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Abstract

In this paper, we introduce the notion of q-quasiadditivity of arithmetic func-
tions, as well as the related concept of q-quasimultiplicativity, which generalise
strong q-additivity and -multiplicativity, respectively. We show that there are many
natural examples for these concepts, which are characterised by functional equations
of the form f(qk+ra+b) = f(a)+f(b) or f(qk+ra+b) = f(a)f(b) for all b < qk and a
fixed parameter r. In addition to some elementary properties of q-quasiadditive and
q-quasimultiplicative functions, we prove characterisations of q-quasiadditivity and
q-quasimultiplicativity for the special class of q-regular functions. The final main
result provides a general central limit theorem that includes both classical and new
examples as corollaries.

Keywords: q-additive function, q-quasiadditive function, q-regular function, cen-
tral limit theorem
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1 Introduction

Arithmetic functions based on the digital expansion in some base q have a long history
(see, e.g., [3–8, 12]) The notion of a q-additive function is due to [12]: an arithmetic
function (defined on nonnegative integers) is called q-additive if

f(qka+ b) = f(qka) + f(b)

whenever 0 6 b < qk. A stronger version of this concept is strong (or complete) q-
additivity: a function f is said to be strongly q-additive if we even have

f(qka+ b) = f(a) + f(b)

whenever 0 6 b < qk. The class of (strongly) q-multiplicative functions is defined in an
analogous fashion. Loosely speaking, (strong) q-additivity of a function means that it
can be evaluated by breaking up the base-q expansion. Typical examples of strongly q-
additive functions are the q-ary sum of digits and the number of occurrences of a specified
nonzero digit.

There are, however, many simple and natural functions based on the q-ary expansion
that are not q-additive. A very basic example of this kind are block counts : the number of
occurrences of a certain block of digits in the q-ary expansion. This and other examples
provide the motivation for the present paper, in which we define and study a larger class
of functions with comparable properties.

Definition 1. An arithmetic function (a function defined on the set of nonnegative inte-
gers) is called q-quasiadditive if there exists some nonnegative integer r such that

f(qk+ra+ b) = f(a) + f(b) (1)

whenever 0 6 b < qk. Likewise, f is said to be q-quasimultiplicative if it satisfies the
identity

f(qk+ra+ b) = f(a)f(b) (2)

for some fixed nonnegative integer r whenever 0 6 b < qk.

We remark that the special case r = 0 is exactly strong q-additivity, so strictly speaking
the term “strongly q-quasiadditive function” might be more appropriate. However, since
we are not considering a weaker version (for which natural examples seem to be much
harder to find), we do not make a distinction. As a further caveat, we remark that
the term “quasiadditivity” has also been used in [1] for a related, but slightly weaker
condition.

In the following section, we present a variety of examples of q-quasiadditive and q-
quasimultiplicative functions. In Section 3, we give some general properties of such func-
tions. Since most of our examples also belong to the related class of q-regular functions,
we discuss the connection in Section 4. Finally, we prove a general central limit theorem
for q-quasiadditive and -multiplicative functions that contains both old and new examples
as special cases.
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2 Examples of q-quasiadditive and -multiplicative functions

Let us now back up the abstract concept of q-quasiadditivity by some concrete examples.

Block counts

As mentioned in the introduction, the number of occurrences of a fixed digit is a typical
example of a q-additive function. However, the number of occurrences of a given block
B = ε1ε2 · · · ε` of digits in the expansion of a nonnegative integer n, which we denote by
cB(n), does not represent a q-additive function. The reason is simple: the q-ary expansion
of qka+ b is obtained by joining the expansions of a and b, so occurrences of B in a and
occurrences of B in b are counted by cB(a) + cB(b), but occurrences that involve digits of
both a and b are not.

However, if B is a block different from 00 · · · 0, then cB is q-quasiadditive: note that
the representation of qk+`a+ b is of the form

a1a2 · · · aµ︸ ︷︷ ︸
expansion of a

00 · · · 0︸ ︷︷ ︸
` zeros

b1b2 · · · bν︸ ︷︷ ︸
expansion of b

whenever 0 6 b < qk, so occurrences of the block B have to belong to either a or b only,
implying that cB(qk+`a + b) = cB(a) + cB(b), with one small caveat: if the block starts
and/or ends with a sequence of zeros, then the count needs to be adjusted by assuming
the digital expansion of a nonnegative integer to be padded with zeros on the left and on
the right.

For example, let B be the block 0101 in base 2. The binary representations of 469
and 22 are 111010101 and 10110, respectively, so we have cB(469) = 2 and cB(22) = 1
(note the occurrence of 0101 at the beginning of 10110 if we assume the expansion to be
padded with zeros), as well as

cB(240150) = cB(29 · 469 + 22) = cB(469) + cB(22) = 3.

Indeed, the block B occurs three times in the expansion of 240150, which is
111010101000010110.

The number of runs and the Gray code

The number of ones in the Gray code of a nonnegative integer n, which we denote by
hGRAY(n), is also equal to the number of runs (maximal sequences of consecutive identical
digits) in the binary representations of n (counting the number of runs in the representa-
tion of 0 as 0); the sequence defined by hGRAY(n) is A005811 in Sloane’s On-Line Encyclo-
pedia of Integer Sequences [20]. An analysis of its expected value is performed in [10]. The
function hGRAY is 2-quasiadditive up to some minor modification: set f(n) = hGRAY(n) if
n is even and f(n) = hGRAY(n) + 1 if n is odd. The new function f can be interpreted
as the total number of occurrences of the two blocks 01 and 10 in the binary expansion
(considering binary expansions to be padded with zeros at both ends), so the argument
of the previous example applies again and shows that f is 2-quasiadditive.
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The nonadjacent form and its Hamming weight

The nonadjacent form (NAF) of a nonnegative integer is the unique base-2 representation
with digits 0, 1,−1 (−1 is usually represented as 1 in this context) and the additional
requirement that there may not be two adjacent nonzero digits, see [21]. For example,
the NAF of 27 is 100101. It is well known that the NAF always has minimum Hamming
weight (i.e., number of nonzero digits) among all possible binary representations with this
particular digit set, although it may not be unique with this property (compare, e.g., [21]
with [17]).

The Hamming weight hNAF of the nonadjacent form has been analysed in some detail
[14, 23], and it is also an example of a 2-quasiadditive function. It is not difficult to see
that hNAF is characterised by the recursions

hNAF(2n) = hNAF(n), hNAF(4n+ 1) = hNAF(n) + 1, hNAF(4n− 1) = hNAF(n) + 1

together with the initial value hNAF(0) = 0. The identity

hNAF(2k+2a+ b) = hNAF(a) + hNAF(b)

can be proved by induction. In Section 4, this example will be generalised and put into a
larger context.

The number of optimal {0, 1,−1}-representations

As mentioned above, the NAF may not be the only representation with minimum Ham-
ming weight among all possible binary representations with digits 0, 1,−1. The number of
optimal representations of a given nonnegative integer n is therefore a quantity of interest
in its own right. Its average over intervals of the form [0, N) was studied by Grabner and
Heuberger [13], who also proved that the number rOPT(n) of optimal representations of n
can be obtained in the following way:

Lemma 2 (Grabner–Heuberger [13]). Let sequences ui (i = 1, 2, . . . , 5) be given recur-
sively by

u1(0) = u2(0) = · · · = u5(0) = 1, u1(1) = u2(1) = 1, u3(1) = u4(1) = u5(1) = 0,

and

u1(2n) = u1(n), u1(2n+ 1) = u2(n) + u4(n+ 1),

u2(2n) = u1(n), u2(2n+ 1) = u3(n),

u3(2n) = u2(n), u3(2n+ 1) = 0,

u4(2n) = u1(n), u4(2n+ 1) = u5(n+ 1),

u5(2n) = u4(n), u5(2n+ 1) = 0.

The number rOPT(n) of optimal representations of n is equal to u1(n).
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A straightforward calculation shows that

u1(8n) = u2(8n) = · · · = u5(8n) = u1(8n+ 1) = u2(8n+ 1) = u1(n),

u3(8n+ 1) = u4(8n+ 1) = u5(8n+ 1) = 0.
(3)

This gives us the following result:

Lemma 3. The number of optimal {0, 1,−1}-representations of a nonnegative integer
is a 2-quasimultiplicative function. Specifically, for any three nonnegative integers a, b, k
with b < 2k, we have

rOPT(2k+3a+ b) = rOPT(a)rOPT(b).

Proof. We will prove a somewhat stronger statement by induction on t: write

u(n) = (u1(n), u2(n), u3(n), u4(n), u5(n))t.

We show that
u(2k+3a+ b) = rOPT(a)u(b)

and
u(2k+3a+ b+ 1) = rOPT(a)u(b+ 1)

for all a, b, k satisfying the conditions of the lemma, from which the desired result follows
by considering the first entry of the vector u(2k+3a + b). Note first that both identities
are clearly true for k = 0 in view of (3). For the induction step, we distinguish two cases:
if b is even, we have

u(2k+3a+ b) =


1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0

 · u(2k+2a+ b/2)

=


1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0

 · rOPT(a)u(b/2)

= rOPT(a)u(b)

by the induction hypothesis, as well as

u(2k+3a+ b+ 1)

=


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 · u(2k+2a+ b/2) +


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 · u(2k+2a+ b/2 + 1)
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=


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 · rOPT(a)u(b/2) +


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 · rOPT(a)u(b/2 + 1)

= rOPT(a)u(b+ 1).

The case that b is odd is treated in an analogous fashion.

In Section 4, we will show that this is also an instance of a more general phenomenon.

The run length transform and cellular automata

The run length transform of a sequence is defined in a recent paper of Sloane [22]: it is
based on the binary representation, but could in principle also be generalised to other
bases. Given a sequence s1, s2, . . ., its run length transform is obtained by the rule

t(n) =
∏
i∈L(n)

si,

where L(n) is the multiset of run lengths of n (lengths of blocks of consecutive ones in
the binary representation). For example, the binary expansion of 1910 is 11101110110, so
the multiset L(n) of run lengths would be {3, 3, 2}, giving t(1910) = s2s

2
3.

A typical example is obtained for the sequence of Jacobsthal numbers given by the
formula sn = 1

3
(2n+2−(−1)n). The associated run length transform tn (sequence A071053

in the OEIS [20]) counts the number of odd coefficients in the expansion of (1 + x+ x2)n,
and it can also be interpreted as the number of active cells at the n-th generation of a
certain cellular automaton. Further examples stemming from cellular automata can be
found in Sloane’s paper [22].

The argument that proved q-quasiadditivity of block counts also applies here, and
indeed it is easy to see that the identity

t(2k+1a+ b) = t(a)t(b),

where 0 6 b < 2k, holds for the run length transform of any sequence, meaning that
any such transform is 2-quasimultiplicative. In fact, it is not difficult to show that every
2-quasimultiplicative function with parameter r = 1 is the run length transform of some
sequence.

3 Elementary properties

Now that we have gathered some motivating examples for the concepts of q-quasiadditivity
and q-quasimultiplicativity, let us present some simple results about functions with these
properties. First of all, let us state an obvious relation between q-quasiadditive and
q-quasimultiplicative functions:
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Proposition 4. If a function f is q-quasiadditive, then the function defined by g(n) =
cf(n) for some positive constant c is q-quasimultiplicative. Conversely, if f is a q-quasi-
multiplicative function that only takes positive values, then the function defined by g(n) =
logc f(n) for some positive constant c 6= 1 is q-quasiadditive.

The next proposition deals with the parameter r in the definition of a q-quasiadditive
function:

Proposition 5. If the arithmetic function f satisfies

f(qk+ra+ b) = f(a) + f(b)

for some fixed nonnegative integer r whenever 0 6 b < qk, then it also satisfies

f(qk+sa+ b) = f(a) + f(b)

for all nonnegative integers s > r whenever 0 6 b < qk.

Proof. If a, b are nonnegative integers with 0 6 b < qk, then clearly also 0 6 b < qk+s−r if
s > r, and thus

f(qk+sa+ b) = f(q(k+s−r)+ra+ b) = f(a) + f(b).

Corollary 6. If two arithmetic functions f and g are q-quasiadditive functions, then so
is any linear combination αf + βg of the two.

Proof. In view of the previous proposition, we may assume the parameter r in (1) to be
the same for both functions. The statement follows immediately.

Finally, we observe that q-quasiadditive and q-quasimultiplicative functions can be
computed by breaking the q-ary expansion into pieces.

Lemma 7. If f is a q-quasiadditive (q-quasimultiplicative) function, then

• f(0) = 0 (f(0) = 1, respectively, unless f is identically 0),

• f(qa) = f(a) for all nonnegative integers a.

Proof. Assume first that f is q-quasiadditive. Setting a = b = 0 in the defining functional
equation (1), we obtain

f(0) = f(0) + f(0),

and the first statement follows. Setting b = 0 while a is arbitrary, we now find that

f(qk+ra) = f(a)

for all k > 0. In particular, this also means that

f(a) = f(qr+1a) = f(qr · qa) = f(qa),

which proves the second statement. For q-quasimultiplicative functions, the proof is anal-
ogous (and one can also use Proposition 4 for positive functions).
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Proposition 8. Suppose that the function f is q-quasiadditive with parameter r, i.e.,
f(qk+ra+ b) = f(a) + f(b) whenever 0 6 b < qk. Going from left to right, split the q-ary
expansion of n into blocks by inserting breaks after each run of r or more zeros. If these
blocks are the q-ary representations of n1, n2, . . . , n`, then we have

f(n) = f(n1) + f(n2) + · · ·+ f(n`).

Moreover, if mi is the greatest divisor of ni which is not divisible by q for i = 1, . . . , `,
then

f(n) = f(m1) + f(m2) + · · ·+ f(m`).

Analogous statements hold for q-quasimultiplicative functions, with sums replaced by prod-
ucts.

Proof. This is obtained by a straightforward induction on ` together with the fact that
f(qha) = f(a), which follows from the previous lemma.

Example 9. Recall that the Hamming weight of the NAF (which is the minimum Ham-
ming weight of a {0, 1,−1}-representation) is 2-quasiadditive with parameter r = 2. To
determine hNAF(314 159 265), we split the binary representation, which is
10010101110011011000010100001, into blocks by inserting breaks after each run of at least
two zeros:

100|101011100|110110000|1010000|1.

The numbers n1, n2, . . . , n` in the statement of the proposition are now 4, 348, 432, 80, 1
respectively, and the numbers m1,m2, . . . ,m` are therefore 1, 87, 27, 5, 1. Now we use the
values hNAF(1) = 1, hNAF(5) = 2, hNAF(27) = 3 and hNAF(87) = 4 to obtain

hNAF(314 159 265) = 2hNAF(1) + hNAF(5) + hNAF(27) + hNAF(87) = 11.

Example 10. In the same way, we consider the number of optimal representations rOPT,
which is 2-quasimultiplicative with parameter r = 3. Consider for instance the binary rep-
resentation of 204 280 974, namely 1100001011010001010010001110. We split into blocks:

110000|101101000|101001000|1110.

The four blocks correspond to the numbers 48 = 16 · 3, 360 = 8 · 45, 328 = 8 · 41 and
14 = 2 · 7. Since rOPT(3) = 2, rOPT(45) = 5, rOPT(41) = 1 and rOPT(7) = 1, we obtain
rOPT(204 280 974) = 10.

4 q-Regular functions

In this section, we introduce q-regular functions and examine the connection to our con-
cepts. The notion of q-regular functions is a natural extension of automatic sequences.
See [2] for more background on q-regular functions and sequences.
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A function f is q-regular if it can be expressed as f = utf for a vector u and a
vector-valued function f , and there are matrices Mi, 0 6 i < q, satisfying

f(qn+ i) = Mif(n) (4)

for 0 6 i < q, qn+ i > 0. We set v = f(0).
Equivalently, a function f is q-regular if and only if f can be written as

f(n) = ut
L∏
i=0

Mni
v (5)

where nL · · ·n0 is the q-ary expansion of n.
The family of q-regular functions contains all q-additive and q-multiplicative functions.

However, we emphasise that q-quasiadditive and q-quasimultiplicative functions are not
necessarily q-regular: a q-regular sequence can always be bounded by O(nc) for a constant
c, see [2, Thm. 16.3.1]. In our setting however, the values of f(n) can be chosen arbitrarily
for those n whose q-ary expansion does not contain 0r. Therefore a q-quasiadditive or
-multiplicative function can grow arbitrarily fast.

We call (u, (Mi)06i<q,v) a linear representation of the q-regular function f . Such a
linear representation is called zero-insensitive if M0v = v, meaning that in (5), leading
zeros in the q-ary expansion of n do not change anything. We call a linear representation
minimal if the dimension of the matrices Mi is minimal among all linear representations
of f .

Following [9], every q-regular function has a zero-insensitive minimal linear represen-
tation.

4.1 When is a q-regular function q-quasimultiplicative?

We now give a characterisation of q-regular functions that are q-quasimultiplicative.

Theorem 11. Let f be a q-regular sequence with zero-insensitive minimal linear repre-
sentation (5). Then the following two assertions are equivalent:

• The sequence f is q-quasimultiplicative with parameter r.

• M r
0 = vut.

Proof. Let d be the dimension of the vectors. We first prove that the set of vectors{
ut
∏
i∈I

Mni
| ni ∈ {0, . . . , q − 1}, I finite

}
is a generating system of the whole d-dimensional vector space. This is done by contra-
diction: assume that there is a coordinate transformation such that the first d0 < d
unit vectors form a basis of the transformed space spanned by {ut

∏
i∈IMni

| ni ∈
{0, . . . , q − 1}, I finite}. This coordinate transform defines a different linear represen-
tation of f with matrices M̂i and vectors û and v̂. However, only the first d0 coordinates
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of any vector ut
∏

i∈IMni
are nonzero. Thus we can reduce the dimension of the matrices

and vectors from d to d0 to obtain a new linear representation of f . This contradicts the
minimality of the original linear representation.

Analogously, {
∏

j∈JMnj
v | nj ∈ {0, . . . , q − 1}, J finite} is also a generating system

for the whole vector space.
The q-quasimultiplicativity of f(n) with parameter r is equivalent to the identity

ut
∏
i∈I

Mni
(M r

0 − vut)
∏
j∈J

Mnj
v = 0

for all finite tuples (ni)i∈I and (nj)j∈J . Since both {ut
∏

i∈IMni
} and {

∏
j∈JMnj

v} are
generating systems of the entire vector space, this is equivalent to xt(M r

0 −vut)y = 0 for
all vectors x and y, which in turn is equivalent to M r

0 = vut.

Example 12 (The number of optimal {0, 1,−1}-representations). The number of op-
timal {0, 1,−1}-representations as described in Section 2 is a 2-regular sequence by
Lemma 2. A minimal zero-insensitive linear representation for the vector (u1(n), u2(n),
u3(n), u1(n+ 1), u4(n+ 1), u5(n+ 1))t is given by

M0 =


1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 , M1 =


0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 ,

ut = (1, 0, 0, 0, 0, 0) and v = (1, 1, 1, 1, 0, 0)t.
As M3

0 = vut, this sequence is 2-quasimultiplicative with parameter 3, which is the
same result as in Lemma 3.

Remark 13. The condition on the minimality of the linear representation in Theorem 11
is necessary as illustrated by the following example:

Consider the sequence f(n) = 2s2(n), where s2(n) is the binary sum of digits function.
This sequence is 2-regular and 2-(quasi-)multiplicative with parameter r = 0. A (1-
dimensional) minimal linear representation is given by M0 = 1, M1 = 2, v = 1 and u = 1.
As stated in Theorem 11, we have M0

0 = vut = 1.
If we use the zero-insensitive non-minimal linear representation defined by M0 =(

1 13
0 2

)
, M1 =

(
2 27
0 5

)
, v = (1, 0)t and ut = (1, 0) instead, we have rankM r

0 = 2 for
all r > 0. Thus M r

0 6= vut.

4.2 When is a q-regular function q-quasiadditive?

The characterisation of q-regular functions that are also q-quasiadditive is somewhat more
complicated. Again, we consider a zero-insensitive (but not necessarily minimal) linear
representation. We let U be the smallest vector space such that all vectors of the form
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ut
∏

i∈IMni
lie in the affine subspace ut+U t (U t is used as a shorthand for {xt : x ∈ U}).

Such a vector space must exist, since ut is a vector of this form (corresponding to the
empty product, where I = ∅). Likewise, let V be the smallest vector space such that all
vectors of the form

∏
j∈JMnj

v lie in the affine subspace v + V .

Theorem 14. Let f be a q-regular sequence with zero-insensitive linear representation
(5). The sequence f is q-quasiadditive with parameter r if and only if all of the following
statements hold:

• utv = 0,

• U t is orthogonal to (M r
0 − I)v, i.e., xt(M r

0 − I)v = xtM r
0v−xtv = 0 for all x ∈ U ,

• V is orthogonal to ut(M r
0 −I), i.e., ut(M r

0 −I)y = utM r
0y−uty = 0 for all y ∈ V ,

• U tM r
0V = 0, i.e., xtM r

0y = 0 for all x ∈ U and y ∈ V .

Proof. The first statement utv = 0 is equivalent to f(0) = 0, which we already know to be
a necessary condition by Lemma 7. Note also that utM r

0v = utv = 0 by the assumption
that the linear representation is zero-insensitive. For the remaining statements, we write
the quasiadditivity condition in terms of our matrix representation as we did in the
quasimultiplicative case:

ut
∏
i∈I

Mni
M r

0

∏
j∈J

Mnj
v = ut

∏
i∈I

Mni
v + ut

∏
j∈J

Mnj
v.

Specifically, when J = ∅, we get

ut
∏
i∈I

Mni

(
M r

0 − I
)
v = utv = 0.

Setting also I = ∅ gives us ut(M r
0 − I)v = 0, so together we obtain(

ut
∏
i∈I

Mni
− ut

)(
M r

0 − I
)
v = 0.

Since U t is spanned by all vectors of the form ut
∏

i∈IMni
− ut, the second statement

follows. The proof of the third statement is analogous. Finally, if we assume that the first
three statements hold, then we find that

ut
∏
i∈I

Mni
M r

0

∏
j∈J

Mnj
v

=
(
ut
∏
i∈I

Mni
− ut

)
M r

0

(∏
j∈J

Mnj
v − v

)
+
(
ut
∏
i∈I

Mni
− ut

)
M r

0v + utM r
0

(∏
j∈J

Mnj
v − v

)
+ utM r

0v

=
(
ut
∏
i∈I

Mni
− ut

)
M r

0

(∏
j∈J

Mnj
v − v

)
+
(
ut
∏
i∈I

Mni
− ut

)
v + ut

(∏
j∈J

Mnj
v − v

)
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=
(
ut
∏
i∈I

Mni
− ut

)
M r

0

(∏
j∈J

Mnj
v − v

)
+ ut

∏
i∈I

Mni
v + ut

∏
j∈J

Mnj
v.

Thus q-quasiadditivity is equivalent to(
ut
∏
i∈I

Mni
− ut

)
M r

0

(∏
j∈J

Mnj
v − v

)
= 0

being valid for all choices of I, J , ni and nj. The desired fourth condition is clearly
equivalent by definition of U and V .

Example 15. For the Hamming weight of the nonadjacent form, a zero-insensitive (and
also minimal) linear representation for the vector (hNAF(n), hNAF(n+ 1), hNAF(2n+ 1), 1)t

is

M0 =


1 0 0 0
0 0 1 0
1 0 0 1
0 0 0 1

 , M1 =


0 0 1 0
0 1 0 0
0 1 0 1
0 0 0 1

 ,

ut = (1, 0, 0, 0) and v = (0, 1, 1, 1)t.
The three vectors w1 = utM1 − ut, w2 = utM2

1 − ut and w3 = utM1M0M1 − ut are
linearly independent. If we let W be the vector space spanned by those three, it is easily
verified that M0 and M1 map the affine subspace ut +W t to itself, so U = W is spanned
by these vectors.

Similarly, the three vectors M1v − v, M2
1v − v and M1M0M1v − v span V .

The first condition of Theorem 14 is obviously true. We only have to verify the other
three conditions with r = 2 for the basis vectors of U and V , which is done easily. Thus
hNAF is a 2-regular sequence that is also 2-quasiadditive, as was also proved in Section 2.

Finding the vector spaces U and V is not trivial. But in a certain special case of
q-regular functions, we can give a sufficient condition for q-additivity, which is easier
to check. These q-regular functions are output sums of transducers as defined in [15]: a
transducer transforms the q-ary expansion of an integer n deterministically into an output
sequence. We are interested in the sum of this output sequence. Before we can state our
condition, we introduce our notation more precisely.

A transducer consists of a finite number of states, an initial state, the input alphabet
{0, . . . , q− 1}, an output alphabet, which is a subset of the real numbers, and transitions
between two states with labels ε | δ for ε an input letter and δ an output letter. We assume
that the transducer is complete and deterministic, that is for every state s and input letter
ε, there exists exactly one transition leaving state s with input label ε. Additionally every
state has a final output.

The transducer reads the q-ary expansion of an integer n, starting from the least
significant digit, as input, which defines a unique path starting at the initial state with
the given input as input label. The output of the transducer is the sequence of output
labels along this path together with the final output of the final state of this path. The
output sum is then the sum of this output sequence.
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0 0 1

1 | 1 1 | 0
0 | 0

0 | 1

1 | 0

0 | 0

Figure 1: Transducer to compute the Hamming weight of the nonadjacent form.

The function hNAF, see Example 16, as well as many other examples, can be represented
in this way.

This output sum of a transducer is a q-regular sequence [15]. To obtain a linear
representation, we define the matrix Nε for ε ∈ {0, . . . , q− 1} to be the adjacency matrix
of the transducer where we only take into account transitions with input label ε. Note
that because our transducer is complete and deterministic, there is exactly one entry 1
in every row. Without loss of generality, we say that the initial state corresponds to the
first row and column. Furthermore, the i-th entry of the vector δε is the output label of
the transition starting in state i with input label ε. We define the matrices

Mε =

Nε δε [ε = 0]I
0 1 0
0 0 [ε = 0]I

 ,

where I is an identity matrix of the correct size, and we set ut = (1, 0, . . . , 0) and

v =

 b(0)
1

b(0)−N0b(0)− δ0

 ,

where the entries of b(0) are the final outputs of the states.
Following [15, Remark 3.10], the output sum of a transducer is q-regular with the

linear representation (u, (Mε)06ε<q,v).

Example 16. The output sum of the transducer in Figure 1 is exactly the Hamming
weight of the nonadjacent form hNAF(n) (see, e.g., [15]). The matrices and vectors corre-
sponding to this transducer are

N0 =

1 0 0
1 0 0
0 1 0

 , N1 =

0 1 0
0 0 1
0 0 1

 ,

δt0 = (0, 0, 1), δt1 = (1, 0, 0) and b(0)t = (0, 0, 1).

To state our condition, we also introduce the notion of a reset sequence: a reset
sequence is an input sequence which always leads to the same state no matter in which
state of the transducer we start. Not every transducer has a reset sequence, not even
every strongly connected transducer has one. In many cases arising from combinatorics
and digit expansions the reset sequence consists only of zeros.
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Proposition 17. The output sum of a connected transducer is q-additive with parameter
r if the following conditions are satisfied:

• The transducer has the reset sequence 0r leading to the initial state.

• For every state, the output sum along the path of the reset sequence 0r equals the
final output of this state.

• Additional zeros at the end of the input sequence do not change the output sum.

Proof. Let f(n) be the vector corresponding to the linear representation (u, (Mε)06ε<q,v)
as defined in (4). By induction, we obtain that the middle coordinate of f(n) is always
1 and the coordinates below are always 0 if n > 1. We denote the coordinates above by
b(n). The output sum of the transducer is the first coordinate of b(n). By (4), we obtain
the recursion

b(qn+ ε) = Nεb(n) + δε (6)

if qn+ ε > 0.
The third condition ensures that leading zeros do not change anything. So the con-

nectivity of the underlying graph implies that (6) also holds for qn+ ε = 0. Thus the last
coordinates of v are zero and we could reduce the dimension of the linear representation.

Let J be finite and nj ∈ {0, . . . , q − 1} for j ∈ J . The first condition implies that

∏
j∈J

Nnj
N r

0 =

1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 ,

and the second condition implies that∏
j∈J

Nnj
b(0) =

∏
j∈J

Nnj
(I + · · ·+N r−1

0 )δ0.

Using (6) recursively together with these two conditions gives

b(qk+rm+ n) =
k−1∏
j=0

Nnj
b(qrm) +

k−1∑
j=0

j−1∏
i=0

Nni
δnj

=
k−1∏
j=0

Nnj
N r

0b(m) +
k−1∏
j=0

Nnj
(I + · · ·+N r−1

0 )δ0 + b(n)−
k−1∏
j=0

Nnj
b(0)

=

1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 b(m) + b(n)

for all n with q-ary digit expansion (nk−1 · · ·n0) and all m. This implies that the first
coordinate of b(n) is q-quasiadditive.
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Example 18. We now continue Example 16 and check whether the conditions of Propo-
sition 17 are satisfied for the transducer given in Figure 1. First, 00 is a reset sequence
(i.e., r = 2) and leads to the initial state. Second, the output sum along the path of the
reset sequence is 0, 0 and 1 for the left, the middle and the right state, respectively, which
is exactly the final output of the corresponding state. Furthermore, leading zeros do not
change the output sum. Thus we have another proof that hNAF(n) is a 2-quasiadditive
function with parameter r = 2.

5 A central limit theorem for q-quasiadditive and
-multiplicative functions

In this section, we prove a central limit theorem (Theorem 25) for the logarithm of q-
quasimultiplicative functions taking only positive values. By Proposition 4, this also
implies a central limit theorem for q-quasiadditive functions.

To this end, we define a generating function: let f be a q-quasimultiplicative function
with positive values, letMk be the set of all nonnegative integers less than qk (i.e., those
positive integers whose q-ary expansion needs at most k digits), and set

F (x, t) =
∑
k>0

xk
∑
n∈Mk

f(n)t.

The decomposition of Proposition 8 now translates directly to an alternative representa-
tion for F (x, t): let B be the set of all positive integers not divisible by q whose q-ary
representation does not contain the block 0r, let `(n) denote the length of the q-ary
representation of n, and define the function B(x, t) by

B(x, t) =
∑
n∈B

x`(n)f(n)t.

We remark that in the special case where q = 2 and r = 1, this simplifies greatly to

B(x, t) =
∑
k>1

xkf(2k − 1)t. (7)

Proposition 19. The generating function F (x, t) can be expressed as

F (x, t) =
1

1− x
· 1

1− xr

1−xB(x, t)

(
1 + (1 + x+ · · ·+ xr−1)B(x, t)

)
=

1 + (1 + x+ · · ·+ xr−1)B(x, t)

1− x− xrB(x, t)
.

Proof. The first factor stands for the initial sequence of leading zeros, the second factor
for a (possibly empty) sequence of blocks consisting of an element of B and r or more
zeros, and the last factor for the final part, which may be empty or an element of B with
up to r − 1 zeros (possibly none) added at the end.
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Under suitable assumptions on the growth of a q-quasiadditive or q-quasimultiplicative
function, we can exploit the expression of Proposition 19 to prove a central limit theorem.

Definition 20. We say that a function f has at most polynomial growth if f(n) = O(nc)
and f(n) = Ω(n−c) for a fixed c > 0. We say that f has at most logarithmic growth if
f(n) = O(log n).

Note that our definition of at most polynomial growth is slightly different than usual:
the extra condition f(n) = Ω(n−c) ensures that the absolute value of log f(n) does not
grow too fast.

Lemma 21. Assume that the positive, q-quasimultiplicative function f has at most poly-
nomial growth.

There exist positive constants δ and ε such that

• B(x, t) has radius of convergence ρ(t) > 1
q

whenever |t| 6 δ.

• For |t| 6 δ, the equation x+xrB(x, t) = 1 has a complex solution α(t) with |α(t)| <
ρ(t) and no other solutions with modulus 6 (1 + ε)|α(t)|.

• Thus the generating function F (x, t) has a simple pole at α(t) and no further sin-
gularities of modulus 6 (1 + ε)|α(t)|.

• Finally, α is an analytic function of t for |t| 6 δ.

Proof. The polynomial growth of f implies that C−1φ−`(n) 6 f(n) 6 Cφ`(n) for some
positive constants C and φ. Moreover, B contains O(β`) elements whose q-ary expansion
has length at most `, where β < q is a root of the polynomial xr− (q− 1)xr−1−· · ·− (q−
1)x− (q− 1). This implies that B(x, t) is indeed an analytic function of x for |x| < β−1φδ

whenever |t| 6 δ. For suitably small δ, β−1φδ is greater than 1
q
, which proves the first

part of our statement. Next note that

B(x, 0) =
(q − 1)x

1− (q − 1)x− · · · − (q − 1)xr
,

and it follows by an easy calculation that

1− x− xrB(x, 0) =
(1− x)(1− qx)

1− qx+ (q − 1)xr+1
.

Hence α(0) = 1
q

is the only solution of the equation x+ xrB(x, 0) = 1, and it is a simple
root. All remaining statements are therefore simple consequences of the implicit function
theorem.

Lemma 22. Assume that the positive, q-quasimultiplicative function f has at most poly-
nomial growth.

With δ and ε as in the previous lemma, we have, uniformly in t,

[xk]F (x, t) = κ(t) · α(t)−k
(
1 +O((1 + ε)−k)

)
for some function κ. Both α and κ are analytic functions of t for |t| 6 δ, and κ(t) 6= 0
in this region.
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Proof. This follows from the previous lemma by means of singularity analysis, see [11,
Chapter VI].

We are now ready to prove our central limit theorem, first in a slightly weaker version
where a random integer is taken from an interval of the form [0, qk).

Proposition 23. Assume that the positive, q-quasimultiplicative function f has at most
polynomial growth.

Let Nk be a randomly chosen integer in {0, 1, . . . , qk − 1}. The random variable Lk =
log f(Nk) has mean µk+O(1) and variance σ2k+O(1), where the two constants are given
by

µ =
Bt(1/q, 0)

q2r

and

σ2 = −Bt(1/q, 0)2q−4r+1(q−1)−1+2Bt(1/q, 0)2q−3r+1(q−1)−1−Bt(1/q, 0)2q−4r(q−1)−1

− 4rBt(1/q, 0)2q−4r +Btt(1/q, 0)q−2r − 2Bt(1/q, 0)Btx(1/q, 0)q−4r−1. (8)

If f is not the constant function f ≡ 1, then σ2 6= 0 and the normalised random variable
(Lk − µk)/(σ

√
k) converges weakly to a standard Gaussian distribution.

Proof. The moment generating function of Lk is [xk]F (x, t)/qk. Hence the statement
follows from Lemma 22 by means of the Quasi-power theorem, see [16] or [11, Chapter
IX.5]. The only part that we actually have to verify is that σ2 6= 0 unless f is constant.

Assume that σ2 = 0. We first consider the case that logα(t) is not a linear function.
Let s be the least integer greater than 1 such that ts occurs with a nonzero coefficient in
the Taylor expansion of logα(t) at t = 0, i.e.,

logα(t) = logα(0) + at+ bts +O(ts+1).

Note that a = −µ. Moreover, by the assumption that σ2 = 0, we must have s > 3. Since
α(0) = 1

q
and κ(0) = 1, it follows that

E(exp(tLk)) =
[xk]F (x, t)

qk
= exp

(
log κ(t)− k logα(t)− k log q +O

(
(1 + ε)−k

))
= exp

(
− akt− bkts +O

(
kts+1 + t+ (1 + ε)−k

))
.

Considering the normalised version Rk = Lk−µk
k1/s

of the random variable Lk, we get

E
(

exp
(
τRk

))
= exp

(
− bτ s +O

(
k−1/s + (1 + ε)−k

))
for fixed τ . So for every complex τ , we have limk→∞ E(exp

(
τRk

)
) = exp(−bτ s), which

is a continuous function. By Lévy’s continuity theorem, this would imply convergence
in distribution of Rk to a random variable with moment generating function M(τ) =
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exp(−bτ s). However, there is no such random variable: all derivatives at τ = 0 are finite
and the second derivative of exp(−bτ s) at τ = 0 is 0, thus the second moment is 0. A
random variable whose second moment is 0 is almost surely equal to 0 and would thus
have moment generating function 1.

The only remaining possibility is that logα(t) is linear: logα(t) = logα(0) + at, thus
α(t) = α(0)eat = eat/q. If we plug this into the defining equation of α(t), we obtain

1 =
eat

q
+
eart

qr

∑
n∈B

q−`(n)ea`(n)tf(n)t

identically for |t| 6 δ. However, the right side of this identity has strictly positive second
derivative for real t unless a = 0 and f(n) = 1 for all n ∈ B (in which case f(n) = 1 for
all n). Thus σ2 6= 0 unless f ≡ 1.

Corollary 24. Assume that the q-quasiadditive function f has at most logarithmic growth.
Let Nk be a randomly chosen integer in {0, 1, . . . , qk − 1}. The random variable Lk =

f(Nk) has mean µ̂k+O(1) and variance σ̂2k+O(1), where the two constants µ̂ and σ̂2are
given by the same formulas as in Proposition 23, with B(x, t) replaced by

B̂(x, t) =
∑
n∈B

x`(n)ef(n)t.

If f is not the constant function f ≡ 0, then the normalised random variable (Lk −
µ̂k)/(σ̂

√
k) converges weakly to a standard Gaussian distribution.

Now we finally show that the main version of our central limit theorem, where we pick
an integer uniformly at random from the set {0, 1, 2, . . . , K − 1} (K not necessarily being
a power of q any longer). We first state and prove our result for q-quasiadditive functions;
it automatically transfers to q-quasimultiplicative functions by Proposition 4.

Theorem 25. Assume that the q-quasiadditive function f has at most logarithmic growth,
and that f is not the constant function f ≡ 0. Let MK be a randomly chosen integer in
{0, 1, . . . , K − 1}. The random variable

f(MK)− µ̂ logqK

σ̂
√

logqK
,

where the two constants µ̂ and σ̂2 are the same as in Corollary 24, converges weakly to a
standard Gaussian distribution.

Proof. Let L1 and L2 be the largest integers for which we have qL1 < K/ log2K and
qL2 < K/ logK, respectively. For each nonnegative integer m < K, we consider (if it
exists) a representation of the form

m = qk+ra+ b, (9)
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where b < qk and L1 6 k 6 L2. If there are two or more such representations for a specific
m, we take the one for which k is maximal so as to obtain a unique representation. If m
does not have a representation of this form, then it does not have r consecutive zeros in its
q-ary representation anywhere in the block ranging from the (L1 +1)-th to the (L2 +r)-th
digit, counting from the least significant digit. The proportion of such integers is

O
(

(1− q−r)(L2−L1)/r
)

= O
(

(1− q−r)(log logK)/r
)
,

which becomes negligible as K →∞.
If however m can be represented in the form (9), then we have

f(m) = f(a) + f(b)

by quasiadditivity of f . Moreover, a = O(log2K) by the definition of L1, so f(a) =
O(log logK) since we assumed f to have at most logarithmic growth. For given a and k,
b can be any integer in the set {0, 1, . . . , qk−1}, unless a = bK/qk+rc. In the former case,
we can identify b with Nk, the random variable defined in Theorem 25 and Corollary 24.
The latter case, however, is negligible, since it only accounts for a proportion of at most

1

K

L2∑
k=L1

qk = O(qL2/K) = O(1/ logK)

values of m. Now we condition on the event that the random integer MK has a represen-
tation of the form (9) for certain fixed k and a 6= bK/qk+rc. For every real number x, we
have

P
(
f(MK) 6 µ̂ logqK + xσ̂

√
logqK

∣∣∣ qk+ra 6MK < qk+ra+ qk
)

= P
(
f(Nk) 6 µ̂ logqK + xσ̂

√
logqK − f(a)

)
= P

(f(Nk)− µ̂ logqK − f(a)

σ̂
√

logqK
6 x

)
.

(10)
Note that k = logqK +O(log logK), so

f(Nk)− µ̂ logqK − f(a)

σ̂
√

logqK
=
f(Nk)− µ̂k

σ̂
√
k

+O
( log logK√

logK

)
.

Let Φ(x) = 1√
2π

∫ x
−∞ e

−t2/2 dt denote the distribution function of a standard Gaussian
distribution. By Corollary 24, and because Φ is continuous, we have

P
(f(Nk)− µ̂ logqK − f(a)

σ̂
√

logqK
6 x

)
= Φ(x) + o(1),
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and this holds uniformly in x, a and k as K → ∞ (in fact, one can make the speed
of convergence explicit by means of the Quasi-power theorem). Summing (10) over all
possible values of a and k, we obtain

lim
K→∞

P
(
f(MK) 6 µ̂ logqK + xσ̂

√
logqK

)
= Φ(x)

for all real numbers x, which is what we wanted to prove.

Corollary 26. Assume that the positive, q-quasimultiplicative function f has at most
polynomial growth, and that f is not the constant function f ≡ 1. Let MK be a randomly
chosen integer in {0, 1, . . . , K − 1}. The random variable

f(MK)− µ logqK

σ
√

logqK
,

where the two constants µ and σ2 are the same as in Theorem 25, converges weakly to a
standard Gaussian distribution.

Remark 27. By means of the Cramér-Wold device (and Corollary 6), we also obtain joint
normal distribution of tuples of q-quasiadditive functions.

We now revisit the examples discussed in Section 2 and state the corresponding central
limit theorems. Some of them are well known while others are new. We also provide
numerical values for the constants in mean and variance.

Example 28 (see also [8,18]). The number of blocks 0101 occurring in the binary expan-
sion of n is a 2-quasiadditive function of at most logarithmic growth. Thus by Corollary 24,
the standardised random variable is asymptotically normally distributed, the constants
being µ̂ = 1

16
and σ̂2 = 17

256
.

Example 29 (see also [14, 23]). The Hamming weight of the nonadjacent form is 2-
quasiadditive with at most logarithmic growth (as the length of the NAF of n is logarith-
mic). Thus by Corollary 24, the standardised random variable is asymptotically normally
distributed. The associated constants are µ̂ = 1

3
and σ̂2 = 2

27
.

Example 30 (see Section 2). The number of optimal {0, 1,−1}-representations is 2-
quasimultiplicative. As it is always greater or equal to 1 and 2-regular, it has at most
polynomial growth. Thus Theorem 25 implies that the standardised logarithm of this
random variable is asymptotically normally distributed with numerical constants given
by µ ≈ 0.060829, σ2 ≈ 0.038212.

Example 31 (see Section 2). Suppose that the sequence s1, s2, . . . satisfies sn > 1
and sn = O(cn) for a constant c > 1. The run length transform t(n) of sn is 2-
quasimultiplicative. As sn > 1 for all n, we have t(n) > 1 for all n as well. Furthermore,
there exists a constant A such that sn 6 Acn for all n, and the sum of all run lengths is
bounded by the length of the binary expansion, thus

t(n) =
∏
i∈L(n)

si 6
∏
i∈L(n)

(Aci) 6 (Ac)1+log2 n.
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Consequently, t(n) is positive and has at most polynomial growth. By Theorem 25, we
obtain an asymptotic normal distribution for the standardised random variable log t(Nk).
The constants µ and σ2 in mean and variance are given by

µ =
∑
i>1

(log si)2
−i−2

and

σ2 =
∑
i>1

(log si)
2
(
2−i−2 − (2i− 1)2−2i−4

)
−
∑
j>i>1

(log si)(log sj)(i+ j − 1)2−i−j−3.

These formulas can be derived from those given in Theorem 25 by means of the representa-
tion (7), and the terms can also be interpreted easily: write log t(n) =

∑
i>1Xi(n) log si,

where Xi(n) is the number of runs of length i in the binary representation of n. The
coefficients in the two formulas stem from mean, variance and covariances of the Xi(n).

In the special case that sn is the Jacobsthal sequence (sn = 1
3
(2n+2 − (−1)n), see

Section 2), we have the numerical values µ ≈ 0.429947, σ2 ≈ 0.121137.
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