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Abstract

Towards Securing Software of Embedded Linux Devices
R. van Tonder

Department of Electronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (Electronic)
September 2014

As Embedded devices continue to proliferate, there is a rising concern sur-
rounding the security that these increasingly complex and capable devices
provide. Software development processes are successfully employed to ad-
dress security in desktop operating systems and applications, yet there is no
widely accepted security process for embedded systems. In this thesis, we
demonstrate how security of embedded Linux devices may be improved by
considering 12 well-chosen case studies that exemplify methods advocated by
established secure software development processes. Specifically, we derive high-
level methods from a comparative study of two well-known security processes:
The Microsoft Security Development Lifecycle (SDL) and the OWASP Com-
prehensive Lightweight Application Security Process (CLASP), and use these
to evaluate embedded Linux devices. These methods, namely, attack surface
analysis, threat modeling, and security testing, drive the assessment techniques
that enable vulnerability discovery and analysis covered in our case studies.
We apply and investigate these techniques in terms of attacks that pertain to
three common elements of a typical embedded Linux device, that is, operating
system, network, and Universal Serial Bus (USB) attacks. During assessment,
a number of new security vulnerabilities are discovered in these attack sur-
faces, demonstrating the effectiveness of our approach. Moreover, we develop
a novel, publicly available USB fuzz testing framework for discovering USB
vulnerabilities. Our final contribution culminates in six concrete, actionable
recommendations based on our case studies for improving embedded security.
Interestingly, our recommendations correlate with those advocated by security
expert Gary McGraw, but with the added benefit of being substantiated by
concrete case study analyses in the embedded space.
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Uittreksel

R. van Tonder
Departement Elektroniese Ingenieurswese,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: M.Eng (Electroniese)
September 2014

Soos toegewyde toestelle voortgaan om te vermenigvuldig, is daar ’n toene-
mende kommer rondom die sekuriteit wat hulle bied. Al word sagteware-
ontwikkeling prosesse suksesvol toegepas op gewone rekenaars en programme,
bestaan daar nie ’n aanvaarde sekuriteitsproses vir toegewyde stelsels nie. In
hierdie tesis wys ons hoe die sekuriteits aspekte van toegewyde Linux stelsels
verbeter kan word deur middel van 12 gevallestudies, waarin ons gevestigde
sagteware-ontwikkeling proses metodes toepas. Ons begin deur twee bekende
sekuriteit prosesse te vergelyk: die Microsoft Security Development Lifecy-
cle (SDL) en die OWASP Comprehensive Lightweight Application Security
Process (CLASP). Hiermee kies ons metodes wat van toepassing is om die
sekuriteit van toegewyde Linux toestelle te evalueer. Die metodes, naamlik
aanval oppervlak analise, bedreigingsmodellering, en toegepaste veiligheids-
evalueering word gebruik om sekuriteits foute te ontdek en te analiseer in ons
gevallestudies. Verder neem ons drie elemente in ag van toegewyde Linux toe-
stalle wat tipies aangeval word, naamlik, die bedryfstelsel, netwerk, en USB
oppervlaktes. Gedurende assessering is ’n aantal nuwe sekuriteit probleme
ontdek in hierdie aanval oppervlaktes, wat die doeltreffendheid toon van ons
benadering. Verder ontwikkel ons ’n nuwe USB toetsraamwerk om sekuriteits
foute te ontdek, wat boonop aan die publiek beskikbaar gemaak is. Ons finale
bydrae is ses konkrete aanbevelings vir die verbetering van sekuriteit in toe-
gewyde stelsels, wat ontwikkel is op grond van ons gevallestudies. Interessant
genoeg, ons aanbevelings stem ooreen met dié bepleit deur sekuriteit deskun-
dige Gary McGraw, maar met die addisionele voordeel dat dit gebaseer is op
konkrete gevallestudies in die veld van toegewyde stelsels.
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Glossary

ASLR Address Space Layout Randomization is a defensive computer security
technique which attempts to thwart exploitation of vulnerabilities by
using non-deterministic addresses for the memory contents of a process.

Black-hat An entity with expertise in computer security who typically en-
gages in illegal hacking activities with malicious intent.

CIA Triad Confidentiality, Integrity, and Availability form a triad of three
core security goals that are widely accepted in the field of Information
Security.

CLASP The Comprehensive Lightweight Application Security Process is a
project maintained by OWASP that incorporate security concerns into
the software development lifecycle.

CVE Common Vulnerabilities and Exposures is a collection of identifiers that
reference publicly known security vulnerabilities.

NIST The National Institute of Standards and Technology is a federal agency
that promotes standards and measurements in a number of fields, includ-
ing computer security.

OWASP The Open Web Application Security Project is a not-for-profit or-
ganization that focuses on improving the security of software.

SDL Microsoft’s Security Development Lifecycle is a software development
process that specifically addresses security concerns of products.

White-hat An entity with expertise in computer security, sometimes referred
to as an ethical hacker, that performs security evaluation of products
within a legal framework.

x
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Chapter 1

Introduction

1.1 Introduction

Overview

Recent years have seen a dramatic increase in the number of embedded
devices and consumer electronics that individuals interact with on a daily
basis. With a projected number of 15 billion connected devices by 2015 [18],
embedded devices are set to increase in ubiquity for the foreseeable future.

This growth is met with an increased concern for ensuring security on em-
bedded devices. Moreover, as embedded devices become more powerful, they
are able to support functionality and software of increasing complexity, thereby
demanding greater effort towards security practices. More powerful embedded
devices have also resulted in the uptake of running complete operating sys-
tems which support common libraries, hardware, and services by default. At
the forefront is Linux, an open-source solution which many embedded device
manufacturers adopt. Due to its extensive support and open-source nature,
Linux is the most common operating system of new embedded devices [51],
and runs on a diverse set of devices, including mobile phones, tablets, routers,
switches, smart TVs, set-top boxes, consoles, and many more.

Securing Embedded Devices

In broad terms, this thesis aims to address the need to secure software of
such devices through actionable recommendations. By assessing embedded
Linux devices, we derive the benefit of covering a broad range of devices, while
also providing a concrete platform on which we can base our security rec-
ommendations. Specifically, we are interested in securing various properties
of embedded Linux devices from vulnerabilities, and to find methods that are
effective at doing so. The need for recommendations toward improving embed-
ded security is evident, especially in the light of the numerous vulnerabilities
disclosed on a daily basis.

1
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CHAPTER 1. INTRODUCTION 2

Security Properties In the interest of securing embedded devices, we must
first ask what the core security goals of an embedded device is. In this thesis,
we are interested foremostly in assessing a device’s security in terms of an
attacker-centric threat. The notion of an adversary implies that the device’s
security properties can be undermined specifically in terms of its

• Confidentiality,

• Integrity, and

• Availability.

These properties are known as the CIA triad [33], and refer collectively
to the security of information (confidentiality), accuracy and validity of data
(integrity), and resource availability. Throughout a system’s lifetime, these
properties are to be preserved. The violation of one or more of these properties
constitute a threat to the core security goals of a given device; a successful
attack would invariably result in such a violation. Note, however, that this
principle is applicable to all systems, and not only to embedded devices.

Approach In order to address the security threats1 particular to embedded
devices, we must consider where they are attacked, and how. In answering
the former, we consult accepted methods of software development processes
to adopt attack surface analysis. The attack surface represents the potential
vectors through which an attack can be launched against a device. This typ-
ically implies that an attacker can specify input to a device’s software which
is subsequently processed. In terms of embedded software, we identify in this
thesis that all embedded Linux devices have an attack surface that includes
one or more of the following:

• Operating System

• Network services

• USB functionality

In addressing the latter, we employ security testing techniques, vulnerabil-
ity classification, and vulnerability analysis in a series of 12 case studies, four
per attack surface. By performing vulnerability analysis, we answer how an
attacker might proceed to discover vulnerabilities, compromise an embedded
device, and how the threat of doing so differs from traditional computers. We
use the term “case study” to refer to the act of demonstrating particular in-
stances where security assessment techniques are applied and the subsequent
results are analyzed, illustrating the need for addressing the concerns presented

1That which we have now established to be a violation of one of the CIA properties.
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CHAPTER 1. INTRODUCTION 3

by embedded devices.2 Whereas the term “use case” might seem suitable, we
do not feel that this term encompasses the analysis component of the examples
provided in this thesis.

In summary, we demonstrate how security of embedded Linux Devices may
be improved by considering 12 well-chosen case studies that exemplify methods
advocated by established secure software development processes. Specifically,
we derive high-level methods from a comparative study of two well-known
security processes: The Microsoft Security Development Lifecycle (SDL) [39]
and the OWASP3 Comprehensive Lightweight Application Security Process
(CLASP) [63], and use these to evaluate the devices. These methods, namely,
attack surface analysis, threat modeling, and security testing, drive the assess-
ment techniques that enable vulnerability discovery and analysis covered in our
case studies. We apply and investigate these techniques in terms of attacks
that pertain to three common properties of a typical Embedded Linux device,
that is, operating system, network, and USB attacks. Particular emphasis is
placed on the USB attack vector, where an increased number of vulnerabili-
ties have been discovered due to the recent advance of hardware-based USB
emulation techniques.

The case studies of this thesis include vulnerabilities that have been dis-
closed in the past, as well as newly discovered vulnerabilities as a result of
this research. The devices of these case studies include mobile phones, tablets,
switches, routers, smart TVs, and set-top boxes. While these do not present an
exhaustive list of potential embedded attacks, the case studies are representa-
tive of the unanticipated challenges that embedded devices face. They convey
the importance of incorporating security methods into embedded software de-
velopment, and deliver insight into a number of common pitfalls. Based on
the insights from our findings, we recommend secure practices that assist in
preventing many of the attack classes presented throughout this thesis.

Objectives
The objectives of this work is to:

• Derive appropriate techniques from secure software development pro-
cesses to evaluate embedded Linux devices

• Investigate and apply vulnerability assessment techniques over system,
network, and USB attack surfaces of embedded Linux devices

2Although somewhat related, case study should not be taken to mean consideration of
a particular person, group, or situation over a period of time, as it is commonly understood
in the field of social sciences.

3The Open Web Application Security Project
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CHAPTER 1. INTRODUCTION 4

• Classify vulnerability discoveries and demonstrate the risk posed to Em-
bedded devices

• Recommend secure practices for software design in embedded Linux de-
vices based on findings

Contributions
This thesis presents:

• A case study for applying secure software development processes (Mi-
crosoft SDL, OWASP CLASP) to embedded Linux devices

• Exposure and disclosure of new vulnerabilities on embedded devices

• The Transparent Two-Way Emulation framework, a novel testing frame-
work for the USB attack vector

• Concrete recommendations based on case studies for improving device
security during software development

Structure
The structure of this thesis is as follows. In Chapter 2 we cover research

relevant to secure software processes and embedded device security. These soft-
ware processes assist in providing secure development methods without being
platform specific. Thereafter follows a discussion of advances in the domain of
embedded device security, including methods for finding vulnerabilities, exe-
cuting attacks, and mitigating these attacks. We also consider the contribution
that these advances have made toward recommending secure practices for em-
bedded devices. In Chapter 3 we break up the secure software processes into
their constituent parts, from which we derive appropriate techniques that can
be used to evaluate security attributes of embedded devices in terms of system,
network, and USB functionality. We also define the scope of assessment, and
assessment techniques.

Chapter 4 gives a technical overview of system, network, and USB services
that are typically found on embedded devices. Here, we provide an under-
standing of an embedded device’s design and software implementation from
a developer’s perspective. These elements affect the security of the final de-
vice, and the points covered in this chapter serve as an additional reference
to the subsequent case studies. The case study chapters, namely, Chapter 5,
Chapter 6, and Chapter 7 contain the application of security assessment over
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CHAPTER 1. INTRODUCTION 5

a variety of devices, so as to demonstrate attack vectors, vulnerability classi-
fication, and associated threats. To this end, we show how the vulnerabilities
could have been averted; these insights provide the basis for recommendations
which are delivered in Chapter 8.
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Chapter 2

Literature Survey

2.1 Overview
This literature survey covers existing work in embedded security as it per-

tains to the objectives of §1.1. We consider research on secure software devel-
opment processes, embedded software security, and existing recommendations
found in literature.

2.2 Secure Software Development Processes
As the need for ensuring privacy and security rises, there is an increas-

ing need for appropriate secure software development processes. Gregoire et
al. perform a comparative study [35] between Microsoft’s Secure Development
Lifecycle (SDL) [39] and OWASP CLASP [63]. A follow-up study [31] discusses
high-level similarities and differences in more depth. However, these studies
do not demonstrate the difference in how the secure development processes
are applied, but rather give an indication of the value and potential shortcom-
ings of each approach. In this thesis, we identify methods in these processes
that are relevant to the secure development of embedded devices. We apply
these methods in practical case studies, delivering clear guidelines on how the
methods can be applied in practice. Howard, a key contributor to the SDL,
supports the notion that “numerous examples of correct and incorrect design
and coding behavior” provides the necessary insight for developers to “design
and build more secure software” [38]. Enck et al. acknowledge the role of se-
curity processes including SDL and CLASP for defining security requirements
in the context of mobile phones [34]. Ukil et al. addresses a broader range of
devices found in the “Internet of Things” [59] , but like Enck et al., emphasis is
placed on evaluating tools that address platform or hardware-specific require-
ments. Hence, while valuable, these studies do not comprehensively address
the application of secure practices on a broad range of devices.

6
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CHAPTER 2. LITERATURE SURVEY 7

Practical application of security assessments are covered in many studies
and books. Well-known resources include works by Dowd [33], McGraw [64],
NIST [53], and Howard [44]. These works establish specific and thorough
methods for performing software security assessments, and do not prescribe
a structured, high-level process such as the SDL. Furthermore, they are not
device and application specific, but consider software implementation concerns
in operating systems, programs, and the environments in which they execute.
While these resources provide the technical depth for evaluating a system’s
security, they do not address some of the more subtle considerations that
should be taken into account specifically for embedded devices.

2.3 Embedded Software Security
The rising ubiquity of embedded devices, and security concerns associated

with it, are well addressed by Koopman as early as 2004 [43]. There is a recog-
nition that embedded security is different from conventional computers; tight
development budgets cause developers to overlook or ignore security factors.
In a case study of internet-connected thermostats, Koopman identifies the
danger of allowing these devices to be accessible over a network—behind this
danger is the idea that the attack surface for embedded devices have increased.
Koopman envisions a variety of attacks, and suggests that those carried out
on the thermostat could be very subtle due to its embedded nature. Schneier
echoes Koopman’s questions on our ability to meet the needs of embedded
security, stating that “embedded computers are riddled with vulnerabilities,
and there’s no good way to patch them” [54]. These sentiments ring true, but
are delivered on the basis of thoughtful speculation and personal knowledge.
This thesis substantiates these sentiments with numerous thorough practical
case studies.

In 2013, Cui et al. demonstrated the impact of vulnerabilities on printers,
which were discovered by analyzing device firmware [26]. It was shown that
vulnerabilities in the implementation of zlib and openSSL could allow an at-
tacker full control over the device. A further example includes Cisco Internet
Protocol (IP) phone devices, which are vulnerable to compromise through an
exploit of the operating system kernel [25]. Cui advocates hardening tech-
niques where “unused code. . . is autotomically removed in order to reduce the
potential vulnerable attack surface of the overall system”. Cui admits that
this is helpful, but does not stop attacks that may succeed against “necessary
features that cannot be removed”. To overcome this, Cui advocates the use
of intrusion detection code that is resident on the embedded device during
its operation [27]. While this solution may prove effective, we advocate that
the discovery and analysis of embedded device vulnerabilities from a secure
process perspective also alleviates threats.
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Yang et al. performed a case study of concurrency attacks on various plat-
forms, including Linux and Cisco Internetwork Operating System (IOS), an
embedded operating system based on Linux [67]. Although the study is specific
to concurrency attacks, including race conditions and time-to-check-to-time-
of-use attacks, its empirical approach is similar to the one advocated by this
thesis. That is, vulnerabilities are classified, attacks are demonstrated, and
the impact is analyzed. At a high-level, the paper concerns vulnerabilities
that compromise memory safety, not unlike many of the vulnerabilities con-
sidered in our case studies. We address a broader range of attacks as well as
devices in the interest of embedded security.

Ravi et al. have identified hardware and software attacks that make embed-
ded systems design challenging [52]. Software attacks are classified as “logical
attacks”, examples of which include “buffer overflow exploits” and “subverted
device code updates”. These attacks are very broad, and we elaborate on their
specific properties in §3.5.2. Multivarious solutions have been constructed
to protect embedded devices from these attacks, including memory protection
through software attestation [55], SELinux access control [56], and secure boot-
strapping that guards against firmware modification [20]. Application isolation
and sandboxing techniques further promote the security of embedded devices.
Ravi et al. briefly consider one such solution, namely, the ARM TrustZone [19]
technology that “provides an architecture-level security solution” and separates
device code into “trusted” and “untrusted” portions, such that untrusted code
cannot indiscriminately modify system memory and resources.

Kocher et al. describe tamper-resistant software solutions, and point out the
threat of a “hardware virus” that can enter via kernel attack vectors in software
and persist throughout a embedded device’s lifetime in hardware protected
memory [42]. Although not based on an OS kernel, it was demonstrated in 2013
that firmware residing on harddisk controller chips could be reprogrammed by
an attacker, persisting in flash even when the harddisk is reformatted [32].
This demonstration proved to be an insightful exercise, but does not address
further classes of attacks.

Bratus et al. state that “securing a system requires preventing attackers from
exploiting. . . inevitable vulnerabilities. . . ,” referring particularly to embedded
systems which support USB functionality [23]. Although USB security has
been evaluated in terms of virus propagation [24] [57], it’s potential impact
and threat to embedded devices at a driver and system level is not yet well
understood. Aiding in this pursuit is the recent development of USB testing
tools that enable bug finding in USB-related software [1]. However, USB
testing tools for security purposes lack in functionality and prove expensive
[28]. We present a solution for testing USB software that improves on existing
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CHAPTER 2. LITERATURE SURVEY 9

solutions. Furthermore, we infer security concerns and recommendations from
recent research in the area of USB security, and address them with four case
studies in the embedded space.

2.4 Recommendations
Given the need for secure practices during embedded design and implemen-

tation, current literature delivers a number of recommendations. An important
recommendation is the automatic removal of superfluous code and disabling
of unnecessary features [26]. Yang et al. recommend runtime software checks,
setting non-executable memory in hardware, and enabling address space ran-
domization for countering concurrency attacks [67]. Ravi et al. [52] consider
the following as valid countermeasures for software attacks on embedded de-
vices:

• Preserving privacy and integrity in the execution environment

• Validating that a given program is safe to execute

• Identifying and removing of software bugs that make the device vulner-
able

Ravi et al. give a number of examples in which these countermeasures may
be achieved. The first is the inclusion of dedicated hardware and software
which enforce access control to system resources. This may include secure
bootstrapping when the device is initially started, or hardware to protect sensi-
tive memory locations. Code can be considered “safe” by performing validation
checks (such as code-signing), and providing sandbox execution environments.
“Finding security flaws in trusted software. . . and their implementations. . . ”
are deemed important, but not elaborated upon.

2.5 Conclusion
Although there are many software development processes that aid in the

design, verification, and implementation of systems, they do not define con-
crete analysis techniques, nor are their methods particular to a specific plat-
form. They are primarily valuable in guiding the sequence of high-level testing
methods, and in this way guard against obvious blind spots during security
assessment. Concrete and reliable techniques for security assessment are read-
ily available in a number of resources, which ought to be consulted during the
various phases of a development process. We mentioned that these techniques
are not platform-specific, but tailored to the system being tested. We assert
therefore that methods and testing techniques need to be tailored to embedded
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device security assessment; there is no predefined, infallible process specific to
embedded devices for security testing.

Research on various aspects of embedded security were discussed. There is a
clear indication that embedded security present new challenges, and that de-
fensive techniques have not yet matured to the extent of traditional computers.
Some research identify problems that affect both embedded devices and tra-
ditional computers, such as concurrency attacks. Other research draw upon a
single case study or platform in order to justify a defensive technique, such as
put forth by Cui. Yet further research, such as the design challenges identified
by Ravi, describe numerous valid techniques; unfortunately these techniques
are not accompanied by thorough case studies. This thesis differentiates itself
from these works by considering multiple case studies, taking into considera-
tion a wide range of attacks, and referencing these with appropriate testing
techniques and design processes.

Recent research dedicated to USB security present novel approaches to test-
ing, and warrant particular attention. Bratus et al. refer to the potential
threat that USB functionality poses to embedded devices; in this thesis we
present scenario where an attack against the USB vector can have unantici-
pated consequences for embedded devices.

The recommendations covered in this literature survey are valid for em-
bedded devices: memory protection and removal of unused code are sensible
objectives for improving device security. Given the challenging task of deliver-
ing appropriate recommendations for the wide number of embedded devices, it
is understandable that advice is somewhat general. The research in this the-
sis, being limited to the Linux operating system, enables us to deliver precise
recommendations for improving embedded device security. Moreover, these
recommendations are based on methods and techniques for software assess-
ment, and not, for example, dependent on a specific tool or runtime solution.
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Chapter 3

Security Assessment Methods

3.1 Overview
This chapter establishes the baseline methods that underlie the investigation

of Embedded Linux security throughout this thesis. These are used foremostly
to identify the scope of security concerns that are applicable to embedded
devices, and to direct the manner in which vulnerability discovery and analysis
is performed. In doing so, it is also demonstrated how these processes translate
into practical steps for Embedded device development.

Software security requirements are often vast, and security processes have
been developed in order to compartmentalise these requirements. The methods
chosen for assessing embedded security are taken from elements shared by two
high-profile security processes: The Microsoft Security Development Lifecycle
(SDL) [39] and the OWASP Comprehensive Lightweight Application Security
Process (CLASP) [63]. These processes are chosen on the basis of being mature
and well-understood in industry. The methods dictate the assessment scope
such that it maintains relevancy to embedded devices. The application of
these methods for vulnerability analysis and classification are largely driven
by practices in definitive literature of security assessment: Dowd’s The Art of
Software Security Assessment [33] and NIST’s Technical Guide to Information
Security Testing and Assessment [53].

3.2 Secure Software Development Processes
In this section an overview is given of the SDL and CLASP processes. We

derive methods from common elements identified, and limit these to where the
design and implementation of software is concerned. We assert that attack sur-
face analysis, threat modeling, and security testing affords the primary methods
by which to conduct software security assessment of embedded devices.

11
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3.2.1 Microsoft SDL

The Microsoft Security Development Lifecycle consists of 17 Practices con-
tained in 7 phases as depicted in Figure 3.1. Highlighted are the three phases
that directly influence the security of code which runs on the device: design,
implementation, and verification. Practice 15 in the release phase addresses
a final security review which could arguably be included, however, it makes
use of the same methods as the three phases mentioned. Next we consider the
practices of particular interest for the three phases.

1. Core 
Security 
Training

5. Establish 
Design 

Requirements

6. Attack 
Surface 

Analysis/
Reduction

7. Use Threat 
Modeling

8. Use 
Approved 

Tools

9. Deprecate 
Unsafe 

Functions

10. Perform 
Static Analysis

14. Incident 
Response 

Plan

15. Final 
Security 
Review

16. Release 
Archive

11. Perform 
Dynamic 
Analysis

12. Fuzz 
Testing

13. Attack 
Surface 
Review

2. Establish 
Security and 

Privacy 
Requirements

3. Create 
Quality 

Gates/Bug 
Bars

4. Perform 
Security and 
Privacy Risk 
Assessments

17. Execute 
Incident 

Response 
Plan

Figure 3.1: Microsoft Software Development Lifecycle
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6 & 13. Perform Attack Surface Analysis, Reduction, and Review
Attack Surface Analysis is the process of determining the potential vectors
through which an attack can be launched against a device’s software. For
example, an attack vector may exist in system software, network services,
or applications, and implies that the attacker is able to send input which is
handled by this software. The final Attack Surface Review determines the
state in which the device software will be released, possibly into the hands of
an attacker. Mapping the potential avenues of attack with the attack surface
analysis method establishes where to perform vulnerability anlaysis.

Attack Surface Reduction (or Mitigation) is the process of reducing poten-
tial attack vectors, and can also be described as software hardening. Software
hardening can be performed by reducing the amount of running code and
available entry points, restricting access to system services, or eliminating un-
necessary services. The act of reducing the attack surface prevents possible
vulnerabilities from existing on a system, but does not lessen the effects of
vulnerabilities that remain present after software hardening.

7. Threat Modeling Threat modeling within the SDL is described as a
“structured approach to threat scenarios during design” that helps “identify
security vulnerabilities, determine risks from those threats, and establish ap-
propriate mitigations. [39]” Threat Modeling commonly involves identifying
assets that reside on a device that should be protected, and can provide means
of prioritizing where focus is placed for finding vulnerabilities.

For example, a mobile phone may contain a user’s contact list—an asset
that should be protected. Consider two scenarios that unauthorized access to
the user’s contacts could be obtained: one which requires physical access to the
phone, and another which simply requires the phone to have an internet con-
nection. While both scenarios should be addressed, the latter scenario presents
a bigger threat. Hence, more resources should be devoted to ensure that this
threat is mitigated. In this manner, threat modeling assists in prioritizing
where software security is ensured.

8-12. Software Security Testing Software security is ensured in the SDL
with security-checking tools (8), removing unsafe functions (9), performing
static and dynamic analysis (10 & 11), and fuzz testing (12). More broadly,
these methods all serve to prevent vulnerabilities from existing in the soft-
ware after implementation. Consider that an attacker would employ the same
methods when performing vulnerability discovery and analysis : the use of se-
curity tools, searching for unsafe functions, performing static, dynamic, and
fuzz testing where possible.
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3.2.2 OWASP CLASP

The CLASP process consists of five-high level methods contained in “Views”,
as shown in Figure 3.2. CLASP places emphasis on activites that are performed
based on participant roles. Roles such as project managers, developers, or secu-
rity auditors participate in activities where software security requirements are
assessed and software is implemented. The Vulnerability View governs these
activities and provides methods for identifying, classifying, and remediating
software flaws.

Figure 3.2: OWASP CLASP Views (https://www.owasp.org/index.php/CLASP_Concepts)
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CLASP Activities CLASP defines 24 security-related activities that may
be undertaken during a software development process. Some activities address
specific needs that may not be applicable in all cases, for instance, the activity
to specify database security configuration. Activities that should be integrated
into the security process are determined during the Activity-Assessment View,
and each activity has an associated role that performs the activity. The follow-
ing list documents key activities that correlate with Microsoft’s SDL practices.
These activities distinguish themselves in that the associated role is that of
the security-auditor.

• Identify attack surface

• Perform security analysis of system requirements and design (threat
modeling)

• Perform source-level security review

• Integrate security analysis into source management

The Activity-Implementation View provides specific guidelines on how the
activities are performed. Attack surface analysis involves identifying all sys-
tem entry points, and mapping resources that are accessible from entry points.
Threat modeling involves identifying threats on assets and capabilities, and
determining the level of risk poised by threats. In the specification [63], iden-
tifying threats is accompanied by the question “If I were an attacker, how
could I possibly try to exploit this security service?” The source-level security
review is applicable when software source code is available. The purpose of
this activity is to find security vulnerabilities introduced into the implementa-
tion by manual code review, automated analysis tools, or both. Furthermore,
this activity specifically prescribes identifying vulnerabilities as set forth in the
Vulnerability View. Integration security analysis is an appropriate activity for
performing automated dynamic or static analysis on a code base, and may
happen in conjunction with the source-level security review.

Vulnerability View The Vulnerability View provides a taxonomy for guid-
ing CLASP activities. The Vulnerability View places strong emphasis on the
“Vulnerabilty Lexicon" which classifies vulnerabilities according to 5 categories
of problem types. These problem types are:

1. Range and Type Errors

2. Environmental Problems

3. Synchronization & Timing Errors

4. Protocol Errors
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5. General Logic Errors

The categories identify the types of problems that should be detected dur-
ing security activities, for example: unsafe functions that lead to memory
corruption, system environment settings that may lead to a denial-of-service
(DoS), or time-of-check-to-time-of-use (TOCTTOU) race conditions. All of
these problem types imply one or more violations of the core security goals for
system software:

• Confidentiality

• Integrity

• Availability

• Authenticity

• Non-repudiation

From an attacker’s standpoint, the most commonly violated goals are the
Confidentiality, Integrity, and Availability properties of a system. This is com-
monly known as the CIA triad [33], which is covered further in §3.4.

CLASP recognizes the importance of identifying and classifying vulnerabil-
ities in a software environment, where a vulnerability “allows an attacker to
assume privileges within a user’s system, utilize and regulate its operation,
compromise the data it contains, and/or assume trust not granted to the at-
tacker.” This definition also enforces the notion that vulnerability analysis is
an attacker-oriented activity.

3.3 SDL and CLASP Compared
It is evident from §3.2.1 and §3.2.2 that the two software processes share

common methods. This section documents the common methods, which are
used in §3.4 for inclusion into our embedded device assessment.

3.3.1 Attack surface analysis

Both processes recognize the importance of attack surface analysis—in CLASP
it is a dedicated activity, and in the SDL it comprises phase 6. A comparative
study of CLASP and the SDL by Gregoire et al. [35] identifies this intersection
as well, and points out that this method is “aimed at preventing an attacker
from taking advantage of potentially insecure code".
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3.3.2 Threat modeling

Threat modeling is a common method to both processes—in CLASP it is a
dedicated activity, and in the SDL it comprises phase 7. Gregoire et al. [35]
also discusses the intersection of threat modeling for both processes, and notes
that both methods of threat modeling focus on “technical weaknesses rather
than business-level threats”; an appropriate designation for secure software
processes.

3.3.3 Security testing

Security testing of software is critical to both processes. The SDL specifically
identifies removal of unsafe functions with code scanning tools (Phase 8), static
analysis (Phase 9), and manual code review. The SDL states that “analysis
tools can do much of the work of finding and flagging vulnerabilities”, but
that they are not perfect—manual code review should be used for critical
components of an application. During the integration of security analysis into
source management in CLASP, both static and dynamic analysis tools are used.
Manual code review is applied during source-level security review. Often, static
analysis and manual code review can be viewed as complementary methods.
For instance, a static code analyzer may be used to find unsafe functions, which
may further prompt manual code inspection.

The SDL gives more depth to the role of dynamic testing (Phase 11), for
example, detection of memory corruption, user privilege issues, and handling
malformed data. Fuzz testing (Phase 12) incorporates this last example, and is
a special case of dynamic testing—malformed data is intentionally sent as input
to the program in order to induce a crash. Though CLASP does not specifically
discuss fuzz testing, it references the importance of performing input validation
on malformed data. De Win et al. [31] point out that both processes stress the
importance of security testing, with the SDL taking a “predominant black-hat
approach”, whereas CLASP is more white-hat oriented. Refer to table 3.1 for
a summary of the above discussion.
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Security Test SDL CLASP
Static Analysis Phase 9 & 10 Integration of security anal-

ysis into source manage-
ment

Manual Code Review Phase 10 (optional) Source level security review
Dynamic Analysis Phase 11 Integration of security anal-

ysis into source manage-
ment

Fuzzing Phase 12 Referenced in “Basic Prin-
ciples in Application Secu-
rity"

Table 3.1: SDL/CLASP Comparison Table

3.4 Assessment Scope
The comparison of SDL and CLASP in §3.3 demonstrates the importance of
three methods common to both processes that aid in discovery of software
flaws and vulnerabilities:

• Attack surface analysis

• Threat modeling

• Security testing

These three methods are chosen to underlay the application of security as-
sessment in the context of embedded Linux systems within this thesis. How-
ever, embedded devices vary in hardware, functionality, and software, thus
requiring further effort in determining the scope of assessment. For example,
the attack surface of an entire device, such as a smartphone, may include attack
vectors over Wi-Fi, cellular networks, or USB connections, whereas a printer
may include attack vectors only over an ethernet connection. All embedded
Linux devices, however, have an attack surface that include attack vectors in
one or more of the following:

• Operating System

• Network services

• USB functionality

In this thesis, the scope of assessment and associated case studies are ap-
plicable to these three categories.
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As with the attack surface method, it is similarly challenging to perform
threat modeling for varying embedded devices. For instance, it may be desir-
able for a privileged user to have access to a router device so that they can
alter configuration according to their needs. On the other hand, any type of
access to the internal operation of a set-top box may not be desired by the
manfucaturer, and could constitute a threat.

Rather than attempting to model all the threats for a number of different
devices, we seek to identify the capabilities of an attacker that would constitute
a threat for a given device. In this manner, we’re able to use an attacker-centric
approach to threat-modeling in order to identify whether the discovery of a
security vulnerability is of legitimate concern.

In this thesis, we consider a security vulnerability to be of legitimate con-
cern, that is, a threat to a device, if it violates one of the following security
properties:

• Confidentiality

• Integrity

• Availability

These properties were alluded to in §3.2.2 and are commonly known as
the CIA triad. Dowd et al. [33] specifically describes these properties as those
which help “to determine which issues they1 consider to be security violations”.
Here is a description of each property:

Confidentiality is the property that ensures the privacy of information on
a device. For example, personal files on a mobile device containing data such
as accounts and passwords should be kept secret by means of access control
or encryption. Confidentiality may also be required for an entire device, for
example, it should not be possible to access the internals of a set-top box from
external ports. In this case, any disclosure of the software running on the
device constitutes a breach in the confidentiality property.

Integrity concerns the accuracy and validity of data. If data can be mod-
ified, altered, or tampered with in an unanticipated way, the integrity of the
data is at stake. Data modification may occur while it travels over a network,
or while it resides on a device. The ability of an attacker to modify data poses
threats of varying degrees, and in the worst case could mean an attacker having
full control over a device.

1The security auditor or assessor.
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Availability specifies that the resources and services of a device should be
operational when needed. For example, when a Denial-of-Service (DoS) attack
succeeds against a device or service, it will be unable to service legitimate
requests.

3.5 Application of Embedded Software
Security Assessment

In §3.4 we established that the type of software assessed shall pertain to
system, network, and USB functionality of devices. We further established
that we will identify threats to the security of a device by assessing whether
a given vulnerability violates one of the CIA principles. With this approach,
the influence of the attack surface analysis and threat modeling methods are
evident. Another contribution of these two methods is their property of being
attacker-centric in their application–the approach which this thesis advocates.

Attack surface analysis is a natural exercise for an attacker, who priori-
tizes which aspects of a device or piece of software to attack. Attacking the
operating system is of interest to the attacker, who may seek elevated priv-
ileges, control over the device, and access to restricted resources. Likewise,
network services open up the ability for an attacker to exploit vulnerabilities
remotely. Because networking may make a device remotely accessible, it is
often prioritized by an attacker. Network attacks may vary greatly, due to the
characteristic of being layered by various software; in fact, the network stack
itself presents an entire attack surface on its own account. This thesis does not
attempt to be exhaustive in this respect, but provides insight into a variety of
attack vectors at the network level in Chapter 6. The USB attack vector is
distinguished from the other attack vectors considered. USB functionality is
often supported by drivers in the operating system, and could be considered
part of the operating system. However, the USB protocol mandates a sepa-
rate hardware port, and drivers are often supplied by third-parties. Moreover,
while embedded devices commonly support additional hardware capabilities
(e.g. wireless networking), this may not always be the case. In contrast,
USB support on embedded devices is ubiquitous. These unique hardware and
software properties imply further security considerations, and provide enough
incentive for separate consideration.

When considering an attacker-centric threat modeling approach, we, like
the attacker, are interested in the properties that could be exploited as de-
scribed in §3.2.2, such as “Range and Type Errors”. This thinking translates
into the application of vulnerability assessment techniques, and we discuss it’s
impact in terms of the CIA model.
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3.5.1 Vulnerability Assessment

Security testing as put forth by SDL and CLASP are performed in the form
of vulnerability discovery and assessment for each attack vector. This analysis
forms the basis for the recommendations and insights delivered in Chapter 8.

A variety of techniques for performing vulnerability assessment have been
discussed: manual code review, static, dynamic, and fuzz testing. In the case
studies of this thesis, some of these techniques were often more appropriate
than others, depending on the availability of source code, the size of the source
code, or complexity of input. While one or more of these techniques were used
to find the vulnerabilities considered in Chapters 5-7, we do not evaluate their
effectiveness beyond this property. Instead, this thesis purposes to qualify a
vulnerability by the threat it poses in an embedded system, provide an analysis
and classification thereof, and to consequently provide a recommended secure
practice which mitigates this threat. This is in line with NIST’s approach
to technical security testing and assessment [53] which states that “no one
technique can provide a complete picture of the security of a system or network”
and that “appropriate techniques to ensure robust security assessments should
be combined”. Furthermore, the publication emphasizes “how these different
technical techniques can be performed and does not specify which techniques
should be used”, that is, which are most effective or necessary.

3.5.2 Technical Assessment

At this point, we address the technical considerations necessary for vulner-
ability discovery and classification for each of the case studies. The techni-
cal details of vulnerability assessment in this thesis draw on Dowd’s The Art
of Software Security Assessment [33] and NIST’s Technical Guide to
Information Security Testing and Assessment [53]. As discussed below,
a close correlation can be observed between these technical details and the
methods of SDL and CLASP.

As Dowd [33] points out, “there isn’t a single, clean taxonomy for grouping
vulnerabilities into accurate, nonoverlapping classes”. It is more valuable to
break away from the rigidity of a formal taxonomy, and evaluate the proper-
ties of a vulnerability based on vulnerability classes. Dowd recognizes three
such classes, and correlates them with phases in the SDL which address these
classes. In addition, NIST’s guide contains specific Target Vulnerability Val-
idation Techniques [53], providing further details of vulnerabilities that we
correlate with the three classes put forth by Dowd. Case study vulnerabili-
ties will therefore be identified and analyzed in accordance with the following
distinctions:

• Design Vulnerabilities
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• Operational Vulnerabilities

• Implementation Vulnerabilities

3.5.2.1 Design Vulnerabilities

Design vulnerabilities occur when a flaw exists due to an oversight in the
requirements and specification of software. SDL phases 1, 2, and 3, attempt
to guard against these vulnerabilities in a preventative manner by placing em-
phasis on identifying the right requirements and specification at the software’s
initial conception.

For example, consider a Linux-based smart TV which supports a mass stor-
age USB device. The Linux distribution may also support a host of additional
USB peripheral devices by means of third party drivers, including keyboards,
imaging devices, or printers. Though it may never have been intended for
the smart TV to support such devices by design, and though it may have no
application-level support for such devices, the kernel will still load the appro-
priate driver when any of these peripherals are inserted. A bug in this code
could pose a security threat. We consider such a case in Chapter 7.

Moreover, note that design vulnerabilities may open up the possibilities of
implementation and operational vulnerabilities.

3.5.2.2 Operational Vulnerabilities

The existence of operational vulnerabilities depend on the environment or
context in which software operates. These vulnerabilities are not due to bugs in
a software’s source code, but rather depend on how the software is deployed and
configured. A misconfiguration or insecure default setting arises once software
is deployed in its final state. Detecting such flaws therefore requires a holistic
approach, which is why SDL phase 6—attack surface analysis—is appropriate
at this point. Phase 6 marks the boundary between the preventative and
attacker-centric methods of vulnerability detection in the SDL.

The following NIST categories [53] could qualify as operational vulnerabil-
ities:

• Misconfiguration

• Incorrect File & Directory Permission

• Symbolic File Link Manipulation

• Race Condition

Note that Symbolic File Link and Race Condition vulnerabilities are
also listed in §3.5.2.3, as their classification depends on the system context.
Again, these share the same properties of CLASP’s Synchronization & Timing
Errors.
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3.5.2.3 Implementation Vulnerabilities

Implementation vulnerabilities apply to bugs that result from technical pro-
gramming errors. Again, SDL takes preventative measures in Phases 4 and 5
(refer to Figure 3.1) to guard against implementation vulnerabilities. These
vulnerabilities include popularly understood flaws such as buffer overflows and
other memory corruption vulnerabilities. In terms of NIST’s penetration test-
ing phase, the following are commonly attacked implementation vulnerabilities:

• Kernel Code Flaws

• Buffer Overflows

• Insufficient Input Validation

• Race Conditions

• File Descriptor Attacks

• Symbolic File Link

Note that the Buffer Overflows and Insufficient Input Validiation
vulnerability designations would fall under CLASP’s Range and Type Errors
problem type. Similarly, Race Condition vulnerabilities share the same prop-
erties of CLASP’s Synchronization & Timing Errors.

3.5.3 Summary

It is evident that there remains overlapping gray areas of vulnerability clas-
sification; depending on the context, the same vulnerability can be classified as
one resulting from a design decision, and only exhibited in a certain operational
context. However, in most circumstances, it is possible to unify the classifica-
tion of a vulnerability across these definitions given enough information and
understanding of a vulnerability’s cause and impact—this thesis advocates
precisely such an approach, and demonstrates such reasoning throughout the
vulnerability case studies. Finally, we correlate each vulnerability with an as-
sociated method in the SDL and CLASP processes, which in turn accompanies
our secure recommendations.
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Chapter 4

Embedded System Design

4.1 Overview
In this chapter we consider aspects of embedded system development, and

look specifically at operating system, network, and USB functionality. The
purpose of this chapter is to provide the necessary technical background in-
formation in preparation for the discussion of our case studies. The content
of this chapter is largely based on contemporary design of devices as found
in Building Embedded Linux Systems by Yaghmour et al. [66]. We note that
embedded devices make use of programs and services that are optimized for
performance and storage due to having limited hardware resources in contrast
to general desktop computers. These characteristics drive design decisions that
impact the security of devices, of which we give examples in this chapter. On
the other hand, many Linux-based embedded devices share core Linux oper-
ating system features and device drivers, which also impact the security of an
embedded device, and thus merits likewise discussion.

4.2 Operating System
Aspects of the embedded Linux operating system include the kernel, libraries

and utilities, and filesystem implementations. The following sections provide
descriptions of the purpose and role of these software components during sys-
tem design.

4.2.1 Kernel

The kernel interacts directly with a device’s hardware, and manages re-
sources such as the CPU, memory, and device peripherals. The kernel supports
kernel modules ; software that is loaded and run within the kernel for added
hardware support or additional features. For example, SELinux is a dedicated
kernel security module that enforces strong access control policies. Develop-

24
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ers may specify the use of SELinux when building the kernel, although doing
so will require knowledge of the device’s intended use, and how the SELinux
model will fit in with other applications on the device. Kernel configuration
options include hardening techniques such as Address Space Layout Random-
ization (ASLR), which loads programs into randomized offsets in memory.
Kernel modules and options are configured prior to compilation. Thereafter
the kernel is compiled according to a platform architecture. Common em-
bedded flavours include ARM, PowerPC (PPC), and Microprocessor without
Interlocked Pipeline Stages (MIPS).

Drivers The Linux kernel contains a plethora of device drivers which sup-
port peripherals such as printers, keyboards, graphics cards, and mass storage
devices, to name but a few. One of the biggest advantages for using Linux
in embedded system is its out-of-the-box support for these devices–portability
that no other operating system readily provides. Many of these drivers support
devices that operate on the USB protocol stack, and by default all drivers are
included.

Virtual Filesystems Linux makes use of virtual filesystems to expose in-
formation about hardware, devices, and drivers to user space applications.
Virtual filesystems are an abstraction that exist on top of concrete filesystem
implementations such as ext, and are represented by a hierarchical directory
structure. The Device filesystem, devfs, provides an abstraction for represent-
ing peripheral devices as files, as well as an interface to interact with them.
Custom peripherals, for example, will export a specific interface through the
devfs. On the other hand, interfaces for common peripheral buses, such as
USB, are also contained in sysfs. The sysfs filesystem also contains system
information of the kernel, device debugging information, and module options.
sysfs is the successor of procfs; procfs is still present on the majority of
Linux distributions, and provides access to kernel options, running processes,
and memory mappings.

4.2.2 Libraries and Utilities

Libraries Embedded Linux application binaries most commonly use the rich
and robust GNU C library (glibc). Due to its full features, glibc is substan-
tially bigger than alternative C libraries such as uClibc and diet libc. C
libraries are typically statically linked with application binaries on embedded
systems, meaning that binary sizes will be affected by the C library chosen.
For example, the BusyBox binary (discussed below) is roughly 1MB in size
when statically linked against glibc, and 500KB when linked against uClibc.
Therefore, on devices that are severely constrained in terms of flash storage
resources, an alternative to glibc might be considered.
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In terms of security, the libraries can be built with a number of options.
uClibc, for example, includes a menu with a number of security options. These
options include compiling Position Independent Executables (PIE) which can
harden executables against memory exploitation techniques. However, turning
on these options usually impacts runtime performance, and for this reason are
subsequently disabled by embedded developers.

BusyBox BusyBox is perhaps the most popular application binary included
in embedded Linux systems. BusyBox implements most Unix utility com-
mands and programs in a single executable. It’s primary advantage over desk-
top counterparts (such as GNU Coreutils) is its ease of installation and small
size. BusyBox includes additional functionalities out-of-the-box, which, de-
pending on relevance, may be included in an embedded device. Such pro-
grams include a DHCP server and client, web server, text editor, and package
manager.

4.2.3 Filesystems

Filesystems on embedded devices are important for optimizing storage per-
formance and partitioning data according to their attributes. Embedded de-
vices will typically contain a persistent and read-only filesystem, a persistent
read-write filesystem, and a temporary read-write filesystem. Popular read-
only filesystems include Cramfs and Squashfs. Writable filesystems include
ext3, jffs2, and ubifs. Temporary filesystems include Tmpfs and Ramfs.
The filesystems have varying tradeoffs, including file name length, maximum
file size, compression, and so forth. Filesystems do not directly introduce se-
curity vulnerabilities into an embedded device, but an error in designing the
appropriate residence and permissions of data on a storage medium could.

4.3 Network Functionality
Network functionality is pervasive among embedded devices. These include

obvious candidates such as mobile phones, routers, and printers, but also ex-
tend to devices such as smart TVs, set-top boxes, and gaming consoles. Some
devices support physical ethernet connectivity, while others use wireless tech-
nologies, or a combination of both. Other network functionality, such as GSM
(Global System Mobile for Communications), is popular on mobile phones,
but not ubiquitous among embedded devices.

Embedded devices are designed to support a number of protocols in the
network stack (see Table 4.1).
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HTTP Application
TCP Transport
IP Internet/Network
Ethernet Data Link
IEEE 802.3u Physical

Table 4.1: Simplified network stack

Protocols pertaining to the physical medium and data link layer are imple-
mented in hardware, and do not make use of software implementations. For
example, an embedded device can obtain internet connectivity via an ether-
net cable, Wi-Fi, or GSM. On the other hand, the Application layer of the
network stack is of particular relevance for embedded design. Much of an em-
bedded device’s usefulness is derived from its ability to communicate on the
application layer using protocols implemented in software, such as HTTP and
DHCP. These services protocols, and associated services, do not prescribe how
protocols lower in the network stack should operate.

4.3.1 Services

Embedded device functionality is often improved by a number of network
services. The following is a description of the most common network services
found on embedded devices. These protocols run on the application layer, and
most of them are supported by BusyBox. If a service is undesired, it may be
disabled in the BusyBox settings.

Telnet The telnet protocol enables users to connect to a remote telnet host
and obtain a command-line interface. The telnet protocol passes information
across the network in plain-text. Developers frequently use telnet to configure
and test devices. In some instances, as with network routers, the telnet service
may provide a means for users to configure a device. However, the SSH protocol
has become more popular for providing access to an embedded device due to
enforcing encryption.

SSH The Secure Shell exists for the same purposes as Telnet, while secur-
ing the communication channel with encryption. SSH may be preferred when
performing device changes in a more hostile environment (for example, over
the internet). Notably, a SSH server/client application is not included in the
BusyBox suite; dropbear [4] is a common open-source SSH implementation.

FTP The File Transfer Protocol is the most common protocol used for copy-
ing files from one device to another. FTP functionality is often exposed on the
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command-line, and transfers are performed in plain-text across a network. En-
crypted variants exist, such as SFTP (FTP over SSH) and FTPS (FTP over SSL),
but are not commonly supported on embedded devices. FTP is commonly used
by developers to copy files and update firmware on embedded devices. In some
instances, the FTP service may be enabled in production environments as well.

DHCP The Dynamic Host Configuration Protocol is responsible for config-
uring devices on a network. Specifically, a DHCP server allocates and leases
IP addresses to devices that connect to a network. Embedded devices often
contain a DHCP client so that they can communicate with other networked
devices, either locally or over the internet. Embedded devices may operate
either as a DHCP client (such as a smartphone), or a DHCP server (such as a
router).

DNS The Domain Name System (DNS) operates a protocol whereby domain
names, such as example.com are resolved to their physical IP addresses. A
DNS server maintains records of the domain-to-IP mappings. Client devices
on a network query DNS servers using the DNS protocol in order to resolve
domain names. Embedded devices with network connectivity therefore com-
monly make use of the DNS protocol as clients. Select devices, such as routers,
may relay DNS information between server and client.

4.4 USB Specification

4.4.1 Overview

The ubiquity of the USB port extends to the world of embedded systems.
Often, the presence of a USB port device will add operational functionality to
a device. Even in situations where this is not the case, developers will likely
rely heavily on a USB connection to perform development tasks. Therefore,
interaction with the USB port is almost unavoidable when building or using
an embedded device.

USB ports are often included on an embedded device because of the flexibil-
ity that it affords. Common uses include supporting data transfers, firmware
updates, and peripheral attachments. In order for this to realise, a variety of
device classes specify protocols that communicate via USB. The USB Device
Working Group actively maintains documentation relating to these protocols
[36].

As a prerequisite to exploring the security implications of USB technology,
it is necessary to develop an understanding of its modus operandi. What
follows is a non-exhaustive description of the USB specification as it pertains
to vulnerability analysis.
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4.4.2 Operation

At the highest level, USB facilitates communication between two devices
across a bus. One device is designated the role of a USB host, and the other
a peripheral. These roles are analogous to a client-server model, as a host is
tasked with keeping account of its peripheral’s abilities and state. However,
initial communication differs from this model, and follows a strict request-
response pattern.

The host manages the bus communication flow, and performs requests to
learn about the abilities of a connected device. The device issues appropriate
responses to these requests. Hosts are further responsible for assigning appro-
priate drivers to a peripheral based on its responses, and mediating transfers
between multiple devices. Comparatively, the host has a more complex task in
orchestrating USB communication, and hardware comprises a dedicated host
controller chip. Conversely, an 8-bit USB microcontroller (MCU) may suffice
for simple peripherals such as keyboards.

A peripheral must, upon connection to the host, respond to incoming re-
quests. Appropriate responses are placed on the bus subsequent to processing
a request from the host. While a peripheral may not be able to process all of
the eleven requests defined by the USB protocol specification, it must inform
the host if it is unable to do so.

The culmination of initial communication (or enumeration) between host
and peripheral is that the host places the peripheral in a configured state. In
this state, the peripheral is ready to be used for its intended function.

4.4.3 Enumeration

During enumeration, the host sends control requests in packets on a dedi-
cated pipe (hereon referred to as Endpoint 0), to which the device must re-
spond. Importantly, devices must not assume that these requests will occur
in a predefined order. Typical enumeration of a USB device consists of the
following steps:

1. The device is attached to the USB port, and becomes powered

2. The host detects the device, and determines whether it is a low or full
speed device

3. The host resets the device, and waits for it to exit the reset state

4. The host initiates communication by sending a Get_Descriptor request
to learn of the device’s maximum packet size

5. The host assigns a unique address for the device

6. The host learns about the device’s abilities by sending multiple requests
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7. The host assigns and loads an appropriate device driver

8. The host puts the device in the configured state

The bulk of host-controller software is dedicated to the tasks of steps 6 and
7. In terms of USB functionality, embedded software developers will spend
most of their time programming the correct responses that a peripheral device
gives in step 6. Therefore, we further focus our attention on this area of design.

4.4.4 USB Descriptors and Requests

Devices respond to requests with descriptors. Eleven standard descriptor
types exist for USB devices. A full listing of these are given in Appendix A.
Not all descriptors are required for a single USB device. Descriptors are sent
in response to a Get_Descriptor request. Ten other standard requests exist
for enumeration and control purposes, and may be viewed in Appendix A.1.
We now draw attention to a short summary of common descriptors. For a full
listing of descriptor fields, please refer to Appendix A.2

Device Descriptor The device descriptor is the first descriptor that the
host is interested in. It contains basic information about the device, including
the device class, vendor ID, product ID, and number of configurations. Im-
portantly, the vendor and product IDs may be used by the host to determine
an appropriate driver.

String Descriptor The string descriptor contains Unicode strings. Depend-
ing on the request, a string descriptor may contain, amongst other things, a
device product string, manufacturer string, or serial number.

Configuration Descriptor After receiving a device descriptor, the host
will typically ask for the configuration descriptor. This descriptor specifies the
device’s features and abilities, and is followed immediately by two subordinate
descriptors: the interface and endpoint descriptors. Important fields include
the number of interfaces that the device supports, and its power requirements.

Interface Descriptor The interface descriptor identifies the interface class,
as well as the number of endpoints that the device supports. Consider that
a device may support multiple uses, corresponding to multiple interfaces. In
this context, the interface class is similar to the device class of the device
descriptor, but specifically identifies the use of a single interface. Some possible
classifications include “HID” (human interface device), “mass storage”, and
“printer”.
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Endpoint descriptor For each interface, specific communication pipes are
set up, called endpoints. Endpoint addresses, directions, and attributes are
specified in the endpoint descriptor. Attributes may include the type of USB
communication used, i.e. bulk transfers for storage devices, and interrupt
transfers for HID devices.

Additionally, class- or vendor-specific descriptors exist for USB devices.
These descriptors further distinguish the differences of functionality between
devices. For example, a keyboard maintains a HID class descriptor of type
21h. Going even further, a report descriptor of type 22h is to be expected
in the HID class of a keyboard, which describes how key presses should be
interpreted by the host.

Thus, we can expect that the host, upon learning that a device belongs to
the HID class, would further request a HID descriptor and report descriptor. In
this manner all the conceivable functions of USB devices are realised. We will
consider three specific interface classes that commonly pertain to embedded
devices (in either a peripheral or host role).

Human Interface Device This class includes keyboards, mice, and game
controllers. An embedded device can support HID devices by reading and
acting on human input encapsulated in reports as specified by a peripheral’s
report descriptor. The report descriptor structure describes the format and
size of the reports sent by a HID device. Additional HID-specific requests and
responses may also need to be implemented.

Mass Storage The mass storage class allows large data transfers to take
place between a host and peripheral. Common devices include USB flash-
drives, portable harddrives, DVD drives, and SD cards. A variety of media
specifications exist for these devices, the most popular being the Small Com-
puter System Interface, or SCSI. In order to support the SCSI command set,
the USB specification implements the Command Block Wrapper (CBW) and
Command Status Wrapper (CSW) wrapper structures. Implementing USB
mass storage support relies in part on communication via these wrappers,
class-specific requests, and a correct understanding of the SCSI command set.

Device Firmware Upgrade The DFU class establishes a protocol whereby
a device may be upgraded by a host. For example, this may occur when a
wireless dongle has new firmware pushed to it via a desktop computer. The
process consists of four phases: enumeration, reconfiguration, transfer, and
manifestation. By the end of the process, the device resumes normal operation
with the new firmware. As with previous classes, the DFU class has class-
specific requests and descriptors to achieve its goal. Developers need to be
aware of these requirements in order to implement it successfully.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. EMBEDDED SYSTEM DESIGN 32

4.5 Conclusion
When an embedded system is designed, much effort is required to align the

inclusion of software with device requirements. Developers need to consider
the resource use of a device and its peripherals when building and configuring
the kernel. Libraries and programs that run on the device will commonly be
optimized to have a small resource footprint—this can translate into security
options being turned off for performance purposes. One factor that eases the
task of building the system is Linux’s wide support for peripherals through
device drivers.

Developers similarly have to elect the network services that are appropri-
ate for the device. Enabling some services, such as ftp, may be useful during
development, but dangerous after production. Depending on the complexity
of the device’s functions, a number of network protocols may need to be sup-
ported. Each network service, in turn, requires compilation and configuration
for the embedded device platform.

USB support implies structured yet complex interactions between a host
and peripheral. Much of the detail is abstracted away from the developer with
embedded Linux, which supports many of the base classes by default. Never-
theless, custom USB functionality requires the developer to be knowledgeable
of the specification.

Due to the complex process of constructing a device’s software stack as per
the system, network, and USB categories, it is conceivable that security issues
exist as a result. At each step of a design choice, configuration, and compilation
of software, there looms the danger of introducing a vulnerability into the
system. Whereas some vulnerabilities may exist due to implementation bugs
inherent to the kernel itself, others may be due to a compilation option or
network configuration setting. Yet further bugs can be introduced by third-
party USB driver code, or custom modules written by the developer. With this
in mind, we proceed to identify underlying causes through vulnerability case
studies, thereby assisting software processes to address the security concerns
during development.
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Chapter 5

Embedded Operating System
Attacks

5.1 Chapter Overview
This chapter discusses operating system attacks in the context of embedded

systems. The operating system is a critical piece of software that handles hard-
ware resources such as the memory, CPU, and input devices, and provides the
necessary services and interfaces for higher level applications and programs.
Operating systems also manage the filesystem and have access control mecha-
nisms to preserve file permissions. Attacks on the operating system level try to
circumvent such protections in order to gain access to sensitive files or to allow
arbitrary modification of system behavior, such as running new programs, or
modifying existing programs.

Attacks on the operating system of a personal computer may leave the user
at risk, but the user is typically allowed complete control over their computer.
However, system attacks on embedded devices is great cause for concern for
manufacturers, who typically do not want users to have complete control over
device behavior. This is the case with popular consumer electronics, such as
game consoles, routers, and set-top boxes. Manufacturers of such devices typ-
ically restrict the user to a ‘sandbox’ environment, where they are only able
to perform a limited set of operations on the system. Alternatively, manufac-
turers may desire to disallow access completely.

Access to the operating system level of a device is a powerful position,
and can often reveal sensitive information in a variety of ways. We consider
attacks that can be performed out of this position on an embedded device
which runs a Linux operating system. Vulnerabilities are classified broadly as
resulting from design, operational, or implementation errors, according to the
taxonomy discussed in §3.5.2. As mentioned, classifications for a given vulner-
ability may overlap, yet one of these three classifications is usually dominant.
Where relevant, we describe the specifics of the vulnerability and attack at a
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technical level, corresponding to the descriptions in §3.5.2. Next, we analyze
the vulnerability and potential attack, specifically in terms of the CIA proper-
ties introduced in §3.4. From this standpoint, we motivate that vulnerabilities
warrant specific consideration in software development processes for embedded
systems, building on those established by the SDL and CLASP. The insights
gained from this investigative technique form the basis of the recommendations
in Chapter 8, specifically in terms of attack surface analysis, threat modeling,
or security testing as put forth in §3.4.

5.2 Design Vulnerabilities
Design decisions of both programs and physical devices have a bearing on

how secure the product will be. An oversight in this area can introduce vul-
nerabilities that may allow a device to be compromised, or more commonly,
introduce weaknesses that make it easier to exploit operational and implemen-
tation vulnerabilities. As such, errors in the design of software do not typically
constitute a vulnerability on their own, but introduce further risk, making the
device more susceptible to attacks. One aspect that further distinguishes de-
sign vulnerabilities from others is that these issues may be addressed at the
design stage of software development; usually, it is not necessary to perform
a code or configuration audit to identify avenues of attack. When security
considerations are taken in account at the design stage, it translates into a
system that will be hardened against exploitation attempts.

5.2.1 Case Study 1: Address Space Layout
Radomization

Overview In modern operating systems, defense mechanisms are imple-
mented to harden programs against memory exploitation techniques. The
front-line defense to mitigating the risk of a memory vulnerability is Address
Space Layout Randomization (ASLR). ASLR is performed by the operating
system kernel, which is achieved by loading program code and data into mem-
ory at random offsets. Without ASLR, program code and data is loaded into
memory at deterministic, predictable positions, allowing an attacker to easily
execute existing code in memory; a standard technique used to exploit mem-
ory vulnerabilities. ASLR may curb the ability to exploit a vulnerability, and
at the very least forces the attacker to pursue more advanced exploitation
techniques, which normally includes discovering a memory leak that reveals
information about the memory layout [41].

There are two prerequisites for enabling ASLR on a device. Namely, the
kernel must support loading programs into memory at random offsets, and
program binaries must be built with the appropriate compile options. While all
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desktop operating systems support ASLR, embedded Linux devices typically
fail to perform ASLR due to one of these two reasons. This case study considers
the state of ASLR on a set-top box.

Technical Description Linux kernels as of version 2.6.12 support ASLR of
binaries, given that the option is set in /proc/sys/kernel/randomize_va_space
and that the binaries are compiled with the appropriate options. In §4.2.2,
we alluded to compile options that help to protect embedded libraries from
exploitation. Indeed, the -fPIE -pie options, enabling Position Independent
Executables, are required for ASLR of code for programs in Linux. We found
that a set-top box exhibited partial ASLR for program binaries: some were
built with the PIE options, and anothers not. To evaluate whether ASLR was
enabled, the output of proc/self/maps was compared before and after a cold
reboot, initiated with a power cycle. Comparing two Listings 5.1 and 5.2 we
see that the memory maps of the stack and uClibc differ due to ASLR. How-
ever, the heap address, virtual dynamic shared object (VDSO) and busybox
mappings do not.

Listing 5.1: ASLR Output 1
00400000−00474000 r−xp 00000000 1 f : 00 200 /bin /busybox
00484000−00485000 rw−p 00074000 1 f : 00 200 /bin /busybox
00485000−00486000 rwxp 00000000 00 :00 0 [ heap ]
77 ef9000 −77 f9c000 r−xp 00000000 1 f : 00 277 / l i b / l i buCl ibc −0 . 9 . 3 2 . 1 . so
77 f9c000 −77fab000 −−−p 00000000 00 :00 0
77 fab000−77 fac000 r−−p 000 a2000 1 f : 00 277 / l i b / l i buCl ibc −0 . 9 . 3 2 . 1 . so
77 fac000 −77fad000 rw−p 000 a3000 1 f : 00 277 / l i b / l i buCl ibc −0 . 9 . 3 2 . 1 . so
77 fad000−77fb3000 rw−p 00000000 00 :00 0
77 fb3000−77fb6000 r−xp 00000000 1 f : 00 267 / l i b / l i b c ryp t −0 . 9 . 3 2 . 1 . so
77 fb6000−77 fc5000 −−−p 00000000 00 :00 0
77 fc5000 −77 fc6000 rw−p 00002000 1 f : 00 267 / l i b / l i b c ryp t −0 . 9 . 3 2 . 1 . so
77 fc6000 −77fd7000 rw−p 00000000 00 :00 0
77 fd7000−77fde000 r−xp 00000000 1 f : 00 264 / l i b / ld−uClibc −0 . 9 . 3 2 . 1 . so
77 feb000 −77fed000 rw−p 00000000 00 :00 0
77 fed000 −77 f ee000 r−−p 00006000 1 f : 00 264 / l i b / ld−uClibc −0 . 9 . 3 2 . 1 . so
77 fee000 −77 f e f 0 0 0 rw−p 00007000 1 f : 00 264 / l i b / ld−uClibc −0 . 9 . 3 2 . 1 . so
7 fcc0000−7fce1000 rwxp 00000000 00 :00 0 [ s tack ]
7 f f f 7 000 −7 f f f 8 0 0 0 r−xp 00000000 00 :00 0 [ vdso ]

Listing 5.2: ASLR Output 2
00400000−00474000 r−xp 00000000 1 f : 00 200 /bin /busybox
00484000−00485000 rw−p 00074000 1 f : 00 200 /bin /busybox
00485000−00486000 rwxp 00000000 00 :00 0 [ heap ]
77a8a000−77b2d000 r−xp 00000000 1 f : 00 277 / l i b / l i buCl ibc −0 . 9 . 3 2 . 1 . so
77b2d000−77b3c000 −−−p 00000000 00 :00 0
77b3c000−77b3d000 r−−p 000 a2000 1 f : 00 277 / l i b / l i buCl ibc −0 . 9 . 3 2 . 1 . so
77b3d000−77b3e000 rw−p 000 a3000 1 f : 00 277 / l i b / l i buCl ibc −0 . 9 . 3 2 . 1 . so
77b3e000−77b44000 rw−p 00000000 00 :00 0
77b44000−77b47000 r−xp 00000000 1 f : 00 267 / l i b / l i b c ryp t −0 . 9 . 3 2 . 1 . so
77b47000−77b56000 −−−p 00000000 00 :00 0
77b56000−77b57000 rw−p 00002000 1 f : 00 267 / l i b / l i b c ryp t −0 . 9 . 3 2 . 1 . so
77b57000−77b68000 rw−p 00000000 00 :00 0
77b68000−77b6f000 r−xp 00000000 1 f : 00 264 / l i b / ld−uClibc −0 . 9 . 3 2 . 1 . so
77b7c000−77b7e000 rw−p 00000000 00 :00 0
77b7e000−77b7f000 r−−p 00006000 1 f : 00 264 / l i b / ld−uClibc −0 . 9 . 3 2 . 1 . so
77 b7f000−77b80000 rw−p 00007000 1 f : 00 264 / l i b / ld−uClibc −0 . 9 . 3 2 . 1 . so
7 f8b1000−7f8d2000 rwxp 00000000 00 :00 0 [ s tack ]
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7 f f f 7 000 −7 f f f 8 0 0 0 r−xp 00000000 00 :00 0 [ vdso ]

In this case, an attacker may be able to leverage the known addresses of
the heap or busybox executable to craft a successful exploit.

Analysis Ideally, all executables, libraries, and memory regions should be
subject to ASLR. While this is not necessarily true even of desktop environ-
ments, adoption of ASLR enabled kernels and programs are highly encouraged
in desktop environments. On the other hand, ASLR has been largely dismissed
for embedded devices, principally due to the performance overhead that it in-
curs. By default, PIE compilation options are disabled or actively discouraged,
as is the case with busybox and uclibc [66]. Furthermore, Android only par-
tially supported ASLR in version 4.0 (2011), and fully in version 4.1 (2012) [2].
Evidently, ASLR support for embedded devices is becoming increasingly im-
portant.

Miller has demonstrated that the lack of ASLR has made exploitation of
embedded devices such as Android and iOS mobile phones easy [47]. Miller
states that “As long as there’s anything that’s not randomized, then it (ASLR)
doesn’t work, because as long as the attacker knows something is in the same
spot, they can use that to break out of everything else. . . ” [50]. As arbitrary
code execution is undesired on the set-top box, lack of full ASLR means that
predictive memory addresses will be useful to an attacker if a memory corrup-
tion vulnerability exists in the set-top box software. Therefore, in terms of the
CIA triad, ASLR support affects the confidentiality and integrity properties,
in that these are typically violated by exploited vulnerabilities.

Summary As embedded devices become increasingly powerful, the perfor-
mance impact on ASLR becomes negligible. A more substantial challenge lies
in ensuring full ASLR for all components on a given platform. The benefit
derived from partial ASLR is questionable in light of Miller’s statement. As
evidenced by Bojinov et al. [22], ASLR faces many implementation challenges;
yet, the pursuit of full ASLR is desirous, as reflected by advances in Android
development.

5.3 Operational Vulnerabilities
Some attacks are possible due to operational vulnerabilities. This means

that there is no bug or inherent vulnerability in the concerned software, but
the manner of interaction between the software and the system constitute a
vulnerability. These vulnerabilities relate to the attack surface of an embedded
device, as each additional software component increases potential misconfig-
uration or unanticipated default behavior. Detection of operational vulnera-
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bilities should thus happen as a result of considering the interaction between
software, such as with the reviews in SDL Phase 6 and 13. Operational vulner-
abilities differ from design flaws in that secure behavior can often be achieved
by configuring the appropriate settings, or by defining the correct behavior for
the existing software.

5.3.1 Case Study 2: Service Misconfiguration

Overview Services run on a system either with their default settings, set-
tings configured by the developer, or both. Misconfiguration can result from
any of these actions, and can result in a vulnerability if it violates one of the
CIA properties. Interaction between software components is usually required
to trigger the problem; a misconfiguration on its own with no means of inter-
action will remain undiscovered. This case study considers a misconfiguration
of the pppd service that we discovered on a Linux-based Huawei router, lead-
ing to undesired information disclosure when paired with the interaction of a
user-supplied system command.

Technical Description Consider Listing 5.3, which demonstrates the vul-
nerability discovered on the router. By displaying the processes running on
the router with the ps system command, one is able to view login credentials
for the pppd process.

Listing 5.3: Truncated output of the ps command
507 1 user S 113m242 . 9 0 0 .0 c l i d
799 1 user S 106m228 . 4 0 0 .0 upnpdmain ! br+ br0 49652
369 1 user S 93468195.1 0 0 .0 ssmp
370 1 user S 86476180.5 0 0 .0 bbsp
372 1 user S 86184179.9 0 0 .0 omci
375 1 user S 58280121.6 0 0 .0 vspa_sip
371 1 user S 51148106.7 0 0 .0 amp
373 1 user S 35032 73 .1 0 0 .0 igmp
867 1 user S 34636 72 .3 0 0 .0 web
677 1 user S 2808 5 .8 0 0 .0 pppd nic−wan1 user RTONDER02005 password D572896
444 1 user S 27200 56 .7 0 0 .0 procmonitor ssmp amp bbsp vspa_si
365 1 user S 10756 22 .4 0 0 .0 hw_ldsp_user
377 1 user S 10744 22 .4 0 0 .0 smp_usb

The pppd (Point-to-Point Protocol Daemon) process is responsible for es-
tablishing links with a broadband service provider and can negotiate parame-
ters relating to IP addresses, transmission sizes, and name server addresses. In
a scenario where an attacker has unprivileged access to the router (the default
case), the username and password for the PPP connection is easily seized.

Analysis Consider that this is neither a flaw in the ps command (for it
is not responsible for the command-line parameters that may be exposed by
processes), nor is it a flaw in the pppd program. It is not a flaw in the pppd
program since specific provision is made to enter this data in a secrets file
instead of the command-line. This file could be secured in turn by appropriate
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permissions. The man page for pppd also specifically discourages the practice
observed above:

password password-string
Specifies the password to use for authenticating to the peer.
Use of this option is discouraged, as the password is likely to
be visible to other users on the system (for example, by using
ps(1)).

As presented here, the vulnerability violates the confidentiality property
by exposing private data which should not be available in the context of the
terminal session. Specifically, the credentials could allow the attacker to spoof
the identity of the victim’s broadband account. This vulnerability is largely
unnecessary, and present because due consideration was not given to the con-
text in which the program would be used. The issue is remediated by using
the secrets file for authentication.

Summary This case study makes a general case for sensitive data exposed
via the command-line, as other variants are also possible. For example, if a
user types a cleartext password on the command-line, it is likely being logged
in a file which may be compromised by an attacker. Scenarios such as these
should be envisioned when assessing operational vulnerabilities. This is most
appropriate once the interaction between programs is understood, and the
device is deemed production ready. The final review phase of the SDL thus
affords a sound checkpoint for performing operational assessment.

5.4 Implementation Vulnerabilities
Implementation vulnerabilities constitute the most common type of vulner-

ability, and relate directly to bugs due to programming errors in software. Not
all software bugs imply a security concern; it is only in the event that a bug
poses a security threat that it is considered a vulnerability. A threat, therefore,
is implied if the bug violates one of the CIA properties.

Implementation vulnerabilities on the Linux operating system can violate
the CIA principle in a number of ways. Vulnerabilities may exist in the core
Linux distribution, or may be introduced by application software or middle-
ware of a manufacturer. Implementation vulnerabilities are often assigned a
Common Vulnerabilities and Exposures identifier (CVE) if they merit public
disclosure. Given the abundance and variety of implementation vulnerabilities,
we consider two case studies in this section.

This section details vulnerabilities that threaten the security of system
environments in an embedded Linux system, and expands on the methods
that assist in discovering them. These vulnerabilities may manifest in a variety
of ways depending on the device; they are most commonly classified by the
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characteristic of enabling attackers to escalate their privileges, or bypass file
permissions. Identifying implementation vulnerabilities in software is critical
to securing the device from undesired file access and program execution.

5.4.1 Case Study 3: Escaping Sandboxes

Overview Some system designs, like that of the Huawei router, allow users
to be logged in as root, but place restrictions on the operations that they can
perform within this context. The process of doing so is called “sandboxing”
and may be performed by programs such as chroot [7] in order to to put a
user in a ‘jailed’ environment.

We consider a Huawei router which implements sandboxing by intercepting
shell commands, followed by a check against a whitelist of allowable commands.
A user can obtain a shell on the router by logging in over telnet. The shell is
made available for accessing diagnostic information, but prohibits most actions
that change the operational state of the router. Standard executable binaries
such as cat in the Linux /bin and /sbin directories cannot be executed,
thereby disabling file reads and program execution.

Technical Description Though most commands are disallowed, a number
of scripts are available to the user that wrap commands such as echo and cat.
Consider Listing 5.4: the purpose of the cat wrapper script is to restrict the
user from displaying any files except those contained in the /tmp, /proc, and
/var directories.

Listing 5.4: cat wrapper script
#!/ bin / sh

i f [ 1 −ne $# ] ;
then

echo "ERROR: : input ␣para␣number␣ i s ␣not␣ r i g h t ! "
else

case "$1" in
∗tmp∗ | ∗proc ∗ | ∗var∗ ) cat $1 ; ;
∗ ) echo "can ’ t ␣ read ␣ f i l e ␣ in ␣ t h i s ␣ d i r e c t o r y ! " ; ;

e sac
f i

Observe what would happen if the script was executed as follows:

$cat_wrapper.sh /var/../etc/passwd

The argument would be matched by the first statement, since it matches the
*var* pattern. The argument is passed to cat, which recognizes the traversal
to the root directory, and subsequently prints the contents of /etc/passwd to
screen. The wildcard filter in the script is insufficient, and the protection is
bypassed. A similar situation exists in Listing 5.5 for the echo wrapper script
on the router, which allows arbitrary writing to files.
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Listing 5.5: echo wrapper script
#!/ bin / sh

i f [ 3 −ne $# ] ;
then

echo "ERROR: : input ␣para␣number␣ i s ␣not␣ r i g h t ! "
else

case "$2" in
∗tmp/∗ | ∗var /∗ )
i f [ 1 = $3 ] ; then

echo $1>$2
e l i f [ 2 = $3 ] ; then

echo $1>>$2
else

echo "ERROR: : input ␣para␣␣ i s ␣ i n v a l i d ! "
f i ; ;

∗ ) echo "can ’ t ␣ wr i t e ␣ f i l e ␣ in ␣ t h i s ␣ d i r e c t o r y ! " ; ;
e sac

Analysis Lack of input sanitization is identified as a specific vulnerability
class by NIST, with varying security impact. In the context of the Huawei
router, this vulnerability class allows arbitrary reading and writing of files
on the router. This breaks the confidentiality and integrity properties of the
router, allowing an attacker to read configuration files containing plaintext
passwords, and overwrite the router’s public keys, for instance.

Moreover, consider that an attacker could append shell commands to an
existing script in /etc/init.d that runs at startup, leading to arbitrary code
execution. Provided that the filesystem is writable, this ability implies a risk
more dire than considered originally.

Summary This case study demonstrates the importance of performing in-
put sanitization, especially for bash commands that honour syntax of Linux
directory paths. Since the scripts are so small in size, a code review of these
would have afforded reliable means to revealing these flaws. This exercise, as
emphasized by CLASP, was likely omitted during development. Input saniti-
zation flaws can be remediated in a number of ways. One approach in this case
may be to blacklist the “..” sequence of characters. A more sound approach
may be to modify the scripts to match the command input appropriately.

5.4.2 Case Study 4: System Command Injection

Overview When input to a program contains characters that are meaning-
ful to the execution context, the program may be susceptible to a command
injection attack. Command injection vulnerabilities exist due to insufficient
input validation, as previously shown in §5.4.1, but differs in impact and con-
text. In embedded devices, there is often a high level of interaction between
program execution environments, scripts, and named pipes. Linux scripts can
often perform tasks with low-overhead processing, and are well understood by
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embedded system programmers. A common convention is to have the invoking
process supply script arguments with environment variables. In embedded sys-
tems, named pipes are commonly used when data is passed between two run-
ning processes. Named pipes are preferred for their simplicity: Unix domain
sockets offer an alternative to named pipes, but imply greater implementation
effort.

Technical Description The fragmented interaction described can make it
difficult to anticipate areas of attacks where command injection may be possi-
ble. One such discovered case on a set-top box demonstrates this threat. When
a new USB storage device is plugged into the device, the kernel spawns a pro-
cess which calls a script placed in the /proc/sys/kernel/hotplug path. This
is a userland script which then executes subsequent commands. The script is
supplied with environment variables DEVPATH and ACTION which contain the
device’s sysfs path, and whether it was added or removed respectively. The
script then sends this information to a named pipe for processing by additional
drivers. The addition of a new USB mass storage device would mean the script
executes a line as follows:

/bin/echo "sdb1:1" > /tmp/named_pipe

The snippet in Listing 5.6 is a proof-of-concept rendition of the code that
may be called, under certain conditions, when information is received on the
named_pipe. In line 2 it performs a basic check to verify that the line starts
with ‘sd’ followed by a non-numeric character. It then creates a new device in
the devfs filesystem using the mknod function in line 15 if it does not already
exist. Consider line 10 in Listing 5.6, where the system function executes the
final shell command (a string) pointed to by comd.

Listing 5.6: Custom Linux device hotplug handler
1 . . .
2 i f ( ( l [ 0 ] != ’ s ’ ) | | ( l [ 1 ] != ’d ’ ) | | ( l [ 2 ] < ’ a ’ ) | | ( l [ 2 ] > ’ z ’ )

) {
3 p r i n t f ( " Inva l i d ! " ) ;
4 return 1 ;
5 }
6 . . .
7
8 char comd [ 8 0 ] ;
9 s np r i n t f (&comd [ 0 ] , s izeof (comd) , "/bin /mknod␣/dev/%s␣b␣8␣%d␣>␣/dev

/ nu l l " , l , dev ) ;
10 i f ( system (comd) != 0) {
11 p r i n t f ( "mknod␣ f a i l e d ! " ) ) ;
12 }
13 }
14 . . .

If an attacker is able to manipulate the string to contain additional char-
acters, command injection is possible. Observe that the comd string in line
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9 is constructed by substituting the string pointed to by the l variable. The
l variable, in fact, stores the string portion before the colon in which is sent
to /tmp/named_pipe (sdb in this case). An attacker could then consider per-
forming the following:

/bin/echo "sdb1:1; touch /tmp/hello" > /tmp/named_pipe

The intended result would be for system to be called on the string above.
The semicolon is a special character which separates commands within the shell
execution environment, in this case allowing the command touch /tmp/hello
to be injected. The entire comd string would thus be:

"/bin/mknod /dev/sdb1:1; touch /tmp/hello b 8 1 > /dev/null"

The net effect is that the attacker is able to execute arbitrary commands
in the shell. The system command in Listing 5.6 may fail, but that does not
preclude the attacker’s command from being executed successfully.

Analysis Like §5.4.1, this case study demonstrates the impact of insufficient
sanitization, albeit in a different context. The attacker is able to directly exe-
cute arbitrary code in the context of the system user running Listing 5.6, which
could potentially be the root user. This implies that the attacker could gain
full control over the device, thereby breaking the confidentiality and integrity
properties.

The threat of this attack is benign in this context, due to the set-top box be-
ing hardened against outside access to the command shell, which is disallowed
by default. In a different context where an attacker may be able to obtain
such access by other means, however, the act of exploiting this vulnerability
may in turn be able to grant them elevated privileges.

Summary Detecting command injection vulnerabilities can be done by per-
forming static analysis and code searches on system-like calls, followed by
manual review. The SDL allows for such activities to happen during imple-
mentation (Phases 8, 9, and 10). Similarly, CLASP activities including static
analysis and code review provide ample means of detecting this vulnerability
class. Note that there are two factors that significantly ease the ability of the
attacker to exploit this vulnerability. The first is the weak check performed on
only the first three characters of the input on line 2 of Listing 5.6. The second
factor is the unnecessarily large character buffer on line 8, which allows the
attacker to inject a long string command. Thus, remediation of the problem
should ideally consider both these factors. This further highlights the impor-
tance of reviewing all portions of the code which contain or check input data
that become executed in a command such as system.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. EMBEDDED OPERATING SYSTEM ATTACKS 43

5.5 Chapter Summary
In this chapter, we considered four case studies in the context of the system

vulnerabilities and attacks that impact system security. These case studies
exhibited a variety of vulnerability classes, their impact and threat, and how
security processes could be formed to address them.

We demonstrated the lack of ASLR adoption on embedded devices, em-
phasizing the importance of enabling system hardening techniques. Exploring
Linux system options during the design phase of a device contributes to se-
curing it against potential violations of the confidentiality and integrity prop-
erties. The operational vulnerability class demonstrated the importance of
considering the interaction of system commands and service defaults. Knowl-
edge of application behaviour in conjunction with the Linux system during
implementation would mitigate the threats posed by such vulnerabilities. The
implementation vulnerabilities demonstrated security threats due to insuffi-
cient input sanitization and command injection. These vulnerabilities involve
interaction with a wide number of system functions, namely, shell commands,
system binaries, file access, environment variables, and Unix pipes. The im-
portance of code review for scripts and programs was stressed—an exercise
that can be performed meaningfully by the secure software methods found in
the SDL and CLASP.
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Chapter 6

Embedded Network Attacks

6.1 Chapter Overview
Network attacks pose a great threat to many platforms: personal computers,

enterprise computing environments, and embedded systems. In the context of
embedded systems, network attacks can sometimes exploit services in unex-
pected ways and have unforeseen consequences. Other more common attacks,
such as DoS attacks, can also afflict embedded systems.

Network attacks may vary greatly depending on available services and ap-
plications. In terms of the network protocol stack covered in §4.3, most network
attacks occur predominantly at the application layer. In some circumstances
vulnerabilities may exist in software related to the Transport and Network lay-
ers. CVE-2012-6638 is one such example, enabling remote attackers to cause a
denial-of-service with crafted TCP packets. Thus, as with other platforms, it is
important to consider the implication of different network protocols and modes
of transport for embedded devices. Embedded systems, however, distinguish
themselves from other platforms in terms of the application layer software that
enable common network functionality. Therefore, concerning software security
of networked embedded devices, we restrict our analysis of vulnerabilities to
the application layer in this thesis

The case studies in this chapter cover network attacks on common applica-
tion layer protocols that affect embedded systems, such as DHCP, Telnet, and
SSH. We also demonstrate how the interaction of these protocols with web-
facing applications can be exploited by an attacker. As in Chapter 5, each
case study is structured to include a description and analysis, supporting the
recommendations in Chapter 8.

6.2 Design Vulnerabilities
Similar to §5.2, we consider design concerns of the embedded Linux de-

vices in terms of network services and software. Network services provide an
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endpoint to the outside world, requiring special attention during design. We
concentrate on the necessity of protecting the integrity of such networking
services, and the role of software updates. As shown in §5.2.1, limitations in
design can significantly impact the security of a device, without constituting
a vulnerability in itself.

In this section we address the growing need for real time software updates
on embedded devices, specifically in the context of network facing software.
Of the devices considered in this thesis, only mobile phones allow a reliable
means of updating their own software. Red Balloon Security reports that only
7% of vulnerable devices are ever updated [25]. Although the implications of
this issue affect all software on the device, including system and USB software,
the risk posed by the lack of software updates is best highlighted in terms of
remote attacks.

6.2.1 Case Study 5: Outdated Network Software

Overview Many embedded systems are produced without effective means
of updating the device software or firmware. This is especially true of network
routers and switches, but also of networked printers and smart TVs. There are
many challenges in delivering updated software to a device. For one, manu-
facturers may or may not provision updated firmware on a product web page.
Even when updated firmware is made available, it may require specific user
interaction to apply an update—we consider a particularly difficult case with
network routers and switches. Furthermore, implementing an automatic up-
date mechanism can prove costly and complex for embedded devices. Consider
that it may not be desirable to allow devices, such as printers, to retrieve data
outside of a corporate network in order to update. In other instances, it may
be critical that a device, such as a network switch, does not experience any
downtime (whether due to updates or otherwise). Lastly, manufacturers may
deem it unnecessary to issue updated software in some cases, meaning that an
update mechanism is completely absent from the device. We consider further
security implications that such scenarios lead to.

Technical Description In the course of our research investigation, we found
a number of routers and switches to contain vulnerable outdated software, with
no easy means of patching. Namely, vulnerable versions of the BusyBox client
were found on a Huawei router and set-top box, as well as vulnerable SSH
versions on Dell switches.

BusyBox verion 1.18.4 was found to run on the devices, and is affected
by CVE-2011-2716 [16]. In summary, this implementation vulnerability may
allow an attacker to execute arbitrary code on the device through command
injection. Importantly, from a design perspective, we wish to highlight that
the vulnerability had been disclosed in 2011, preceding the manufacturing date
of the router and set-top box. Similarly, a vulnerable version of SSH was found
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on Dell switches during our research (CVE-2013-3594), which allows remote
attackers to perform a denial-of-service attack or even execute arbitrary code.

Analysis The devices running vulnerable code clearly constitute a security
threat. Yet, from a design perspective, two important properties of this threat
need to be taken into account. Firstly, we identified that known vulnerable ver-
sions of applications, such as BusyBox, can still be found on embedded devices
long after the vulnerability has been disclosed. Secondly, it can be anticipated
that new vulnerabilities will be present in devices as they are discovered over
time, as seen with the Dell switches.

Patching these devices is a suitable course of action, but a number of prob-
lems persist. For instance, the Dell switches have not been released with an
updated version to date, nor is it anticipated that a fix will be delivered. The
proprietary nature of the Huawei router and set-top box imply that end-users
will not be in a position to update their device. In both cases, there is no
means by which the manufacturer can push an update to the devices, nor
would it necessarily be appropriate. That is, routers and switches may be con-
figured to only operate within a local network in accordance with a company’s
network security policy. Even more problematic is the case where the routers
and switches are publicly exposed on the internet.

All properties of the CIA triad are potentially violated by the presence of
these known vulnerabilities. Furthermore, these vulnerabilities are most severe
when they are remotely exploitable over a network. For instance, a device may
be compromised if remote execution succeeds, breaching the integrity of the
device. Remote denial-of-service attacks, as mentioned above, violates the
availability property. Moreover, these threats persist on embedded devices
foremostly due to the lack of an update mechanism, and not because of a
particular vulnerability.

Summary The difficulty of securing embedded devices with the latest soft-
ware is evident from this case study. Although some progress has been made
toward pushing software updates to mobile platforms such as Android, there
remains a great level of version fragmentation, leaving many devices vulnera-
ble to existing issues. While Android demonstrates that an update mechanism
is desirable, we find that it may not readily translate to other devices such as
switches within a corporate network.

In all instances, it is critical to update software packages that pertain to
network functionality, which may allow attackers to perform remote exploits.
Platform-specific runtime techniques for achieving this is a topic of ongoing
research, as covered in Chapter 2. We stress, however, that the thinking behind
this case study should also be present during the secure development process,
where manufacturers consider the extent of potential threats by way of threat
modelling. For example, during the design phase of the SDL, developers should
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consider how software updates will be made available, whether an update
mechanism should be implemented, and how exposure of the network attack
surface could be reduced.

6.3 Operational Vulnerabilities
In §5.3 operational vulnerabilities were described as being due to the interac-

tion between software and it’s operational context. An alternative way to view
this is to consider that an operational vulnerability is not evident in the source
code of the software. A concrete example of such a network-based attack is the
consumption of a server’s connection pool, resulting in denial-of-service. Al-
though the effects of such an attack can be reduced, the potential risk persists
due to the ability of other computers to connect. Thus, addressing such an
attack may not be dependent solely on implementing additional code, but also
by considering the risk that the device’s operational environment poses. Next,
we consider a specific case where attention should be given to the implicit trust
between a device and the servers with which it communicates.

6.3.1 Case Study 6: Implicit Network Server Trust

Overview The /etc/resolv.conf is a plain text file on Linux based systems
that is used by the Domain Name System (DNS) for performing hostname-to-
IP lookups. An example of a such a file can be seen in Listing 6.1.

Listing 6.1: Example /etc/resolv.conf file.
search example . com
nameserver 172 . 1 6 . 1 . 2 54
nameserver 172 . 1 6 . 2 . 2 54

The search keyword indicates domain names that can be be used to re-
solve the fully-qualified domain name of a server when a partial domain name
is supplied. The nameserver keyword designates the IPs of servers on the
network that can perform hostname lookups. The contents of this file is im-
plicitly trusted by system programs and services; consequent modification of
it can present a security issue.

Technical Description The Linux-based decoder in our tests uses the Busy-
Box udhcpc DHCP client for network communication. The udhcpc client
executes a script when a lease is obtained from the server. The script, in
turn, populates the /etc/resolv.conf file with domain names and name-
servers1. When operating as intended, the set-top box is able to correctly
resolve addresses and communicate with the outside network, or the internet.

1The full script can be seen in Appendix B.1.
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The set-top box implicitly trusts that the nameserver information supplied by
the DHCP server is correct.

A DHCP server, however, may be an attacker controlled entity. We as-
sumed the role of the attacker and used a minimal DHCP implementation to
verify that the /etc/resolv.conf file on the set-top box is updated with our
attacker-supplied nameserver.

Analysis It is acceptable for the DHCP server to supply DNS information,
and for a device to update its /etc/resolv.conf. Consider, however, a sce-
nario where the set-top box relies on an external host or IP address for updating
its software. An attacker may utilize a DHCP server to perform a man-in-the-
middle attack by supplying their own nameserver, which, when queried by the
set-top box, responds with an attacker’s version of the updated software.

Of course, for such an attack to succeed, we assume that the set-top box
doesn’t perform any verification on the software payload (which is unlikely).
What is apparent is that there is no built-in protocol for the set-top box
to verify the authenticity of the nameserver supplied by the DHCP server.
On most devices, authentication checks are deferred to other applications in
the network stack—these may be inadequate or absent. Such an attack can
therefore principally affect the integrity and availability properties of a device.

Summary The notion of attacker-controlled variants of DHCP, DNS, or
other network servers is an important consideration during software develop-
ment and device configuration. The potential for an attacker to misuse the
implicit trust of such servers will differ from device to device, and may require
independent analysis to determine the overall risk. If appropriate, one way of
reducing such risk is to protect the /etc/resolv.conf from modification by
setting it to be read-only.

6.4 Implementation Vulnerabilities
Implementation vulnerabilities in network software directly enable remote

attacks. Depending on the deployment environment of a device, it may be
remotely accessible over a local network or from the internet. Like Chapter 5,
we consider two case studies based on implementation vulnerabilities. These
vulnerabilities relate closely to published CVEs in the domain of network at-
tacks.

As evidenced by our case studies, these vulnerabilities can enable an at-
tacker to initially compromise a device remotely. From such a position an
attacker may pursue escalation of privileges in order to obtain complete con-
trol over a device. The case studies also reveal the susceptibility of embedded
devices to these attacks when compared to other platforms.
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6.4.1 Case Study 7: Command Injection with DHCP

Overview The potential for command injection, as introduced in §5.4.2, is
a vulnerability class which also afflicts network software. An attack may be
launched if network data is processed with characters that are meaningful in
the execution context of a client or server. We consider such an attack relating
to CVE-2011-2716 which was briefly mentioned in §6.2.1.

Technical Description During attack surface analysis of network services
on the Linux set-top box, it was discovered that version version 1.18.4 of
BusyBox ran on the device. In 2011 a vulnerability was discovered in the
source code of the client implementation, which does not properly sanitize
certain options in DHCP server responses.

Investigation of the BusyBox source [3] reveals that the client program,
udhcpc, does not sanitize certain characters in the HOST_NAME, DOMAIN_NAME,
NIS_DOMAIN, and TFTP_SERVER_NAME DHCP options. This means that the
client accepts a string containing any characters for these four options, includ-
ing shell metacharacters such as ‘;’, ‘`’, ‘$’, and so forth. A typical DHCP
server would use a small subset of characters, mostly alphanumeric, as speci-
fied in Section 2.3.1 of RFC 1035 [10]. However, using a custom DHCP server,
an attacker could exploit this flaw by constructing a string containing shell
metacharacters, and subsequently issue them to the client.

Recall from §6.3.1 that the udhcpc client runs a script once it obtains a
lease from the DHCP server. Before the script is run, udhcpc populates a
number of bash environment variables with the supplied string options. These
variables are used by the script to configure the set-top box’s network settings.
For example, consider the followng line contained in the udhcpc script listed
in Appendix A:

[ -n "$domain" ] && echo search $domain >> $RESOLV_CONF

This line appends the string contained in the $domain variable to the
resolv.conf file. The $domain environment variable contains the string sup-
plied by the DHCP server in the DOMAIN_NAME option. Next, we consider the
risk that the vulnerability introduces.

Analysis Suppose that an attacker supplies a string such as:

example.com; rm /etc/passwd

Under normal conditions, strings supplied with DHCP options are trusted
by the udhcpc script. Should the developer assume that it is safe to use
the supplied string in other contexts, and perhaps execute it with an eval
command in the script, then the /etc/passwd file will be deleted with the
string above. Using the eval command in such cases is considered bad practice,
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but there is no way to guard against the way in which the string will be used
once it is trusted by the operational environment. Furthermore, the string may
also be used in other unanticipated places, such as a conditional statement.
Indeed, the advent of the Shellshock bug demonstrates how command injection
can be performed in DHCP clients [11].

The risk of this vulnerability is limited on the set-top box because the
$domain environment variable is interpreted literally throughout this partic-
ular udhcpc script. However, this vulnerability has the potential to violate
the integrity property of the device by giving the attacker a way to execute
commands on the device for scripts where this is not the case.

Consider the risk of this vulnerability to desktop computer versus an em-
bedded device. In the former case, the computer may operate within a local
network which already has a DHCP server. This presents a challenge to an
attacker who would seek to craft malicious, conflicting requests with a rogue
DHCP server on the same network. Furthermore, such a scenario assumes
that the attacker has access to the local network. However, in the latter case,
the attacker may be interested in compromising a proprietary embedded de-
vice (such as a locked-down set-top box). In this scenario, the attacker is free
to dictate the network environment without restriction so as to exploit the
device’s network attack surface.

Summary In §6.2.1 we considered the importance of updating software on
embedded devices as a means to mitigate implementation attacks such as the
one considered here. This case study, however, presents an important consider-
ation in its own right. In particular, it highlights the importance of considering
the exploit techniques that attackers may use to compromise a device. Em-
bedded devices have the unique attribute of inherently trusting its network
environment. Furthermore, because network software such as the udhcpc im-
plementation is specific to resource-scarce embedded devices, it requires sepa-
rate scrutiny. Translating this to a secure development process, such scrutiny
entails threat modeling (such as those constructed in the scenarios above) as
proposed by Phase 7 of the SDL and CLASP. To combat command injection
and similar vulnerabilities, a manual code review as promoted by CLASP and
SDL is appropriate.

6.4.2 Case Study 8: Cross-site Scripting via Telnet

Overview Cross-site scripting (XSS) attacks are listed as one of the top
ten most common web application vulnerabilities [49]. Cross-site scripting
attacks are not specific to a given platform, but rely on Javascript injection
into web pages that are interpreted by a browser. However, the exploitation
and threat of XSS attacks differ among contexts and platforms. This case
study demonstrates how an XSS attack can be performed in the context of a
Linux based router to obtain access to the administrator web panel. A unique
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attribute of this attack is that Javascript code is injected via the login prompt
of the telnet service.

Technical Description This vulnerability affects a Huawei router that al-
lows legitimate users with the appropriate credentials to log in via telnet or a
web page. Users are then able to change configurations and settings through
a command shell or web administration panel, respectively. However, when a
login attempt over telnet fails, say, for username foobar, an entry is created
in a log view of the administration panel as follows:

2013-12-12 17:06:01 [Error] [CLI] foobar loginfail!

This allows the attacker to inject input into the log page. When the input
is crafted in a specific way, a XSS attack can be launched by injecting input
that will be executed as Javascript code. In most scenarios, XSS is mitigated
by sanitizing any user input that is rendered on web pages, such that the
input is not interpreted as valid Javascript. Although the router sanitizes the
username input by removing characters such as ‘<’ and ‘>’, it can be bypassed.
Specifically, the log entries are contained in an HTML textarea tag. By first
terminating the text area with a closing <\textarea> tag, the attacker is
free to inject subsequent unsanitized input into the log page. Presumably, the
router does not perform the sanitization check on input that extend the HTML
textarea. In this manner, a successful exploit could be constructed such that
the attacker could steal an authenticated session cookie from the victim. We
consider this scenario in the following analysis.

Analysis The threat of this this vulnerability is that malicious Javascript
code can be injected and executed in the context of a legitimate browser ses-
sion when the log view is visited by the authenticated victim. The malicious
code could send the session cookie of the victim to the attacker, which would
allow the attacker authenticated access to the administrator interface without
requiring login credentials.

This vulnerability violates the confidentiality property in divulging the ses-
sion key information to the attacker. The integrity property of the device can
be further breached once the attacker gains access to the administrator inter-
face.

The severity of the vulnerability is limited by the need for an authenticated
user to visit the log page. If the victim is known, the attacker may attempt
to coerce them into clicking a link that goes directly to this page. Another
factor that impacts the severity of the vulnerability is the exposure of the
telnet service. By default, this service is enabled. There is further risk in that
any unauthenticated attacker with access to the service can launch an attack.
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Summary The danger of this vulnerability lies in insufficient input saniti-
zation of data that is rendered on administrator web page, as found in NIST’s
classification. It was assigned CVE-2014-0337 [15] and was discovered during
the course of this research. In the context of cross-site scripting, all such in-
put should not contain characters that could be interpreted as valid HTML or
Javascript code. Although this sanitization should not be performed by telnet,
the presence of this service increases the attack surface, and in this instance,
makes the XSS attack possible.

This case study demonstrates the necessity of considering the attack surface
in terms of network services, an exercise that may be performed as put forth
by SDL Phases 6 and 13. Performing correct sanitization would remediate
this flaw, but identifying potential avenues of input in accordance with attack
surface analysis would more effectively address the issue during development.

6.5 Chapter Summary
In this chapter four case studies were presented, emphasizing the danger of

attacks that can be performed on the network attack surface of embedded de-
vices. We showed the risk posed by vulnerabilities of outdated software, and
the importance of protecting network entry points of devices from this per-
spective. Secure development processes must take into account such possibili-
ties during the initial stages of designing a device by considering the device’s
lifecycle and potential network exposure. Case studies §6.3.1 and §6.4.1 re-
veal security issues resulting from the implicit trust that an embedded device
exhibits within a networked environment. The former case study considers
man-in-the-middle techniques that could allow an attacker to send forged data
to a device which believes it is communicating with an authentic server, say,
for purposes of information or software upgrade retrieval. In contrast, the at-
tack in §6.4.1 relies on a bug in the software which may potentially allows an
attacker full control over the device; the severity of which is more apparent.
The last case study demonstrates how an attack can be launched by combining
data passed to network services, and web-application layer attacks.

The complex state of networking software resulting from update mecha-
nisms, configuration, and software bugs demand proper attention during the
development process. Threat mitigation for these vary from effective design
decisions to manual code reviews—methods which we derived from SDL and
CLASP. Finally, our case studies reveal that the impact of vulnerabilities can
be seemingly benign, or otherwise carry severe consequences; importantly, a
secure development process should be able to detect and evaluate both.
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USB Attacks

7.1 Chapter Overview
Having considered the USB specification in §4.4, we are in a position to

consider the USB attack surface. To date, security evaluation of the USB at-
tack surface has not been explored as thoroughly as system and application
software. While some research has been done in this area [40, 28], progress
has been hampered by the lack of efficient, automated ways to test USB code.
Often times special hardware is required to do so, such as a USB protocol an-
alyzer. To echo the words of Joshua Wright, “Security will not get better until
tools for practical exploration of the attack surface are made available” [65].

Nevertheless, just like the system and network attack surfaces, the USB
attack surface may contain design, operational, and implementation vulner-
abilities. In 2012, practical exploration of the USB attack surface was made
possible through software-driven USB device emulation. The Facedancer is one
such a hardware device that emulates USB devices, specifically for the purpose
of fuzzing USB hosts and peripherals [23]. Currently, a few varieties of USB
attack tools exist; our case studies primarily make use of the Facedancer [1]
tool which has achieved a mature status after numerous hardware and software
revisions. In this chapter, we first introduce a new framework for discovering
USB bugs which improves upon existing tools. The Transparent Two-Way
Emulation (TTWE) framework [60] was developed during the course of this
thesis in the interest of achieving greater flexibility and affordability for USB
fuzzing.

This chapter then documents the types of USB bugs we discovered during
the course of this research paper (Case Study 9), as well as by other parties
(Case Study 10, 11 and 12). Emphasis is placed on the concerning implications
that USB bugs have on embedded devices. In particular, the ubiquity of USB
functionality on embedded devices can serve as an entry point for an attacker.
An attacker who leverages a vulnerability in the USB attack surface may be
able to break into a device and obtain control of it by running their own code.

53
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As before, the objective is to expound on the danger exhibited in the case
studies below. From this analysis we proceed with secure recommendations,
this time in the midst of the growing landscape of USB attacks.

7.2 USB Fuzzing by Transparent Two-Way
Emulation

We deviate slightly from the structure of Chapters 5 and 6 by introducing
the TTWE framework for exploring the USB attack surface. In Chapter 4
we discussed the behavior of the USB protocol, and the ubiquitous presence
of the USB hardware port in devices. Due to these unique properties, we
acknowledge that the notion of performing “security assessment” for the USB
attack surface therefore necessitates a specialized approach, aided by specific
tools.

The essential properties of the TTWE framework is that it is flexible, cost-
effective, and lowers the knowledge requirement for performing USB fuzz test-
ing. In particular, the TTWE framework enables man-in-the-middle modifi-
cation of the USB communication between a host and device. Moreover, the
user is not dependent on device- or platform-specific software to drive the USB
testing.

While the framework allows platform-independent man-in-the-middle at-
tacks on the USB protocol, this important feature is also possible with a USB
analyzer [9]. However, Davis [28] mentions the limitations of the software pro-
vided with such tools: they lack a proper software API, requiring the user
to make use of a custom scripting language [29]. Our framework does not
place restrictions on the user’s ability to manipulate USB data. The host and
client emulation drivers are implemented in Python and expose the raw USB
data over Unix pipes. If desired, other forms of inter-process communication
(IPC) such as Unix sockets could also be employed. We opted for named pipes
due to the simplicity of having host and peripheral emulation drivers attach
to these endpoints, instead of implementing extra IPC functionality i drivers
themselves. Moreover, the user is not restricted to Python, and if desired, may
implement drivers that interact with the Facedancer in any preferred language.
A further advantage of our framework is the ability to immediately replay USB
communication from either a host or peripheral in an emulated fashion—the
user need not write additional scripts to generate USB traffic.

Despite the software limitation of the USB analyzer, its capabilities go
beyond that of other tools and pure software solutions. Davis [30] attested in
2013 that it is the preferred device for finding USB bugs, although at a cost of
approximately $1,400. In contrast, the hardware required by the Facedancer’s
in our solution would cost approximately $250 at the time of writing [6].

The TTWE framework also introduces the concept of endpoint hijacking,
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whereby endpoints are transparently remapped between the emulated USB
device and authentic USB device. This action is necessary to overcome the
limitation of hardcoded USB peripheral endpoints. Because the overhead of
the framework introduces a speed limitation of USB communication, we also
make use of handshake emulation, a design optimization employed to improve
transfer speed.

7.2.1 Design

With the aid of two bespoke hardware testing devices, namely, two Facedancer
devices [1], we are able to expose USB communication to a Mediating Com-
puter (MC) with a man-in-the-middle strategy. These devices are essentially
USB controllers that can act as either a USB host or device. On its own,
the Facedancer device can perform USB host or device emulation via software
driven commands from a computer.

In our design, and with reference to Figure 7.1, we place one Facedancer
in Peripheral Emulation Mode to interact with a USB HOST, and a second
Facedancer acting in Host Emulation Mode to interact with a USB PERIPHERAL.
By monitoring the hardware interrupts triggered on the Facedancer USB con-
trollers, the MC is able to mediate communication by forwarding requests from
the HOST, and responses from the PERIPHERAL. The HOST is under the impres-
sion that it is communicating with an authentic USB peripheral, but in fact
it is an emulated USB peripheral whose responses are precisely that of the
authentic USB PERIPHERAL monitored by the Facedancer in Host Emulation
Mode. Similarly, the PERIPHERAL device is under the impression that it is
communicating with an authentic host, whose requests are in fact emulated by
continuously monitoring the authentic HOST using the Facedancer in Peripheral
Emulation Mode.

The MCmonitors the host by checking whether the Facedancer has received
host requests or data, and also forwards device responses to the host via the
Facedancer. This operation is performed by a USB client driver on the MC.
In likewise manner, a USB Host driver monitors the Facedancer, and forwards
host requests. The USB client and host driver exchange data via named pipes
on the MC—this allows the USB data to be exposed and manipulated by any
intermediary software, such as a mutation fuzzer, before the data continues on
its normal course.

Whereas understanding the design is straightforward, there are a number
of caveats which present themselves when implementing the framework; we
address these in the next section.

7.2.2 Implementation

The design addresses the conceptual way in which we are able to mediate
and tap into USB communication. There are, however, aspects of the USB
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Figure 7.1: The TTWE Framework Architecture

protocol that do not translate readily to the framework design. These aspects
include a) endpoint address numbering, and b) USB handshaking that pertain
to control transfers without data stages. In this section we discuss the hardware
and software requirements of the framework, and furthermore emphasize the
role of software in overcoming the caveats mentioned.

7.2.2.1 Hardware

The functionality of the Facedancer device is central to the operation of
the framework. Currently, the Facedancer is an affordable device ($75 at
the time of writing) with attractive USB testing abilities for the purposes of
our framework. However, any device with similar functionality can serve as a
substitute; the framework is not specific to the Facedancer. For this reason, we
briefly mention the major hardware components that bring about the required
functionality.

As shown in Figure 7.2, the main hardware components of the Facedancer
are an FTDI USB/serial adapter chip, a 16-bit microcontroller, and a MAX3421E
USB controller chip. USB emulation can be performed by sending software-
driven USB data and commands to the microcontroller via the FTDI adapter.
The microcontroller drives the USB controller, which may be placed in either
host or peripheral mode by toggling a mode bit in one of the controller regis-

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 7. USB ATTACKS 57

ters. Recall that in Figure 7.1, we place one Facedancer’s USB controller in
host mode, and the other in peripheral mode. The microcontroller listens for
responses from the USB controller, which are in turn forwarded back to the
computer driving emulation. Basic firmware is required for the microcontroller
to perform these actions; such firmware is readily available for the Facedancer
components [5].

USB 
controller

16-bit
Microcontroller

FTDI USB/serial 
adapter

Target

MC

Figure 7.2: The Facedancer hardware design for performing USB device emulation

7.2.2.2 Software

The USB host and client drivers monitor the respective USB controller in-
terrupts to determine when data can be sent and received. The drivers process
the endpoint source and destination of data once it is available, and this data
is sent between the drivers on dedicated named pipes. Another important
responsibility of the software is handling special cases of the USB protocol.
Problems that arise due to endpoint numbering are addressed by an endpoint
hijacking approach. Complications in USB handshaking are handled by emu-
lating certain aspects of the handshake procedure.

Endpoint Hijacking When a host receives an endpoint descriptor from
a device in response to a get_configuration request, it is informed of the
endpoint address(es) that the device intends to use for non-control transfers.
For example, consider the USB device in Figure 7.1 (depicted as a mass-storage
stick), which requires a bulk IN endpoint with address 1, and a bulk OUT
endpoint with address 2. Whereas the direction (IN or OUT) is always from the
perspective of the host, the endpoint addresses, directions, and transfer types
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are specified in an endpoint descriptor which are fixed by the peripheral’s USB
controller.

When the MAX3421E USB controller operates in Host Emulation Mode,
it is able to send and receive on any endpoint number. However, when the
MAX3421E USB controller of the Facedancer in Figure 7.2 is operated in
Peripheral Emulation Mode, its endpoint capabilities are fixed in hardware,
and cannot be changed. These capabilities are as follows:

Endpoint Address Direction Transfer Type
EP0 IN/OUT Control
EP1 OUT Non-control
EP2 IN Non-control
EP3 IN Non-control

Consider that an authentic USB peripheral may have different endpoint
capabilities, which are also fixed. It is thus possible that endpoint addresses
can be mismatched between the emulated peripheral’s USB controller and the
authentic USB peripheral’s. In our case, the USB controller supports only
an OUT direction on EP1, yet the authentic peripheral specifies that it must
use EP1 with an IN direction. To overcome this problem, we “hijack” and
modify the endpoint descriptor with the MC. When the MC detects an end-
point descriptor being sent from the authentic peripheral in response to a
get_endpoint_descriptor from the host, it creates a new mapping whereby
everything received on EP1IN of the USB host emulator will be sent on EP3IN
of the USB peripheral emulator. Similarly, a mapping is created for the
EP2OUT/EP1OUT pipe.

With the endpoint mapping in place, the authentic host and device can
continue communication on the perceived information pipes. Since the USB
specification does not mandate the capabilities of endpoints other than end-
point 0, the nature of the endpoint addressing scheme in our framework is thus
obscured from the host and device, allowing a transparent data channel. With
this scheme we can cope with any manner of endpoint addressing that a pe-
ripheral may require, provided the USB controller supports the same number
of endpoints.

Emulating Handshaking A further consideration in our framework con-
cerns USB control transfers which do not have a data stage. These con-
trol transfers include set_address, set_configuration, set_interface, and
clear_feature requests. Because these transfers do not have a data stage,
the peripheral would simply respond with a status packet, such as an ACK. The
framework makes provision for mediating data transfers across the pipes, but
for status packets, one of two work-around solutions is required:
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1. After forwarding the host request, blindly acknowledge it with the pe-
ripheral emulator, without knowing the authentic peripheral’s status re-
sult.

2. Communicate the authentic peripheral’s status result once available.
This requires extra logic so that custom status messages can be com-
municated between emulator drivers.

We opted for the former approach. This allows us to asynchronously ACK
requests, and assume that the request will be successfully processed by the au-
thentic peripheral. This poses the question, what if the request is not processed
successfully, and the authentic peripheral responds with something other than
an ACK? In such an event, subsequent requests from the host would not receive
a response, and the breakdown of communication would become apparent on
the host and client driver software. During testing, we observed this com-
munication breakdown when we neglected to blindly ACK the aforementioned
requests. After doing so, we did not encounter the scenario again, and obtained
our initial results.

7.2.2.3 Results

The TTWE framework culminated in two significant results. The first signifi-
cant result is the ability to expose USB communication between an authentic
host and device, enabling man-in-the-middle attacks without requiring prior
knowledge of the USB protocol. The second significant result is the discovery
of new bugs in USB software.

Device Emulation For demonstrating the ability to transparently emulate
a host and device pair, we used a mass-storage USB stick and were able to
perform mount, browse, read, and write actions with the host. By exposing this
data through the MC and hijacking the endpoint descriptor, we are able, for
example, to fuzz both the host mass-storage driver and the peripheral firmware.
An example of this communication captured by the TTWE framework may
be viewed in Appendix C.1.

USB Fuzzing We discovered a number of bugs in USB drivers of some
popular operating systems, as well as a printer. This included USB printer,
wi-fi dongle, and mass-storage device drivers. Due to the fact that these bugs
do not directly impact any of the devices in our case studies, we limit the
discussion of their details. Nevertheless, we emphasize the importance and
threat of USB bugs, and promote the TTWE framework as an effective way to
perform fuzzing in this area. In the interest of improving the implementation
and the bug-finding results of the TTWE framework, a prototype is available
publicly [12].
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7.3 Design Vulnerabilities
The most critical design factor that enlarges the USB attack vector is the

default inclusion of device drivers in the standard Linux distribution. As
alluded to in §4.2, the Linux operating system includes drivers for various
USB classes, supporting thousands of devices [8]. This is an advantage for
desktop users of Linux, where the user’s needs are unanticipated, thus making
it sensible to provide the widest coverage of supported devices. To the contrary,
it is likely in the best interest of a manufacturer of embedded devices to restrict
the number of device drivers to that which is strictly necessary.

In this section we discuss the ramifications of the included-by-default think-
ing that afflicts the security of embedded devices.

7.3.1 Case Study 9: Default USB Driver Support

Overview We investigated the presence of default USB drivers on two pro-
prietary set-top boxes. The set-top boxes are hardened so as to disallow access
from the outside via the network port. Moreover, USB functionality for high-
level applications, such as movie playback from a USB storage device, does
not exist. The presence of the USB port on the set-top boxes are not intended
to serve any additional functionality to the consumer. In some instances, the
USB port may be used by field agents to update the firmware on the set-top
boxes in rare circumstances. In development environments, the USB port may
also be used to update firmware for testing.

By using the Facedancer tool, we determined that the USB ports on the
set-top boxes are active, despite there being no high-level application that uses
USB peripherals. That is, the Linux kernel is able to both enumerate and load
the appropriate driver for a number of USB classes once a device is plugged
in, including keyboards, mass-storage devices, and so forth.

Technical Description Listing 7.1 contains the output of a USB assessment
tool called umap [13]. By emulating device responses of various USB peripheral
classes, umap can discover whether a given peripheral is supported. Emulation
is performed with the aid of the Facedancer, and responses are crafted with
different device descriptors (as discussed in §4.4.4) to emulate different USB
peripherals.

Both set-top boxes were found to support the same peripherals. The umap
Listing 7.1 confirms that the set-top boxes support the USB Audio, HID, Mass
Storage, and Hub classes.

Listing 7.1: umap output of set-top box peripheral support
01 : 01 : 00 − Audio : Audio con t r o l : PR Protoco l undef ined
∗∗SUPPORTED∗∗

01 : 02 : 00 − Audio : Audio streaming : PR Protoco l undef ined
∗∗SUPPORTED∗∗
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02 : 02 : 01 − CDC Control : Abstract Control Model : AT commands V.250

0 2 : 0 3 : f f − CDC Control : Telephone Control Model : Vendor s p e c i f i c

02 : 06 : 00 − CDC Control : Ethernet Networking Control Model : No c l a s s−s p e c i f i c
p ro to co l r equ i r ed

03 : 00 : 00 − Human I n t e r f a c e Device : No subc l a s s : None
∗∗SUPPORTED∗∗

06 : 01 : 01 − Image : S t i l l image capture dev i ce : Bulk−only p ro to co l

07 : 01 : 02 − Pr in t e r : Defau l t : B i d i r e c t i o n a l i n t e r f a c e

08 : 06 : 50 − Mass Storage : SCSI : BBB
∗∗SUPPORTED∗∗

09 : 00 : 00 − Hub : Defau l t : De fau l t
∗∗SUPPORTED∗∗

0a : 0 0 : 0 0 − CDC Data : Defau l t : De fau l t

0b : 0 0 : 0 0 − Smart Card : Defau l t : De fau l t

Analysis Support for a USB peripheral class indicates that the host is able
to load a valid driver for the peripheral. Like other software, Linux USB de-
vice drivers contain bugs. For instance, CVE-2013-2888 [14] is a vulnerability
afflicting the core HID driver of Linux systems up to version 3.11, which can
allow an attacker to execute arbitrary code on a host. The capability of an at-
tacker to execute arbitrary code on a proprietary device, such as a set-top box,
presents a severe threat. Moreover, the number of discovered bugs in Linux
device drivers has increased dramatically as of 2013, as can be viewed in Ap-
pendix C.2. With the likelihood of more bugs being discovered, the challenge
of updating driver software is analogous to that of Case Study 5.

It is not the intention of the manufacturers to include the support of these
drivers—they were simply present when the Linux kernel was built. Each
additional driver has the potential to introduce multiple vulnerabilities on the
device, which, like CVE-2013-2888, can violate any of the CIA properties.
Risk is further increased due to drivers running as root within the kernel,
meaning that device compromise through a driver bug will give the attacker
complete control in the root context. For this reason, the USB attack vector
has historically been used to obtain escalated privileges in devices such as
smartphones and consoles, in a process also commonly known as jailbreaking.

Summary The threat posed by default drivers can be significantly reduced
at the design phase of embedded devices. Developers and manufacturers need
to question whether it is sensible to include Linux drivers for peripherals such
as keyboards, mass-storage sticks, and microphones. In an embedded setting,
it is unlikely that a device must support all of these functions, if indeed any
at all. Thus, incorporating attack surface reduction with an understanding of
the device requirements is effective in reducing the risk considered in this case
study. Both of these actions are contained in the SDL and CLASP processes
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requirement, with the intention of preventing an attacker from exploiting po-
tentially insecure code.

7.4 Operational Vulnerabilities
Operational vulnerabilities, as described before, are those that result from

some kind of configuration or error in set up. Here we consider an operational
vulnerability in the form of a race condition, specifically, a time-of-check-to-
time-of-use (TOCTTOU) bug. Race conditions affect a broad variety of soft-
ware, including operating system kernels and web applications.

The time-of-check-to-time-of-use (TOCTTOU) software bug is one caused
by a state change in a property between the time that it is checked and the
time that it is used by a program. For example, the “check” portion during nor-
mal operation may entail verifying that software is cryptographically signed,
and afterward is installed, or “used”. This case study draws on Mulliner’s dis-
covery of a TOCTTOU vulnerability in the domain of embedded devices [48].
We proceed beyond Mulliner’s contribution of the exploitation details, and
consider the implications of that this attack has in terms of secure software
processes.

7.4.1 Case Study 10: USB TOCTTOU Attack

Overview The TOCTTOU attack in question makes use of USB mass-
storage emulation, and was performed on a Linux-based Samsung smart TV.
Termed the “Read It Twice” attack [48], the attacker relies on a USB host de-
vice which first reads a filesystem in order to verify a software package and then
subsequently installs the software package. It becomes possible to exploit this
behavior if the host software assumes that the contents of the connected mass-
storage device does not change between the check and install operation. By
coercing the smart TV to read the software package twice, the attacker gains
the opportunity to change the software package after the validation check, but
before installation.

Technical Description The smart TV supports running custom user ap-
plication software, supplied via USB mass-storage. User-supplied applications
run with restricted privileges in Adobe flash file format. However, the TV also
supports running games that make use of shared libraries native to the Linux
operating system. Games run with root privileges, and can interact directly
with the Linux system—however, the TV does not support users to supply
application software in the “game” category.

The “Read It Twice” attack succeeds in bypassing this check, and allows a
user-supplied application to run as a “game” in root context. This is achieved
by first allowing the TV to read a benign software package on the USB device.
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The TV verifies that the software package is safe to install, and proceeds with
installation. Critically, the TV performs a second read from the USB filesystem
when it is ready to install the package, and not from its own memory. At this
point, the attacker replaces the application binary contents by switching the
USB filesystem in order to classify the application as belonging to the “game”
category. The TV subsequently installs the modified binary as a “game” binary
and not an Adobe flash file. When the user selects and runs the application
on the TV, the application is executed. A possible payload may be to start
the telnet daemon on the TV, which would then run with root privileges:

int Game_Main(char *path, char *udn)
{
system("telnetd &");
return 0;

}

Analysis One reason that this attack succeeds is due to the TV reading the
application from the USB filesystem into memory twice. This behaviour occurs
when the application size is larger than the TV’s memory, which stores a cache
of the USB filesystem contents. Because the TV has limited memory resources,
an application size of 260MB forces the TV to reread storage blocks of the
application from the USB filesystem after the check. The second reason that
the attack succeeds is due to the attacker being able to replace the contents
of these storage blocks by using an emulated USB mass-storage device and
filesystem. That is, the attacker can detect, using an emulated USB device,
when the TV requests the application storage blocks again, and then returns
the modified binary.

This vulnerability can yield the attacker full control over the device, and
may also give them the ability to modify the firmware of the TV. The integrity
property of the TV is first violated, which can allow the attacker to exfiltrate
sensitive data, violating the confidentiality property. The attacker could also
turn off or destroy the contents of the TV, violating the availability property.
However, such a threat is of little consequence given the other capabilities that
the attacker can acquire. Addressing the threat of this vulnerability requires
an understanding of how reading data from external devices can be exploited
in a TOCTTOU attack.

Summary This TOCTTOU operational vulnerability falls under the “race
condition” category of NIST’s vulnerability classifications. It is made possi-
ble due to the interaction between the TV’s checking software, the operating
system’s caching mechanism, and the attached peripheral USB device. Gener-
ally, TOCTTOU attacks are prevented by performing an atomic operation on
critical data. In this case, it is important for the TV to both check and install
the same application in a single operation. One way of ensuring this is to have
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the TV first copy the entire application binary to persistent storage, such as
a harddrive on the TV. Naturally, this may imply additional or larger storage
devices, thereby increasing cost of manufacturing.

This vulnerability is challenging to anticipate during design and testing of
a device in a secure development process. For successful identification of the
vulnerability, developers need to consider how much to trust external devices
such as USB peripherals. Any data that originates from a USB peripheral
should be treated with care; it is not enough to assume, for instance, that
information from the same location on the filesystem remains the same be-
tween consecutive reads. With case-studies such as these, developers are in a
position to identify this potential vulnerability in the USB attack surface, an
activity put forth by CLASP. Further analysis and review of the attack surface
according to SDL Phase 6 also guards against the vulnerability’s presence at
production.

7.5 Implementation Vulnerabilities
Implementation vulnerabilities due to memory corruption bugs are com-

monly found in USB drivers and operating system software. While not all
USB bugs classify as exploitable vulnerabilities, the presence of such bugs
suggest less-than thorough testing of software which may harbour security-
relevant bugs. These bugs can constitute a real threat, which can result in
privilege escalation and arbitrary code execution when exploited.

Our case studies demonstrate memory corruption vulnerabilities in the
form of buffer overflows that violate security properties of embedded Linux
devices. The first case study relates to third-party USB drivers, whereas the
second relates to the core HID driver of Linux. These case studies demonstrate
how an attacker can leverage USB bugs to compromise a device, and how this
capability should influence the secure development process.

7.5.1 Case Study 11: USB String Descriptor Buffer
Overflow

Overview The most common memory corruption vulnerability afflicting USB
drivers is the buffer overflow. These have been successfully triggered and ex-
ploited with the string descriptor described in §4.4.4. We consider an instance
of this vulnerability, exhibited in the third-party Linux driver of the Auerswald
PBX/System Telephone product, which resulted in CVE-2009-4067 [61].

Technical Description The flaw is due to a buffer allocation of only 100
bytes for the device name obtained from a string descriptor, whereas the USB
specification allows string descriptors of lengths up to 255 bytes. Consider
line 15 in the source listing of the driver 7.2 containing the bug. The value of
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AUSI_DLEN is 100, and by supplying a device descriptor string larger than this
value, an attacker is able to write arbitrary data to the dev_desc buffer. This
will overwrite elements of the structure represented by the buffer, and can lead
to arbitrary code execution.

Listing 7.2: /drivers/usb/misc/auerswald.c
1 /∗ Try to ge t a s u i t a b l e t e x t u a l d e s c r i p t i o n o f the dev i c e ∗/
2 /∗ Device name : ∗/
3 r e t = usb_str ing ( cp−>usbdev , AUSI_DEVICE, cp−>dev_desc , AUSI_DLEN−1) ;
4 i f ( r e t >= 0) {
5 u += re t ;
6 /∗ Append S e r i a l Number ∗/
7 memcpy(&cp−>dev_desc [ u ] , " , Ser#␣" , 6) ;
8 u += 6 ;
9 r e t = usb_str ing ( cp−>usbdev , AUSI_SERIALNR, &cp−>dev_desc [ u ] ,

AUSI_DLEN−u−1) ;
10 i f ( r e t >= 0) {
11 u += re t ;
12 /∗ Append s u b s c r i b e r number ∗/
13 memcpy(&cp−>dev_desc [ u ] , " , ␣" , 2) ;
14 u += 2 ;
15 r e t = usb_str ing ( cp−>usbdev , AUSI_MSN, &cp−>dev_desc [ u ] ,

AUSI_DLEN−u−1) ;
16 i f ( r e t >= 0) {
17 u += re t ;
18 }
19 }
20 }

Analysis The Auerswald driver runs in the root context of the Linux op-
erating system, and could allow an attacker to execute arbitrary code in this
context. While this is a general threat for vulnerable versions of the Linux
kernel in desktop environments, it is an even greater threat for proprietary
embedded devices. As pointed out in §7.3.1, this type of vulnerability gives
opportunity for the attacker to compromise the device through the USB attack
surface.

The buffer overflow is a vulnerability class outlined by NIST which testers
should be aware of. An attack launched against this driver has the potential
to undermine the integrity property of the device by granting a way for the
attacker to access the device. After that point, an attacker can continue to
violate the confidentiality and availability properties of the device, if desired.

Summary Due to the prevalence of buffer overflows in software, many tools
and techniques exist to detect them. The buffer overflow features in CLASP’s
vulnerability categories being classified as a “Range Error”. In the SDL, buffer
overflows can be prevented during each of the Phases 8 through 12 when per-
forming software security testing.

This case study shows how portions of USB code can introduce vulnerabil-
ities that an attacker can use to compromise the device. Review, testing, and
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updates of USB code should therefore be considered during a secure develop-
ment process of a device with USB functionality.

7.5.2 Case Study 12: Kernel Memory Corruption with
USB

Overview Where Case Study 11 involves a third-party USB driver, it is also
possible for vulnerabilities to occur in the core USB drivers of Linux. Core
USB drivers serve an important role in allowing custom drivers to interface
with the kernel. It is therefore a critical component to the USB driver stack,
and poses a significant threat should it contain a vulnerability.

Here we consider CVE-2013-2888, which affects the core HID driver of the
Linux kernel. We form our analysis around an error in the parsing of USB
data, resulting in a memory corruption vulnerability.

Technical Description Recall from §4.4.4 that USB hosts rely on a device’s
report descriptor in order to interpret subsequent input (or reports) such as a
key press from the device. Reports can have Global items that define them,
including a Report ID [17]. When specifying the Global item of length 8 bits,
the two least significant bits are reserved for the number of bytes that follow
the item type, and the remaining six bits are the item identifier. The bits
identifying a Report ID is 100001nn, where nn reserves the number of bytes
that follow. For example, if we wanted to assign a report ID of 1 for an input
report, the report ID would become 10000101, followed by the report ID we
would like to assign, 00000001. Now, even though the specification states
that a report ID may assume a value of 1-255 (expressed as one unsigned
byte), it is possible to specify that two bytes follow the Report ID item type,
e.g. 10000110, since two bits are allocated for this purpose. In the case
of CVE-2013-2888, the Linux HID report parser incorrectly honors a report
ID item that indicates a report ID of size 2 bytes. Despite this, the buffer
containing report IDs accommodates only 256 possible values, which is correct
according to the USB specification.

Listing 7.3: /include/linux/hid.h
1 struct hid_report_enum {
2 unsigned numbered ;
3 struct l i s t_head r ep o r t_ l i s t ;
4 struct hid_report ∗ report_id_hash [ 2 5 6 ] ;
5 } ;

When a 2 byte Report ID is specified, with length greater than 256, a
heap buffer overflow occurs in the report_id_hash buffer in Listing 7.3. Ker-
nel memory is subsequently overwritten, which is severe enough to give the
attacker the ability to execute arbitrary code in kernel (root) context.
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Analysis A vulnerability such as CVE-2013-2888 that allows kernel memory
corruption directly poses a threat to the integrity and availability properties of
a device. When exploited naively, an attacker is able to disrupt the availability
of the device by inducing a crash through kernel memory corruption. Exploit-
ing the vulnerability in a manner that diverts execution to attacker-supplied
code can compromise the device completely. For example, the attacker may
supply a report ID value which is in fact a valid kernel memory address.

Heap buffer overflows occur due to insufficient range checking, as catego-
rized by CLASP. Again, the buffer overflow is the most prevalent error as classi-
fied by NIST. It is often challenging to predict the ease with which exploitation
can occur given a buffer overflow. However, the risk posed by vulnerabilities
such as CVE-2013-2888 is regarded to be of such a severe nature that it is
patched in the kernel, regardless of whether it has been successfully exploited.
Likewise, secure development processes should not rely on the existence of an
exploit before addressing memory corruption vulnerabilities.

Summary Secure development processes need to be able to guard against
USB implementation vulnerabilities. Automated analysis techniques as put
forth by SDL, as well as manual code inspection found in CLASP, can help
alleviate this task. However it is difficult to rely on these methods for finding
all the bugs in USB code; this is particularly true of vulnerabilities that are
more subtle, such as CVE-2013-2888. As mentioned in Case Study 9, one
of the most effective ways to guard against this implementation vulnerabil-
ity may be to exclude the HID driver completely. Alternatively, mechanisms
need to exist in order to promptly update the driver when a vulnerability is
discovered—a challenging task given the nature of embedded devices, and in
light of Case Study 5. Finally, USB implementation vulnerabilities reveal that
buffer overflow bugs are still extant in critical pieces of software, which should
be given due attention during testing.

7.6 Chapter Summary
As demonstrated, the maturity of tools in the realm of USB security exposes

further software attack vectors in embedded devices. With that, we introduced
the TTWE framework for fuzzing USB communication and found it to be ef-
fective at easing the task of the attacker to both find and exploit vulnerabilities
by USB emulation. By profiling the USB driver support of embedded devices,
we showed with Case Study 9 that the USB attack surface can be unneces-
sarily large, thereby making a device vulnerable to implementation bugs in
third-party and core Linux drivers. It is also possible for complex attacks to
arise with USB functionality, due to embedded hardware memory restrictions
and peripheral devices in Case Study 10.
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With the expectation that the discovery of USB bugs will increase, such
attacks consequently imply additional incorporation of considerations during
the software development lifecycle from Chapter 3. Additional considerations
primarily include the removal of unnecessary software during device design,
and thorough testing of USB drivers. These actions correspond to attack
surface analysis and secure software testing of SDL and CLASP.
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Chapter 8

Secure Development
Recommendations

8.1 Overview
In this chapter we deliver on the objective to provide recommendations

for securing software in embedded Linux devices. These recommendations
pertain to the attack surfaces of the system, network, and USB portions of an
embedded device. We substantiate each recommendation with a combination
of the case studies in prior chapters. Not only does this enforce the importance
of each recommendation, but it also reveals how the case studies relate to one
another across vulnerability classes, attack surfaces, and the threats that they
present. Moreover, this categorization allows us to directly correlate each
recommendation with associated methods found in SDL and CLASP.

Each recommendation is accompanied by a visual depiction of the case
studies that relate to it, according to Figure 8.1. This base figure is shown
as three coloured circles containing the case study numbers, grouped by at-
tack surface. Case studies are positioned radially from the center of the base
figure, according to the three vulnerability classes (design, operational, and
implementation). During software development, we expect secure methods to
progress from design decisions, down to implementation testing—an equivalent
progression is seen while moving from the outer radius to the inner. The rec-
ommendations are discussed roughly according to this progression. By filling
the case study circles that relate to each recommendation, this diagrammatic
representation serves as an elegant way to summarize the results of earlier
chapters.

For reference, each case study number and name are supplied in Table 8.1.

69
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Figure 8.1: Case Study Categorization Diagram

1. Address Space Layout Randomization
2. Service Misconfiguration
3. Escaping Sandboxes
4. System Command Injection
5. Outdated Network Software
6. Implicit Network Server Trust
7. Command Injection with DHCP
8. Cross-site Scripting via Telnet
9. Default USB Driver Support
10. USB TOCTTOU Attack
11. USB String Descriptor Buffer Overflow
12. Kernel Memory Corruption with USB

Table 8.1: Case Study Reference

8.2 Recommendations
An overview of our recommendations are listed below, followed by a detailed
motivation for each.

1. Enable Secure Options and Hardening

2. Omit Needless Software

3. Establish Software Maintenance Practices
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4. Distrust the Operational Environment

5. Restrict Permissions of Execution Contexts

6. Perform Input Sanitization

1: Enable Secure Options and Hardening

Figure 8.2: Recommendation 1 Case Study Diagram

Case Studies 1, 2, and 6 attest to the importance of enabling options avail-
able to the developer for improving device security. This may be an easy exer-
cise, such as enabling a built-in option of the ps command of Case Study 2. On
the other hand, enabling options (such as ASLR) that influence performance
may require more careful consideration. On all accounts, these preventative
measures can mitigate the ability of the attacker to violate the integrity and
confidentiality properties of a device. Hardening techniques such as ASLR and
enabling non-executable memory are effective in combating exploit techniques.

We note from Figure 8.2 that these options affect design and operational
vulnerabilities in the system and network attack surfaces. ASLR support for
Linux kernel memory is not yet fully supported, and hence this recommenda-
tion is not readily applicable to software which run in the kernel, such as most
USB drivers. Furthermore, this recommendation addresses issues in the oper-
ational and design vulnerability classifications. Thus, the secure development
process should evaluate the applicability of software options during early stages
of design, as well as during later stages of implementation. We advocate that
as the impact of vulnerabilities on embedded systems become greater, previous
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attitudes of software security options need to transition from being “optional”
(according to Yaghmour [66]) to becoming “strongly recommended”.

Developers and manufacturers need to consider the risk and likelihood of an
attacker taking advantage of an unhardened device. Because hardening options
can have an impact on device performance and function, we suggest that this
recommendation be applied during the design of a device, and to specifically
consider threat scenarios as put forth in SDL Phase 7. This coincides with
CLASP’s activities of defining security and system requirements.

2: Omit Needless Software

Figure 8.3: Recommendation 2 Case Study Diagram

As reflected by Figure 8.3, the USB attack surface best exemplifies the
reasoning behind omitting needless software. Case Study 9 is central to the
recommendation of omitting USB drivers that do not contribute to a device’s
core functionality. In our analysis of this problem, we note that most USB
drivers operate in the root context of a device. This leaves the device vulner-
able to attacks over the USB channel which can allow an attacker complete
control. This primarily affects the integrity property of a device, which can
lead to further security property violations. Implementation vulnerabilities in
USB software also demonstrate how the availability property of a device can
be affected through memory corruption. While we considered that threats on
the USB attack surface are mitigated by the challenge of writing exploits for
embedded architectures, it is an unnecessary risk to take.
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The challenge of omitting needless software arises when manufacturers are
unsure of the functionality that a device should have throughout its entire
lifetime. For example, it may happen that a set-top box should eventually
support mass-storage devices for video playback. On the other hand, it is
unlikely that a set-top box should ever support a USB printer. By consider-
ing potential device support, manufacturers can reliably rule out unnecessary
drivers and significantly reduce the USB attack surface.

This recommendation serves to guard a device from having an unnecessarily
large attack surface, particularly due to USB drivers. We therefore suggest
that this recommendation is best applied during attack surface analysis of
the design. Recall from Chapter 3 that attack surface analysis is an action
performed in both SDL Phase 6 and in CLASP. It would also prove effective
to confirm removal of omitted software during attack surface review (SDL
Phase 13).

3: Establish Software Maintenance Practices

Figure 8.4: Recommendation 3 Case Study Diagram

The need for maintaining software in embedded devices is demonstrated by
case studies 5, 7, 8, 9, 11, and 12. Although there are benefits for keeping all
portions of software updated, it is most critical for software which is attacker-
facing. Therefore, this recommendation relies on vulnerabilities in the network
and USB attack surfaces of Figure 8.4. It comes with the supposition that
the attacker wishes to gain initial entry into a device, whether remotely over a

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 8. SECURE DEVELOPMENT RECOMMENDATIONS 74

network or via USB. The threat that this attack poses to device manufacturers
are exemplified by proprietary set-top boxes, smart TVs, and mobile devices.

The nature of keeping software updated on embedded devices, as per Case
Study 5, presents a great challenge. Due to this, our recommendation does
not mandate that every device support dynamic updates of software, although
such a solution is certainly preferable. Rather, we advocate that developers
consider the repercussions of omitting an update mechanism, and evaluate the
associated risk. For example, the XSS attack in Case Study 8 could be used to
obtain login credentials of the router. However, it may be determined that the
associated software carries a risk that could be addressed by other means, for
example monitoring network activity associated with such an attack. On the
other hand, if the device relies heavily on USB software which may contain
a pervasive bug, such as that of Case Study 12, it may be appropriate to
implement a software update mechanism.

In summary, we stress the importance of manufacturers to realize an update
mechanism when required, or to firmly establish that it is not necessary. This
decision should ideally be made during the design of a device, but it is likely
to impact the implementation phase. Moreover, should software updating be
included, the mechanism itself will need to be tested. Thus, we suggest that
threat modelling (from SDL Phase 7 and CLASP) accompany the decision
to include or omit an update mechanism. In either case, we also suggest
software security testing according to the SDL and CLASP. Thorough security
testing will provide additional assurance in the event that software will not
be updated during the device lifetime. If an update mechanism is provided,
software relating to it should necessarily undergo security testing as well.

4: Distrust the Operational Environment

From Figure 8.5, we observe that distrusting the operational environment
rests on the respective operational vulnerabilities of each attack surface cat-
egory, as well as the two implementation vulnerabilities of Case Study 7 and
12. The implementation vulnerabilities of this recommendation contribute ex-
amples where software functionality is built into the device, and cannot be
removed. Yet, some of these inclusions, such as the DHCP and USB support,
require extra operational consideration.

These case studies revealed how the complex interaction between filesys-
tems, system services, network services, and peripheral devices cause vulner-
abilities in a device. Operational vulnerabilities are particularly difficult to
detect, and likely constitute the most unanticipated attacks that developers
need to consider. The attack scenario may violate any of the three CIA prop-
erties, depending on the vulnerability, and constitute threats of varying levels.
For example, the attacker might reveal passwords (Case Study 2), impersonate
trusted network resources (Case Study 6), or compromise the device with a
peripheral (Case Study 10).
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Figure 8.5: Recommendation 4 Case Study Diagram

To mitigate the likelihood of operational vulnerabilities occurring, one
needs to assume that the device operates in hostile environment. With this
attacker-like mindset, it becomes more conceivable to anticipate attacks. For
example, consider the options that an attacker has at his disposal when at-
tacking a device. He might ask “Which built-in command-line options, network
service software, or peripheral support is available for attack on the device?”
We suggest that this question needs to be asked, during threat modelling
practices of SDL and CLASP. Addressing this question, however, will also ne-
cessitate security testing in accordance to SDL and CLASP. For example, it
might be anticipated that peripherals can affect the security properties of a
device, but such a suspicion may require specific testing as presented in Case
Studies 6 and 10.

5: Restrict Permissions of Execution Contexts

An underlying threat of case studies 1, 3, 4, 7, and 9 is the danger of a
program operating in privileged mode, such as root. As shown in Figure 8.6,
elements of design and implementation vulnerabilities contribute to this threat
when the objective of an attacker is to achieve privileged access to a device.
Such an attack scenario is purposed to compromise the integrity of the device;
the attacker is not interested in divulging confidential information or limiting
service availability in the context of privilege escalation attacks.

Vulnerabilities due to design decisions should be addressed during earlier
stages of software development. Hardening techniques discussed in Case Study
1 is one way to weaken the ability of the attacker to gain privileged access by
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Figure 8.6: Recommendation 5 Case Study Diagram

mitigating exploitation. However, hardening is of particular importance for
software that by necessity runs in privileged mode, such as drivers. In terms
of attack surface reduction, it is important for developers to question whether
custom drivers require running as root; if not, it should be implemented to
run with restricted access to filesystem resources and memory. For instance,
Linux printer drivers do not require root permissions to function, unlike USB
drivers. Beyond drivers, network services may require running as root, but can
place a logged-in user in a restricted execution environment. Similar methods
of restricting permissions is the act of sandboxing the execution of a program.
While this method can prove effective, developers should evaluate the accom-
panying risk in case the sandbox can be escaped, as observed in Case Study
3.

Evaluation of sandboxing techniques are difficult to anticipate during de-
sign, and must be tested toward the end of the development lifecycle. Attack
surface analysis, threat modelling, and security testing are methods put forth
by SDL and CLASP which are all applicable for achieving this recommenda-
tion. Attack surface analysis is effective if programs with privileged execution
environments can be removed or isolated from an attacker. If this is not pos-
sible, threat modelling assists in the likelihood that an attacker will be able to
exploit a vulnerability in such a program. Finally, security testing of programs
that harbour a significant threat will provide manufacturers with greater as-
surance.
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Figure 8.7: Recommendation 6 Case Study Diagram

6: Perform Input Sanitization

Lack of input sanitization is a leading cause of implementation vulnerabil-
ities, as revealed by case studies 3, 4, 7, and 8. Figure 8.7 illustrates that
the network and system attack surface are principally susceptible to these
vulnerabilities. An important consequence of this point is that an attacker
can use bugs resulting from lack of input sanitization to gain remote access
to a device, and thereafter obtain escalated privileges on the system. Such
a scenario echoes the analyses covered previously, emphasizing that attacks
lead primarily to a violation of the integrity property, and secondarily to the
confidentiality property.

Afflicted software of the system included programs written in C, bash, and
Javascript, implying that developers can’t rely on pinning these vulnerabilities
to a specific implementation language. Mitigation of these vulnerabilities entail
input sanitization, the application of which will vary from device to device.
Appropriate strategies include whitelisting a set of commands, or blacklisting
meaningful characters depending on the context. Regardless, the important
aspect of this recommendation is that the secure development process should
identify and test areas that require input sanitization.

This recommendation relies most heavily on security testing of device soft-
ware during and after implementation, as set forth in Chapter 3. Software can
include Linux binaries, BusyBox, network services, third-party drivers, and
third-party applications. Applicable methods advocated by SDL and CLASP
are listed in Table 3.1, and will depend on the properties of the software. Dur-
ing our case studies we found that manual code review was most effective for
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software security testing when the source code was available and under 100
lines of code. Furthermore, explicit testing of software with unsanitized values
through fuzzing can specifically detect input sanitization bugs.

8.3 Evaluation
The recommendations in this chapter are given on the basis of our 12 case

studies, covering design, operational, and implementation vulnerabilities over
the system, network, and USB attack surfaces. With each recommendation,
we infer appropriate methods from the SDL and CLASP, including attack
surface analysis, threat modelling, and security testing. The advantage of
this approach is that it aids parties involved during software development
of embedded devices to be security-conscious. This is achieved by delivering
concrete examples of vulnerabilities and ways to mitigate common flaws and
bugs using recognized methods.

Given this approach and a finite number of case studies, we are limited in
inferring a non-exhaustive list of recommendations. It is indeed possible that
embedded devices may benefit from additional practices that are not included
in our recommendations. Furthermore, there may be instances where specific
devices, such as smartphones, may benefit from security considerations not
applicable to other devices, such as smart TVs. In this regard, our recommen-
dations are expected to be applicable to all Linux based devices, and applicable
to devices which operate under other embedded operating systems as well.

Stellenbosch University  http://scholar.sun.ac.za



Chapter 9

Conclusion

9.1 Objectives
In this thesis, we identified the growing need for securing embedded devices,

particularly in Linux based devices. In addressing this need, we assert that se-
curity vulnerabilities commonly result from negligent practices during software
development of such devices. To this end, we deliver concrete recommenda-
tions for addressing classes of vulnerabilities by way of 12 case studies. With
respect to the objectives established in Chapter 1, we achieved the following:

• We derived appropriate techniques, namely, attack surface analysis, threat
modeling, and security testing methods from the SDL and CLASP de-
velopment processes in Chapter 3. These methods were found to be
applicable to embedded Linux devices, and were used to evaluate each
case study in Chapters 5 through 7.

• The vulnerability assessment techniques were applied over the system,
network, and USB attack surfaces through a number of case studies, in
Chapters 5, 6, and 7 respectively.

• Vulnerabilities were categorized according to three classes, namely, de-
sign, operational, and implementation vulnerabilities. For each of the 12
case studies in Chapters 5 through 7, an overview describes the process
of vulnerability discovery, followed by a detailed analysis of risk in terms
of the three CIA properties.

• Six actionable recommendations were delivered in Chapter 8 on the basis
of the case study analyses.

9.2 Contributions
Consider the contributions of this thesis, bulleted below, as introduced in
Chapter 1.
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• A case study for applying secure software development processes to em-
bedded Linux devices

In Chapter 2 we observed the absence of software development processes
that exist for embedded systems. Although many assessment methods exist,
it is not clear how these may be applied to embedded devices, and whether they
are applicable. In our work, we demonstrated the methods of attack surface
analysis, threat modeling, and security testing in the context of embedded
devices. We derived these methods from the SDL and CLASP development
processes on the basis of our comparison in Chapter 3. This work therefore
spans both the practices underpinning secure development, and the application
thereof, making for a significant contribution.

• The discovery of new vulnerabilities on embedded Linux devices

This contribution refers to CVE-2014-0337, CVE-2013-3594, CVE-2013-3595,
CVE-2013-3606, and Case Study 1-6, 8, and 9. Not only does this contribu-
tion emphasize the effectiveness of applying the aforementioned methods, but
it also exposes the developer to common classes of mistakes with concrete
examples.

• The Transparent Two-Way Emulation framework, a novel testing frame-
work for the USB attack surface

In Chapter 7 we developed the TTWE framework [60], and demonstrated
its advantages for discovering USB bugs. Our framework improves upon cur-
rent testing methods by affording greater flexibility and affordability. More-
over, the development of improved USB testing tools highlight just how criti-
cally device drivers should be assessed in devices.

• Concrete recommendations based on our case studies, in conjunction
with assessment methods.

We briefly compare and evaluate our recommendations to that of McGraw,
who formulates a taxonomy of seven security errors, based on the principle
that “people are good at keeping track of seven things, plus or minus two” [58].

McGraw’s seven points make for appropriate candidates to compare to
our six recommendations on the basis of advocating secure practices while
remaining concise. In comparison to McGraw’s assertions of security errors,
we found that there is significant overlap with our recommendations and case
studies. We summarize McGraw’s assertions below (in bold), and indicate
which case studies and recommendations they relate to, where applicable.

1. Input validation and representation, including input sanitization,
relating to Recommendation #6: Perform Input Sanitization.
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2. API abuse, such as expecting trustworthy DNS information, relating
to Recommendation #4: Distrust the Operational Environment.

3. Security features, including privilege management and hardening, re-
lating to Recommendation #1: Enable Secure Options and Hardening.

4. Time and state, including race conditions present in program execution
and filesystems, relating to Case Study 10: TOCTTOU attacks.

5. Errors that disclose information to the attacker, relating to Case
Study 2: Information disclosure.

6. Code quality, where poor code quality leads to buggy behavior, relating
to Recommendation #3: Establish Software Maintenance Practices.

7. Encapsulation, which entails setting up boundaries between programs,
relating to Recommendation #5: Restrict Permissions of Execution Con-
texts.

This result is satisfying, since McGraw’s points were not considered at the
outset of this study. Even so, our recommendations can be seen as relating
closely to the security errors identified by McGraw. The primary benefit of
our results, however, are that they exhibit two properties that surpass those
of McGraw, in that they are

• substantiated by concrete case studies, and

• are applicable to the specific domain of embedded devices.

To summarize, this thesis makes significant contributions in the way of
demonstrating the translation of software assessment practices to actionable
secure recommendations, substantiated by a comprehensive analysis of case
studies. Due to this approach, it must be acknowledged that while our results
are valuable, they are non-exhaustive.

9.3 Future Work
Due to the non-exhaustive nature of this thesis, additional benefit can be de-

rived by extending the scope of Chapter 1. For one, this thesis only considered
Linux-based devices, yet we expect that many of the assessment methods are
applicable to embedded devices that run other operating systems. Although
an effort was not made to explore this possibility, it would be a worthy ex-
ercise to determine the applicability of our methods, USB testing tool, and
recommendations for such devices.
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The empirical approach of our approach implies that considering additional
case studies may contribute to, or even form new recommendations. It is dif-
ficult to predict the impact of additional case studies, as these are dependent
on the nature of the vulnerability that is considered. We maintain that ex-
ploring additional case studies may serve to enhance secure practices. There
may, however, be a limit to the usefulness of additional vulnerabilities be-
fore the analysis becomes redundant, especially when they belong to the same
vulnerability class. Nevertheless, this thesis can be reinforced by additional,
well-chosen examples.

Because the goal of achieving secure devices is a moving target, it is to be
expected that software assessment methods change and evolve over time. USB
attacks are a good example, where the improvement of testing tools (although
not fully mature) are only now alerting manufacturers to their alarming effects.
Thus, some security properties will become more critical than others as time
passes. Though we consider all of our recommendations to be important, there
is no rank of importance associated with them. Therefore, systematic prioriti-
zation of applied methods and testing would be beneficial and complementary
to the notion of secure software development processes.

In Chapter 8, we introduced the TTWE USB testing tool, although it is not
without shortcomings. The continuous development and application of the
TTWE USB testing tool is of great interest at the time of writing. Addressing
the identified shortcomings will afford further state-of-the-art capabilities for
assessing the USB attack surface on millions of embedded devices.
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Appendix A

USB Specification

A.1 Standard USB Requests

Request Number Request Type
00h Get_Status
01h Clear_Feature
02h Set_Feature
03h Set_Address
04h Get_Descriptor
05h Set_Descriptor
06h Get_Configuration
07h Set_Configuration
08h Get_Interface
09h Set_Interface
0ah Synch_Frame
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A.2 Standard USB Descriptor Fields

Field Value Descriptor Type Required
01h device yes
02h configuration yes
03h string no
04h interface yes
05h endpoint no, but commonly

used
06h device_qualifier yes, for full and high

speed devices
07h other_speed_configuration no
08h interface_power no
09h OTG (on-the-go) no
0ah debug no
0bh interface_assocation no
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Appendix B

Full Source Code Listings

B.1 UDHCPC configuration script
#!/bin/sh
# udhcpc Interface Configuration
# Based on http://lists.debian.org/debian-boot/2002/11/msg00500.html
# udhcpc script edited by Tim Riker <Tim@Rikers.org>

[ -z "$1" ] && echo "Error: should be called from udhcpc" && exit 1

RESOLV_CONF="/etc/resolv.conf"
[ -n "$broadcast" ] && BROADCAST="broadcast $broadcast"
[ -n "$subnet" ] && NETMASK="netmask $subnet"

case "$1" in
deconfig)

/sbin/ifconfig $interface 0.0.0.0
;;

renew|bound)
/sbin/ifconfig $interface $ip $BROADCAST $NETMASK

if [ -n "$router" ] ; then
while route del default gw 0.0.0.0 dev $interface ; do

true
done

for i in $router ; do
route add default gw $i dev $interface

done
fi

echo -n > $RESOLV_CONF
[ -n "$domain" ] && echo search $domain >> $RESOLV_CONF
for i in $dns ; do

echo nameserver $i >> $RESOLV_CONF
done
;;

esac

exit 0
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USB bugs

C.1 Mass-storage device functionality by
TTWE on a Linux Host

Bold numbers indicate hijacked endpoint numbers.

DIR EP DATA (Base 10)
OUT [0] [128, 6, 0, 1, 0, 0, 64, 0]
IN [0] [18, 1, 0, 2, 0, 0, 0, 64, 143, 5, 135, 99, 2, 1, 1, 2, 3, 1]
OUT [0] [0, 5, 25, 0, 0, 0, 0, 0]
OUT [0] [128, 6, 0, 1, 0, 0, 18, 0]
IN [0] [18, 1, 0, 2, 0, 0, 0, 64, 143, 5, 135, 99, 2, 1, 1, 2, 3, 1]
OUT [0] [128, 6, 0, 6, 0, 0, 10, 0]
IN [0] [10, 6, 0, 2, 0, 0, 0, 64, 1, 0]
OUT [0] [128, 6, 0, 2, 0, 0, 9, 0]
IN [0] [9, 2, 32, 0, 1, 1, 0, 128, 100]
OUT [0] [128, 6, 0, 2, 0, 0, 32, 0]
IN [0] [9, 2, 32, 0, 1, 1, 0, 128, 100, 9, 4, 0, 0, 2, 8, 6, 80, 0, 7,

5, 1, 2, 64, 0, 0, 7, 5, 130, 2, 64, 0, 0]
OUT [0] [128, 6, 0, 3, 0, 0, 255, 0]
IN [0] [4, 3, 9, 4]
OUT [0] [128, 6, 2, 3, 9, 4, 255, 0]
IN [0] [26, 3, 77, 0, 97, 0, 115, 0, 115, 0, 32, 0, 83, 0, 116, 0, 111,

0, 114, 0, 97, 0, 103, 0, 101, 0]
OUT [0] [128, 6, 1, 3, 9, 4, 255, 0]
IN [0] [16, 3, 71, 0, 101, 0, 110, 0, 101, 0, 114, 0, 105, 0, 99, 0]
OUT [0] [128, 6, 3, 3, 9, 4, 255, 0]
IN [0] [18, 3, 49, 0, 57, 0, 54, 0, 50, 0, 51, 0, 55, 0, 51, 0, 54, 0]
OUT [0] [0, 9, 1, 0, 0, 0, 0, 0]
OUT [0] [161, 254, 0, 0, 0, 0, 1, 0]
IN [0] [0]
OUT [1] [85, 83, 66, 67, 1, 0, 0, 0, 36, 0, 0, 0, 128, 0, 6, 18, 0, 0, 0,

36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
IN [3] [0, 128, 4, 2, 31, 0, 0, 0, 71, 101, 110, 101, 114, 105, 99, 32,

70, 108, 97, 115, 104, 32, 68, 105, 115, 107, 32, 32, 32, 32, 32,
32, 56, 46, 48, 55]

IN [3] [85, 83, 66, 83, 1, 0, 0, 0, 0, 0, 0, 0, 0]
OUT [1] [85, 83, 66, 67, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
IN [3] [85, 83, 66, 83, 2, 0, 0, 0, 0, 0, 0, 0, 1]
OUT [1] [85, 83, 66, 67, 3, 0, 0, 0, 18, 0, 0, 0, 128, 0, 6, 3, 0, 0, 0,

18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
. . . . . . . . .
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C.2 CVEs assigned to Linux USB Drivers
2013 2012 2011 2010 2009
CVE-2013-1285 CVE-2012-2693 CVE-2011-0712 CVE-2010-4656 CVE-2009-4067
CVE-2013-1286 CVE-2012-3723 CVE-2011-2295
CVE-2013-1287
CVE-2013-2888
CVE-2013-2889
CVE-2013-2890
CVE-2013-2891
CVE-2013-2892
CVE-2013-2893
CVE-2013-2894
CVE-2013-2895
CVE-2013-2896
CVE-2013-2897
CVE-2013-2898
CVE-2013-2899
CVE-2013-3200
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