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Abstract

The energy flow simulator (EFS) is a strategic decision support tool

that was developed for the South African national electricity utility

Eskom. The advanced set of algorithms incorporated into the EFS

enables various departments within Eskom to simulate and analyse

the Eskom value chain from primary energy to end-use over a certain

study horizon. The research in this thesis is aimed at determining

whether multi-objective optimisation (MOO) capability can be added

to the EFS. The study forms part of a series of research projects.

This project builds on the work of Hatton (2015) in which the focus

was on single-objective optimisation capability for the EFS. Inventory

management at Eskom’s coal-fired power stations was identified as the

most suitable area for the formulation of an MOO model. It was also

identified that certain modifications to the existing EFS architecture

can possibly improve its potential as an optimisation tool.

The architecture of the EFS is studied and modifications to it are

proposed. A multi-objective inventory model is then formulated for

Eskom’s network of coal-fired power stations using the simulation out-

puts of the EFS. The model is based on the movement of coal between

the various power stations in an attempt to maintain an optimal in-

ventory level at each station as far as possible. To solve the model,

a suitable MOO algorithm is selected and integrated with the simu-

lation component of the EFS. Several experiments are conducted to

validate the MOO model and test the effectiveness of the algorithm

in solving the optimisation problem.
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Opsomming

Die energievloei-simulator (EVS) is ’n strategiese besluitondersteun-

ingsinstrument wat ontwikkel is vir die Suid-Afrikaanse nasionale elek-

trisiteitsverskaffer, Eskom. Die gevorderde stel algoritmes waaruit die

EVS bestaan stel verskeie departemente binne Eskom in staat om

die Eskom-waardeketting te simuleer en te analiseer, vanaf primêre

energie tot eindgebruik, oor ’n sekere studie tydperk. Die navorsing

in hierdie tesis is daarop gemik om te bepaal of meerdoelige optime-

ringsvermoë tot die EVS bygevoeg kan word. Die studie vorm deel van

’n reeks navorsingsprojekte. Hierdie projek bou voort op die werk van

Hatton (2015) waarin die fokus op enkeldoel-optimeringsvermoë vir

die EVS was. Voorraadbestuur by Eskom se steenkoolaangedrewe

kragstasies is gëıdentifiseer as die mees geskikte gebied vir die formu-

lering van ’n meerdoelige optimeringsmodel. Daar is ook gëıdentifiseer

dat sekere veranderinge aan die bestaande argitektuur van die EVS

moontlik die model se potensiaal as ’n optimeringsinstrument kan

verbeter.

Die argitektuur van die EVS word bestudeer en veranderinge daaraan

word voorgestel. ’n Meerdoelige voorraadbestuursmodel word daarna

vir Eskom se netwerk van steenkoolaangedrewe kragstasies geformuleer

deur die simulasie-uitsette van die EVS te gebruik. Die model is

gebaseer op die beweging van steenkool tussen die verskillende krag-

stasies om ’n optimale voorraadvlak by elke stasie the probeer hand-

haaf. Om die model op te los word ’n geskikte meerdoelige optime-

ringsalgoritme gekies en met die EVS se simulasie komponent gëınte-

greer. Verskeie eksperimente word uitgevoer om te bevestig dat die

meerdoelige optimeringsmodel korrek is en om die doeltreffendheid

van die algoritme as oplossingsmetode vir die probleem te toets.
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Chapter 1

Introduction

This chapter serves as an introduction to the research problem being addressed in

this thesis. A background to the study is provided, followed by a formal problem

statement and the research objectives. The chapter is concluded with a summary

of the document structure.

1.1 Background to the study

The continued evolution of civilizations is highly dependent on a secure and ac-

cessible supply of energy and, as the human population continues to grow, global

energy demand will continue to increase (Asif & Muneer, 2007). Electricity util-

ities are at the forefront of global energy supply. Successful planning in and

operation of these utilities are essential to sustain economies all over the world.

In South Africa, approximately 95% of the country’s electricity is provided

by the state-owned electricity utility Eskom (Eskom Holdings SOC Ltd, 2014d).

The utility is vertically integrated and performs generation, transmission and

distribution functions. South Africa’s electricity supply sector is currently con-

fronted with serious challenges. A very tight demand/supply balance exists and

the distribution segment is facing serious financial difficulties.

However, this was not always the case. A massive capacity expansion pro-

gramme during the 1970s and 1980s led to a period of electricity surplus and

in the two decades that followed, Eskom could supply some of the lowest priced
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electricity in the world. In the years following the end of apartheid, the coun-

try carried out a national electrification programme which more than doubled the

percentage of South African residents connected to electricity supply. No capacity

expansion during that period and a failed attempt by government to decentralise

the country’s electricity sector in the late 1990s resulted in a tremendous amount

of pressure on Eskom by the turn of the century (Baker, 2011; Kessides et al.,

2007).

In 2005 Eskom embarked on another capacity expansion programme which in-

cluded the construction of two large coal-fired power stations (Kusile in Mpuma-

langa and Medupi in Limpopo province) and one hydroelectric pumped storage

scheme (Ingula on the border of KwaZulu-Natal and the Free State). The pro-

gramme also included the recommissioning of three coal-fired power stations that

had previously been taken out of operation (Baker, 2011). The pressure on the

already constrained system intensified rapidly, however, and, regardless of several

demand-side management programmes, the country reached an electricity crisis

in 2008. Eskom was forced to introduce load shedding and in the subsequent

years, the system remained heavily constrained.

The problems that the South African electricity supply sector is currently

experiencing have placed an even greater emphasis on effective operations plan-

ning within Eskom. In an attempt to assist with this, an energy flow simulator

(EFS) was developed by an industry partner of Eskom. The EFS is a strategic

decision support tool in which the Eskom value chain is modelled. The advanced

set of algorithms incorporated into the EFS enables various departments within

Eskom to simulate and analyse the Eskom value chain from primary energy to

end-use over a certain study horizon. The what-if analysis that the EFS allows

for, provides a way of planning for unexpected events and disturbances.

Even though the EFS incorporates an optimisation component, the values of

many variables chosen by the Eskom management are known to be sub-optimal.

The EFS is thus not an optimisation tool. This lack of optimisation capability

is the foundation of this study. The research in this thesis forms part of a series

of research projects. This project builds on the work of Hatton (2015) in which

the focus was on single-objective optimisation capability for the EFS. He identi-
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fied that inventory management at Eskom’s coal-fired power stations is the most

suitable area for the formulation of an optimisation model within the EFS.

1.2 Problem statement

The ability of a coal-fired power station to meet its generation targets is influenced

by the bottleneck that is created during periods of coal shortage. The simulation

outputs of the EFS allow for the formulation of a multi-objective coal inventory

model. By successfully formulating such a model and integrating an optimisation

algorithm with the EFS to solve the model, a significant contribution can possibly

be made to a problem that Eskom has faced for many years, namely establishing

an optimal inventory management policy.

1.3 Research objectives

The main objective of this study is to determine whether multi-objective optimi-

sation (MOO) capability can be added to the EFS through the formulation of a

coal inventory model. As this study forms part of the bigger EFS project, which

is currently still a work-in-progress, a secondary objective is to propose modifica-

tions to the existing EFS architecture to improve its potential as an optimisation

tool.

The following research tasks need to be performed to achieve the research

objectives:

1. Study relevant literature on modelling in the electricity generation industry.

2. Study the existing architecture of the EFS, propose modifications to it and

subsequently modify it.

3. Study literature on simulation optimisation (SO) and MOO.

4. Formulate a multi-objective coal inventory model for the EFS and identify

a suitable MOO algorithm to solve the model.

5. Integrate the MOO algorithm with the EFS.

3
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6. Perform experiments to validate the multi-objective SO model and test the

effectiveness of the MOO algorithm in solving the model.

7. Document the findings made from the experimental results and provide

recommendations for future research.

8. Master the R programming language and the document preparation system

LATEX.

1.4 Structure of the document

This chapter is an introduction to the research study. It provides a background

to the study and gives the formal problem statement and the research objectives.

In Chapter 2, an introductory literature study on modelling in the electricity

generation industry is presented. The focus is on electricity markets and power

station logistics systems.

Chapter 3 introduces the South African electricity generation sector as well

as Eskom’s generation mix and coal supply chain. This is followed by detailed

descriptions of the existing EFS architecture and the proposed modifications to

it.

Chapter 4 is a literature study on SO. The aim of the study is to gain

sufficient knowledge of SO, specifically in the MOO context, in order to proceed

to the formulation of the MOO model.

The background to Chapter 5 includes literature on inventory models, a

discussion of the importance of managing coal stockpiles and an overview of

Eskom’s inventory management policy. Thereafter, the proposed multi-objective

inventory model is presented and the solution approach is discussed.

The experimental design and subsequent experimental results are documented

in Chapter 6.

Chapter 7 is a summary of the thesis in which all concluding remarks are

presented.

Additional experimental results are included in Appendix A.
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Chapter 2

Literature: Modelling in the

electricity generation industry

Chapter 1 was an introduction to the problem being addressed in this thesis,

namely to determine whether multi-objective optimisation (MOO) capability can

be added to Eskom’s energy flow simulator (EFS) through the formulation of a

coal inventory model. This chapter is a literature study on modelling in the

electricity generation industry.

Many studies have been conducted on the modelling of operations related to

electricity supply. A short background to the chapter introduces the concepts of

electricity generation, transmission and distribution. Thereafter, the focus is on

electricity markets and power station logistics systems.

The aim of this chapter is not only to survey some past studies but also to

gain a broad understanding of how electricity markets and power station logistics

systems work.

2.1 Background to Chapter 2

The aim of this section is to introduce the concepts of electricity generation,

transmission and distribution and also to provide an overview of the electricity

generation technologies that will be referred to throughout the document.

5
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2.1 Background to Chapter 2

2.1.1 An introduction to electricity generation, transmis-

sion and distribution

The majority of global electricity generation takes place at thermal and hydroelec-

tric power stations. Both operate on the same principle. The electrical current

is produced by wires in a coil that cuts the lines of force between the two poles

of a rotating magnet. The magnet and the coil are referred to as the rotor and

the stator respectively (Eskom Holdings SOC Ltd, 2014e). The rotor is coupled

to a turbine that is driven by steam at thermal power stations and by water at

hydroelectric power stations.

The steam used to drive a turbine at a thermal power station is produced by

heating water to very high temperatures. The water is heated either by burning

fossil fuels such as coal, oil and gas, or by the nuclear fission process (Eskom

Holdings SOC Ltd, 2015a). Currently, more than 40% of the world’s electricity

is generated at coal-fired power stations. This figure does not seem that high

but many countries such as South Africa (93%), Poland (92%), China (79%),

India (69%) and the USA (49%) rely primarily on coal for electricity generation

(Sarker et al., 2014).

With regard to hydroelectric power stations, there are two types, namely

conventional hydroelectric power stations and pumped storage schemes. At a

conventional hydroelectric station water is conveyed through waterways from a

river or from a dam in a river. The water then flows through the turbine runner

to spin the shaft that is coupled to the rotor. After running through the turbine,

the water is discharged back into the river to continue its course. At a pumped

storage scheme, on the other hand, the water that drives the turbine is reused.

Water is stored in an upper reservoir and, after running through the turbine,

is discharged into a lower reservoir from where it is pumped back to the upper

reservoir. Pumping usually takes place during offpeak periods in order to have

maximum generation capability during peak periods (Eskom Holdings SOC Ltd,

2015b).

Most thermal and hydroelectric power stations typically have more than one

generating unit that make up the station’s installed generation capacity. This
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installed generation capacity, measured in Megawatt (MW), can be defined as the

maximum output of a power station at every moment in time while in operation.

Finding ways to generate electricity from renewable sources is becoming in-

creasingly important all over the world. The most popular example is that of wind

turbines. The problem, however, is that wind is not reliable because it cannot

be controlled. In addition, many generating units are required for a wind energy

farm to have a significant installed capacity. Another renewable, completely dif-

ferent approach is to convert solar radiation into direct current electricity using

semiconducters. See Eskom Holdings SOC Ltd (2015c) for more detail.

From the power stations, the electricity is transmitted along power lines to

substations and distribution stations. Before the generated electricity is fed into

the transmission network, the voltage is increased using step-up transformers.

Transmission happens at high voltages to make up for losses that occur over

long distances and to limit the number and size of power lines required. At the

substations and distribution stations, the voltage is decreased again using step-

down transformers before being distributed to consumers (Eskom Holdings SOC

Ltd, 2014f).

2.2 Electricity markets

Over the past 30 years, significant changes in the electricity industry have led to

less regulated markets in many industrialised countries. Deregulation has led to

more competion among electricity suppliers, each with the goal of maximising its

own profits (Otero-Novas et al., 2000; Ventosa et al., 2005). The first country

to introduce supplier competition into its electricity market was Chile, in 1982.

England, Wales and Norway followed in 1990 (Anuta et al., 2014). Prior to this,

electricity markets were characterised by regional monopolies run either by public

utilities or by private enterprises (Boom, 2003).

Electricity markets are complex for three main reasons, namely electricity

cannot be stored on a large scale; a physical link is required for its transportation;

and an electricity market is, similar to many other markets, characterised by an

uncertain demand. Suppliers competing in the same market must use the same

transmission and distribution network, and all supply flowing into the network
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and all demand flowing out of the network must be balanced at all times. Failing

to preserve the balance will cause the entire network to collapse (Boom, 2003;

Möst & Keles, 2010).

2.2.1 Modelling trends and techniques

Researchers have for many years attempted to use models to solve problems

releted to electricity markets. By surveying the most relevant publications on

electricity market modelling, Ventosa et al. (2005) identified three major trends,

namely one-firm optimisation models, equilibrium models and simulation mod-

els. One-firm optimisation models typically focus on maximising profit for one

participant competing in the market while considering a set of technical and eco-

nomic constraints. These models, which are well suited to short-term studies,

are able to deal with difficult and detailed problems. In many cases the other

participants competing in the market are not considered. In contrast, equilibrium

models generally focus on simultaneously maximising profit for each participant

competing in the market. In these models, overall market behaviour is modelled

and competition among participants is taken into account. Equilibrium models

are well suited to long-term studies because there is a lower demand for detailed

modelling capability while the response of all competing participants is more sig-

nificant. When electricity markets are too complex to address with equilibrium

models, simulation models can be used as an alternative.

2.2.1.1 One-firm optimisation models

Optimisation as a modelling tool is often used by electricity market participants

to determine optimal bidding strategies. In many deregulated electricity markets,

pool trading takes place in which each competing supplier is faced with the chal-

lenge of submitting a supply bid to an independent system operator (ISO). The

role of the ISO is to determine the winning bid as well as a uniform market clear-

ing price (MCP) (David & Wen, 2000; Zhang et al., 1999). There are typically

three approaches that suppliers can follow to determine optimal bidding strate-

gies. The first approach involves estimating the MCP and offering a price that

is a little cheaper than the MCP. The second approach is based on estimations

8

Stellenbosch University  https://scholar.sun.ac.za



2.2 Electricity markets

of the bidding behaviour of rival participants. The third approach is based on

methods and techniques from game theory.

In most deregulated markets, strategic bidding initially took place mainly on

the supply side but in recent years, demand-side bidding has also gained im-

portance. The structure of some electricity markets has evolved to the extent

that large consumers and electricity distributors can also submit bids (David &

Wen, 2000). Several publications are available on strategic bidding in electric-

ity markets. Mielczarski et al. (1999) give a good overview of bidding strategies

by analysing the typical bidding behaviour of electricity suppliers in the Au-

stralian market. David & Wen (2000) presented a literature survey of strategic

bidding in competitive electricity markets based on more than 30 research pub-

lications. Garćıa et al. (1999) describe a general methodology for bidding in de-

regulated markets. Also see Fleten & Pettersen (2005), Kazempour et al. (2015)

and Sarkhani et al. (2014) for practical examples related to strategic bidding in

recent publications.

Another application of optimisation models in electricity markets is related to

unit commitment (UC) (Marcovecchio et al., 2014; Rahman et al., 2014). Elec-

tricity suppliers encounter the UC problem when they have to decide which gen-

erating units to commit or decommit over a study horizon. This can include

generating units in a single power station or in multiple power stations, typically

of the same type (e.g. thermal). The objective of the UC problem is to, within

generation limits, meet the expected demand and provide a specific margin of

operating reserve at the minimum operating cost. Depending on the formulation

of the problem, the cost function can include fuel costs, maintenance costs, and

startup and shutdown costs (Dogra et al., 2014; Hao et al., 1997; Rahman et al.,

2014). The UC problem has been studied for several decades. Padhy (2004)

presented an in-depth survey of the different optimisation approaches that have

been proposed for the problem since the 1960s.

An extension of the UC problem is the economic load dispatch (ELD) problem

(Roy et al., 2014; Singh et al., 2014; Subathra et al., 2014). It involves solving

the UC problem and then scheduling the outputs of the committed generating

units in order to meet the total expected demand plus transmission losses at a
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minimum operating cost. This must be done in such a way that all the unit and

system equality and inequality constraints are satisfied (Dogra et al., 2014).

A more complicated version of the ELD problem is the short-term hydrother-

mal coordination problem (Beltran & Heredia, 1999; Ramirez & Oñate, 2006).

It differs from the ELD problem in that the supplier’s generation mix includes

thermal and hydroelectric power stations. The objective of minimising the total

operating cost remains the same. However, the challenge arises from the fact

that hydroelectric power stations present additional, and different, constraints to

thermal power stations. The study horizon is typically between one day and one

week (Farhat & El-Hawary, 2009).

2.2.1.2 Equilibrium models

In deregulated electricity markets, equilibrium models, which have a close relation

to game theory, seek to explain the behaviour of each participant competing in

the market. In these models, market participants are mostly suppliers. Search-

ing for market equilibrium is essential for participants and for the ISO. Each

participant is concerned with setting its own strategies and goals while the ISO

is concerned with security of supply to the market (Alikhanzadeh et al., 2011).

Ventosa et al. (2005) mention a few major uses for electricity market equilibruim

models, namely market power analysis, market design, yearly economic planning,

long-term hydrothermal coordination, capacity expansion planning and conge-

stion management.

Several theoretical equilibrium models such as the Stackelberg, Cournot, Ber-

trand, Supply Function Equilibrium (SFE) and Conjectural Variation models are

available (Abeygunawardana et al., 2008). The Stackelberg model is appropriate

for conditions in which smaller firms can only follow the behaviour of a large

dominant firm. The Bertrand, Cournot, SFE and Conjectural Variation models,

on the other hand, are appropriate when a market is more competitive (Alikhan-

zadeh et al., 2011).

In the Cournot model, suppliers compete on supply quantity strategies as

opposed to the Bertrand model where they compete on supply price strategies.
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The Cournot model is a popular choice because, owing to its simplicity, compu-

tation is easy in many cases. However, the model assumes that competitors do

not respond to price changes. In the Bertrand model, each supplier first sets its

supply price and then supply whatever quantity is required. The model gives any

supplier the opportunity to capture the entire market by setting its price below

that of the competitors. This seems unrealistic in view of increasing marginal

costs and the limited installed capacity of electricity suppliers. In markets where

suppliers submit a supply function bid for each generating unit, the assumptions

of the Cournot and Bertrand models may not be appropriate. SFE models, where

suppliers compete on offer curve strategies, have thus been selected as the basis

of many electricity market models (Abeygunawardana et al., 2008; Alikhanzadeh

et al., 2011; Ventosa et al., 2005). The SFE model is an evolution of the Cournot

model (see Baldick (2002) for a comparison of the Cournot and SFE models of

bid-based electricity markets). The Conjectural Variation model is an extension

to the Cournot model. In comparison, it is more accurate and flexible. The model

expects future reactions of competitors and its estimates are based on unilateral

changes in output (Alikhanzadeh et al., 2011).

2.2.1.3 Simulation models

The equilibrium models discussed in 2.2.1.2 are all based on the formal definition

of equilibrium, which is mathematically expressed as a set of algebraic and/or

differential equations. This holds two major disadvantages when very complex

markets are modelled. First, the representation of competition among partici-

pants is limited and secondly, the set of equations is often too hard to solve. In

cases where these problems occur, simulation models can be used as an alter-

native. Simulation models typically involve setting sequential rules to represent

each participant’s strategic decision dynamics. The flexibility of being able to

implement almost any kind of strategic behaviour is a great advantage of the

simulation approach (Ventosa et al., 2005).

According to Otero-Novas et al. (2000) the simulation of an electricity market

must consider the market structure as well as the strategies of the market partic-

ipants. It should go beyond a simple optimisation that is based on the operating

costs of the generating units.
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Ventosa et al. (2005) mention that electricity market simulation models are

often closely related to equilibrium models. Two examples are the models pro-

posed by Otero-Novas et al. (2000) and Day & Bunn (2001). These models are

based on the Cournot and the SFE schemes respectively.

Another simulation approach used for electricity markets is that of agent-

based simulation models (Rastegar et al., 2009; Zhou et al., 2011). In these

models, market participants learn from past experience, which then enables them

to make improved decisions going forward (Ventosa et al., 2005).

2.3 Power station logistics systems

Logistics plays a significant role in the operation of thermal power stations. Sev-

eral simulation and optimisation studies have been conducted on the logistics

systems and supply chains of coal-fired power stations in particular. These stu-

dies vary in that some incorporate the entire coal supply chain while others only

focus on a particular part of it. Throughout this section, the terms ‘power station

logistics system’ and ‘coal supply chain’ will be used interchangeably. The reason

for this is that many electricity suppliers are responsible for their coal supply

from the moment it leaves the suppliers. Others only take ownership of the coal

upon delivery to their power stations. This section focuses on the logistics in-

volved from the moment the coal leaves the ground until it is stored at the power

station.

In their paper, Li & Li (2008) proposed a simulation and optimisation model

for the logistics system of a coal-fired power station using witness software.

The objective was to minimise the total cost of the logistics system. The model,

which was applied to a power station in China, included the coal suppliers, the

coal transportation system and the power station itself. These researchers regard

these as the three major components of a power station’s logistics system. The

selection of suppliers is critical in guaranteeing the quantity and quality of coal

supply. The transportation system has many requirements and constraints that

must be considered, while at the power station the coal storage systems, the coal

conveying systems and the human resources must be managed.
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The remainder of this section includes a discussion of coal suppliers, coal

transportation systems and coal inventory management at power stations. Past

studies are referred to throughout.

2.3.1 Coal suppliers

When modelling an entire coal supply chain, complexity can arise when multiple

suppliers supply to a single power station. Different suppliers will almost always

offer coal at different prices. The quality of the coal will also vary from supplier

to supplier (Yucekaya, 2013).

Coal is extracted at either open-cast or underground mines. After extraction,

the coal is processed before being stored on large stockpiles. Processing can

include crushing, washing and sometimes blending, depending on the needs of

the client (West, 2011). In some cases, the coal is processed at separate coal-

handling facilities or even at the power stations themselves. Several studies have

been conducted on the processing of coal. These include studies on coal washing

(Zhang & Xia, 2014), coal blending (Jian & Shi-xin, 2013; Xi-jin et al., 2009)

and machine scheduling at coal-handling facilities (Conradie et al., 2008; Hanoun

et al., 2013).

Another, completely different, type of problem encountered by coal suppliers

is that of inventory management. According to West (2011) ensuring security

of coal supply is the most critical factor driving the optimisation of coal supply

chains. The optimisation model proposed by West (2011) demonstrates that the

principal costs incurred from high coal inventory levels include working capital,

holding costs and double handling costs. The uncertainty of coal demand is a

major problem for coal suppliers. There is thus a need to determine optimal

inventory levels at coal mines in order for them to reduce costs while still being

able to always meet demand.

2.3.2 Coal transportation systems

From the mines, the coal is transported to the power stations. Depending on

the terms of the supply contract, the transportation of the coal can either be the

13

Stellenbosch University  https://scholar.sun.ac.za



2.3 Power station logistics systems

responsibility of the mines or of the power stations. In many cases external trans-

portation companies are used. The complexity of a coal transportation system

lies in the fact that multiple transportation methods are usually involved. These

typically include transportation by rail, road and conveyor systems. Transporta-

tion costs are usually dependent on the method of transportation and on the

distance between supplier and client. In an ideal world, a power station should

be located close to a coal mine. However, this is not usually the case since the

generation and demand points should also be in close proximity of one another

(Yucekaya, 2013).

Due to a lack of coal resources, many countries are forced to import coal.

When this is the case, even more complexity is added to the supply chain due to

the handling and storage of the coal at ports. Yabin (2010) proposed a simulation

model of a coal ocean-shipping logistics system using witness software. The

main focus of the study was the operation of the transshipment port and the

objective was to minimise the logistics cost.

Several other studies on coal transportation systems are available in scholarly

literature. Two examples are the papers by Fang et al. (2011) and Yucekaya

(2013). Fang et al. (2011) proposed a regional coal transportation and storage

optimisation model for a coal-fired power station in China. The objective was to

minimise regional transportation and storage costs. In their model, coal is trans-

ported from logistics centres or freight centres in the region to the coal-fired power

station. The coal goes through the following three steps in the transportation

system: storage at the logistics centres, transportation to the power station and

storage at the power station. Yucekaya (2013) developed a model to minimise

coal purchasing and transportation costs for a power company with more than

one power station in the USA. The model considers multimode transportation

alternatives, multiple products, multiple suppliers, capacity limitations on trans-

portation routes, supplier capacity for a particular product and power station

burn capability constraints.
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2.3.3 Coal inventory management at power stations

While, in a typical coal supply chain, the coal suppliers and transportation com-

panies are responsible for managing inventory levels at the mines and throughout

the transportation network, the electricity suppliers are responsible for managing

the coal stockpiles at their power stations. According to Zhanwu et al. (2011) the

survival and development of coal-fired power stations are seriously influenced by

the bottleneck that is created by a coal shortage. Compared to other enterprises,

inventory management at coal-fired power stations has its own features and re-

quirements due to the nature of the goods being stored. Zhanwu et al. (2011)

mention the following as the four main features of coal inventory management:

1. The uncertainty of coal demand: The uncertain demand for coal at

power stations is triggered by the uncertain demand for electricity. In many

countries, coal demand for electricity generation varies from season to sea-

son. There are two reasons for this. First, consumers tend to use more

electricity during very hot or very cold periods and secondly, hydroelectirc

power stations can typically produce more electricity during wet seasons,

which reduces the load placed on coal-fired power stations.

2. The uncertainty of coal prices: The price of coal varies over time.

Similar to any other market, high demand means high prices, and vice

versa.

3. The uncertainty of inventory replenishment: Due to weather con-

ditions and other uncertainties within coal transportation networks, the

inventory replenishment of coal is inconsistent.

4. The requirement of safety stock: Each of the abovementioned uncer-

tainties emphasises the need to stockpile coal because coal shortages will re-

sult in an electricity shortage. Safety stock is an effective management tool

for protecting an electricity supplier against uncertainty. However, there

is a trade-off between having the ability to always provide customers with

the promised service level and the costs involved in storing large amounts

of coal at a power station (Ma & Lin, 2008).
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Studies related to inventory management at power stations mostly involve

the determination of a safety stock level. Zhanwu et al. (2011) proposed a prac-

tical inventory model to minimise the loss of profit. Through solving the model,

reasonable safety stock could be determined. Ma & Lin (2008) presented two

models, one to determine the optimal service level for a coal-fired power station

and one to determine the optimal safety stock.

2.4 Summary: Chapter 2

This chapter was an introductory literature study on modelling in the electricity

generation industry. The background to the chapter introduced the concepts of

electricity generation, transmission and distribution. Thereafter, a section on

electricity markets was included to gain some knowledge from existing literature

before studying the architecture of Eskom’s energy flow simulator (EFS). The

section on power station logistics systems was included with an eye on the main

research objective, namely to determine whether multi-objective optimisation

(MOO) capability can be added to the EFS through the formulation of a coal

inventory model.

A detailed description of the existing EFS as well as the proposed modifica-

tions to it follows in Chapter 3.
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Chapter 3

The energy flow simulator

Chapter 2 was a literature study on modelling in the electricity generation in-

dustry. The aim of this chapter is to describe the energy flow simulator (EFS) in

its current form and also to propose modifications to the EFS that can possibly

improve its potential as an optimisation tool.

Background is provided on the South African electricity generation sector

and on Eskom’s generation mix and coal supply chain. This is followed by an

introduction to the EFS and a detailed description of its existing architecture.

Short sections follow in which the order of simulation and the analysis capability

of the EFS are summarised. Thereafter, the proposed modifications to the EFS

are described. The chapter is concluded with a section in which the modifications

are verified and validated.

3.1 Background to Chapter 3

In this section, the South African electricity generation sector is briefly introduced

and Eskom’s generation mix and coal supply chain are described.

3.1.1 An introduction to the South African electricity gen-

eration sector

Unlike most global electricity markets, the South African electricity market is not

deregulated. The state-owned electricity utility Eskom, which is the 11th largest
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electricity generator in the world, provides approximately 95% of the country’s

electricity (Eskom Holdings SOC Ltd, 2014b,d). The other 5% is provided by

municipalities and independent power producers (IPPs).

Eskom is also the sole transmitter of electricity in South Africa (Baker, 2011).

From Eskom’s power stations, electricity is fed into the national transmission grid.

This high-voltage grid links the power stations to substations and distribution

stations in the cities, towns and rural areas throughout the country. From there,

Eskom is responsible for 60% of the distribution to consumers. The balance is

distributed by municipalities after being purchased from Eskom (Baker, 2011;

Eskom Holdings SOC Ltd, 2014f).

3.1.2 Eskom’s generation mix

Eskom’s generation mix includes a variety of power stations, all of which are

classified into two categories: base load power stations which supply electricity

around the clock, and peak demand power stations which can react quickly to

changes in demand (Eskom Holdings SOC Ltd, 2014a).

Base load power stations are designed to operate continuously at a steady

load and are generally only shut down for planned maintenance or in the case

of emergency maintenance. Eskom’s base load power stations include 13 coal-

fired stations, which generate 93% of the electricity produced by Eskom, and one

nuclear station. Three of the coal-fired stations (Camden, Grootvlei and Komati)

are return-to-service (RTS) stations which were recommissioned in 2005 to meet

the country’s growing electricity demand. Two new, very large coal-fired power

stations (Kusile and Medupi) are currently under construction. The introduction

of this additional generation capacity will relieve the pressure on Eskom’s base

load stations in the near future (Eskom Holdings SOC Ltd, 2014a,d). Details of

all the base load power stations are provided in Table 3.1.

Peak demand power stations are responsible for generating the additional

demand placed on the system over and above the base demand. Peak demand

periods in South Africa are typically in the early mornings and early evenings (Es-

kom Holdings SOC Ltd, 2014a). Eskom’s peak demand power stations include
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Table 3.1: Eskom’s base load power stations.

Installed

Type Name Location capacity (MW)

Coal Arnot Middelburg, Mpumalanga 2 352

Duvha Witbank, Mpumalanga 3 600

Hendrina Hendrina, Mpumalanga 1 965

Kendal Witbank, Mpumalanga 4 116

Kriel Kriel, Mpumalanga 3 000

Lethabo Sasolburg, Free State 3 708

Majuba Volksrust, Mpumalanga 4 110

Matimba Lephalale, Limpopo 3 990

Matla Kriel, Mpumalanga 3 600

Tutuka Standerton, Mpumalanga 3 654

Camden (RTS) Ermelo, Mpumalanga 1 510

Grootvlei (RTS) Balfour, Mpumalanga 1 200

Komati (RTS) Middelburg, Mpumalanga 940

Kusile (new) Witbank, Mpumalanga 4 800

Medupi (new) Lephalale, Limpopo 4 764

Nuclear Koeberg Melkbosstrand, Western 1 910

Cape

two conventional hydroelectric stations (Gariep and Vanderkloof), two hydroelec-

tric pumped storage schemes (Drakensberg and Palmiet) and four open-cycle gas

turbine (OCGT) stations (Acacia, Port Rex, Ankerlig and Gourikwa). Water as a

source for electricity generation is only used for peak demand periods due to South

Africa’s inconsistent rainfall and limited water resources. A new pumped storage

scheme (Ingula) is currently under construction and will be added to the system

in the near future. The four OCGT stations are, due to their high operating

cost, only employed in periods when the other stations cannot meet the demand.

Acacia and Port Rex use kerosene to power their engines whereas Ankerlig and

Gourikwa run on diesel (Eskom Holdings SOC Ltd, 2014a,d). Details of all the

peak demand power stations are provided in Table 3.2.
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Table 3.2: Eskom’s peak demand power stations.

Installed

Type Name Location capacity (MW)

Hydro- Gariep Norvalspoort, Border of 360

electric Eastern Cape and Free State

Vanderkloof Petrusville, Northern Cape 240

Pumped Drakensberg Bergville, KwaZulu-Natal 1 000

storage

Palmiet Grabouw, Western Cape 400

Ingula (new) Border of Free State 1 332

and KwaZulu-Natal

OCGT Acacia Cape Town, Western Cape 171

Port Rex East London, Eastern Cape 171

Ankerlig Atlantis, Western Cape 1 338

Gourikwa Mossel Bay, Western Cape 746

The map of South Africa shown in Figure 3.1 shows the distribution of the

base load and peak demand power stations in the country. In addition to these

stations, Eskom also has an experimental wind energy farm at Klipheuwel in

the Western Cape. Its capacity is 3 MW. Another wind energy farm is currently

under construction at Vredendal in the Western Cape. Its capacity will eventually

be 100 MW (Eskom Holdings SOC Ltd, 2014d).

3.1.3 Eskom’s coal supply chain

South Africa’s very high reliance on coal for electricity generation is unlikely to

change in the near future for two reasons, namely the lack of suitable alternatives

and the country’s large coal reserves (Eberhard, 2011; Eskom Holdings SOC Ltd,

2014b,d). South Africa is the fifth highest producer of hard coal in the world

and also one of the five largest coal users in the world behind China, the USA,

India and Japan. Altogether 53% of the coal produced by the country is used

for electricity generation. The coal reserves in South Africa are estimated at
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Coal Nuclear Hydroelectric Pumped storage OCGT
Coal Nuclear Hydroelectric Pumped storage OCGT

Figure 3.1: Distribution of power stations in South Africa.

53 billion tonnes and, at the current production rate, there are approximately

200 years of coal supply left in the country (Eskom Holdings SOC Ltd, 2014b).

From Figure 3.1 one can see that all Eskom’s coal-fired power stations are

situated in the northern parts of the country. This is no coincidence. The loca-

tions of these power stations were strategically selected to be in close proximity

of South Africa’s coal fields, which are mainly in the Central Basin. This includes

the Witbank, Highveld and Ermelo coalfields. The Waterberg coalfield and other

coalfields in Limpopo have in recent years also been explored (Eberhard, 2011).

Figure 3.2 shows South Africa’s major coalfields.

Eskom does not own its own mines and therefore rely on private mines for

coal supply. The majority of the coal used by Eskom is produced by eight mega-

mines that each produces more than 10 million tonnes per annum. Seven of these

mines are in the Central Basin while the other one is in the Waterberg (Eberhard,

2011).
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Ermelo

Witbank
Highveld

Waterberg

Central Basin coalfields Waterberg coalfieldCentral Basin coalfields Waterberg coalfields

Figure 3.2: Major coalfields in South Africa.

Supply contracts with mines are mostly long term and can typically be up to

40 years. Eskom has two types of supply contracts, namely cost-plus contracts

and fixed-price contracts. For cost-plus contracts, Eskom is the sole client of the

mine and also pays for all mining operations. For fixed-price contracts, on the

other hand, the mine has other clients besides Eskom. For these contracts, Eskom

does not pay for mining operations.

The supply arrangements that Eskom has with the coal mines are increasingly

under threat as mines divert higher-quality coal to the export market. This is a

major concern in view of South Africa’s continuous increase in electricity demand.

Eskom has thus been forced into using low-grade coal with a high ash content. A

high ash content in coal results in a lower thermal efficiency during combustion

due to the reduced calorific value (CV). Calorific value refers to the amount of

chemical energy released upon combustion. This problem has exposed Eskom to

supplementary short-term contracts with the major coal producers and smaller

mining companies (Eberhard, 2011).

The majority of Eskom’s coal-fired power stations were built next to mines,

which means that coal can be transported with large conveyor systems. Tutuka,
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Hendrina, Grootvlei, Camden and Majuba, however, require road and/or rail

transportation to move the coal from the mines. Deliveries to Tutuka, Hendrina

and Grootvlei are by road while deliveries to Camden are by rail. Majuba’s coal is

delivered by both road (55%) and rail (45%) (Eskom Holdings SOC Ltd, 2014c).

Contracts for road and rail transport are either with the mines themselves or with

independent transportation companies.

3.2 An introduction to the energy flow simula-

tor

The energy flow simulator (EFS) is a strategic decision support tool that enables

various departments within Eskom to simulate and analyse the Eskom value chain

from primary energy to end-use over a certain study horizon. The EFS was

originally coded in the Java programming language, but after realising that it

was too intricate and very complex to operate, it was converted to the statistical

R programming language. The idea was that the new R version would enable

members of Eskom to understand, update and modify the EFS without the need

for a Java programmer.

Of the modelling trends and techniques discussed in Chapter 2, the EFS

incorporates both a one-firm optimisation and a simulation component. One

simulation output of the EFS is the coal stockpile levels at Eskom’s coal-fired

power stations. This allows for a logistics component to be added to the EFS

through the formulation of a coal inventory model.

3.3 Architecture of the energy flow simulator

The EFS architecture described in this section is based on an internal Eskom

report by van Harmelen et al. (2014).

The existing R version of the EFS consists of nine independently developed

modules. The interaction between these modules and the primary information

flows between them are shown in Figure 3.3. In the remainder of this section, the

four primary modules, namely load forecasting (LF), production planning (PP),
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fuel planning (FP) and primary energy (PE) are described. The inputs and

outputs of the other five modules are also mentioned.

Growth

scenarios

Year-on-year

growths

Station

availabilities

Monthly planned

and unplanned

maintenance

Load

forecasting

Load per

sector

Hourly

demand
Production

planning

Generation

cost per

station

Planned

monthly

load per

station

Planned

monthly

load per

station
Tariff

application

Sales

revenues

New capacity

Dates and

capacities

Income

statement

Fuel

planning

Planned

monthly

coal deliveries

for each coal-

fired station

Primary energy

(Generation)

Figure 3.3: Existing EFS structure and primary information flows.

The architecture explanations that follow in Subsections 3.3.1 to 3.3.4 assume

a study period of one year.

3.3.1 Load forecasting

The load forecasting (LF) module forecasts the electricity demand in South Africa

for the study period. The forecast is based on a user-specified weather scenario
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and a gross domestic product (GDP) scenario. With regard to the weather sce-

nario (warm, normal and cold), the assumption was made that very cold and very

warm weather both cause an increase in the consumption of electricity. For the

GDP scenario (high, normal and low), the module assumes a correlation between

electricity demand and economic growth, meaning that a high GDP results in

a high electricity demand. Input data for the GDP scenarios are stored in the

growth scenarios module.

The output of the module is the hourly electricity demand per sector for each

of the three geographical zones in South Africa. There are four sectors, namely

residential, manufacturing, mining and the rest. The three geographical zones are

central, southern and eastern. The tariff application module uses the electricity

tariffs for each sector to calculate revenue from electricity sales for each sector.

3.3.2 Production planning

The production planning (PP) module, which is essentially a very basic unit com-

mitment model, is completely deterministic. It uses the country’s hourly electric-

ity demand forecast by the LF module, converts it to average weekly demand for

each week, and then determines the planned weekly electricity generation at each

power station for the entire study period. All base load and peak demand power

stations discussed in Subsection 3.1.2 are included in the module. The user can

select if and when any of the new power stations must be introduced. This is

done through the new capacity module. The Cahora Bassa hydroelectric power

station in Mozambique, from which Eskom imports electricity, is also included.

In addition, a virtual power station, with a generation capacity equivalent to the

total capacity of independent power producers (IPPs), is included. These two are

both treated as base load power stations.

The problem of scheduling the planned electricity to be generated by each

power station was formulated as a linear program (LP) with the objective of

minimising the total weekly generation cost. In order to differentiate between

peak and offpeak demand periods, the developers formulated the LP by sorting

the hourly demand for each week in descending order. Each week is then divided
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into 14 time periods of 12 hours each. The first seven are treated as peak demand

periods while the second seven are treated as offpeak demand periods.

The LP’s decision variable is defined as

Gsq = planned electricity generation at power station s during

time period q (3.1)

where s ∈ S = {1, . . . ,32} and q ∈ Q = {1, . . . ,14}.

The index values for the power stations are provided in Table 3.3. The reason

for the 16 coal-fired stations in the LP formulation is because Kriel is treated as

two stations in the EFS. A virtual power station named Unmet was created to

represent the demand that cannot be met by the generation mix. A large penalty

cost was assigned to it. Stations 30 to 32 are the pumps of the pumped storage

schemes. Recall that the pumped storage schemes are only used for generation

during peak demand periods. During the offpeak periods the water must be

pumped back to the upper reservoirs. It was important to include the pumps in

the LP formulation because, when they are in operation, they consume electricity,

which means that the demand essentially increases.

Table 3.3: Index values for the power stations.

s Power stations

1 Cahora Bassa

2 IPPs

3 Nuclear

4−19 Coal

20−23 OCGT

24 Unmet

25−26 Conventional hydroelectric

27−29 Pumped storage schemes

30−32 Pumped storage schemes (pumps)

Further definitions are the generation cost for power station s (Cs), the avail-

able generation capacity of power station s during time period q (Asq), the forecast
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electricity demand during time period q (Fq), the maximum weekly load for power

station s (l
(maxw)
s ), the minimum weekly load for power station s (l

(minw)
s ) and the

weekly load requirement for power station s (l
(reqw)
s ). Cs remains constant over

the study period while Asq differs for each month m ∈ M = {1, . . . ,12}. It is given

by

Asq = 12 × Is ×EAFsm (3.2)

where Is is the installed generation capacity of power station s and EAFsm is the

energy availability factor for power station s during month m. A new EAF is

thus used approximately every four weeks. EAFsm is given by

EAFsm = 100 −PCLFsm −UCLFsm −OCLFsm (3.3)

where

� PCLFsm = planned capability loss factor (planned maintenance) for power

station s during month m,

� UCLFsm = unplanned capability loss factor (unplanned maintenance) for

power station s during month m, and

� OCLFsm = other capability loss factor (other unplanned outages) for power

station s during month m.

Each of the above can be specified by the user to allow for what-if analysis.

A default dataset for each is available for a period of five years. Negative EAFs

are not allowed.

The maximum and minimum weekly loads for power station s are given by

l
(maxw)
s = 14 ×Asq ×EUF(max)

s (3.4)

and
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l
(minw)
s = 14 ×Asq ×EUF(min)

s (3.5)

respectively, where EUF(max)
s is the maximum energy utilisation factor and EUF(min)

s

is the minimum energy utilisation factor. Both remain constant for each power

station s throughout the course of a year.

The units of measurement for all the parameters in the module are provided

in Table 3.4.

Table 3.4: Units of measurement for the parameters in the PP module.

Symbol Unit of measurement

Gsq MWh

Cs ZAR/MWh

Asq MWh

Fq MWh

l
(max)
s MWh

l
(min)
s MWh

l
(req)
s MWh

Is MW

EAFsm %

PCLFsm %

UCLFsm %

OCLFsm %

EUF(max)
s %

EUF(min)
s %

The LP is:

Minimise
14

∑
q=1

32

∑
s=1
CsGsq (3.6a)

subject to
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Gsq ≤ Asq ∀s, q, (3.6b)
29

∑
s=1
Gsq −

32

∑
s=30

Gsq = Fq ∀q, (3.6c)

14

∑
q=1
Gsq ≤ l

(maxw)
s for s = 1,2, ...,19, (3.6d)

14

∑
q=1
Gsq ≥ l

(minw)
s for s = 1,2, ...,14, (3.6e)

7

∑
q=1
Gsq ≥

1

2
l
(minw)
s for s = 15,16, ..,19, (3.6f)

14

∑
q=8
Gsq ≥

1

2
l
(minw)
s for s = 15,16, ...,19, (3.6g)

14

∑
q=1
Gsq = l

(reqw)
s for s = 25,26, (3.6h)

14

∑
q=1
G27q − 0.72

14

∑
q=1
G30q = 0, (3.6i)

14

∑
q=1
G28q − 0.75

14

∑
q=1
G31q = 0, (3.6j)

14

∑
q=1
G29q − 0.745

14

∑
q=1
G32q = 0, (3.6k)

7

∑
q=1
Gsq = 0 for s = 30,31,32, (3.6l)

Gsq ≥ 0 ∀s, q. (3.6m)

The objective function is defined in (3.6a). Constraint (3.6b) ensures that

each power station’s planned electricity generation during each time period does

not exceed its available capacity during that time period. The constraint to

balance the planned generation and the forecast demand during each time period

is (3.6c). Referring to Table 3.3 for the numbering, the first 19 power stations are

the base load stations. Each base load station has a maximum and a minimum

weekly load requirement. The maximum weekly loads are ensured by (3.6d).

The minimum weekly loads for stations 1 to 14 are ensured by (3.6e). Power

stations 15 to 19 must produce at least half of the minimum load requirement
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during peak time periods and at least half during offpeak time periods. This

requirement, which is ensured by (3.6f) and (3.6g), was incorporated into the

LP formulation in an attempt to keep these five power stations online during

the night. The two conventional hydroelectric power stations each have an exact

weekly load requirement. This is ensured by (3.6h). Constraints (3.6i) to (3.6k)

are load balance constraints for the three pumped storage schemes. They ensure

that the electricity used by the pumps during the offpeak periods are taken into

account. Constraint (3.6l) ensures that the pumps are not used during peak

demand periods while (3.6m) is a sign restriction constraint.

Every time the PP module is run, the LP is solved for each week to determine

the planned weekly generation at each power station. After solving the LP for

all weeks, the planned weekly generation at each power station is aggregated to

determine the planned generation at each station during each month (G
(p)
sm). The

same is done to obtain the monthly generation costs. The generation costs and

the sales revenues are used by a module that draws up an income statement.

Because the hourly demand is averaged to a weekly demand, the total planned

monthly generation output of the LP is not equal to the exact monthly demand.

This means that either the monthly demand will not be met, or more electricity

than required will be planned for. To obviate this, a load-pickup and a load-

drop algorithm was incorporated into the module. Whenever the total planned

monthly generation does not meet the monthly demand, the planned generation

is picked up, starting at the power station with the lowest generation cost. A

station’s planned generation can only be picked up if the station has available

capacity. On the other hand, when the total planned monthly generation is more

than the monthly demand, the planned generation is dropped, starting at the

power station with the highest generation cost. The planned generation can only

be picked up and dropped at certain stations and all generation constraints must

remain satisfied.

3.3.3 Fuel planning

Similarly to the PP module, the fuel planning (FP) module is completely de-

terministic. It uses the planned monthly electricity generation at the coal-fired
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power stations to compute the expected amount of coal that each station will

burn. This is subsequently used to estimate the planned monthly coal deliveries.

The planned coal to be burnt at power station s (s = 4,5, . . . ,19) during month

m is given by

B
(p)
sm = G

(p)
sm ×

Hs × 10−6

CVs

(3.7)

where Hs is the heat rate for power station s and CVs the calorific value of the

coal at power station s.

Each coal-fired power station is designed to operate at a specific heat rate and

to burn coal within a specific CV range.

The planned coal delivery to power station s during month m is estimated by

D
(p)
sm = B

(p)
sm + S

(corr)
sm (3.8)

where S
(corr)
pm is the stockpile correction for power station s during month m.

A stockpile correction is added to the planned delivery in an attempt to have

the coal stockpile level at each power station return to a user-specified target

stockpile level by year-end. There are minimum and maximum constraints on

the amount of coal that can be delivered to each power station in a month.

The units of measurement for all the parameters in the module are provided

in Table 3.5.

Table 3.5: Units of measurement for the parameters in the FP module.

Symbol Unit of measurement

B
(p)
sm ktonnes

G
(p)
sm MWh

Hs MJ/MWh

CVs MJ/kg

D
(p)
sm ktonnes

S
(corr)
sm ktonnes
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3.3.4 Primary energy

The primary energy (PE) module, which is a simplified version of the Coal Stock-

pile Simulator proposed by Micali & Heunis (2011), is a Monte Carlo simulation

model. For each replication (or sample path), the model computes the following:

1. the actual electricity generation at each power station during each month

2. the coal stockpile level at each coal-fired power station at the end of each

month.

Each of the above is computed by stochastically adding uncertainty (or noise)

to the planned inputs that the model receives from the FP and PP modules. The

following uncertainties are incorporated into the model:

1. A power station’s actual UCLF during a given month may differ from the

planned UCLF.

2. The actual CV of the coal at a coal-fired power station during a given month

may differ from the planned CV.

3. A coal-fired power station’s actual coal delivery during a given month may

differ from the planned coal delivery.

Equations (3.9) to (3.12) show how the three uncertainties are incorporated

for each power station during each month by sampling a random number from

a standard normal probability density function. The notation and units of mea-

surement from Subsections 3.3.2 and 3.3.3 also apply for the PE module.

For the base load power stations, constant energy utilisation factors (EUFs)

are assumed and the actual electricity generation at power station s during month

m is given by

G
(a)
sm = G

(p)
sm × (

100 −PCLFsm −OCLFsm
EAFsm

−
UCLFsm +N(0,1)σ

(uclf)
s

EAFsm

⎞

⎠
(3.9)

32

Stellenbosch University  https://scholar.sun.ac.za



3.3 Architecture of the energy flow simulator

where σ
(uclf)
s is a forecast standard deviation of the UCLF for power station s.

It remains constant for all months.

For the peak demand power stations, the planned generation at power station

s during month m is used as the actual generation unless it exceeds the actual

maximum monthly generation at the station. This is mathematically expressed

by

G
(a)
sm = min{G

(p)
sm; Is × 24 × dm × (100 −PCLFsm −OCLFsm

− (UCLFsm +N(0,1)σ
(uclf)
s )) ×EUF(max)

s } (3.10)

where dm is the number of days in month m.

For the coal-fired power stations, the actual coal burnt at power station s

during month m is given by

B
(a)
sm = G

(a)
sm ×

Hs × 10−6

CVs +N(0,1)σ
(cv)
s

(3.11)

where σ
(cv)
s is a forecast standard deviation for the CV of the coal at power station

s. It remains constant for all months.

The actual coal delivery to coal-fired power station s during month m is given

by

D
(a)
sm =D

(p)
sm +N(0,1)σ

(d)
s (3.12)

where σ
(d)
s is a forecast standard deviation of the coal delivery to power station

s. It remains constant for all months.

After incorporating the uncertainties for power station s during month m, the

coal stockpile level at the end of the month is calculated by

Ss,m = Ss,m−1 +D
(a)
sm −B

(a)
sm. (3.13)

Each coal-fired power station’s stockpile level at the end of a given month

can be expressed in kilotonnes (ktonnes) or in terms of stockpile days. To obtain
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the number of stockpile days on hand at a given station, the amount of ktonnes

must be divided by the station’s standard daily burn (SDB). The SDB of a power

station, measured in ktonnes per day, is the amount of coal that the station can

burn if it was to operate for one full day without any outages (i.e. EAF = 100%).

Negative stockpile levels are not allowed. Thus, if Ss,m is negative, the follow-

ing happens:

Ss,m = 0. (3.14)

Thereafter, the actual coal burnt and actual electricity generation is re-calculated

by

B
(a)
sm =D

(a)
sm + Ss,m−1 (3.15)

and

G
(a)
sm = B

(a)
sm ×

CVs +N(0,1)σ
(cv)
s

Hs × 10−6
(3.16)

respectively, where N(0,1)σ
(cv)
s is the same value as in (3.11).

For the first month, Ss,m−1 = S
(i)
s is substituted into (3.13) and (3.15) where

S
(i)
s is the user-specified initial stockpile level at power station s. Due to the un-

certainties, the demand during a month and the actual generation during a month

will not balance. This again calls for the load-pickup and load-drop algorithms

to be run after each month’s calculations.

The mean monthly generation and mean coal stockpile levels are computed

by running the simulation model for a user-specified number of replications. Fig-

ure 3.4 is a conceptual diagram of the PE module that shows the controllable

inputs, the uncontrollable inputs and the outputs.
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Figure 3.4: Conceptual diagram of the PE module.

3.4 Order of simulation

As described in Subsections 3.3.1 to 3.3.4, the main simulation component of the

EFS is the PE module. The module simulates the actual electricity generation

at each power station and the coal stockpile level at each coal-fired power station

over the study period. Both outputs are expressed as mean monthly values.

To obtain the simulation outputs, the order of simulation for the EFS is as

follows:

1. Run the LF module to forecast the hourly electricity demand for the study

period.

2. Run the PP module over the same study period to determine the planned

monthly electricity generation at each power station.

3. Run the FP module to estimate, for each coal-fired power station, the

planned monthly coal delivery.
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4. Run the PE module to simulate, for each power station, the actual monthly

electricity generation and, for each coal-fired power station, the coal stock-

pile level at the end of each month.

3.5 Analysis capability of the energy flow simu-

lator

The EFS is not just a model that is capable of simulating electricity generation

and coal stockpile levels over a certain study period. The inputs that are subject

to user specification make it possible for the simulation outputs to be analysed

for a number of what-if scenarios.

Table 3.6: Analysis capability of the EFS.

User-specified input Example what-if scenario

Weather scenario Select a warm study period.

GDP scenario Select a study period with low economic growth.

Initial stockpile level Set a low initial stockpile level for all coal-fired power

stations.

Target stockpile level Set all year-end target stockpile levels equal to the

initial stockpile levels.

New capacity Specify that half of Medupi’s generation capacity

must be introduced during the first month of the

study period.

PCLF Set a specific maintenance plan.

UCLF Set very high UCLFs for a specific power station

during all months.

OCLF Set zero OCLFs for all power stations during all

months.

The parameters subject to user specification are the weather and gross do-

mestic product (GDP) scenarios, the initial stockpile levels, the year-end target

stockpile levels and the new generation capacity to be introduced. Furthermore,
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the PCLF, UCLF and OCLF datasets can be modified by the user to create spe-

cific scenarios. By default, none of the three new stations (Kusile, Medupi and

Ingula) are included in the analysis and the weather and GDP scenarios are set

to normal. When running the EFS with the default inputs, it is referred to as

the baseline case. The analysis capability of the EFS is summarised in Table 3.6.

3.6 Proposed modifications to the energy flow

simulator

This section presents an overview of the proposed modifications to the architec-

ture of the EFS. When reading this section, it is important to keep in mind the

problem being addressed in this research, namely that of formulating and solving

a multi-objective coal inventory model for the EFS. The coal stockpile levels are

thus considered as the primary simulation output.

As noted throughout this chapter, the EFS currently operates on a monthly

resolution (i.e. the simulation outputs are expressed as monthly values). The

stochastic uncertainties within the PE module are thus also incorporated on a

monthly basis. The danger in this is that the actual uncertainties that occur at

the various power stations on a daily basis are covered up by average monthly

simulation outputs. This is illustrated in Figure 3.5, which is a plot that shows an

example of the simulated stockpile level at a specific power station for a monthly

simulation resolution and a daily simulation resolution. By comparing the two,

it can clearly be seen that the stockpile levels produced by the PE module do

not truly reflect the variation in the stockpiles throughout the course of a month.

For this reason, the main objective of the modification of the EFS is to change

the resolution to daily.

In order to achieve this objective, the following must be considered:

1. The PP module must be modified in order for its output to be, for each day

in the study period, the planned daily electricity generation at each power

station. With regard to the inputs of the PP module, no changes to the

LF module are required. However, the station availabilities module must

be modified in order for its output to be daily EAFs.
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Figure 3.5: Monthly compared to daily simulation resolution.

2. The FP module must be modified in order for its output to be, for each

day in the study period, the planned daily coal delivery to each coal-fired

power station.

3. The PE module must be modified in order for the stochastic uncertainties to

be incorporated on a daily basis. This will subsequently enable the module

to produce daily simulation outputs.

3.7 Modifications to the architecture of the en-

ergy flow simulator

A detailed description of all modifications to the PP, FP and PE modules follows

in this section. As mentioned, the main objective of the modification of the EFS

is to change the resolution to daily.

The architecture explanations in this section again assume a study period of

one year.
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3.7.1 Production planning

In order to change the resolution of the PP module to daily, the LP that deter-

mines the planned electricity generation at each power station had to be reformu-

lated. Before commencing with the modifications to the PP module, it must be

mentioned that (3.6a) to (3.6m) were assumed to be correct and that, by slightly

modifying them, they would remain correct.

The reader may recall from Subsection 3.3.2 that the LP in the existing PP

module is solved for each week in the study period to obtain the planned weekly

generation at each station. Thereafter, each station’s planned weekly genera-

tion is aggregated to monthly values for all months. In the modified LP being

proposed, the planned daily generation at each power station is determined by

solving the LP for each day. The objective thus becomes to minimise the total

daily generation cost. The LP was modified as follows:

The hourly demand for each day is sorted in descending order. Each day is

then divided into two time periods of 12 hours each. The one with the highest

demand is treated as the peak demand period while the other one is treated as

the offpeak demand period. The LP’s decision variable is defined as

Gsq = planned electricity generation at power station s during

time period q (3.17)

where s ∈ S = {1, . . . ,32} and q ∈ Q = {1,2}. Table 3.3 still applies.

Further definitions are the generation cost for power station s (Cs), the avail-

able generation capacity of power station s during time period q (Asq), the forecast

demand during time period q (Fq), the maximum daily load for power station s

(l
(maxd)
s ), the minimum daily load for power station s (l

(mind)
s ) and the daily load

requirement for power station s (l
(reqd)
s ). Cs remains the same as in the existing

formulation. Asq is now given by

Asq = 12 × Is ×EAFsd (3.18)
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where Is is the installed generation capacity of power station s and EAFsd is the

energy availability factor for power station s on day d ∈ D = {1, . . . ,365}. EAFsd

is given by

EAFsd = 100 −PCLFsd −UCLFsd −OCLFsd (3.19)

where

� PCLFpd = planned capability loss factor (planned maintenance) for power

station s on day d,

� UCLFsd = unplanned capability loss factor (unplanned maintenance) for

power station s on day d, and

� OCLFsd = other capability loss factor (other unplanned shutdowns) for

power station s on day d.

Unlike for the monthly planned and unplanned outages, no default daily

datasets were made available by Eskom for this study. However, because PCLF,

UCLF and OCLF can be specified by the user, a dataset for each could be created.

This was done stochastically by sampling three random numbers from uniform

probability density functions for each power station during each month. The first

one determines the number of generating units to be off, the second one deter-

mines the day on which the outage should start and the third one determines the

number of consecutive days for which the outage must continue. A constraint

was added in order for

dm

∑
d=1

(Is × 24 ×PCLFsd) = Is × 24 × dm ×PCLFsm, (3.20)

dm

∑
d=1

(Is × 24 ×UCLFsd) = Is × 24 × dm ×UCLFsm, (3.21)

and
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dm

∑
d=1

(Is × 24 ×OCLFsd) = Is × 24 × dm ×OCLFsm (3.22)

where dm is the number of days in month m. Equations (3.20) to (3.22) ensure

that the daily outages for all stations over the course of each month are similar

to those of the existing default monthly datasets.

For Fq, the exact forecast demand during each time period is used. The

maximum and minimum daily loads for power station s are given by

l
(maxd)
s = 2 ×Asq ×EUF(max)

s (3.23)

and

l
(mind)
s = 2 ×Asq ×EUF(min)

s (3.24)

respectively, where EUF(max)
s and EUF(min)

s remain the same as in Subsection 3.3.2.

The daily load requirement for power station s is assumed to be

l
(reqd)
s =

l
(reqw)
s

7
. (3.25)

Regardless of the slight changes in notation (EAFsm to EAFsd, etc.), the units

of measurement remain the same as in the existing PP module. This also applies

for the modified FP and PE modules.

The modified LP is:

Minimise
2

∑
q=1

32

∑
s=1
CsGsq (3.26a)

subject to

Gsq ≤ Asq ∀s, q, (3.26b)
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29

∑
s=1
Gsq −

32

∑
s=30

Gsq = Fq ∀q, (3.26c)

2

∑
q=1
Gsq ≤ l

(maxd)
s for s = 1,2, ...,19, (3.26d)

2

∑
q=1
Gsq ≥ l

(mind)
s for s = 1,2, ...,14, (3.26e)

Gs1 ≥
1

2
l
(mind)
s for s = 15,16, ..,19, (3.26f)

Gs2 ≥
1

2
l
(mind)
s for s = 15,16, ...,19, (3.26g)

2

∑
q=1
Gsq = l

(reqd)
s for s = 25,26, (3.26h)

2

∑
q=1
G27q − 0.72

2

∑
q=1
G30q = 0, (3.26i)

2

∑
q=1
G28q − 0.75

2

∑
q=1
G31q = 0, (3.26j)

2

∑
q=1
G29q − 0.745

2

∑
q=1
G32q = 0, (3.26k)

Gs1 = 0 for s = 30,31,32, (3.26l)

Gsq ≥ 0 ∀s, q. (3.26m)

The objective function is defined in (3.26a). Constraint (3.26b) ensures that

each power station’s planned electricity generation during each time period does

not exceed its available capacity during that time period. The constraint to

balance the planned generation and forecast demand during each time period

is (3.26c). Constraint (3.26d) ensures that, for each base load power station,

the daily planned generation does not exceed the maximum daily load. The

minimum daily load requirements for stations 1 to 14 are ensured by (3.26e).

Constraints (3.26f) and (3.26g) ensure that stations 15 to 19 produce at least

half of the minimum daily load requirement in each of the two time periods.

Constraint (3.26h) ensures that each of the two conventional hydroelectric power

stations (25 and 26) produce their exact daily load requirement. The load balance

constraints for the three pumped storage schemes (27 to 29) are (3.26i) to (3.26k).
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Constraint (3.26l) ensures that the pumps (30 to 32) are not used during peak

demand periods while (3.26m) is a sign restriction constraint.

When the LP is solved for a given day, the planned generation at each power

station during each of the two time periods is obtained. By summing the planned

generation at station s over both time periods on day d, the station’s planned

daily generation (G
(p)
sd ) is obtained.

The new LP was thoroughly tested by ensuring that all constraints are satis-

fied. Furthermore, because the exact forecast demand during each time period is

used, and not the average demand as in the existing LP, the total planned daily

generation always meets the demand exactly. The load-pickup and load-drop

algorithms are thus not required.

3.7.2 Fuel planning

The proposed new FP module is a simplified version of the existing one. Recall

from Subsection 3.3.3 that the planned coal deliveries for each coal-fired power

station were estimated to be equal to the planned amount of coal to be burnt,

plus a stockpile correction. This is not an accurate representation of the real-

world system. The long-term nature of Eskom’s coal supply contracts means

that planned deliveries cannot be changed based on the coal requirements. Fixed

planned deliveries are thus proposed for the entire duration of the study period.

Ideally, the planned deliveries should be set equal to the amounts specified

in Eskom’s supply contracts. However, this data was not made available for this

study. An assumption was subsequently made that the planned daily coal delivery

to power station s (D
(p)
s ) is equal to the average planned daily coal required at

station s over the entire study period. This is given by

D
(p)
s =

∑
365
d=1B

(p)
sd

365
(3.27)

where B
(p)
sd is the planned coal to be burnt at power station s on day d. B

(p)
sd is

given by

B
(p)
sd = G

(p)
sd ×

Hs × 10−6

CVs

. (3.28)
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3.7.3 Primary energy

The proposed new PE module operates on the same principles as the existing

one in that the same three uncertainties are incorporated (i.e. UCLF, CV and

delivery reliability). However, the change in resolution meant that (3.9) to (3.12)

had to be modified slightly.

The uncertainty of UCLF is incorporated by stochastically creating a daily

UCLF dataset for each replication. This is done exactly as explained in Subsec-

tion 3.7.1. However, a constraint was added to ensure that

dm

∑
d=1

(Is × 24 ×UCLF
(s)
sd ) = Is × 24 × dm

× (UCLFsm +N(0,1)σ
(uclf)
s ) (3.29)

where UCLF
(s)
sd is the stochastically created unplanned capability loss factor for

power station s on day d.

Equations (3.9) and (3.10) then become

G
(a)
sd = G

(p)
sd ×

⎛

⎝

100 −PCLFsd −OCLFsd −UCLF
(s)
sd

EAFsd

⎞

⎠
(3.30)

and

G
(a)
sd = min{G

(p)
sd ; Is × 24 × (100 −PCLFsd −OCLFsd

−UCLF
(s)
sd ) ×EUF(max)

s } (3.31)

respectively, where G
(a)
sd is the actual electricity generation at power station s on

day d.

For the coal-fired power stations, the actual coal burnt at station s on day d

is given by

B
(a)
sd = G

(a)
sd ×

Hs × 10−6

CVs +N(0,1)σ
(cv)
s

. (3.32)
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Due to the change in simulation resolution, the standard deviation of the coal

deliveries cannot be used in the same way as in (3.12). A triangular distribution

was assumed to be an appropriate alternative. A triangular distribution’s proba-

bility density function, which is shaped like a triangle, is defined by three values,

namely the minimum value, the most likely value and the maximum value. For

the daily coal delivery to each coal-fired power station, the most likely value was

set as D
(p)
s . The minimum and maximum values can be specified by the user.

Default values of 0.9D
(p)
s and 1.1D

(p)
s were set for the baseline case. Thus, the

actual coal delivery to power station s on day d is assumed to be

D
(a)
sd = Tri(0.9D

(p)
s ,D

(p)
s ,1.1D

(p)
s ). (3.33)

After incorporating the uncertainties for power station s on day d, the calcu-

lations continue exactly as in Subsection 3.3.4. First, the coal stockpile level at

the end of the day is calculated by

Ss,d = Ss,d−1 +D
(a)
sd −B

(a)
sd . (3.34)

Negative stockpile levels are again not allowed. Thus, if Ss,d is negative, the

following happens:

Ss,d = 0. (3.35)

Thereafter, the actual coal burnt and actual electricity generation is recalcu-

lated by

B
(a)
sd =D

(a)
sd + Ss,d−1 (3.36)

and

G
(a)
sd = B

(a)
sd ×

CVs +N(0,1)σ
(cv)
s

Hs × 10−6
(3.37)
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respectively, where N(0,1)σ
(cv)
s is the same value as in (3.32). For the first day

Ss,d−1 = S
(i)
s is substituted into (3.34) and (3.36).

Due to the uncertainties, the demand and the actual generation for a day will

again not balance. Thus, the load-pickup and load-drop algorithms must be run

after each day’s calculations.

3.8 Verification and validation of the modified

primary energy module

As the simulation component of the EFS, the modified PE had to be verified and

validated. Verification of a simulation model is software oriented and involves

ensuring that the model was built right. Validation, on the other hand, is required

to ensure that the model is a sufficient representation of the real-world system.

3.8.1 Verification

The PE module’s R code was extensively debugged to ensure that it works cor-

rectly. Furthermore, the logic involved in the three stochastic uncertainties were

tested by fixing the parameters that cause uncertainty. By doing this, the mod-

ule’s outputs became deterministic and could thus be computed and compared

with the response produced from running the module. After obtaining complete

confidence in the correctness of the module’s logic, errors were further searched

for by varying some of the input datasets in an attempt to crash the model. The

model could not be crashed for any valid inputs.

3.8.2 Validation

Law & Kelton (2000) mention three considerations during validation of a simu-

lation model:

1. Conceptual validity: Adequate representation of the real-world system.

2. Operational validity: Sufficient similarity between the model’s generated

data and the real-world system’s behavioural data.
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3. Credibility: End-user’s confidence in the model’s results.

The assumption was made that each of the above had been considered by the

developers of the EFS. Also, for the strategic planning purposes of the EFS, the

modifications made to the PE module in this study were deemed to be insignifi-

cant enough not to affect the validity or credibility of the module. However, it is

recommended that the module be further tested for specific real-world scenarios

and with updated input data.

The reasonableness exhibited by the PE module was investigated by measur-

ing it against the following factors:

1. Continuity: Small changes to input parameters resulted in appropriate

small changes to the module’s output. For example, the actual daily gen-

eration decreased when higher UCLFs were specified. Also, lower CVs

resulted in increased coal requirements which subsequently caused lower

stockpile levels. The stockpile levels also decreased when lower planned

coal deliveries were specified.

2. Consistency: Consistency was confirmed by similar simulation runs that

consistently resulted in similar outputs.

3. Absurd conditions: Absurd conditions were introduced and the model

did not produce equally absurd outputs. For example, very high UCLFs

never resulted in negative EAFs while very low planned coal deliveries as

well as low initial stockpile levels did not cause the stockpile levels to be

negative. Zero electricity generation was also confirmed for all coal-fired

stations during coal stockouts.

Figure 3.6 shows the coal stockpile levels for a one-year study period after

running the PE module for 20 independent Monte Carlo replications. Initial

stockpile levels were set to 20 stockpile days and only the 14 existing coal-fired

stations (illustrated as A to N) were included. The variation that results from

the stochastic uncertainties is clearly visible. Power stations C and F exhibit

greater variation, mainly due to their larger σ
(uclf)
s values. On the other hand,

the variation is much less for stations A, H and I. Also note that the stockpile level
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at power stations C, F and G reached zero stockpile days for some replications,

but never became negative.

A B C

D E F

G H I

J K L

M N

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0 100 200 300 0 100 200 300

Day

In
v
en

to
ry

 l
ev

el
 (

n
u
m

b
er

 o
f 
st

o
ck

p
il
e 

d
a
y
s)

Figure 3.6: Variation exhibited by the modified PE module.

3.9 Summary: Chapter 3

This chapter provided background to the South African electricity sector and Es-

kom’s generation mix and coal supply chain. This was followed by an introduction
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to the EFS. Thereafter, the current architecture of the EFS was described. The

focus was on the four primary modules. The PE module is the main simulation

component while the LF, PP and FP modules compute inputs that are either di-

rectly or indirectly fed to the PE module. The monthly electricity generation at

each power station and the monthly coal stockpile level at each coal-fired power

station are the two simulation outputs produced when running the PE module.

After summarising the order of simulation and the analysis capability of the

EFS, modifications to the EFS architecture were proposed. By keeping the main

research objective in mind, all modifications to the EFS were directed towards

changing the simulation resolution to daily instead of monthly. All modifications

to the PP, FP and PE modules were described. Verification and validation of the

modified PE module instilled sufficient confidence in the simulation model for the

study to proceed to the formulation of the multi-objective inventory model.

Chapter 4 is a literature study on simulation optimisation.
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Chapter 4

Literature: Simulation

optimisation

Chapter 3 presented the current architecture of the energy flow simulator (EFS)

as well as the proposed modifications to it. This chapter is a literature study

on simulation optimisation (SO). The knowledge gained from this study will be

used to achieve the main research objective, namely to formulate and solve a

multi-objective coal inventory model for the EFS.

According to Fu et al. (2014) simulation and optimisation are arguably the two

most powerful techniques in operations research. Stochastic computer simulation

is a useful tool for evaluating the performance of real-world systems that are

too complex to be modelled analytically. However, it is often insufficient to

simply evaluate the performance of the system. Some projects may require a

more exploratory evaluation, hence the need to merge simulation and optimisation

technologies (Ólafsson & Kim, 2002). Most commercial Monte Carlo or discrete-

event simulation software packages on the market today have an optimisation

module.

This chapter starts off by introducing the basic principles of SO. This is fol-

lowed by an overview of SO techniques, specifically for the single-objective case.

Thereafter the focus shifts to multi-objective SO and multi-objective optimisation

(MOO) techniques.
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4.1 An introduction to simulation optimisation

Ólafsson & Kim (2002) defines SO as “the process of finding the best values of

some decision variables for a system where the performance of the system is eval-

uated based on the output of a simulation model of the system”. Considering this

definition, the traditional single-objective SO model is defined as

Minimise f(θ) (4.1)

subject to θ ∈ Θ, (4.2)

where f(θ), which cannot be expressed analytically, is estimated by f̂(θ) from

samples (or replications) of a simulation model using instances of feasible input

parameters θ.

Input parameters can be discrete or continuous, and are constrained within

some feasible set Θ ∈ RD for D decision variables. The most common form for

f(θ) is the expected value of the system performance measure, i.e.

f(θ) = E[ψ(θ,ω)] (4.3)

where ψ represent the sample performance and ω the stochastic effects of the

simulation model (Bekker, 2012; Rosen et al., 2007).

In order to obtain optimal values for a simulation model’s input parameters, an

optimisation technique must be integrated with the model. This is illustrated in

Figure 4.1. Each simulation run, which refers to a certain number of replications,

produces a response value. The optimisation technique guides the process by

evaluating the response value and adjusting the values for the input parameters

based on the response. The process terminates when no more improvement of

the response value is shown.
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Optimisation

technique
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Figure 4.1: Integration of a simulation model and optimisation technique.

Azadivar (1999) mentions a few specific challenges of SO. Because no analyti-

cal expression for the objective function exists, differentiation or the exact calcu-

lation of local gradients is not an option. The stochastic nature of the objective

function also presents a problem when having to estimate approximate gradients.

Furthermore, running a computer simulation program is much more expensive

compared to evaluating analytical functions. Integration of an optimisation tech-

nique and some kind of simulation language can also present a potential obstacle,

especially when the optimisation technique is coded in a different programming

language.

4.2 Simulation optimisation techniques

The majority of “classical” approaches that account for most of the early lit-

erature in SO assume a uni-modal response surface. This is a major drawback

that often causes these techniques to perform poorly when the response surface is

high-dimensional, discontinuous and non-differentiable. Optimisation techniques

capable of overcoming the trap of local optimality are thus preferred. Most such

techniques are metaheuristics (Tekin & Sabuncuoglu, 2004).

A broad overview of “classical” SO approaches and metaheuristics is presented

in this section.
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4.2.1 Classical approaches

Several researchers, including Ólafsson & Kim (2002) and Swisher et al. (2000),

classify SO techniques based on the nature of the decision space. This arrange-

ment is also used here.

In a discrete decision space, the feasible region consists of discrete input pa-

rameters (e.g. the number of machines in a factory) whereas in a continuous

decision space, the input parameters take a set of continuous values (e.g. the

reorder quantity in an inventory problem) (Ammeri et al., 2010).

4.2.1.1 Discrete input parameters

For discrete input parameters, SO techniques can further be differentiated based

on the size of the decision space. In the case of a finite and small decision

space, statistical selection methods are well suited because every solution can be

evaluated. The two most popular examples are ranking and selection and multiple

comparison procedures (Ammeri et al., 2010).

Generally, real-world systems have very large and infinite decision spaces,

which makes it impossible to evaluate every solution. This calls for different

methods such as ordinal optimisation where, instead of trying to find the very

best solution, the focus is on finding “good” solutions (Ammeri et al., 2010; Tekin

& Sabuncuoglu, 2004). Another option for an infinitely large decision space is

random search algorithms. These algorithms typically involve an iterative process

in which input parameters are randomly selected from the search area (Tekin &

Sabuncuoglu, 2004).

4.2.1.2 Continuous input parameters

SO techniques for continuous input parameters can be arranged into three cat-

egories: metamodel methods, gradient-based approaches and non-gradient based

approaches (Ammeri et al., 2010).

Metamodel methods attempt to develop a mathematical relationship between

the input parameters and the response value. One such procedure is response sur-

face methodology in which a series of regression models are fitted to the simulation

response (Ammeri et al., 2010; Carson & Maria, 1997).
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Gradient-based methods usually take the form of stochastic approximation al-

gorithms. These procedures are iterative and the search direction is based on an

estimate of the response gradient (Fu et al., 2005; Ólafsson & Kim, 2002). Gradi-

ent estimation techniques include perturbation analysis, finite difference estima-

tion, likelihood ratio estimation and frequency domain analysis (Ammeri et al.,

2010).

Non-gradient based approaches provide an alternative to procedures that re-

quire an estimation of the response gradient. These techniques, which include the

sample path method, the Nelder-Mead method and the Hooke and Jeeves method,

attempt to turn the stochastic problem into a deterministic problem by taking a

large enough set of samples. This subsequently allows for the tools of nonlinear

programming to be applied (Ammeri et al., 2010).

4.2.2 Metaheuristics

The SO techniques mentioned in Subsection 4.2.1 often fail to find the optimal

solution when the response surface is multi-modal. A different approach is thus

required.

Metaheuristics are efficient global search algorithms that are widely recognised

for their ability to obtain near-optimal solutions within reasonable time periods

(Gendreau & Potvin, 2005). These algorithms are “higher-level” heuristics, as

indicated by the Greek prefix “meta”. A major advantage of metaheuristics

lies in their ability to approximately solve problems for which no satisfactory

problem-specific algorithm is available. Metaheuristics are generally designed for

combinatorial optimisation problems in the deterministic context, but have in

recent years been applied to SO with success (Boussäıd et al., 2013).

Two contradictory criteria should be considered when designing a metaheuris-

tic, namely exploration of the decision space and exploitation of the best solutions

found (Talbi, 2009). Metaheuristics can be classified as either single-solution

based or population-based. Single-solution based metaheuristics improve a single

solution by iteratively “walking” through the decision space of the problem. These

algorithms, which include simulated annealing and tabu search, are exploitation
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oriented in that the search can intensify in local regions. Population-based meta-

heuristics, on the other hand, iteratively improve a population of solutions. Most

metaheuristics of this class are related to evolutionary computation. Collectively

they are known as evolutionary algorithms (EAs) (Boussäıd et al., 2013; Talbi,

2009).

EAs, which are inspired by Darwin’s evolutionary theory, allow for better ex-

ploration of the entire search space (Talbi, 2009). The idea behind EAs is to

improve the average quality within the population from one generation to the

next. The solution candidates in the population are called individuals. New gen-

erations are created through both a selection process and evolutionary operators,

usually mutation and recombination, that operate on the current generation’s

population. High-quality individuals are selected to be part of the next genera-

tion based on their so-called fitness functions. The fitness value of a particular

individual provides a measure of how well the optimality condition is satisfied

(Coello et al., 2007; Zitzler, 1999). Arguably the most popular EA is the Genetic

Algorithm. Other EAs include differential evolution, evolution strategy, evolution-

ary programming and genetic programming. For more on this, see the book by

Simon (2013) in which a wide range of EAs are discussed.

A number of population-based metaheuristics are inspired by other natural

processes. A few examples are particle swarm optimisation, ant systems optimi-

sation and algorithms based on artificial immune systems (Boussäıd et al., 2013).

4.3 Multi-objective simulation optimisation

The SO model defined in Section 4.1 can be extended to the multi-objective

case. The basic principles of SO remain the same for multi-objective optimisation

(MOO) and metaheuristics are also the preferred solution approach. However,

because MOO problems have at least two conflicting objective functions that

must be optimised simultaneously, many acceptable solutions exist for a given

problem (Bekker, 2012). This subsequently means that the algorithms required

for solving MOO problems differ from the ones used for single-objective problems.

In this section, the MOO problem is defined (Subsection 4.3.1). This is fol-

lowed by an overview of approaches to MOO (Subsection 4.3.2), Pareto termi-
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nology in MOO (Subsection 4.3.3) and some well-known metaheuristics for MOO

(Subsection 4.3.4).

4.3.1 The multi-objective optimisation problem

The MOO problem for K objectives, D decision variables and M +Q constraints

is defined by

Minimise f(x) = [f1(x), f2(x), . . . , fK(x)]T (4.4)

subject to x ∈ Ω (4.5)

Ω = {x ∣ gi(x) ≤ 0, i = 1,2, . . . ,M ; (4.6)

hj(x) = 0, j = 1,2, . . . ,Q} (4.7)

where x = [x1, x2, . . . , xD]T is a D dimensional vector of decision variables.

Each xi (i = 1,2, . . . ,D) can be real-valued, integer-valued or boolean-valued

and is constrained within some feasible set Ω, which consists of M equality con-

straints gi and Q inequality constraints hj. The degrees of freedom is given by

M − Q and, to avoid an overconstrained problem, it is required that Q < M

(Bekker, 2012).

Solutions in the objective space (domain RK) are formed by many combina-

tions of decision variables in the decision space (domain RD). This is illustrated

in Figure 4.2, for an MOO problem with two objectives and two decision variables

(Bekker, 2012; Scholtz, 2014).

56

Stellenbosch University  https://scholar.sun.ac.za



4.3 Multi-objective simulation optimisation

x1
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f2

Decision space Objective space

Figure 4.2: MOO mapping.

4.3.2 Approaches to multi-objective optimisation

Approaches for solving MOO problems can be broadly organised into two cate-

gories: scalarisation approaches and Pareto approaches (De Weck, 2004).

In scalarisation approaches, the MOO problem is solved by translating it back

to a single-objective problem (or a series of single-objective problems). The pref-

erences of the decision maker must thus be incorporated into the optimisation

model before solutions are found. These approaches are therefore often called

priori (De Weck, 2004; Scholtz, 2014). A few examples are the weighted sum

approach, lexicographic ordering and goal programming. The weighted sum ap-

proach involves assigning weights to the various objective functions after which

they are summed together to form a single objective function. In lexicographic

ordering, the objective functions are optimised one at a time starting with the

one considered to be most important. This is done without lowering the quality

of the previously found objective values. In goal programming, each objective

function is associated with a target value. Deviations from the target values are

minimised using the weighted sum approach or lexicographic ordering (Scholtz,

2014).
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Pareto approaches differ from scalarisation approaches in that they do not

admit a unique solution but a set of solutions based on the concept of Pareto-

optimality (see Subsection 4.3.3). Pareto-based MOO techniques are referred to

as posteriori methods because the decision-maker’s preferences are incorporated

after the optimisation model is solved (De Weck, 2004; Scholtz, 2014). The MOO

metaheuristics discussed in Subsection 4.3.4 belong to this category.

De Weck (2004) also mentions a third category of MOO approaches in which

the preferences of the decision maker are taken into account during optimisation.

However, these approaches are not as well developed.

4.3.3 Pareto terminology

Since MOO problems have at least two conflicting objective functions, the notion

of “optimum” changes. Many acceptable solutions exist for a given problem

and the aim is to find good “trade-offs” between the various objective functions

(Bekker, 2012; Coello et al., 2007).

To solve an MOO problem, a set of decision variable vectors, known as the

Pareto optimal set, must be found. Given this, the following definitions from

Coello et al. (2007) are necessary (minimisation is assumed):

Definition 1 (Pareto dominance): For two vectors u and v, both in domain

RK , u is said to dominate v (u ≺ v) if u < v.

Definition 2 (Pareto optimality): For a given MOO problem, solution x∗

∈ Ω is said to be Pareto optimal if and only if no x ∈ Ω exist for which f(x)

dominates f(x∗).

Definition 3 (Pareto optimal set): The Pareto optimal set is defined as

P∗ = {x ∈ Ω ∣ x = x∗}.

Definition 4 (Pareto front): The Pareto front is defined as

PF
∗
= {f(x) ∈ RK ∣ x ∈ P∗}.

Figure 4.3 shows a Pareto front for an MOO problem in which two objectives

are minimised. All members of the Pareto front (blue dots) are non-dominated.
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f1

f2

Members of Pareto front

Figure 4.3: Pareto front explained for two minimised objectives.

4.3.4 Metaheuristics for multi-objective optimisation

Similar to the single-objective case, metaheuristics are the preferred approach

for SO when multiple objectives are involved. Several single-solution based and

population-based metaheuristics have successfully been adapted to approximately

solve MOO problems. Evolutionary algorithms (EAs) have been found to be

particularly suitable for MOO problems since they simultaneously deal with a

population of possible solutions. Several members of the Pareto optimal set can

thus be obtained with a single run of the algorithm (Coello et al., 2007).

For many complex problems it is often not possible to generate the entire

Pareto optimal set. Therefore, Zitzler (1999) mentions that the optimisation goal

for MOO problems may be reformulated based on the following three objectives:

1. The distance between the Pareto front and the non-dominated front ob-

tained by the metaheuristic should be minimised.

2. A good distribution of solutions is desired.
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3. The non-dominated solutions should cover a wide range of values for each

objective function.

Given this, two main problems must be addressed when applying a meta-

heuristic to an MOO problem (Zitzler, 1999). First, in order to guide the search

towards the non-dominated set, the fitness assignment and selection must allow

for multiple objectives. Pareto ranking, which is based on the work of Gold-

berg (1989), is the best-known ranking method. This algorithm is described in

Subsection 5.3.1. The second problem involves maintaining a diverse popula-

tion to prevent premature convergence. The metaheuristic must thus perform

a multi-modal search, which will allow for a widely distributed and well-spread

Pareto optimal set to be found. A few frequently-used methods for maintaining

population diversity are discussed in Zitzler (1999).

The following are some of the best-known EAs for MOO:

� multi-objective genetic algorithm (Fonseca & Fleming, 1993)

� niched-Pareto genetic algorithm (Erickson et al., 1999)

� strength Pareto evolutionary algorithm (Zitzler & Thiele, 1999)

� Pareto archived evolution strategy (Knowles & Corne, 2000)

� multi-objective messy genetic algorithm (Van Veldhuizen & Lamont, 2000)

� Pareto envelope-based selection algorithm (Corne et al., 2000)

� non-dominated sorting genetic algorithm (Deb et al., 2002).

Each of the above algorithms and some of their variants are discussed in

chapter 2 of Coello et al. (2007).
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4.4 Summary: Chapter 4

This chapter presented literature on SO, with the main focus on MOO. Since

several in-depth literature studies have been done on both SO and MOO, this

chapter only included some basic principles and important concepts while also

providing references for a few well-known solution techniques.

The aim of this chapter was to gain sufficient knowledge of SO and MOO in

order to first, formulate a multi-objective coal inventory model for the energy

flow simulator (EFS) and secondly, to be able to integrate an appropriate MOO

algorithm with the EFS to solve the proposed model.

The model formulation and solution approach follows in Chapter 5.
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Chapter 5

Multi-objective model

formulation and solution

approach

Chapter 3 described the existing energy flow simulator (EFS) and the proposed

modifications to it while Chapter 4 presented literature on simulation optimisa-

tion (SO). In this chapter, the multi-objective coal inventory model is formulated

using the outputs of the EFS, and the solution approach for the inventory model

is discussed.

Some general concepts related to inventory models are presented as back-

ground to the chapter. The importance of managing coal stockpiles as well as

Eskom’s inventory management policy at its coal-fired power stations are also

discussed. Thereafter, the proposed model formulation and solution approach

are presented. This includes a detailed description of the multi-objective opti-

misation (MOO) algorithm that was selected for solving the model and a brief

discussion on how the algorithm is applied to this study.

5.1 Background to Chapter 5

The introductory literature study in Chapter 2 presented a broad overview of

power station logistics systems (see Section 2.3). A clear conclusion from the
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study was that the management of coal inventory levels are crucial throughout

the supply chain of coal-fired power stations.

In this section, which serves as background to the chapter, some general con-

cepts related to inventory models are briefly discussed. This is followed by a

discussion on the importance of managing coal stockpiles and an overview of

Eskom’s inventory management policy.

5.1.1 Inventory models

Inventory management generally refers to the making of optimal decisions to keep

inventory costs as low as possible while also satisfying customer needs. According

to Mercado (2007) inventory problems can be simplified by asking the following

three questions:

1. What and how much inventory is currently on hand?

2. What and how much is required?

3. When and how much of each inventory item should be ordered?

A major reason for carrying inventory within an organisation is related to

safety stock. Safety stock provides a way of protecting organisations against

fluctuations in demand and unreliability of supply (Toomey, 2000).

The costs associated with inventory systems typically include ordering cost,

purchasing cost, holding cost and shortage cost. The ordering cost includes all the

costs associated with placing an order. It is independent of the order quantity.

Purchasing cost and holding cost are both variable costs. The first is associated

with purchasing a single unit while the latter is the cost of carrying a single unit

for one time period. A shortage cost is incurred when a product is demanded

and the demand cannot be met. In some situations, customers will accept the

purchased items at a later date. When this is the case, it is said that demand

may be back-ordered (Winston, 2004).

The inventory strategies employed by firms are almost always based on some

form of model (Muckstadt & Sapra, 2010). The economic order quantity (EOQ)

method is a common approach for modelling deterministic inventory systems.
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The EOQ formula was developed in 1915 by FW Harris to help stockkeepers

determine the number of products that should be purchased (Muller, 2003). The

model is based on the following assumptions (Winston, 2004):

� Repetitive ordering: Orders are placed repetitively based on the deple-

tion of inventory. Also, orders arrive in a single batch and both stockouts

and back orders are not allowed.

� Constant demand: Demand is known and occurs at a constant rate.

� Constant lead time: The lead time, which is the length of time between

an order placement and the arrival of the order, is a known constant.

� Continuous ordering: Orders may be placed at any time, which means

that the on-hand inventory is reviewed continuously. Models that allow for

this are known as continuous review models. In contrast, periodic review

models can be used when orders may only be placed periodically.

Since these assumptions do not reflect the real world, several variations of the

EOQ model have been developed. Each allows for the optimal order quantity,

reorder level, total cost, average inventory level and maximum inventory level

to be determined (Muller, 2003). Variations of the EOQ model that allow for

quantity discounts, continuous arrivals, back orders and multiple products are

discussed in chapter 15 of Winston (2004).

The EOQ model has also been adapted for the case where demand is uncertain,

in the form of the (r, q) and (s, S) inventory models. The aim is to determine

the reorder level (or reorder point) and reorder quantity, such that the average

holding cost is kept at a minimum. For an (r, q) inventory policy, a certain

quantity is ordered at the exact moment when the inventory level reaches the

reorder point. An (s, S) policy, on the other hand, allows for the inventory level

to “undershoot” the reorder point. Thus, an order may be triggered when the

inventory level is less than the reorder point. For situations where the number

of items on demand may be greater than one, (s, S) policies have proven to be

optimal and (r, q) policies not (Winston, 2004). The characteristics of the (s, S)

inventory process are shown in Figure 5.1.
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Figure 5.1: Characteristics of the (s,S) inventory process.

5.1.2 Why manage coal stockpiles?

As discussed in Subsection 5.1.1, organisations carry inventory to accommodate

uncertainties in supply and demand. This also applies for coal-fired power stations

and, similar to any other inventory system, a minimum holding cost is desired.

However, the cost associated with storing coal is not the only reason for keeping

inventory levels as low as possible. Coal stockpiles that are exposed to certain

weather conditions for a period of time can have very damaging consequences.

When a coal stockpile is exposed to oxygen, the percolation of air through

the stockpile will result in a measurable rise in temperature. If the heat gen-

erated from the hot air is greater than the heat dissipated from the stockpile,

the temperature of the coal itself will rise (Pone et al., 2007). This occurrence

is commonly known as self-heating (Taraba et al., 2014). Coal stockpiles that

continue to self-heat are at risk of spontaneous combustion. This not only holds

safety risks but, according to Ozdeniz et al. (2008) combustion within a stockpile
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significantly decreases the quality of the coal. Banerjee et al. (2000) mention that,

regardless of whether a fire occurs or not, an increase in temperature is enough

to cause weathering of the coal. This means that certain properties of the coal,

most notably the calorific value (CV), will gradually be impaired. Under windy

conditions, the air that enters a stockpile plays a more complex role. On the one

hand the oxidation process becomes more intense while on the other hand, the

stockpile cools down (Taraba et al., 2014).

Coal stockpiles are also affected by exposure to water. According to Banerjee

et al. (2000) an economic way to stop weathering is to keep coal at its saturated

moisture level. This can be done by frequent watering of the stockpiles. Improper

watering as well as heavy rain can, however, promote the oxidation process. The

reason for this is that, as water is first absorbed and then desorbed, the coal

matrix swells and shrinks. This causes the coal structure to disintegrate, leading

to a higher rate of oxidation (Pone et al., 2007). Another effect of excessive rainfall

on stockpiled coal is the significant quantities of sediments and pollutants that are

delivered to receiving water bodies through water run-off. Curran et al. (2002)

conducted a study on this.

5.1.3 Inventory management at Eskom’s coal-fired power

stations

Eskom’s coal-fired power stations represent continuous systems in that a certain

load is constantly produced and fed into the transmission network. Also, coal

arrives every day at different times and in quantities that vary from one delivery

to the next. After arriving from the mines via conveyor, road or rail transporta-

tion systems, the coal is stored on large stockpiles at the power stations. The

coal requirements for each station are stipulated in the supply contracts, which

means that no further processing of the coal is necessary after it is delivered.

Coal properties (CV, ash content, etc.) are tested every day to ensure that all

requirements are met. Also specified in the supply contracts is the quantity to

be delivered to each station over a certain period of time.

Eskom’s primary client is essentially the South African economy and since the

system is heavily constrained at present, coal stockouts have serious consequences.
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To obviate the unreliability of coal deliveries, the effects of using lower-quality

coal and the fluctuations in electricity demand, Eskom employs an inventory

management policy by which it attempts to maintain a certain inventory level

at each coal-fired power station. This is referred to as the target stockpile level.

When a given station’s inventory level drops below the target, it indicates that

the station is burning coal at a faster rate than the suppliers are delivering. The

ideal is to keep all stockpiles above their target levels. The long-term nature of

the coal supply contracts presents a challenge in managing inventory at the power

stations in that emergency deliveries and order cancellations are not an option. In

times of inventory shortages, Eskom is thus forced to redirect deliveries or move

inventory between the stations. There are, however, certain constraints involved

since each power station is designed to burn coal with specific properties.

In 2008, South Africa started experiencing electricity shortages which forced

Eskom to introduce load shedding. Several factors contributed to this, including

depleted stockpile levels at some of the coal-fired power stations (Hatton, 2015).

At the time, a target stockpile level of 20 stockpile days was the norm for each

station. Senior management took action by increasing this number to 42 stockpile

days. Figure 5.2 from Hatton (2015) shows the total value of coal reserves (in

ZAR) at Eskom’s coal-fired power stations since 2002. The constant increase

since 2008 is reason to believe that the change was too drastic at certain stations.

Also, since each coal-fired power station has a different standard daily burn, a

stockpile day is equivalent to a different amount of coal for each station. It is

thus most likely that an optimal inventory management policy would involve a

different target stockpile level for each coal-fired power station. The question

that needs to be asked is: what is the optimal target stockpile level for each of

Eskom’s coal-fired power stations? The multi-objective inventory model described

in Section 5.2 is aimed at answering this question.
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Figure 5.2: The monetary value of coal inventory on hand.

5.2 Model formulation

In this section, the proposed multi-objective inventory model for the EFS is de-

scribed and the reasoning behind the modelling approach is explained. The de-

cision variables and objectives are discussed next.

5.2.1 Decision variables

The complexity of Eskom’s coal inventory system requires a different modelling

approach to the inventory models discussed in Subsection 5.1.1. First consider

a “classical” inventory system: stock is depleted based on the demand, which

is generally stochastic for real-world systems. Upon reaching a specific reorder

point, an order is placed to replenish inventory to a certain level. The order

arrives after a certain lead time, during which the on-hand inventory continues
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to be depleted. This process repeats itself. Now consider Eskom’s situation:

there are 14 coal-fired power stations that make up the inventory system, with

two more to be introduced in the near future. Coal demand at a given station

is not only based on the station’s electricity production requirements but also

on the quality of the coal. Inventory is replenished every day regardless of the

current stockpile level. There is thus no reorder point. Also, the amount of coal

that arrives vary from one day to the next and, as discussed in Subsection 5.1.3,

emergency deliveries and order cancellations are not an option. However, coal

can be moved between certain stations in emergency situations.

For this study, the stockpile at each coal-fired power station s (s = 4,5, . . . ,19)

is simulated by the modified primary energy (PE) module described in Subsec-

tion 3.7.3. Recall that the PE module is a Monte Carlo simulation model that

adds noise to the planned electricity generation and planned coal deliveries, which

are produced by the production planning (PP) and fuel planning (FP) modules

respectively. The noise is added in the form of uncertainty with regard to un-

planned maintenance, coal quality and delivery reliability. The unplanned main-

tenance and coal quality at a particular power station affect the amount of coal

being burnt by the station. Ideally, coal delivery and burn should balance each

other out so that the target stockpile level (Ts) can be maintained. However, this

is almost never the case in the real world.

Two hypothetical simulation scenarios for extreme variation between coal de-

livery and burn at a power station are shown in Figure 5.3. Scenario 1 on the

left may illustrate low delivery reliability. The effective decrease in stockpile level

may also be as a result of poor coal quality or less unplanned maintenance than

was expected. Scenario 2 illustrates the opposite, where the amount of coal de-

livered is significantly more than the coal burnt. A typical case would involve a

combination of the two scenarios throughout the course of a year, as shown in

Figure 5.4, where the inventory level fluctuates around the target stockpile level.

The idea for the proposed inventory model is to allow coal transfers between

the various coal-fired power stations when inventory levels become very high or

dangerously low. To achieve this, two transfer levels, called the lower warning

limit (Ls) and the upper warning limit (Us), are required for each coal-fired station

s to trigger the movement of coal.
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Figure 5.3: Two hypothetical scenarios for extreme variation between coal deliv-

ery and burn.
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Figure 5.4: Hypothetical scenario for typical variation between coal delivery and

burn.
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After every day d, each coal-fired power station’s stockpile level at the end of

the day (Ss,d) is evaluated to determine whether transfers are required. When a

given station’s stockpile is depleted below Ls, inventory is replenished by transfer-

ring coal from one or more of the other stations. Similarly, when a given station’s

stockpile becomes more than Us, coal is transferred to some of the other stations

in order to reduce the inventory level. Both Ls and Us are decision variables for

the inventory model, and since the main goal is to determine each Ts, it also

has to be included as a decision variable. The best way to trigger Ts is to only

allow a transfer when, for at least one of the stations involved in the transac-

tion, the stockpile level can be forced towards Ts. Furthermore, coal can only be

moved between power stations capable of burning similar coal. All transfers are

expressed in terms of the station from which the coal is moved. The coal trans-

ferred from power station s on day d is denoted by Ys,d. The basic constraints on

the decision variables are

Ls < Ts < Us ∀s, (5.1)

Ls > 0 ∀s, (5.2)

Ls, Ts, Us ∈ Z+ ∀s. (5.3)

To simplify Eskom’s complex inventory system, the following assumptions are

made:

1. Ls, Ts and Us must be positive integers when expressed in terms of stockpile

days.

2. There is no limit on the maximum stockpile level at any of the power sta-

tions.

3. No constraints are placed on the amount of coal that can be moved during

a transfer transaction.

4. Transfers are allowed on any day throughout the course of the study period

and there is no limit on the number of transfers that may be made.
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5. All lead times are one day. Thus, if a coal transfer is triggered on a given

day d, the changes to the stockpiles are visible on day d + 1.

One of the experiments presented in Chapter 6 involves adding additional

constraints to the model in order for assumptions 3 and 4 to be discarded.

For a better description of the coal transfer functions, consider the following:

two coal-fired power stations, s = A and s = B, are capable of burning coal of

similar quality. One stockpile day is equivalent to the same amount of coal for

both stations. If SA,d < LA becomes true on a given day d, a transfer is sought

from station B. However, coal may only be moved if SB,d > TB. If this condition

is true, the amount of coal transferred from B to A on day d + 1 is calculated by

YB,d+1 = min{SB,d − TB;TA − SA,d}. (5.4)

After incorporating both the actual delivery and burn on day d+1, SB,d+1 and

SA,d+1 are adjusted according to

SB,d+1 ← SB,d+1 − YB,d+1 (5.5)

and

SA,d+1 ← SA,d+1 + YB,d+1 (5.6)

respectively.

Figure 5.5 illustrates the characteristics of coal transfers between power sta-

tions A and B with another example. Two transactions occur on the plot, one on

day d = 111 and one on day d = 248. At d = 110, the stockpile at station A reached

LA. This resulted in a transfer YB,111 to station A, which forced the inventory at

station A to TA. At d = 247, the stockpile at station B reached LB. A transfer

YA,248 was made from station A, which forced the inventory at station B to TB.
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Figure 5.5: Characteristics of the coal transfer functions.

The power stations at which Ss,d < Ls receive priority (i.e. coal transfers for

them are sought first) and the stations are served in descending order based on

the difference between Ss,d and Ls. Two policies are proposed for selecting the

power stations involved in a transfer transaction:
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1. Closest first: If a given power station requires coal (Ss,d < Ls), the stations

from which the transfer will be made are selected by considering the closest

one first. Similarly, if a given power station has too much coal (Ss,d > Us),

the stations to which the transfer is made are selected by considering the

closest one first.

2. Most urgent: If a given power station requires coal, the stations from

which the transfer is made are selected by first considering the one at which

Ss,d is furthest above Ts. Similarly, if a given station has too much coal, the

stations to which the transfer is made are selected by first considering the

one at which Ss,d is furthest below Ts.

Both policies are experimented with in Chapter 6.

5.2.2 Objective functions

The first objective proposed for the model is to minimise the total average coal

stockpile level (S̄), measured in ktonnes. This is a relatively standard objective

for inventory management models. Assuming a study period of d = 365 days, S̄

is given by

S̄ =
19

∑
s=4

(
∑

365
d=1 Ss,d
365

) . (5.7)

As a second objective, it is proposed that the total coal transfers (Z) through-

out the course of the study period be minimised. This is given by

Z =
19

∑
s=4

365

∑
d=1
Ys,dXsd (5.8)

where Xsd is the total distance (in km) of coal transfers from power station s on

day d. The unit of measurement for Z is thus ktonnes⋅km.

Equation (5.7) is aimed at obtaining low values for all Ts. Equation (5.8),

on the other hand, is aimed at spacing Ls, Ts and Us so that coal is transferred
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optimally, since there is a trade-off between large coal transfers that occur oc-

casionally and frequent smaller transfers. The two objectives are conflicting and

the combinatorial nature of the problem makes it impossible to predict “good”

solutions without an optimisation algorithm.

The main problem with the manner in which the coal transfers are triggered

in this model is that some power stations may, throughout the course of the study

period, seek to increase or decrease their inventory levels without a transfer ever

becoming available. The stockpiles at these stations would thus only change

based on the stochastic variation of the simulation model. This opens the door

for possible coal stockouts as well as periods during which inventory levels rise

very high.

In an attempt to deal with this problem, another objective is proposed, namely

that of minimising the total average coal inventory outside the warning limits (R̄).

Also measured in ktonnes, R̄ is given by

R̄ =
19

∑
s=4

(
∑

365
d=1(Ss,d −Us) +∑

365
d=1(Ls − Ss,d)

365
) . (5.9)

Equation (5.9) is aimed at obtaining solutions for which the coal stockpiles

are maintained between Ls and Us as far as possible.

Since this study is primarily an investigation of whether MOO capability can

successfully be added to the EFS, it was decided to only incorporate two of the

three objectives at a time. This simplifies the analysis of experimental results.

The following is subsequently proposed: two model formulations, each with

two conflicting objectives (f1 and f2), where f1 is (5.7) for both models and f2 is

(5.8) for model 1 and (5.9) for model 2.

The solution approach to solving the inventory model is discussed next.

5.3 Solution approach

Multi-objective optimisation using the cross-entropy method (MOO CEM) was

selected as a suitable approach for solving the inventory model described in Sub-

section 5.2. The MOO CEM algorithm is a population-based metaheuristic. It is
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not inspired by evolutionary theory or any other natural process, but by statistical

principles.

The cross-entropy method (CEM) for optimisation is a versatile Monte Carlo

method, developed by Rubinstein & Kroese (2004). The approach was motivated

by the work of Rubinstein (1997) on variance minimisation methods for rare-event

probability estimation and modified in Rubinstein (1999) to solve continuous and

combinatorial optimisation problems (Kroese et al., 2006, 2013). In contrast to

a random search algorithm that searches for an optimal solution by sampling

decision variable values from the same probability density function (pdf), the

CEM assigns a pdf to each decision variable. The search works on the principle

that the parameters of each of these pdfs are iteratively adjusted in order to

increase the probability of drawing decision variables that result in good objective

function values. The aim of the CEM is to estimate the parameters of each

decision variable’s ideal pdf in order for them to converge to an optimal (or

near optimal) solution. The algorithm does this by using the cross-entropy (or

Kullback-Leibler distance). As a measure of the distance between two pdfs, a

minimum cross-entropy is desired between the sampling distribution associated

with each decision variable and the optimal pdf from which to sample (Rubinstein

& Kroese, 2004; Scholtz, 2014).

The CEM has been proven to converge quickly when applied to optimisation

problems with one objective. It is thus an ideal approach for the computationally

expensive time-dependent problems often encountered in simulation optimisation

(SO). This was the motivational factor for expanding the CEM to solve multi-

objective problems. The MOO CEM was introduced by Bekker & Aldrich (2010)

and Bekker (2012), and has since been the topic of multiple research studies.

In the remainder of this section, a detailed description of the MOO CEM is

presented. This is followed by a survey of some existing research and applica-

tions of the MOO CEM. The section is concluded with a discussion on how the

algorithm is applied to this study.
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5.3.1 The cross-entropy method for multi-objective opti-

misation

The MOO CEM algorithm described here is based on the main CEM algorithm

of Rubinstein & Kroese (2004), also outlined in Bekker & Aldrich (2010) and

Bekker (2012).

Since the Pareto optimal set of an MOO problem very often contains multiple

solutions, Bekker & Aldrich (2010) suggested expanding the CEM in order to

find the set of parameter vectors for the non-dominated set of solutions. To do

this, the algorithm requires a working matrix W consisting of D+K + 1 columns

and N rows, where D is the number of decision variables, K is the number of

objectives and N is the number of solutions in the population. Columns 1 to

D of the matrix are populated by sampling a vector of size N for each decision

variable from a truncated normal distribution, where the sample Xi (1 ≤ i ≤D) is

formed from the density hi(⋅; v̂t−1). The truncated normal distribution φi, with

mean µi and standard deviation σi, is given by

φi(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0, x < ai
hn(x)

∫
ai
bi

hn(x)dx
, ai ≤ x ≤ bi

0, x > bi

(5.10)

where ai and bi are the limits of the range on which decision variable xi is defined

and the function hn(x) is the normal pdf defined on −∞ < x < ∞. An arbitrary

large initial value for σi is required, using σi = 10 ⋅ (bi − ai) (Bekker, 2012).

Forming sample vectors like this makes it easy to contain the search (Bekker,

2012).

After populating the first D columns of the working matrix, the objective

functions are evaluated for each of the N row vectors. The performance measures

fj(X) with 1 ≤ j ≤ K for each row vector are stored in columns D + 1 to D +K

of the matrix (Bekker & Aldrich, 2010).

To find the best combinations of objective functions, the Pareto ranking

method of Goldberg (1989) is used. Presented in pseudo-code as Algorithm 1

(Bekker, 2012), the Pareto ranking method works as follows: in the working ma-

trix, the columns numbered D + i − 1 (1 < i ≤ K) are sorted consecutively. After
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column i =D+K −1 is sorted, the (i+1)-th column is ranked. The ranking value

of a given solution indicates the number of other solutions in the population by

which it is dominated. These values are stored in column D +K + 1 of the work-

ing matrix. A rank of ρ = 0 indicates that the solution is non-dominated. Each

solution for which ρ is less or equal to a specified threshold value ρE is appended

to the current (weakly) non-dominated set or the elite vector called Elite (Bekker

& Aldrich, 2010).

Algorithm 1 Pareto ranking algorithm (Minimisation)

1: Input: working matrix W with N rows and D +K + 1 columns, and user-

selected threshold ρE.

2: j ←D + 1.

3: Sort the working matrix W with the values in column j in descending order.

4: rp ← 1.

5: rq ← rp.

6: If W(rp, j + 1) ≥ W(rq + 1, j + 1), increment the rank value ρrp in W(rp,D +

K + 1).

7: rq ← rq + 1.

8: If W(rp,D +K + 1) < ρE and rq < N , return to Step 6.

9: rp ← rp + 1.

10: If rp < N , return to Step 5.

11: j ← j + 1.

12: If j <D +K − 1, return to Step 3, otherwise return the rows in W with rank

value not exceeding ρE as the weakly or non-dominated vector Elite.

The values in the elite vector are used to construct a histogram for each

decision variable xi, 1 ≤ i ≤ D. Each histogram contains r + 2 classes, where r

is determined by the outer loop of the algorithm. The histogram for a decision

variable xi defined on the range [ai, bi] is constructed as follows: for the first

class, the lower boundary is set equal to ai and the upper boundary is set equal

to the minimum value of xi in the elite vector, namely min(Elite(⋅, i)). For

the last class, the upper boundary is set equal to bi and the lower boundary is

set equal to the maximum value of xi in the elite vector, i.e. max(Elite(⋅, i)).
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The remaining classes are of equal size and are formed using (max(Elite(⋅, i)) −

min(Elite(⋅, i)))/r. The class boundaries for the histogram of xi are recorded in

a vector Ci = {ci1, ci2, . . . , ci(r+2), ci(r+2)+1}, i.e. [ci1, ci2] is the width of the first

class, [ci2, ci3] is the width of the second class, and so on. The frequency values

for each class are recorded in a vector Ri = {τi1, τi2, . . . , τi(r+1), τi(r+2)}, where τiκ

is the frequency count of xi in the range [ciκ, ci(κ+1)) (Bekker, 2012). An example

of a histogram is shown in Figure 5.6.
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Figure 5.6: Example of a histogram for the decision variable xi.

The histograms are used to generate a new population of size N for the next

iteration of the algorithm. First, however, each histogram is inverted with a pre-

set probability ph in order to prevent premature convergence. An example of a

histogram before and after inversion is shown in Figure 5.7. Refer to Bekker &

Aldrich (2010) for more on this very simple procedure.

The new population is created as follows: suppose the current elite vector

contains Er rows, then the decision variable vector Xi is formed by sampling

⌊Nτiκ/Er⌋ values from each class range [ciκ, ci(κ+1)), 1 ≥ κ ≥ r + 2. Temporary

parameters µ′iκ = ciκ + U(ci(κ+1) − ciκ) and σ′iκ = (ci(κ+1) − ciκ) are used for each

class, where U is a uniformly distributed random number. The candidate so-

lutions in the new population are thus proportional to the class frequencies of

79

Stellenbosch University  https://scholar.sun.ac.za



5.3 Solution approach

the histograms that were created from the current elite vector. This guides the

MOO CEM towards non-dominated solutions by allowing for the accommodation

of continuous search spaces (Bekker & Aldrich, 2010).
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Figure 5.7: Example of an inverted histogram.
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Before the algorithm proceeds to the next iteration, the values in the elite

vector are used to compute ṽit, which is a parameter vector containing the mean

and standard deviation of the values in Elite(, i). This is used to update the

current parameters µi and σi for all i, 1 ≤ i ≤ D. Each vector v̂t is updated as

follows:

v̂t = αṽt + (1 − α)v̂t−1 (5.11)

where α is the smoothing parameter (Bekker & Aldrich, 2010). This process

iteratively continues until each σi becomes less than a specified threshold ε.

Refer to Rubinstein (1999) and Rubinstein & Kroese (2004) for the theoretical

foundations of the CEM.

Similar to the CEM, the MOO CEM assumes independent decision variables.

One would, however, expect the decision variables to be correlated for combinato-

rial problems. Bekker & Aldrich (2010) mention that the algorithm can maintain

good combinations of decision variable values when the number of classes in each

histogram is incremented as the search progresses.

In order to better exploit the decision space, the entire process is repeated

for a specified number of loops (the outer loop of the algorithm). Exploration

and exploitation are further supported by initially ranking the objective function

values with a relaxed threshold of ρE = 2. This means that the first three non-

dominated fronts are included in the initial elite vector. The solutions that remain

in the elite vector for the next outer loop are ranked with a threshold of ρE = 1.

Upon termination of the search, the elite vector is trimmed for a final time with

a threshold of ρE = 0 in order for the final set of solutions to be completely non-

dominated (Bekker & Aldrich, 2010). The MOO CEM algorithm, as presented

in Bekker (2012), is given in pseudo-code as Algorithm 2.
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Algorithm 2 MOO CEM Algorithm

1: Set Elite= ∅, t = 1, k = 1.

2: Initialise variable vectors Xi = ∅, 1 ≤ i ≤ D, and compute initial objective

values.

3: For each decision variable xi, 1 ≤ i ≤ D, initialise a histogram class vec-

tor Ci = {ci1, ci2, . . . , ci(r+2), ci((r+2)+1)} and histogram frequency vector Ri =

{τi1, τi2, . . . , τi(r+1), τi(r+2)}.

4: Set i = 1.

5: Set κ = 0.

6: Increment κ.

7: for each frequency element τiκ in Ri do

8: Generate a class-based ṽ′ in the range [ciκ, ci(κ+1)), 1 ≤ κ ≤ r + 2.

9: Generate a subsample Y according to the pdf φi(xi, ṽ′)

10: with xi ∈ [ciκ, ci(κ+1)) and ∣Y∣ = τiκ, 1 ≤ κ ≤ r + 2.

11: Append Y to Xi.

12: end for

13: If κ < r + 2 return to Step 6.

14: Invert the histogram counts with probability ph.

15: Increment i.

16: If i ≤D, return to Step 5.

17: Compute the N K objective function values using Xi, 1 ≤ i ≤D.

18: Rank the objective function values using Algorithm 1 with ρE = 2 to obtain

an updated elite vector Elite.

19: Form new histogram class vectors Ci and histogram frequency vectors Ri

based on Elite, 1 ≤ i ≤D.

20: Use the values in Elite to compute ṽit for all i, 1 ≤ i ≤D.

21: Smooth the vectors ṽit for all i, 1 ≤ i ≤D, using (5.11).

22: If all σit > ε or less than the allowable number of evaluations has been done,

increment t and reiterate from Step 4.

23: Rank Elite using Algorithm 1 with ρE = 1.

24: Increment k.

25: If k is smaller than the allowable number of loops, return to Step 2.

26: Rank Elite using Algorithm 1 with ρE = 0 to obtain the final elite set.
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5.3.2 Existing research and applications of the cross-entropy

method for multi-objective optimisation

Since it was first introduced, the MOO CEM algorithm described in Subsec-

tion 5.3.1 has been applied in multiple studies and to a number of different prob-

lems. Existing research and applications of the MOO CEM algorithm include the

following:

1. In his PhD thesis, Bekker (2012) assessed the MOO CEM by using nine

different continuous, deterministic benchmark problems. Four quality indi-

cators were used to evaluate the algorithm’s performance and the Pareto

fronts achieved compared very well with the true fronts. Next, he used a

discrete, deterministic problem in the form of the vehicle routing problem

(VRP). The assessment involved optimising different combinations of the

five objectives identified by Castro-Gutierrez et al. (2011) for VRP analysis.

2. Bekker (2012) also applied the MOO CEM to dynamic, stochastic problems,

most notably, a modified version of the classical (s,S) inventory model. So-

lutions of such problems can only be evaluated using computer simulation.

The Pareto front that was achieved compared well with a reference front

obtained from a near-exhaustive enumeration. However, the MOO CEM

required far fewer objective function evaluations than the near-exhaustive

search.

3. The MOO CEM was evaluated in Bekker (2012) and Bekker (2013) using

the buffer allocation problem. Once again, computer simulation was used

and the conclusion was made that the algorithm is capable of estimating

Pareto fronts for MOO problems with large solution spaces using fairly few

objective function evaluations.

4. Stadler (2012) applied the MOO CEM in a practical research project where

the aim was to optimise the utilisation of carbon monoxide gas at an il-

menite smelter in South Africa. The MOO CEM was evaluated by com-

paring its performance to that of another metaheuristic, the MOO genetic

algorithm of Matlab®, which is a commercial version of the non-dominated
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sorting genetic algorithm. The results of the comparison between the two

algorithms were in favour of the MOO CEM (Bekker, 2012; Stadler, 2012).

5. Hauman (2012) successfully applied the MOO CEM to a practical inventory

problem in the context of a blood supply chain in South Africa.

6. Scholtz (2014) conducted a study to determine under which circumstances

the MOO CEM would be outperformed by an algorithm that accounts for

relationships between decision variables (recall that the MOO CEM assumes

independent decision variables). The algorithms included in the study were

the multi-objective covariance matrix adaptation evolution strategy, Pareto

differential evolution and two hybrid algorithms based on the MOO CEM.

The results varied for different problems. It was found that the MOO CEM

performed particularly well for larger problems, typically with more that a

hundred decision variables.

5.3.3 The cross-entropy method for multi-objective opti-

misation applied to this study

In order to successfully apply the MOO CEM to this study, the algorithm had to

be integrated with the primary energy (PE) module of the EFS. This, as well as

the parameter settings used for the algorithm, are discussed in this subsection.

5.3.3.1 Integration with the primary energy module

The basic principles of simulation optimisation were discussed in Section 4.1.

Keeping in mind the decision variables and objectives of the proposed inventory

model, integration of the PE module and the MOO CEM algorithm is illustrated

in Figure 5.8. During each iteration of the algorithm, N values are sampled for

each decision variable using the histograms created from the current elite vector.

The PE module evaluates each solution candidate in the population by running

for a specified number of replications. The values returned to the algorithm

depend on the output statistic (e.g. expected value). The algorithm proceeds

as described in Subsection 5.3.1 by ranking the objective function values in the

working matrix and appending the best solutions to the elite vector.
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MOO CEM

Us

Ts

Ls

for all s,

4 ≤ s ≤ 19

(×N)

PE module Converged?

Yes

Terminate

No

f2(×N)

f1(×N)

Figure 5.8: Integration of the PE module and the MOO CEM algorithm.

Since the MOO CEM assumes independent decision variables, both Ts and Us

cannot be sampled directly. For the reader to better understand what is meant by

this, consider the working matrix of the MOO CEM algorithm shown in Table 5.1.

For each member of the population, the three decision variables associated with

the first coal-fired power station are stored in columns 1 to 3, the three decision

variables associated with the second station are stored in columns 4 to 6, and so

on. Say L4 = x1, T4 = x2 and U4 = x3. If L4 is sampled on the range [a1, b1], then

T4 cannot be sampled on a fixed range [a2, b2] because L4 < T4, i.e. the value of

a2 depends on L4. The same applies for U4, because the value of a3 is dependent

on T4.

Table 5.1: Working matrix of the MOO CEM algorithm.

Decision variables Objectives Rank

x1 x2 x3 x4 . . . f1 f2 ρ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

(for N rows)

To deal with the problem described above, the relative “distances” between

Ls, Ts and Us are sampled and stored in the working matrix. Thus, the values to

85

Stellenbosch University  https://scholar.sun.ac.za



5.4 Summary: Chapter 5

be stored in the first three columns, xi, 1 ≤ i ≤ 3, are sampled on the range [ai, bi]

such that

x1 = L4,

x2 = T4 −L4,

x3 = U4 − T4.

This allows for each vector Xi, 1 ≤ i ≤ D, to be sampled from a fixed, inde-

pendent range [ai, bi].

5.3.3.2 Parameter settings

The parameter settings for the MOO CEM algorithm used in this study are given

in Table 5.2. All parameters are set according to the recommendations provided

in Bekker (2012).

Table 5.2: Parameter settings for the MOO CEM algorithm.

Description Symbol Value

Smoothing parameter α 0.7

Population size N 100

Histogram inversion probability ph 0.3

Common termination threshold ε 0.1

Maximum evaluations - 10 000

5.4 Summary: Chapter 5

This chapter presented the multi-objective coal inventory model formulated for

the EFS as well as the solution approach for solving the model. As background to

the chapter, some general principles related to inventory models were provided,

the importance of managing coal stockpiles was discussed and an overview of

Eskom’s inventory management policy was presented.
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For the proposed inventory model, coal transfer functions were developed in

order to allow for coal to be moved between the various coal-fired power stations

when stockpile levels decrease below a lower warning limit or rise above an upper

warning limit. Three objective functions were identified. However, the decision

was made to only include two of these at a time and to experiment with two dif-

ferent formulations (model 1 and model 2). The aim of the model is to determine

the upper warning limit, the lower warning limit and the target stockpile level for

each station by simultaneously minimising both objectives included in the model.

Multi-objective optimisation using the cross-entropy method (MOO CEM)

was selected as a suitable metaheuristic for solving the inventory model approx-

imately. A detailed description of the MOO CEM algorithm was presented, ex-

isting research and applications of the MOO CEM were surveyed and a brief

discussion was included on how the algorithm is applied in this study.

The experiments and experimental results follow in Chapter 6.
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Experiments and results

Chapter 5 presented the proposed multi-objective coal inventory model for the

energy flow simulator (EFS) as well as the multi-objective optimisation using

the cross-entropy method (MOO CEM) algorithm that was selected as a suitable

metaheuristic for solving the model approximately. The experiments and results

are documented in this chapter.

The baseline inputs to the EFS and the simulation settings for the primary

energy (PE) module are briefly discussed. This is followed by an overview of the

experiments. Four experiments are presented. The experimental design and anal-

ysis of the experimental results are provided for each. The chapter is concluded

with a summary of the findings made from the experimental results.

The experiments in this chapter serve as validation for the multi-objective

simulation optimisation (SO) model while also testing the effectiveness of the

MOO CEM algorithm in finding approximate solutions for the model.

6.1 Baseline inputs to the energy flow simulator

Before commencing with the experiments, it is important to first discuss the

baseline inputs to the EFS.

By default, none of the new power stations are included in any of the calcu-

lations. The normal weather and growth domestic product scenarios are used to

forecast the electricity demand in the load forecasting module and the default
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datasets for the planned and unplanned outages are used to compute the energy

availability factor in the production planning module.

With regard to the modified PE module, the reader may recall that the base-

line variation for coal deliveries are incorporated by sampling a random number

from a triangular probability density function (pdf). The most likely value was

set equal to the planned coal deliveries D
(p)
s while the minimum and maximum

values were set equal to 0.9D
(p)
s and 1.1D

(p)
s respectively. The variation for both

the calorific value (CV) and the unplanned capability loss factor (UCLF) are

incorporated by sampling a random number from a standard normal pdf and

then multiplying it with a certain standard deviation. The baseline CV for each

coal-fired power station as well as the CV standard deviation σ
(cv)
s and UCLF

standard deviation σ
(uclf)
s for each is given in Table 6.1. The 14 existing coal-fired

power stations are again illustrated as A to N throughout this chapter.

Table 6.1: Baseline variation for the PE module.

Power station CV (MJ/kg) σ
(cv)
s σ

(uclf)
s

A 19.65 1.5 1.4

B 15.50 1.5 3.1

C 22.85 1.5 10.0

D 22.85 1.5 5.3

E 19.65 1.5 3.9

F 22.85 1.5 8.5

G 22.85 1.5 8.5

H 19.65 1.5 1.8

I 19.65 1.5 3.3

J 22.85 1.5 3.9

K 22.85 1.5 8.5

L 22.85 1.5 4.4

M 22.85 1.5 3.9

N 22.85 1.5 14.0
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The baseline coal transfer matrix in Table 6.2 shows the transfers that are

allowed between the various coal-fired power stations. A zero indicates that a

transfer may not take place between two stations while a one indicates that

a transfer is allowed. Note that no coal transfers involving power station B

are allowed for the baseline case. This scenario is hypothetical. The matrix is

generic and can be modified by the user. The distances (in km) between the

power stations are given in Table 6.3. The distances are approximate and not

based on specific routes.

Table 6.2: Baseline coal transfer matrix.

A B C D E F G H I J K L M N

A - 0 0 0 1 0 0 1 1 0 0 0 0 0

B - - 0 0 0 0 0 0 0 0 0 0 0 0

C - - - 1 0 1 1 0 0 1 1 1 1 1

D - - - - 0 1 1 0 0 1 1 1 1 1

E - - - - - 0 0 1 1 0 0 0 0 0

F - - - - - - 1 0 0 1 1 1 1 1

G - - - - - - - 0 0 1 1 1 1 1

H - - - - - - - - 1 0 0 0 0 0

I - - - - - - - - - 0 0 0 0 0

J - - - - - - - - - - 1 1 1 1

K - - - - - - - - - - - 1 1 1

L - - - - - - - - - - - - 1 1

M - - - - - - - - - - - - - 1

N - - - - - - - - - - - - - -
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Table 6.3: Distance matrix for the coal-fired power stations (km).

A B C D E F G H I J K L M N

A - 343.2 308 328.8 329.6 328.6 328.7 302 439 387.7 411.8 336 328.3 356

B - - 160.6 180 126.5 131.2 131.3 122.6 182.3 127.5 210.2 201.2 165 51.9

C - - - 26.9 40.7 35.8 35.9 39.5 134 90.9 105.1 45.7 18.9 122.3

D - - - - 53.8 49 49.1 62.6 121.5 87.8 83.1 21.6 14.6 137.5

E - - - - - 5 4.9 28.1 100.9 57.9 101.7 75.5 38.9 83.1

F - - - - - - 0.1 26.9 111.1 60.6 99.7 70.2 34.2 88.9

G - - - - - - - 27 111.2 60.7 99.6 70.1 34.1 89

H - - - - - - - - 138 85.5 125.5 83.1 50.7 89.5

I - - - - - - - - - 55.6 62.1 127.6 115.3 131.7

J - - - - - - - - - - 76.9 103.3 77.2 83.9

K - - - - - - - - - - - 80.9 84.9 159.6

L - - - - - - - - - - - - 37.6 158.3

M - - - - - - - - - - - - - 122.9

N - - - - - - - - - - - - - -
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6.2 Simulation settings for the primary energy

module

Since the experimental results depend on the simulation settings of the PE mod-

ule, they must also be discussed. The simulation settings include the following:

� study period (start date and end date)

� number of replications

� output statistic

� seed.

The EFS is a strategic decision support tool, which means that the study

horizon should typically be long. However, all experiments were conducted for

a period of only one year to avoid very long simulation runs. Data for the year

2015 (1 January to 31 December) was used.

The relatively slow R programming language in which the EFS was coded

makes the PE module computationally expensive. This means that the number

of replications could not be set too high. All experiments presented in this chapter

were conducted with the number of replications set as 10.

It was specified in the modified PE module that the objective function values

of the inventory model can be returned as the expected value, the 20-th percentile

value or the 80-th percentile value.

Since this study is not a comparison of two or more algorithms, it was not

required to specify the seed for the random number generator.

6.3 Overview of experiments

The four experiments that are presented in this chapter are arranged as follows:

� Experiment 1: Testing the two model formulations with both coal transfer

policies (Section 6.4)

� Experiment 2: Adding additional constraints to the model (Section 6.5)
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� Experiment 3: Varying the coal transfer matrix (Section 6.6)

� Experiment 4: Varying input parameters of the PE module (Section 6.7)

Experiment 1 involves testing the two model formulations with both coal

transfer policies (i.e. closest first and most urgent) as discussed in Section 5.2. The

aims of this experiment are to 1) determine whether the MOO CEM algorithm

can effectively be applied to this problem by finding a logical set of non-dominated

solutions and 2) determine what the effect of the two coal transfer policies are on

each model formulation. The results of this experiment are also used to determine

which of model 1 or model 2 to use for the other three experiments.

Since unlimited coal transfers are assumed in the inventory model, some of

the solutions achieved in Experiment 1 may be unrealistic due to the requirement

for very large coal transfers on certain days. Limited transportation resources

might also mean that it is unrealistic to allow transfers on several consecutive

days. Experiment 2 is aimed at overcoming these problems with two additional

constraints. The first one places a cap on the amount of coal that may be moved

between any two power stations on a given day while the second one specifies

that the coal stockpiles may only be evaluated on certain days.

For Experiment 3, the baseline coal transfer matrix is modified to illustrate

that different scenarios can be examined with regard to the allowable coal trans-

fers. The two constraints of Experiment 2 are also included.

Experiment 4 involves varying two input parameters that add uncertainty in

PE module, namely the delivery reliability and the calorific values. The aims of

this experiment are to 1) show the effect that these two inputs have on the non-

dominated set of solutions found by the algorithm and 2) illustrate that different

scenarios can be examined with regard to the parameters that cause variation in

the coal stockpiles.

The experimental design and results for the experiments are presented next.

The results should not be considered as ready for implementation since most

of the inputs that were used do not reflect a current and accurate real-world

scenario. The results merely serve as validation for the model while also giving

the reader an indication of the outputs that the model can produce.

93

Stellenbosch University  https://scholar.sun.ac.za



6.4 Testing the two model formulations with both coal transfer
policies

6.4 Testing the two model formulations with both

coal transfer policies

The experimental design and the results for Experiment 1 are presented in this

section.

6.4.1 Experimental design

This experiment involves testing the two model formulations with both coal trans-

fer policies. The reader may recall that the first objective f1 for both models is

the total average coal stockpile level (in ktonnes) while the second objective f2

is the total coal transfers (in ktonnes⋅km) for model 1 and the total average coal

inventory outside the warning limits (in ktonnes) for model 2. Both objective

functions are minimised in each model.

The baseline inputs to the EFS are used for this experiment. Since only the

14 existing coal-fired power stations are included in the model, D = 42. Each

vector Xi, 1 ≤ i ≤ D, is sampled from the range [ai, bi] and stored in the MOO

CEM algorithm’s working matrix as described in Subsection 5.3.3. Because most

of the input data to the model do not reflect a current real-world scenario, the

author expects the near-optimal target stockpile levels found by the algorithm to

be significantly lower than Eskom’s existing policy of 42 stockpile days. For this

reason, the range limits are set to ai = 1 and bi = 20 for all Xi. This means that

the maximum values allowed for Ls, Ts and Us are 20 stockpile days, 40 stockpile

days and 60 stockpile days respectively. The three decision variables associated

with each coal-fired power station s are thus constrained by

1 ≤ Ls ≤ 20 ∀s, (6.1)

Ls + 1 ≤ Ts ≤ Ls + 20 ∀s, (6.2)

Ts + 1 ≤ Us ≤ Ts + 20 ∀s. (6.3)

Also recall that the decision variables must be positive integers when expressed

in terms of stockpile days. No maximum stockpile levels are specified and each

station’s initial stockpile level is set to Ts.
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6.4.2 Results for the first model formulation

The Pareto fronts achieved for model 1 with the two coal transfer policies are

given Figure 6.1. The output statistic is the expected value. A good distribution

of solutions was obtained with both transfer policies and the non-dominated

solutions cover a wide range of values for each objective function. One can see that

there is not much difference between the two transfer policies when only the non-

dominated sets are considered. Figure 6.2 is a comparison of the Pareto fronts

achieved for model 1 when different output statistics are used. The difference

between the fronts achieved for the three output statistics is clearly visible.

0 0.5 1 1.5

⋅104
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2

3

4
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f1

f
2

Closest first
Most urgent

Figure 6.1: Pareto fronts achieved for model 1 with the two transfer policies,

expected value as output statistic.

To confirm that the decision variables converged, plots that show the pro-

gression of the parameter vectors of the decision variables for model 1 with the

closest first transfer policy and the expected value as output statistic are provided

in Appendix A. The progression plots for the most urgent transfer policy show

similar patterns and are not included in this document.

When solving a multi-objective optimisation problem, the process does not

stop when the Pareto front is achieved. A single best solution must still be selected
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Figure 6.2: A comparison of the Pareto fronts achieved for model 1 with (a) the

closest first transfer policy and (b) the most urgent transfer policy when different

output statistics are used.

by the decision maker. This process is not trivial. In fact, several methodologies

for multi-criteria decision making have been developed over the years (Coello

et al., 2007). One such method is the technique for order preference by similarity

to ideal solution (TOPSIS) of Hwang & Yoon (1981). TOPSIS is a simple ranking

method that attempts to choose alternatives such that the distance to the positive

ideal solution is at a minimum while the distance to the negative ideal solution is

at a maximum. A stepwise framework for performing the TOPSIS methodology

is provided in Behzadian et al. (2012). Another approach is to construct a multi-

attribute utility function that will yield a solution consistent with the decision

maker’s preferences (Winston, 2004). Refer to chapter 9 of Coello et al. (2007)

for more on multi-criteria decision making.

Figure 6.3 gives the reader an indication of the target stockpile level ranges

achieved for model 1 with the two transfer policies. The output statistic for both

is again the expected value. The red dots represent each station’s target stockpile

level for an extreme solution with respect to f1 while the green dots represent

the target stockpile levels for an extreme solution with respect to f2. The blue

dots represent each station’s target stockpile level for a solution that the author
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considers a good trade-off between f1 and f2. No particular method was used for

selecting the good solutions.
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Figure 6.3: Ranges of the Ts values achieved for model 1 with (a) the closest first

transfer policy and (b) the most urgent transfer policy, expected value as output

statistic.
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The objective function values for the same good solutions shown in Figure 6.3

are given in Table 6.4. The decision variable values for these solutions are given

in Table 6.5. To give the reader an indication of the inventory levels and the

movement of coal between the power stations, the PE module was run for each

of these solutions over the same one year study period that was used to evaluate

the objective functions during the optimisation.

Table 6.4: Approximation of the objective function values for a good solution of

model 1 with both transfer policies, expected value as output statistic.

Closest first Most urgent

f1 (ktonnes) 5 734 6 025

f2 (ktonnes⋅km) 126 965 135 343

For the closest first transfer policy, coal was transferred on 113 days. The

majority of transfers were relatively small. Less than 15 ktonnes of coal was

moved on 101 days and less than 10 ktonnes of coal was moved on 97 days.

The largest transfer occurred when 69 ktonnes of coal was moved between power

stations D and G. The most coal that was moved between all the stations on a

given day was 165 ktonnes. The stockpile level at power station B was less than

the station’s standard daily burn (SDB) for a total of 43 days. However, this

could not be controlled since station B cannot burn coal from any of the other

stations. Power station H experienced a coal shortage on 34 days. Low inventory

levels were not a problem at any of the other stations.

For the most urgent transfer policy, coal was transferred on 158 days. In

general, the transfers were slightly larger compared to the closest first policy. Less

than 25 ktonnes of coal was moved on 141 days. The largest transfer occurred

when 121 ktonnes of coal was moved between power stations D and N while the

most coal that was moved between all the stations on a given day was 292 ktonnes.

Power station G was without sufficient coal for one day.

Matrices that show the total amount of coal moved between the power stations

throughout the study period for these two solutions are provided in Appendix A.
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Table 6.5: Approximation of the decision variable values for a good solution of model 1 with both transfer policies,

expected value as output statistic.

Closest first Most urgent

Stockpile days ktonnes Stockpile days ktonnes

Power station Ls Ts Us Ls Ts Us Ls Ts Us Ls Ts Us

A 7 11 21 324.1 509.3 972.2 5 13 23 231.5 601.9 1 064.8

B 5 10 23 272.7 545.4 1 254.5 5 6 17 272.7 327.3 927.2

C 8 15 25 287.4 538.8 898.0 3 14 15 107.8 502.9 538.8

D 4 14 29 78.4 274.5 568.6 1 7 8 19.6 137.2 156.9

E 7 18 30 292.4 751.9 1 253.1 3 14 18 125.3 584.8 751.9

F 4 5 17 59.9 74.8 254.4 12 16 22 179.6 239.5 329.3

G 9 21 28 134.7 314.3 419.1 1 4 16 15.0 59.9 239.5

H 1 6 18 47.8 286.5 859.6 4 14 25 191.0 668.6 1 194.0

I 3 16 26 143.1 763.0 1 239.9 5 13 20 238.4 620.0 953.8

J 1 10 23 36.5 364.6 838.6 12 23 34 437.5 838.6 1 239.6

K 4 16 24 60.3 241.1 361.6 9 20 25 135.6 301.3 376.7

L 9 12 20 211.2 281.6 469.4 12 17 26 281.6 399.0 610.2

M 12 25 31 112.6 234.5 290.8 1 8 11 9.4 75.0 103.2

N 6 15 17 71.8 179.6 203.6 7 19 29 83.8 227.5 347.2
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6.4 Testing the two model formulations with both coal transfer
policies

6.4.3 Results for the second model formulation

The Pareto fronts achieved for model 2 with the two coal transfer policies are

given in Figure 6.4. The output statistic is the expected value. The distribution

of solutions found by the algorithm is not as good as for model 1, i.e. there

are a few open spaces in both fronts where possible solutions might be. However,

because the true Pareto fronts for the model are not known, one can still conclude

that two relatively good sets of solutions were obtained. The two fronts have

very similar shapes. Slightly better solutions were achieved with the most urgent

transfer policy while the non-dominated solutions cover a wider range of f2 values

for the closest first policy. At first glance, it might seem as if both fronts contain

several dominated solutions at f2 = 0. However, the f2 values for these solutions

are just very small and all of them are non-dominated.

Figure 6.5 is a comparison of the Pareto fronts achieved for model 2 when

different output statistics are used. One can again see that the fronts for model 2

are not very well distributed.
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Figure 6.4: Pareto fronts achieved for model 2 with the two transfer policies,

expected value as output statistic
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Figure 6.5: A comparison of the Pareto fronts achieved for model 2 with (a) the

closest first transfer policy and (b) the most urgent transfer policy when different

output statistics are used.

To confirm that the decision variables converged, plots that show the pro-

gression of the parameter vectors of the decision variables for model 2 with the

closest first transfer policy and the expected value as output statistic are provided

in Appendix A. As for model 1, the progression plots for the most urgent transfer

policy show similar patterns and are not included in this document.

Figure 6.6 gives the reader an indication of the target stockpile level ranges

achieved for model 2 with the two transfer policies, again with the expected value

as output statistic. The red, green and blue dots represent the same as previously

discussed. The combinatorial nature of the problem means that two completely

different solutions can have similar values for one or more of the decision vari-

ables. This can be seen in Figure 6.6(a) where TJ = 2 for two different solutions.

Furthermore, the two extreme solutions does not necessarily have extreme deci-

sion variable values for all the power stations. This can be seen in Figure 6.6(b)

where TE and TM are smaller for the good solution than for the extreme solution

with respect to f2.
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Figure 6.6: Ranges of the Ts values achieved for model 2 with (a) the closest first

transfer policy and (b) the most urgent transfer policy, expected value as output

statistic.

The objective function values for the same good solutions shown in Figure 6.6

are given in Table 6.6. The decision variable values for these solutions are given

in Table 6.7. To examine the inventory levels and the movement of coal between
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policies

the power stations, the PE module was again run for each of these solutions over

the same one year study period that was used to evaluate the objective functions

during the optimisation.

Table 6.6: Approximation of the objective function values for a good solution of

model 2 with both transfer policies, expected value as output statistic.

Closest first Most urgent

f1 (ktonnes) 4 569 4 066

f2 (ktonnes) 29 19

For the closest first transfer policy, coal was transferred on 132 days. The

majority of transfers were again relatively small. Less than 15 ktonnes of coal

was moved on 114 days. The largest transfer occurred when 130 ktonnes of

coal was moved between power stations A and E while the most coal that was

moved between all the stations on a given day was 157 ktonnes. The stockpile

level at power station F was less than the station’s SDB for a total of 44 days.

Power station J experienced a coal shortage on 28 days while power station L was

without sufficient coal on three days. Low inventory levels were not a problem at

any of the other stations.

For the most urgent transfer policy, coal was transferred on 144 days. Less

than 20 ktonnes of coal was moved on 127 days. The largest transfer occurred

when 282 ktonnes of coal was moved between power stations C and J. This is

extremely high and may be unrealistic. The most coal that was moved between

all the stations on a given day was 331 ktonnes. The stockpile level at power

station A was less than the station’s SDB for a total of 57 days while power

station E experienced a coal shortage on 78 days. Power stations J and L were

each without sufficient coal on one day. Coal stockouts were not a problem at

any of the other stations.

Matrices that show the total amount of coal moved between the power stations

throughout the study period for these two solutions are provided in Appendix A.
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Table 6.7: Approximation of the decision variable values for a good solution of model 2 with both transfer policies,

expected value as output statistic.

Closest first Most urgent

Stockpile days ktonnes Stockpile days ktonnes

Power station Ls Ts Us Ls Ts Us Ls Ts Us Ls Ts Us

A 4 11 20 185.2 509.3 925.9 1 5 9 46.3 231.5 416.7

B 3 12 21 163.6 654.5 1 145.4 1 11 19 54.5 600.0 1 036.3

C 7 8 17 251.4 287.4 601.7 2 3 14 71.8 107.8 502.9

D 6 12 18 117.6 235.3 352.9 1 8 16 19.6 156.9 313.7

E 1 8 15 41.8 334.2 626.6 1 3 6 41.8 125.3 250.6

F 7 13 19 104.8 194.6 284.4 12 13 22 179.6 194.6 329.3

G 9 25 22 134.7 224.5 329.3 2 6 20 29.9 89.8 299.3

H 1 8 17 47.8 382.1 811.9 4 12 17 191.0 573.1 811.9

I 1 8 10 47.7 381.5 476.9 8 14 17 381.5 667.6 810.7

J 1 2 8 36.5 72.9 291.7 1 10 11 36.5 364.6 401.1

K 9 16 25 135.6 241.1 376.7 7 8 25 105.5 120.5 376.7

L 9 16 27 211.2 375.5 633.7 1 5 15 23.5 117.3 352.0

M 1 9 20 9.4 84.4 187.6 5 6 13 46.9 56.3 121.9

N 9 15 22 107.8 179.6 263.4 6 13 31 71.8 155.7 371.2
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6.5 Adding additional constraints to the model

6.5 Adding additional constraints to the model

The experimental design and the results for Experiment 2 are presented in this

section.

6.5.1 Experimental design

This experiment involves adding two additional coal transfer constraints to the

inventory model. The first one places a cap on the amount of coal that may

be moved between any two power stations on a given day while the second one

specifies that the coal stockpiles may only be evaluated on certain days.

The reader may recall that the motivation behind the formulation of model 2

was the concern that the author had about the manner in which the coal transfers

are triggered (see Subsection 5.2.2). The inventory model was formulated with

the condition that coal can only be transferred between two power stations if

the stockpile level at one of them can be forced towards the target level. The

concern was that some of the stations may, throughout the course of the study

period, seek to increase or decrease their inventory levels without a transfer ever

becoming available. However, the results of Experiment 1 showed that this is

not a problem because very few coal stockouts were recorded for model 1. In

fact, more coal stockouts were recorded for model 2. There was also a concern

about unrealistically large coal transfers. However, it was found that the majority

of transfers were relatively small for model 1. This means that a large enough

transfer cap would still allow for the target stockpile levels to be triggered during

most transfers. Furthermore, the distribution of solutions found for model 1 was

significantly better than for model 2. For these reasons, model 1 with the closest

first coal transfer policy is selected for this experiment.

The experimental design for Experiment 2 is given in Table 6.8. Six scenarios

(Experiments 2.1 to 2.6) are examined. For Experiments 2.1 and 2.2, the amount

of coal that may be moved between any two stations on a given day is capped

at 10 and 15 ktonnes respectively. The stockpiles may be evaluated every day.

For Experiment 2.3, the stockpiles may only be evaluated every second day while

for Experiment 2.4, the stockpiles may only be evaluated every fifth day. No

transfer caps are specified for these two. For Experiment 2.5, a transfer cap of
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20 ktonnes is specified while the stockpiles may only be evaluated every fifth day.

For Experiment 2.6, the transfer cap is 25 ktonnes and the stockpiles may only

be evaluated every tenth day. The scenarios in Table 6.8 are not strategies that

the author recommends for Eskom. The idea is only to examine the effects that

the two additional constraints have on the solutions found by the algorithm and

to demonstrate to the reader that these constraints can be added to the model.

Table 6.8: Experimental design for Experiment 2.

Evaluation of the

Experiment Coal transfer cap stockpiles

2.1 10 ktonnes Every day

2.2 15 ktonnes Every day

2.3 Unlimited Every 2nd day

2.4 Unlimited Every 5-th day

2.5 20 ktonnes Every 5-th day

2.6 25 ktonnes Every 10-th day

To deal with the problem of coal stockouts, the sampling range for the decision

variables Xi = Ls is changed to [5,20], i.e. each Ls must be at least five stockpile

days. The sampling ranges for the variables Xi = Ts −Ls and Xi = Us −Ts remain

[1,20] as in Experiment 1. The three decision variables associated with each

coal-fired power station s are thus constrained by

5 ≤ Ls ≤ 20 ∀s, (6.4)

Ls + 1 ≤ Ts ≤ Ls + 20 ∀s, (6.5)

Ts + 1 ≤ Us ≤ Ts + 20 ∀s. (6.6)

The decision variables must once again be positive integers when expressed

in terms of stockpile days. No maximum stockpile levels are specified and each

station’s initial stockpile level is set to Ts. Only the expected value is examined

and the baseline inputs to the EFS are once again used.
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6.5 Adding additional constraints to the model

6.5.2 Results

The Pareto fronts achieved for Experiments 2.1 to 2.6 are given in Figures 6.7

to 6.9. To illustrate the effect of the additional constraints, each Pareto front is

compared with a reference front that was achieved without the constraints.
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Figure 6.7: Pareto fronts achieved for Experiment 2.1 and Experiment 2.2.
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Figure 6.8: Pareto fronts achieved for Experiment 2.3 and Experiment 2.4.
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Figure 6.9: Pareto fronts achieved for Experiment 2.5 and Experiment 2.6.

By comparing the reference Pareto front with the fronts achieved for Exper-

iments 2.1 and 2.2, one can see that there is not much difference between them.

However, slightly smaller f2 values were obtained when transfers caps were spec-

ified. Also, the non-dominated solutions cover a wider range of f2 values with

the transfer caps, especially for Experiment 2.1. The Pareto fronts achieved for

Experiments 2.3 and 2.4 indicate that slightly better solutions were obtained

when the stockpiles could be evaluated every day. The Pareto fronts achieved

for Experiments 2.5 and 2.6 have very similar shapes to those achieved for Ex-

periments 2.3 and 2.4. The main difference is that the non-dominated solutions

cover a significantly smaller range of f2 values for the latter. Decision makers

thus have a wider range of solutions to select from when both the constraints are

included.

Since the true Pareto fronts for these six scenarios are not known, the quality

of the solutions cannot measured. However, the shapes of the various fronts

can be considered as relatively good given the two minimisation objectives. The

solutions in each front are also relatively well distributed despite a few open

spaces.

To give the reader an indication of inventory levels and the movement coal of

between the power stations for these six scenarios, the PE module was run for
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6.5 Adding additional constraints to the model

solutions that the author considers a good trade-off between f1 and f2. No par-

ticular method was used for selecting the good solutions. The objective function

values and the decision variable values for these good solutions are provided in

Appendix A.

For Experiment 2.1, coal was transferred on 115 days. The transfer cap en-

sured that no transaction between two stations exceeded 10 ktonnes while the

most coal that was moved between all the stations on a given day was 60 ktonnes.

The stockpile level at power station H was less than the station’s SDB for a total

of 23 days. Low inventory levels were not a problem at any of the other stations.

For Experiment 2.2, coal was transferred on 169 days. The transfer cap ensured

that no transaction between two stations exceeded 15 ktonnes while the most

coal that was moved between all the stations on a given day was 84 ktonnes. The

stockpile level at power station H was less than the station’s SDB for a total of

42 days. None of the other stations experienced a coal shortage.

By placing a cap on the movement of coal, it was found that transfers occur

on more days throughout the study period. This is a logical response by the

model.

For Experiment 2.3, coal was transferred on 83 days. The constraint on the

evaluation of the stockpiles ensured that transfers were never made on two con-

secutive days. The largest transfer occurred when 177 ktonnes of coal was moved

between power stations H and I. This was also the most coal that was moved

between all the power stations on a given day. Power station H was again the

only station that experienced a coal shortage. It was without sufficient coal on

20 days. For Experiment 2.4, coal was transferred on only 30 days. The con-

straint on the evaluation of the stockpiles ensured that there were always at least

five days between transfers. The largest transfer occurred when 129 ktonnes of

coal was moved between power stations C and L while the most coal that was

moved between all the stations on a given day was 158 ktonnes. The stockpile

level at power station B was less than the station’s SDB for a total of 20 days.

None of the other stations experienced a coal shortage.

By only allowing the stockpiles to be evaluated on certain days, it was found

that coal is moved on fewer days. However, the amount of coal moved on a day

is generally more. This response is again logical.
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For Experiment 2.5, coal was transferred on 30 days. The transfer cap en-

sured that no transaction between two stations exceeded 20 ktonnes while the

constraint on the evaluation of the stockpiles ensured that there were always at

least five days between transfers. The most coal that was moved between all the

stations on a given day was 152 ktonnes. The stockpile level at power station

A was less than the station’s SDB for a total of 20 days while power station B

experienced a coal shortage for 34 days. For Experiment 2.6, coal was transferred

on 32 days. The transfer cap ensured that no transaction between two stations

exceeded 25 ktonnes while the constraint on the evaluation of the stockpiles en-

sured that there were always at least 10 days between transfers. The most coal

that was moved between all the stations on a given day was 213 ktonnes. Low

inventory levels were not a problem at any of the stations.

By placing a cap on the movement of coal and only allowing the stockpiles

to be evaluated on certain days, it was found that coal is moved on significantly

fewer days. Also, the amount of coal moved on a day is generally a lot more.

Similar to the aforementioned cases, this again seems to be a logical response by

the model.

Matrices that show the total amount of coal moved between the power stations

throughout the study period for the six solutions described above are provided

in Appendix A.

6.6 Varying the coal transfer matrix

The experimental design and the results for Experiment 3 are presented in this

section.

6.6.1 Experimental design

This experiment involves varying the baseline coal transfer matrix to illustrate

that different scenarios can be specified with regard to the allowable coal transfers.

The two constraints that were introduced in Experiment 2 are also included, i.e.

a cap is placed on the amount of coal that may be moved between two power

stations on a given day and the coal stockpiles may only be evaluated on certain
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days. The modified coal transfer matrix for Experiment 3 is given in Table 6.9.

Apart from the modified matrix, all baseline inputs are used as discussed in

Section 6.1.

Table 6.9: Modified coal transfer matrix for Experiment 3.

A B C D E F G H I J K L M N

A - 0 0 0 0 0 0 1 0 0 0 0 0 0

B - - 0 0 0 0 0 0 0 0 0 0 0 0

C - - - 1 0 0 0 0 0 0 0 0 1 0

D - - - - 0 0 0 0 0 0 0 0 1 0

E - - - - - 0 0 0 1 0 0 0 0 0

F - - - - - - 1 0 0 0 0 0 0 0

G - - - - - - - 0 0 0 0 0 0 0

H - - - - - - - - 0 0 0 0 0 0

I - - - - - - - - - 0 0 0 0 0

J - - - - - - - - - - 1 0 0 0

K - - - - - - - - - - - 0 0 0

L - - - - - - - - - - - - 0 1

M - - - - - - - - - - - - - 0

N - - - - - - - - - - - - - -

The experimental design for Experiment 3 is given in Table 6.10. Two sce-

narios are experimented with. The coal transfers are capped at 10 and 15 ktonnes

respectively while the stockpiles may only be evaluated every fifth day. As pre-

viously discussed, these scenarios are not strategies that the author recommends

for Eskom. The aim is just to illustrate the model’s capability.

For the same reasons provided in Subsection 6.5.1, model 1 is again selected

for this experiment. The closest coal transfer policy is used and only the expected

value is examined. The decision variable values are sampled from the same ranges

as in Experiment 2. No maximum stockpile levels are specified and each station’s

initial stockpile level is again set to Ts.
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Table 6.10: Experimental design for Experiment 3.

Evaluation of the

Experiment Coal transfer cap stockpiles

3.1 10 ktonnes Every 5-th day

3.2 15 ktonnes Every 5-th day

6.6.2 Results

The Pareto frons achieved for Experiment 3.1 and Experiment 3.2 are given in

Figure 6.10. Both fronts are relatively well distributed and the non-dominated

solutions cover a wide range of values for each objective function. One can clearly

see that the total coal transfers (f2) are significantly less with the modified trans-

fer matrix. This is because there are fewer transfer options for the various power

stations.
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Figure 6.10: Pareto fronts achieved for Experiment 3.1 and Experiment 3.2.

To give the reader an indication of the inventory levels and the movement

of coal between the various stations, the PE module was again run with two
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solutions that the author considers a good trade-off between f1 and f2. No

particular method was used for selecting these good solutions. The objective

function values and decision variable values are provided in Appendix A.

For Experiment 3.1, coal was transferred on 49 days. The transfer cap ensured

that no transaction between two power stations exceeded 10 ktonnes while the

constraint on the evaluation of the stockpiles ensured that there were always at

least five days between transfers. The most coal that was moved between all the

stations on a day was 30 ktonnes. Only one power station experienced a coal

shortage. It was station F and the duration was three days.

For Experiment 3.2, coal was transferred on 27 days. The two constraints

ensured that no transaction exceeded 15 ktonnes and that there were always at

least five days between transfers. The most coal that was moved between all the

stations on a day was again 30 ktonnes. The stockpile level at power station B

was less than the station’s SDB for a total of 17 days. Coal shortages were not a

problem at any of the other stations.

Matrices that show the total amount of coal moved between the power stations

throughout the study period for these two solutions are provided in Appendix A.

6.7 Varying input parameters of the primary

energy module

The experimental design and the results for Experiment 4 are presented in this

section.

6.7.1 Experimental design

This experiment involves varying the uncertainty of coal deliveries and calorific

values. This is done by adjusting the ranges of the sampling distributions from

which each is sampled in the PE module. The aims of this experiment are to 1)

show the effect that these two inputs have on the non-dominated set of solutions

found by the algorithm and 2) illustrate that different scenarios can be examined

with regard to the parameters that cause variation in the coal stockpiles.
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The adjusted ranges of the triangular distribution used for the delivery relia-

bility and standard normal distribution used for the CVs are given in Table 6.11.

For the triangular distribution, a “−” indicates that the minimum value is de-

creased by 0.15 while the most likely and maximum values remain as in the base-

line case. A “+” indicates the opposite where the maximum value is increased by

0.15 while the minimum and most likely values remain as in the baseline case.

The standard normal distribution truncated on the positive side is indicated by

a “−” because lower values can be sampled on the negative side. Similarly, a “+”

indicates that the standard normal distribution is truncated on the negative side

because higher values can be sampled on the positive side. A range limit of 1.5

is set for both the negative and positive sides.

Table 6.11: Sampling distribution ranges for Experiment 4.

Triangular Standard normal

Baseline [0.9D
(p)
s ,D

(p)
s ,1.1D

(p)
s ] [−∞,∞]

− [0.75D
(p)
s ,D

(p)
s ,1.1D

(p)
s ] [−∞,1.5]

+ [0.9D
(p)
s ,D

(p)
s ,1.25D

(p)
s ] [−1.5,∞]

The experimental design for Experiment 4 is given in Table 6.12. Four sce-

narios (Experiments 4.1 to 4.4) are examined. Experiments 4.1 and 4.2 are sce-

narios that would typically be considered as “bad”, i.e. reduced coal deliveries

and CVs. Experiments 4.3 and 4.4 are scenarios that would typically be consid-

ered as “good”, i.e. increased coal deliveries and CVs.

Table 6.12: Experimental design for Experiment 4.

Experiment Delivery Reliability CV

4.1 −

4.2 −

4.3 +

4.4 +

To illustrate the effects on the entire system, the scenarios given in Table 6.12

are applicable to each of the existing coal-fired power stations. Apart from the
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6.7 Varying input parameters of the primary energy module

varied ranges of the sampling distributions, all baseline inputs are used as dis-

cussed in Section 6.1. Each vector Xi, 1 ≤ i ≤ D, is again sampled from the

range [1,20] as in Experiment 1. No maximum stockpile levels are specified and

each station’s initial stockpile level is set to Ts. Model 1 with the most urgent

coal transfer policy is used for this experiment and only the expected value is

examined.

6.7.2 Results

The Pareto fronts achieved for Experiments 4.1 to 4.4 are given in Figures 6.11

and 6.12. To illustrate the effect of the varied input parameters, each Pareto

front is compared with a reference front from Experiment 1, i.e. the Pareto front

achieved for model 1 with the most urgent coal transfer policy and with the

baseline sampling distribution ranges.
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Figure 6.11: Pareto fronts achieved for Experiment 4.1 and Experiment 4.2.

From the Pareto front achieved for Experiment 4.1, one can clearly see the

effect of reduced coal deliveries. Significantly lower f1 values were obtained. This

seems correct since the trends on the stockpiles should theoretically be downward

for this scenario. The Pareto front achieved for Experiment 4.2 shows that the

effect of reduced CVs is not nearly as much as the effect of reduced coal deliveries.
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Figure 6.12: Pareto fronts achieved for Experiment 4.3 and Experiment 4.4.

From the Pareto front achieved for Experiment 4.3, one can see that the non-

dominated set contains significantly fewer solutions as a result of the increased

coal deliveries. Also, the non-dominated solutions cover a very small range of f2

values. Because the trend on all the stockpiles should theoretically be upward for

this scenario, inventory levels very rarely dropped below Ls during the simulation

runs. Furthermore, the power stations at which the stockpiles grew very large

might not have been able to reduce their inventory levels because none of the

other stations were fit to receive coal. As reflected in the Pareto front, very few

transfers were subsequently made and inventory levels were generally higher.

The Pareto front achieved for Experiment 4.4 again shows that the CVs do not

have a major effect on the solutions found by the algorithm. This conclusion will

most probably differ if the sampling distribution was to be adjusted to favour one

side significantly more. Another option could be to specify different σ
(cv)
s values

than the ones given in Table 6.1.

This concludes the experiments. A summary of the findings made from the

experimental results are presented next.
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6.8 Findings made from the experimental re-

sults

As a conclusion to the experiments, the findings made from the experimental

results are summarised in this section. The findings are as follows:

1. A logical set of non-dominated solutions was obtained for each of the two

model formulations with both coal transfer policies. It can thus be said

that the multi-objective optimisation using the cross-entropy method (MOO

CEM) algorithm was successfully applied in this study.

2. For both model 1 and model 2, it was found that the different coal transfer

policies do not have a significant effect on the Pareto fonts achieved by the

algorithm. However, the different policies do have an effect on the amount

of coal moved between the various power stations. Refer to the coal transfer

matrices in Appendix A (Tables A.1 to A.4).

3. The motivation behind the formulation of model 2 was the concern that the

author had about the manner in which the coal transfers are triggered. The

concern was that some of the power stations may, throughout the course of

the study period, seek to increase or decrease their inventory levels without

a transfer ever becoming available. However, the results of model 1 in

Experiment 1 showed that this is not a major problem because very few

coal stockouts were recorded. It was found that most of the coal shortages

were as a result of low initial stockpile levels.

4. Another concern was that some of the solutions found by the algorithm

would be unrealistic due to the assumptions made in the model formulation,

especially with regard to unlimited coal transfers. However, it was found

that unrealistically large coal transfers were not a major problem.

5. By limiting the amount of coal that may be moved between two power

stations during a transfer transaction and specifying that the stockpiles may

only be evaluated on certain days, it was shown that these two additional

constraints can successfully be incorporated into the model. By modifying
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the baseline coal transfer matrix, it was illustrated that the inventory model

is generic with regard to the allowable coal transfers. Furthermore, by

varying the uncertainty of coal deliveries and CVs, it was shown that the

model can be used to examine a number of different scenarios with regard

to the parameters that cause variation in the stockpiles. Logical solutions

were obtained for all the scenarios that were examined in Experiments 2, 3

and 4.

6. The author acknowledges that it is not ideal to move large amounts of

coal over long distances. In practice, the preferred approach may be to

rather redirect coal deliveries directly from the mines. The inventory model

indirectly allows for this. When the amount of coal that may be moved

between two power stations on a given day is capped at a number less or

equal to the planned coal deliveries, the effect on the stockpiles is exactly

the same as that of a delivery redirection.

7. As is, the multi-objective simulation optimisation model is capable of pro-

viding decision makers with a wide range of near-optimal solutions to assist

with inventory management at Eskom’s coal-fired power stations. That

said, the author acknowledges that several factors must be considered be-

fore making decisions. The limited modelling capability of the R program-

ming language makes it very difficult to include variables such as human

resources, transportation availability, and coal loading and handling equip-

ment. This is a major drawback of the model.

6.9 Summary: Chapter 6

The experiments and the analysis of the experimental results were presented in

this chapter.

Four experiments were conducted. The first one involved testing the two

model formulations with both coal transfer policies. For the second experiment,

two additional constraints were added to the model. The first one places a cap on

the amount of coal that may be moved between two power stations on a day and

the second one specifies that the stockpiles may only be evaluated on certain days.
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For the third experiment, the baseline coal transfer matrix was modified while

for the fourth experiment, the uncertainty of coal deliveries and CVs were varied.

The aim of the experiments was to provide validation for the multi-objective SO

model while also testing the effectiveness of the MOO CEM algorithm in finding

approximate solutions for the model. The chapter concluded with a summary of

the findings made from the experimental results.

The summary and conclusions of the thesis follows in Chapter 7.
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Summary and conclusions

The research conducted in this thesis was presented in the previous chapters.

This chapter serves as a summary of the project. The value of the study is

presented, along with suggestions for future research. The chapter is concluded

on a personal note with a summary of the value gained by the researcher.

7.1 Project summary

The aim of the research project was to determine whether multi-objective op-

timisation (MOO) capability can successfully be added to Eskom’s energy flow

simulator (EFS). To achieve this, the primary research objective was defined as

to formulate and solve a multi-objective coal inventory model using the outputs

of the EFS. Since this study forms part of the bigger EFS project, which is cur-

rently still a work-in-progress, a secondary objective was to propose modifications

to the existing EFS architecture to improve its potential as an optimisation tool.

A number of research tasks was identified and successfully completed.

Introductory literature on electricity markets and power station logistics sys-

tems were presented in Chapter 2. This, as well as research on Eskom’s gen-

eration mix and coal supply chain, served as a foundation before studying the

architecture of the EFS. The EFS is a strategic decision support tool that enables

its users the simulate and analyse the Eskom value chain from primary energy

to end-use. The EFS is not an optimisation tool. This lack of optimisation ca-

pability was the foundation of the research. The main simulation component of
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the EFS was identified as the primary energy (PE) module. The module’s two

simulation outputs are the electricity generation at all of Eskom’s power stations

and the coal stockpile levels at its coal-fired power stations. The existing EFS

operates on a monthly simulation resolution, i.e. the outputs are expressed as

monthly values. After studying the architecture of the EFS and considering rec-

ommendations from a previous research project, it was proposed that the EFS be

modified in order for the simulation resolution to be daily. To achieve this, three

of the nine EFS modules required changes, namely the production planning (PP)

module, the fuel planning (FP) module and the PE module. The scope of the

study was limited to these three modules, even though inputs from some of the

other modules were used. A detailed description of the existing EFS architecture

as well as the modifications to it were presented in Chapter 3.

In order to gain sufficient knowledge of simulation optimisation (SO) and

MOO, relevant literature was studied and documented in Chapter 4. Further

research on inventory models, the importance of managing coal stockpiles and

Eskom’s inventory management policy were presented in Chapter 5. This was

followed by the formulation of the proposed coal inventory model. The model

is based on the movement of coal between the various coal-fired power stations

in an attempt to maintain an optimal target stockpile level at each station as

far as possible. Three objectives were identified and two policies were proposed

for transferring coal between the power stations. To find approximate solutions

for the inventory model, the algorithm for multi-objective optimisation using

the cross-entropy method (MOO CEM) was selected as a suitable metaheuristic.

From previous research, the MOO CEM has proved to be an ideal approach

for the computationally expensive time-dependent problems often encountered in

SO.

After successfully integrating the MOO CEM algorithm with the PE module,

four experiments were conducted. The experimental design and analysis of the

experimental results were documented in Chapter 6. The experiments served as

validation for the inventory model while also testing the effectiveness of the MOO

CEM algorithm in finding approximate solutions for the model. As conclusion to

the experiments, a summary of all the findings made was presented. With regard

to the main objective of the study, the experimental results illustrated that the
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researcher could successfully formulate and solve a multi-objective coal inventory

model for the EFS.

7.2 Value of the study

The problem that was addressed in this thesis mainly adds value to Eskom’s

greater EFS project. The modified PP module is being used by Lindner et al.

(2015) in another research project. The study involves estimating an optimal

generator maintenance schedule for the generating units at all of Eskom’s power

stations using multi-objective simulated annealing. The three modules that were

modified in this study can be integrated with the EFS framework to be used for

strategic planning purposes in the original context of the EFS. When the coal

transfer functions and the MOO CEM algorithm are added to the equation, the

EFS can be used for decision support with regard to inventory management at

the coal-fired power stations. As is, the author does not regard the inventory

model as the finished product. However, it does serve as a reasonable decision

support tool with potential for future improvements.

By successfully applying the MOO CEM algorithm to this problem, further

evidence was made available of the algorithm’s capability to approximately solve

problems with large solution spaces using fairly few objective function evaluations.

7.3 Suggestions for future research

During the progression of the project, a few areas were identified for future work.

These are briefly summarised below.

1. The introductory literature study in Chapter 1 included a broad overview

of one-firm optimisation models as a modelling tool to solve unit commit-

ment (UC), economic load dispatch and short-term hydrothermal coordina-

tion problems. Since the PP module of the EFS is essentially a very basic

UC model, the module can possibly be improved through further research

on such problems.
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2. As mentioned throughout Chapters 5 and 6, a few assumptions were made

with regard to Eskom’s complex coal inventory system. Furthermore, most

of the input data that was used are outdated and not based on current

and accurate real-world scenarios. To further validate the multi-objective

inventory model and improve the PE module, the following items can be

considered for inclusion in future research projects:

(a) With the model as-is, it is necessary that the optimisation solutions

be analysed when updated and accurate inputs are specified. These

include the gross domestic product and weather scenarios, the genera-

tion capacities and costs, the coal transfer matrix, the distance matrix

and the planned coal deliveries. Other inputs are the initial stock-

pile levels, the energy utilisation factors (EUFs), the heat rates and

the calorific values (CVs). Also, an actual daily planned maintenance

schedule must be used and a realistic scenario must be specified for

daily unplanned outages.

(b) Rather than to add uncertainty in the PE module by sampling from a

triangular and a standard normal probability density function, histori-

cal data for coal deliveries, CVs and UCLFs should be used to estimate

a more accurate sampling distribution for each. This was initially the

plan for this study, but the data was not made available.

(c) The EFS is coded in the open source R programming language. If this

remains the desired platform in the future, a study that involves adding

simulation detail to the PE module is a possibility. This can include

the incorporation of constraints related to transportation availability,

human resources, coal handling and loading equipment, and lead times

for coal transfers. However, the limited modelling capability of R will

make this very difficult.

(d) The author believes that it would ultimately be best if the PE module

was to be modelled in a discrete-event simulation software package such

as Simio®. This would allow for the simulation detail mentioned in (c)

to be incorporated with relative ease. Simio® has its own optimisation

123

Stellenbosch University  https://scholar.sun.ac.za



7.4 Value gained by the researcher

module, but can also be integrated with other programming languages

to experiment with different MOO algorithms. A number of alternative

simulation packages are also available.

7.4 Value gained by the researcher

MOO was, before the study, a relatively new field for the researcher. In this field

of finding a set of near-optimal solutions, the researcher learned that there is not

one absolute correct answer. Certain solutions may be better than others, but the

final “correct” answers are those that satisfy the preferences of the stakeholders.

In order to achieve the research objectives of the study, it was required to

choose a suitable MOO algorithm and master it. Subsequently, the MOO CEM

and its single-objective counterpart were learned. Furthermore, it was required for

the researcher to learn and understand how to integrate an optimisation algorithm

with a simulation model.

The electricity generation industry was a completely new field to work in for

the researcher. A large amount of research was required in order to gain sufficient

background of the field. By studying the manner in which Eskom operates,

good insight was gained into the South African electricity generation sector and

electricity suppliers in general.

To reverse engineer the existing EFS modules and then modify them, the open

source R programming language had to be mastered. The MOO CEM algorithm

was also coded in R. In addition, the document preparation system LATEX had to

be learned in order to prepare this document.
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Appendix A

Additional experimental results

This appendix presents additional results for three of the four experiments pre-

sented in Chapter 6.

For Experiment 1, plots for both model 1 and model 2 are given that show the

progression of the parameter vectors of the decision variables. These are only for

the closest first coal transfer policy. The progression plots for the most urgent

transfer policy show similar patterns and are not included in this document. Also

provided for Experiment 1 are matrices that show the coal transfers recorded for

the solutions analysed in Subsection 6.4.2 (model 1 with the two transfer policies)

and Subsection 6.4.3 (model 2 with the two transfer policies).

For each of Experiments 2.1 to 2.6 (Subsection 6.5.2) and Experiments 3.1

and 3.2 (Subsection 6.6.2), a solution that the author considers a good trade-off

between f1 and f2 was selected and analysed. The objective function values,

decision variable values and coal transfer matrix are provided for each of these

solutions.
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A.1 Experiment 1
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Figure A.1: Progression of the values of µ̂i for the variables xi = Ls, model 1 with

the closest first transfer policy.
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Figure A.2: Progression of the values of σ̂i for the variables xi = Ls, model 1 with

the closest first transfer policy.
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Figure A.3: Progression of the values of µ̂i for the variables xi = Ts −Ls, model 1

with the closest first transfer policy.
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Figure A.4: Progression of the values of σ̂i for the variables xi = Ts −Ls, model 1

with the closest first transfer policy.
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Figure A.5: Progression of the values of µ̂i for the variables xi = Us −Ts, model 1

with the closest first transfer policy.
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Figure A.6: Progression of the values of σ̂i for the variables xi = Us −Ts, model 1

with the closest first transfer policy.
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Figure A.7: Progression of the values of µ̂i for the variables xi = Ls, model 2 with

the closest first transfer policy.
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Figure A.8: Progression of the values of σ̂i for the variables xi = Ls, model 2 with

the closest first transfer policy.
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Figure A.9: Progression of the values of µ̂i for the variables xi = Ts −Ls, model 2

with the closest first transfer policy.
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Figure A.10: Progression of the values of σ̂i for the variables xi = Ts−Ls, model 2

with the closest first transfer policy.
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Figure A.11: Progression of the values of µ̂i for the variables xi = Us−Ts, model 2

with the closest first transfer policy.

0 20 40 60 80 100
0

10

20

30

40

50

60

MOO CEM iteration number

σ̂
i

σ̂A
σ̂B
σ̂C
σ̂D
σ̂E
σ̂F
σ̂G
σ̂H
σ̂I
σ̂J
σ̂K
σ̂L
σ̂M
σ̂N

Figure A.12: Progression of the values of σ̂i for the variables xi = Us−Ts, model 2

with the closest first transfer policy.
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Table A.1: Coal transfers recorded for a good solution of model 1 with the closest first coal transfer policy, expected

value as output statistic (ktonnes).

A B C D E F G H I J K L M N

A - 0 0 0 9.97 0 0 0 0 0 0 0 0 0

B - - 0 0 0 0 0 0 0 0 0 0 0 0

C - - - 0 0 69.49 3.79 0 0 3.08 0 0 0.03 25.83

D - - - - 0 0 7.68 0 0 0 5.49 0.59 14.59 100.3

E - - - - - 0 0 0 0 0 0 0 0 0

F - - - - - - 34.08 0 0 0 45.06 81.58 0 25.73

G - - - - - - - 0 0 65.37 0 0 78.01 105.1

H - - - - - - - - 0 0 0 0 0 0

I - - - - - - - - - 0 0 0 0 0

J - - - - - - - - - - 7.01 0.17 57.74 77.76

K - - - - - - - - - - - 0 0 0

L - - - - - - - - - - - - 3.99 78.29

M - - - - - - - - - - - - - 0

N - - - - - - - - - - - - - -
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Table A.2: Coal transfers recorded for a good solution of model 1 with the most urgent coal transfer policy, expected

value as output statistic (ktonnes).

A B C D E F G H I J K L M N

A - 0 0 0 57.72 0 0 0 79.48 0 0 0 0 0

B - - 0 0 0 0 0 0 0 0 0 0 0 0

C - - - 32.95 0 117.3 129.6 0 0 53.73 162.9 26.51 174.8 10.23

D - - - - 0 18.31 77.95 0 0 25.51 20.29 95.96 76.80 7.79

E - - - - - 0 0 0 4.35 0 0 0 0 0

F - - - - - - 77.72 0 0 0 43.27 71.65 67.16 37.31

G - - - - - - - 0 0 0 5.97 32.51 75.72 75.12

H - - - - - - - - 52.82 0 0 0 0 0

I - - - - - - - - - 0 0 0 0 0

J - - - - - - - - - - 0 101.1 0 27.94

K - - - - - - - - - - - 0 0 0

L - - - - - - - - - - - - 0 0

M - - - - - - - - - - - - - 0

N - - - - - - - - - - - - - -
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Table A.3: Coal transfers recorded for a good solution of model 2 with the closest first coal transfer policy, expected

value as output statistic (ktonnes).

A B C D E F G H I J K L M N

A - 0 0 0 160.8 0 0 0 6.94 0 0 0 0 0

B - - 0 0 0 0 0 0 0 0 0 0 0 0

C - - - 0 0 0 24.13 0 0 0 0 0 0 0

D - - - - 0 78.57 43.42 0 0 58.99 0 35.73 0 58.31

E - - - - - 0 0 4.05 57.46 0 0 0 0 0

F - - - - - - 0 0 0 42.96 51.65 32.31 81.38 120.9

G - - - - - - - 0 0 157.8 0 0 41.66 18.03

H - - - - - - - - 115.5 0 0 0 0 0

I - - - - - - - - - 0 0 0 0 0

J - - - - - - - - - - 6.12 0 3.67 37.04

K - - - - - - - - - - - 0 0 4.87

L - - - - - - - - - - - - 5.02 15.82

M - - - - - - - - - - - - - 0

N - - - - - - - - - - - - - -
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Table A.4: Coal transfers recorded for a good solution of model 2 with the most urgent coal transfer policy, expected

value as output statistic (ktonnes).

A B C D E F G H I J K L M N

A - 0 0 0 127.6 0 0 52.51 59.24 0 0 0 0 0

B - - 0 0 0 0 0 0 0 0 0 0 0 0

C - - - 0 0 151.1 149.3 0 0 389.0 0 76.28 83.11 0

D - - - - 0 0 0 0 0 4.09 0 0 50.18 0

E - - - - - 0 0 184.9 46.98 0 0 0 0 0

F - - - - - - 50.20 0 0 0 13.84 22.66 10.88 19.16

G - - - - - - - 0 0 40.77 0 6.13 16.96 60.41

H - - - - - - - - 243.3 0 0 0 0 0

I - - - - - - - - - 0 0 0 0 0

J - - - - - - - - - - 35.18 73.18 23.82 51.90

K - - - - - - - - - - - 13.33 0 0

L - - - - - - - - - - - - 0 0

M - - - - - - - - - - - - - 0

N - - - - - - - - - - - - - -
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A.2 Experiment 2

Table A.5: Approximation of the objective function values for a good solution of

Experiment 2.1.

f1 (ktonnes) 5 205

f2 (ktonnes⋅km) 150 257

Table A.6: Approximation of the decision variable values for a good solution of

Experiment 2.1.

Stockpile days ktonnes

Power station Ls Ts Us Ls Ts Us

A 5 13 31 231.5 601.9 1 435.2

B 10 11 20 545.4 600.0 1 090.9

C 5 13 25 179.6 467.0 898.0

D 11 12 19 215.7 235.3 372.5

E 8 12 15 334.2 501.3 626.6

F 10 14 31 149.7 209.5 464.0

G 5 9 22 74.8 134.7 329.3

H 6 9 23 286.5 429.8 1 098.4

I 5 10 17 238.4 476.9 810.7

J 5 14 15 182.3 510.4 546.9

K 9 10 21 135.6 150.7 316.4

L 6 7 20 140.8 164.3 469.4

M 5 12 16 46.9 112.6 150.1

N 8 23 35 95.8 275.4 419.1
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Table A.7: Coal transfers recorded for a good solution of Experiment 2.1 (ktonnes).

A B C D E F G H I J K L M N

A - 0 0 0 110.0 0 0 0 0 0 0 0 0 0

B - - 0 0 0 0 0 0 0 0 0 0 0 0

C - - - 2.87 0 0 40.0 0 0 11.34 10.0 39.07 80.49 147.1

D - - - - 0 10.0 10.0 0 0 20.88 18.15 29.98 25.68 0

E - - - - - 0 0 20.0 70.0 0 0 0 0 0

F - - - - - - 0 0 0 7.35 15.95 40.0 50.0 81.93

G - - - - - - - 0 0 117.2 19.13 10.0 53.88 39.59

H - - - - - - - - 20.45 0 0 0 0 0

I - - - - - - - - - 0 0 0 0 0

J - - - - - - - - - - 66.06 31.90 184.2 218.8

K - - - - - - - - - - - 9.19 0 0

L - - - - - - - - - - - - 0 0

M - - - - - - - - - - - - - 0

N - - - - - - - - - - - - - -
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A.2 Experiment 2

Table A.8: Approximation of the objective function values for a good solution of

Experiment 2.2.

f1 (ktonnes) 5 243

f2 (ktonnes⋅km) 150 796

Table A.9: Approximation of the decision variable values for a good solution of

Experiment 2.2.

Stockpile days ktonnes

Power station Ls Ts Us Ls Ts Us

A 5 14 24 231.5 648.1 1 111.1

B 9 10 14 490.9 545.4 763.6

C 5 10 12 179.6 359.2 431.1

D 5 10 18 98.0 196.1 352.9

E 6 12 18 250.6 501.3 751.9

F 10 11 17 149.7 164.6 254.4

G 6 15 16 89.8 224.5 239.5

H 5 9 23 238.8 429.8 1 098.4

I 7 15 24 333.8 715.3 1 144.5

J 9 12 18 328.1 437.5 656.3

K 9 14 15 135.6 210.9 226.0

L 5 7 11 117.3 164.3 258.2

M 5 13 20 46.9 121.9 187.6

N 11 12 14 131.7 143.7 167.6
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Table A.10: Coal transfers recorded for a good solution of Experiment 2.2 (ktonnes).

A B C D E F G H I J K L M N

A - 0 0 0 80.49 0 0 0 0 0 0 0 0 0

B - - 0 0 0 0 0 0 0 0 0 0 0 0

C - - - 4.55 0 0 243.4 0 0 56.20 94.78 283.2 45.83 162.0

D - - - - 0 22.82 4.37 0 0 15 41.25 12.49 0 2.15

E - - - - - 0 0 30 0 0 0 0 0 0

F - - - - - - 53.43 0 0 7.94 59.20 33.53 37.94 90.81

G - - - - - - - 0 0 44.64 65.44 49.57 27.96 24.41

H - - - - - - - - 0 0 0 0 0 0

I - - - - - - - - - 0 0 0 0 0

J - - - - - - - - - - 22.18 15 72.52 188.4

K - - - - - - - - - - - 0 4.46 19.91

L - - - - - - - - - - - - 15 18.12

M - - - - - - - - - - - - - 0

N - - - - - - - - - - - - - -
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Table A.11: Approximation of the objective function values for a good solution

of Experiment 2.3.

f1 (ktonnes) 6 340

f2 (ktonnes⋅km) 146 267

Table A.12: Approximation of the decision variable values for a good solution of

Experiment 2.3.

Stockpile days ktonnes

Power station Ls Ts Us Ls Ts Us

A 7 13 23 324.1 601.9 1 064.8

B 7 9 19 381.8 490.9 1 036.3

C 10 15 23 359.2 538.8 826.2

D 8 21 26 156.9 411.7 509.8

E 11 19 25 459.5 793.6 1 044.3

F 14 16 25 209.5 239.5 374.2

G 10 18 20 149.7 269.4 299.3

H 7 8 18 334.3 382.1 859.6

I 5 14 24 238.4 667.6 1 144.5

J 5 7 18 182.3 255.2 656.3

K 8 17 24 120.5 256.1 361.6

L 11 20 25 258.2 469.4 586.7

M 13 20 27 121.9 187.6 253.2

N 14 25 39 167.6 299.3 467.0
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Table A.13: Coal transfers recorded for a good solution of Experiment 2.3 (ktonnes).

A B C D E F G H I J K L M N

A - 0 0 0 0 0 0 82.50 0 0 0 0 0 0

B - - 0 0 0 0 0 0 0 0 0 0 0 0

C - - - 0 0 28.81 107.5 0 0 0 0 268.3 21.43 93.33

D - - - - 0 56.50 36.16 0 0 4.76 3.91 108.7 0 0

E - - - - - 0 0 1.93 0 0 0 0 0 0

F - - - - - - 0 0 0 2.85 0 59.27 84.24 58.05

G - - - - - - - 0 0 40.89 0 0 8.25 51.57

H - - - - - - - - 177.5 0 0 0 0 0

I - - - - - - - - - 0 0 0 0 0

J - - - - - - - - - - 26.96 0 103.3 8.64

K - - - - - - - - - - - 0 6.18 16.29

L - - - - - - - - - - - - 0 0

M - - - - - - - - - - - - - 0

N - - - - - - - - - - - - - -
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A.2 Experiment 2

Table A.14: Approximation of the objective function values for a good solution

of Experiment 2.4.

f1 (ktonnes) 6 230

f2 (ktonnes⋅km) 127 110

Table A.15: Approximation of the decision variable values for a good solution of

Experiment 2.4.

Stockpile days ktonnes

Power station Ls Ts Us Ls Ts Us

A 14 18 32 648.1 833.3 1 435.0

B 5 7 18 272.7 381.8 981.8

C 5 13 18 179.6 467.0 646.6

D 13 17 27 254.9 333.3 529.4

E 5 14 25 208.9 584.8 1 044.3

F 8 12 21 119.7 179.6 314.3

G 13 19 25 194.6 284.4 374.2

H 6 10 21 286.5 477.6 1 002.9

I 5 14 23 238.4 667.6 1 096.8

J 13 17 25 474.0 619.8 911.5

K 13 21 27 195.9 316.4 406.8

L 8 16 23 187.7 375.5 539.8

M 7 13 25 65.7 121.9 234.5

N 13 19 28 155.7 227.5 335.3
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Table A.16: Coal transfers recorded for a good solution of Experiment 2.4 (ktonnes).

A B C D E F G H I J K L M N

A - 0 0 0 0 0 0 0 0 0 0 0 0 0

B - - 0 0 0 0 0 0 0 0 0 0 0 0

C - - - 34.85 0 16.36 130.1 0 0 0 18.68 190.6 0 112.2

D - - - - 0 0 25.06 0 0 0 0.68 0 0 38.88

E - - - - - 0 0 0 0 0 0 0 0 0

F - - - - - - 80.89 0 0 0 44.81 98.49 133.5 78.81

G - - - - - - - 0 0 10.52 2.49 0 23.92 140.3

H - - - - - - - - 0 0 0 0 0 0

I - - - - - - - - - 0 0 0 0 0

J - - - - - - - - - - 41.60 0 0 0

K - - - - - - - - - - - 0 0 1.24

L - - - - - - - - - - - - 0 19.18

M - - - - - - - - - - - - - 0

N - - - - - - - - - - - - - -
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A.2 Experiment 2

Table A.17: Approximation of the objective function values for a good solution

of Experiment 2.5.

f1 (ktonnes) 5 538

f2 (ktonnes⋅km) 137 895

Table A.18: Approximation of the decision variable values for a good solution of

Experiment 2.5.

Stockpile days ktonnes

Power station Ls Ts Us Ls Ts Us

A 5 7 19 231.5 324.1 1 342.6

B 5 6 12 272.7 327.3 654.5

C 7 12 22 251.4 431.1 790.3

D 10 16 25 196.1 313.7 490.2

E 8 15 22 334.2 626.6 919.0

F 8 14 22 119.7 209.5 419.1

G 13 16 24 194.6 239.5 359.2

H 6 12 23 286.5 573.1 1 098.4

I 6 15 25 286.1 715.3 1 192.2

J 5 13 20 182.3 474.0 729.2

K 6 13 22 90.4 195.9 331.5

L 13 18 26 305.1 422.4 610.2

M 10 15 26 93.8 140.7 243.9

N 12 18 33 143.7 215.5 395.1
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Table A.19: Coal transfers recorded for a good solution of Experiment 2.5 (ktonnes).

A B C D E F G H I J K L M N

A - 0 0 88.38 0 0 0 0 0 0 0 0 0 0

B - - 0 0 0 0 0 0 0 0 0 0 0 0

C - - - 20.0 0 0 40.0 0 0 0 48.05 17.43 96.99 80.0

D - - - - 0 19.11 69.95 0 0 0 0 0 0 0

E - - - - - 0 0 0 0 0 0 0 0 0

F - - - - - - 81.33 0 0 0 55.74 78.10 60.0 110.9

G - - - - - - - 0 0 133.8 20.0 0 108.1 37.51

H - - - - - - - - 40.0 0 0 0 0 0

I - - - - - - - - - 0 0 0 0 0

J - - - - - - - - - - 0 0 39.82 120.0

K - - - - - - - - - - - 0 0 0

L - - - - - - - - - - - - 0 20.0

M - - - - - - - - - - - - - 0

N - - - - - - - - - - - - - -
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A.2 Experiment 2

Table A.20: Approximation of the objective function values for a good solution

of Experiment 2.6.

f1 (ktonnes) 5 682

f2 (ktonnes⋅km) 159 120

Table A.21: Approximation of the decision variable values for a good solution of

Experiment 2.6.

Stockpile days ktonnes

Power station Ls Ts Us Ls Ts Us

A 5 11 23 231.5 509.3 1 064.8

B 5 8 11 272.7 436.3 600.0

C 7 14 26 251.4 502.9 934.0

D 5 11 20 98.0 215.7 392.1

E 10 18 22 417.7 751.9 919.0

F 11 17 19 164.6 254.4 284.4

G 9 15 26 134.7 224.5 389.1

H 10 16 20 477.6 764.1 955.2

I 5 12 20 238.4 572.3 953.8

J 9 10 15 328.1 364.6 546.9

K 9 15 27 135.6 226.0 406.8

L 6 12 19 140.8 281.6 445.9

M 11 14 20 103.2 131.3 187.6

N 5 7 18 59.9 83.8 215.5
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Table A.22: Coal transfers recorded for a good solution of Experiment 2.6 (ktonnes).

A B C D E F G H I J K L M N

A - 0 0 0 7.15 0 0 81.34 0 0 0 0 0 0

B - - 0 0 0 0 0 0 0 0 0 0 0 0

C - - - 0 0 69.52 165.0 0 0 12.83 25.0 26.98 50.0 101.85

D - - - - 0 32.29 69.57 0 0 0 0 18.83 38.62 51.69

E - - - - - 0 0 75.0 0 0 0 0 0 0

F - - - - - - 0 0 0 80.63 53.17 29.56 92.45 108.7

G - - - - - - - 0 0 33.69 22.04 46.15 29.02 27.36

H - - - - - - - - 128.2 0 0 0 0 0

I - - - - - - - - - 0 0 0 0 0

J - - - - - - - - - - 58.33 0 45.82 190.5

K - - - - - - - - - - - 0 0 0

L - - - - - - - - - - - - 36.35 0

M - - - - - - - - - - - - - 0

N - - - - - - - - - - - - - -
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A.3 Experiment 3

Table A.23: Approximation of the objective function values for a good solution

of Experiment 3.1.

f1 (ktonnes) 5 257

f2 (ktonnes⋅km) 21 440

Table A.24: Approximation of the decision variable values for a good solution of

Experiment 3.1.

Stockpile days ktonnes

Power station Ls Ts Us Ls Ts Us

A 7 9 15 324.1 416.7 694.4

B 10 12 13 545.4 654.2 709.1

C 7 10 15 251.4 359.2 538.1

D 9 10 15 176.5 196.1 294.1

E 9 12 19 375.9 501.3 793.6

F 8 11 14 119.7 164.6 209.5

G 7 12 13 104.8 179.6 194.6

H 6 13 20 286.5 620.9 955.2

I 5 11 16 238.4 524.6 763.0

J 6 13 18 218.8 474.0 656.3

K 9 18 24 135.6 271.2 361.6

L 7 12 20 164.3 281.6 469.4

M 5 12 15 46.9 112.6 140.7

N 5 12 17 59.9 143.7 203.6
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Table A.25: Coal transfers recorded for a good solution of Experiment 3.1 (ktonnes).

A B C D E F G H I J K L M N

A - 0 0 0 0 0 0 0 0 0 0 0 0 0

B - - 0 0 0 0 0 0 0 0 0 0 0 0

C - - - 62.45 0 0 0 0 0 0 0 0 186.5 0

D - - - - 0 0 0 0 0 0 0 0 11.10 0

E - - - - - 0 0 0 29.66 0 0 0 0 0

F - - - - - - 264.3 0 0 0 0 0 0 0

G - - - - - - - 0 0 0 0 0 0 0

H - - - - - - - - 0 0 0 0 0 0

I - - - - - - - - - 0 0 0 0 0

J - - - - - - - - - - 10.0 0 0 0

K - - - - - - - - - - - 0 0 0

L - - - - - - - - - - - - 0 110.4

M - - - - - - - - - - - - - 0

N - - - - - - - - - - - - - -
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A.3 Experiment 3

Table A.26: Approximation of the objective function values for a good solution

of Experiment 3.2.

f1 (ktonnes) 5 858

f2 (ktonnes⋅km) 21 809

Table A.27: Approximation of the decision variable values for a good solution of

Experiment 3.2.

Stockpile days ktonnes

Power station Ls Ts Us Ls Ts Us

A 8 10 17 370.4 463.0 787.0

B 8 11 15 436.3 600.0 818.2

C 5 14 21 179.6 502.9 754.3

D 5 14 20 98.0 274.5 392.1

E 9 16 23 375.9 668.3 960.7

F 10 19 25 149.7 284.4 374.2

G 6 7 11 89.8 104.8 164.6

H 6 9 16 286.5 429.8 764.1

I 11 17 28 524.6 810.7 1 335.3

J 6 9 18 218.8 328.1 656.3

K 9 20 27 135.6 301.3 406.8

L 7 16 29 164.3 375.5 680.6

M 10 20 26 93.8 187.6 243.9

N 5 11 24 59.9 131.7 287.4
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Table A.28: Coal transfers recorded for a good solution of Experiment 3.2 (ktonnes).

A B C D E F G H I J K L M N

A - 0 0 0 0 0 0 6.83 0 0 0 0 0 0

B - - 0 0 0 0 0 0 0 0 0 0 0 0

C - - - 30.0 0 0 0 0 0 0 0 0 315.0 0

D - - - - 0 0 0 0 0 0 0 0 3.88 0

E - - - - - 0 0 0 60.0 0 0 0 0 0

F - - - - - - 90.43 0 0 0 0 0 0 0

G - - - - - - - 0 0 0 0 0 0 0

H - - - - - - - - 0 0 0 0 0 0

I - - - - - - - - - 0 0 0 0 0

J - - - - - - - - - - 0 0 0 0

K - - - - - - - - - - - 0 0 0

L - - - - - - - - - - - - 0 0

M - - - - - - - - - - - - - 0

N - - - - - - - - - - - - - -
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