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ABSTRACT 

Introduction: 

Myocardial ischaemia and concomitant cell damage are caused by a reduction in the 

blood supply to the heart. To date, the most effective strategy to salvage the 

myocardium is timely reperfusion which is unfortunately associated with further tissue 

damage. This phenomenon, termed ischaemia reperfusion injury, is associated with 

mitochondrial structural damage which could lead to death of cells previously 

damaged by ischaemia. Damaged and dysfunctional mitochondria play a key role in 

mediating tissue damage in this setting, thus the swift yet selective removal of these 

damaged organelles by mitochondrial autophagy – mitophagy could be of importance 

in cell survival and therefore is a potential therapeutic target. 

Studies have shown that upregulation of autophagy during ischaemia/reperfusion is 

cardioprotective, however, very little is known about the role of mitophagy in this 

setting. Subsequently, the aims of this study were to (i) characterise the effect of 

ischaemia/reperfusion on functional recovery during reperfusion and to correlate this 

with mitochondrial oxidative phosphorylation capacity, infarct size and mitophagy in 

the working heart model using male Wistar rats; (ii) evaluate the effect of mitophagy 

manipulation on cardioprotection using the parameters listed above. To achieve this, 

used was made of melatonin, the pineal hormone, which is well-known for its 

cardioprotective effects.  

Methods: 

Male Wistar rat hearts were perfused ex vivo in the working mode using Krebs-

Henseleit buffer and glucose (10mM) as substrate. After a stabilization period of 30 

min, hearts were subjected to 20min global ischaemia followed by 30min reperfusion 

during which time functional recovery was monitored. Mitochondria were isolated from 

hearts at different times during the perfusion protocol: after stabilization for 30min, 

after 20min global ischaemia and after 30min of reperfusion. The mitochondrial pellets 

were used for measurement of mitochondrial oxidative phosphorylation using an 

Oxygraph as well as for western blotting to evaluate a number of indicators of 

mitophagy. In addition, hearts were subjected to the perfusion protocol as described 

above and freeze-clamped at the same time intervals for subsequent Western blotting 
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for mitophagy markers in the cytosolic fraction. In a separate series melatonin (0.3, 

50M) was added to the perfusate for 10min before and 10 min after ischaemia and 

the same parameters evaluated as above. For evaluation of infarct size by the 

tetrazolium method, hearts were stabilized for 30min, followed by 35min of regional 

ischaemia and 60min reperfusion.  

Results:  

Exposure of hearts to either 35min regional ischaemia/ 60min reperfusion or 20min 

global ischaemia/ 30min reperfusion was associated with impaired recovery of 

myocardial function during reperfusion, characterized by significant reduction in 

several haemodynamic endpoints including coronary flow, aortic output and total work 

performed. Exposure to 20min global ischaemia per se had no effect on mitochondrial 

oxidative phosphorylation function, but a significant reduction in QO2 States 3 and 4 

was observed after reperfusion, with glutamate/malate as substrates. Contrary to 

expectations, ischaemia/reperfusion did not upregulate mitophagy, as indicated by the 

reduced expression of PINK1, Parkin and TOM70 as well as markers of the alternative 

pathway (ULK1, DRP-1 and Rab9). 

Melatonin at both concentrations studied, significantly reduced the myocardial infarct 

size (p<0.0001), but did not improve mechanical recovery during reperfusion. In the 

global ischaemia model, melatonin increased mitochondrial oxphos during reperfusion 

only. While not having marked effects on the conventional PINK1/Parkin pathway, 

melatonin caused significant increases in the expression and phosphorylation of ULK1 

and DRP-1, suggesting upregulation of the alternative pathway of mitophagy.  

Conclusion:  

In this experimental model ischaemia/ reperfusion reduced (i) contractile function and 

(ii) oxidative phosphorylation during reperfusion. It also subdued both the (iii) 

conventional and alternative mitophagy pathways suggesting that mitochondrial 

fission, which is a prerequisite for mitophagy, may be impaired under these conditions. 

These changes may contribute to the impaired functional recovery during reperfusion. 

Melatonin’s cardioprotective effects were associated with upregulation of a novel 

mitophagy signalling pathway, the significance of which in its cardioprotective actions 

needs to be further elucidated.  
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ABSTRAK 

Miokardiale iskemie en selbeskadiging word deur ‘n vermindering in die 

bloedvoorsiening aan die hart teweeggebring. Tot op hede, is herperfusie van die 

iskemiese hart die mees effektiewe strategie om selbeskadiging te voorkom. 

Ongelukkig gaan herperfusie ook met verdere selbeskadiging gepaard, die 

sogenaamde verskynsel van herperfusie beskadiging. Herperfusie gaan gepaard met 

verdere beskadiging van selle wat reeds deur die voorafgaande periode van iskemie 

affekteer is. Beskadigde en disfunksionele mitochondria speel ‘n belangrike rol in 

hierdie scenario, gevolglik is die spoedige en selektiewe verwydering van hierdie 

organelle deur die proses van mitochondriale outofagie/mitofagie van kardinale belang 

vir oorlewing. Mitofagie mag dus ‘n potensiële terapeutiese teiken wees vir beskerming 

van die iskemies/herperfuseerde hart. 

Dit is voorheen getoon dat opregulering van outofagie tydens iskemie/herperfusie die 

hart teen beskadiging beskerm, maar min of geen inligting is beskikbaar aangaande 

die rol van mitofagie in hierdie verband nie. Die doelwitte van hierdie studie was dus 

(i) karakterisering van die effek van iskemie/herperfusie op funksionele herstel tydens 

herperfusie en die verband  met mitochondriale oksidatiewe fosforilasie, infarkt grootte 

en mitofagie in ‘n model van die geïsoleerde, geperfuseerde rothart; (ii) evaluasie van 

mitofagie manipulasie op beskerming van die hart deur gebruik te maak van 

melatonien, ‘n hormoon afgeskei deur die pineaalklier.  

Metodes 

Harte van manlike Wistar rotte is ex vivo geperfuseer met Krebs-Henseleit buffer en 

glukose (10mM) as substraat, volgens die werkhart tegniek. Na ‘n stabilisasie periode 

van 30min, is harte onderwerp aan 20min globale iskemie gevolg deur 30min 

herperfusie waartydens funksionele herstel gemonitor is. Mitochondria is op 

verskillende tye tydens die perfusie protokol geïsoleer naamlik na stabilisasie, na 

20min globale iskemie en na 30min herperfusie. Hierdie pellets is gebruik vir die 

meting van die oksidatiewe fosforilasie proses met behulp van ‘n Oksigraaf sowel as 

vir western blots vir evaluering van merkers van mitofagie. ‘n Addisionele series van 

harte is ook geperfuseer volgens bogenoemde protokol en die harte gevriesklamp vir 
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bereiding van sitosoliese fraksies vir daaropvolgende Western blots. Melatonien (0.3, 

50mM) is by die perfusaat gevoeg 10min voor en 10min na globale iskemie en 

dieselfde parameters evalueer soos bo gelys. Vir bepaling van infarkt grootte met die 

tetrazolium metode, is harte gestabilseer vir 30min, gevolg deur 35min streeks iskemie 

en 60 min herperfusie. 

Resultate 

Blootstelling van die geperfuseerde hart aan of 35min streeks iskemie/60min 

herperfusie of 20min globale iskemie/30 min herperfusie het funksionele herstel 

tydens herperfusie beduidend onderdruk, soos aangedui deur die verlaging in 

koronêre vloei, aorta en kardiale omset. Blootstelling van die hart aan 20min globale 

iskemie per se het geen effek op mitochondriale oksidatiewe funksie gehad nie, maar 

‘n beduidende onderdrukking in QO2 staat 3 en staat 4 is na herperfusie waargeneem, 

met glutamaat/malaat as substrate. In teenstelling met verwagtinge, het 

iskemie/herperfusie nie mitofagie opgereguleer nie, maar onderdruk, soos getoon 

deur die verminderde uitdrukking van mitochondriale PINK1, Parkin en TOM70 sowel 

as merkers van die alternatiewe pad van mitofagie (ULK1, DRP-1 en Rab9).  

Beide hoë en lae melatonien konsentrasies het die infarkt grootte beduidend verlaag, 

maar nie funksionele herstel tydens herperfusie verbeter nie. Melatonien het 

mitochondriale oksidatiewe fosforilasie slegs tydens herperfusie na 20min globale 

iskemie verbeter. Melatonien het geen effek op die konvensionele pad van mitofagie 

gehad nie, maar het die uitdrukking en fosforilering van ULK1 en DRP-1 beduidend 

verhoog, wat dui op opregulering van die alternatiewe pad van mitofagie. 

Gevolgtrekking 

In die eksperimentele model wat gebruik is, het miokardiale iskemie/herperfusie die 

kontraktiele herstel en oksidatiewe fosforilasie proses onderdruk tydens herperfusie. 

Dit het ook beide die konvensionele en alternatiewe paaie van mitofagie onderdruk, 

wat moontlik dui op inhibisie van die mitochondriale fissie proses. Beide hierdie 

prosesse mag tot die onderdrukking in funksie bydra. Daarenteen was die beskerming 

deur melatonien verleen, geassosieer met opregulering van die alternatiewe mitofagie 

proses en dus moontlik mitochondriale fissie. Die belang van hierdie proses in die 
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beskerming teen iskemiese beskadiging deur melatonien moet egter nog verder 

ondersoek word.  
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CHAPTER 1: BACKGROUND 

1.1. Introduction 

During embryogenic organogenesis, the heart, which is of mesodermal origin, is one 

of the earliest differentiating and functioning organs. Together with its conduits 

(arteries, veins and capillaries) the heart forms the cardiovascular system which has 

the core function of circulating blood which contains oxygen, nutrients, hormones and 

waste to and from cells in the body (Sandler, 2012). Like any other system in the body, 

the structure and function of the cardiovascular system can be altered and impaired 

by disease. Cardiovascular diseases (CVDs) are any disorders of the heart and blood 

vessels. There are several major CVDs and they include: ischaemic heart disease 

(IHD), cerebrovascular disease, peripheral arterial disease, rheumatic heart disease, 

congenital heart disease and deep vein thrombosis and pulmonary embolism (Steyn, 

2007; WHO, 2017; Heart foundation).  These major CVDs differ with regards to their 

underlying pathology, interaction with other organ systems and the population they 

occur in and are often the result of increased exposure to cardiovascular risk factors 

(Moran et al, 2013). 

Cardiovascular risk factors, controllable and uncontrollable (Table 1), not only increase 

the likelihood of CVD development through past and current exposure but can also 

contribute to CVD progression. These known risk factors, which were introduced by 

the Framingham Heart Study are the same worldwide and explain the majority of CVD 

burden within the population (Mensah, 2013). In Sub-Saharan Africa (SSA), however, 

cardiovascular risk factors in conjunction with rapid urbanisation and epidemiological 

transition (i.e. changes in patterns of population age distributions, mortality, fertility, 

life expectancy and causes of death) are the key drivers of the upsurge in CVD 

development, progression and ultimately mortality (Morgan et al. 2013; McKeown, 

2009). 
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Table 1: Controllable and Uncontrollable Cardiovascular Risk Factors (Adapted from Mensah, 
2013; Kalogeries et al. 2012; The Heart Federation, 2017) 

Controllable Uncontrollable 

High Blood Pressure Age 

High Total Blood Cholesterol Sex 

High Fasting Plasma Glucose and 
Diabetes 

Genetic 

Harmful Alcohol use Family History 

High Body mass index Poverty 

Nutrition: low dietary intake of fruits and 
vegetables, unhealthy diet 

Fetal programming 

Sedentary lifestyle  

Tobacco use/ smoking and exposure to 
second hand smoke 

 

Stress  

Pollution (household and ambient air)  

High Dietary Sodium intake  

 

CVDs have become a primary area of concern over the past few years since their swift 

incline to pandemic status. According to the World Health Organisation (WHO, 2017), 

CVDs account for 17.7 million deaths annually, which represents about 31% of all 

global deaths. Of these deaths 7.4 million were the result of IHD. In Africa 

communicable diseases, such as HIV/ AIDS and malaria, together with maternal, as 

well as neonatal risk factors are currently the leading cause of death. However, there 

is mounting evidence (see below) that the upsurge of non-communicable diseases 

such as CVDs will soon result in them being the leading cause of death and mortality 

in the region (Kenge et al. 2013; Mensah, 2013). 

According to Keats and colleagues (2017), 38% of the deaths that occurred in Africa 

were related to CVD, reflecting the growing threat expressed earlier.  A study 

conducted by Mensah and colleagues (2015) showed that SSA contributed to 5.5% of 
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the global deaths that were attributed to CVD. In addition, the SSA CVD contributed 

to 11.3% of all deaths.  Three years later CVDs have been deemed one of the top 

three causes of death in the SSA (Mensah et al. 2013, Zühlke, 2016). Considering the 

above, this comes as no surprise and it is projected that by 2030 the age standard 

mortality rates for ischaemic heart disease will rise by an estimated 70 and 74% for 

men and women respectively in SSA (Onen, 2013). To further aggravate the matter, 

research shows that the average age at which CVD death occurs in the region is the 

youngest in the world (Moran et al. 2013, Kenge et al. 2013). In South Africa, this trend 

is very similar: data shows that CVD accounts for 18% of deaths and this comes as 

no surprise since about 225 people die from heart disease daily (WHO 2014; Heart 

Federation, 2017). Furthermore, Steyn (2007) states that more than half the deaths 

caused by chronic disease including heart disease occur before the age of 65 years. 

These premature deaths have dire implications on the country’s workforce population 

and the economy at large.  

Considering the alarming CVD morbidity and mortality rates above there is an urgent 

need not only for control and prevention but also for the development of new therapies 

or drugs that will protect the heart from damage. Over the past few years’ research 

into interventions that can protect the heart against damage have been focused on the 

role of mitochondria in heart disease.  

1.2. Research Focus 

 Myocardial ischaemia is characterised by reduced blood flow to the heart due to 

partial or complete occlusion of the coronary arteries due to atherosclerosis and is 

associated with necrosis and apoptosis (Steyn, 2007; Andalib, 2017). In an effort to 

decrease myocardial ischaemic injury, reduce the size of the infarct and improve 

clinical outcomes, the preferred treatment is timely myocardial reperfusion (restoration 

of blood flow to an ischaemic area) through primary percutaneous coronary 

intervention (PCI) or the use of thrombolytic therapy (Yellon and Hausenloy 2007). 

Although being essential for recovery, ironically, the process of reperfusion has been 

clearly associated with further tissue damage. This phenomenon, first described by 

Jennings and colleagues (1977), is known as ischaemia reperfusion injury (IRI).  
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In IRI, the impaired electron transport chains (ETC/s) of dysfunctional mitochondria 

(Zhou et al., 2015) cause free radical generation in the ischaemic/reperfused 

myocardium. Consequently,   reperfusion is associated with huge bursts of free 

radicals resulting in oxidative stress, which is one of the critical role players in 

activating the opening of the mitochondrial permeability transition pore (MPTP), 

release of cytochrome c leading to apoptosis and aggravated IRI (Hausenloy and 

Yellon, 2003). This suggests that the mitochondrial redox state is an important 

modulator of cell survival (McFalls et al., 2003). For this reason it is important to 

explore how intrinsic processes such as mitophagy can be strengthened and 

manipulated to salvage cardiomyocytes in the setting of IRI.  

Mitophagy is the selective removal of damaged and dysfunctional mitochondria. It is 

an imperative process in cells which have a high density of mitochondria such as 

cardiomyocytes as it enriches the pool of healthy organelles (Suen et al., 2010; 

Jimenez et al. 2014). Although relatively much information is available regarding the 

mitophagic process, little is known about its role in myocardial ischaemia/reperfusion 

(I/R) and cell survival, creating a need for the present study. Consequently, 

manipulation of the mitophagic process with melatonin, a potent antioxidant and 

known cardioprotectant, may provide more insight into the therapeutic potential of 

mitophagy in heart disease.  

1.3. Research questions 

 How does ischaemia with and without reperfusion affect mitochondrial 

oxidative phosphorylation function and the mitophagic process? 

 Will manipulation of mitophagy affect functional recovery during reperfusion, 

infarct size (IFS) and mitochondrial oxidative phosphorylation capacity of 

isolated perfused rat hearts subjected to I/R?  

1.4. Research Aims 

Aim 1: To characterise the effect of I/R per se on the relationship between (i) functional 

recovery during reperfusion, (ii) mitochondrial oxidative phosphorylation capacity, (iii) 

IFS and (iv) mitophagy in the working heart model using male Wistar rats. 
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Aim 2: To evaluate the effect of manipulation of mitophagy by the pineal hormone, 

melatonin, on cardioprotection, using the parameters listed in aim 1. 

1.5. Research Objectives 

Aim 1: Objectives 

i. Determination of the effect of global I/R on the mechanical function of isolated 

perfused working rat hearts.  

ii. Isolation of mitochondria from hearts in objective (i) for evaluation of oxidative 

phosphorylation capacity and mitophagy. 

iii.  Evaluation of the functional recovery during reperfusion and IFS of isolated 

perfused hearts subjected to regional ischaemia.   

Aim 2: Objectives  

i. Examination of the effect of high (50µM) or low (0.3µM) melatonin 

concentrations on the functionality and recovery of isolated rat hearts subjected 

to global I/R.  

ii. Isolation of mitochondria from hearts in objective (i) for evaluation of oxidative 

phosphorylation capacity and mitophagy. 

iii.  Evaluation of the effects of high (50µM) or low (0.3µM) melatonin 

concentrations on the functional recovery and IFS of isolated hearts subjected 

to regional ischaemia.  
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CHAPTER 2: LITERATURE REVIEW 

2.1. Myocardial Ischaemia/Reperfusion and Injury 

Myocardial I/R embodies the transition of cardiomyocyte well-being from health to 

disease, adaptation and recovery. Theoretically speaking one would assume that 

treatment would restore cardiomyocyte well-being back to good health immediately. 

However, as this review reveals the intricacies of I/R, one will soon realise that the 

journey back to good health is a fight for survival.  

This review focuses on cardiac metabolic as well as mitochondrial processes that are 

central to the proposed study.  For a more detailed description of the pathophysiology 

of myocardial IRI, the following outstanding reviews (Murphy and Steenbergen 2008; 

Kalogeris et al. 2012; Mzezewa 2017) are recommended. 

2.2. Pathophysiology of Myocardial Ischaemia/Reperfusion injury 

The actin and myosin filaments in cardiomyocytes are crucial components of cross-

bridge formation and ultimately contraction. Adenosine triphosphate (ATP), which is 

generated mainly through mitochondrial oxidative phosphorylation, an oxygen 

dependent process,  and the metabolism of substrates such as glycogen and free fatty 

acids, are not only responsible for the various intracellular processes, but are also 

essential for the activation of myocardial contraction.  

Under normal oxygen conditions, the heart maintains high oxygen extraction levels of 

about 70-80% to generate 95% of the ATP levels which are derived from mitochondrial 

oxidative phosphorylation (also known as aerobic respiration). The remaining 5% is 

derived primarily from glycolysis and the citric acid cycle (Dunker and Bache 2008; 

Doenst et al. 2013). Approximately 60-70% of the generated energy is used primarily 

for cardiac work while the rest is used for the functioning of several ion pumps, 

particularly the Ca2+- ATPase located in the sarcoplasmic reticulum (Doenst et al. 

2013). Considering that the heart is a continuously contracting organ and which is 

devoid of hefty energy reserves, a constant, stable supply of oxygen and nutrients is 

vital for ATP generation and subsequent cardiac function. In light of the above, it is 

evident that an episode of myocardial ischaemia will have serious implications not only 

for cardiomyocytes but the heart at large. 
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2.2.1. Effects of Ischaemia 

Myocardial ischaemia, which is characterised by a reduction in blood supply, can be 

either global or regional. Global ischaemia is commonly associated with hospital 

procedures such as seen during a cardiac operation while regional ischaemia is 

characterised by complete or partial occlusion of coronary arteries as seen in 

ischaemic heart disease (Adapted from Boyle et al. 1996).  An ischaemic myocardium 

is associated with a variety of metabolic and biochemical changes. At a molecular 

level, the lack of oxygen induces the reduction or cessation of oxidative 

phosphorylation, ATP depletion, depolarisation of the mitochondrial membrane and 

subsequently, depression of contractile function.  In an effort to re-establish 

homeostasis, cardiomyocytes will invest in the following compensatory mechanisms 

described below (Fig 1).  

Initially, cardiomyocytes will switch to and increase anaerobic glycolysis for ATP 

generation, which in turn, results in the production and accumulation of lactate and 

hydrogen ions and consequently acidification of the intracellular milieu which prevents 

opening MPTP and cardiomyocyte hypercontracture (Kalogeris et al. 2012). The 

accumulation of hydrogen ions triggers the activation of the Na+-H+ ion exchanger 

which will remove H+ in exchange for Na+ entry. In an attempt to maintain mitochondrial 

membrane potential, the F-type ATPase (F1 F0 ATPase) pump functions in reverse, 

resulting in the breakdown of the available ATP as well as the accumulation of 

mitochondrial inorganic phosphate leaving the cardiomyocyte with no ATP supply. 

This ATP deficiency interrupts the functioning of the 3Na+-2K+ ATPase pump thus 

aggravating the intracellular Na+ overload. Subsequently, the reverse action of the 

2Na+-Ca2+ ion exchanger is activated and Na+ is extruded from the cell with 

concomitant Ca2+influx, which results in intracellular Ca2+ overloading.  Research 

shows that, intracellular Ca2+ overload induces a whole cascade of events that activate 

a wide range of systems that contribute to ischaemic cell death. 

 

Stellenbosch University  https://scholar.sun.ac.za



  

8 

 

   

Figure 1: During myocardial ischaemia, the lack of oxygen and nutrients switches cardiomyocyte metabolism to anaerobic respiration which results 
in the build-up of lactic acid and an acidic intracellular pH. This triggers activation of the Na+-H+ exchanger to extrude H+ and intrude Na+, which 
results in Na+ overload. Na+ overload activates the 2Na+-Ca2+ exchanger to function in reverse by removing 2Na+ in exchange for Ca2+, leading to 
intracellular calcium overload. The acidic milieu not only prevents myofibril contraction but it keeps the MPTP closed. During reperfusion, oxygen 
and nutrient levels are restored and this switches cell metabolism back to oxidative phosphorylation and leads to the wash out of lactic acid and 
the production of lethal ROS levels. Lactic acid wash out in turn restores the pH to physiological levels. Intracellular calcium overload triggers 
myofibril hypercontracture as well as mitochondrial Ca2+ uptake leading to mitochondrial Ca2+ overload. Lethal ROS production together with 
mitochondrial Ca2+ overload trigger MPTP opening.  IRI also triggers the activation of the inflammatory response (Adapted from Hausenloy and 
Yellon, 2013). Abbreviations: ROS- Reactive Oxygen Species; ETC- Electron Transport Chain; MPTP- Membrane Permeability Transition Pore;  Ca2+- 
Calcium Ion;  Na+- Sodium Ion;  H+ - Hydrogen Ion.  
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In an attempt to deal with the lethal intracellular concentration of Ca2+, cardiomyocytes 

trigger the uptake of Ca2+ into the mitochondria via the mitochondrial Ca2+ uniporter 

(Contreras et al. 2010; Szydlowska and Tymianski 2010). Ca2+ overload in the 

mitochondria can in turn result in the formation and opening of the MPTP which 

ultimately leads to cell death (Fig 1). In addition, intracellular Ca2+ overload can induce 

the activation of degrading enzymes such as nucleases, phospholipases and 

proteases.  

When the ischaemic period is long enough, these changes can compromise the 

membrane integrity and ultimately lead to cell death (Halestrap and Pasdois 2009).  

Another deadly target of intracellular Ca2+ overload is a family of cysteine proteases 

known as calpains. Their activation culminates in the degradation of mitochondrial and 

intracellular proteins. Calpain activity also modifies the contractile machinery by 

decreasing their Ca2+ sensitivity and maintaining impaired contractility despite the 

upsurge in intracellular Ca2+ (Buja et al. 1988; Buja 1991; Thandroyen et al. 1992; 

Avkiran and Marber 2002; Croall and Erfeld 2007). Furthermore, the calcium 

hypothesis suggests that Ca2+ overload results in the damage of the mitochondrial 

ETC which in turn leads to the production of free radicals (Goldhaber and Weiss 1992; 

Maxwell and Lip 1997).  

Changes induced by ischaemia are not only evident at a molecular level but are also 

imprinted in the cardiomyocyte ultrastructure. Ultrastructural changes can be induced 

by periods of ischaemia as short as 10min and deteriorate with increased ischaemic 

time (Edoute et al. 1983).  

Ischaemic damage is characterized by cell swelling, swollen or disrupted 

mitochondria, sarcoplasmic reticulum as well as changes in nuclear chromatin. 

Prolonged ischaemia can also result in the wave front phenomenon which is the death 

of cardiomyocytes from the sub endocardium towards the epicardium over time 

(Reimer et al. 1977). Thus while the changes in ischaemia start at a molecular level, 

it is important to bear in mind that their effects extend to the tissue and organ levels. 

It is evident that myocardial ischaemia results in an imbalance between the oxygen 

demand and supply and culminates in either the dysfunction or damage of the cardiac 

tissue or death with adequate ischaemic periods (Grover et al. 2004; Murphy and 
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Steenbergen 2008; Frank et al. 2012). Considering that ischaemia-induced changes 

are initially reversible, becoming irreversible after prolonged periods of ischaemia, it 

becomes important to act within the window of opportunity i.e. prior to the 

manifestation of irreversible changes. Thus currently, the most effective treatment 

strategy against myocardial ischaemia is timely myocardial reperfusion.  

2.2.2. Effects of Reperfusion 

Myocardial reperfusion is the revascularisation and subsequent restoration of blood 

flow to the ischaemic myocardium (Kalogeris et al. 2012).  It is associated with 

reoxygenation and substrate delivery for oxidative phosphorylation and normalisation 

of the previously acidic intracellular milieu of cardiomyocytes. Paradoxically, while 

myocardial reperfusion is initiated with the intention to salvage the viable myocardium, 

limit the size of the myocardial infarct (MI), preserve left ventricular (LV) systolic 

function and to avert the start of heart failure, it also induces tissue damage (Yellon 

and Hausenloy, 2007). This phenomenon known either as IRI, reperfusion injury or 

lethal reperfusion injury, is one of the four types of cardiac tissue dysfunctions that can 

occur due to myocardial reperfusion.  The other dysfunctions include myocardial 

stunning, reperfusion-induced arrhythmias and microvascular obstruction. These 

dysfunctions will be briefly explained below.  

Myocardial stunning refers to the contractile dysfunction that continues during 

myocardial reperfusion regardless of the absence of irreversible damage and the 

restoration of normal or close to normal coronary flow (Braunwald and Kloner 1982; 

Duncker et al., 1998). This phenomenon has various triggers and modulators (Duncker 

et al., 1998) and the myocardium usually recovers from this damage after several days 

or weeks (Yellon and Hausenloy, 2007). The sudden reperfusion of the myocardium 

in patients that undergo PCI may experience ventricular arrhythmias, reperfusion- 

induced arrhythmias, which can self-terminate or be treated (Hearse et al., 1977; 

Hausenloy and Yellon, 2013). Microvascular obstruction, which was defined by Krug 

et al. in 1966, is the failure to reperfuse a previously ischaemic region. Some 

contributing factors are capillary damage accompanied by impaired vasodilation and 

neutrophil plugging (for reviews see Duncker et al. 1998; Moens et al. 2005).  
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There is a great deal of uncertainty about the contribution of ischaemic injury and 

reperfusion injury to cardiomyocyte  death, which is partly due to the inability to 

accurately monitor the progress of necrosis during the change from myocardial 

ischaemia to reperfusion. This has sparked debates between researchers about 

whether IRI is an independent mediator of cardiomyocyte death separate from 

ischaemic injury or whether reperfusion only aggravates the cellular injury that was 

incurred during the ischaemic period (Yellon and Hausenloy, 2007; Kalogeris et al. 

2012).A hypothetical scheme (Fig 2) by Yellon and Hausenloy (ibid) shows that while 

reperfusion has great therapeutic potential, this potential is masked by the effects of 

the sustained injury due to IRI. In addition, this scheme also argues in favour of the 

theory that reperfusion only aggravates the cellular injury that was incurred during the 

ischaemic considering that without reperfusion the ischaemic damage incurred is 

extensive and the introduction of reperfusion does decrease the damage. 

Furthermore, reperfusion with a potent cardioprotective intervention further reduces 

IRI and results in a significant reduction in IFS.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Hypothetical illustration of the contribution of myocardial ischaemia, myocardial 
ischaemia with reperfusion and myocardial I/R plus a potent cardioprotectant to IFS due to IRI 
(Yellon and Hausenloy, 2007).  Abbreviations: IFS- Infarct Size 
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Despite this controversy, it is well established that during myocardial reperfusion IRI 

is the principal mediator of cardiomyocyte death. IRI has various mediators for 

example: intracellular Ca2+ overload, opening of the MPTP, inflammation, pH and 

oxidative stress in the form of reactive oxygen species (ROS). All these mediators 

have variable contributions to IRI and while their mechanisms of action attempt to 

restore homeostasis, their combined effect often overwhelms the cell and culminates 

in IRI. While all these mediators result in deleterious effects, ROS remains the front-

runner in mediating cell death (Anaya-Pardo et al. 2002).  In light of the above, it is 

evident that there is a need for therapeutic interventions and strategies that will 

efficiently abrogate all the mediators of IRI or the chief mediator of IRI i.e. oxidative 

stress (as depicted in Fig 3). 

 

 

 

 

 

 

 

Figure 3: Schematic representation of the various mediators of IRI. Much is known about the 
mediators of IRI such as inflammation, Ca2+ overload and pH changes. However, it is evident 
that ROS production from damaged and dysfunctional mitochondria is at the forefront of 
mediating damage.  Consequently, in the setting of IRI an efficient therapeutic agent is needed 
to restore the balance. Abbreviations: IRI- Ischaemia Reperfusion Injury; ROS- Reactive Oxygen 
Species; Ca2+- Calcium Ion.  

2.2.3. Cardioprotection 

A major breakthrough of a non-pharmacological intervention or mechanical 

intervention was in the form of ischaemic conditioning. The discovery of ischaemic 

preconditioning and later remote conditioning as well as postconditiong by Murray et 

al. (1986), Przyklenk et al. (1993) and Zhao et al. (2003) respectively, revealed that 

brief ischaemia/ reperfusion cycles prior to an ischaemic insult, as in preconditioning, 
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or to a remote organ, as in remote conditioning or at the onset of reperfusion, as with 

postconditioning can trigger adaptive responses that protect the heart against IRI. The 

discovery of preconditioning had far-fetched implications: not only did it prove to be 

the most effective intervention as yet to reduce IFS, but subsequent studies shed light 

on the signalling mechanisms involved in cardioprotection. This in turn, led to a shift 

towards pharmacological interventions such as adenosine, opioids and bradykinin 

receptor agonists, to name but a few. Experiments and  clinical trials have focused on 

interventions ranging from increasing the bioavailability of nitric oxide (NO), 

scavenging of free radicals, inhibition of platelet aggregation to attenuating the 

accumulation of hydrogen peroxide in post ischaemic tissue, targeting the MPTP, 

metabolic modulation, temperature modulation, Na+/H+- exchange inhibitors, anti-

apoptotic and anti-inflammatory drugs and more recently to anaesthetics (Grisham et 

al. 1998;  Anaya-Pardo et al. 2002; Moens et al. 2004; Yellon and Hausenloy 2007; 

Yellon and Hausenloy 2013; Ibáñez et al. 2015; Xia et al. 2016). Advances in gene 

therapy and stem cell biology also brought new and exciting approaches that still  need 

clinical evaluation (Isner, 2002; Buja and Vela, 2008; Spath et al., 2016). In addition 

to the above, new animal models have also been introduced to identify novel therapies 

(Asnani and Peterson, 2014).   

Thus the discovery of IRI paved the way for the investigation of various therapeutic 

strategies, some of which not only made their way to the clinical trial platform, but they 

also managed to unravel certain intricacies about IRI that were as yet unknown. 

Unfortunately a number of strategies that have been very successful in animal models 

failed to produce similar beneficial results in human patients.  

Thus, since the translation of these treatments from the bench to the bedside yielded 

very little or no fruits, the quest for new therapeutic strategies continues. More recently, 

there has been great interest in the role of the mitochondrion as a regulator of 

energetics and cell viability (Murphy and Steenbergen, 2008). According to Buja and 

Weeransinge (2010) the most deleterious event in IRI is “the loss of mitochondrial 

integrity subsequent to opening of the membrane PTP”, which again reiterates the 

point that the mitochondrial redox state is an important modulator of cell survival in IRI 

(McFalls et al. 2003). Thus recent studies have become directed at regulating 
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mitochondrial function (Spath et al. 2016). The section below will attempt to unravel 

the role of mitochondria in the setting of IRI and their potential as a therapeutic target.   

2.3. Mitochondria, ROS and Cell Damage 

2.3.1. Mitochondria  

Mitochondria are simplistic organelles that play a vital role in the cell. They consist of 

an outer mitochondrial membrane (OMM) and inner mitochondrial membrane (IMM). 

The OMM is responsible for separating the entire organelle from the cytoplasm and 

also consists of channels known as porins for the transport of certain molecules (Fig 

4). The IMM divides the internal components into various compartments namely the 

matrix core and the intermembranous space which is compartmentalised into plenty 

of cristae (Hwang and Kim 2013). Amongst other things, the selectively permeable 

IMM is responsible for maintaining the transmembrane potential (Turer and Hill 2010).  

In the myocardium mitochondria are packed into dense complex structures that 

account for about 35% of the myocardium cell volume (Hwang and Kim, 2013).   They 

have a wide range of functions and play a role in NADPH, ATP and GTP production 

in the citric acid cycle, biosynthesis of amino acids, calcium signalling, stress response 

and cell death (Kühlbrant 2015). Despite their multiple functions mitochondria are well-

known for their central role in ATP production and their infamous role in the production 

of ROS and cell death in certain pathological conditions.   

 

 

 

 

 

 

 

Figure 4: Schematic of the mitochondrial structure and various compartments (Kühlbrant 2015). 

Stellenbosch University  https://scholar.sun.ac.za



  

15 

 

2.3.1.1. Oxidative phosphorylation 

As previously mentioned, the bulk of ATP production is produced through 

mitochondrial oxidative phosphorylation. This process is localised in the IMM where 

the ETC and associated enzymes interact to meet the energy demands of the 

cardiomyocytes. Briefly, under normoxic conditions, the generation of ATP 

commences when the soluble carrier molecule NADPH and FADH2 feed electrons 

from various metabolic processes into Complex I and Complex II of the ETC 

respectively. The electrons are transferred to a quinol in the membrane and 

subsequently to Complex III. From Complex III electrons are transferred to Complex 

IV and ultimately to oxygen to form water (Fig 5).  

 

 

Figure 5: Schematic representation of the ETC and the various enzymes (Kühlbrant, 2015). 

It is well established that while more than 90% of the oxygen that enters the cell will 

be used for the production of water about 1-2% of this oxygen will contribute to the 

formation of superoxide, a form of ROS which will be discussed in the next section 

(Chen Q et al. 2003; Murphy and Steenbergen, 2008; Kalogeris et al. 2012). 

Superoxide production is the result of the reaction between “leaking electrons” from 

complex I and III and the unreduced oxygen. Throughout the electron transfer process, 
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protons are being pumped from the matrix into the crista lumen creating the proton 

gradient that will be ultimately used for the phosphorylation of ADP to form ATP 

(Kühlbrant, 2015).  According to Hwang and Kim (2013) the mitochondrial oxidative 

phosphorylation regulatory pathway remains to be fully understood, however studies 

do suggest that cytosolic calcium (Ca2+) and ADP/ATP/inorganic phosphorous play a 

vital role in the regulation of energy generation.  

For the purpose of this study the role of mitochondria in ROS production and cell death 

will be discussed briefly. (For more comprehensive and in-depth reviews on the 

structure and function as well as the role of calcium in the mitochondria see the 

following references: Hwang and Kim, 2013; Kühlbrant, 2015; Andalib et al. 2017; 

Mzezewa 2017).   

2.3.1.2. Mitochondria and ROS  

While the ETC and concomitant production of ATP are essential for contractile activity, 

they are also associated with the generation of ROS. Reactive oxygen species are 

often referred to as free radicals, which are atoms or molecules that have unpaired 

electrons and exist independently (Raedshelders et al. 2012). This definition however 

does not encompass molecules such as hydrogen peroxide, which form part of ROS 

but are in fact non- free radicals. Thus, ROS should be defined as free radicals and 

non-free radicals which are produced from oxygen (Poljsak et al. 2013). ROS can be 

in the form of superoxide (O2
-), which the most abundant form of ROS, hydrogen 

peroxide (H2O2) and the very toxic hydroxyl radical (OH-).   

Mitochondria are responsible for ~90% of cellular ROS production, with complexes I 

and III being the chief contributors to superoxide production (Balaban et al. 2005; 

Herrero and Barja 1997). The beneficial effects of ROS are evident at basal levels, 

where they are released in low or adequate amounts by the ETC and other cellular 

processes. This allows them to function as mediators for numerous cellular signalling 

cascades such as stress adaptation and cell growth (Zhou et al. 2015). The beneficial 

effects of ROS are also seen in ischaemic preconditioning and postconditioning, where 

ROS has been suggested to function as a secondary messenger in activation of 

conditioning mediators as well as the Reperfusion Injury Salvage Kinase (RISK) 

pathway, both of which  confer cardioprotection in I/R (Hausenloy et al. 2005). Under 
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these conditions, excess ROS can also be efficiently removed by endogenous 

scavenger mechanisms located within cells; these include systems such as 

superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione (GSH), 

catalase, uricic acid, lipoic acid and coenzyme Q. In the event that the endogenous 

systems do not function efficiently, which is highly unlikely during homeostatic 

conditions, excess ROS can also be removed via exogenous antioxidants indigested 

through dietary or supplementary means.  These include lipid soluble antioxidants 

such as vitamin E and C, carotenoids and polyphenols such as flavonoids (Poljsak et 

al. 2013).  

Table 2 below provides a summary of the major antioxidant systems as well their 

location and action in cardiomyocytes. For an in depth description on the antioxidant 

status of cardiomycytes please refer to the excellent review by Dhalla and colleagues 

(2000) as well as Luschchak (2014). This topic is not within the scope of the project 

and consequently is briefly highlighted.    
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Table 2: Summary of some of the major antioxidants in cardiomyocytes together with their 
location and mechanism of action (adapted from Dhalla et al. 2000).  

Name Location Mechanism of action  

Cu, Zn SOD Cytoplasm, cell surfaces 
and mitochondria 

Catalyses O2
.- dismutation to H2O2  

2O2
.-+ 2H+  H2O2 + O2 

Mn SOD Mitochondria Catalyses O2
.- dismutation to H2O2  

2O2
.-+ 2H+  H2O2 + O2 

Catalase Peroxisomes and 
mitochondrial membrane 

H2O2  2H2O + O2 

Glutathione peroxidase Cytoplasm  H2O2 + 2GSH  2H2O + GSSG 

Glutathione Intracellular Cellular reductant 

CoenzymeQ10 
(unbiquinone) 

Cell membrane Redox active electron carrier 

Vitamin E (α-
tocopherol) 

Cytoplasm and plasma Break lipid peroxidation chain  and 
LDL reaction 

Pro-vitamin A (ß-
Carotene ) 

Plasma Inhibits the oxidation of LDL 

Vitamin C (ascorbic 
acid) 

Cytoplasm and Plasma Directly as an antioxidant or as a 
cofactor for vitamin E 

Abbreviations: LDL- Low density lipoprotein 

The noxious effects of ROS are exhibited during I/R, when the myocardium is exposed 

to high concentrations of ROS over an extended period of time. Generally it is well 

accepted that reperfusion is associated with huge bursts of ROS upon reperfusion. 

However, Raedschelders and colleagues (2012) oppose this school of thought and 

consider it somewhat misleading since a large body of evidence demonstrated that 

ROS production also occurs at sub-lethal levels in the myocardium during ischaemia 

(Zweier et al. 1987; Vanden Hoek et al. 1997; Becker et al. 1999 ). This misleading 

statement stems from the perception that oxygen levels in the myocardium instantly 

fall to zero however, this could have not been further from the truth. According to 

Murphy and Steenbergen (op.cit.) “…even in a global ischaemia model of ischaemia 
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oxygen does not immediately fall to zero, so there is initially some oxygen to generate 

ROS”.  

This statement is also true in vivo: according to Merx et al. (2001), myoglobin serves 

as an initial oxygen reservoir during ischaemia however, this reservoir becomes swiftly 

depleted.  Considering the above, it is important to bear in mind that ROS production 

does occur during ischaemia and the sub-lethal levels are escalated to lethal levels 

upon reperfusion.  During ischaemia the impaired ETCs of damaged and dysfunctional 

mitochondria result in the incomplete reduction of the residual oxygen resulting in the 

formation of ROS (Turner and Hill, 2010). Damaged mitochondria produce about 10-

fold the amount of ROS than healthy mitochondria (Jimenez et al. 2014).   

Other ROS Producing Systems 

In addition to the ROS produced by the ETC, there has been emerging evidence of 

mitochondrial ROS production through two other major systems namely p66Shc and 

monoamine oxidase (MOA) (Di Lisa et al. 2009). p66Shc belongs to the She proteins 

which play a role in Ras signalling. A spliced variant of the proteins are localised in the 

mitochondria; unlike its counterparts p66Shc is not associated with Ras signalling but 

with superoxide production. A recent study by Arany and colleagues (2010) shows 

that oxidative stress phosphorylates p66Shc at the serine residue resulting in its 

translocation to the OMM where it binds and oxidises cytochrome c. This process 

results in the production of ROS. MOAs are located in the OMM where they play a role 

in the removal of the amino group (deamination) from monoamine neurotransmitters 

and dietary tyramines resulting in the production of hydrogen peroxide and aldehydes. 

They are implicated in contributing to IRI with increased levels in the circulation as well 

as through the production of hydrogen peroxide (Di Lisa et al. 2009; Kaludercic et al. 

2014).  

In addition to mitochondrial ROS, other cellular processes or systems which contribute 

to ROS production during I/R include xanthine oxidase, cytochrome p450, NAD(P)H 

oxidase and the immune system. The xanthine oxidase enzyme is implicated in the 

production of ROS in the reperfused heart. Under normoxic conditions xanthine 

oxidase is in the form of xanthine dehydrogenase which is responsible for the 

reduction of NAD to NADH through xanthine. (Maxwell and Lip, 1997).  During 
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ischaemia however, the substrates of xanthine oxidase, namely xanthine and 

ultimately hypoxanthine (which is the target substrate), accumulate and upon 

reperfusion they become oxidised to form superoxide (Fig 6) (Dewall et al. 1971; Xia 

and Zweier 1995).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Schematic illustration of the simultaneous conversion of xanthine dehydrogenase to 
xanthine oxidase, the breakdown of purine to nucleotides and ultimately the target substrate, 
hypoxanthine, during ischaemia. Its accumulation creates the perfect opportunity for 
superoxide production during ischaemia (Maxwell and Lip, 1997). 

Injury during ischaemia also leads to the activation of the endothelium, which becomes 

permeable, and the recruitment of inflammatory cells (such as neutrophils) which is 

facilitated by adhesion molecules and ultimately leads to myocardium toxicity. 

Protease secretion and ROS generation, through the NADPH oxidase system (Nox 2 

in cardiomyocytes), are some of the factors that contribute to their toxicity (Kvietys and 

Granger 2012; Raedschelders et al., 2012).  Furthermore the generation of ROS 

contributes to a positive feedback loop resulting in the accumulation of inflammatory 

cells which also increased ROS production (Maxwell and Lip 1997; Turner and Hill 

2010; Ibáñez et al. 2015). Other potential sources of ROS during I/R include free metal 
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ions which produce hydroxyl radical from the Fenton and Haber-Weiss reactions 

(Maxwell and Lip 1997).  

In conjunction with the above, two important concepts to also take into consideration 

when discussing ROS in I/R or IRI are the effects of NO and the concept of ROS-

induced ROS release (RIRR). NO plays an important protective as well as regulatory 

role in the vasculature. According to Grisham and colleagues (1999) it has direct and 

indirect effects: the former is often beneficial and mostly protective for example 

prevention of the formation of radicals by hydrogen peroxide while the latter is 

detrimental and results in the interaction of ROS forming potent reactive nitrogen oxide 

species (RNOS) such as dinitrogen trioxide or peroxynitrate. The production of RNOS 

in I/R is the result of NO production, which is associated with mitochondrial cytochrome 

c oxidase during ischaemia, and ETC superoxide production (Golwala et al. 2009). 

The detrimental effects of RNOS production, particularly peroxynitrate, in I/R are 

associated with damage to proteins, lipids and DNA (Ferdinandy and Schulz 2003). 

Excess ROS leads to the induction of RIRR, which is a self-propagating phenomenon 

in which MPTP opening and ROS release from one mitochondrion could trigger ROS 

release as well depolarization of adjacent mitochondria (Zorov et al. 2000). Both these 

phenomena contribute to the escalating levels of reactive species which lead to the 

induction of cell damage and death which will be discussed below.  

As the major contributor to ROS production it is inevitable that mitochondria will also 

become a target of ROS. Mitochondria are an ideal target of ROS for two reasons, 

firstly ROS are highly reactive and short lived molecules thus their effects will be 

substantial in their immediate area surrounding their site of production. Secondly, 

mitochondrial components such as the ETC, mitochondrial membrane and 

phospholipid constituents could be a major target due to biological composition; this 

concept will be further explored below with the mechanisms of ROS attack.  There are 

various mechanisms of ROS attack and they include lipid peroxidation, DNA damage, 

protein oxidation and nitration, matrix metalloproteinases, and mitochondrial 

permeability transition. These mechanism will be discussed in detail below. 
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2.3.1.3. Lipid peroxidation 

Lipid peroxidation has been suggested to be the major mechanism of a ROS attack 

(Petrosillo et al. 2005), the mechanism which is associated with biological membranes 

which consist of phospholipid bilayers, responsible for encapsulating cells and 

organelles. To successfully fulfil their function the phospholipid bilayers need to 

maintain a balance between membrane integrity and fluid. This balance is dependent 

on the composition of unsaturated and saturated fatty acids. In lipid peroxidation, free 

radicals such as superoxide disrupt the double bonds of polyunsaturated acids 

resulting in the formation of conjugated dienes (double bonds separated by a single 

bond) (Adapted from Raedschelders et al. 2012). Consequently, the level of 

conjugated diene formation may be attributed to the level of oxygen radical production 

(Pertosillo et al., 2005). These fatty acid modifications not only affect the functional 

integrity of the membrane but can also yield carbon centred and peroxyl radicals which 

can further aggravate damage (Radi et al. 1991 a-b; Renner et al. 2005).  

The mitochondrial phospholipid cardiolipin is a good example of lipid peroxidation 

damage: it is most abundant in the mitochondria and exclusively located in the IMM. 

It has a high unsaturated fatty acid content and is primarily associated with stabilising 

the ETC complex and mitochondrial bioenergetics (Chicco and Sparanga, 2006).  

Cardiolipin could possibly be amongst the earliest targets of ROS and ultimately lipid 

peroxidation either due to their location or abundant unsaturated fatty acid content 

(Petrosillo et al. 2003). 

2.3.1.4. Protein nitration and oxidation 

According to Stadtman and Levine (2003), amino acid residues in proteins as well as 

free amino acids are highly susceptible to oxidation by several types of ROS that are 

generated through pollution, irradiation and normal metabolic processes. Oxidation, 

which is a direct form of ROS attack, denatures proteins by cross-linking functional 

groups, thereby altering the hydrophobicity of amino acids on protein surfaces and 

cleavage of peptide bonds.  Previous studies unravelled the mechanisms of ROS-

mediated oxidation and implicated abstraction (hydrogen removal by the hydroxyl 

radical) as the major form of attack. The initial sites of attacks include, but are not 

limited to, the α-carbons of amino acids and protein poly-peptide backbone (Stadtman 
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and Levine, 2003). In IRI cardiomyocytes can undergo cell death either through 

apoptosis or necrosis even when the subcellular and cellular membranes are 

functionally intact. In this instance, cell death is triggered by the non-enzymatic 

modifications of cellular proteins by ROS. In addition to the activation of necrosis and 

pro-apoptotic proteins, the contractile machinery also sustains damage contributing to 

the myocardial stunning. (Van Eyk et al. 1998; Kloner and Jennings 2001; Krijnen et 

al. 2002).  

Proteins can also be subjected to indirect forms of ROS attack. In this setting ROS 

generation leads to the formation of reactive molecules such as reactive aldehydes, 

which are cleaved products of ROS-mediated lipid peroxidation. These reactive 

aldehydes become the mediators of indirect ROS attack (Raedschelders et al. 2012). 

Irrespective of the mechanism, it is evident that this type of damage will culminate in 

the death of cardiomyocytes.  

2.3.1.5. DNA Damage 

In view of its role in the cell, DNA damage will have far-reaching consequences. DNA 

damage by ROS is similar to the manner by which it affects proteins. DNA can be 

damaged through hydrogen abstraction by the hydroxyl radical followed by 

modification and/or fragmentation of purines or pyrimidines such as guanine or 

cytosine respectively (Adapted from Kang and Kim 1997). This damage can activate 

apoptotic pathways and alter myocardial protein expression. Induction of these 

processes amongst other things, can deplete myocardial energy and disrupt the 

restoration of energy by inhibiting glycolysis as well as mitochondrial function (Szabó 

and Dawson, 1998). Raedschelders and colleagues (2012) do however bring to our 

attention that while DNA damage can trigger apoptotic cascades, they are actually 

more likely to occur from damage to proteins and cellular membranes. In addition, 

while DNA damage is often synonymous with mutations, ROS-mediated genetic 

mutations are generally not a characteristic of myocardial IRI (Adapted from 

Raedschelders et al. 2012).   
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Apart from DNA damage, other genetic changes that can cause I/R damage are 

epigenetic changes. These changes have been extensively reviewed by Kalogeris and 

colleagues (2012) and will not be discussed here as they do not contribute to any of 

the aspects covered in the scope of this study.  

2.3.1.6. Matrix metalloproteinases 

As previously mentioned, the myocardium can undergo structural rearrangements. 

These rearrangements occur when the myocardium is subjected to prolonged sub-

lethal ischemia and result in reduced contractility or myocardial stunning which was 

briefly discussed (Section 2.2.2). These changes can proceed either due to calpains 

or to extracellular matrix metalloproteinase (MMP) activity.  Calpains and MMP activity 

target contractile proteins such as the myosin light chain, α-actin and cardiac troponin 

(Cohen et al. 2006; Sung et al. 2007; Zhang et al. 2011). Both of these intracellular 

proteolytic enzymes are activated through various mechanisms, for example calpains 

activity is triggered by calcium overload and MMPs are activated transcriptionally in 

the setting of chronic remodelling. In addition, they can also be induced by 

peroxynitrite and hydrogen peroxide (H2O2) mediated proenzyme cleavage (Viappiani 

et al. 2009). In essence, MMP activity upregulation is the result of ROS and reactive 

nitrogen species (RNS) generation during I/R.  

2.3.1.7. Mitochondrial Permeability Transition and MPTP opening   

 The upsurge of ROS production during myocardial I/R results in a cellular process 

known as mitochondrial permeability transition (Di Lisa et al. 2001; Halestrap et al. 

2004; Kim et al. 2003). During ischaemia this process and consequently MPTP 

opening is strongly inhibited by the acidic intracellular milieu (Kim et al. 2003; Kalogeris 

et al. 2012). Induction of permeability transition occurs during the first few minutes of 

reperfusion when the intracellular pH begins to shift towards homeostatic levels. This, 

together with matrix calcium and oxidative stress, amongst other things, culminates in 

the formation and opening of the MPTP (Halestrap 2009; Ong and Gustafsson 2012).  

The MPTP is considered to be an evolutionary conserved, non-selective pore located 

within the IMM. MPTP formation and opening results in the permeability for molecules 

which are smaller than 1.5 kDa in size.  The molecular identity of the pore remains a 

mystery. According to Karch and Molkentin (2014) “… the molecular identity of the 
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MPTP has been the subject of a protracted scientific debate for nearly three decades”. 

Despite all the debates, research from the past few years has proposed two MPTP 

models. The first model suggests that the MPTP is a single functional unit which spans 

the intermembrane space and is regulated by cyclophilin D (CypD). This model 

suggest that the MPTP consists of the voltage-dependent anion channel (VDAC) as 

an OMM component and adenine nucleotide translocator (ANT) as an IMM component 

(Halestrap 2009; Bernardi 2013; Karch and Molkentin 2014). In addition, the 

mitochondrial phosphate carrier (PiC) was hypothesised to also be an inner membrane 

component since it can bind to CypD. 

Recently, this long standing model has been refuted by new findings which sparked 

renewed interested into the molecular identity of the MPTP (Baines et al. 2009; Kwong 

et al. 2014; Gutièrrez-Agullar et al. 2014) The current model of the MPTP suggests 

that it consists of inner and outer membrane components which function separately in 

membrane opening. Proapototic proteins Bax or Bak have been suggested to form the 

outer membrane component while the c-subunit of F1F0 ATP synthase forms the inner 

membrane pore-forming component (Karch et al. 2013; Alavian et al. 2014). This 

model also suggests that the oligomycin sensitivity- conferring protein facilitates pore 

opening while PiC and ANT function as c-subunit ATP synthase regulators (Karch and 

Molkentin op.cit.).  

Despite the uncertainty surrounding MPTP identity, researchers consent that pore 

formation allows for the passage of H+ ions back into matrix, which dissipates the 

mitochondrial membrane potential, disrupts ATP production by uncoupling oxidative 

phosphorylation and ultimately results in the depletion of the limited ATP stores. In 

addition, mitochondrial swelling and even rupture occur due to the colloid osmotic 

pressure exerted by large matrix proteins as well as water passing through due to its 

osmotic gradient. In conjunction with the above, cardiolipin peroxidation results in the 

release of cytochrome c which will initiate pro-apoptotic signalling cascades (Adapted 

from Kagan et al. 2005; Gustafsson and Gottlieb, 2008).  

A cell can recover and survive mitochondrial permeability transition if the OMM 

remains intact. In the event of outer membrane rupture, a cell will undergo apoptosis 

if it has sufficient energy or in the absence of sufficient energy it will become necrotic 
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(Halestrap et al. 2004; Kim and Lemasters 2003; Tatsumi et al. 2003). While it is 

evident that ROS generation plays a role in MPTP pore opening, there is a blurred 

line. According to Petrosillo and colleagues (2005), it is unclear whether ROS 

generation is a consequence of pore opening or whether it plays a vital role in the 

signalling cascade that causes pore opening.   

In conclusion, it is evident that the production of ROS is unavoidable and essential 

since they are by-products of metabolism and are required for key processes such as 

signalling (Adapted from Di Meo et al. 2016). Secondly, their cellular concentrations 

are highly dependent on the balance between the rate of their production and 

clearance by the various intrinsic antioxidant compounds and enzymes. In IRI, we see 

that these various systems are overwhelmed or in some cases such as with NO they 

become suppressed. This results in elevated ROS levels which can facilitate 

cardiomyocyte damage or death through mechanisms such as lipid peroxidation or 

necrosis respectively. Lastly, it seems that in I/R, ROS do not act alone, but it also 

contribute to the other IRI mediators (see Table 3 below). 
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Table 3: Summary of the various changes that cardiomyocytes are subjected to during the 
transition from normoxia to ischaemia and reperfusion (adapted from Raedschelders 2012; 
Lushchak, 2014). 

 

Considering that in the setting of IRI, the upsurge of ROS production is primarily due 

to damaged and dysfunctional mitochondria it becomes important to enhance intrinsic 

systems such as mitophagy which selectively removes damaged and dysfunctional 

mitochondria. Autophagic processes, such as mitophagy, and the various cell death 

pathways, such as apoptosis, play an important role in cell health and survival. 

However, they could also be detrimental. This dual role will be elucidated in the next 

section.  

Condition Sources of 
ROS 

Intensity of 
ROS 
Production 

Molecular 
Outcome  

Physiological 
Outcome 

Normoxic Mitochondrial 
ETC 

Low Antioxidant 
systems 

Signalling, 
adaptive 
response   

Ischaemia Mitochondrial 
ETC, Cellular 
Xanthine 

Intermediate/ 
Sub-lethal 

Antioxidant 
Systems,  

Inflammation 
Proteins, 

Heat Shock 
Proteins 

Adaptive 
response vs. 
damage to 
cellular 
components  

Reperfusion Mitochondrial 
ETC, Cellular 
Xanthine 
Oxidase, 
Immune 
System, NOS 
uncoupling  

High/ Lethal Overwhelmed/ 
suppressed  
antioxidant 
systems, lipid 
peroxidation, 
protein nitration 
and oxidation , 
DNA damage, 
MMP damage, 
mitochondrial 
permeability 
transition 

Autophagy, 
apoptosis, 

necrosis, 
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2.3.2. Autophagy and Cell death- the fight for survival  

2.3.2.1. Autophagy  

Currently there are two schools of the thought about the proliferative ability of mature 

cardiomyocytes. The first one, which has been widely accepted, states that 

cardiomyocytes are long-lived, terminally differentiated (TD) cells. This means that the 

heart consists of a fixed number of cardiomyocytes which will be maintained until the 

death and this notion is attributed to the stance that once cardiomyocytes became 

specialized they lose their proliferative ability (adapted from Sacco et al. 2013). The 

second one not only challenges the simple definition of TD cells as well as their 

proliferative ability  but it argues that cardiomyocytes can proliferate to a certain extent 

and even goes as far as suggesting five potential sources of cardiomyocytes in the 

adult heart (Leri et al. 2016). Regardless of which premises one chooses to support, 

it is generally accepted that autophagy is essential for housekeeping.  

Autophagy is one of the two protein systems found in cells. The second system, which 

will not be discussed in detail as it does not form part of our study, is the Ubiquitin- 

Proteasome System (UPS) which is responsible for degradation of short-lived 

proteins. Briefly, the lysine residues of the short-lived proteins that are targeted for 

degradation are tagged with ubiquitin molecules and are ultimately delivered to the 

proteasome for degradation (Hochstrasser 1996). Autophagy on the other hand, is the 

intracellular process that is responsible for the degradation of long-lived proteins and 

organelles that are ageing, damaged or in excess by delivery to the lysosomes 

(adapted from Mei et al. 2015).   

There are three types of autophagy namely: microautophagy, chaperone-mediated 

autophagy (CMA) and macroautophagy. They differ in terms of how they deliver their 

cargo to the lysosome for degradation (Sridhar et al. 2012). The degraded products of 

all the forms of autophagy, which include but are not limited to amino acids and fatty 

acids,  can be used for anabolic processes such as protein synthesis and energy 

production (adapted from Rabinowitz and White, 2010; Mei et al.2015). Consequently, 

autophagy not only serves as a system for the elimination of cellular cargo and 

misfolded proteins but it also serves as a recycling system which provides energy and 

building materials (Mei et al. 2015).    
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Microautophagy involves the direct uptake of substrates by the lysosomes through 

membrane invagination, while in CMA the substrates that are targeted for degradation 

contain a KFERQ-like motif i.e. a pentapeptide sequence. In this form of autophagy a 

chaperone heat shock cognate 71-kDa protein will bind to the KFERQ-like motif on the 

substrate and will then translocate to the lysosome where it will interact with the 

lysosomal membrane receptor lysosomal – associated membrane protein 2A 

ultimately resulting in degradation ( Adapted from Orenstein and Cuervo 2010) . The 

rest of this review will focus on macroautophagy which forms the core of this study 

and is the most predominant and best studied type of autophagy.  

Macroautophagy (referred to as autophagy hereafter) is characterised by the de novo 

synthesis of a cup-shaped double membrane vesicle (autophagosome) which will 

engulf the target substrates or organelles and deliver them to the lysosome for 

degradation. Genetic screening has identified approximately 30 autophagy-related 

(Atg) genes, which encode the Atg proteins that orchestrate autophagy (Sciarretta et 

al. 2011; Subramani and Malhotra, 2013). To date, two types of autophagy have been 

identified namely selective and non-selective autophagy. Non- selective autophagy, 

which is inducted during starvation, occurs to supply cells with vital components for 

energy and anabolic processes until nutrients are available again. Selective 

autophagy, such as mitophagy, occurs during nutrient rich conditions as well as 

stressful conditions such as I/R. It involves the removal of damaged and dysfunctional 

organelles as well as protein aggregates that could be toxic to the cell (Adapted from 

Youle and Narendra, 2011).   

According to Maejima and colleagues (2015) autophagy can be separated into several 

steps and they include induction, recognition and selection of the cytoplasmic 

substrate, formation of the autophagosomes around the substrate, autophagosome-

lysosome fusion, degradation of the autolysosomal contents and release of the 

degraded substrates into the cytoplasm. A detailed description of the molecular 

mechanisms as well as signalling cascades that are involved in some of these steps 

can be found in the excellent reviews by He and Klionsky (2009) Hamacher-Brady 

(2012) and Mei et al. (2015).  This review will highlight the key aspects.   
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Under basal conditions autophagy occurs at low levels and serves to maintain a 

healthy content of long lived proteins and cellular organelles. When the cell is devoid 

of the appropriate signals for autophagy induction, the mammalian target of rapamycin 

(mTOR) maintains ULK1 in the inactivated phosphorylated form. In the presence of 

the appropriate cellular stimuli mTOR is inactivated and ULK1 is stimulated allowing it 

to activate the Beclin-1 complex. The Beclin-1 complex together with other Atg 

proteins will facilitate the formation of the double membrane autophagosome 

(Hamacher-Brady, 2012; Linton et al. 2015; Mei et al. 2015). This process is 

characterised by the formation of a small isolation membrane known as a phagophore. 

Researchers acknowledge that the origin of the phagophore is unknown however, it is 

speculated that it could originate from the endoplasmic reticulum (ER) which is the site 

of autophagosome assembly or it could be derived from the Golgi complex, 

mitochondrial or plasma membrane, alternatively it could be synthesised de novo 

(Reggiori et al. 2005; Juhasz and Neufeld 2006; Linton et al. 2015).  

Elongation of the phagophore requires the coordinated assembly of two complexes. 

The assembly of the first complex is mediated by Atg 7 and Atg 10 to form a covalent 

linkage between Atg 12 and Atg 5. The Atg 12-Atg 5 complex will then associate non-

covalently to Atg16L1 and this complex is responsible for membrane elongation as 

well as the recruitment of the second complex (Sciarretta et al. 2011; Harmacher-

Brady; 2012). The second complex is responsible for integrating LC3-II into the 

autophagosome. To begin with Atg 4 will cleave terminal amino acid(s) from pro-LC3, 

an immature precursor, to form LC3-I. Next, Atg 7 will mediate the activation of the 

exposed LC3-I C- terminal glycine residue and transfer the product to Atg 3 which will 

facilitate its conjugation to the lipid phosphatidylethanolamine (PE) to form LC3-II. 

LC3-II integration into the elongating autophagosome is directed by the Atg 12- Atg5- 

Atg 16L1 complex. LC3-II is integrated into both the inner and outer membrane of the 

autophagosome. Once the autophagosome elongation has been completed the Atg 

12- Atg5- Atg 16L1 complex disbands and the LC3-II which is located on outer 

membrane is converted back to LC3-I by Atg 4. LC3-II which is incorporated into the 

inner surface of the membrane is present right thought autophagosome maturation 

and will be degraded together with the cargo in the lysosome  (Gustafsson and Gottlieb 

2008; Gottlieb et al, 2009; Jimenez et al. 2014; Linton et al. 2015). Degradation in the 
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lysosome occurs through lipases, proteases, nucleases and glycosidases to yield the 

products (e.g. lipids and nucleosides) which will be recycled back into the cell for 

anabolic processes (Mei et al. 2015). In addition to the proteins mentioned above, the 

Rabs, which are small GTPases, play a role in autophagy. They are associated with 

the regulation of the steps in vesicle transport e.g. budding of the autophagosome and 

targeting it for fusion to the lysosome. Of importance to this study is Rab9 which is 

involved in autophagosome maturation and is associated with the so-called non-

canonical autophagy pathway. This pathway is unique in that it can occur independent 

of some of the Atg proteins involved in the classical autophagy pathway described 

above (Adapted from Amaya et al. 2015).    

A large body of evidence has shown that autophagy is induced by the deprivation of 

energy, nutrients and hormones ( such as growth factor) and stress signals such as 

hypoxia, ER stress, DNA damage,  damage or pathogen molecular associated 

patterns,  oxidised lipids, ROS and mitochondrial damage (Gurusamy et al. 2009; 

Kroemer et al. 2010; Tang et al. 2012). Of particular interest to this study is the 

induction of autophagy by ROS and mitochondrial damage in I/R.  

2.3.2.2. Autophagy and I/R 

It is well established that autophagy is upregulated during I/R. However, there is much 

controversy about the role of autophagy in this setting. We know that ischaemia is 

mainly characterised by hypoxia and a deficiency of ATP and in this setting a wide 

number of studies implicate and emphasise the roles of adenosine monophosphate- 

activated protein kinase (AMPK) and Hypoxia-inducible factor-1 (HIF-1) in 

authophagic cardioprotection.  AMPK is responsible for sensing cellular energy and 

during ischaemia it is activated by the low levels of ATP and the increased AMP/ ATP 

ratio. AMPK can promote cardioprotection through various cellular pathways and 

processes including glycolysis and fatty acid oxidation (Russell et al. 2004). In 

addition, AMPK can mediate cardioprotection through autophagy by indirect or direct 

modifications to ULK1 (Takagi et al. 2007; Matsui et al. 2009).  

HIF-1 is responsible for monitoring the oxygen levels in cells and mediating the 

relevant adaptive responses during hypoxia or increased oxidative stress through 

gene expression (Adapted from Semenza 2015; Ma et al. 2015). HIF-1 consists of α 
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and ß subunits of which the protein stability of the former is dependent on cellular 

oxygen levels while the latter is independent (Bellanti, 2017). During normoxic 

conditions HIF-1 α levels are kept low through degradation, consequently inhibiting its 

adaptive effects (adapted from Bellanti, 2017). HIF-1 mediates oxygen delivery 

through regulation of angiogenesis, glucose metabolism and redox homeostasis 

amongst other things (Semenza, 2014). The effects of HIF-1 and its adaptive effects 

during hypoxic stress have been well studied in cancer. Currently various researchers 

such as Zhang’s group (2008) and Bellot’s group (2009) have provided evidence for 

HIF-1 mediated induction of autophagy/mitophagy in various cell lines such as 

fibroblasts and human cancer cell lines. Consequently, researchers speculate that 

these findings would also be true for myocardial I/R. Existing evidence from Lee et al. 

(2000), Ockaili et al. (2005) and Cai et al. (2013) supports the expression of HIF-1 in 

I/R as an adaptive response and links its protective effects to mechanisms such as 

inflammation and not autophagy. He and Klionsky (2010) acknowledge that “the area 

of study is at the beginning stage” consequently more research needs to be done to 

elucidate the link between HIF-1, hypoxia and autophagy in myocardial I/R.  

To conclude, one needs to bear two things in mind when looking at autophagy during 

ischaemia. Firstly, HIF-1 mediates hypoxia-induced autophagy (i.e. this would be 

applicable in a regional ischaemia disease model), however, anoxia-induced 

autophagy (i.e. such as in a global ischaemia disease model) would have to occur 

independently of HIF-1 (Adapted from Majmundar et al. 2010). Secondly, some 

processes in autophagy such as autophagosome formation are dependent on ATP, 

consequently in a global ischaemia model autophagy could be inhibited once oxygen 

levels ultimately reach zero (Adapted from Sciarretta et al. 2011).  This could partly 

explain why during prolonged ischaemia cells are subjected to cell death since the 

absence of protective mechanisms such as autophagy probably inhibits a large 

number of cellular processes, if not all, due to the complete lack of ATP amongst other 

things. This would then force cardiomyocytes to opt for necrotic cell death, which does 

not require energy (the mechanisms of cell death such as necrosis will be discussed 

later in the review).  During reperfusion, hypoxia and energy deficiency are no longer 

a problem for the cell as oxygen return to normoxic levels and oxidative 
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phosphorylation is induced once again, consequently AMPK and HIF-1 can no longer 

mediate autophagy in this setting.  

During reperfusion it is evident that ROS and mitochondrial damage or dysfunction 

predominantly induces authophagic cell death or apoptosis through various signalling 

cascades. Thus the swift and yet selective removal of mitochondria (mitophagy) 

seems to be pertinent in this setting. Mitophagy would not only increase the pool of 

healthy mitochondria but it would also indirectly contribute to cardiomyocyte survival.  

2.3.2.3. Mitophagy 

The half- life of mitochondria, which is tissue dependent, has been reported to range 

from days to weeks (Menzies and Gold 1971; Kim et al. 2012). The accumulation of 

damaged and dysfunctional mitochondria has been associated with the 

pathophysiology of cardiovascular, neurodegenerative and pulmonary diseases, 

amongst others. This once again emphasises the important role that autophagy, 

particularly mitophagy, plays in organ homeostasis. Considering that cardiomyocytes 

are long lived, terminally differentiated cells with a high density of mitochondria that 

have a half-life of approximately 17.5 days, the role of mitochondrial dynamics and 

mitophagy in cardiac homeostasis is of the utmost importance.   

The term mitochondrial dynamics refers to two processes, namely fusion and fission 

which are adaptive responses that mitochondria utilise to maintain their function in the 

fluctuating cellular environment (Adapted from Ikeda et al. 2015). Although 

mitochondrial dynamics have been implicated as regulators of mitophagy, Ikeda and 

colleagues (2015) disclose the following: 

“It should be noted that the continuous occurrence of mitochondrial fusion and fission 

has not been tracked in normal adult ventricular cardiomyocytes and, thus, their roles 

have been inferred based on pharmacological or genetic manipulation. Although we 

discuss molecular mechanisms controlling fission and fusion of mitochondria…, 

almost all works have been conducted using non-cardiac cell types. Thus, caution 

should be exercised regarding whether the findings from other cell types can be 

applicable to adult ventricular cardiomyocytes.” 
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Considering the above, this review will briefly highlight the single aspects of 

mitochondrial dynamics that is likely to contribute to the induction of mitophagy. For a 

more extensive review on this topic refer to Dorn II (2013).  

Mitochondrial fusion, is considered to protect mitochondria against mitophagy since it 

involves the union and mixture of recoverable depolarized mitochondria with intact and 

highly functional ones in an effort to maintain membrane potential amongst other 

things. Fission on the other hand, is considered to be the central mediator of mitophagy 

(in mitochondrial dynamics) since it involves the exclusion of unrecoverable and 

damaged mitochondria, which are characterised by low mitochondrial potential and 

ATP production as well as high levels of ROS  (Adapted from Twig et al. 2008; Ikeda 

et al. 2015).  

DRP-1 (Dynamin-1-like Protein) is the primary regulator of fission. Under basal 

conditions most of DRP-1 is found in the cytosol while the remaining portion is 

associated with the OMM (Smirnova et al. 2001). When DRP-1 is activated (under 

basal and stressful conditions) it translocates to the OMM (Varadi et al. 2004).  

Inhibition of fission interferes with mitophagy and culminates in mitochondrial 

dysfunction (Twig et al. 2008). It is evident that mitochondrial fusion and fission play 

an important role in maintaining a healthy pool of mitochondria by sorting the “good 

from the bad and ugly”.  The induction of mitophagy, through fission, further enhances 

this role by ensuring that the “bad and ugly” not only get excluded but are also 

degraded.   

Mitophagy, as previously mentioned is the selective autophagy of damaged and 

dysfunctional mitochondria. There are several mitophagy pathways and they can be 

classified as traditional or alternative. The traditional pathway, is the phosphate and 

tensin homologue-induced putative kinase 1 (PINK1)/ Parkin pathway which is the 

best characterised. The alternative pathways involve BNIP3/ NIX, FUNDC1 and more 

recently Rab 5. The mechanisms of the traditional pathway will be discussed first 

followed by the alternative pathways.  
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2.3.2.4. PINK1/ Parkin Pathway 

PINK1/ Parkin mediated mitophagy predominantly depends on low mitochondrial 

membrane potential. Under basal conditions Parkin, an E3 ubiquitin ligase, is located 

in the cytosol. While PINK1, a serine/threonine kinase, is imported into highly 

functional healthy mitochondria by the translocase of the outer membrane (TOM) 

complex where it will be degraded by presenilin-associated rhomboid-like (PARL) 

protease. During stressful conditions, such as in I/R, where mitochondrial dysfunction 

and loss of mitochondrial membrane potential have occurred, PINK1 anchors and 

accumulates on the OMM (Narendra et al. 2010). PINK1 accumulation results in the 

recruitment of Parkin from the cytosol to the mitochondria (Fig 7).  

Initially, it was thought that PINK1 is essential for the recruitment of Parkin and 

induction of mitophagy. However, evidence from Kubli’s group (2015) show that in the 

absence of PINK1, Parkin recruitment still correlated with increased mitochondrial 

protein ubiquitination and a functional mitophagy pathway. There are various proposed 

pathways for the progression of mitophagy after Parkin recruitment. The discrepancies 

seem to be dependent on the role of Parkin and to a certain degree PINK1 not being 

fully elucidated.  

Once recruited it seems as if though Parkin is still to be activated. PINK1 facilitates the 

activation of Parkin through several steps that involve the phosphorylation of mitofusin 

2 (MFN2) and ubiquitin. Upon phosphorylation MFN2 functions as a receptor for Parkin 

while ubiquitin phosphorylation activates the E3 ubiqitin ligase activity of Parkin (Chen 

and Dorn, 2013; Moyzis et al. 2015; Maejima et al. 2015). Subsequently, Parkin will 

ubiquinate various proteins on the OMM such as the voltage-dependent anion channel 

(VDAC) 1, TOM, MIRO etc. (Geisler et al. 2010). Ubiquitination of these proteins 

signals for p62/ Sequestosome-1 (SQSTM1) binding to these ubiquitinated 

mitochondrial proteins and LC3 on the autophagosome for ultimate degradation 

(Pankiv et al. 2007; Narendra et al. 2008; Geisler et al. 2010; Jimenez et al. 2014).  

Increasing lines of evidence suggest that PINK1-Parkin mediated autophagy 

participates in mitochondria quality control and maintenance of heart function at 

baseline. Parkin-KO mice exhibit normal cardiac function at baseline, but their 

cardiomyocytes exhibit morphologically disorganized mitochondria with or without 
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dysfunction (Kulbi et al. 2013; Piquereau et al. 2013). It was also suggested that lack 

of Parkin-mediated mitophagy in heart specific MFN2 mice is compensated for by 

activation of non-selective autophagy in cardiomyocytes (Song et al. 2014). This 

suggested that both mitophagy and general autophagy cooperatively participate in 

removal of mitochondria in cardiomyocytes. It would be interesting to clarify whether 

these two forms of autophagy degrade the same targets or qualitatively or 

quantitatively different populations of mitochondria 

Whether or not endogenous PINK1 plays an essential role in mediating mitophagy in 

the heart remains to be elucidated. Genetic deletion of PINK1 induces more severe 

cardiac effects than that of Parkin (Billa et al. 2011), despite the fact that PINK1 and 

Parkin are thought to work together to mediate mitophagy. The role of MFN2 in the 

heart is also not clear: it has been shown that mice hearts lacking MFN2 develop 

cardiac dysfunction with age (Chen and Dorn II 2013), while another study showed 

that downregulation of MFN2 protects the heart against I/R damage (Billa et al 2011). 

It is also possible that PINK1 has additional functions besides Parkin-mediated 

autophagy.   

2.3.2.5. Mitochondrial receptor-mediated mitophagy 

BNIP and NIX 

Another pathway involved in mitophagy occurs through the BCL-2-related proteins 

BNIP3 and BNIP3L/NIX (Fig 7). These atypical BH3-only proteins are well-known 

activators of cell death, for example BNIP3 activates BAX/BAK in the OMM and 

causes opening of the MPTP (Regula et al. 2002; Kulbi et al. 2007) and NIX activates 

cell death via the mitochondrial apoptotic pathway (Yussman et al. 2002). Both these 

proteins are located on the OMM where they act as receptors for targeting 

autophagosomes to mitochondria (Novak et al. 2010; Hanna et al. 2012). Using their 

LC3-interacting region (LIR) motifs they directly bind to the LC3/𝛾-aminobutyric acid 

receptor-associated protein (GABARAP) which is located on the autophagosome. 

BNIP3 has been identified as a vital redox sensor of mitochondrial oxidative stress 

and it has been suggested that it mediates cell death in response to increased 

oxidative stress (Kulbi et al. 2008). Hamancher-Brady and colleagues (2006) 

implicated BNIP3 overexpression in myocardial IRI. In their model of I/R BNIP3 
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overexpression resulted in fragmented mitochondria i.e. mitochondrial dysfunction. In 

addition to mitochondrial dysfunction, BNIP3 overexpression is associated with 

mitochondrial permeability transition, MPTP opening and subsequent release of 

cytochrome c which in turn leads to cell death.  

Since both BNIP3/NIX and PINK1/Parkin play a role in mitophagy, the question arises 

of whether they participate in the same pathway to clear mitochondria. However, the 

signals that activate these pathways are different. While Parkin-mediated mitophagy 

requires loss of mitochondrial membrane potential, BNIP3 promotes mitophagy even 

when mitochondria retain their potential (Rikka et al. 2011). The respective roles of 

these two pathways and potential cross-talk in the regulation of mitophagy needs to 

be further investigated. 

FUNDC1 

FUNDC1 is an integral outer membrane mitochondrial protein which is implicated in 

mediating mitophagy during hypoxic conditions (Fig 7). The study which was 

conducted by Liu’s group (2012) showed that FUNDC1 functions as a receptor and 

mediates mitophagy by interacting with LC3 through its LIR motif. This will allow it to 

couple to core authophagic machinery such as Atg 5. More studies are being 

conducted to elucidate the mechanisms of FUNDC1. 
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Figure 7: Schematic Illustration of the PINK1/PARKIN Pathway and receptor mediated pathways. In (A) Damage to the mitochondria that results in decreased 
membrane potential activated the PINK1/PARKIN mitophagy pathway. PINK1 accumulates on the outer membrane where it recruits PARKIN and activates MFN2. 
MFN2 acts as a receptor for PARKIN. Ubiquitin activates PARKIN, PARKIN will ubiquitinate a wide range of proteins on the mitochondria such as VDAC1. This 
results in p62 and LC3 interaction and autophagosome formation. The autophagosome will ultimately be targeted for degradation. (B) Shows the BNIP3 and NIX 
pathway which is activated even when the mitochondria retain their membrane potential. BNIP3 and NIX interact with LC3 through their LIR motif. (C) Illustrates the 
FUNDC1 which is inducted by hypoxia. FUNDC1 interacts with LC3 through its LIR motif. LIR interaction with LC3 in both (B) and (C) leads to autophagosome and 
ultimately degradation (Adapted from Moyzis et al. 2015).   
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2.3.2.6. Alternative pathway 

Another alternative pathway for mitophagy has recently attracted much attention. It is 

well-established that the lowering of cellular ATP, leads to activation of AMPK and 

initiation of autophagy. AMPK phosphorylates and activates the Unc-51-Like Kinases 

(ULK), which, in turn, activates the BECLIN1/VPS34/VPS15 complex to initiate 

autophagy (Kim et al. 2011). ULK then translocates to the mitochondria where it 

phosphorylates the mitophagy receptor FUNDC1 (Wu et al. 2014). It has also been 

recently reported that ULK phosphorylates cytosolic Rab9 which, in turn leads to the 

phosphorylation of DRP-1 and subsequent mitophagy (Sadoshima 2017, personal 

communication).  

2.3.2.7. Mitophagy and cardioprotection 

As discussed above, mitochondrial degradation is critical for cardiac homeostasis and 

any interference in this process could lead to mitochondrial as well as cardiac 

dysfunction. Studies thus far showed that autophagy is upregulated during IRI and is 

initially a protective response activated by the cell (Hamacher-Brady et al. 2006; 

Matsui et al. 2007; Tannous et al. 2008), which eventually could lead to cell death, 

while downregulation of the process protects against cell injury (Hamacher-Brady et 

al. 2006; Eckele et al. 2012; Eltzschig et al. 2013).  To date, very few studies focused 

on the specific role of mitophagy during I/R in the heart, but initial reports support a 

protective effect for mitophagy in response to stress. Increased mitophagy was initially 

described in myocytes overexpressing BNIP3 and in hearts subjected to ex vivo I/R 

(Hamacher-Brady et al. 2007).  

Studies using knockout mice confirmed the importance of mitophagy in 

cardioprotection. For example, PINK1 deficiency increased the susceptibility of the 

heart to ex vivo IRI (Lee et al. 2011), while Parkin-deficient mice accumulate 

dysfunctional mitochondria (Kulbi et al. 2013), which leads to increased mortality. 

Interestingly, Parkin plays a role in ischaemic preconditioning, which may indicate that 

removal of unstable mitochondria during the preconditioning process may play a role 

in cardioprotection (Haung et al. 2011) 
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In contrast, augmented autophagy can also promote cardiomyocyte loss, particularly 

during reperfusion (Matsui et al. 2007). Studies assessing the effects of chronic and 

excessive mitophagy in the heart are lacking, but it stands to reason that excessive 

loss of mitochondria will be harmful to the myocardium. The threshold for mitophagy 

in cardiomyocytes are still unknown and it is unclear how many mitochondria can be 

removed from the cell before it becomes energy-deficient and undergo necrosis. 

It is evident from the above that while cardiomyocytes are subjected to damage there 

are systems in place such as autophagy / mitophagy that will attempt to salvage and 

promote cell survival.  However, cardiomyocyte cell death do occur, which is clinically 

manifested as an infarct.  At molecular level cell death exhibits in the form of 

authophagic cell death (discussed previously), apoptosis, necrosis and necroptosis.   

2.4. Cell death- an unhappy ending  

It is evident that in a healthy heart, mitochondria are the core energy producers for 

contraction and ROS generators for signalling. During I/R however, we see that 

mitochondria are at the heart of injury. This section will unravel the intricacies of the 

unhappy ending i.e. cell death.   

According to literature there are three forms of cell death namely: autophagy, 

apoptosis and necrosis.  In the latter classification cell death and necrosis are 

considered to be two different things (Fig 8). Cell death is considered to be invisible 

to the naked eye i.e. occur at a molecular level and can be reversible. Necrosis on the 

other hand is defined as the process of degradation, which follows irreversible injury 

via oncosis or apoptosis, which is visible to the naked eye (Adapted from Manjo and 

Joris 1972; Buja and Velera, 2008).  For example in IRI cardiomyocytes can die due 

to excessive autophagy i.e. autophagic cell death or through apoptosis both of which 

occur at molecular level. Both these forms of cell death are reversible if an intervention 

is administered on time. Considering that some authors use the term oncosis and 

necrosis interchangeably, while others clearly distinguish the two terms, we will be 

discussing both these concepts and highlight key aspects of both.  
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Figure 8: Illustration of the various cell death pathways and necrosis. (Buja and Valera, 2008). 

2.4.1.1. Apoptosis 

Apoptosis is considered to be a tightly regulated, evolutionary conserved, programmed 

and energy dependent process which consists of an extrinsic and intrinsic pathway, 

both of which culminate in cell death (Adapted from Kalogeris et al. 2012; Orogo and 

Gustafsson, 2014). The extrinsic pathway is mediated by death receptors while the 

intrinsic pathway is predominantly associated with the mitochondria.   

Apoptosis is characterised  by gene activation, activation of the cytosolic aspartate-

specific cysteine proteases (caspases), mitochondrial alterations such as loss of 

membrane potential which culminates in membrane permeability transition and 

cytochrome c release. This is followed by endonuclease activation, which results in 

the fragmentation of DNA, membrane and morphological alterations. Buja, 2005).  
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The morphological changes observed during apoptosis can be distinguished into two 

stages. The first stage is characterised by nuclear condensation, DNA and nuclear 

fragmentation, plasma blebbing and cell shrinkage. While the second stage is 

characterised by the formation of apoptotic bodies that are engulfed by surrounding 

cells or macrophages to prevent an inflammatory response (Kerr et al. 1972).  

The Extrinsic Apoptosis Pathway 

The extrinsic apoptotic pathway triggers cell death through the activation of death 

domain receptors - localised on the plasma membrane. Ligands such as fatty acid 

synthetase ligand (FasL) and tumour necrosis factor alpha (TNF-α) will bind to their 

death receptors such as Fas receptor and TNF receptor, respectively. This leads to 

the recruitment of a number of death domain containing proteins such as the Fas-

associated death domain (FADD) or TNF-receptor associated death domain 

(TRADD), to form the death-inducing signalling complex (DISC) (Kalogeries et al. 

2012; Orogo and Gustafsson 2013).  The DISC complex will activate caspase 8, which 

then initiates apoptosis according to one of two pathways which are dependent on the 

cell. In a type I cell, caspase will initiate apoptosis directly by cleaving executioner 

caspases 3 and 7. In a type II cell, caspase will have to initiate the intrinsic apoptotic 

pathway to induce cell death (Samraj et al. 2006). Type I and II cells are distinguished 

by the intracellular composition of the inhibitor of apoptosis proteins (IAPs), which 

deactivate the executioner caspase function (Jost et al. 2010). 

The Intrinsic Apoptosis Pathway 

The intrinsic apoptotic pathway is also known as the mitochondrial pathway because 

it relies on factors released from the mitochondria. This pathway is activated by 

extracellular and / or intracellular stress stimuli such as hypoxia, DNA damage and 

oxidative stress which induce the activation and translocation of the pro-apoptotic Bcl2 

proteins such as BNIP3, NIX, and Bad from the cytosol to the mitochondria where they 

abolish the effects of the anti-apoptotic proteins or they directly activate Bax and Bak. 

Bax and Bak amalgamate to form pores on the OMM that will allow the translocation 

of proapoptotic proteins namely: cytochrome c, second mitochondria-derived activator 

of caspase (SMAC), direct inhibitor of apoptosis binding protein with low pI (DIABLO), 

Omi/ High temperature requirement protein A2 (HtrA2), apoptosis-inducing factor 
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(AIF) and endonuclease G from the intermembrane space into the cytosol. 

Cytochrome c binds to the apoptotic protease activating factor 1 (APAF1) which leads 

to the formation of the apoptosome which will recruit caspase 9 which is an activator 

caspase. Activated caspase 9 cleaves the executor caspases 3 and 7 (Orogo and 

Gustafsson, op.cit.). SMAC, DIABLO and Omi/HtrA2 activate the caspases by 

ingesting or engulfing caspase inhibitors while endonuclease G mediates DNA 

fragmentation (Kalogeries et al. 2012).  

2.4.1.2. Oncosis 

Oncosis is the term used to define cell injury accompanied by swelling (Buja 2005). 

This form of cell death is induced by various insults and occurs in response to direct 

cell membrane damage or dysfunction and / or loss of energy which culminates in 

swelling and cell death (Buja and Entman 1998; Buja, 2005). Oncosis can be induced 

by various stimuli such as toxic chemicals, ischaemia, hypoxia, drugs and 

inflammation.  To date, the disruption of cellular homeostasis in oncosis can be 

attributed to membrane damage which could occur in at least four ways:  (i) direct 

damage to the membrane which can occur as a result of toxic elements such as 

chemicals or osmotic fluctuations as in calcium overloading, (ii) impairment of the 

respiratory chain which is accompanied by acidosis and decreased ATP production, 

(iii) the breakdown of membrane associated cytoskeletal proteins and (iv) the 

unregulated degradation and lipid peroxidation of membrane phospholipids due to 

ROS. Membrane damage due to injury progresses from reversible to irreversible 

based on these three stages: small alterations to the ionic transport system, increases 

in the permeability of the phospholipid bilayer, and lastly physical disruption of the 

membrane (Buja 2005; Buja and Vela 2008).  The morphological changes that can 

occur due to these forms of injury include membrane blebbing, swelling and cell 

rupture. Oncosis is considered to evolve into necrosis within 24 hours (Manjo and 

Joris, 1995). The leakage of intracellular components of oncotic cells into the 

extracellular environment often activates an inflammatory response. 

2.4.1.3. Necrosis and Necroptosis 

Prior to the discovery of apoptosis in mammalian cardiac cells it was thought that 

ischaemia predominantly resulted in necrosis (Suleiman et al. 2001). Necrosis is 
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considered to be an accidental, passive form of uncontrolled cell death which is 

independent of energy and can be toxic to the cell (Adapted from Orgo and 

Gustafsson, 2013). The role of mitochondria in mediating cell death through necrosis 

is associated with prolonged/ irreversible MPTP opening and ATP depletion. However, 

apoptosis is associated with moderate insults that lead to reversible pore opening and 

maintained ATP production. To date, there is evidence suggesting that necrosis could 

also be a tightly regulated form of cell death which has been called necroptosis 

(Golstein and Kroemer, 2007). The effector receptors that are responsible for the 

initiation of necroptosis are the receptor interacting proteins (RIPs). RIP1 and RIP3 

have been implicated as the mediators of necroptosis (Cho et al. 2009). The evidence 

from Cho’s group speculates that activation of RIP 3 and 1 culminates in 

phosphorylation of MPTP components, increased ROS production and ultimately ends 

in cell death. Evidence also shows that caspase 8 seems to have a dual role. Apart 

from induction of the extrinsic and intrinsic apoptotic pathways, it has also been 

implicated in the regulation of necrosis as a suppressor (McIlwain et al. 2013). 

Although there is still much to be uncovered about the necroptosis pathway, 

Kalogeries and colleagues (2012) suggest that it is gaining acceptance in the field.  

Considering the above, it is evident that much is known about the various cell death/ 

injury pathways. However, there are a number of aspects which need to be clarified. 

For example, it remains unclear which mechanism of cell injury/ death is triggered and 

how much each form of cell injury contributes to the myocardial infarct. Both these 

questions have therapeutic implications and answering them would enable us to target 

the most predominant form of cell death when triggered. What we do know at this point 

is that mitochondria are the central energy generators but they are also the central 

mediators of injury and cell death. Consequently, they are an important therapeutic 

target for I/R. Manipulating and enhancing intrinsic mechanisms such as mitophagy 

through pharmacological interventions could potentially salvage the myocardium and 

promote cardiomyocyte survival. For our study we employed melatonin and in the next 

section we will review various properties of melatonin that may substantiate its 

usefulness in the context of mitophagy.  
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2.5. Melatonin 

Melatonin is an indole amine which has been detected in bacteria, plants and humans 

(Hardeland, 2016). Melatonin, also known as N-acetyl-5-methoxytryptamine, was 

identified and structurally characterised by Lerner and colleagues in 1958 (Lener et al. 

1960) as a product of the pineal gland. Since its discovery melatonin was thought to 

be exclusively synthesised in the pineal gland however, it is now known to be produced 

in extra- pineal tissues including the testis, ovary, bone marrow and lymphocytes 

(Tijmes et al. 1996; Itoh et al. 1997; Tan et al. 1999; Carrillo-Vico et al. 2004). In the 

pineal gland, melatonin synthesis occurs through several well characterised enzymatic 

steps in pinealocytes from the precursor tryptophan. Synthesis commences with the 

uptake of tryptophan, from circulation, and its conversion to 5-hydroxytryptophan and 

ultimately serotonin. Serotonin is converted to N-acetylserotonin which is converted to 

melatonin through the action of N-acetyltransferase (NAT) and hydroxyindole-O-

methyltransferase (HIOMT), respectively (Axelrod 1974).  

Primarily known for its role in the regulation of circadian rhythm and seasonal 

reproduction, melatonin is now known for a wider range of physiological functions 

including its role in obesity, immunology and asthma amongst other things. These 

functions have been extensively reviewed by Pandi-Perumal et al. (2006), Calvo et al. 

(2013); Cipolla-Neto et al. (2014) and Marsegila et al. (2014). Of particular interest to 

our study is melatonin’s protective mechanisms offered by its antioxidant, free radical 

scavenging and signalling pathways.  

2.5.1.1. Melatonin as Free Radical Scavenger and Antioxidant  

ROS production in cells is not only inevitable but it is essential for various processes 

including signalling and induction of autophagy. Under basal conditions, if the 

equilibrium between ROS production and antioxidant defences is tilted in favour of 

oxidants it can easily be rectified by endogenous cellular and mitochondrial antioxidant 

systems. These enzymatic and non-enzymatic systems (previously highlighted) are 

considered the first line of defence and are able to catabolise toxic oxidants into neutral 

products. Under these very same conditions moderate increases in ROS result in the 

upregulation of antioxidant expression as well as activity (Gechev et al. 2002; 

Rodriguez et al. 2004). This adaptive mechanism not only offers protection against 
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ROS damage but it keeps ROS levels at homeostatic levels allowing these molecules 

to still fulfil their regulatory role.   

Under stressful conditions such as in I/R where ROS levels are elevated and 

antioxidant systems are overwhelmed, the adaptive mechanism which is activated 

under basal conditions may fail. This failure, which is also evident in ageing, can be 

attributed to damage and instability of the molecular machinery such as mitochondrial 

DNA (mtDNA) which is responsible for increased antioxidant expression and activity 

(Wei and Lee, 2002).  

Melatonin’s indirect beneficial effects on antioxidant regulation are well exhibited in 

such conditions. There are several characteristics that make melatonin such an 

effective antioxidant. It is amphiphilic and it can easily cross various bio-barriers (Coto-

Montes et al. 2012). These characteristics not only make melatonin highly accessible 

to all tissue types and cells but it also ensures that it can be distributed to subcellular 

compartments such as the cell membrane, nucleus and mitochondria. In addition, 

melatonin is highly concentrated in the mitochondria and recent evidence shows that 

melatonin is also produced in the mitochondria (Tan et al. 2016). This unlimited 

accessibility means that melatonin can localise to sites where ROS production is 

augmented.     

Evidence of melatonin’s role in antioxidant activity dates as far back as the 90’s. It has 

been implicated in stimulating the upregulation of SOD (Okanti et al. 2000; Liu and TB, 

2002), GPx (Barlow-Walden et al. 1995; Okatani et al. 2000) and to a lesser extent 

glutathione reductase and catalase (Tomas-Zapico et al. 2002; Liu and Ng, 2002). 

These effects have been predominantly studied in neuronal tissue. In addition to 

enhancing antioxidant systems, melatonin also decreases prooxidant enzymes and 

several lipoxygenases (Pozo et al. 1994; Hardeland and Pandi-Perumal, 2005). The 

exact mechanism through which melatonin upregulates antioxidants and 

downregulates prooxidants remains to be elucidated.  However, evidence point to 

gene expression either through melatonin receptor function or other interactions 

(Antolin et al. 1996; Mayo et al. 2002).   

Apart from mediating the efficient removal of ROS indirectly by influencing antioxidant 

systems, melatonin and its metabolites can directly scavenge several ROS and RNS. 
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Melatonin’s scavenging abilities are attributed primarily to its core structure and its side 

chains (Tan et al. 2002). Structural changes to either the indole moiety to yield 

structurally similar analogues such as benzofurane resulted in decreased antioxidant 

capacity in comparison to melatonin (Gozzo et al. 1999). The same was also true when 

the side chains of melatonin were analysed (Poeggeler et al. 2002). The chemical 

reactions that have been associated with melatonin’s actions include electron 

donation, hydrogen donation, addition and substitution amongst others (Tan et al. 

2002). Melatonin’s structural properties allow it to neutralize various ROS and RNS 

directly or indirectly. The ROS and RNS targeted by melatonin include hydrogen 

peroxide, hydroxyl radical, singlet oxygen, peroxyl radical, NO radical, peroxynitrite 

and hyperchlorous acid (Zhang and Zhang, 2014). 

Melatonin’s ability to scavenge free radicals and improve antioxidant systems has 

important implications for the mitochondria especially in stressful settings such as in 

I/R. As previously mentioned complex I and III are the major contributors of superoxide 

production during mitochondrial oxidative phosphorylation. The production of NO 

could be due to the activity of nitric oxide synthase (NOS): under basal conditions its 

contribution to NO production is minimal however, during pathophysiological 

conditions production is upregulated and can lead to the production of peroxynitrate. 

The toxicity of peroxynitrite is considered to be equivalent to that of the hydroxyl radical 

(Pryor and Squadrito, 1995). Thus swift removal of both radicals could save the cell 

from extensive ROS and RNS damage.  

Hydrogen peroxide neutralisation is also of great importance, since it is the principal 

precursor of hydroxyl radical formation. Peroxyl radical formation is a consequence of 

the peroxidation of polyunsaturated fatty acids. Induction of peroxyl formation often 

culminates in a positive feedback loop where the reaction is repeated due to the 

presence of certain products (Paradies et al 2015).  An added dimension of complexity 

regarding most of these reactive species is that they are capable of not only damage 

but modifying neutral molecules into potential reactive species. This could induce a 

whole irreversible cascade of reactions with far reaching consequences. Thus it is 

evident that the swift and yet selective removal of excessive free radicals plays an 

important role in promoting cell survival.    
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Fortunately circulating melatonin or exogenous administration of the hormone at 

pharmacological concentrations could trigger the uptake of these species through 

melatonin’s scavenging cascade reaction. In this reaction, a single melatonin molecule 

[together with its major metabolites, such as cyclic-hydroxymelatonin (3-OHM), N1-

acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N-acetyl-5-methoxykynuramine 

(AMK) ] can scavenge up to 10 ROS or RNS molecules (Adapted from Tan et al. 2002, 

2007). For a detailed description of melatonin’s chemical reaction with the various 

reactive species, see Allegra et al. (2003) for a detailed review. This reaction allows 

melatonin to swiftly restore ROS and RNS levels back to homeostatic levels. 

Protection offered by melatonin is mainly associated, but not limited to, the 

safeguarding of proteins, DNA and lipids from ROS and RNS damage (previously 

discussed) as well as preservation of mitochondrial function and quality control (to be 

discussed below).  

2.5.1.2. Melatonin and the Mitochondrial Function  

Mitochondrial function is essential for the survival of cells. Highly functional 

mitochondria are characterised by efficient oxidative phosphorylation, low levels of 

ROS and oxidative modification of proteins ( Adapted from Tan et al. 2016). As 

previously mentioned, melatonin is highly lipophilic and consequently it can easily 

permeate cellular membranes such as the mitochondrial membrane where it can 

accumulate in high concentrations and influence mitochondrial homeostasis by 

actively contributing to the existence of highly functional mitochondria. Evidence has 

shown that melatonin contributes to mitochondrial homeostasis by stabilising the ETC 

and cardiolipin which in turn enhances oxidative phosphorylation capacity which is a 

key component of mitochondrial bioenergetics (Petrosillio et al. 2009).  

It has been shown that melatonin increases the activity of complex I and IV in the ETC 

in a time-dependent manner in isolated brain and liver mitochondria (Martin et al. 

2000). In the same study, evidence showed that melatonin counteracted the pro-

oxidant effects of ruthenium red by restoring complex I and IV to control levels and by 

partially restoring the activity of GPx.  The most likely scenario is that melatonin 

interacts with the ETC by accepting and donating electrons as well as hydrogen ions, 

which could in turn increase the electron and proton gradient (Adapted from Paradies 

et al. 2015).  
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López and co-workers (2009) also investigated the effects of melatonin on 

mitochondria. In their model they found that melatonin slightly uncoupled oxidative 

phosphorylation, which was associated with decreased oxygen consumption and 

consequently ROS formation and oxidative damage. This slight uncoupling was 

associated with preserved function of the ETC function and ATP production. This 

mechanism of uncoupling is seen as protective, since neuronal cells also employ it to 

prevent oxidative stress and death. In their study melatonin improved the activity of 

complexes I, III and IV (López et al. 2009). The effects seen above can be attributed 

to its direct interaction with the mitochondria.  

Melatonin may also indirectly contribute to the mitochondrial function by stabilising 

cardiolipin. Cardiolipin is a polyunsaturated fatty acid which is exclusively and 

abundantly found in the IMM (Paradies et al. 2009). Apart from maintaining membrane 

integrity, cardiolipin is associated with the optimal activity of various electron transport 

complexes and enzymes. This comes as no surprise considering the close association 

with the IMM where the ETC components are situated. 

Cardiolipin has also been implicated in the formation of “supercomplexes”. The term 

supercomplexes refers to the clustering of related components of the ETC to form 

units that decrease electron leakage by efficiently channelling the transfer of electrons 

( Adapted from Houtkeeper and Vaz, 2008; Paradies et al. 2009, 2015). By preventing 

cardiolipin oxidation and subsequent loss, melatonin indirectly preserves 

mitochondrial function. Three studies from Petrosillo’s laboratory (2006, 2009a, 

2009b) have shown the effect of melatonin on cardiolipin as well as mitochondrial 

homeostasis. The first study demonstrated that melatonin’s protective effects in I/R 

were associated with improved mitochondrial respiration, membrane integrity as well 

as function (Petrosillo’s et al. 2006). In addition, they observed that melatonin in this 

setting prevented the loss of complex I and III activity, increased production of 

hydrogen peroxide and cardiolipin loss through oxidation. The subsequent studies 

showed that by averting cardiolipin loss melatonin prevented mitochondrial 

permeability transition and ultimately cytochrome c release (Petrosillo et al. 2009a,) in 

I/R (Petrosillo et al. 2009b).   
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Despite the differences in dose, time and route of administration in the various studies 

melatonin consistently preserved and enhanced mitochondrial function even in the 

setting of I/R. Melatonin’s ability to localise in subcellular compartments gives it an 

added advantage compared to other molecules with similar therapeutic potential.  

2.5.1.3. Melatonin, Cardioprotection and Signalling 

Melatonin’s cardioprotective properties have been an area of intense research for 

many years. Studies have used various models of cardiovascular disease, specifically 

I/R, in various animal and experimental models to elucidate the role of melatonin and 

test its robustness as a cardioprotectant. Ex-vivo and in situ experimental heart models 

have shown that melatonin’s cardioprotective actions are predominantly associated 

with a reduction in IFS, ventricular fibrillation and arrhythmias, morphological damage 

and ROS production (Adapted from Reiter and Tan, 2003).   

Tan and co-workers (1998) examined the effects of melatonin at 1, 10 or 50µM on I/R-

induced arrhythmias in isolated hearts. The data showed that melatonin at all three 

concentrations was able to reduce the frequency as well as the length of premature 

ventricular contractions and ventricular fibrillation in comparison to the control hearts. 

In the same study Vitamin C, which is a classical antioxidant, was used as positive 

control and for comparison of efficacy. Vitamin C had no effects on the measured 

parameters and was less potent than melatonin.  

Melatonin’s effects in regional ischaemia/ reperfusion were also compared to a 

structurally similarly indole compound [5-methoxy-carbonyl-N-acetyl-tryptamine (5-

MCA-NAT)]. In this study by Lagneux and colleagues (1999), melatonin and 5-MCA-

NAT were administered through intraperitoneal injection.  IFS as well as ventricular 

tachycardia and / or fibrillation (VT-VF) were measured together with other 

haemodynamic endpoints. Both compounds significantly reduced VT-VF and IFS. This 

not only demonstrated melatonin’s cardioprotective characteristics but also showed 

that its structure played an irreplaceable role in its mechanism of action.  

Sahna et al. (2002) conducted a study to evaluate melatonin’s physiological role on 

I/R arrhythmias. In this study rats that were pinealectomized (Px) two months before 

experimentation. It was found that Px rats had a higher incidence irreversible 
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ventricular fibrillation which resulted in an increased mortality rate compared to 

controls. In a second set of experiments the group investigated the effect of 0.4mg/kg 

melatonin administration either prior to ischaemia or reperfusion in Px rats. In these 

experiments they found that melatonin administration decreased the occurrence of 

ventricular fibrillation.  

All these studies, regardless of differences in I/R protocols, routes of melatonin 

administration etc., have shown melatonin’s therapeutic potential. The 

cardioprotective actions of melatonin have been thoroughly reviewed (Reiter et al. 

2003; Yang et al. 2014). Current research has shifted to focusing on the signalling 

mechanisms involved in cardioprotection. Although there are various signalling 

molecules and pathways that have been identified, for the purpose of this review the 

pathways/ molecules that will be discussed below are those pertinent to the present 

study.  

Melatonin and the Sirtuins (Silent information Regulators) 

Sirtuins (Sirt1-7) belong to the superfamily of histone deacetylases (HDACs). These 

molecules are responsible for regulating transcriptional modification by removal of the 

acetyl group (deacetylation). Generally, sirtuins have a wide range of functions and 

are associated with DNA repair, cell survival, cell cycle and apoptosis (Chalkiadaki 

and Leonard 2015). Sirtuins also play a role in metabolic regulation, because they 

consume one molecule of NAD+ per reaction they are highly sensitised to cellular 

stress that decreases the nicotinamide levels (Adapted from Cattlen et al. 2015; Mayo 

et al. 2017). Sirt1 and Sirt3 are associated with the nucleus / cytosol and mitochondria, 

respectively and are well-known as  metabolic regulators.  

Sirt1 activation can result in metabolic changes (e.g. gluconeogenesis) and 

mitochondrial biogenesis by activating PGC-1 alpha. Although PGC-1 alpha 

overexpression is sufficient to stimulate mitochondrial biogenesis (Wende et al. 2007), 

it can be activated through several signalling pathways and various post translational 

modifications including deacetylation by Sirt1 (Soutland and Gottlieb, 2015). Once 

activated, together with nuclear respiratory factor 2 (NRF-2), PGC-1 alpha activates 

NRF-1. The NRFs are responsible for directing the transcription of mitochondrial 

nuclear proteins, import machinery and cofactors and regulatory factors required for 
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the assembly of the ETC complexes and mtDNA transcription and translation (Gottlieb 

and Gustafsson, 2010). In this study PGC-1 alpha activation through Sirt1 was 

assessed and it was found that Sirt1 can also deacetylate the Forkheadbox (Foxo) 

transcription factors to induce resistance to oxidative stress (Nogueiras et al. 2012).  

Since melatonin’s actions are related to mitochondrial function, Sirt3 would be one of 

melatonin’s major mitochondrial targets. Sirt3, located in the mitochondrial matrix, 

regulates mostly the lysine modifications related to its function. In mitochondria, Sirt3 

activation is associated with strengthened antioxidant defence via the upregulation of 

mitochondrial SOD, improved oxidative phosphorylation via several complexes  and 

fatty acid and acetyl CoA metabolism (Ahn et al. 2008; Sack, 2012;  Bause and Haigis 

et al. 2013; Mayo et al. 2017).  The sirtuins are also associated to autophagy regulation 

of autophagy (Gottlieb and Gustafsson, 2011) and in I/R, the caridioprotective effects 

of melatonin have been linked to both Sirt1 and Sirt3.  

A study conducted by Yu’s laboratory (2014), showed that melatonin offers protection 

in myocardial I/R via its receptors. In this study, rats were exposed to melatonin 

treatment in the absence or presence of either luzindole (a melatonin receptor agonist) 

or EX527 (a Sirt1 inhibitor). Melatonin’s protective functions were associated with 

decreased IFS and apoptotic index, improved cardiac function and protection from 

oxidative damage. These effects were attributed to the activation of Sirt1 in a receptor-

dependent manner.  The same group has also reported melatonin’s protective effects 

to Sirt1 signalling in a type 2 diabetic model (Yu et al. 2015). 

More recently, Yu and colleagues (2017) showed that in a type-1 diabetic model of I/R 

melatonin exhibited its classical protective functions, through signalling. The study 

showed that melatonin improved cardiac performance, mitigated mitochondrial 

oxidative damage and stress, improved ATP production and reduced apoptosis. All 

these actions were attributed to the induction of AMPK-PGC-1 alpha-Sirt3 signalling. 

In this same study the authors showed that blocking AMPK, using a specific AMPK 

signalling blocker, abolished these effects.   

Melatonins has been well studied in various disease models and organs. Multiple 

pathways of melatonin protection are being/ have been discovered and elucidated 

some of them include the RISK, SAFE and Notch pathways. In addition, there are 

Stellenbosch University  https://scholar.sun.ac.za



  

53 

 

emerging studies that are focusing on elucidating melatonin’s unknown characteristics 

such as potential pro-oxidant effects. 

From the above it is evident that melatonin is a promising therapeutic agent that has 

a wide range of functions. Its cardioprotective effects have been thoroughly studied 

(See Fig 9) however, so much more still remains to be uncovered. In the context of 

this study, manipulating mitophagy with melatonin will not only unravel the role of 

mitophagy in I/R but it will allow us to observe the effects of melatonin in this setting.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Schematic illustrating melatonin’s actions from the cascade reaction to conferring 
protection. (Modified from Zhang & Zhang, 2014). 
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2.6. Concluding remarks 

I/R is the transient disruption of blood supply which is associated with oxygen and 

nutrient deprivation. Subsequent reperfusion is associated with mainly four types of 

injury (stunning, microvascular obstruction i.e. no-flow phenomenon, reperfusion 

arrhythmias and IRI). IRI is the most complex, since it involves various structural and 

molecular changes that ultimately contribute to the other types of injury.  

Mitochondrial protection have been identified as a therapeutic target and it has 

become imperative to find a therapeutic agent or drug that will prevent mitochondrial 

damage and offer cardioprotection upon reperfusion. In this study, melatonin has been 

identified as the cardioprotectant and it has been coupled to mitophagy (the intrinsic 

mechanism) which is related to the target of interest i.e. damaged and dysfunctional 

mitochondria. Manipulating mitophagy pharmacologically in the well-established 

working heart model of I/R may give us more insight on the role of mitophagy in I/R 

and the therapeutic potential of melatonin in this setting.  
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CHAPTER 3: MATERIALS AND METHODS 

3.1. Ethics Approval and Experimental Animals 

Ethics approval was obtained from Research Ethics Committee: Animal Care and Use 

(REC: ACU) of Stellenbosch University (Faculty of Medicine and Health Science; 

Protocol #: SU-ACUM14-00039). Animals were handled and cared for according to 

the accepted standards and use of animals in research and teaching as reflected in 

the South African National Standards document (SANS 10386:2008; available at 

www.sun.ac.za/research ) of the South African Bureau of Standards. All research 

procedures and conduct was in line with the standard operating procedures and 

guidelines of the REC: ACU.  

Male Wister rats (250-300g) were used for this study. All animals were housed in and 

obtained from Stellenbosch University’s Central Animal Research Facility located in 

the Faculty of Medicine and Health Sciences, Tygerberg. This facility was previously 

accredited by the Association for Assessment and Accreditation of Laboratory Animal 

Care (AAALAC). The animals were fed a standard rat chow diet and received access 

to food and water ad libitum. They were exposed to 12-hour dark/light cycles (with light 

from 6am-6pm) at a constant temperature of 20-21°C.  

3.2. Isolated Heart Perfusions  

 Isolated heart perfusion are one of the most popular experimental models in 

cardiovascular research. Pioneered by Oscar Langendorff in 1885, the technique was 

developed from the isolated frog heart perfusion model which was previously 

established by Elias Cyon (Bell et al. 2011).  Since its establishment, the technique 

has been modified and refined over time. Despite this, the principle has remained the 

same. Perfusion of the isolated mammalian heart has unravelled the fundamental 

physiology of the heart. While the technique is old, it still continues to give valuable 

insight into cardiovascular physiology and pharmacology. This experimental model 

remains attractive to researchers for a number of reasons. Firstly, the isolated heart 

of small mammals e.g. rats is highly reproducible, secondly the preparation is quick 

and thus allows for large numbers to be studied at a relatively low cost.  Lastly, the 

quality and quantity of the data that are produced or that can be measured are valuable 
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(Sutherland and Hearse, 2000). Although irreplaceable, this model has two limitations. 

Firstly, studying the heart ex vivo means that one cannot observe the effects of other 

factors such as the systemic circulation and neurohormonal factors. However, this 

limitation can be seen as an advantage since measurements can be made in the 

absence of the confounding effects of the above (Sutherland and Hearse, 2000; 

Skrzypiec-Spring et al., 2007). Lastly, the model is clinically less relevant (Hearse and 

Sutherland, 2000) and it can be challenging to translate findings to humans. Despite 

this, it is important to bear in mind that while there may be decreasing clinical 

relevance, animal models are the cornerstone for the identification and development 

of novel therapies.  For this study, the isolated working rat heart perfusion technique, 

established by Neely and Morgan (1967) was used. This model, which is simply a 

conversion of the retrogradely perfused (Langendorff) rat heart into working mode, 

allows for the study of cardiac contractile function, pharmacology, vascular biology, 

morphology and vascular anatomy as well as biochemistry (Zimmer, 1998; Sutherland 

and Hearse 2000).   

3.2.1. Reagents 

Filtered modified Krebs-Henseleit buffer (KHB) was the perfusate of choice. The buffer 

contained: 119.00mM NaCl, 25.00mM NaHCO3, 4.75mM KCl, 1.2mM KH2PO4, 0.6mM 

MgSO4.7H2O, 0.6mM Na2SO4, 1.25mM CaCl2. H2O and 10mM glucose. The buffer 

has a pH of 7.4 at 37°C when gassed with a 95% O2/5% CO2 mixture and mimics the 

key ionic components of blood.   

3.2.2. Procedure 

Rats were anaesthetised by the intraperitoneal injection of sodium pentobarbitone 

(Bayer, Johannesburg, South Africa) (30mg/rat). Absence of the pedal pain withdrawal 

reflex (foot pinch) was indicative of deep anaesthesia.  

Subsequently, the heart was cannulated via the aorta onto the aortic cannula. The 

aorta was secured with a crocodile clip and a suture was used to tie it down. The 

cannulation of the left atrium using one of the pulmonary orifices is the last and most 

critical step of the working heart perfusion. 
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Stabilization and wash out of the blood, attained by perfusing the hearts in retrograde 

mode, was done at a constant hydrostatic pressure of 100cm H2O. Following 

stabilization, hearts were perfused in the working mode (also known as anterograde, 

which will be referred to as working mode from here onwards) at a preload and 

afterload of 15cm H2O and 100cm H2O respectively (Marais et al. 2005). 

After stabilization, the hearts were subjected to either global or regional ischaemia. In 

the treatment groups, melatonin was administered prior to and post ischaemia i.e. at 

the end of the stabilisation and beginning of reperfusion periods (Refer to section 

3.2.6).  

To monitor myocardial temperature, a small incision made through the coronary sinus 

allows for the placement of a temperature probe. Myocardial temperature was kept 

constant at 34.5- 36°C, 36.6-36.8 °C and 36.5 °C during retrograde, working heart and 

ischaemic period respectively. In order to determine myocardial contractile function, 

for both the global and regional ischaemia protocols, haemodynamic measurements 

(discussed below) were recorded prior to the induction of ischaemia and post 

ischaemia, during reperfusion. 

3.2.3. Haemodynamic Data for Isolated Heart Perfusions  

Myocardial functional performance was measured during perfusion in the working 

mode at two time points namely prior to the induction of ischaemia as well as during 

reperfusion. The parameters were: coronary flow (Qe), aortic output (Qa), peak 

systolic pressure (PSP), heart rate (HR) and total work (TW).Qe and Qa, in mL/minute, 

were measured manually. Cardiac output (mL/min) was calculated as the sum of the 

coronary flow and aortic output. The aortic pressure (peak systolic pressure and 

diastolic pressure; mmHg) and HR (bpm) were measured using a Viggo- Spectramed 

pressure transducer which was inserted into the aortic perfusate line and coupled to a 

computer with specialized software (Lochner et al. 2006). Hearts that displayed 

impaired myocardial function and had an aortic output of <28mL/minute were excluded 

from the study.  

The mean external power produced by the left ventricle (Total Work- TW) in mWatts 

(mW) was calculated according to the formula described by Kannengieser and 
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colleagues (1979) as follows:  TW= 0.002222(PAO-11.25) (CO), where POA= aortic 

pressure and CO= cardiac output.  The functional recovery of the hearts was 

determined by expressing the post-ischaemic TW as a percentage (%) of the pre-

ischaemic TW.  

3.2.4. Melatonin Administration 

Melatonin (Sigma Aldrich, St Louis, Missouri, United States), was first dissolved in 

250µL of absolute ethanol and diluted in modified KHB to a final concentration of 

0.3µM or 50µM (see Appendix A). Based on previous studies in our laboratory the 

50µM concentration of melatonin was selected. In view of the study done by Lamont 

and co-workers (2011) the 0.3µM concentration was selected. Melatonin was perfused 

into the heart for a duration of 10min.    

3.2.5. Experimental Protocols, Groups, Sample sizes  

For this study 155 male Wistar rats were used and all the experimental groups were 

randomized. All hearts were subjected to a stabilization period which consisted of 10 

min retrograde perfusion; 10 min working heart perfusion; 10 min retrograde perfusion 

prior to either global ischaemia or regional ischaemia, followed by reperfusion. Hearts 

subjected to global ischaemia (n=123) were perfused according to either one of three 

perfusion protocols namely: stabilisation, ischaemia or reperfusion, which refers to the 

time periods in which melatonin was applied, i.e. melatonin applied at the end of 

stabilisation period (stabilisation group) or melatonin applied at the end of stabilisation 

period prior to global ischaemia (ischaemic group) or melatonin applied at the end of 

stabilisation prior to global ischaemia and at the onset of reperfusion (reperfusion 

group).  

Hearts exposed to global ischaemic experimental protocols were used either for 

mitochondrial phosphorylation studies and Western blotting of mitochondrial markers 

(n=69) or freeze-clamped for the analysis of cytosolic markers using western blotting 

(n=54) (Fig 10 and 11).   

Hearts subjected to regional ischaemia (n=32) were used for the analysis of IFS. In 

the treatment group, melatonin was applied at the end of the stabilisation period prior 

to regional ischaemia as well as at the start of reperfusion. IFS analysis followed at 
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the end of reperfusion (Fig 10 and 11). All protocols are discussed and depicted in 

detail in subsequent sections (see section 3.2.6).  
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Figure 10:  Outline of experimental groups and protocol. ** Indicates the omission of the 54 hearts that were subjected to global ischaemia and 
freeze clamped; this omitted group consisted of a single control group (n=6) and 2 melatonin groups (n=6 per group) for the stabilisation, ischaemia 
and reperfusion protocols. Abbreviations: n- Sample Size; GRP/s- Group/s.
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Figure 11: Outline of the experimental study design,  
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3.2.6. Experimental Protocols: 

3.2.6.1. Global Ischaemia 

The induction of global ischaemia was achieved by closing off the aortic and the atrial 

cannulas (no flow ischaemia, Qe: 0mL/min). Melatonin was administered directly to 

the heart prior to or post ischaemia (as indicated in Fig 12 below) using a separate 

drug line. For a detailed description of the melatonin calculations as well as 

preparation please refer to Appendix A. The myocardial temperature was monitored 

and kept at 36.5°C during the 20 minutes of ischaemia. Reperfusion was initiated by 

opening the aortic cannula once the 20 minute ischaemic period had elapsed. Hearts 

were either freeze clamped or used for mitochondrial isolation at the end of the 

protocol as depicted in figure 12 below. The global ischaemia protocols were as 

follows:   

 Stabilisation: 10 minutes retrograde perfusion; 10 minutes working heart 

perfusion; 10 minutes retrograde perfusion. For the stabilisation melatonin 

groups, melatonin was administered at a concentration of 50µM or 0.3µM 

during the last 10 minutes of the retrograde perfusion. 

 Ischaemia:  10 minutes retrograde perfusion; 10 minutes working heart 

perfusion; 10 minutes retrograde perfusion and 20 minutes global ischaemia. 

For the ischaemia melatonin groups, melatonin was administered at a 

concentration of 50µM or 0.3µM prior to ischaemia (during the last 10 minutes 

of retrograde perfusion).  

 Reperfusion: 10 minutes retrograde perfusion; 10 minutes working heart 

perfusion; 10 minutes retrograde perfusion; 20 minutes global ischaemia; 30 

minutes of reperfusion which consisted of 10 minutes of retrograde perfusion 

followed by 20 minutes of working heart perfusion. For the reperfusion 

melatonin groups, melatonin was administered at a concentration of 50µM or 

0.3µM (10 minutes prior to and 10 minutes post global ischaemia). 
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Figure 12: Outline of stabilisation, ischaemia and reperfusion perfusion protocols. Each protocol consists of three groups: Control, with no 
melatonin treatment; Melatonin, with 50µM of melatonin and Melatonin, with 0.3µM of melatonin administered. For the Ischaemia protocol melatonin 
was administered prior to ischaemia for 10 minutes. For the reperfusion protocol melatonin was administered prior to ischaemia and at the onset of 

reperfusion for 10 minutes.    Abbreviations: L-Langendorff; WH- Working Heart; MLT- Melatonin; µM-Micromolar.
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3.2.6.2. Regional Ischaemia 

Regional ischaemia was induced by ligation of the left anterior descending (LAD) 

coronary artery using an Ethicon silk suture. Initiation of regional ischaemia 

commenced at the end of the stabilization period, for 35 minutes with the myocardial 

temperature maintained at 36.5ºC. Successful induction of regional ischaemia was 

indicated by a ~33-40% reduction of the coronary flow in comparison to the pre-

ischaemic coronary flow as well as cyanosis on the surface of the myocardium.  The 

60 minute reperfusion period started at the end of ischaemia when the suture was 

released (Fig 13). 

 

 

 

 

 

 

 

 

Figure 13: Schematic representation of the heart post regional ischaemia (Everson, 2016), 

 

The regional ischaemia-reperfusion protocol was as follows: 

Stabilisation consisted of 10 minutes retrograde perfusion; 10 minutes working heart 

perfusion; 10 minutes retrograde perfusion; followed by 35 minutes regional 

ischaemia; reperfusion consisted of 10 minutes retrograde perfusion followed by 20 

minutes of working heart perfusion and 30 minutes of retrograde perfusion. For the 

melatonin treatment groups, melatonin was administered 10 minutes prior to and 10 

minutes post regional ischaemia (Fig 14). 
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Figure 14: Outline of regional ischaemia perfusion protocol. Control, with no melatonin treatment; Melatonin, with 50µM of melatonin administered 

prior to ischaemia and at the onset of reperfusion, Melatonin, with 0.3µM of melatonin administered prior to ischaemia and at the onset of reperfusion. 

Abbreviations: L- Langendorff; WH- Working Heart; MLT- Melatonin; IFS- Infarct Size; µM-Micromolar. 
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Infarct size determination  

According to Holmbom et al. (1992) there are several methods that have been 

described for IFS determination however, two methods are used viz. histological 

evaluation to determine necrotic tissue and the macroscopic evaluation using 

tetrazolium dyes to stain viable tissue. Initially histological evaluation was considered 

to be the definite way to measure IFS however, this technique is costly and time 

consuming amongst other limitations (Holmbom et al. 1992).  Over time both these 

techniques have been modified and new techniques have come into practice 

(Minicucci et al. 2007; Price et al. 2011). For this study myocardial IFS was determined 

using a tetrazolium dye. The triphenyltetrazolium chloride (TTC) staining method 

which is fast, inexpensive, popular and well established allows one to delineate 

between viable and nonviable tissue. This technique is based on the enzymatic 

reaction of mitochondrial dehydrogenases, in viable tissue, with TTC. Ultimately the 

reaction results in the reduction of TTC to triphenylformazan (TFP), with nicotinamide 

adenine dinucleotide (NADH) as an electron donor, giving viable tissue a distinct brick 

red pigment. The necrotic tissue remains unstained/ white or pale due to the absence 

of dehydrogenase activity and cofactors i.e. NADH (Redfors et al. 2012)  

Reagents  

0.25% Evans blue (Sigma Aldrich, St Louis, Missouri, United States) in distilled water 

(0.025g/10mL), Ethion silk suture (25 type needle size, 3/0, 26mm ½ Taper, Johnson 

and Johnson Medical (PTY) LTD, South Africa). 

NaH2PO4 (20mL of 100mM) and Na2HPO4. 2H2O (80mL of 100mM) were mixed to 

obtain a phosphate buffer, pH7.4; this phosphate buffer was mixed with 2, 3, 5 – TTC. 

Phosphate buffer (5mL) and TTC (0.05g) were used per heart; a 10% formaldehyde 

solution was used for fixing. 

Procedure 

To delineate the area at risk at the end of the experimental protocol, the aortic cannula 

was used to gradually infuse 1mL of 0.25% Evans blue into the heart during retrograde 

perfusion. Evans blue is a water soluble azo dye which stains the perfused tissue dark 
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blue. The stained hearts were cut above the atrium and frozen at -20ºC overnight and 

would later be analysed for IFS as depicted in Fig 15. 

The hearts were cut into 2mm slices from the apex to the base. They were stained 

with a 1% 2, 3, 5- TTC in phosphate buffer solution (pH 7.4) at room temperature for 

15 minutes. Subsequently, heart slices were drained and fixed in a 10% v/v 

formaldehyde solution at room temperature for an hour. The formaldehyde is used to 

fix and accentuate the contrast between the necrotic and viable tissue. The heart slices 

are then neatly arranged between two Perspex glasses plates and scanned. The left 

ventricle area at risk (AR), the infarcted and viable areas were drawn using 

computerized planimetry (UTHCSA Image Tool programme, University of Texas 

Health Center at San Antonio, Tx, USA). The areas of each heart were used to 

calculate and express the IFS as a percentage of the area at risk (I/AR %).   

 

 

 

 

Figure 15: Diagram depicting a stained section of the heart. The white tissue represents the 
infarct area, the red tissue represents the area at risk and the blue represents the viable tissue 
(Everson, 2016).  

3.3. Mitochondrial studies 

The isolation of mitochondria using differential centrifugation was pioneered by 

individuals such as George Palade and co-workers as well as Chance and Williams. 

This technique lead to numerous discoveries such as defining the mitochondrial 

ultrastructure and the chemiosmotic theory of oxidative phosphorylation (Frezza et al. 

2007; Picard et al. 2011). Mitochondrial isolation consists of three stages namely: 

mechanical disruption of the tissues or cells, the use of low speed centrifugation to 

separate the cellular debris and nuclei and the use of high speed centrifugation to 

extract the mitochondria. Initially two populations of mitochondria were isolated from 

rat cardiac muscle namely: subsarcolemmal mitochondria, which are located below 

the sarcolemma, and interfibrillar mitochondria which are located between the 
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myofibrils (Palmer et al. 1977). Recently Ong and colleagues (2013) described a third 

population of mitochondria located adjacent to the nucleus known as perinuclear 

mitochondria. Figure 16 below shows all three mitochondrial populations.  The 

protocol described below is for the isolation of subsarcolemmal mitochondria. The 

primary goal of mitochondrial isolation is to obtain organelles that are functional and 

as pure as possible i.e. with minimal contamination with other cellular components that 

can be used for the analysis of mitochondrial bioenergetics.  

 

 

 

 

 

 

 

 

Figure 16: Electron micrograph of a cardiomyocyte showing three populations of mitochondria. 
Abbreviations: IFM- interfibrillar; PNM-perinuclear; SSM- subsarcolemmal.  (Ong et al. 2013). 

Oxidative phosphorylation, which is a key component of bioenergetics, is being studied 

extensively in order to elucidate mitochondrial mechanisms and systems that occur in 

health and disease (Gnaiger, 2014). There are a wide variety of methods using either 

fluorescence or a Clarke-type oxygen electrode (Zhang et al. 2012).  Some well-known 

platforms available for oxidative phosphorylation analysis include the:  Oroboros: 2k 

Oxygraph, Seahorse XF analyser and the Hansatech Oxygraph. Each platform has its 

respective advantages and disadvantages (Zhang et al. 2012). However, the platform 

that one selects is dependent on factors such as the endpoints of interest and the 

nature of the research question. For the present study the Hansatech Clarke type 

oxygen electrode (Oxygraph; Hansatech Instruments, Pentney, England), which 
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measures oxygen tension, was readily available in our facility and sufficient for the 

purpose of this study. It measures oxidative phosphorylation polarographically.  

3.3.1. Reagents 

The mitochondrial isolation medium (KE buffer) consisted of 0.18M KCL and 0.01M 

ethylenediaminotetraacetic acid (EDTA; Sigma Aldrich, St Louis, United States) (pH 

7.4, using 2M Tris); 10% trichloroacetetic acid (TCA; BDH laboratory Supplies, Poole 

England); lysis buffer (See section 3.4.1.1). 

3.3.2. Mitochondrial isolation procedure 

Hearts allocated for mitochondrial isolation were cut above the atrium and placed into 

a Sorvall tube containing ice-cold KE buffer. Using scissors, the ventricles were cut up 

finely and then homogenised using a Polytron (PT-10 homogenizer, Kinematica, 

Fisher Scientific, Germany) (2x4 seconds, speed 4). The homogenate was equally 

distributed between two Sorvall tubes and tubes were topped up half way with KE 

buffer before being centrifuged (Sorvall SS34 rotor, Thermo Electron Cooperation, 

United States) for 10 minutes at 2500rpm (755g) at 4°C. At the end of the first spin, 

the supernatants were carefully decanted into two clean Sorvall tubes and centrifuged 

for 10 minutes at 4°C at 12 500 rpm (18 800g).  At the end of the spin, the supernatant 

was discarded and the two mitochondrial pellets gently suspended in KE buffer using 

a Glass- Teflon homogenizer (Teflon® pestle PYREX® Potter-Elvehjem tissue 

grinders). 

The first mitochondrial pellet was resuspended in 250µL of KE buffer. 50µL of this 

suspension was precipitated in 1mL of 10% TCA and refrigerated for subsequent 

protein determination using the Lowry assay (Lowry et al. 1951; see Section 3.3.4). 

The rest of the suspension was placed on ice to be used for analysis of the 

mitochondrial oxidative phosphorylation potential. The second pellet was suspended 

in 200µL of lysis buffer (see Section 3.4.1.1) and stored at -80°C for Western blotting 

(see Section 3.4). 
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3.3.3. Mitochondrial Oxidative Phosphorylation 

3.3.3.1. Reagents   

250mM Sucrose , 10mM Tris-HCl, pH7.4, 8.5mM KH2PO4, 5mM glutamate*,  4.5mM 

palmitoyl-L-carnitine*, 2mM malate* (See Table 4 below for medium composition),   

±350nM of adenosine-5’-diphosphate monopotassium salt hydrate (ADP) (see 

Appendix B for procedure and formula), ±3500nM ADP (10x ADP; see Appendix B 

for procedure), 50% KCL and sodium dithionite (Na2S2O4; BDH Laboratory Supplies, 

Poole, England) were used for the Oxygraph setup and calibration (procedure 

explained below). Reagents indicated with * were obtained from Sigma Aldrich, St 

Louis, United States. 
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Table 4: Composition of the (A) glutamate /malate and (B) palmitoyl-L-carnitine/ malate medium.   

Abbreviations: M- Molar; mL- Mililitres, mM-Milimolar; Tris-HCL- Tris Hydrochloride; ADP- 
Adenosine Diphosphate; ATP- Adenosine Triphosphate; ETC- Electron Transport Chain; HCL- 
Hydrogen Chloride. 

Oxygraph setup, calibration and procedure for determination of mitochondrial 

oxidative phosphorylation rates: 

Before use, the Oxygraph electrode (See Fig 17 below) was cleaned with clay. Drops 

of 50% KCL were put around the base of the electrode dome (to the anode) and to the 

A) Glutamate (Carbohydrate) and malate medium 

Reagent Stock 
Concentration 
(M) 

Volume 
of Stock 
Used 
(mL) 

Final Concentration 
in Incubation 
Medium (mM) 

Rationale of medium 
composition  

Sucrose 1.25 2 250 Supplies correct osmotic milieu 
to keep mitochondria intact 

Tris-HCL 0.1 1 10 Tris: buffer of pH for the solution 

Potassium 
dihydrogen 
phosphate 
(K2HPO4.H2O) 

0.085 1 8.5 KH2PO4: Supplies the inorganic 
phosphate ( Pi)  for the 
phosphorylation of ADP to ATP 

Glutamate 0.05 1 5 Electron donor in the ETC 

Malate 0.02 1 2 Electron transporter 

Distilled 
water 

- 4 - - 

Total  - 10 pH adjusted to 7.4 
with HCL before use 

 

B) Palmitoyl-L-carnitine (Fatty acid) and malate medium 

Reagent Stock 
Concentration 
(M) 

Volume 
of Stock 
Used 
(mL) 

Final Concentration 
in Incubation 
Medium (mM) 

Rationale of medium 
composition  

Sucrose 1.25 2 250 Supplies correct osmotic milieu 
to keep mitochondria intact 

Tris-HCL 0.1 1 10 Tris: buffer of pH for the solution 

Potassium 
dihydrogen 
phosphate 
(K2HPO4.H2O) 

0.085 1 8.5 KH2PO4: Supplies the inorganic 
phosphate ( Pi)  for the 
phosphorylation of ADP to ATP 

Palmitoyl- L 
–Carnitine  

0.045 1 4.5 Electron donor in the ETC 

Malate 0.02 1 2 Electron transporter 

Distilled 
water 

- 4 - - 
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cathode located on the top of the electrode. An oxygen permeable membrane was 

placed over the cathode and secured with an inner O-ring using an applicator shaft. 

An outer O-ring was used to seal the electrode disk into the oxygen electrode chamber. 

The Oxygraph system is coupled to a computer with specialised software and a water 

bath which maintains the temperature in the Oxygraph chamber.  

 

 

Figure 17: Oxygraph electrode with accessory rings (Adapted from Hansatech Instruments, 
2017)  

Separate Oxygraph chambers (See Fig 18 below) were used for the two substrate 

mediums A [A: Glutamate (Carbohydrate)/malate medium] or B [B: Palmitoyl-L-

carnitine (Fatty acid)/malate medium] to compare mitochondrial oxidative 

phosphorylation rates between carbohydrate and fatty acid substrates, respectively. 

The electrodes were calibrated before experimentation: 650µL of incubation medium 

[Glutamate/malate medium] and a magnetic stirrer were added to the Oxygraph 

chamber (temperature 250 C, stirrer speed 100). Once the oxygen levels had reached 

ambient levels (100%), a small amount of Na2S2O4 was added to remove all oxygen 

in the chamber and record zero oxygen levels. The calibration settings were saved 

and distilled water was used to thoroughly rinse the chamber before 650µL of 

substrate medium A [A: Glutamate/malate medium] was added. The same calibration 

procedures were followed with substrate medium B [B: Palmitoyl-L-carnitine/ malate 

medium] and allowed to stabilise to 100% ambient oxygen at 25°C. 
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Figure 18 Oxygraph chamber (Adapted from Hansatech Intruments, 2017) 

100µL of the isolated mitochondrial suspension in KE was added to each chamber, 

which was then sealed with the adapted plunger assembly and the recording was 

allowed to run for several minutes. This represented state 2 (S2, See Fig 19), which 

is the respiration of the mitochondria in the presence of substrate but in the absence 

of ADP. A known concentration of 50µL ADP was then injected into the chamber using 

a Hamilton syringe to prevent the entry of any external oxygen into the system. This 

phase represented state 3 (S3) respiration (also known as active respiration), which 

occurs in the presence of both substrate and ADP and allows for the conversion of 

ADP to ATP. After the added ADP was converted to ATP, the respiration rate slows 

down significantly (S4; respiration in the presence of substrate and ATP). State 4 was 

allowed to run for approximately 1 minute.  50µL of 10x ADP was subsequently 

injected into the chamber using a Hamilton syringe to induce anoxia. The system was 

considered anoxic when all the oxygen in the system consumed (registering 0 on the 

Oxygraph). The mitochondria were exposed to 20 minutes of anoxia followed by re-

oxygenation, after which state 3 respiration was determined.  

From the graph generated by the Oxygraph the following parameters were calculated 

(for detailed calculations please refer to Appendix C-E) in conjunction with the 

mitochondrial protein concentrations obtained from the Lowry assay (see Section 

3.3.4): 
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QO2 (S3): nAtoms oxygen taken up in the presence of ADP/mg mitochondrial protein/ 

min 

QO2 (S4): nAtoms oxygen uptake in the absence of ADP/mg mitochondrial protein/min 

Respiratory control index (RCI): QO2 (S3)/ QO2 (S4) (an indicator of the tightness 

of coupling between respiration and phosphorylation) 

ADP/O: ratio of ATP production to total oxygen uptake during state 3 (nmoles 

ATP/nAtom of oxygen consumed) 

Oxidative phosphorylation rate: QO2 (S3) X ADP/O (nmoles ATP produced/mg 

mitochondrial protein/min) 

 

Figure 19: Graph obtained from Oxygraph recording depicting the various stadia (indicated in 
red) of mitochondrial respiration.  State 2 represents respiration in the presence of substrates 
only; State 3 represents respiration in the presence of substrate and ADP; State 4 represents 
respiration once all ADP has been converted to ATP. State 3 Re-oxygenation represents 
respiration during reoxygenation after the addition of 10x ADP and 20 minutes of anoxia. 
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3.3.4. Lowry Assay   

The Lowry assay, which is one of three copper-based colorimetric assays used to 

quantify total protein, was developed by Lowry and colleagues (1951) based on the 

technique described previously by Wu (Sapan et al. 1999; Krohn, 2011).  

The method is based on the Biuret reaction and Folin-Ciocalteau reaction. In the Biuret 

reaction, the peptide bonds of proteins interact with copper under alkaline conditions 

to produce Cu+ which then reacts with the Folin reagent to produce the latter reaction 

(Waterborg, 2002). This results in the reduction of phosphomolybdotungstate to 

heteropolymolybdenum blue by the copper-catalyzed oxidation of aromatic amino 

acids. The reactions ultimately result in a vivid blue colour, which depends on the 

content of tryptophan and tyrosine (Sapan et al. 1999; Waterborg, 2002). The 

detection wave length for the assay is 750nm however, other investigators (in Sapan 

et al. 1999) have described the use of wavelengths at 600 and 650nm particularly in 

substances that may interfere with the Lowry reaction. Selected concentrations of 

Bovine Serum Albumin (BSA) were used to generate a standard curve for calculation 

of sample protein concentrations. BSA was selected because it is a well-known and 

popular choice for a protein standard which is relatively inexpensive and is widely 

available in high purity (Krohn, 2011).   

3.3.4.1. Reagents 

2% Na2CO3, 2% Na-K-Tartrate, 1% CuSO4.5H2O, Folin Ciocalteus phenol reagent, 

1N NaOH, 0.5N NaOH. 

3.3.4.2. Preparation of Standards 

A stock solution of BSA (Roche Diagnostics, Indianapolis, United States) was made 

by dissolving 0.5g of BSA in 10 mL of distilled water. 50µL of the stock solution was 

diluted in 5mL of distilled water (1:101). The Heλios Ultra violet spectrophotometer 

(Unicam) was used to read the OD at 280nm using quarts cuvettes and distilled water 

as a blank. The BSA stock concentration was calculated (See Appendix F for 

formula). Standards were prepared in volumetric flasks according to Table 5 below:  
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Table 5: BSA standard dilutions and dilution ratios 

Standard 
Number 

Amount of BSA stock 
solution (0.5g in 10ml) 
used 

Amount of 0.5 N NaOH 
used for standard 
dilution 

Dilution 
Ratio 

1 1mL 200mL 1: 200 

2 2mL 200mL 1:100 

 

3 2mL 100mL 1:50 

 

3.3.4.3. Procedure 

Mitochondrial samples (100 µl), precipitated in 10% TCA, were centrifuged (Haraeus 

Megafuge 16R, Thermo Fisher Scienctific, Massachusetts , United States) at 3000 

rpm for 10 minutes at 4°C, the supernatant discarded and the samples allowed to air 

dry. 500µL of 1 N NaOH was pipetted into each sample and placed in a 50°C water 

bath until the proteins were dissolved. Afterwards 500µL of distilled water was added 

to the samples (final sample volume 1mL; NaOH concentration 0.5N).  Standards and 

samples were analysed in triplicate using a volume of 50µL. For the blank 50µL of 0.5 

N NaOH was used. 1mL of Solution 1 (49mL 2% Na2CO3 and 0.5mL each of 2% Na-

K-Tartrate and 1% CuSO4.5H2O), was added to each tube at 10 second intervals to 

the blank, standards and samples. After 10 minutes 100µL of Solution 2, (Folin 

Ciocalteus reagent diluted 1:2 in distilled water), was added to the samples as 

described above. The reaction was left to incubate for 30 minutes at room 

temperature. OD readings were measured using a spectrophotometer (Spectronic® 

20 Genesys™, Spectronic Instruments, United States at 750nm). The protein 

concentrations of the mitochondrial samples were calculated from the generated 

standard curve (Absorbance vs. protein concentration). 
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3.4. Western Blotting technique 

Western Blotting is a popular technique used to identify, quantify and determine the 

size of specific proteins from extracted cellular protein mixtures. This technique 

evolved from the Northern and Southern Blots which are used to detect RNA and DNA, 

respectively. The technique is based on the separation of native or denatured proteins 

followed by transfer to a membrane for detection using antibodies that are specific to 

the protein of interest (Jensen, 2012). Fig 20 provides an outline of the Western 

Blotting process. 

 

 

 

 

 

 

 

 

Figure 20: Overview of Western Blotting process. 

3.4.1. Sample Preparation: Protein Extraction 

3.4.1.1. Reagents 

Table 6 below gives a summary of all the reagents used to make heart and 

mitochondria lysis buffer.  

  

Detection and Quantification

Blocking and Antibodies 

Protein Loading, Separation and Transfer

Determination of Protein Concentration

Sample Preparation
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Table 6: Lysis Buffer composition for heart and mitochondria  

Reagent Stock Final 
Concentration/ 
Content  

Amount in 30mL 

Tris-HCL EGTA (pH 
7.5) 

200mM 20mM 3mL 

EDTA 100mM 1mM 300µL 

 Sodium Chloride 
(NaCl) 

1M 150mM 4.5mL 

ß-glycerophosphate - 1mM 0.006g 

Tetra-Sodium 
Pyrophosphate 

- 2.5mM 0.03g 

Sodium Orthovandate 
(Na3VO4) 

10mM 1mM 3mL 

Triton 10% 1% 3mL 

Leupeptin 10mg/mL 10µg/mL 30µL 

Aprotinin 10mg/mL 10µg/mL 30µL 

PMSF 100mM 50µg/mL 90µL 

Distilled water - - Used to fill up to 
30mL 

Abbreviations: EGTA- Ethylene glycol tetraacetic acid, EDTA- Ethylenediamine 
tetraacetic acid, PMSF-Phenylmethylsulphonyl fluoride. 

3.4.1.2. Protein Extractions from Heart Tissue 

Freeze clamped hearts were pulverized and approximately 150mg of heart tissue was 

compressed into Eppendorf tubes containing 700µL of lysis buffer. One scoop of 1.6 

mm, 1lb stainless steel zirconium oxide beads (Next Advance Inc., United States) and 

four 3.2mm, 1/8 inch stainless steel balls (Next Advance Inc., United States)  were put 
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into each sample. Samples were then placed in the Bullet Blender (Next Advance Inc., 

United States) at setting 10 for two 2minute intervals with a 1minute resting time in 

between at 4°C. If samples were not completely blended, they were subjected to one 

more blending cycle. The samples were then allowed to rest for 15 minutes before 

they were centrifuged (Sigma-1-14k bench top refrigerated centrifuge, Thermo 

Scientific Fisher, Massachusetts, United States) for 20 minutes (15 000rpm, 4°C).  

Following centrifugation, the supernatant was transferred into clean Eppendorf tubes 

and kept on ice for protein concentration determination using the Bradford assay (see 

Section 3.4.2). 

3.4.1.3. Protein Extractions from Mitochondrial Samples 

As previously mentioned the mitochondrial samples that were designated for blotting 

were stored at -80°C. In preparation for processing samples were thawed on ice. Next, 

a scoop of 0.15mm 1lb Zirconium oxide beads (Next Advance Inc., United States) 

were added to samples. The samples were placed into the Bullet Blender (Next 

Advance Inc., United States) (temperature 40C, speed setting 5) for 3 minutes. The 

samples were allowed to stand for 15 minutes before they were centrifuged (Sigma-

1-14k bench top refrigerated centrifuge, Thermo Scientific Fisher, Massachusetts, 

United States) for 20 minutes (15 000rpm, 4°C). The supernatant was aspirated into 

clean Eppendorf tubes in preparation for the Bradford assay described below.   

3.4.2. Protein Determination: Bradford assay 

3.4.2.1. Reagents 

500mg of Coomassie Brilliant Blue G-250 in 50mL 95% Ethanol, add 500mL 

Phosphoric Acid make up to 1L with distilled water (Bradford Reagent), Bovine Serum 

Albumin (BSA).  

A 5x dilution (20mL Bradford reagent plus 80mL distilled water) of the Bradford reagent 

was made and filtered through a double layer of Whatman filter paper (125mm, 

Schleicher and Schuell Microsciences, Germany). For the standard curve a 5 times 

dilution (100µl of BSA stock in 400µL of distilled water) of BSA stock (5mg/mL in 

distilled water) was prepared. The BSA dilution was serially diluted (see Table 7) in 

duplicate test tubes resulting in concentrations ranging from ±1- 19µg/ 100µL.  
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Table 7: BSA serial dilution for Bradford assay 

 

For the samples two dilutions were made in preparation for the Bradford assay. Frist, 

a 1:10 dilution of the centrifuged samples was made (10µL supernatant plus 90µL 

distilled water). For the second dilution a 1:20 dilution was made for the heart tissue 

samples (5l of the first dilution plus 95µL distilled water. Conversely, for the 

mitochondrial samples the second dilution was a 1:10 dilution (10µL of the first dilution 

plus 90µL distilled water). For each sample, the second dilution was prepared in 

duplicate and used for the assay. All tested tubes were vortexed thoroughly.  

After preparation of the standards and samples for the assay, 900µL of the diluted 

Bradford reagent was dispensed into each tube starting with the blank, followed by the 

standards and samples. The initial volume of the standards and samples was 100µL, 

together with the Bradford reagent the tubes will now have a total volume of 1000 µL. 

All the tubes were vortexed and left to incubate for 20 minutes at room temperature to 

allow colour development. At the end of the incubation period the absorbance was 

measured at 595nm using a spectrophotometer (Spectronic® 20 Genesys™, 

Spectronic Instruments, United States). A standard curve of absorbance vs. protein 

concentration, was generated from the readings and used to calculate the protein 

content of each sample and ultimately the lysates.  

Diluted BSA Distilled water (µL) 

0 (Blank) 100 

5 95 

10 90 

20 80 

40 60 

60 40 

80 20 
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3.4.3. Lysate preparation 

Lysates were prepared by adding protein sample (as per Bradford assay calculations) 

to Laemmli sample buffer (850µL Western sample buffer and 150µL mercaptoethanol) 

and lysis buffer according to respective amounts as calculated. Lysates were boiled 

for five minutes to denature the proteins and stored at -80°C. 

3.4.4. Protein Loading, Separation and Transfer 

3.4.4.1. Reagents 

Criterion™ TGX Stain-free™ Precast Gels (Bio-rad), running buffer stock (250mM 

Tris, 192mM Glycine, 1% SDS), transfer buffer (250mM Tris, 192mM Glycine, 20% 

(v/v) Methanol). 

3.4.4.2. Procedure 

The lysates which were previously stored at -80°C were boiled again for five minutes 

and centrifuged (Minispin Microcentrifuge, Eppendorf, Sigma Aldrich, St Louis, United 

States) for 10 seconds using the short spin function. Next lysates were loaded into 26 

well Criterion™ TGX Stain-free™ 4-20% gradient precast gels. The gels were then 

placed into the dual Biorad Criterion™ cell (Bio-rad Laboratories Inc., United States) 

and filled with running buffer (100mL running buffer stock in 900mL of distilled water) 

up to the demarcated lines on the tank. 7.5µL of the PagerRuler™ Prestained Protein 

Ladder (Thermo Scientific, Massachusetts, United States) was loaded into the first 

well followed by an unperfused or a baseline perfused heart and the samples. The 

unperfused/ baseline sample was used as an internal control for the normalisation of 

the blots. 15µL of each sample containing 30µg of protein for the heart samples (used 

for the analysis of cytosolic markers) and 12µL of each sample containing 25µg of 

protein for the mitochondrial samples (used for the analysis of mitochondrial markers) 

were loaded. Empty wells were loaded with western sample buffer to prevent the 

samples from running crooked. Proteins were separated using sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE). Gels were run for  10 minutes at 

100V and 200mA, followed by a 50 minute run at 200V and 200mA using the Biorad 

PowerPac Basic. Gels were activated using the ChemiDoc™ MP system (Bio-rad 

Laboratories Inc., United States). Gels were kept in running buffer before and after 

imaging to prevent drying out and breaking. 
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Once gels were activated, proteins were transferred to polyvinylidene fluoride 

membranes (PVDF, Immobilon®-P Transfer membranes, pore size 0.45µm, Merk 

Millipore, Mass, United States) using the Biorad Criterion™ Blotter. The sponges and 

filter papers used for the wet transfer were soaked in cold transfer buffer and 

refrigerated approximately an hour before transfer.  

The transfer cassettes were packed from black to red i.e. positive to negative (Fig 21) 

as follows: 

  1 Sponge/ Fibre  Foam Pad 

 2 Filter papers 

 1 gel activated with separated proteins 

 1 PVDF membrane 

 2 Filter papers  

 1  Sponge/ Fibre Foam Pad  

 

 

 

 

 

Figure 21: Assembly of Western Blot Sandwich  
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During the packing process a roller was used to remove air bubbles as each layer of 

the sandwich was introduced. The cassette was closed and placed inside the tank. A 

thermo-safe Polar Pack was placed in the ice holder compartment of the cell.  Ice cold 

transfer buffer was used to fill the cell up to the demarcated markers. The transfer 

process took place at 200V, 200mA for 30-35 minutes. At the end of the transfer period 

the PVDF membrane which contained the separated proteins was visualized using the 

ChemiDoc™ MP system (Bio-rad Laboratories Inc., United States). Membranes were 

kept in transfer buffer before and after visualisation to prevent drying.  

3.4.5. Blocking and Antibodies 

3.4.5.1. Reagents 

10x TBS stock (200mM Tris, pH 7.6, 1.37 M NaCl), Tween-20, long life fat free milk, 

antibodies. All antibodies were obtained from Cell Signalling Technologies (Mass, 

United States) except for TOM70 which was obtained from Santa Cruz 

Biotechnologies (Texas, United States). All the antibodies were monoclonal except for 

SQSTM1/p62, PARKIN and phosphorylated DRP-1 which were polyclonal.  

Membranes were rinsed once with 1x TBS Tween (100mL of 10x TBS buffer in 900mL 

distilled and 1 mL Tween-20) and blocked for  two hours, shaking  at room temperature 

in 50mL 5% milk (5ml long life fat free milk in 95mL 1x TBS Tween) per membrane. 

After blocking the non-specific binding sites with 5% milk, the membranes were 

thoroughly washed for 30 minutes (3x10 minute washes on the shaker, with fresh 

buffer for each wash). Next the membranes were incubated overnight at 4°C on the 

shaker with polyclonal primary antibody solution (1:1000 dilution of antibody in TBS-

Tween). Please refer to Table 8 below for a description of all the antibodies that were 

used for the study.  
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Table 8: Summary of the mitophagy proteins analysed for (A) PINK1/ PARKIN Pathway (B) 
Alternative Pathway and (C) Cytosolic Proteins: molecular weight, percentage milk in primary 

antibody, ECL incubation period and Chemi Doc exposure period. 

A. Mitophagy Proteins: PINK1/PARKIN Pathway  

Proteins Molecular 
Weight (kDa) 

Milk in 
Primary 
antibody (%) 

ECL 
incubation 
period prior to 
detection 
(min) 

Exposure 
period in 
the Chemi 
Doc 
system 
(min) 

PARKIN 52 2.5 3-5 <1 

PINK1 60, 50 0 3-5 <1 

SQSTM1/p62 60 0 3-5 <1 

TOM70 70 0 3-5 1-2 

Sirt3 28 0 3-5 <1 

 

B. Mitophagy Proteins: Alternative Pathway  

Proteins Molecular 
Weight (kDa) 

Milk in 
Primary 
antibody (%) 

ECL 
incubation 
period prior to 
detection 
(min) 

Exposure 
period in 
the Chemi 
Doc 
system 
(min) 

Phosphorylated 
ULK** ( Ser 555) 

140,150 0 3 2 

Total ULK 150 0 3 <1 

Rab9 23 0 3 <1 

Phosphorylated 
DRP-1 (Ser 637) 

78-82 0 3 2 

Total DRP-1 78-82 0 3 <1 

** Indicates the addition of signal boost to the primary and secondary antibody 
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C. Cytosolic Proteins  

Proteins Molecular 
weight (kDa)  

Milk in Primary 
antibody (%) 

ECL incubation 
period prior to 
detection (min) 

Exposure 
period in the 
Chemi Doc 
system 
(min) 

PGC-1 alpha 130 2.5 3-5 10-15 

Sirt1 120 0 3-5 3 

 

3.4.6. Detection and Quantification  

Subsequent to overnight incubation, membranes were washed thoroughly for 30 

minutes as described above. The membranes were then incubated for an hour, 

shaking at room temperature, in anti-rabbit, immunoglobulin G, conjugated 

Horseradish peroxidase (HPR) secondary antibody (dilution in TBS-Tween 1:4000), 

followed by  another 30 minute wash with TBS-Tween.  

The proteins were visualised by covering the membrane with Clarity ™ Western ECL 

Substrates (1.5mL of the Luminol/Enhancer solution and 1.5mL of the Peroxidase 

solution) and incubated and exposed as indicated in Table 8. Membranes with ECL 

were placed in the Bio Rad ChemiDoc system and allowed to develop. Pictures were 

taken and saved for the quantification of the blots.  

The finest images from the exposed membranes were normalised to the 

corresponding PVDF membranes images obtained after the transfer step. The 

normalisation process compares the signal intensity of the protein of interest, which is 

unknown, to an internal loading control, which is known. In this study baseline hearts 

that were unperfused or perfused for 5 minutes were used as internal loading controls. 

This process corrects for sample-to-sample and lane-to-lane variation which is 

unavoidable during blotting. The Bio Rad ChemiDoc Image Lab 5.0 series software 

was used to analyse all the blots.  
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3.4.7. Stripping of membranes 

In the event that a membrane was not probed correctly it was stripped. The membrane 

was incubated twice in distilled water for 5 minutes. This was followed by a single 

incubation step in 0,2M NaOH for 7 minutes and two five minute incubations in distilled 

water once again. All the incubation steps took place on the rotor shaker V1.00. 

Subsequent to stripping, the membrane was blocked, probed with antibody and lastly 

visualised and quantified as described above. 

3.5. Statistical Analysis   

All data points were expressed as mean ± standard error of mean (SEM) .GraphPad 

Prism® 6 was used for statistical analysis.  In some instances Student’s t-test was 

used for the comparison of two groups in the same perfusion condition/protocol.  A 

one-way analysis of variance (ANOVA) followed by a Bonferroni post hoc correction 

test was used for the comparison of all the groups within the same perfusion 

condition/protocol.  A p-value of <0.05 was considered to be statistically significant.  
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CHAPTER 4: RESULTS 

4.1. Introduction 

The aims of this study were to characterise (i) the effect of I/R per se on the relationship 

between functional recovery during reperfusion, mitochondrial oxidative 

phosphorylation capacity, IFS and mitophagy in the working heart model using male 

Wistar rats and (ii) the effect of manipulation of mitophagy by the pineal hormone, 

melatonin, on cardioprotection, using the parameters listed in aim 1.  The following 

chapter provides a detailed description of the data obtained from the isolated heart 

perfusions, mitochondrial oxidative phosphorylation capacity and Western Blotting for 

important mitochondrial and cytosolic markers involved in various processes (Fig. 22 

below). For each of the above the effect of high (50µM) or low (0.3µM) melatonin 

concentrations were examined.  

 

 

 

 

 

 

 

 

Figure 22: Outline of results format 
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4.2. Isolated heart perfusions 

4.2.1. Global Ischaemia 

Effect of melatonin on myocardial functional recovery after exposure to global 

ischaemia 

The isolated perfused rat heart was used for all experimentation. Hearts subjected to 

global ischaemia were subsequently used for immediate preparation of mitochondria 

or were freeze-clamped for Western blotting at a later stage. Since these two series 

of experiments were performed independently, the mechanical data obtained will be 

presented separately (Tables 9 and 10). Hearts subjected to regional ischaemia, were 

used for determination of IFS.  

For evaluation of functional performance, six haemodynamic endpoints (refer to 

Section 3.2.3) namely coronary flow (Qe; mL/min), aortic output (Qa; mL/min), cardiac 

output (CO; mL/min), peak systolic pressure (PSP; mmHg), heart rate (HR; beats/min) 

and total work (TW; mW) were measured during stabilisation prior to global ischaemia 

and during reperfusion post global ischaemia as indicated on Fig 23 below. At least 

two measurements were made at each of the time points indicated. Melatonin was 

administered 10min before induction of global ischaemia and during the first 10min of 

reperfusion. 

 

Figure 23: Overview of the global I/R protocol which indicates the time points where the 
haemodynamic endpoints used to determine mechanical function were measured. 
Abbreviations: L- Langendorff; WH- Working heart.  
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Table 9: Myocardial performance of hearts subjected to 20min global ischaemia and 30min 

reperfusion: effect of melatonin (50µM). (Hearts subsequently used for mitochondrial isolation).  

Endpoints Control 

Pre: n= 6 ; Post n=6 

 Melatonin 50µM 

Pre: n=6 ; Post n= 6 

Coronary 
Flow 
(mL/min) 

Pre  10.00 ± 0.90 17.00 ± 4.17 

Post 7.25 ± 1.12   * p=0.0035 17.00 ± 3.81  # p=0.0339 

Aortic Flow 
(mL/min) 

Pre 28.33± 1.89 32.33 ± 1.41 

Post 7.00 ± 2.30  * p<0.0001 13.67 ± 4.05 *p=0.0014 

Cardiac 
Output 
(mL/min) 

Pre 37.40 ± 2.69 49.33 ± 5.01 

Post 14.25± 3.17  * p=0.002 30.67± 5.42 

*p=0.0063; #p=0.0015 

Heart Rate 
(beats/min) 

Pre 286.50±22.78 250.80± 23.12 

Post 161.20± 52.59 189.30± 43.60 

Peak 
Systolic 
Pressure  

(mm Hg) 

Pre  83.83± 1.45 86.17± 0.83 

Post  53.17± 16.88 69.00± 13.94 

Total work 
(mW) 

Pre 7. 39± 0.51 9.54±0.88 

Post 2.26±0.89 * p= 0.002 4.58±1.00 *p= 0.041 

Total Work Recovery % 34±11 53±12 

Results are expressed as means±SEM.  *  pre vs post; #  control vs melatonin; only 

values with significance are shaded. 
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4.2.1.1. Mitochondrial hearts 

Effects of ischaemia/reperfusion  

In this series of experiments all perfused hearts were subsequently used for 

mitochondrial isolation. All parameters of mechanical performance before exposure 

to ischaemia were similar in the two groups. I/R caused a significant reduction in aortic 

flow (p<0.0001; p=0.0014), cardiac output (p=0.002; p=0.0063) and total work 

(p=0.002; p=0.041) in both control and melatonin-treated groups, while heart rate and 

peak systolic pressure remained unchanged (Table 9).  

Effects of melatonin 

The only significant difference between the groups is the observation that coronary 

flow during reperfusion was significantly reduced in the control hearts, but remained 

unchanged in the melatonin-treated hearts (see Table 10). Furthermore, post-

ischaemic cardiac output was significantly higher in the melatonin-treated group 

(p=0.0015).  
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Table 10: Myocardial performance of hearts subjected to 20min global ischaemia/30min 

reperfusion: effect of melatonin (0.3µM, 50µM). (Hearts subsequently used for Western blotting). 

Endpoints  Reperfusion Control 
Pre: n= 6; Post: n=6 

Reperfusion Melatonin 
50µM 
Pre: n=6; Post: n= 6 

Reperfusion Melatonin 
0.3µM 
Pre: n=6; Post: n=6 

Coronary 
Flow 
(mL/min) 

Pre  15.75 ± 1.89 11.75 ± 1.52 14.67 ± 0.67 

Post 10.00 ± 2.84 5.250 ± 1.27  
*p=0.0083 

13.50 ± 0.50 

Aortic Flow 
(mL/min) 

Pre 42.00 ± 4.26 39.33 ± 6.71 44.83 ± 2.71 

Post 7.00 ± 3.64 * 
p<0.0001 

8.33 ± 3.40  * 
p=0.0021 

22.00 ± 6.00 *p=0.0010 

Cardiac 
Output 
(mL/min) 

Pre 57.75 ± 5.22 51.08 ± 7.24 59.50 ± 3.03 

Post 17.00 ± 5.17 
*p=0.002 

13.58 ± 4.53  * 
p=0.0014 

35.50 ± 6.29 *p=0.0026 

Heart Rate 
(beats/min) 

Pre 288.20 ± 7.94 240.20 ± 7.47  #p= 
0.0013 

294.30 ± 7.19 

Post 125.2 ± 56.75 
*p=0.0174 

141.20 ± 44.93 266.5 ± 13.67 

Peak 
Systolic 
Pressure  
(mm Hg) 

Pre  93.50 ± 1.46 91.83 ± 1.85 83.17 ± 1.66 #p=0.0009 

Post  42.00 ± 18.89 
*p=0.0216 

57.67 ± 18.25 77.75 ± 1.03 

Total work 
(mW) 

Pre 10.81 ± 1.12 9.43 ± 1.50 11.07 ± 0.77 

Post 2.36 ± 1.07 
*p=0.0003 

2.20 ± 0.85  * p= 
0.0018 

6.17 ± 1.16  *p=0.0020 

Total Work % Recovery 26±13 24±11 38±12 

Results are expressed as means±SEM.  * pre vs post; # control vs melatonin; only 

values with significance are shaded. 

4.2.1.2. Freeze-clamped hearts 

Effects of ischaemia/reperfusion 

In the second series of experiments hearts were perfused as described above, but 

these hearts were freeze-clamped at the end of reperfusion for subsequent Western 

blotting. The parameters of mechanical performance of these hearts were 

summarized in Table 10. 
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As was observed in Table 9, the mechanical performance of the hearts before 

induction of global ischaemia was similar in the three groups studied, except for a 

lower heart rate in the 50µM melatonin group (see below). Similarly, exposure to I/R 

caused a significant reduction in aortic flow, cardiac output and total work during 

reperfusion in all three groups. However, control untreated hearts had a significant 

reduction in post-ischaemic heart rate and peak systolic pressure.  A reduction in 

coronary flow during reperfusion was observed in the 50µM melatonin treated hearts. 

Effects of melatonin 

Comparing the pre and post-ischaemic values of the control and melatonin (50µM and 

0.3µM) groups showed no significant differences in all the endpoints except the pre-

ischaemic heart rate (p=0.0013) and pre-ischaemic peak systolic pressure (p=0.0009) 

were lower in hearts treated with 50µM melatonin and 0.3µM, respectively in 

comparison to the controls. This however, may be due to differences between the 

hearts when being perfused, since these measurements were made before addition 

of melatonin. No other differences were observed except a reduction in coronary flow 

during reperfusion in the 50µM melatonin treated hearts. 

4.2.2. Regional Ischaemia 

Effect of melatonin on myocardial function and IFS during reperfusion after 35min 

regional ischaemia 

Similar pre- and post- ischaemic haemodynamic endpoints as obtained for the hearts 

subjected to global ischaemia, were collected for all hearts subjected to the regional 

ischaemia-reperfusion protocol. Endpoints were measured at the indicated time points 

in Fig 24 below. Melatonin (0.3 or 50 µM) was administered 10 min before induction 

of regional ischaemia and for 10 min at the onset of reperfusion.  
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Figure 24: Outline of regional ischaemia- reperfusion protocol indicating the time points for 
measurement of haemodynamic endpoints. Abbreviations: L- Langendorff; WH- Working heart 
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Table 11: Myocardial performance of hearts subjected to 35 min regional ischaemia/60min 
reperfusion: effect of melatonin (0.3µM, 50µM). (Hearts were used for IFS measurements). 

Endpoints  Reperfusion Control 
Pre: n= 14; Post: n= 
10 

Reperfusion 
Melatonin 50µM 
Pre: n=9; Post: n= 9 

Reperfusion 
Melatonin 0.3µM 
Pre: n=9; Post: n=9 

Coronary 
Flow 
(mL/min) 

Pre  12.32 ± 1.22 17.67 ± 2.79 13.17 ± 1.14 

Post 13.82 ± 1.57 7.42 ± 1.97 
*p 0.0085;  #p= 
0.0190 

5.50 ± 1.25 
*p= 0.003 ; #p= 
0.0011 

Aortic Flow 
(mL/min) 

Pre 41.14 ± 3.17 46.00 ± 1.94 41.33 ± 4.10 

Post 15.14 ± 3.61 
*p<0.0001 

8.94 ± 4.49 
*p<0.0001 

3.56 ± 3.56 
*p<0.0001 ; 
#p=0.0415 

Cardiac 
Output 
(mL/min) 

Pre 54.30 ± 3.93 63.89 ± 3.70 54.47 ± 4.62 

Post 28.96 ± 4.61 
*p=0.0003 

15.70 ± 6.13 
*p<0.0001 

9.05 ± 4.47 
*p<0.0001 ; #p= 
0.0080 

Heart Rate 
(beats/min) 

Pre 276.00 ± 6.93 281.20 ± 7.69 260.10 ± 10.99 

Post 242.40 ± 29.23 128.70 ± 51.21 
*p=0.00095 

100.60 ± 39.82 
*p= 0.0014 ; #p= 
0.0080 

Peak 
Systolic 
Pressure  
(mm Hg) 

Pre  80.29 ± 1.26 81.56 ± 0.96 86.11 ± 1.94 

Post  62.29 ± 7.48 
*p=0.0253 

33.67 ± 13.32 
*p=0.0025 

27.67 ± 12.14 
*p= 0.0002 ; #p= 
0.00176 

Total work 
(mW) 

Pre 9.77 ± 0.77 11.55 ± 0.7718 9.76 ± 0.92 

Post 4.74 ± 0.91 *p=0.0003 2.16 ± 1.12 *p< 
0.0001 

1.53 ±0.85 

*p<0.0001 
;#p=0.0117 

Total Work % 
Recovery 

49.00±9.00 
 

16.00±7.80 
#p= 0.0452 

11±8.90 
#p=0.0152 

Results expressed as mean±SEM.  *pre vs post; # control vs melatonin; only values 

with significance are shaded.  
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4.2.2.1. Effects of ischaemia/reperfusion 

Exposure to 35 min regional ischaemia caused a significant reduction in aortic flow, 

cardiac output, peak systolic pressure and total work during reperfusion in all three 

groups (see Table 11).  

4.2.2.2. Effects of melatonin 

The melatonin group (50µM) showed that I/R resulted in decreases in the coronary 

flow (p=0.0085), heart rate (p= 0.0095), peak systolic pressure (p=0.0025), aortic 

output (p<0.0001), cardiac output (p<0.0001) and consequently total work (p<0.0001) 

during reperfusion. Melatonin (50µM) treatment resulted in a significant reduction in 

coronary flow during reperfusion (p=0.0190) compared to the control group, while all 

other parameters measured were similar to those of the untreated control hearts.  

Interestingly, the lower concentration of melatonin (0.3µM) resulted in a significantly 

lower coronary flow (p=0.0011), aortic output (p=0.0415), cardiac output (p=0.0080), 

heart rate (p=0.0080), peak systolic pressure (p=0.0176) and total work (p=0.0117) 

during reperfusion when compared to the control group. 

4.2.2.3. Infarct size determination 

At the end of the regional ischaemia-reperfusion protocol, hearts were stained and 

used for IFS as previously described in detail in chapter 3 (Section 3.2.6.2).  The AR 

and IFS were determined using computerised planimetry. AR was expressed as the 

% of the total area while IFS was expressed as a % of the area at risk.  

Figure 25: (A) Area at risk (expressed as % of the total area): effects of melatonin and (B) IFS 
(expressed as a % of the area at risk): effects of melatonin. (n= 9-14/group).  Abbreviations: AR- 
Area at Risk, IFS- Infarct Size, MLT- Melatonin.  
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There were no significant differences between the AR of the various groups (Fig 25 -

A). (Control: 51.69±1.30%, MLT 50µM: 55.01±1.97%, MLT 0.3µM: 56-65±3.03%; n= 

9-14/group). Melatonin at both 50µM and 0.3µM (p<0.0001) significantly decreased 

the infarct size by 45% (21.44±2.59) and 64% (13.78±2.35), respectively compared to 

the control group (38.73±1.73) (Fig 25 -B).  

4.2.3. Summary: Global Ischaemia, Regional Ischaemia and Infarct Size 

In summary, exposure of hearts to either 20 minutes of global ischaemia or 35 minutes 

of regional ischaemia resulted in decreases in several haemodynamic endpoints 

during reperfusion. In the global ischaemia experimental model, melatonin (50µM) 

maintained the coronary flow and increased the cardiac output. In the regional 

ischaemia experimental model, melatonin (at both concentration) significantly reduced 

the IFS. However, this was associated with a reduction, rather than improvement in 

mechanical performance during reperfusion. 

4.3. Oxidative phosphorylation capacity: effects of ischaemia/reperfusion and 

melatonin 

As stated in the aims and objectives, hearts were subjected to a global I/R protocol to 

allow correlation of the mitochondrial oxidative phosphorylation process with 

mitophagy and the effects of manipulation with melatonin on these parameters. To 

achieve these aims, in the first set of experiments mitochondria were isolated from 

hearts at different stages of a global I/R protocol to allow evaluation of the effects of 

ischaemia per se and also that of reperfusion in the absence or presence of melatonin 

(0.3 or 50 µM), on mitochondrial oxidative phosphorylation and function.  

Mitochondrial phosphorylation oxidative capacity was assessed using two substrates 

[A: Glutamate (Carbohydrate)/malate medium] or B [B: Palmitoyl-L-carnitine (Fatty 

acid)/malate medium]. The subsequent parameters examined, were the QO2 State 3 

(S3; nAtoms oxygen/mg prot/min), QO2 State 4 (S4; nAtoms oxygen/mg prot/min), 

respiratory control index (RCI), ADP/O and the oxidative phosphorylation rate 

(Oxphos, nmoles ATP/mg prot/min). For control purposes, mitochondria isolated from 

a 5min retrograde perfused heart was included each day to serve as baseline.  
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4.3.1. QO2 State 3 (S3)  

Exposure of the heart to 20min global ischaemia had no effect on QO2 (S3), but a 

significant reduction was observed in the mitochondria isolated from untreated 

reperfused hearts: I/R decreased the QO2 (S3) in the glutamate/malate medium, (Fig 

26 -A) in the reperfusion control group compared to the ischaemic control group 

(p=0.0467; Isch Control: 209.30±30.57 vs. Rep Control: 133.40±13.56). However, the 

palmitoyl-L-carnitine/malate substrate (Fig 26- B, D), had no significant effects on any 

of the groups. Melatonin at 50µM and 0.3µM was without effect in all groups. 

 

Figure 26: The effect of I/R and melatonin on (A) QO2 (S3) Glutamate/malate: melatonin 50µM; 
(B) QO2 (S3) Palmitoyl-L-carnitine/malate: 50µM melatonin; (C) QO2 (S3) Glutamate/malate: 
0.3µM melatonin; (D) QO2 ( S3) Palmitoyl-L- carnitine/malate:  0.3µM melatonin.  Abbreviations: 
Stb-Stabilisation, Isch – Ischaemia, Rep- Reperfusion, MLT- Melatonin.   

4.3.2. QO2 State 4 (S4)  

Ischaemia per se had no effect on the QO2 (S4), with both substrates. However, as 

with QO2 (S3), the QO2 (S4) of mitochondria isolated after reperfusion, was 

significantly lower with glutamate/malate (p=0.0300; Isch Control- 44.69±2.108 vs. 
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Rep Control- 32.82±4.20) as well as palmitoyl-L- carnitine/malate (p=0.0066; Isch 

Control-50.15± vs. Rep Control-35.69±2.961) as substrates (Fig 27 A and B 

respectively). Melatonin (50µM) had a lowering effect on QO2 (S4) during reperfusion 

in the glutamate/malate medium (Fig 27- A), when compared to the values obtained 

during stabilisation (p=0.0020; Stb MLT-46.00±3.32 vs. Rep MLT-26.20±2.16) and 

after subjecting the hearts to ischaemia (p=0.0001; Isch MLT-50.99±3.91 vs. Rep 

MLT-26.20±2.16).  This was not observed with the lower concentration. 

 

Figure 27: The effect of I/R and melatonin on (A) QO2 State 4 (S4) Glutamate/malate: melatonin 
50µM; (B) QO2 State 4 (S4) Palmitoyl-L- carnitine/malate: 50µM melatonin; (C) QO2 State 4 (S4) 
Glutamate/malate: 0.3µM melatonin; (D) QO2State 4 (S4) Palmitoyl-L- carnitine/malate:  0.3µM 
melatonin.  Abbreviations: Stb-Stabilisation, Isch – Ischaemia, Rep- Reperfusion, MLT- 
Melatonin. 

4.3.3. Respiratory Control Index (RCI) 

Exposure of the heart to ischaemia had no effect on the mitochondrial RCI, regardless 

of the substrate used. Reperfusion however, significantly decreased the RCI in the 

glutamate/malate medium (Fig 28 -C; p= 0.0123; Stb Control-4.48±0.19 vs. Rep 
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Control- 3.144±0.27). Melatonin, at a concentration of 0.3µM in the glutamate/malate 

medium decreased the RCI during stabilisation (Fig 28 -C; p=0.0326; Stb Control- 

4.48±0.19 vs. Stb MLT- 3.46±0.34).  

 

Figure 28: The effect of I/R and melatonin on (A) RCI Glutamate/malate: melatonin 50µM; (B) RCI 
Palmitoyl-L- carnitine/malate: 50µM melatonin; (C) RCI Glutamate/malate: 0.3µM melatonin; (D) 
RCI Palmitoyl-L- carnitine/malate:  0.3µM melatonin.  Abbreviations: Stb-Stabilisation, Isch – 
Ischaemia, Rep- Reperfusion, MLT- Melatonin. 
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4.3.4. ADP/O ratio 

Only in one set of experiments, a reduction on ADP/O ratio  was observed in hearts 

subjected to I/R in comparison to ischaemia alone (p=0.0294; Isch Control-2.58±0.13 

vs. Rep Control-1.99±0.18), with glutamate as substrate. (Fig 29 -C). However no 

differences in this parameter were observed in any of the other groups, with both 

substrates. 

Figure 29: The effect of I/R and melatonin on (A) ADP/O Glutamate/malate: melatonin 50µM; (B) 
APO/O Palmitoyl-L- carnitine/malate: 50µM melatonin; (C) ADP/O Glutamate/malate: 0.3µM 
melatonin; (D) ADP/O Palmitoyl-L-carnitine/malate:  0.3µM melatonin.  Abbreviations: Stb-
Stabilisation, Isch – Ischaemia, Rep- Reperfusion, MLT- Melatonin. 

 

4.3.5. Oxidative Phosphorylation Rate (Oxphos)  

Analysis of the Oxphos with both the glutamate/malate and palmitoyl-L- 

carnitine/malate substrates (Fig 30 A-B), showed considerable variations in the data 

obtained in the different groups. However with untreated hearts and glutamate as 

substrate, ischaemia was without effect while reperfusion reduced the oxphos rate 

when compared with ischaemia alone. Melatonin at 50µM decreased this parameter 
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during reperfusion with glutamate/malate (Fig 30- A; p=0.0122; Isch MLT- 460±45.72 

vs. Rep MLT- 284.60±27.65) and significantly increased it during ischaemia with 

palmitoyl-L -carnitine/malate (Fig 30-A; p=0.0225; Stb MLT-273.60±36.89 vs. Isch 

MLT-495.60±39.67) as substrates. Melatonin at 0.3µM also significantly increased the 

oxphos rate observed after reperfusion in comparison with the untreated control group 

(p=0.0043; Rep Control- 171.00±20.89 vs. Rep MLT- 267.80±12.99), using 

glutamate/malate as substrate (Fig 30- C). No significant difference was observed in 

the palmitoyl-L- carnitine/malate medium (Fig 30 D).   

 

 

Figure 30:  The effect of I/R and melatonin on (A) Oxphos Glutamate/malate: melatonin 50µM; 
(B) Oxphos Palmitoyl-L-carnitine/malate: 50µM melatonin; (C) Oxphos Glutamate/malate: 0.3µM 
melatonin; (D)  Oxphos Palmitoyl-L- carnitine/malate:  0.3µM melatonin.  Abbreviations: Stb-
Stabilisation, Isch – Ischaemia, Rep- Reperfusion , MLT- Melatonin. 

4.3.6. Summary: Oxidative Phosphorylation Capacity 

In summary, exposure of the heart to 20 min global ischaemia followed by reperfusion, 

caused significant changes in mitochondrial QO2 state 4, RCI, ADP/O and Oxphos 
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rate with glutamate/malate as substrates. Palmitoyl/ malate on the other hand had 

small or non –existent effects on these parameters. 

Melatonin, at both concentrations, had few significant effects, regardless of the 

substrate used. Melatonin did however, decrease State 4 and the oxphos rate during 

reperfusion with glutamate/malate as substrate.  

4.4. Evaluation of Mitophagy by Western Blot Analysis 

In order to allow a meaningful correlation between mitochondrial oxidative 

phosphorylation function and mitophagy after exposure of the hearts to ischaemia and 

reperfusion as well as the effect of manipulation thereof by melatonin, mitochondrial 

pellets obtained after experimentation were divided in two: one half was used for 

evaluation of mitochondrial oxidative phosphorylation function (results shown above) 

and the other half was used for preparation of lysates for Western blotting. To allow 

evaluation of markers of mitophagy in the cytosol, an additional series of experiments 

were performed following the same protocols as depicted in Section 3.2.6.1- Fig 12, 

with the hearts being freeze-clamped at the designated intervals for subsequent 

preparation of cytosolic fractions. Two additional proteins, known to be associated with 

the effects of melatonin, were also included namely PGC-1 alpha and Sirt1. While in 

most of the studies the effects of two melatonin concentrations were evaluated namely 

50µM and 0.3µM, the effects of the low concentration of melatonin only were evaluated 

in a number of the studies on cytosolic proteins. 

The proteins that were analysed included:   

 Mitophagy proteins 

 PARKIN, PINK1, TOM70, p62/ SQSTM1, Sirt3 ,ULK (phosphorylated 

and total), Rab9, DRP-1 (phosphorylated and total)  

 Cytosolic proteins 

 PGC-1 alpha, Sirt1 

In view of the limitation on the number of samples (24) which could be compared on 

one blot, we ran two series of perfusions and blots, using 0.3µM and 50µM melatonin 

respectively (See Appendix G and H for templates). In this section the markers from 

the PINK1/PARKIN pathway will be discussed first. Subsequently, the mitophagy 
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markers from the alterative pathway will be presented followed by the cytosolic 

markers (See Fig 31 below).  

 

 

 

 

 

Figure 31: Schematic Illustration of Western Analysis Presentation.     

  

Western Blot 
Analysis

Mitophagy 
Markers

PINK1/PARKIN 
Pathway

PARKIN, PINK1, 
TOM 70, p62, 

Sirt3

Alternative 
Pathway

ULK, Rab9, DRP-1

Cytosolic Markers
Sirt1 , PGC-1 

Alpha

Stellenbosch University  https://scholar.sun.ac.za



  

105 

 

4.4.1. Mitophagy Markers  

4.4.1.1. PINK1/PARKIN Pathway 

PARKIN 

Neither, ischaemia, reperfusion nor melatonin at 50µM had a significant effect on the 

expression of PARKIN in the different groups (Fig 32- A). Analysis of Parkin 

expression in the series treated with melatonin at 0.3µM (Fig 32 -B), showed that in 

this series the expression of PARKIN in the untreated stabilisation group differed 

significantly from control hearts when subjected to ischaemia (p=0.0090; Stb Control-

0.77±0.09 vs. Isch Control 0.50±0.02) or reperfusion (p<0.0001; Stb control- 

0.77±0.09 vs. Rep Control-0.81±0.02). Melatonin (0.3M) decreased Parkin 

expression during stabilisation (p=0.0262; Stb Control- 0.77±0.09 vs. Stb MLT- 

0.53±0.014) compared to its control counterparts, but it had no effects during I/R.  

Figure 32: Parkin levels in the mitochondria of hearts perfused according to the various global 
ischaemia/ reperfusion protocols. (A) effects of 50µM melatonin (B)  effects of 0.3µM melatonin.  
Abbreviations: Stb- Stabilisation, Isch- Ischaemia, Rep- Reperfusion, MLT- Melatonin 
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PINK1  

As was seen with PARKIN, PINK1 expression remained unchanged in the 

mitochondria of hearts subjected to ischaemia alone, but reperfusion decreased 

mitochondrial PINK1 significantly when compared with the stabilization controls (p= 

0.0023; Stb Control- 0.94±0.23 vs. 0.27±0.03).  Melatonin, at both concentrations 

studied, was without effect on PINK1 levels (Fig 33 -A and B).  

Figure 33: PINK1 levels in the mitochondria of hearts perfused according to the various global 
ischaemia protocols. (A) effects of 50µM melatonin (B)  effects of 0.3µM melatonin.  
Abbreviations: Stb- Stabilisation, Isch- Ischaemia, Rep- Reperfusion, MLT- Melatonin.   
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TOM70 

Compared with the untreated stabilization control, mitochondrial TOM70 expression 

was significantly decreased by ischaemia alone (p=0.0343; Stb Control- 1.60±0.19 vs. 

Isch Control- 0.95±0.075) and by reperfusion (p=0.0462; Stb Control- 1.6±0.19 vs. 

0.97±0.12), (Fig 34- A). Melatonin at 50µM decreased the expression of TOM during 

stabilisation (p=0.0235; Stb Control- 1.6±0.19 vs.  Stb MLT- 0.92±0.12), whereas 

melatonin at both concentrations had no effect on the expression of TOM70 in either, 

ischaemia or I/R when compared with their respective untreated controls.  

Figure 34: TOM70 levels in the mitochondria of hearts perfused according to the various global 
ischaemia protocols. (A) effects of 50µM melatonin (B) effects of 0.3µM melatonin. 
Abbreviations: Stb- Stabilisation, Isch- Ischaemia, Rep- Reperfusion, MLT- Melatonin. 
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SQSTM1/p62 

Exposure to ischaemia alone as well as reperfusion had no effects on the expression 

of mitochondrial p62 from untreated hearts, when compared with the stabilization 

group (Fig 35 A and B). Interestingly, in the melatonin treated groups ischaemia and 

reperfusion decreased p62 expression in comparison to stabilisation (p= 0.0103; Stb 

MLT- 2.4±0.20 vs. Rep MLT- 0.76±0.19). While melatonin at 50µM was without effect 

when compared with their corresponding control untreated groups (Fig 35– A), 0.3µM 

of melatonin (Fig 35- B) did result in a significant decrease in the expression of p62 in 

comparison to the untreated reperfused control group (p=0.0030; Rep Control- 

2.6±0.16 vs. 0.76±0.19).  

Figure 35: SQSTM1/p62 levels in the mitochondria of hearts perfused according to the various 
global ischaemia protocols. (A) effects of 50µM of melatonin  (B) effects of 0.3µM melatonin.  
Abbreviations: Stb- Stabilisation, Isch- Ischaemia, Rep- Reperfusion, MLT- Melatonin 
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Sirt3  

 Exposure of untreated hearts to ischaemia and reperfusion did not have a significant 

on Sirt3 expression, when compared with stabilization. Treated melatonin (50M; Fig 

36-A) groups showed increased Sirt3 expression when exposed to reperfusion, 

compared to the stabilisation (p=0.0003; Stb MLT- 1.10±0.13 vs. 2.1±0.20) and 

ischaemia (p<0.0001; Isch MLT- 0.84±0.066 vs. Rep MLT- 2.1±0.20). Melatonin at a 

concentration of 50µM caused a reduction in the expression of Sirt3 (p=0.0113; Stb 

control-1.9±0.16 vs. Stb MLT- 1.1±0.13) in the stabilisation group. Sirt3 expression 

was significantly upregulated in the melatonin reperfusion group in comparison to the 

control reperfusion group (p=0.0025; Rep Control-1.3±0.10 vs. Rep MLT- 2.1±0.20). 

Melatonin at concentration of 0.3µM also increased expression of Sirt3 in the 

reperfusion group, but the change was not significant, due to a rather large standard 

error. 

 

Figure 36:  Sirt3 levels in the mitochondria of hearts perfused according to the various global 
ischaemia protocols. (A) effects of 50µM of melatonin (B)  effects of the 0.3µM.  Abbreviations: 

Stb- Stabilisation, Isch- Ischaemia, Rep- Reperfusion, MLT- Melatonin. 

Summary: PINK1/PARKIN Pathway 

In summary, ischaemia alone or ischaemia plus reperfusion decreased the mitophagy 

markers of the PINK1/PARKIN pathway (PARKIN, PINK1, TOM70 and p62). 

Melatonin either at 50 or 0.3µM decreased the expression of the mitophagy markers 

during stabilisation (PARKIN, TOM70 and Sirt3). Melatonin, 0.3 µM and 50µM 
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respectively, decreased p62 expression and increased Sirt3 expression during 

reperfusion.    

4.4.1.2. Alternative Pathway Markers 

In the analysis of the alternative pathway only the effect of the 0.3µM melatonin was 

evaluated. In this section the mitochondrial and cytosolic expression of Rab9 and 

DRP-1 are presented together.   

Cytosolic Phosphorylated and Total ULK 

The expression of total ULK (Fig 37- A) was significantly decreased by exposure to 

both ischaemia (p=0.0015; Stb Control- 1.5±0.11 vs. Isch Control- 0.17±0.05) and 

reperfusion (p=0.0314; Stb Control- 1.5±0.11 vs. Rep Control- 0.53±0.076) in 

untreated control groups in comparison to their stabilisation counterparts.  In untreated 

controls, the expression of phosphorylated ULK was significantly decreased by 

ischaemia (p=0.00193; Stb Control- 0.21±0.014 vs. Isch Control- 0.45±0.073) when 

compared to stabilisation (Fig 37-B).  

Melatonin administration during stabilisation (p=0.0358; Stb Control- 1.5±0.11 vs. Stb 

MLT- 2.4±0.38), ischaemia (p=0.0449; Isch Control-0.17±0.05 vs. Isch MLT- 

0.51±0.13) as well as during reperfusion (p=0.002; Rep Control- 0.53±0.076 vs. Rep 

MLT-2.1±0.16) significantly increased total ULK expression (Fig 37-B). 

Phosphorylated ULK levels (Fig 37 -B) during stabilisation (p=0.0003; Stb Control- 

0.21±0.014 vs. Stb MLT- 1.1±0.16) as well as during reperfusion (p=0.0098; Rep 

Control- 0.24±0.025 vs. Rep MLT- 0.89±0.14) were significantly increased by 

melatonin, compared to their untreated counterparts (Fig 37-B).  

The phosphorylated/total ULK ratio (Fig 37- C) was increased in the ischaemia control 

group (p=0.0024; Stb Control- 0.15±0.017 vs. Isch Control-3.5±1.20) in comparison to 

the stabilisation control group. Reperfusion in turn caused a significant reduction in the 

phosphorylated /total ULK ratio (p=0.0064; Isch Control- 3.5±1.2 vs. Rep Control- 

0.46±0.05), in comparison with the ischaemic control group. Melatonin decreased the 

phosphorylated/ total ULK ratio (p=0.0196; Stb Control-0.15± 0.017 vs. Stb MLT-

0.52±0.12). No further differences were observed.  
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Figure 37: Expression of (A) Total ULK, (B) Phosphorylated ULK and (C) Phosphorylated and 
Total ULK ratio in the freeze clamped hearts perfused according to the various global ischaemia 
protocols. Treated groups were perfused with 0.3µM melatonin.  Abbreviations: Stb- 
Stabilisation, Isch- Ischaemia, Rep- Reperfusion, MLT- Melatonin 

 

Mitochondrial and cytosolic Rab9  

In the mitochondria (Fig 38- A) exposure to ischaemia caused a significant reduction 

in Rab expression (p=0.0026; Stb Control- 1.5±0.23 vs. Isch Control- 0.71±0.067), 

when compared with its corresponding stabilisation control. Compared to the 

untreated stabilisation group, Rab9 expression was significantly decreased by 0.3µM 
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melatonin (p=0.0023; Stb Control- 1.5±0.23 vs. Stb MLT- 0.69±0.040).  No further 

differences were observed between the groups.  

In the cytosol (Fig 38- B) Rab9 expression was increased in the control ischaemic 

group in comparison to the stabilisation control group (p=0.0062; Stb Control- 

0.75±0.03 vs. Isch Control-1.1±0.01). On the other hand, the control reperfusion group 

had significantly lower Rab9 levels in comparison to the ischaemic control (p=0.0002; 

Isch Control- 1.1±0.01 vs. Rep Control-0.62±0.03). In the melatonin treated groups, 

ischaemia and reperfusion decreased Rab9 expression in comparison to stabilisation 

(p=0.0267; Stb MLT- 1.1±0.04 vs. Rep MLT- 0.82±0.06). The stabilisation (p=0.0052; 

Stb Control-0.75±0.03 vs. Stb MLT- 1.1±0.04) and reperfusion melatonin groups 

(p=0.0251; Rep Control- 0.62±0.02 vs. Rep MLT-0.82±0.06) had increased Rab9 

levels in comparison to their untreated counterparts.  

 

Figure 38: Expression of (A) Rab9 in the mitochondria and (B) Rab9 in the cytosolic fraction of 
freeze clamped hearts perfused according to the various global ischaemia protocols. Treated 
groups were perfused with 0.3µM melatonin.  Abbreviations: Stb- Stabilisation, Isch- Ischaemia, 
Rep- Reperfusion, MLT- Melatonin.   
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Mitochondrial Phosphorylated and Total DRP-1 

Total DRP-1 levels (Fig 39- A) were decreased in the stabilisation melatonin group 

compared to its untreated control (p=0.0137; Stb Control- 2.5±0.42 vs. Stb Mel-

0.93±0.16). Melatonin significantly decreased phosphorylated DRP-1 (Fig 39- B) in 

the stabilisation (p=0.0249; Stb Control- 8.0±2.1 vs. Stb Mel-1.5±0.44) and ischaemic 

groups (p=0.0458; Isch Control-6.5±1.10 vs. Isch MLT- 2.5±1.1) group compared to 

their respective control counterparts.  

Interestingly, melatonin decreased the phosphorylated/total DRP-1 ratio (Fig 39- C) in 

the stabilisation (p=0.0211; Stb Control-3.00±0.41 vs. Stb MLT- 1.6±0.20), ischaemic 

(p=0.0320; Isch Control- 2.8±0.14 vs. Isch MLT- 1.8±0.34) and reperfusion (p=0.0065; 

Rep Control-2.3±0.29 vs. 0.44±0.35) groups compared to their control counterparts. 

Comparison of the melatonin treated groups showed phosphorylated/total DRP-1 ratio 

(Fig 39- C) was significantly decreased during reperfusion in comparison to 

stabilisation (p= 0.0331; Stb MLT- 1.6±0.20 vs. Rep MLT-0.44±0.35) and ischaemia 

(p=0.0333; Isch MLT-1.80±0.34 vs. Rep MLT- 0.44±0.35).  No further differences were 

observed. 
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Figure 39: (A) Total and (B) Phosphorylated DRP-1 expression, together with (C) the 
phosphorylated/total DRP-1 ratio in the mitochondria of hearts perfused according to the 
various global ischaemia protocols. Melatonin groups were treated with 0.3µM of melatonin.  
Abbreviations: Stb- Stabilisation, Isch- Ischaemia, Rep- Reperfusion, MLT- Melatonin.   

 

Cytosolic Phosphorylated and Total DRP-1 

In the melatonin treated groups, ischaemia increased the total DRP-1 expression 

(p=0.0001; Stb MLT-0.77±0.05 vs. Isch Mel- 1.3±0.02) while reperfusion had no effect 

(Fig 39-A).  During ischaemia, melatonin increased the total DRP-1 expression 

(p=0.0021; Isch Control- 0.91±0.064 vs. Isch MLT- 1.30±0.02) in comparison to its 

control counterpart. No further differences were observed. 
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While phosphorylated DRP-1 expression was not affected by exposure to ischaemia 

or reperfusion in the untreated control groups, melatonin significantly increased this 

parameter in the stabilisation (p=0.0069; Stb Control-1.3±0.26 vs. Stb MLT- 4.2±0.69), 

ischaemic (p=0.0373; Isch Control- 0.90±0.26 vs. Isch MLT- 4.3±1.20) and reperfusion 

(p=0.0003; Rep Control- 0.32±0.06 vs. Rep MLT- 4.3±0.53) melatonin groups in 

comparison to their respective control groups (Fig 40-B). Similarly, the 

phosphorylated/total DRP-1 ratio was significantly increased in the stabilisation 

(p=0.0069; Stb Control- 1.6±0.39 vs. Stb MLT- 5.5±0.89) and ischaemic (p=0.0492; 

Isch Control- 0.96±0.23 vs. Isch MLT-3.4±0.96) melatonin group compared to the 

control group (Fig 40-C).  

 

 

 

 

 

 

 

Figure 40: Expression of (A) Total DRP-1, (B) Phosphorylated DRP-1 and (C) 
Phosphorylated/Total DRP-1 ratio in the freeze clamped hearts perfused according to the 
various global ischaemia protocols. Treated groups were perfused with 0.3µM melatonin.  
Abbreviations: Stb- Stabilisation, Isch- Ischaemia, Rep- Reperfusion, MLT- Melatonin. 
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Summary: Alternative Pathway 

In summary, either ischaemia alone or I/R had an effect on the markers of the 

alternative pathway. Changes in the mitochondria were often associated with 

corresponding changes in the cytosol. Melatonin had effects often in all three 

conditions (stabilisation, ischaemia and reperfusion).  
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4.4.1.3. Cytosolic Markers: Mitochondrial Biogenesis  

Sirt1  

In both series of experiments exposure of untreated control hearts to ischaemia 

(p=0.001; Stb Control – 0.86± 0.08 vs. Isch Control- 0.36±0.03) (p= 0.0088; Stb 

Control- 0.75±0.05 vs. Isch Control- 0.021±0.04) as well as reperfusion (p=0.0001; Stb 

Control- 0.86±0.08 vs. Rep Control- 0.32±0.04) (p=0.0005; Stb Control-0.86±0.08 vs. 

Rep Control- 0.039±0.02) significantly decreased cytosolic Sirt1 expression, 

compared to the corresponding stabilisation control groups (Fig 41 A-B).  

Sirt1 was significantly decreased in the 50µM melatonin stabilisation group (p=0.0178; 

Stb Control- 0.86±0.08 vs. Stb MLT- 0.53±0.005) and increased in the reperfusion 

group (p= 0.0009; Rep Control- 0.32±0.04 vs. Rep MLT-0.74±0.09) in comparison to 

their corresponding control groups (Fig 41-A) 

Figure 41: Expression of Sirt1 in the freeze clamped hearts perfused according to the various 
global ischaemia protocols. Melatonin groups were treated with either (A) 50µM or (B) 0.3µM of 
melatonin.  Abbreviations: Stb- Stabilisation, Isch- Ischaemia, Rep- Reperfusion, MLT- Melatonin 
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PGC-1 alpha 

Exposure to ischaemia alone or reperfusion was without effect on the expression of 

cytosolic PGC-1 alpha untreated control groups (Fig 42- A-B). Similarly melatonin at 

a concentration of 50µM melatonin resulted in no significant differences in the 

expression of PGC-1 alpha between groups. However, PGC-1 alpha expression in 

melatonin (0.3M; Fig 42- A) treated groups was increased during reperfusion 

(p=0.0041; Isch MLT-0.58±0.05 vs. Rep MLT- 0.88±0.08). Similarly, PGC-1 alpha 

expression was increased in the reperfusion melatonin group (0.3µM) in comparison 

to the reperfusion control group (p=0.0010; Rep Control-0.054±0.03 vs. Rep MLT-0 

.88±0.08).  

Figure 42: Expression of PGC-1 alpha in the cytosol of freeze-clamped hearts perfused 
according to the various global ischaemia protocols. Melatonin groups were treated with either 
(A) 50µM or (B) 0.3µM of melatonin.  Abbreviations: Stb- Stabilisation, Isch- Ischemia, Rep- 
Reperfusion, MLT- Melatonin 

 

Summary: Cytosolic Markers of Mitochondrial Biogenesis 

In summary, ischaemia alone and I/R decreased Sirt1 expression. Melatonin 

decreased Sirt1 expression during stabilization and increased it significantly during 

reperfusion.  Melatonin increased PGC-1 alpha expression significantly during 

reperfusion only. 
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CHAPTER 5: DISCUSSION 

The aims of this study were to characterise the effect of I/R per se on functional 

recovery, mitochondrial oxidative phosphorylation and IFS using the working rat heart 

as experimental model and to correlate these parameters with the mitochondrial 

mitophagy process. In addition, to further evaluate the contribution of mitophagy to 

cardiomyocyte survival, we made use of the pineal hormone, melatonin (0.3μM and 

50μM), well-known for its cardioprotective properties, to investigate its effects on the 

mitophagic process in the context of IRI. 

The results obtained demonstrated the well-established reduction in mechanical 

recovery during reperfusion which was associated with a reduction in mitochondrial 

oxidative phosphorylation particularly during reperfusion. Interestingly, the 

conventional PINK1/Parkin mitophagy pathway was not upregulated, while an 

alternative cytosolic pathway which involves ULK, Rab9 and DRP-1 appeared to be 

affected to a larger degree. Melatonin, which caused a major reduction in IFS, while 

having no effect on the conventional mitophagy pathway, induced major changes in 

the alternative pathway for mitophagy. The alternative pathway for mitophagy involves 

the ULK phosphorylation of Rab9 which leads to DRP-1 phosphorylation and 

subsequently mitophagy, as recently proposed by Sadoshima and coworkers 

(Sadoshima 2017, Personal Communication). Since Nishida et al. (2009) also reported 

an alternative pathway which involves ULK, Beclin 1 and Rab-9 dependent 

autophagosome formation, it was decided to evaluate Rab9 as a marker of 

autophagosome formation in the alternative pathway.   

5.1. Experimental model 

The well-characterized working rat heart was used as experimental model throughout 

the study since it allows correlation of haemodynamic endpoints (which form an 

important basis for the evaluation of myocardial contractile function) with intracellular 

processes such as mitochondrial function, signalling and also mitophagy. The effects 

of different periods of ischaemia and reperfusion on mechanical recovery during 

reperfusion using this experimental model, mitochondrial function, tissue high energy 

phosphates and ultrastructure have previously been studied in our laboratory as 

described in detail by Edoute and coworkers (1983).  
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Subsequently, for the present study it was decided to use a period of ischaemia which 

caused contractile dysfunction, but not complete failure during reperfusion and based 

on our previous experimentation, 20 min global and 35 min of regional ischaemia 

respectively, fit these criteria.   

5.2. Myocardial Function: Effect of Global Ischaemia/ Reperfusion and 

Melatonin 

In our model of I/R, exposure of the heart to 20 minutes of normothermic global 

ischaemia followed by 30 minutes of reperfusion, significantly decreased coronary 

flow, aortic flow, cardiac output and total work in all groups (Results, Table 9 and 10). 

Furthermore, the control group experienced a reduction in heart rate and peak systolic 

pressure. These findings are consistent with the knowledge that I/R impairs myocardial 

contractile function (Buja, 2005). Impairment of function during reperfusion can be 

attributed to the no flow phenomenon (Kloner et al. 1974), myocardial stunning 

(Braunwald and Kloner, 1982;  Bolli, 1990 ), reperfusion arrhythmias (Scherlag et al. 

1986) and reperfusion injury (Murry et al. 1986) caused by intracellular  Ca2+ overload. 

Intracellular Ca2+ overload can induce the activation of nucleases, phospholipases as 

well as proteases such as calpains which not only degraded cellular and mitochondrial 

proteins but impair contractile machinery (Buja et al. 1988; Croall and Erfeld 2007). In 

our model the reduction in coronary flow during reperfusion and concomitant stunning 

appears to be largely responsible for the very significant reduction in cardiac output 

and work performance. The contribution of stunning in this model, was the subject of 

investigation previously. The study showed that treatment with isoproterenol during 

reperfusion restored heart function, which shows that the contractile machinery is 

intact (Lochner et al 1999) but impaired upon reperfusion by concomitant stunning.   

In the present study the effects of melatonin on functional recovery varied from time 

to time: in the first series of experiments (Results, Table 9), melatonin at 50 µM 

improved functional recovery after 20 min global ischaemia. However this was not 

seen in subsequent experiments where both concentrations of melatonin did not 

significantly improve the parameters of function evaluated. In fact melatonin at 0.3M 

caused a reduction in function after regional ischaemia, when compared to untreated 

controls. A reason for this discrepancy is not readily available, except sample/ 
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population variation (Results, Table 10). Despite the fact that all the rats are from the 

same species, weight and sex, being subjected to the same experimental conditions, 

they do not always exhibit the same response even under stringently controlled 

perfusion conditions. In our previous experiments melatonin treatment also had no 

significant effects on functional recovery, except in hearts from animals which were 

treated with melatonin for 18 weeks prior to experimentation (Nduhirabandi et al. 

2011). The slight effects of melatonin on myocardial contractile function as well as 

recovery in this model of ischaemia/ reperfusion could possibly be attributed to the 

duration of melatonin administration. A study by Dobsak and colleagues (2003) 

showed that melatonin administration throughout the entire 45 minutes of reperfusion, 

after 30 minutes of normothermic global ischaemia, resulted in 93% functional 

recovery. Thus further studies are required to clarify whether there is a direct 

relationship between the duration of melatonin administration and myocardial 

performance and recovery. 

5.3. Myocardial Function and Infarct Size: Effect of Regional 

Ischaemia/Reperfusion and Melatonin   

For further evaluation of the effects of melatonin on the ischaemic/reperfused heart, 

IFS was determined after exposure of the hearts to 35 minutes of normothermic 

regional ischaemia and 60 minutes of reperfusion. Regional ischaemia, similar to 

global ischaemia, was associated with impaired myocardial function during 

reperfusion which was characterized by a significant reduction in coronary flow, aortic 

flow, cardiac output, peak systolic pressure and total work in both untreated and 

melatonin treated groups ( Results, Table 10). This model once again echoes the 

detrimental effects of ischaemia/ reperfusion on myocardial contractile function. As 

was also observed after global ischaemia, melatonin at both concentrations did not 

improve mechanical recovery during reperfusion (Results; Table 10) 

Interestingly, in this model of I/R melatonin at 50µM and 0.3µM resulted in a significant 

reduction of IFS, which is consistent with existing evidence (Results, Fig 25 B; 

Lagneux et al. 1999; Shana et al. 2005). The dosage administered did not affect the 

outcomes, with 0.3M being as effective as 50M melatonin in reducing IFS (Results; 

Fig 25 B).The decrease in IFS supports the evidence that myocardial 
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ischaemia/reperfusion with a cardioprotectant can decrease lethal reperfusion injury 

(Yellon and Hausenloy, 2007). Interestingly, this reduction in IFS was not correlated 

with enhanced myocardial function or recovery (Results; Table 10). Evidence from 

several studies (Cohen et al. 1999; Lochner et al. 2003) have shown that IFS reduction 

is not necessarily directly related to improved myocardial function. Ibáñez and 

colleagues (2015) also agree with the above, stating that haemodynamic endpoints 

influence IFS only to a limited extent.

The data obtained in this study again demonstrate the potent cardioprotective 

properties of melatonin against IRI. What makes this more remarkable is the fact that 

this was obtained with high pharmacological doses as well as very low dosages (50 

and 0.3µM, Results; Fig 25 A-B respectively). These results confirm the data reported 

by Lamont et al. (2011) using even lower concentrations of melatonin (75ng/ml). These 

beneficial actions of melatonin are known to be receptor dependent with its anti-

oxidant actions probably playing an important role. However recent evidence showed 

that a multitude of signalling pathways are activated by melatonin, most of which are 

involved in cardioprotection (Lochner et al.; submitted for publication). Subsequently, 

as pointed out in the motivation for the present study, it deems necessary to explore 

the effects of melatonin on the mitophagic process in the context of IRI.  

5.4. Oxidative phosphorylation capacity: Effect of Ischaemia/ Reperfusion and 

melatonin 

It is well-established that the mitochondrial oxidative phosphorylation process plays 

an important role in the supply of energy for the continuously contracting myocardium 

and that any interruption in the supply of oxygen to the cardiomyocyte has severe 

consequences for cell survival. It is also well-known that the mitochondria are 

implicated in the pathophysiology of various diseases including myocardial IRI.  

Analysis of Oxphos in the setting of ischaemia and reperfusion will allow us to 

effectively assess the mitochondrial oxidative phosphorylation potential and evaluate 

its contribution to the pathophysiology of global IRI in the working heart model.  Five 

endpoints [QO2 (S3), QO2 (S4), RCI, ADP/O and Oxphos] were measured in a 

carbohydrate (glutamate / malate) and fatty acid (palmitoyl-L-carnitine / malate) 

medium (See Section 3.3.3). For the present study use was made of the 
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subsarcolemmal mitochondrial fraction, rather than the intermyofibrillar fraction, since 

ischaemic damage was shown to occur more rapidly in the former (Lopaschuk et al. 

2007). It is also known that complexes I, III and IV are more vulnerable to ischaemic 

damage, with complex II being more resistant (Lesnefsky 2016). 

Ischaemia is associated with nutrient and oxygen deprivation which halts oxidative 

phosphorylation (Hausenloy and Yellon, 2013) and it was expected to have profound 

effects on mitochondrial function.  Interestingly, in the present study exposure of the 

heart to 20min global ischaemia alone (without reperfusion) had no effect on any of 

the parameters of mitochondrial function studied, regardless of the substrate present 

in the incubation medium( Results; Figs 26-30 ). In fact, compared to mitochondria 

isolated directly after the stabilization phase, the data obtained after 20min global 

ischaemia, shows preserved mitochondrial function. Evidence from various studies 

has shown that in global ischaemia oxygen levels do not immediately fall to zero 

(Murphy and Steenbergen, 2008) and this could also be true for nutrient levels. 

Consequently, oxidative phosphorylation can proceed although it may be for a limited 

period of time. Another factor to consider is the fact that once mitochondria are 

isolated, they are incubated under ideal conditions, with sufficient oxygen and 

substrates available and will only display dysfunction if the damage persist even under 

ideal isolation and incubation procedures. The danger exist therefore that 

mitochondrial function may be overestimated under these experimental conditions. 

However the finding that 20min global ischaemia had no effect on mitochondrial 

function is in contrast to other studies in this regard, including our own (Edoute et al; 

1983). It is known that mitochondrial damage occurs mainly in the ischaemic period 

(Papa et al. 1997; Koonen et al. 2007; McLeod et al. 2005 Lopaschuk et al. 2007; 

Lopaschuk et al. 2010;  Fillmore et al. 2014), induced by generation of ROS by the 

ETC. It is possible that the period of ischaemia was too short to induce sufficient 

damage since it has been reported that in both animal and human models irreversible 

cardiomyocyte damage only occurs after 20 minutes of ischaemia (Kalogeries et al. 

2012).  

Significant changes in mitochondrial function were observed during reperfusion 

namely a significant reduction in QO2 (S3) and (S4), RCI, ADP/O and Oxphos in one 
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or both of the substrates (Results; Figs 26 A; 27 A-B; 28 C; 29 C; 30 A-B). It is well 

established that the detrimental changes that occur during ischaemia are escalated 

upon reperfusion due to the generation of ROS during early reperfusion (Lopaschuk 

et al. 2010; Fosslien 2001). This is consistent with the evidence that I/R leads to the 

reduction of mitochondrial bioenergetics parameters ( Petrosillo et al. 2003; Paradies 

et al. 2004; Lesnefsky et al. 2004;  Petrosillo et al. 2006) which was partially attributed 

to a loss of mitochondrial cardiolipin and increased peroxidation of this phospholipid 

(Petrosillo et al. 2006, 2009). The effect of I/R on mitochondrial function, is however, 

also controversial, since Petrosillo and coworkers (op.cit.) reported an increase in 

mitochondrial QO2 (S3) and (S4) after I/R. These discrepancies could be due to the 

perfusion models used (retrograde vs working heart), periods of ischaemia and 

reperfusion, mitochondrial isolation and incubation media. The finding that tissue ATP 

content is not increased by reperfusion after ischaemia (Edoute et al. 1983; Moolman, 

1994), also indicate impaired mitochondrial oxphos upon reperfusion. As previously 

mentioned, oxygen levels in a global ischaemia model do not immediately fall to zero 

and while this may preserve mitochondrial function during ischaemia, it also creates 

the ideal environment for the sub-lethal production of ROS which becomes lethal upon 

reperfusion (Zweier et al. 1987; Van den Hoek et al. 1997; Becker et al. 1999).  These 

lethal levels of ROS result in damaged and dysfunctional mitochondria that produce 

10-fold the amount of ROS and have reduced mitochondrial oxidative phosphorylation 

capacity (Twig et al. 2008; Jimenez et al. 2014; Ikeda et al. 2015).  Interestingly in this 

study, the decrease in QO2 (S3) and (S4) in the glutamate/malate medium (Results, 

Fig 26 A; 27 A) was not associated with a decreased RCI (Results; Fig 28 A), 

suggesting that the mitochondria are still coupled.  

Effects of melatonin: Melatonin’s effects on mitochondrial function appears to be 

minimal.  Melatonin had no significant effect on QO2 (S3), (S4) and the ADP/O. Mel 

at 0.3M did however exert  effects during stabilisation and reperfusion, where it 

decreased the RCI during stabilisation and increased the Oxphos during reperfusion 

in comparison to its corresponding control counterparts (Results, Fig 30).  

These results are surprising: in view of melatonin’s free radical scavenging and anti-

oxidant potential, it was expected to improve mitochondrial function, particular during 

reperfusion when the main generation of ROS occurs. As far as we are aware, this is 
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the first demonstration of melatonin being able to reduce mitochondrial oxygen uptake 

during reperfusion.  Petrosillo and coworkers (2006) reported that melatonin induced 

a marked increase in mitochondrial respiration after exposure of hearts to I/R which 

was attributed to preservation of the integrity of mitochondrial cardiolipin (Petrosillo 

2006, 2009). Petrosillo and coworkers (2009) suggested that these changes in 

cardiolipin may inhibit opening of the MPTP and loss of cytochrome C. It is clear that 

the results obtained in the present study are in direct contrast to those obtained by 

Petrosillo and his team, using a retrogradely perfused heart model and different 

periods of I/R. Recently, there has been evidence of melatonin exhibiting pro-oxidants 

in various cell types at various concentrations in certain conditions, although this has 

not been studied in I/R or in cardiomyocytes. This possibility cannot be completely 

excluded.  It is clear that these discrepancies need to be further investigated.  

In summary, in the present study the poor mechanical recovery of the hearts during 

reperfusion after exposure to I/R was associated with decreased oxidative 

phosphorylation capacity. In contrast to its marked cardioprotective effects, as 

evidenced by the significant reduction in IFS, melatonin either preserved or resulted 

in marginal improvements in myocardial function and recovery, while having no 

beneficial effect on mitochondrial oxidative phosphorylation after exposure to 

ischaemia /reperfusion. It can be concluded that the cardioprotective effects of 

melatonin clearly was not associated with improvement in mitochondrial oxphos 

capacity.  

5.5. Mitophagy: effects of ischaemia/reperfusion and melatonin 

It is well-established that the mitochondria are key regulators of cell fate, controlling 

survival (via ATP production which fuels cellular processes) and conversely, cell 

death. It is thus essential to have stringent control mechanisms regulating the quality 

of mitochondria to avoid the pathological effects of dysfunctional mitochondria. The 

mitochondrial quality control cycle involves a dynamic cycle of fission, fusion, 

mitophagy and biogenesis (for a detailed review see Gottlieb and Gustaffson, 2011; 

Anzell et al. 2017). It is therefore expected that stress conditions such as acute I/R 

with its known effects on mitochondrial ultrastructure (for example swelling, disruption 

of cristae) should affect the removal of dysfunctional mitochondria by mitophagy. 

However, to date the role of mitophagy in the setting of I/R is poorly understood. 
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Furthermore, as far as we are aware, no information is available regarding the effects 

of melatonin on the mitophagy process. 

Thus far, three mitophagic pathways (the so-called conventional pathways) have been 

described namely PINK/Parkin, BNIP3/NIX, FUNDC1 (see Chapter 2), while 

cardiolipin may also be involved (Anzell et al. 2017). Recently another pathway (the 

so-called unconventional or alternative pathway) involving AMPK, ULK, Rab9 and 

DRP-1 received much attention. For the purpose of the present study, it was decided 

to first evaluate the conventional pathway using the expression of mitochondrial 

markers such as PINK1, Parkin, TOM70, p63/SQSTM1and Sirt3 as markers in hearts 

subjected to ischaemia and reperfusion. For evaluation of the unconventional 

pathway, ULK1, Rab9, and DRP-1 expression were evaluated. In addition, we also 

evaluated mitochondrial biogenesis, using PGC-1 alpha and Sirt1 as markers. 

5.6.1. Mitochondrial Markers 

5.6.1.1. PINK1/PARKIN Pathway: Effect of global ischaemia and reperfusion 

In contrast to expectations of upregulation of mitophagy (due to the reduction in 

mitochondrial QO2 (3) and (S4) observed in reperfused hearts), ischaemia per se as 

well as reperfusion were found to be associated with decreased PARKIN and TOM70 

expression levels, while PINK1 was reduced after I/R only (Fig 32 B; 34 B, 33 A). 

SQSTM1/p62 levels were changed by I/R (Results, Fig 35 A -B).  

It is well-established that PARKIN and PINK1 play an important role in regulating 

mitochondrial function and mitophagy and loss of either protein can result in 

detrimental changes in mitochondrial structure and function (Narenda et al 2008; 

Gottlieb and Gustafsson, 2010). These changes include suboptimal mitochondrial 

respiration as well as oxidative damage (Gautier et al. 2008; Kubli et al. 2013). It has 

also been shown that during cellular stress (such as in ischaemia) PINK1 accumulates 

on the depolarized mitochondrial outer membrane and results in the increased 

expression as well as recruitment of PARKIN from the cytosol. PARKIN recruitment in 

turn leads to the ubiquitination of various proteins and recruitment as well as assembly 

of the autophagosome by SQSTM1/p62 (see Chapter 2; Narendra et al. 2010; Calo et 

al. 2013). In view of these events, we expected mitophagy to be upregulated after I/R. 
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The decreases in PINK1, Parkin and TOM70 expression suggest that instead of 

mitophagy being activated by the stressful stimuli in this setting, it was impaired by 

both ischaemia and particularly during ischaemia/ reperfusion. This could be attributed 

to the fact that certain processes in autophagy such as autophagosome formation 

require ATP production (Sciarretta et al. 2011), which is severely depressed during 

global ischaemia. 

Although PINK1 is highly expressed in the heart (Unoki and Nakamura, 2001), the role 

of PINK1 in this organ is not yet clear (Siddall et al. 2008a; Siddall et al. 2008b ). Using 

mice overexpressing PINK1 as well as knockouts, Siddall and coworkers (2013) 

showed that loss of this protein increases the vulnerability of the heart to IRI, probably 

due to mitochondrial dysfunction.  However, the importance of PINK1 in mitophagy 

has been questioned since Parkin was shown to be able to function without PINK1 

(Kulbi et al. 2015). 

The TOM complexes have been suggested to be involved in mitochondrial biogenesis 

and bioenergetics to meet metabolic demands under stress. TOM70 has been shown 

to be essential for importing PTEN –induced kinase 1 (PINK1) into mitochondria, 

reducing myocardial vulnerability to ischaemic injury (Kato et al. 2013). TOM70 was 

also reported to suppress oxidative stress in myocardial hypertrophy (Li et al. 2014). 

However, in the model of the reperfused working rat heart, TOM70 expression was 

reduced lending support to the notion that myocardial I/R suppresses mitophagy.  

As far as we know, this is the first demonstration of a reduction in mitophagy (as 

indicated by the mitochondrial PINK1, Parkin, TOM70) occurring simultaneously with 

a decrease in mitochondrial oxygen uptake during reperfusion. Since PINK1/PARKIN 

mediated mitophagy is mainly associated with depolarized mitochondria, it is possible 

that the 20 minute ischaemic period was too short to elicit a more significant 

upregulation of mitophagy.   

Whether failure to upregulate mitophagy contribute to the loss of contractile function 

during reperfusion, remains to be established.  Unpublished data by Gottlieb reported 

that overnight fasting in mice decreased mitochondrial content by 50%, suggesting 

that mitophagy is a very rapid process (Gottlieb and Gustafsson, 2010). Clearly more 

work is required to elucidate the contribution of the mitophagy process, as indicated 
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by the PINK1/Parkin pathway, to events known to occur in the ischaemic/reperfused 

myocardium. Coupling Western Blotting and the analysis of mitophagic flux through 

techniques such as mRNA and fluorescence markers (Gottlieb et al. 2015) could better 

elucidate our findings since Western Blotting provides only snap shots of very dynamic 

cellular processes.   

5.6.1.2. Alternative pathway: Effect of ischaemia and reperfusion 

Indications are that the non-conventional or alternative pathway of mitophagy is also 

affected by exposure of the heart to I/R: the cytosolic pDRP-1 as well as pDRP-

1/totalDRP-1 ratio were lowered by both ischaemia and I/R, suggesting a reduction in 

mitophagy (Results; Figs 40 A and C).  Interestingly, a very similar pattern was seen 

in the mitochondrial fractions, namely a lowering in phospho, total and pDRP-1/total 

DRP-1 ratio (albeit not significantly) by ischaemia and reperfusion.  The significant 

loss of mitochondrial Rab9, as well as total ULK1 (phosphorylation unchanged) 

proteins occurring in hearts exposed to I/R, also suggest downregulation of mitophagy 

and strengthens the premise that autophagy/mitophagy is depressed during I/R 

(Results; Fig 37-38). Thus the data suggest that mitophagy during ischaemia as well 

as during reperfusion is reduced, albeit to a limited extent. 

ULK protects cells from starvation and promotes survival by autophagy induction 

(Russell et al. 2013). Our data showed that total ULK was decreased by ischaemia 

and I/R. The changes in total ULK were reflected by an increased phosphorylated/total 

ULK ratio during ischaemia and a decreased ratio during reperfusion. This suggests 

that ischaemia was associated with increased ULK activation while conversely, 

reperfusion was associated with decreased activation (Results; Fig 38 A and C). This 

is consistent with the knowledge that ULK is phosphorylated by AMPK during nutrient 

deprived conditions (such as in ischaemia) and inactivated by mTOR during nutrient 

rich conditions (Kim et al. 2011). Inactivation of pULK during reperfusion may be 

attributed to the restoration of nutrients as well energy. However, AMPK has been 

shown to remain activated during reperfusion (Hermann et al. 2017). 

Cytosolic Rab9 was increased by ischaemia and decreased by reperfusion (Fig 38 B).  

It is expected that phosphorylated Rab will follow a similar pattern, but the appropriate 

phosphorylated Rab antibodies were not available commercially. The increased in 
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total Rab could suggest that ischaemia was associated with the accumulation of 

matured autophagosomes while reperfusion would be associated with clearance. This 

would be consistent with evidence from Hirota and colleagues (2015) which showed 

that knockdown of Rab9 suppressed mitophagy but not macroautophagy. In addition, 

Rab9 is required for autophagosome maturation (Amaya et al. 2015) thus increased 

expression could be indicative of accumulating maturing autophagosomes in this 

setting.  

Furthermore, the significant reduction in the expression of mitochondrial Sirt3 is also 

an indicator of disrupted autophagy/mitophagy regulation (Results, Fig 36). Evidence 

suggests that Sirt3 is associated with metabolism, protection from apoptosis, improved 

ETC function, enhanced endogenous antioxidant defences and autophagy regulation 

(Tao et al. 2010; Rardin et al. 2013). SIRT3 also protects against oxidative stress 

related diseases, including myocardial IRI (Porter et al. 2014; Botchaton et al. 2015; 

Klishadi et al. 2015; Zhai et al. 2017). This sirtuin acts mainly through deacetylation of 

mitochondrial proteins, including cyclophilin D (CypD), Ku70, and complex I, 

independently of transcription. Sirt3 moreover deacetylates FOXO3, leading to 

transcriptional upregulation of MnSOD and catalase and inhibition of cardiac 

hypertrophy (Daitoku et al. 2004; Zhai et al. 2017). A reduction in its expression in 

mitochondria could therefore only have harmful effects on the outcome of myocardial 

I/R. 

Recent observations by Sadoshima and his group suggested that the unconventional 

pathway, initiated by ischaemia-induced activation of AMPK and ULK1, is a major form 

of mitophagy and more important than the PINK1/Parkin pathway and that particularly 

during stress this alternative pathway becomes more important (Sadoshima et al 2017, 

personal communication). Rab9, which has a wide range of functions (Lombardi et al. 

1993), has also been suggested to be associated with non-canonical autophagy 

(Codogno et al. 2012) as well as mitophagy (Amaya et al. 2015). Our results also 

confirm a role for the alternative non-conventional pathway in I/R. Whether the 

changes observed have an effect on mitochondrial fission remains to be further 

evaluated. In addition, the significance of these changes and whether they contribute 

indirectly to the impaired mitochondrial function and loss of contractile function during 

reperfusion, remain to be established. 
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5.6.2. Effect of Melatonin on mitophagy during global Ischaemia/ Reperfusion  

The results thus far suggested that I/R reduced both mitochondrial oxidative function 

and the removal of damaged mitochondria by mitophagy. In view of the marked 

cardioprotective effects of melatonin and the fact that it is a scavenger of ROS which, 

in turn, is required to initiate mitophagy (Scherz-Shouval and Elzar, 2007), it was 

decided to evaluate the effects of melatonin treatment on the mitophagic process. 

Interestingly, melatonin decreased PARKIN, TOM70, Sirt3 and Rab9 expression 

during the stabilization period (Results; Figs 32 B, 34 A, 36, A, 38 A-B), the 

mechanism of which is still unknown. It could be due to the free radical scavenging 

effects of the hormone. During I/R it decreased SQSTM1/p62 levels and had no effects 

on PINK1 expression. Considering the functions of these proteins as described above, 

these findings suggest that melatonin had very little effect on the PINK1/Parkin 

pathway during I/R. While ROS is damaging, it is required in small amounts at basal 

levels (such as during stabilisation) and in stressful conditions (such as in I/R) for the 

induction of autophagy/mitophagy (Scherz-Schouval and Elazar, 2007). Thus 

melatonin’s free radical scavenging properties could have removed most if not all the 

cellular and mitochondrial ROS that was generated and subsequently, having a little 

effect on mitophagy.   

Although our results did not show an effect of melatonin on mitochondrial TOM70 

expression after exposure of the heart to I/R (Results; Figs 35 A), melatonin 

pretreatment of the mice (10mg/kg/day) was able to increase expression of PGC-1 

alpha as well as TOM70 and attenuated myocardial injury in control, but not in TOM70 

deficient mice.  These actions could be abolished by luzindole, indicating melatonin 

receptor dependence of TOM70 effects (Pei et al. 2017).  The links between the 

melatonin receptor, PGC-1 alpha and TOM70 need to be further investigated. 

However these observations suggest that TOM70 and its ability to regulate oxidative 

stress, were also dependent on the experimental conditions and need to be further 

examined. However the results obtained by Pei et al. (ibid) provided evidence that 

TOM70 and its ability to regulate oxidative stress, were critical to the observed 

beneficial effects of melatonin.  

Despite the ROS scavenging actions of melatonin and the negative effects observed 

with the PINK1/Parkin pathway, our results suggested that melatonin does affect 

Stellenbosch University  https://scholar.sun.ac.za



  

131 

 

mitophagy and that it exerts its most marked effects on the alternative mitophagic 

pathway: melatonin treatment caused a significant upregulation of total ULK 

throughout the perfusion protocol at all-time intervals studied   while phospho-ULK 

was significantly elevated throughout the stabilisation and reperfusion intervals 

studied (Results, Fig 37-B). 

In the present study similar striking changes were observed with DRP-1 (see Results 

Fig 39 and 40). It is known that under basal conditions most of DRP-1 is found in the 

cytosol while the remaining portion is associated with the OMM (Smirnova et al. 2001). 

When DRP-1 is activated (under basal and stressful conditions), it translocates to the 

OMM (Varadi et al. 2004). DRP-1 is known to be involved in mitochondrial fission 

which is an essential stimulus for mitophagy (Smirnova et al. 2001). The data obtained 

in the present study showed that melatonin significantly affects not only the expression 

of, but also the distribution of DRP-1 during I/R. It significantly increased 

phosphorylation (and thus activation) of cytosolic DRP-1 at the end of stabilisation, 

ischaemia and after reperfusion; in contrast melatonin treatment caused a significant 

reduction in mitochondrial pDRP-1 as well as in the pDRP-1/total DRP-1 ratio (See 

Results, Figs 39 B-C). These results are difficult to explain: while the significant 

increase in pULK suggest upregulation of the alternative pathway, this was associated 

with a significant increase in cytosolic, but not mitochondrial pDRP-1, which is an 

indicator of mitochondrial fission.  It is possible that phosphorylation of cytosolic DRP-

1 precedes its translocation to the mitochondria, but this remains to be demonstrated. 

As far as we know, this is the first demonstration of stimulation by melatonin of the 

alternative pathway and may indicate a novel mechanism for melatonin-induced 

cardioprotection. 

Melatonin’s beneficial effects were also seen during I/R where it upregulated Sirt3 

expression. Sirt3 is an essential mitochondrial deacetylase which regulates 

mitochondrial function and biogenesis via the modulation of various acetyl-lysine 

containing proteins. The effect of the hormone on Sirt3 was previously investigated by 

Zhai and coworkers (2017) who  used a model of in vivo coronary artery ligation as 

well as H9c2 cells, with 3-TYP as selective Sirt3 inhibitor. Melatonin pretreatment 

improved postischaemic function, reduced IFS and ameliorated oxidative damage and 

reversed the IRI induced reduction in Sirt3 expression and activity.  These changes 
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were associated with a reduction in the acetylation of SOD2 which was largely 

abolished by the Sirt3 inhibitor 3-TYP. In addition, Sirt3-targeted siRNA abolished the 

beneficial effects of melatonin in H9c2 cells subjected to simulated I/R, lending support 

to their suggestion that melatonin ameliorates I/R induced oxidative stress by 

activating the Sirt3 pathway. It was also found that melatonin reduces the translocation 

of Bax to the mitochondria via activation of Sirt1, indicating that the protective effect of 

the hormone against I/R induced apoptosis is mediated, at least in part, by Sirt3 

signalling. Increases in Sirt3 are also associated with increased transcription of SOD 

and catalase (Tao et al. 2010; Rangarajan et al. 2015) as well as increased oxidative 

phosphorylation (Cimen et al. 2010).  

5.6.3. Effect of Melatonin on mitochondrial biogenesis 

Melatonin resulted in decreased Sirt1 expression during stabilisation and ischaemia 

which was increased significantly during I/R (Results, Fig 41 A). Involvement of Sirt1 

in IRI has previously been shown by the observation that Sirt1 deficient mice exhibit 

increased injury in response to I/R while cardiac damage was reduced in Sirt1 

transgenic mice (Hsu et al. 2010).  In addition, upregulation of Sirt1 (Hsu et al. 2010; 

Tong et al. 2013) signalling has been shown to protect against IRI. The role of Sirt1 in 

melatonin-induced cardioprotection was further investigated by Yu and coworkers (Yu 

et al. 2014), using a model of in vivo coronary artery ligation after seven days of 

melatonin administration (10mg/kg/day) to rats, with or without co-administration of 

luzindole and EX527, a Sirt1 inhibitor. The results showed the expected melatonin-

induced reduction in I/R damage, associated with increased Sirt1 and BcL2 expression 

and a reduction in BAX and caspase 3 cleavage by melatonin. The results furthermore 

suggested that melatonin-induced cardioprotection involved activation of Sirt1 which 

may, via decreased acetylation of FOXO1, promote anti-apoptotic signalling in the 

heart.  

In the present study increased Sirt1 expression was associated with elevated PGC-1 

alpha levels during reperfusion (Results, Fig 42 B). In this setting Sirt1 upregulated 

the deacetylation of PGC-1 alpha consequently stimulating mitochondrial biogenesis 

(Houtkooper et al. 2010). In addition, Sirt1 upregulation is associated with protection 

against apoptosis and regulation of autophagy (Sengupta et al. 2009; Cattelan et al. 

2015)   
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Mitochondrial biogenesis and mitophagy are intimately linked (Stotland and Gottliebb, 

2015). The data obtained in the present study confirm that pretreatment with melatonin 

upregulates mitochondrial biogenesis and that this occurred concomitantly with 

upregulation of the alternative pathway of mitophagy.  

In summary, the above results propose a novel mechanism for melatonin-induced 

cardioprotection. Further proof for this proposal however, should be obtained using 

appropriate experimental approaches such as knockout models. 
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CHAPTER 6: CONCLUSION 

The incidence of deaths due to CVD and more specifically ischaemic heart disease 

has increased substantially over the years. Evidence shows that 80% of CVD deaths 

occur in low /middle- income countries (LMIC e.g. SA) and they also occur at a younger 

age in comparison to higher income countries (e.g. United States of America) (WHO, 

2011). In addition, economists predict that not investing in CVD prevention and 

treatment over the next few years will result in economic losses estimated at $47 trillion 

globally and $3.64 trillion at the LIMC level (Laslett et al. 2012).  This loss can be 

prevented and the burden of CVD reduced with the implementation of feasible and 

cost effective cardioprotective interventions (WHO, 2011). In the present study we 

investigated the feasibility of using melatonin, an inexpensive and in many countries 

an over-the-counter product, for the management of I/R damage by targeting 

mitophagy in the hearts of male Wistar rats. 

Subsequently, the overall aims of this study were to characterise the effect of 

ischaemia as well as reperfusion on mitochondrial oxidative phosphorylation and 

mitophagy and to evaluate their significance in myocardial IRI. Using the isolated 

working rat heart as model, the results demonstrated  that (i) exposure of the isolated 

rat heart to I/R caused a significant reduction in contractile function during reperfusion 

(Results, Tables 9-11) (ii) the most significant change in mitochondrial oxidative 

phosphorylation was a reduction in oxygen uptake (States 3 and 4) which occurred 

during reperfusion (Results, Figs 26 A, 27 A-B,) (iii) contrary to expectations, both the 

conventional ( Results, Figs 32-36)as well as alternative ( Results, Figs 37-40 )  

pathways of mitochondrial mitophagy were inhibited partially, suggesting impaired 

fission during I/R (iv) the changes in mitophagy occurred simultaneously with the 

reduction in mitochondrial States 3 and 4 respiration. 

The role of ROS in I/R damage was evaluated using the well-established ROS 

scavenger and anti-oxidant, melatonin. As has been shown previously in our own as 

well as in other laboratories, melatonin’s potent cardioprotective actions were 

confirmed by the significant reduction in IFS, measured after exposure of the heart to 

35 min regional ischaemia/60min reperfusion.  Although melatonin had no major 

effects on mitochondrial oxidative phosphorylation function, the results showed 
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marked effects on the alternative pathway of mitophagy ( Results, Figs 26-30), as well 

as mitochondrial biogenesis ( Results, Figs 41-42).  As far as we know, this is the first 

demonstration of this particular effect of melatonin.  

Finally, the role of mitophagy in the setting of I/R is still poorly understood and it is not 

known whether manipulation of this process could play a role in cardioprotection. The 

major changes induced by melatonin are associated with a reduction in IFS, but 

whether they play a causal role, remains to be established. 

Strengths, Limitations and Future recommendations  

Although much information is available regarding the process of mitophagy and the 

different pathways involved (for recent reviews see Saito and Sadoshima, 2015; 

Gottlieb and Thomas, 2017), not much is known about this process in I/R.  

It is recognized that the present study has a number of limitations. Firstly, although the 

aims were to evaluate the effects of ischaemia and reperfusion on the mitochondrial 

mitophagy process and to correlate this with mitochondrial function, this approach 

proved to be more difficult than realized initially. Since the most significant changes in 

mitochondrial oxidative phosphorylation and mitophagy occurred during reperfusion, 

co-incidence does not necessarily indicate causality. 

Despite these shortcomings, the data obtained gave a good indication of the effects 

of ischaemia per se on mitochondrial mitophagy and the effects of subsequent 

reperfusion on this process. Most articles in the literature focussed on the combined 

effects of I/R on this process. Our approach certainly has added to current knowledge 

regarding the effect of ischaemia on mitophagy and its association with mitochondrial 

oxidative function. However, it is realized that the signalling pathways associated with 

mitophagy are complicated with the many participants in the process. The newly 

proposed non-conventional or alternative pathway further complicated the 

experimental approach. Clearly by looking at more intermediates in both pathways 

would certainly have given more insight into the exact sequence of events.  Another 

complicating factor in a study of this kind is the fact that by freeze-clamping the heart 

at fixed time intervals only gives a snapshot of events at that particular time, but does 

not give an indication of flux. Gottlieb and co-workers (2016) have suggested that 
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pretreatment of hearts with chloroquine before exposure to I/R would give a better 

indication of flux. Such studies are in progress. 

Another unexpected complicating factor was that exposure of the heart to 20 min 

global ischaemia caused less damage to mitochondrial function than described before 

(see for example Edoute et al. 1986). It is clear that to fully appreciate the effects of 

I/R on mitochondrial function and mitophagy, more and longer periods of ischaemia 

have to be studied, in combination with varied periods of reperfusion, both in the 

absence and presence of chloroquine pretreatment. In addition, it would be helpful to 

also evaluate autophagy as well under these conditions. It will also be interesting to 

evaluate the role of the mitochondrial phospholipid cardiolipin in the mitophagy 

process. Previous work by Petrosillo and coworkers (op. cit.) showed not only 

involvement of this phospholipid in mitochondrial damage, but also the beneficial 

effects of melatonin treatment. Clearly a topic for further study. 

The finding of the effects of melatonin on the alternative pathway of mitophagy was 

one of the highlights of the study and will certainly form the basis of further studies in 

this regard. Whether these events have any effects on the myocardial response to I/R 

and whether they can be manipulated, may lead to discovery to new cardioprotective 

strategies. 
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APPENDIX A 

Preparation of 50µM of Melatonin 

To prepare 500mL melatonin solution with a concentration of 50µM the formula 

together with the information below was used to obtain the mass of melatonin to be 

weighed off (m):  

Molecular weight (Mw) of melatonin: 232.28 

Volume to be prepared (v): 0.5L   

Concentration to be prepared: 50µM which is 50𝑥10−6𝑀 

𝑚 = 𝑐𝑥𝑣𝑥𝑀𝑟 

𝑚 = 50𝑥10−6 𝑥 0.5 𝑥 232,28 

𝑚 = 0.005807𝑔 

𝑚 = 0,006𝑔 𝑚𝑒𝑙𝑎𝑡𝑜𝑛𝑖𝑛.  

6mg of melatonin was weighed and dissolved in 250µL of absolute ethanol. The 

solution was made up to 500mL with KHB.  

For preparation of 0.3M melatonin 0.075g of melatonin was weighed off and 

dissolved in 1mL of ethanol. This solution was poured into a 1000mL volumetric flask 

and diluted into 999mL of distilled water. 10µL from the stock was then diluted in 

9.99mL of distilled water (dilution 1). 500µL of the first dilution (dilution 1) was diluted 

in 499.5mL of Krebs buffer and use for perfusions. 

Since melatonin is light sensitive, it was weighed in a dark room and all containers 

used to prepare and administer the melatonin were covered in foil.  Melatonin was 

prepared fresh daily.  
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APPENDIX B 

 

Making up ADP 

0.02g of ADP was first dissolved in 5mL distilled water. Next, 0.1mL of the ADP 

solution was diluted in 25mL of distilled water using a volumetric flask (dilution 1:250 

dilution) to be used for the spectrophotometric determination of the concentration. 

The Heλios Ultra violet spectrophotometer (Unicam) was used to determine the OD of 

the diluted ADP solution in a quartz cuvette at 259nM. Distilled water was used as a 

blank. The OD was recorded and the ADP concentration determined using the molar 

extinction coefficient of ADP at 259nM(15.4) 

nmoles of ADP/0.1mL = 
𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑂𝐷

15.4 
×

250 (𝐴𝐷𝑃 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟)

1
 

 

Making up 10x ADP 

To make 10XADP ten times the amount of ADP was used i.e. 0.200g of ADP was 

dissolved in 5mL distilled water. The exact concentration of the 10xADP solution was 

not calculated as it was not used to calculate any of parameters used for mitochondrial 

function.  
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APPENDIX C  

Mitochondrial Calculations 

As previously mentioned the image below is a typical Oxygraph reading at the end of 

the experiment.  

Figure 43: Oxygraph Recording 

ADP/O ratio 

To calculate the ADP/O ratio the numbers from point A and B on the curves would be 

used. These numbers are displayed as one hovers over the points with the arrow. 

Point A and B represent the oxygen levels at the start and end of S3 respectively. To 

give an example of how the values would be calculated let us assume that point A= 

233.5nmol/ml/min and point B= 83.7nmol/ml/min and that the ADP concentration 

which was calculated using the formula form Appendix B was determined to be 

379.06 nmoles of ADP/50µL. The ADP/O ratio would be calculated as follows: 

 

A 

B 

C 

D 
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APPENDIX D 

Mitochondrial Calculations (continued) 

𝑂𝑥𝑦𝑔𝑒𝑛 𝑢𝑝𝑡𝑎𝑘𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑒 3: 233.5 −  83.7 =  149.9 𝑛𝑚𝑜𝑙𝑒𝑠/𝑚𝐿 

149.8𝑥 0.8 =  119.84 𝑛𝑚𝑜𝑙𝑒𝑠/800µ𝐿  (This step converts the answer to nmoles/800µL;  

the Oxygraph chamber during S3 contains a volume of 800µL which consists of 650µL 

incubation medium, 100µL of the isolated mitochondria and 50µL of ADP) 

119.84𝑥2 =  239.68 𝑛𝐴𝑡𝑜𝑚𝑠 𝑜𝑓 𝑜𝑥𝑦𝑔𝑒𝑛  

𝐴𝐷𝑃/𝑂 𝑟𝑎𝑡𝑖𝑜 =  379.06 ÷ 239.68  

𝐴𝐷𝑃/𝑂 𝑟𝑎𝑡𝑖𝑜 = 1.58 𝑛𝑚𝑜𝑙𝑒𝑠 𝐴𝑇𝑃/𝑛𝐴𝑡𝑜𝑚 𝑜𝑓 𝑜𝑥𝑦𝑔𝑒𝑛 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑  

 

QO2 (State 3) 

To calculate the QO2 (State 3) one would use point C which is the rate of oxygen 

consumption measure during state 3 respiration (Fig 44). Using the mouse and the 

rate option on the Oxygraph you draw in the red slope.  The software will then 

determine the rate of C. For this example let us assume that C= 22.33 nmol/ml/min ( 

Fig 45; highlighted in orange).  

 

Figure 44:Example of QO2 (S3) calculation on an Excel Spreadsheet. 

 

 

Stellenbosch University  https://scholar.sun.ac.za



  

141 

 

APPENDIX E 

Mitochondrial Calculations (continued) 

Mitochondrial oxygen uptake is expressed as nAtoms oxygen uptake/mg protein in 

100l mitochondrial sample/ min.. 

QO2 (State 4) 

To calculate the QO2 (State 4) the same procedure and calculation applies as for the 

QO2 (State 3). The primary difference is that point D from the Oxygraph recording of 

the mitochondrial sample will be used and the final answer will be expressed as the 

nAtoms oxygen uptake in the absence of ADP/mg mitochondrial protein/min. 

Respiratory control index (RCI):  

Once the QO2 (S3) and QO2 (S4) have been calculated the two values can be used to 

calculate the RCI. The RCI is calculated according to the formula below which was 

shown previously: 

𝑅𝐶𝐼: 𝑄𝑂2 (𝑆3) ÷  𝑄𝑂2 (𝑆4)  

Oxidative phosphorylation rate 

To calculate the oxidative phosphorylation rate the ADP/O ratio as well as the QO2 

(State 3) have to be calculated. The oxidative rate is as previously mentioned is 

calculated as follows:   

( 𝑄𝑂2 (𝑆3) 𝑋 𝐴𝐷𝑃/𝑂) nmoles ATP produced /mg mitochondrial protein/min 
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APPENDIX F 

BSA Stock Concentration Formula 

As previously mentioned the BSA stock was prepared by dissolving 0.5g of BSA in 10 

mL of distilled water. 50µL of the stock solution was diluted in 5mL of distilled water 

(1:101). The Heλios Ultra violet spectrophotometer (Unicam) was used to read the OD 

at 280nm using quarts cuvettes and distilled water as a blank. The BSA stock 

concentration (to be referred to as 𝑝 was calculated as follows:   

[𝐵𝑆𝐴] =  𝑂𝐷 𝑥 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 1.51  

            =  𝑂𝐷𝑥 101𝑥 1.51 

            =  𝑝 mg protein/mL (stock concentration) 
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APPENDIX G 

Western Blotting Template (n=4-6) 

 

Figure 45: Western Blotting Template showing Blot 1 and Blot 2 with control and 50µM melatonin groups n=4-6. 
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APPENDIX H 

Western Blotting Template (n=4) 

 

Figure 46: Western Blotting Template for controls groups and  0.3µM Melatonin groups.   
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APPENDIX I 

Research Outputs Associated With This Study 

Conference Contributions: 

Year: 2017 

Authors: K, Dube, R Salie, A Lochner. 

Reference: The Significance of Mitopphagy in Myocardial Ischaemia/ Reperfusion: the 

effect of melatonin (Oral Presentation) 

Physiological Society of Southern Africa Annual Congress, Pretoria, 2017 

 

Other Outputs: 

 

Year: 2017 

Authors: K, Dube, R Salie, A Lochner. 

Reference: The Significance of Mitopphagy in Myocardial Ischaemia/ Reperfusion: the 

effect of melatonin (Oral Presentation) 

South African Medical Research Council Biomedical Research and Innovation 

Platfom: Research Symposium, 2017 

 

Year: 2017 

Authors: K, Dube, R Salie, A Lochner. 

Reference: The Significance of Mitopphagy in Myocardial Ischaemia/ Reperfusion: the 

effect of melatonin (Oral Presentation) 

 Annual Research Day, Department of Biomedical Sciences, Faculty of Medicine and 

Health Sciences, Stellenbosch University. 
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