reyes et al., 2004).  

 

Ibox promoter motif 

Found in the promoter sequence of light-regulated genes and is a binding-site for LeMYB1, a 

MYB-like protein (http://bioinfo.cau.edu.cn/ProFITS/). This conserved domain also plays a role 

in circadian control.  

 

MYB4 binding-site 

The MYB4 protein is a repressor of transcription and is involved in the regulation of UV-

protection. This protein is responsive to jasmonic- and salicylic-acid (Chen et al., 2002).  

 

DPBF1 & 2 binding site motif 

Binding site for the putative transcription factor family bZIP (http://bioinfo.cau.edu.cn/ProFITS/ 

). The Basic Leucine Zipper Domain (bZIP) family, contains transcription factors that are 

known to regulate pathogen defence, light and stress responses, flower development and 

seed maturation. The specific bZIP transcription factor that binds to DPBF2 is coded by 

At3g44460, also known as ATBZIP67. ATBZIP67 is expressed in the cotyledon of Arabidopsis 

thaliana and responds to xenobiotic stimuli (https://www.arabidopsis.org).     
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CCA1 binding site 

The CCA1 (Circadian associated 1) protein is closely related to the MYB-transcription factor. 

(http://bioinfo.cau.edu.cn/ProFITS/). This protein plays a central role alongside MYB-

transcription factors in the very complex circadian clock.  

 

-500 bp to the starting codon (ATG) of At3g18550  

ATB2/Atb2IP53/Atb2IP44/GBF5 

Found in the promoter region of proline dehydrogenase (ProDH) gene 

(http://bioinfo.cau.edu.cn/ProFITS/).  

  

DPBF1 & 2 binding site motif (2X) 

Binding site for the putative transcription factor family bZIP (http://bioinfo.cau.edu.cn/ProFITS/ 

). 

 

RAV1-A binding site motif 

Binding site for the RAV1-A protein that is highly expressed in the rosette leaves and roots 

(http://bioinfo.cau.edu.cn/ProFITS/).  

 

GATA promoter motif 

This promoter element is known to be responsive to light and found in many light responsive 

genes (Reyes et al., 2004).  

 

CARGCW8GAT 

This promoter element provides a binding site for AGL15 (AGAMOUS-like 15), a MADS 

domain protein that is highly expressed directly after germination during embryo development 

(Tang and Perry, 2003).  
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TELO-box promoter motif  

Found in the eEF1AA1 gene promoter. The presence of this motif is required to activate 

expression in the root primordial (http://bioinfo.cau.edu.cn/ProFITS/). 

 

Bellringer  

In a study by Bao et al. (2004), it was proposed that expression of the BELLRINGER gene 

represses AGAMOUS, a gene responsible for the formation of stamens and carpels in 

flowers.    

GAREAT 

A gibberellin-responsive element.  

 

CArG promoter motif  

Also recognized by MADS box transcription factors (Spensley et al., 2009).  
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