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Evolutionary fields can explain patterns of high-dimensional complexity in ecology
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One of the properties that make ecological systems so unique is the range of complex behavioral patterns that
can be exhibited by even the simplest communities with only a few species. Much of this complexity is commonly
attributed to stochastic factors that have very high-degrees of freedom. Orthodox study of the evolution of these
simple networks has generally been limited in its ability to explain complexity, since it restricts evolutionary
adaptation to an inertia-free process with few degrees of freedom in which only gradual, moderately complex
behaviors are possible. We propose a model inspired by particle-mediated field phenomena in classical physics
in combination with fundamental concepts in adaptation, which suggests that small but high-dimensional chaotic
dynamics near to the adaptive trait optimum could help explain complex properties shared by most ecological
datasets, such as aperiodicity and pink, fractal noise spectra. By examining a simple predator-prey model and
appealing to real ecological data, we show that this type of complexity could be easily confused for or confounded
by stochasticity, especially when spurred on or amplified by stochastic factors that share variational and spectral
properties with the underlying dynamics.
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I. INTRODUCTION

Complexity in ecological data is characterized by long-
and short-term variations in behavior across a wide range
of time-scales, from generations to speciations, which are
often difficult to predict. These erratic oscillations are com-
monly attributed to a combination of density-dependent,
demographic, and environmental factors, including variation
caused by human intervention [1]. However, high-dimensional
deterministic effects can be difficult to distinguish from high-
or infinite-dimensional stochasticity, especially when data sets
are relatively small (as is common in ecology). These patterns
of variation have characteristic spectral compositions [2] and
are often fractal in nature [3]. Field-based models of systems
with many constituent particles have been used to understand
unpredictable and fractal systems found in physics [4–6] and
were central to the development of complex systems research
[7]. We ask whether a field, mediated by interacting individuals
in evolving populations, could adequately describe some of the
properties of ecological systems seen in nature by qualitative
analysis of the field-based system as a whole and at the
population level.

Dercole et al. [8,9] were the first to demonstrate a minimal
adaptive ecological network, comprising three coevolving
species—prey, predator, and super-predator—in which red
queen dynamical chaos in the coevolution of traits leads
to an increase in complex behavior at the population level
[10,11]. However, slower, first-order evolutionary dynamics
constrain the complexity, period, and magnitude of such
chaotic oscillations. This results in part from fundamental
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properties of the so-called canonical equation in adaptive
dynamics (AD), which admit only first-order solutions in
trait space [12,13], thereby under-specifying some of the
variability in ecological time series due to adaptation. In
so doing, classical AD ignores the potential phenomena of
momentum and inertia during trait evolution, which has been
well supported by evolutionary theorists [14]. The evolutionary
field formulation represents a higher-order approach to trait
adaptation, which can describe much of this complexity in
even the simplest predator-prey systems. It does this in purely
adaptive terms through high-dimensional trait-based chaos,
which can arise from even one to two traits. Our proposition
therefore calls into question the orthodoxy of simple, low-
dimensional trait dynamics to adequately capture complexity
(beyond purely periodic dynamics) and apparently random
variation in ecological networks.

The debate over the origin of variability in ecological time
series has been ongoing since chaotic fluctuations were first
observed in simple models of logistic population growth [15].
Since then, a vast array of models have been produced in an
attempt to characterize the most important elements of these
erratic ecological time series and to ascertain the deterministic
or stochastic nature of these complex signals [16–19]. Decades
later debate still rages as to the very definition of chaos and
noise in ecology [20,21]; however, much work has been done
to suggest that explaining factors such as density dependence
and persistent long-term autocorrelation will be necessary
to produce a complete description of ecological dynamics
[22,23].

If higher-order, high-dimensional deterministic dynamics
are responsible for a portion of the apparent stochasticity
seen in ecology, then such dynamics should share key
characteristics with these stochastic processes. According to
work by Halley and Inchausti [24], as much as 92% of
ecological time series exhibit spectral reddening or pink shift,
the long-term pattern of increasing variation over time seen in
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ecological data. Colored noise models have often been used to
explain these typical patterns in ecological data [23]. Stochas-
tic noise processes and, in particular, colored noise, share
many important properties with chaotic dynamics, including
finite correlation dimensions [3] and even positive Lyapunov
exponents in some cases [25]. Colored noise is characterized
in terms of its spectral properties; however, certain dynamical
systems have frequency spectra that are qualitatively similar
to noise [26]. In addition, spectral reddening is seen as the
hallmark of self-organized criticality in both physics [27,28]
and, more controversially, in ecological models [29–31].

We show that selective field forces, acting at a distance
in trait space, may be enough to superficially mimic many
of these stochastic properties as well as attain a level of
complexity comparable to real ecological data in the case of
a simple predator-prey system. In Sec. II we present a formal
justification of the model framework and parameters, followed
by (in Sec. III) an exploration of the field model’s dynamical
and fractal chaotic behavior in the chaotic, transient, and
aperiodic regimes. Here, we look specifically at intraspecific
competition because of its established role in triggering
instabilities and chaotic dynamics in population models
[15,32] and its importance in the variability of population data
[33]. In Sec. IV we use historical field data on Oryctolagus
cuniculus, the European rabbit in Britain [34], and Lynx
Canadensis, the Canadian lynx [35], to determine whether
the model fits with the qualitative behavior of ecological
systems. This was further investigated and tested in Sec. V
using methods based on spectral analysis and the prominence
of pink noise in ecological data with concluding remarks and
further recommendations in Sec.VI.

II. MODEL JUSTIFICATION AND FORMULATION

The model relies on density-dependence as the primary
determinant of biological interaction frequency, both at the
population and, by implication, at the evolutionary level. This
mass action approach underpins classical and modern theories
in physics (e.g., gravitational and solid-state physics [36])
and population ecology (e.g., Lotka-Volterra and AD models
[37]). The evolutionary field model extends these ideas into
evolutionary ecology by considering each biotic interaction as
an exchange of fitness information between populations. An
understanding of the model relies on interpreting individuals
interacting within and between species, as mediators of an
evolutionary force that is translated to adaptive change in a
generalized trait space (an abstract representation of multiple
independent, continuous traits). The model is also partially mo-
tivated by recognizing the role played by density-dependence
in both stochastic and dynamical complex behavior in ecology
(e.g., in inducing population level chaos in classical ecological
models [17]). However, density considerations only describe
the frequency, not the strength or type of individual interactions
between members of two species. Both competitive and
antagonistic interaction strengths have largely been measured
in the past by trait matching [38], in which distances between
individuals’ traits have some bearing on the strength of their
interaction. This is motivated by the assumption that trait
matching translates into stronger, more direct competition and
more efficient consumption, or cooperation (in the case of mu-

tualistic interactions). This does not mean that the two species
are necessarily similar in phenotype as the traits relevant to
each species in the interaction could differ in type or scale.

An appropriate measure must thus be chosen to quantify
the degree of trait matching in a continuous trait space. The
functional form of the measure is based on the concept of
assortativity used in other adaptive dynamics models [39–42].
In assortative models trait matching is measured as a Gaussian
function of interaction strength based on the Euclidean norm
(|| · ||). Here, smaller Euclidean distance between traits implies
stronger trait matching, which decays exponentially with the
square of the distance. From the inverse of this similarity
measure we obtain a distance measure dij from i to j . The
distance together with the direction vector uij informs the
assumed topology of the trait space, which we will suppose
for our purposes to be two dimensional, with trait vector
ai = (xi,yi) ∈ R2 for species i; they are defined as

dij = e
||ai−aj ||2

2 uij = aj − ai

||aj − ai|| . (1)

We assume that the evolutionary or selective force experienced
by a population in our model is dependent on this assortativity
distance, which takes the form of an inverse Gaussian with
standard mean and variance. Note that this is one form of the
proposed matching distance and other forms may be applicable
depending on context.

The selective force itself can be derived from a field, �

mediated by interactions propagated by individuals within
populations residing in a community of N species. If we further
suppose that these populations are mixed homogeneously then
their interaction frequency could be assumed to be governed
by mass action. We propose one possible way to decide
on adaptive interaction strength is given by supposing that
interaction strength deteriorates radially from the propagating
population’s position in trait space with distance defined by
the assortitive distance [Eq. (1)]. If the same rules of point
propagation apply as in physics then there exists an inverse
square relationship between trait distance and adaptive interac-
tion strength. Last, the nature and adaptive capacity (maximal
strength) of interactions between species are specified by an
N×N matrix K, which is static in our formulation. From these
proposed selection and frequency rules we arrive at a set of
second-order evolutionary field equations, which determine
the field strength �i = (�x

i ,�
y

i ) experienced in trait space by
species i with population mass mi ,

�i =
N∑

j=1

kij

mimj

d2
ij

uij. (2)

The combination of the kij and kji interaction coefficients
define the type (mutualistic, predatory, competitive, etc.)
and maximum potential interaction strength between species
i and j . These types are characterized by the effect that
interaction with members of species j usually has on the fitness
and abundance of members of species i and can be either
antagonistic (kij < 0) or beneficial (kij > 0). Interactions
resulting in changes at the population level translate into slower
changes at the adaptive level through repulsive (kij < 0) or
attractive (kij > 0) field effects on species i with respect to j

in trait space. In general, kii < 0 and represents the negative

042401-2



EVOLUTIONARY FIELDS CAN EXPLAIN PATTERNS OF . . . PHYSICAL REVIEW E 95, 042401 (2017)

intraspecific relationship between population density and the
availability of environmental resources such as territory.

These kij factors determine the maximum potential interac-
tion strength because of the bound imposed by the electrostatic
or gravity-like inverse squared law given by the assortative
distance in Eq. (3). Since there are no constraints on the
signs of the kij and kji pairs, this allows for the setup of
pseudogravitational adaptive competitions (a combination of
push pull and chase behaviors) between i and j . These games
operate similarly to systems of arbitrarily signed masses
(population masses in our biological context) governed by
electrostatic (or gravitational) attraction or repulsion [43].

The number of mutations that occur in a population shapes
the capacity for evolutionary change to occur rapidly. This pop-
ulation mutation rate (θi) is defined as the product of population
mass (mi) and individual mutation rate (μi). We propose that
under the force of selection, mutation defines the proportion
of that force that can be converted into adaptive trait change,
that is, in a mechanical sense, the population mutation rate θi

can be likened to the quantity given by acceleration over force
in mechanics ( a

F
for force F and acceleration a) or the inverse

of mechanical inertia ( 1
m

for inertial mass m). This conception
of evolutionary inertia is consistent with classical theories in
AD, including a special case of the canonical equation when
one considers the second-order time derivative [12].

However, overcoming inertia alone is not enough to lead
to rapid adaptive change as there are many other constraints
that slow the rate of adaptation in a population such as
the time-dependent considerations of finite gene flow and
generation time [44,45]. These constraints may have a damp-
ening effect on the speed of adaptive change by hampering
the nonsynonymous mutation rate [46]. We summarize such
effects as a frictional term that affects the rate of evolutionary
change, choosing to model this evolutionary damping force by
taking inspiration from models of fluid drag in physics, where
friction scales with the square of the adaptive velocity (rate
of trait change), with drag coefficient fi < 0. Completing the
analogy with physics we suppose that adaptive change on a
species i is affected through the selective force on that species
(�i) plus those frictional terms (f) that resist against rapid
adaptive change, scaled by the inverse of evolutionary inertia
(θi). The evolutionary equations of motion are thus given by
Eq. (2), to arrive at an equation for evolutionary acceleration
in the traits ai,

d2ai

dτ 2
= θi

[
�i + fi

dai

dτ

∣∣∣∣dai

dτ

∣∣∣∣
]
, (3)

where adaptation operates at a slower time scale τ when
compared to the community population dynamics.

The complete description of the eco-evolutionary system
requires the specification of population dynamics equations,
which are influenced by changes in interaction strength
brought about by adaptive change. Here we considered a
two species, predator-prey system with prey mass m1 and
predator mass m2. We again assumed homogeneous mixing
of populations with simplified functional response (other
more complex functional forms may be appropriate in other
specific contexts). This leads to a simple Lotka-Volterra-like
set of population dynamics equations that are modulated by

interaction strength, type, and frequency in the same way as
the field strength in Eq. (2):

dm1

dt
=

[
r1 + k11m1 + k12

d2
12

m2 + k1s

d2
1s

ms

]
m1, (4)

dm2

dt
=

[
r2 + k22m2 + k21

d2
21

m1

]
m2 (5)

(see Eqs. (A1) and (A2) for parametrization). The two
separate time scales τ and t are such that T = dτ

dt
< 1,

but, since adaptation is assumed to occur according to a
second-order process, this means that T 2 is the time-scale
factor of relevance to the higher-order dynamics. Here, class s

represents a stationary resource that we introduced to maintain
the community and can be considered a density-independent
environmental resource or to be sufficiently abundant to be
unaffected by prey consumption (i.e., it has a fixed density
of ms = 1). It is also nonadaptive, existing at a fixed position
at the origin in trait space (i.e., as = 0). This model does
not treat intraspecific competition, represented by kii [defined
in Eqs. (4) and (5)], or death rate ri as adaptive. These
parameters are thus independent of trait distance and matching
in this particular model but could be made so in other more
complicated versions of the model.

III. DIMENSIONALITY AND CHAOS

Numerical simulations of the two-species system, as de-
fined in Sec. II and parametrized in Eqs. (A1) and (A2), was
carried out over a period of arbitrary time units, TU [47]. Fig-
ure 1 shows the results of simulation of a typical trajectory (af-
ter exclusion of 104 TU of transient) for the case where the rela-
tionship between prey and predator intraspecific competition
(kii) is k11 = −0.5 > k22 = −0.8, with 1.1 = μ1 > μ2 = 1.
The system exhibits aperiodic cycling at the trait and
population levels. Strong positive correlation (ρXY = 0.68),
evident between interspecies trait distance and prey abun-
dance, indicates that an assortative force generated by a
pseudogravitational field can lead to population fluctuations
closely linked to coevolutionary change.

The correlation dimension, D2, is an established measure
of the fractal dimension of chaotic attractors [48], which is
defined in terms of the distribution of randomly sampled points
on the attractor. Calculating the correlation dimension, D2,
requires the computation of the correlation integral, which can
be approximated with real or simulated time series of size N

by the correlation sum C(r). The correlation sum [49] is a
weighted count of points from the series within a given radius
r , of each other:

C(r) = 2

(N − c)(N − 1 − c)

N∑
i=1

i−c∑
j=1

H (r − ||xi − xj||).

Here, H (x) is the Heaviside step function, || · || is the
Euclidean norm, and xi are time-indexed points from a mul-
tidimensional time series. The integer c defines a correlation
length and is used to exclude values that are close neighbors
in time. The following relationship holds between the fractal
dimension D2, the radius r , and the correlation sum C(r):

C(r) ∝ rD2 . (6)
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FIG. 1. Aperiodic predator-prey system behavior at both the trait
and population levels plotted for 400 time units (TU) in the case
where prey intraspecific competition k11 = −0.5. (a) Log abundance-
abundance and (b) abundance-time for prey (m1—top, black curve)
and predator (m2—bottom, magenta curve). (c) Prey (a1—black
curve) and predator (a2—lighter, magenta curve) trait space dynamics
in a 2D trait space that shows aperiodic orbiting of the fitness
optimum. (d) Euclidean distance (||a1 − a2||) between predator and
prey in trait space exhibiting stationary aperiodic behavior.

Due to this power law, D2 is approximated by the slope of
the scaling region of the log-log plot of C(r) versus r . From
Fig. 2 this gives an estimate of D2 ≈ 5.7 for the correlation
dimension of the attractor. D2 depends on the choice of scaling
region and the value of parameters. D2 takes on a value D2 ∈
[2.1,6.3] for prey intraspecific competition k11 ∈ [−0.7,−0.4]
and D2 ≈ 2.1 for k11 ∈ [−0.9,−0.8].

The presence of dynamical chaos in a time series can be
detected using Wolf’s algorithm [50]. This algorithm uses the
defining feature of chaos, exponential-time orbital divergence
under small perturbations, to determine the largest Lyapunov
exponent, λ1. In order to show that dynamical chaos can
be recovered from a variable more likely to be observed in
the field, phase space reconstruction was carried out using
prey abundance (m1). The reconstruction was performed
using the time-delay embedding theorem of Takens [51].
An embedding dimension of 6 was chosen by taking the
ceiling of the previous result for the correlation dimension
and the time-delay was approximated using the first minimum
of the automutual information according to the method of
Fraser and Swinney [52] [Fig. 3(a)]. Investigation of λ1 for
a range of parametrizations of prey density-dependence, k11,
shows a change in behavior for k11 � kc ≈ k22 = −0.8 (k22

is the coefficient of predator intraspecific competition) from a
positive to negligible (possibly nonpositive) λ1 value, indica-
tive of a bifurcation to chaos. This demonstrates a potential
route to chaos for this predator-prey system dependent on
the relationship between predator and prey density. The role
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FIG. 2. Log-log plot of the correlation sum as a function of radius
when prey density k11 = −0.5. Horizontal, dashed lines indicate the
bounds of the scaling region, where the log sum is near linear [in
accordance with Eq. (6)] with slope D̂2 = 5.7 ± 0.1 (linear fit given
by dashed line).

of density-dependence in ecological chaos and in population
stability and robustness has been widely supported in theory
and simulation [15,17,32]. This behavior may also represent
an adaptive form of the paradox of enrichment presented in
a highly controversial and influential paper by Rossenzweig
[53] in which destabilization of both populations can result
from lowering the resource restrictions on prey. Transient
chaotic behavior can result from the creation of an unstable
chaotic manifold through the crisis (periodic) or the crisis-like
(quasiperiodic) route to chaos [54]. Steady-state dynamics
following chaotic transients can be periodic, quasiperiodic,
or even include chaotic behavior on a secondary attractor.
Transient behavior can be relatively persistent and can remain

FIG. 3. (a) Normalized, time-lagged mutual information [in bits,
legend given in (b)] for the prey population time series (m1). The
dotted line shows the first minimum (and thus the proposed delay
time) as 3. (b) Estimate of the largest Lyapunov exponent (λ1)
estimated by the Wolf algorithm as the number of iterations (on a
log scale) increases. The legend shows the parametrizations of prey
intraspecific competition corresponding with the color (tint) of the
curve (k11) between −0.9 and −0.4.
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FIG. 4. (a) Transient chaotic behavior in species abundance when
prey intraspecific competition (k11) is −0.9, showing prey (m1—top,
red curve, colored as in Fig. 3) and predator (m2—bottom, magenta
curve) time series. (b) Time-delay reconstruction of a prey trait (x1)
time series (after transient), embedded in three-dimensional space,
exhibiting high-dimensional, nonchaotic (quasiperiodic) behavior.

even after far exceeding the bifurcation value kc [55]. In
addition, the steady state can be sensitive to any perturbations
that could cause the system to reenter a potentially long chaotic
transient again [56]. The behavior of the two species system
for k11 � kc seems to exhibit such chaotic transient behavior
with a quasiperiodic steady state (Fig. 4). The combination of
even the lowest levels of noise and the presence of a chaotic
repellor for k11 < kc could lead a simple predator-prey system
to persist in a chaotic state.

IV. MODEL FIT TO PREY SPECIES DATA

Ecological time series were obtained from work by Mid-
dleton on the European rabbit O. cuniculus, gathered annually
in Norfolk (site B), Eastern lowland Britain, from 1862 to
1932 [34]. The European rabbit has been shown to dominate
the diet of lowland red foxes (Vulpes vulpes) in all seasons.
The rabbit constitutes 74% of mass ingested annually [57].
Figure 5 shows the results of fitting the model using a loose
minimum squared error (SE) approach, on 104 data points
(not including transient) of the simulated prey abundance. The
time series were generated using the parametrizations already
explored. The model was fitted to the data by sampling at
different rates from the model (with a period of between
5TU and 70TU) using a moving window of the same size
as the data set. The least-squares error was then calculated
across all such windows and values of prey density dependence
(k11 from −0.4 to −0.9) to obtain the best fit for the data.

V. NOISE GENERATION AND SPECTRAL COMPARISON
OF MODEL WITH DATA

Pink noise describes a family of random signals termed
colored noise, which contaminate a vast range of real-world
signals, including the majority of ecological time series data
[2,58,59]. The presence of pink noise is characterized by
long-term correlations in the series. It is defined by the inverse
relationship between the frequencies present in the underlying
signal x(t) of the time series and the amount of energy
(variation) present at each frequency, known as the power
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FIG. 5. Model fit (dotted, green curve, colored as in Fig. 3) to
Middleton, O. cuniculus, data (solid) from Norfolk B, 1862–1932,
using a fitted prey intraspecific competition coefficient (k11) of −0.7
and a fitted sampling period of 7TU. These parameters were selected
by windowed least-squares fitting from simulated time series.

spectral density (PSD) of the signal at f , denoted Sxx(f ). The
relationship can be expressed as

Sxx(f ) ∝ 1

f α
, (7)

where 0 � α < 3 is the noise-scaling exponent, which de-
termines the rate at which power drops off with frequency.
Typically, any signal for which 2 > α > 0 is said to be
reddened, while noise where α ≈ 1 is known as pink noise.
In contrast, white noise is a random signal with a constant
power level over all frequencies, i.e., Sxx(f ) ∝ 1. A property
that distinguishes pink from white noise and which makes pink
noise even more interesting from a dynamical perspective is
that pink noise possesses finite fractal dimension dependent
on the value of α. This makes it more difficult to distinguish
from the underlying dynamics with the use of fractal analysis
[3]. This relationship is restricted to 1 < α < 3:

D2(α) = 2

α − 1
.

A method for estimation of the α noise exponent, α̂, in short,
stationary ecological time series was followed, as presented
by Miramontes and Rohani [60]. This method has been used
effectively to identify exponents in series as short as 40 data
points [58]. The standard method utilizes the direct estimation
of PSD via the absolute square of the Fourier Series. However,
a more accurate method for PSD estimation was used here,
the so-called multitaper approach proposed by Thomson [61].
The multitaper method is a nonparametric method of PSD
estimation that reconstructs the spectrum by averaging over
pairwise-orthogonal windowed segments of the original series
(which are thus statistically independent). This method has a
number of advantages over the direct Fourier transform in that
it is not dominated by bias, and the averaging of orthogonal
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FIG. 6. Log-log spectral density (variance in each frequency)
reconstructed from simulated prey population series (m1—color as
in Fig. 3) at a sampling period of 7/TU (totaling 1429 data points
per parametrization), determined by estimation from Middleton data.
Includes spectra from pink noise that has been smoothed (dotted,
magenta curve), by averaging 1000 individual signals, as well as a
single representative realization in solid pink (topmost, solid curve),
both with the same total variance (power) as the model time series with
intraspecific competition (k11) equal to −0.5. Superficially similar
decreasing linear trend between pink and chaotic spectra indicates
variational similarities.

data windows has the effect of smoothing out some of the
noise caused by sample-size limitations. The value of α̂ for the
Middleton data was calculated as 0.948 with a 95% confidence
interval of CI = [0.383,1.51]. In comparison, for the fitted data
α̂ = 1.13 ∈ CI. This suggests agreement at the spectral level,
not just between the model and data but also with previous
results for long ecological series. Spectral similarities persist
for longer, chaotic time series as well.

Simulated pink noise data was generated using the digital
signal generation method produced by Kasdin, and also inde-
pendently by Hoskings [62,63], which relies on convolution of
a white-noise series with a transfer function. In Fig. 6, negative
linear trend dominates in the log-log PSD plots for all chaotic
intraspecific competition (k11) parametrizations. The chaotic
signals mimic the simulated pink noise data in their qualitative
behavior (with comparable trend and slope) at all but the lowest
frequencies where higher variation is present in the pink series;
however, this discrepancy may become difficult to notice in
short ecological series. The shared negative linear trend and
slope in the higher-frequency log spectrum indicates a shared
power-law variance drop-off relationship [see Eq. (7)] between
the chaotic model and noise signals.

A nonparametric method to distinguish chaos from a series
generated by any colored noise process has been proposed by
Kennel and Isabel, which uses a Kolmogrov-Smirnov statistic
derived from simulating the prediction error of a large number
of surrogate data. The surrogate data are based on the original
query series with Gaussian noise added in the frequency
domain [64]. The Kolmogrov-Smirnov statistic should behave

as a standard normal random variable under the null hypothesis
of no difference in generating distribution. Using a prediction
step size of one, this method fails to distinguish our fitted
model time series from colored noise using a two-sided
z test (z = −0.084 > z0.05). This is in comparison with a
value of z = −0.307 > z0.05 for the O. cuniculus field data.
Importantly, it can be shown that certain ecological time series
of predator-prey systems have compositions significantly
different from noise at the 99% confidence level, suggesting
that other processes (e.g., periodic or quasiperiodic dynamics)
dominate the spectrum. Data obtained from historical fur sales
records of the Canadian lynx, L. canadensis, in the MacKenzie
River area of Canada, were obtained for the years 1821 to
1934 [35]. The test statistic calculated for these data was
z = −2.86 < z0.005. This result means that, despite data-size
limitations, the test has sufficient power to detect significant
deviations from colored noise in some cases. Interestingly,
fitting of the Canadian lynx data by the same process as used
for the Middleton data gives a nonchaotic parametrization
of best fit with intaspecies competition, k11 = −0.8 (in the
quasiperiodic region). This demonstrates the potential of
adaptive models to explain different kinds of variation in data.

VI. DISCUSSION

We have presented an eco-evolutionary model inspired by
field ideas in physics that, using sufficiently fast evolving traits
(such as behavioral or other phenotypically plastic adaptations
to predation), can explain some of the complex patterns of
population variability seen in simple ecological systems. As
one of a large class of similar models our model is able to
match the qualitative behavior of specific ecological time series
(O. cuniculus). However, what sets this model apart is that it
demonstrates an instance in which high-dimensional adaptive
models can have variational distributions characteristic of
ecological systems in both the specific and abstract cases.
The characteristic red shift seen in the spectral composition of
our model is consistent with prior results for the majority of
ecological time series and moreover shows that such properties
need not necessarily arise from purely stochastic processes in
ecology. Our findings do not supercede stochastic explanations
but do show how high-dimensional, deterministic ecological
dynamics (based on second-order adaptive dynamics) and
environmental stochasticity could, under certain conditions,
sustain and reinforce each other leading to well-recognized
patterns of complex variation found in ecology.

The role played by intraspecific competition in triggering
a bifurcation to dynamical chaos is notable in that it is
in agreement with previous theoretical and observational
research on the relationship between stability, variability, and
density dependence [15,17,32]. It also shows an alternative
route to an effect similar to the paradox of enrichment
[53], since decreased strain on the prey population leads to
population instability in the prey and the system as a whole.

The combination of an appropriate trait matching and
interaction frequency measure are the key components of an
evolutionary field model. The model and functional forms
we have chosen here were based on previous assumptions
and theories in AD and population ecology and many other
potentially viable field models of the same general form as
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Eq. (2) may exist which might not exhibit the same spectral
properties. However, the versatility of the framework means
that these models might also be made more application
specific, based on the particular selective and demographic
factors appropriate to the ecosystem of interest. However, since
the form of the model is very general it is possible that not
all formulations may behave in a biologically realistic way,
implying a need for functions to be carefully chosen to fit the
biological scenario.

The evolutionary field framework represents a possible
explanation for commonly observed perturbations near to
fitness optima; however, it is a significant departure from
more orthodox AD theories. The most striking difference is a
lack of an explicit selection gradient. The selection gradient is
defined as the local fitness slope, which populations experience
due to the difference in their adaptive traits (taken to be the
mean phenotype in a relatively genotypically homogeneous
population) relative to all other populations in the community
[12,65]. Although effects similar to the selection gradient
might be explained by topological deformations of trait
space caused by an evolutionary field, many of the emergent
phenomena in AD, such as evolutionary branching [66,67],
have yet to be described fully in this context [68,69].

Despite these differences in approach, the principle that
ecological models demand greater capacity for complexity
than has currently been achieved is evident and remains a
major challenge for AD to overcome. The potential for field
thinking in ecology may represent an underlying mechanical
symmetry between ecology and physics and provide a new
conceptual source for classical, game-theoretic models. Such
models could be more easily extended to higher-dimensional
systems, including those with multiple species and traits, with
less fine tuning than is generally required from current adaptive
dynamics approaches.
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APPENDIX: PARAMETRIZATION

The full model parametrization is presented here in a matrix
format similar to the Lotka-Volterra models on which the
population component is based:

1 2 s

K =
⎛
⎝ � −1 2

0.5 −0.8 0
0 0 0

⎞
⎠1

2
s

r =
(−0.002

−0.003

)
1
2, (A1)

μ =
(

1.1
1

)
1
2 T = 0.5 f = −1. (A2)

The � for k11 is a place holder that denotes the changing
value of prey density-dependence (k11) between sections and
figures. Curves (such as spectral and prey density, m1, plots)
derived from simulations where k11 takes on a specific value
have a corresponding color scheme. This color scheme for
k11 is illustrated in Table I with values repeated in the order
they appear. Other colors are specified when considering other
system (or noise model) variables for a specific value of the
density-dependence (k11).
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