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Abstract 

Introduction: Longitudinal viral load monitoring is used as a cross-sectional marker for 

treatment failure in HIV infected people receiving antiretroviral therapy. Cumulative viral load, 

as quantified by area under the viral load curve during combination antiretroviral therapy, has 

been correlated with treatment outcomes in studies outside, but not within, sub-Saharan Africa. 

We investigate the effects of exposure to longitudinal viral load on, the incidence of 

opportunistic infections, mortality and immune recovery in local, previously combination 

antiretroviral therapy naïve, cohorts. Further, we systematically review statistically derived 

immune response models and use this to define priors for Bayesian models for application on 

a previously undescribed treatment cohort.     

Methods: We analyze data from the Infectious Diseases Institute (IDI) cohort, Kampala-

Uganda, and the Antiretroviral Clinic at Tshwane District Hospital in Gauteng-South Africa. 

For the systematic review, we use ‘Preferred Reporting Items for Systematic Review and Meta-

Analyses’ guidelines. We also compare cumulative viral load as numerically estimated using 

two methods: area under the viral load curve, which is then log-transformed, named, 

‘untransformed cumulative viral load’; and area under the log-transformed viral load curve, 

above the kit-based detection limit of 400 copies/mL, named, ‘transformed cumulative viral 

load’. We use Cox Proportional Hazards and Bayesian Generalized Mixed Effects to define 

treatment outcome models.  

Results: In the IDI cohort most recent viral load, not cumulative viral load, is associated with 

a 1.34-fold (95% confidence interval: 1.12, 1.61) increase in the risk of opportunistic 

infections. Transformed, not untransformed, cumulative viral load is associated with mortality 

and immune response. Each log10 copy-yr/mL increase corresponds to a 1.63-fold (95% 

confidence interval: 1.02, 2.60) increase in risk of mortality. Systematic review of immune 

response statistical models also reveals many differences in the number and type of variables 
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adjusted-for, variable transformations and scales and scant details regarding the modelling 

methods employed. In the Tshwane cohort, using Bayesian methods, for the slope of 

longitudinal CD4 counts, each log10 copy-yr/mL increase cumulative viral load corresponds to 

a mean annual CD4 count decrease of -19.5 cells/µL (95% credible interval: -28.34, -10.72). 

Further, in the asymptote model, each log10 copy-yr/mL increase reduced the odds of having a 

CD4 count ≥500 cells/µL to 0.42 (95% credible interval: 0.242, 0.724). Modelling inherently 

variable absolute CD4 count using a Student’s t-distribution produced better fits than assuming 

a Gaussian normal distribution.  

Discussion: Transformed cumulative viral load is associated with both mortality and long-term 

immune response, while most recent viral load is associated with incidence of opportunistic 

infections. This thesis emphasizes the need for the review of existing literature prior to any 

statistical analyses, so that more comparable and robust statistical models than have been 

available to date will be constructed. In particular, comparing immunological outcomes (CD4 

counts), statistical models for sub-Saharan African cohorts would benefit from the application 

of more uniform modelling techniques. Adjusting for transformed cumulative viral load and 

the use of appropriate distributional assumptions, improves the modelling of immune response 

to antiretroviral therapy. Future statistical immune response models would benefit from the use 

of Bayesian methods owing to their flexibility in the selection of prior distributions and 

hierarchical model designs. 
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Opsomming 

Inleiding: Die monitering van longitudinale viruslading word gebruik as 'n biomerker vir 

behandelingsfaling in HIV-geïnfekteerde mense wat kombinasie antiretrovirale terapie 

ontvang. Kumulatiewe viruslading, gekwantifiseer as die area onder die viruslading kurwe 

tydens terapie, is gekorreleer met behandelingsuitkomste in studies elders, maar nie in Afrika 

suid van die Sahara. In hierdie studie word die effek van longitudinale viruslading, insluitend 

die voorkoms van opportunistiese infeksies, sterfte en die herstel van die immuunstelsel in 

plaaslik behandelde pasiënte ondersoek. Verder, word ŉ sistematiese oorsig van statistiese 

immuunrespons modelle uitgevoer. Hierdie resultate word gebruik om Bayesiaanse modelle te 

definieer, vir toepassing op 'n voorheen onbeskrewe pasiënt groep. 

Metodes: Kohorte van die Infectious Diseases Institute (IDI), in Kampala, Uganda, en van die 

Antiretrovirale Kliniek by die Tshwane Distrikshospitaal in Gauteng, Suid-Afrika is 

geanaliseer. Vir die sistematiese oorsig gebruik ons die sogenaamde ‘Preferred Reporting Items 

for Systematic Review and Meta-Analyses’ riglyne. Ons vergelyk ook kumulatiewe 

virusladings beraam met twee numeriese metodes: 1) die log-getransformeerde area onder die 

viruslading kurwe, genaamd 'ongetransformeerde kumulatiewe viruslading'; en 2) die area 

onder die log-getransformeerde viruslading kurwe, bo die toets-spesifieke limiet van deteksie 

van 400 kopieë/ml, genaamd die 'getransformeerde kumulatiewe viruslading'. Ons gebruik 

‘Cox Proportional Hazards’ en ‘Bayesian Generalized Mixed Effects’ om behandelings-

uitkoms modelle te definieer. 

Resultate: Vir die IDI kohort is die mees onlangse viruslading, i.e. die nie-kumulatiewe 

viruslading, geassosieer met 'n 1.34-voud toename (95% vertrouensinterval: 1.12, 1.61) in die 

risiko van opportunistiese infeksies. Die getransformeerde kumulatiewe viruslading is 

geassosieer met sterfte en immuunrespons. Elke log10 kopie/jr/ml verhoging stem ooreen met 

'n 1.63-voud toename (95% vertrouensinterval: 1.02, 2.60) in die risiko vir sterfte. Die 
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sistematiese oorsig van statistiese modelle vir immuunrespons het ook baie verskille getoon in 

die aantal en tipe veranderlikes waarvoor aangepas was, veranderlike transformasies en skale, 

en besonderhede was skaars oor die modelleringsmetodes wat gebruik was. In die Tshwane 

kohort, beraam met behulp van Bayesiaanse metodes, veroorsaak elke log10 kopie/jr/ml 

kumulatiewe viruslading toename 'n gemiddelde jaarlikse CD4-telling afname van -19.5 

selle/μL (95% vertrouensinterval: -28.34, -10.72). Verder, in die asimptootmodel, verminder 

elke log10 kopie/jr/ml toename in viralelading die kans om 'n CD4-telling van meer as 500 

selle/μL met 0.42 (95% vertrouensinterval: 0.242, 0.724). Die modellering van inherente 

veranderende CD4 telling het met behulp van 'n Student se t-verdeling beter modelle 

geproduseer as vir Gaussiese normaal verdelings. 

Bespreking: Getransformeerde kumulatiewe viruslading is geassosieer met beide sterfte en 

langtermyn immuunrespons, terwyl die mees onlangse viruslading verband hou met die 

voorkoms van opportunistiese infeksies. Hierdie proefskrif beklemtoon die vereiste vir ŉ 

oorskou van bestaande literatuur voordat enige statistiese ontledings onderneem word, sodat 

meer vergelykbare en robuuste statistiese modelle gebou sal word as wat tot dusver beskikbaar 

was. Die vergelyking van immuunrespons (CD4-telling) statistiese modelle in antiretrovirale 

terapie sal baat vind by die toepassing van meer eenvormige modelleringstegnieke. Sulke 

modelle is verbeter deur gebruik van getransformeerde kumulatiewe viruslading en meer 

akkurate verdelingsaannames. Toekomstige statistiese immuunrespons modelle sal ook baat 

vind by die gebruik van Bayesiaanse metodes as gevolg van hul aanpasbaarheid in terme van 

verdelings keuses en die implementasie van hiërargiese modelontwerpe. 
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Chapter One 

Introduction and Literature review 

Global and sub-Saharan Africa (SSA) burden of HIV  

 The Human Immunodeficiency Virus (HIV) is arguably the third worst epidemic in the 

history of human kind, after Spanish flu and the Black Plague [3]. Further, at the end of 2013 

SSA had 71% of the world’s 35 million HIV infected population. In the same year there were 

70% of 2.1 million HIV incident cases and 74% of 1.5 million deaths due to Acquired 

Immunodeficiency Syndrome (AIDS) in SSA [4]. According to the World Bank report of 2013, 

HIV/AIDS was the second largest cause of morbidity, and the largest contributor to low 

disability adjusted life years in SSA in 2010 [5]. 

The Impact of combination antiretroviral therapy (ART) on HIV 

 The introduction of ART in HIV-AIDS treatment has dramatically improved patient 

survival [6,7], and socio-economic outcomes in SSA [8]. Between 2004 and 2013, the use of 

ART led to a 39% reduction in AIDS mortality in SSA in spite of low treatment coverage [4]. 

Further, from the beginning of ART scale-up in SSA, the World Health Organization (WHO) 

initiation thresholds have progressively decreased to now immediate initiation [9–11]. This has 

been as a result of accumulating evidence demonstrating improved survival benefits in earlier 

ART initiation [12,13]. This, in turn, has increased the demand for ART in SSA. However, 

treatment naïve HIV-infected people are generally still initiated at very low CD4+ T-

lymphocyte counts (CD4 count) [14–16], due mostly to structural bottlenecks to ART access 

[17]. From a population perspective, initiating and maintaining as many people with HIV on 

ART, given good adherence levels, reduces community viral load and reduces HIV incidence 

[18,19]. 
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The incidence of HIV in SSA has declined since its peak in the early 1990’s [20]. 

However, a number of factors continue to drive it, for example, sexually transmitted infections 

such as herpes simplex virus (HPV-2), multiple sexual partners and paid sex [21], among 

others. A number of HIV prevention strategies do exist but they are only effective when 

implemented as an integrated package [22,23]. For example, ART is effective in lowering HIV 

incidence by decreasing viral load at both individual and population level, however, it may not 

be as effective in the absence of consistent condom use. Using mathematical models, Cori et 

al. [24], have demonstrated that implementing a combination of strategies might reduce HIV 

incidence by more than 60% in SSA. 

The role of biological markers in monitoring HIV 

Normally, people on ART are monitored clinically for opportunistic infections (OIs), 

immunologically for CD4 count response, and virologically for HIV viral load. Viral load 

monitoring, though expensive, is the definitive marker for adherence or treatment failure in 

ART [9,25]. Previous studies of the implementation of viral load monitoring in SSA 

demonstrate mixed cost-effectiveness results [26–30]. However, prior to the expected arrival 

of more affordable point of care viral load tests [31,32], Van Zyl et al. [33] have suggested 

using sample pooling as a means of reducing the cost of viral load testing. Other authors suggest 

using dry blood spots  [34,35]. Pooling involves combining 5 patient blood samples; then, if 

this tests virus-positive each patient sample is tested independently to ascertain the particular 

positive/s. Sample pooling is less expensive than traditional individual viral load testing, but 

its successful implementation is determined  by ART adherence and the proportion of viral 

load suppression in each patient [33].  

Organizations from North America and Europe have been instrumental in subsidizing 

viral load monitoring in SSA countries [36]. However, these organizations have adopted a 
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public health focus on viral suppression as a measure of ART efficacy. For this reason there 

has been a relative decline in interest in CD4 count monitoring [36]. However, in SSA 40% of 

patients initiated on ART develop sub-optimal immune responses [37]. Thus, CD4 count 

monitoring remains important. In spite of the dramatic scale up of ART, the majority of patients 

in SSA continue to initiate treatment at very low CD4 counts [14] and achieving CD4 counts 

>350 cells/µL often only occurs over a long duration [37]. CD4 count testing for such patients 

is also necessary at baseline, to benchmark the immediate risk of OIs and for long term 

monitoring in the event of their exceeding high OI risk thresholds [38–40]. Hemoglobin should 

also be monitored, particularly in the early stages after ART initiation [41], as HIV-infected 

people are at a high risk of anemia with up to a 50% decline in hemoglobin [42].  

Previous studies of CD4 count trajectory after ART initiation have demonstrated a 

sharp increase of CD4 counts within the first two years compared to the period thereafter [43–

45]. This increase during treatment depends on each patient’s ‘baseline’ or initiating CD4 count 

[46]. Other factors also determine the CD4 count trajectory, for example, sex, age, protease 

inhibitor based ART regimen, ART adherence and the nadir CD4 count [43]. In virally 

suppressed people, CD4 increases are usually assured. However, particularly those with low 

baseline CD4 counts are prone to sub-optimal CD4 count recovery on therapy [47]. In a recent 

study of immune response of HIV infected people from East Africa, 40% of people had <350 

cells/µL after 5-years on ART [37]. Protease inhibitors (PI) as first-line were also associated 

with a low risk of becoming sub-optimal, compared to non-nucleoside reverse transcriptase 

inhibitor (NNRTI) based regimens [37]. As the majority of SSA HIV patients are initiated on 

NNRTI, not PI-based regimens, sub-optimal immune response remains a concern [48]. CD4 

count recovery may also vary from country to country due to differing normal CD4 count 

ranges in local populations [49]. 
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CD4 count is a marker for HIV disease progression [50]. In Resource Limited Settings 

(RLS) it has historically been used as part of the criteria to initiate ART and switch patients to 

second-line therapy [25]. However, switching patients to second-line ART using only CD4 

counts has led to delayed switching or missed diagnoses of treatment failure [25,51,52]. As a 

result, the revised ‘test and treat’ public health policy [53] has ended mandatory CD4 count 

measurements at ART initiation. Unfortunately, many HIV patients in SSA present late into 

care [14] and in these a CD4 count test would improve clinical management against, for 

example, Immune Reconstitution Inflammatory Syndrome (IRIS) [54], OIs, and risk of 

suboptimal immune response [37].  

Viral load monitoring in RLS, where available, is used as a cross-sectional measure to 

determine when to switch patients to second-line [55,56], and rarely used as a longitudinal 

measurement of disease progression on ART [57]. Previous studies outside of SSA have 

suggested that cumulative HIV-Viremia, which is the area under the curve of a patient’s entire 

history of viral load measurements, is associated with clinical [58–60] and immunological 

outcomes [60]. Arguably, if HIV disease progression depends on the frequency of detectable 

viral loads, which is often the case, then cumulative HIV-Viremia may be used as a biomarker 

for inflammation, immune activation and associated with mortality. To date, the data of all 

prior cohorts that were analyzed using cumulative HIV-Viremia, were from resource-rich 

settings [58–60]. Generalizing such findings to SSA RLS is questionable as the treatment 

contexts are different. There have been no studies in SSA about the association of cumulative 

HIV-Viremia with the incidence of OIs, mortality and immune response. Further, whether 

cumulative HIV-Viremia is associated with such treatment outcomes depends on our 

understanding of the underlying ART and HIV disease dynamics. It is also dependent on the 

robustness and repeatability of the statistical methods. For example, although there are 
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increasing numbers of peer-reviewed articles describing immune response to ART in SSA, 

there are short comings in the cohesiveness and comparability of these studies. 

1.1 Overall aim: 

To use rigorous statistical methods to investigate the effects of longitudinal HIV viral load 

exposure on immune recovery, mortality and opportunistic infections among previously ART 

naïve patients in SSA. 

1.2 Specific aims: 

1. To compare most recent viral load versus cumulative HIV-Viremia, to predict OIs and 

mortality in an SSA ART cohort. 

2. To conduct a systematic review of statistical, i.e. empirically-defined, models of 

immunological response to ART in SSA, and to define a ‘meta-model’ from this. 

3. To prospectively implement the prior, meta-model resulting from specific aim 2 on the 

data of a previously undescribed SSA cohort, and then compare models with and 

without cumulative HIV-Viremia. 

1.3 Study objectives: 

In chapter two we review published methods used to estimate cumulative HIV-Viremia as a 

prognostic predictor. Further, we determine whether most recent viral load and cumulative 

HIV-Viremia are able to predict incident opportunistic infections and mortality in a SSA HIV 

ART cohort. We use data from a retrospective ART cohort, from the Infectious Diseases 

Institute Kampala, Uganda. We also review existing methods for numerical estimation of 

cumulative HIV-Viremia and compare this with a newly proposed method (cumulative log 

viral load). Further, we analyze time to mortality and incident opportunistic infections using 

Cox proportional hazards regression models corrected for repeated measures using Andersen-

Gill standard errors.  
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In Chapter three we systematically review (SR) statistically-derived immune response models 

of HIV infected patients on ART in SSA cohorts. Further, we then describe and motivate 

methods that might be used to define future multivariate immune response models. In this SR 

we use ‘Preferred Reporting Items for Systematic Review and Meta-Analyses’ guidelines. We 

use ‘Wordclouds’ to identify and quantify the particular covariate sets for each type of 

outcome. We then define ‘prior’ knowledge that can be used to develop more robust statistical 

models in the future.  

In Chapter four we implement multivariate Bayesian immune response models, using that 

prospectively defined in chapter three, to an as yet undescribed SSA ART cohort. Further, we 

then determine whether adjusting for cumulative log viral load provides better model fits than 

the crude model. We determine whether cumulative log viral load is associated immune 

response. We employ data from a retrospective ART cohort of patients from the Tshwane 

District Hospital, Gauteng, South Africa. We apply Bayesian generalized mixed effects models 

to analyze the contribution of cumulative log viral load on determining the slope CD4 count 

and asymptote models. Further, we perform a sensitivity analysis of the model by testing 

distributional assumptions of model parameters.  

 The material in chapter two has been published in American Journal of 

epidemiology, see reference 158. Material in chapter three has been published in PLOS ONE, 

see reference 157. Material in chapter four will be submitted in the near future to an appropriate 

peer-reviewed international journal. 
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Chapter Two  

Reevaluating Cumulative HIV-1 Viral Load as a Prognostic Predictor: Predicting 

Opportunistic Infection Incidence and Mortality in a Ugandan Cohort 

2.1 Introduction 

Antiretroviral therapy (ART) for HIV-infected patients leads to CD4 T-cell count 

reconstitution, HIV RNA Viral Load reduction, reduced burden of opportunistic infections 

(OIs) and prolonged survival [6]. However, some treated patients never achieve complete CD4 

count reconstitution or undetectable Viral Load [45] and consequently experience an increased 

risk of developing drug resistance[61], non-communicable diseases [62] and remain more 

infectious to their sexual partners relative to patients who respond to treatment more effectively 

[63]. 

Although CD4 count is used as a threshold criterion for ART initiation, Viral Load 

better indicates treatment failure, the subsequent need to switch regimens [64] and an 

individual’s infectiousness [65]. High costs have limited use of Viral Load assays in resource-

limited settings to date. However, this is changing with newer, cheaper technology, particularly 

point-of-care assays[66] and techniques like sample pooling [33]. Consequently, many 

countries, including Uganda, are scaling up Viral Load monitoring for all HIV patients on ART 

[67].   

Further, recent research in resource-rich countries suggests new, potentially promising 

applications of Viral Load monitoring. In particular, several studies have found cumulative 

HIV-Viremia to better predict mortality [59,68,69], incident OIs [58,60,70] and immune 

recovery [60] than the most recent Viral Load measurement. These results appear biologically 

plausible given that accumulated exposure to high Viral Loads leads to inflammation, immune 

activation, and other etiological processes [43,59,68]. However, in view of diverse approaches 
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taken in prior analyses we review earlier studies of cumulative HIV-Viremia, investigating the 

consequences of varying assumptions and methodologies. 

We then expand on prior work in several directions: We perform an analysis evaluating 

cumulative HIV-Viremia’s prognostic utility in a resource-poor setting, where disease 

progression is often further along by the time patients receive treatment [71] and where Viral 

Load monitoring is being expanded [33,67]. Based on our review we explore the sensitivity of 

the results to how cumulative HIV-Viremias are accumulated, providing a formal comparison 

between accumulations on the linear vs. the logarithmic metrics. Since health outcomes are 

often observed more frequently than lab measurements, we implement a regression framework 

to estimate the declining prognostic utility of these measurements over time. We also highlight 

the clinical implications of this work and areas for future study. 

2.2 Methods 

Literature Review 

We searched PubMed for publications containing the following keywords: "viremia 

copy-years", "viremia copy years", "cumulative HIV viremia", "cumulative viral load", during 

the period April 2014 until March 2015. We selected all studies in which cumulative HIV-

Viremia methods were employed in analyzing data of HIV infected adults. Nine studies were 

identified as relevant.  

Study setting and population 

The Infectious Diseases Institute clinic is an urban HIV clinic, based at Mulago national 

referral hospital in Kampala, Uganda. A prospective cohort study of 559 HIV-1 patients 

initiated ART between April 2004 and April 2005 following World Health Organization [72]  

and national guidelines [73] (i.e. either CD4 <200 cells/µL irrespective of their WHO stage or 

clinically advanced symptoms), with up to 9 years of follow-up. Participants attended the clinic 
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for an in-depth examination approximately every 12 weeks with CD4 count, Viral Load and 

hemoglobin  measured every other visit [74]. Baseline measurements were measured on the 

day of ART initiation. The primary Viral Load assay used throughout the study had lower and 

upper detection limits of 400 and 750,000 copies/mL, respectively. Despite the occasional use 

of assays with lower detection limits, we censored all measurements below 400 copies/mL for 

consistency. We excluded from the analysis 63 patients who died or were lost to follow-up 

before their second Viral Load measurement (including many who died within the first 12 

weeks of ART [75]) and 7 patients lacking baseline CD4 or Viral Load measurements. Patients 

were also censored after they switched to second line regimens, died or were lost to follow-up. 

14 patients had ART treatment stops due to toxicity and poor adherence. 

Outcomes of interest 

In our first analysis, we investigated predictors of OI risk, coding OI as a binary variable 

indicating the occurrence of ≥1 incident OIs since the last visit, since concurrent incident OIs 

were rare. We did not censor patients after their first incident OI and consequently each patient 

could contribute more than one incident OI outcome to the analysis. We included the following 

OIs: oropharyngeal and esophageal candidiasis, toxoplasmosis of the brain, unexplained 

chronic diarrhea, severe bacterial pneumonia, tuberculosis, herpes zoster, Pneumocystis 

jerovecii pneumonia, cryptococcal meningitis, Kaposi’s sarcoma, prurigo and lymphoma. In 

our second analysis, we investigated predictors of mortality, excluding only cases where the 

stated cause of death was violence or accident. We did not differentiate between AIDS-related 

and non-AIDS deaths (such as e.g. cancer or heart disease) due to our small sample size. 

Lab measurements and the calculation of cumulative HIV-Viremia 

Most recent Viral Load and cumulative HIV-Viremia were the main predictors of 

interest. We avoid the often-used previous nomenclature of “copy-years”, as cumulative HIV-
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Viremia’s unit depends on the method of calculation. Prior studies have calculated cumulative 

HIV-Viremia either by summing the area under the Viral Load curve and then taking the 

logarithm (log cumulative Viral Load) or, more rarely, by summing area under the log Viral 

Load curve (cumulative log Viral Load; Appendix 2.1 table 1, references).  

Calculations were made using the trapezoidal rule [58]. Log cumulative Viral Load 

(time-updated area under the viral load curve) for patient i at their j-th visit was calculated as: 

ଵ,௜௝ܮܸܿ = ଵ଴݃݋݈  ቌ෍൫ݐ௜,௞ − ௜,௞ିଵ൯ݐ

௞ୀ௝

௞ୀଶ

 ×
൫ ௜ܸ,௞ + ௜ܸ,௞ିଵ൯

2
ቍ                                                               2.1 

where ݐ௜,௞ and ௜ܸ,௞ represent the time (in years) and (untransformed) Viral Load measurement 

of the k-th visit, respectively.  

We chose to calculate cumulative log Viral Load as the time-updated area under the log 

Viral Load curve and above 400 copies/ml on the assumption that exposure to virus below this 

detection threshold does not contribute to OI or mortality risk. Thus, the cumulative log Viral 

Load for the i-th patient at their j-th visit to the cohort is given by, 

ଶ,௜௝ܮܸܿ = ෍൫ݐ௜,௞ − ௜,௞ିଵ൯ݐ

௞ୀ௝

௞ୀଶ

×
ଵ଴݃݋݈)  ൬ ௜ܸ,௞

400൰  + ଵ଴݃݋݈  ൬ ௜ܸ,௞ିଵ
400 ൰ )

2
                                             2.2 

We assumed that both cumulative HIV-Viremia measures were 0 at baseline visit. Through 

simulation we determined that using exact inter-visit durations biased survival regression 

coefficient estimates of cumulative HIV-Viremia. Since inter-visit durations were close to 12 

weeks we rounded them to this value (see Appendix 2.1). 

The two metrics produce very different cumulative HIV-Viremia trajectories (Figure 

2.1). Accumulating Viral Load on a linear scale (Log cumulative Viral Load) gives more 

weight to a patient’s largest Viral Load measurements. Summing on a log scale (cumulative 
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log Viral Load) gives more weight to intermediate measurements, such as transient rise in viral 

load, which occur during otherwise successful viral suppression. These two choices are not 

exhaustive: Viral measurements might also be accumulated on other transformed scales. The 

true scale is unknown and presumably dictated by mechanisms underlying HIV pathogenesis 

which, given available measurements, are imperfectly characterized. Consequently, we 

confined our analyses to the above two metrics. We also conducted two sensitivity analyses; 

first, using the WHO threshold for virologic failure (1000 copies/ml) for cumulative log Viral 

Load to account for the potential arbitrariness of the chosen threshold [67,76]; second, only 

analyzing data and accumulating cumulative HIV-Viremia after the 24 week visit. 

Figure 2.1: Comparison of Cumulative HIV-Viremia Derivations for two HIV Patients 

on ART in the IDI cohort, Kampala, Uganda, 2004-2013.  
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Legend: Patients I—full line and Patient II—broken line. 2.6 mark on the y-axis of C) is the log of the 
detection limit of the Viral Load assay: (A) and(C) show two example patients’ viral load and  log 
viral load trajectories, respectively, as a function of time since cohort enrollment (i.e. ART initiation). 
(B) shows the log cumulative Viral Load for these patients, which is calculated by taking the logarithm 
of the time-updated area under the curve from (A). (D) shows their cumulative log Viral Load 
trajectories, which is calculated by taking the time-updated area under the curve from (C). Whether we 
accumulate viremia on a log or linear scale therefore determines which of these two patients we consider 
as having been exposed to the greatest cumulative HIV-Viremia since enrollment by three years. 

 

Statistical Methods 

We regressed time to OI and mortality outcomes against predictors using multivariate 

Cox proportional hazards models, which implicitly account for a temporally varying hazard as 

a function of time since ART initiation [77]. Gender, baseline age, baseline CD4 count and 

baseline Viral Load were included as constant predictors; time-varying predictors included 

most recent CD4 count, hemoglobin, Viral Load and either log cumulative Viral Load or 

cumulative log Viral Load. Viral Loads below 400 copes/ml were modeled as a separate 

categorical variable. While OI acquisition could occur over multiple observation intervals, we 

assumed that a patient’s OI hazard was unaffected by their previous OI history. Since lab assays 

were only performed every other visit, we expected that the prognostic value of lab 

measurements would be greater for the interval immediately following measurement than for 

intervals with a larger time lapse since last measurement. We explicitly estimated this effect 

by including the most recent measurement of each lab predictor as a main effect and as an 

interaction with the time lag since its measurement. Further detail is provided in the Appendix 

2.1. 

Other than the main predictors, most recent Viral Load and cumulative HIV-Viremia, 

we chose to include other covariates as untransformed, log-scaled or categorical based on 

visual inspection of smoothed Martingale residual plots [77] (Appendix 2.1 figure 1). We report 

adjusted hazard ratios and, to account for inter-patient heterogeneity (i.e. in addition to that 
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accounted for by observed covariates), used Andersen-Gill robust standard errors [77] to 

calculate Wald 95% confidence intervals and P-values. By using the Andersen-Gill standard 

errors we avoid the need to specify a full probability model for the data. As a result, this 

precludes between-model comparisons based on likelihood based criterion and any statistics 

requiring a full model (i.e. R2 and related statistics). For lab measurements made every other 

visit, we report adjusted hazard ratios both for the 0-12 week and 12-24 week intervals 

following their measurement. Statistical significance was defined as a P-value <0.05. Statistical 

analysis was done using R language version 3.0.3 (R Foundation for Statistical Computing, 

Vienna, Austria). 

Ethical considerations 

This study and analysis of the data was reviewed and approved by the Institutional Review 

Board of Makerere University and Uganda National Council for Science and Technology (MV 

853). Written informed consent was sought from each study participant at cohort inception. 

2.3 Results 

Of 489 patients analyzed, 69.7% were female, median (IQR) baseline age was 35.3 

years (30.2 – 41.8), baseline CD4 count was 100 cells/μL (30 – 168), baseline viral load was 

5.4 log10 copies/ml (5.1 – 5.8) and follow-up time was 8.3 years (2.3 – 8.8; Appendix 2.1 table 

2). Of the two cumulative HIV-Viremia measures, log cumulative Viral Load exhibited greater 

negative correlation with most recent Viral Load and a greater positive correlation with 

baseline Viral Load and peak Viral Load (Appendix 2.1 table3, Appendix 2.1 figure 2A). 
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Opportunistic Infection Model 

Figure 2.2: Incident Opportunistic Infections versus Viral Load and Cumulative HIV-

Viremia Trajectories for HIV Patients on ART in the IDI cohort, Kampala, Uganda, 

2004-2013.  

 

Legend: Grey lines show each cohort participant’s Viral Load (A) and log cumulative Viral Load (B) 
and cumulative log Viral Load (C) trajectory as a function of time since their cohort enrollment and 
initiation of antiretroviral therapy (ART); Thick black lines show a lowess trend line through these 
trajectories; Circles show the occurrence of an incident opportunistic infections along patients’ 
trajectories. The 2.6 mark on the y-axis of A) is the log of the detection limit of the Viral Load assay. 

 

The majority of incident OIs occurred during the first 2 years after ART initiation, with 

the Viral Loads approaching undetectable levels and the number of incident OIs decreasing 

substantially after 4 years (Figure 2.2). Based on inspection of smoothed Martingale residuals, 

we included hemoglobin, CD4 and baseline CD4 on the log scale, age on a linear scale and 
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baseline Viral Load as a categorical variable as possible predictors of OI occurrence. A 1og10 

increase in Viral Load was associated with a statistically significant greater hazard of an 

incident OI for up to 12 weeks after their measurement (Table 2.1). Neither cumulative HIV-

Viremia measure was a statistically significant predictor of incident OIs. Lower hemoglobin 

levels were a statistically significant predictor of OI risk for up to 24 weeks after measurement.  
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Table 2.1: Opportunistic Infection Model Results among HIV Patients on ART in the 

IDI cohort, Kampala, Uganda, 2004-2013.  

Variable 
Model with cVL1 Model with cVL2 

AHR 95% CI AHR 95% CI 

per log10 increase in VL, log10 copies/ml 
 

  
 

predicting 0-12 weeks ahead 1.28 1.090, 1.500 b 1.34 1.120, 1.610 c 

predicting 0-24 weeks ahead 1.18 0.870, 1.590 1.21 0.969, 1.500 

per log10 increase in cumulative viremia, 

log10 copy-yrs/ml 

 
  

 

predicting 0-12 weeks ahead 0.97 0.859, 1.090 0.78 0.523, 1.150 

predicting 0-24 weeks ahead 1.00 0.905, 1.100 1.00 0.679, 1.480 

per 2-fold increase in CD4 count, cells/µL 
 

  
 

predicting 0-12 weeks ahead 0.90 0.805, 1.000 0.90 0.804, 0.998 a 

predicting 0-24 weeks ahead 0.92 0.759, 1.110 0.91 0.755, 1.110 

per 10% increase in hemoglobin, g/dl 
 

  
 

predicting 0-12 weeks ahead 0.91 0.860, 0.961 b 0.91 0.859, 0.959 c 

predicting 0-24 weeks ahead 0.89 0.805, 0.976 a 0.89 0.819, 0.971 b 

per 2-fold increase in baseline CD4 count, 

cells/µL 0.98 

0.897, 1.070 0.98 

0.898, 1.080 

Baseline viral load, log10 copies/ml     

1st 1   1 

2nd 0.97 0.699, 1.350 0.96 0.692, 1.320 

3rd 1.23 0.871, 1.720 1.20 0.869, 1.640 

4th 1.04 0.725, 1.500 1.01 0.715, 1.420 

Gender 
 

  
 

Female 1   1 

Male 0.78 0.601, 1.010 0.78 0.602, 1.010 

per 10 year increase in baseline age 0.91 0.791, 1.040 0.91 0.791, 1.040 
a Statistical significance: P <0.05; b P <0.01; c P <0.001 

Quartiles: 1st— ≤105.07; 2nd— 105.08 to 105.44; 3rd— 105.45 to 105.77; 4th— 105.78 to 106.15 

ART—Antiretroviral therapy; AHR—Adjusted Hazard Ratio; HIV—Human Immune Virus; cVL1—
log cumulative Viral Load; cVL2—cumulative log Viral Load; VL— Viral Load. Values are adjusted 
hazard ratios and 95% confidence interval for the hazard of acquiring an incident opportunistic infection 
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from multivariate Cox proportional hazard models with cumulative viremia calculated as one of either 
log cumulative Viral Load or cumulative log Viral Load. 

Mortality Model  

Figure 2.3: Mortality versus Viral Load and Cumulative HIV-Viremia Trajectories for 

HIV Patients on ART in the IDI cohort, Kampala, Uganda, 2004-2013.  

 

Legend: Grey lines show each cohort participant’s Viral Load (A), log cumulative Viral Load (B) and 
cumulative log Viral Load (C) trajectory as a function of time since their cohort enrollment and 
initiation of antiretroviral therapy (ART);  Thick black lines show a loess trend line through these 
trajectories; Red-squares and black-triangles show the occurrence of an AIDS-related and non-AIDS-
related mortality on patients’ trajectories, respectively. The 2.6 mark on the y-axis of A) is the log of 
the detection limit of the Viral Load assay. 

 

62 patients died during follow-up, 33 of AIDS specific causes. As with OIs, most deaths 

occurred during the first 2 years after enrollment (Figure 2.3). Again, after examination of 

smoothed Martingale residuals, we included hemoglobin, current CD4 count and baseline CD4 

Stellenbosch University  https://scholar.sun.ac.za



18 | P a g e  
 

count on the log scale and age and baseline Viral Load as categorical variables. Most recent 

Viral Load was not a statistically significant predictor of mortality (Table 2.2). In contrast, 

cumulative log Viral Load but not log cumulative Viral Load was a statistically significant 

predictor of mortality for up to 12 weeks after the most recent lab measurement. Low 

hemoglobin or CD4 counts were statistically significant predictors of high mortality risk for up 

to 24 weeks after measurement. Older age (>55 years) and baseline Viral Load (≥105.77 

copies/ml) were also statistically significant predictors of mortality risk.  
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Table 2.2: All-cause Mortality Model Results among HIV Patients on ART in the IDI 

cohort, Kampala, Uganda, 2004-2013.  

Variable 
Model with cVL1 Model with cVL2 

AHR 95% CI AHR 95% CI 

per log10 increase in VL, log10 copies/ml 
 

  
 

predicting 0-12 weeks ahead 1.38 0.920, 2.050 1.13 0.722, 1.770 

predicting 0-24 weeks ahead 0.98 0.554, 1.750 0.89 0.512, 1.550 

per log10 increase in cumulative viremia, 

log10 copy-yrs/ml 

 
  

 

predicting 0-12 weeks ahead 0.97 0.648, 1.440 1.63 1.020, 2.600 a 

predicting 0-24 weeks ahead 0.98 0.797, 1.220 0.50 0.168, 1.490 

per 2-fold increase in CD4 count, cells/µL 
 

  
 

predicting 0-12 weeks ahead 0.58 0.457, 0.733 c 0.57 0.454, 0.723 c 

predicting 0-24 weeks ahead 0.68 0.491, 0.957 a 0.69 0.514, 0.922 a 

per 10% increase in hemoglobin, g/dl 
 

  
 

predicting 0-12 weeks ahead 0.77 0.703, 0.840 c 0.77 0.702, 0.832 c 

predicting 0-24 weeks ahead 0.72 0.634, 0.815 c 0.73 0.650, 0.817 c 

per 2-fold increase in baseline CD4 count, 

cells/µL 1.08 

0.918, 1.280 1.08 

0.920, 1.280 

Baseline viral load, log10 copies/ml 
 

  
 

1st 1   1 

2nd  1.54 0.697, 3.400 1.51 0.682, 3.330 

3rd 1.35 0.515, 3.530 1.28 0.527, 3.090 

4th 3.94 1.610, 9.640 b 3.62 1.710, 7.640 c 

Gender     

Female 1   1 

Male 1.10 0.578, 2.100 1.07 0.556, 2.050 

Baseline age, years     

≤35 1   1 

36 – 45 1.22 0.676, 2.190 1.29 0.713, 2.340 

46 – 55 1.61 0.766, 3.380 1.71 0.815, 3.600 

≥56 2.94 1.260, 6.860 a 3.02 1.300, 6.970 b 

aStatistical significance: P <0.05; bP <0.01; cP <0.001 
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Quartiles: 1st— ≤105.07; 2nd— 105.08 to 105.44; 3rd— 105.45 to 105.77; 4th— 105.78 to 106.15 

ART—Antiretroviral therapy; AHR—Adjusted Hazard Ratio; HIV—Human Immune Virus; cVL1—
log cumulative Viral Load; cVL2—cumulative log Viral Load; VL— Viral Load. Values give adjusted 
hazard ratios and 95% confidence intervals for the hazard of dying of any cause from multivariate Cox 
proportional hazard models with cumulative viremia calculated either as log cumulative Viral Load or 
cumulative log Viral Load. 

 

Sensitivity analyses 

Changing cumulative log Viral Load to only accumulate Viral Load above 1000 

copies/ml did not qualitatively affect results for either OI or mortality models (Appendix 2.1 

tables 4 and 5). Excluding data prior to the 24-week visit decreased and increased log 

cumulative Viral Load and cumulative log Viral Load’s respective correlations with most 

recent log Viral Load (Appendix 2.1 figure 2B). This sensitivity analysis did not qualitatively 

affect the results of the OI analysis (Appendix 2.1 table 6); however, in the mortality analysis, 

while cumulative log Viral Load remained significant, log cumulative Viral Load additionally 

became statistically significant (Appendix 2.1 table 7).   

2.4 Discussion 

In the data of this Ugandan cohort of HIV-infected patients on ART we found that most 

recent Viral Load, but neither cumulative HIV-Viremia metric, significantly predicted a 

patient’s risk of acquiring a new OI. However cumulative log Viral Load, but neither Viral 

Load nor log cumulative Viral Load, significantly predicted their mortality risk. These 

significant associations persisted for only 12 weeks after the last measurement. In contrast, 

hemoglobin levels predicted risk of acquiring a new OI and both hemoglobin levels and CD4 

counts predicted mortality risk for up to 24 weeks post-measurement. Our sensitivity analyses 

demonstrated that changing the detection limit from 400 to 1000 copies/ml did not qualitatively 

alter the results but that a cumulative HIV-Viremia metrics’ predictive utility is sensitive to the 

inclusion of data within the first 24 weeks after ART initiation.  
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Previous studies have similarly shown that, after adjusting for CD4 count, most recent 

Viral Load is not associated with mortality [43,78,79] (see also Appendix 2.1 table 8). The lack 

of significant association between cumulative HIV-Viremia and OI risk may be explained by 

the early incidence of the majority of OIs in this cohort (Figure 2.2A), as driven by very low 

CD4 counts at ART initiation (Appendix 2.1 table 2) [80]. This cohort was intensely counselled 

regarding treatment adherence, which may explain the substantial reduction in incident OIs 

over time (Figure 2.2A). Since more incident OIs occurred earlier rather than later while on 

ART, they were less likely to be associated with cumulative HIV-Viremia than most recent 

Viral Load. 

Within the 9 studies reviewed in Appendix 2.1 table 1, five studies [58–60,69,70] 

evaluated cumulative HIV-Viremia as a predictor of AIDS. One study [81] evaluated 

cumulative HIV-Viremia as a predictor of non-AIDS defining outcomes and 3 considered 

cumulative HIV-Viremia as a health outcome, regressing it against other predictors [82–84]. 

Among those evaluating AIDS-defining outcomes, 4 studies found statistically significant 

associations between cumulative HIV-Viremia and AIDS-related outcomes [58–60,70] and 

one did not [69]. However, methodological differences as described in Appendix 2.1 table 1 

impede their direct comparability. We highlight these differences noting that, while subtle, they 

fundamentally affect the interpretation of cumulative HIV-Viremia and its relationship with 

health outcomes. We discuss several major characteristics of cumulative HIV-Viremia analyses 

that should be considered during the interpretations below. 

A patient’s cumulative HIV-Viremia summarizes the longitudinal history of Viral Load 

measurements that go back to a specified starting point. Thus, the cumulative HIV-Viremia 

starts from the patient’s first Viral Load reading [81], from ART initiation [60,68,70,84] or 

after a specified delay, for example,  24 weeks [59] or 8 months [69] after initiation. However, 

cumulative HIV-Viremia has also been calculated from the date of sero-conversion [58]. 
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Patients may enter studies at very different time-points post-infection, limiting the 

comparability of these metrics between individuals. Nonetheless, cumulative HIV-Viremia 

could be a useful proxy for treatment success as it reflects viral suppression patterns and the 

frequency, magnitude and duration of viral rebounds. Although, evidence from cellular studies 

suggest that viral replication during chronic infection drives certain aspects of HIV 

pathogenesis [85], cumulative HIV-Viremia accumulated after ART initiation cannot account 

for the association between pre-treatment Viral Load and AIDS-defining outcomes.  

Another consideration includes the scale of accumulation. Eight of the 9 studies 

reviewed accumulated Viral Load on a linear scale (i.e. log cumulative Viral Load [58–

60,68,69,81,82,84]) and  two on a log scale (i.e. cumulative log Viral Load [70,82]). We 

demonstrated (Figure 2.1), that log cumulative Viral Load assigns greater weight to large Viral 

Load measurements while cumulative log Viral Load assigns greater weight to repeated 

intermediate measurements during otherwise successful viral suppression. For this reason log 

cumulative Viral Load is strongly correlated with the peak Viral Load and the Viral Load at 

treatment initiation (Appendix 2.1 table 3), unless the analysis is restricted to data after 24 

weeks post-treatment initiation (Appendix 2.1 figure 2B). In our analysis log cumulative Viral 

Load was also strongly negatively correlated with most recent log Viral Load (Appendix 2.1 

figure 2A) and positively correlated with CD4 count. The greater collinearity between log 

cumulative Viral Load compared to cumulative log Viral Load with other predictor variables 

likely indicates that linear accumulation provides less information regarding characteristics of 

patient Viral Load history than accumulations on the log scale. This is supported by our finding 

that cumulative log Viral Load rather than log cumulative Viral Load was predictive of 

mortality risk. Thus, statistical associations between log cumulative Viral Load and health 

outcomes, as previously found, might be artifacts of confounding as all variables may not have 

been appropriately controlled for (Appendix 2.1 table 1). Alternately such studies, including 
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ours, might underestimate the true magnitude of the effect of log cumulative Viral Load due to 

the difficulty in disentangling the effect of correlated variables. 

In the choice of cumulative HIV-Viremia metric, the log-linear relationship between 

Viral Load and infectivity [86,87] should be considered. HIV infectivity and pathogenesis may 

arise from different mechanistic relationships with Viral Load. However, we are not aware of 

any clinical processes/outcomes that scale linearly with untransformed Viral Load. Indeed, 

many biological processes are log-linear and Viral Loads are commonly evaluated on a log 

scale. In addition, when calculating cumulative log Viral Load, by dividing each Viral Load by 

the Viral Load detection limit before log transformation, we assume that OI and mortality risk 

accumulates only due to detectable Viral Load. Without this approach a patient with Viral Load 

that has been suppressed for a long duration may have a similar cumulative HIV-Viremia to 

one who has a short follow up time but with viral rebounds. We consequently suggest that 

analyses should accumulate cumulative HIV-Viremia on a log scale and include the limit of 

detection.  

Even after the accumulation starting point and scale transformation have been chosen, 

a cumulative HIV-Viremia metric may be included in the statistical analysis in a variety of 

ways. Marconi et al(2009) accumulated patient cumulative HIV-Viremia over the entire 

observation period and then used it as a constant predictor [60]. This amounts to using 

information from the future to predict past events and should be avoided. All other studies 

evaluating cumulative HIV-Viremia as a predictor, including our own, incorporated time-

updated cumulative HIV-Viremia to predict the risk of an AIDS-defining outcome during a 

subsequent observation period. While most studies, including our own, included cumulative 

HIV-Viremia as a continuous predictor variable, both Chirouze et al(2015) and Marconi et 

al(2009) included cumulative HIV-Viremia as a binary variable because continuous measures 

of cumulative HIV-Viremia were not statistically significant in their analysis [60,69]. The need 
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to categorize cumulative HIV-Viremia to achieve statistical significance may indicate that the 

chosen scale of accumulation does not correspond well to an underlying linear relationship 

between cumulative HIV-Viremia and the study outcome. 

As cumulative HIV-Viremia metrics, in particular log cumulative Viral Load, are 

highly collinear with many other covariates that are already well known to predict AIDS-

defining outcomes, covariate adjustment will in large part determine whether any statistically 

significant association is epidemiologically meaningful. This suggests that cumulative HIV-

Viremia analyses should adopt a principled approach to covariate adjustment and avoid 

exclusion of other covariates simply because they are collinear with cumulative HIV-Viremia, 

or because they are not significant in intermediate models, i.e. backward stepwise selection. 

Similarly, Kaplan-Meier curves stratified by cumulative HIV-Viremia or other univariate 

visualizations may also be misleading [68]. Some covariates that are collinear with cumulative 

HIV-Viremia metrics may themselves be better predictors of health outcomes. For instance, 

for studies accumulating cumulative HIV-Viremia starting at ART initiation, log cumulative 

Viral Load is highly correlated with the highest Viral Load post-ART initiation (0.88 in Cole 

et al. [58]; 0.34 here) because patient Viral Loads decline rapidly post-ART initiation and log 

cumulative Viral Load is disproportionately driven by large Viral Load measurements. Further, 

peak viral load may be a good proxy for chronic phase set-point viral load, which plays a known 

role in HIV pathogenesis [43]. Thus, previous findings that log cumulative viral load 

significantly predicts health outcomes may be driven by an association between set-point viral 

load and both log cumulative viral load and the health outcome, rather than a direct role of log 

cumulative viral load. Of the six reviewed studies that evaluate cumulative HIV-Viremia as a 

predictor, only one compared the predictive utility of log cumulative viral load with that of 

peak viral load. The study in question found that peak viral load and log cumulative viral load 

were highly collinear and performed equally well at predicting AIDS-defining outcomes [58]. 
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The accuracy of a patient’s measured cumulative HIV-Viremia is determined by the 

frequency of viral load monitoring and this is important when a patient’s viral load varies 

substantially over time. During chronic untreated HIV infection, set-point viral load s are 

relatively stable [88] and accurate cumulative HIV-Viremia calculations may only require 

fairly infrequent measurement. Viral load trajectories are more variable during the acute, late 

or AIDS phases and for individuals on ART [89]. In treated individuals viral load trajectories 

usually remain below the detectability limit except for occasional short-lived blips that may 

arise from, e.g. imperfect adherence. For such patients, measurements only every few months 

are unlikely to identify blips and if they do, will fail to characterize their duration. Fung et al. 

2012 noted the importance of sampling frequencies to studies of transient rise in viral load. 

cumulative HIV-Viremia, as a summary of a patient’s viral load trajectory, including blips, is 

similarly susceptible to sampling frequency-related biases [90].  

Sampling frequency also affects the interpretation of the prediction interval. The health 

outcome predictive accuracy of viral load and other lab measurements likely, decreases with 

increasing time. Since lab measurements in this cohort were made every other visit, every 24 

weeks, our model explicitly allowed predictor coefficients to change with time following 

measurements. This enabled us to assess the change in their prognostic utility between 0-12 

weeks and 12-24 weeks post-measurement. More volatile variables (e.g. viral load) were only 

statistically significant predictors of a new OI during the first interval. More stable predictors 

(e.g. hemoglobin, CD4 count) remained predictive for the full 24 weeks (Appendix 2.1 figure 

3), with the exception of cumulative log viral load, which may reflect the difficulty in resolving 

its association due to the correlations identified above. We speculate volatility in viral load to 

arise from intrinsic viral dynamics and from the clinician’s or patient’s responses to 

measurements (e.g. increased adherence after a viral blip). 
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Thus, the use of cumulative HIV-Viremia as a prognostic predictor requires caution in 

both design and interpretation. We assume similar considerations apply in studies where 

cumulative HIV-Viremia is used as an outcome. Although we employed systematic strategies 

regarding cumulative HIV-Viremia metrics and the adjustment of covariates, our study does 

possess limitations. Similar to prior studies we were limited to viral load assays with lower and 

upper detection limits. Cumulative HIV-Viremia only approximates the true underlying 

cumulative HIV-Viremia as transient rise in viral load may occur at smaller temporal resolution 

than sampling frequency. We addressed, but did not eliminate, discrepant sampling frequency 

for explanatory and outcome variables. Our study also analyzed a resource-limited cohort with 

substantially lower CD4 counts and higher viral load at enrollment than previous cumulative 

HIV-Viremia analyses. Comparisons between studies should consider these differences. 

Kowalkowski et al(2014) focused on non-AIDS defining diseases [81] which are known to 

result from the accumulation of virus-induced inflammation [91]. However, aetiological 

mechanisms differ greatly within and between AIDS-defining and non-AIDS defining disease 

suggesting that the functional relationships between viral load trajectories and outcomes may 

be variable. Our study had a limited sample size to allow for multiple comparisons, therefore 

we have cautiously interpreted our results bearing that in mind.  

In conclusion, we suggest that future work is necessary before deciding whether 

cumulative HIV-Viremia is indeed a useful prognostic measure in clinical settings. In 

particular, we recommend that future analyses be accompanied by simulations using within-

host models of HIV replication and pathogenesis, in which the underlying parameters are 

known. This would help identify principles for choosing between cumulative HIV-Viremia 

metrics and covariate specification in cohorts with highly variable levels of left-censorship, 

infrequent measurements and collinear variables. 
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Chapter Three 

Systematic review of statistically-derived models of immunological response in HIV-

infected adults on antiretroviral therapy in Sub-Saharan Africa 

3.1 Introduction 

The successful roll out of antiretroviral therapy (ART) in Sub-Saharan Africa 

(SSA) has dramatically improved the survival of Human Immunodeficiency Virus (HIV) 

infected people in this region, which remains a focal point of the HIV epidemic  [92]. In the 

majority of cases, the successful suppression of plasma viral load after ART initiation to below 

detection levels facilitates immunological recovery in the form of rising CD4 (+) T cell counts. 

However, ‘residual viremia’, involving the multiplication of the virus, within for example gut 

reservoirs, may continue even after circulating viral load has been suppressed [43]. As a result 

CD4 cell count depletion may continue in long term treatment [43,93]. Patients particularly at 

risk of secondary opportunistic infections include immune ‘non-responders’ who have low 

CD4 counts in spite of a suppressed viral load [43].  

In resource limited settings (RLS) such as SSA, CD4 counts continue to be used for 

clinical decision making, e.g. when to initiate first-line, switch to second-line ART [11] and to 

benchmark the risk of incident clinical events [38,94]. In this region, patients who fail to reach 

>350 cells/µL after 5 years of ART [37] are common and ongoing immunological monitoring 

is necessary. CD4 count is more affordable than viral load monitoring and continues to be the 

only immunological biomarker recommended by the World Health Organization [10].  

However, as a biomarker, CD4 counts are known to be inherently variable both 

within and between individuals [43,95]. Further, prior multivariate models of CD4 count 

response to ART have employed varying outcome measures and have consequently produced 

inconsistent results [25,44,51,96–100]. This variation in models complicates the effects of 
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inherent variation in CD4 counts and hinders the comparison of immunological responses to 

ART across different cohorts. 

 In this study we systematically review statistical, or empirically-derived rather than 

biological-mechanistic mathematical, models of immunological response (CD4 counts) in SSA 

cohorts. We highlight the similarities, differences and problems associated with the varying 

methodologies with the aim of defining prior knowledge, in the Bayesian sense, for prospective 

modeling exercises in the future.   

3.2 Methods 

Search Strategy 

 The guidelines from the Preferred Reporting Items for Systematic Review and 

Meta-Analyses (PRISMA) (Appendix 3.1) [101]. The search syntax was constructed around 4 

major terms, allowing for small variations within each. These included ‘immune response’, 

‘HIV antiretroviral treatment’ or ‘ART’, ‘Statistical model’, and ‘Sub Saharan Africa’ or 

‘SSA’. Each term was defined based on Medical Subject Heading (MESH) terms or other 

common, published terminology. Online electronic databases were searched using SCOPUS© 

[102], from 1st January 2004 up to 2nd April 2015 (Appendix 3.2). This start date was selected 

as it corresponds to the commencement of ART scale-up  in most of SSA [11]. Only studies 

published in peer-reviewed English-language journals, which existed in all four sets mentioned 

above were selected.  

Study selection 

Abstracts and full-texts of potentially relevant studies were reviewed by JBS and 

ELU. MN provided the deciding vote if consensus was not unanimous regarding the inclusion 

or exclusion of a study. Only studies of immunological response, measured as an outcome in 

any form, after ART initiation in adults were included. Although immune response is not 
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limited to CD4, our searches only returned modeling studies that employed it. Studies were 

excluded where: 1. there was no multivariate statistical model, 2. immune response was 

combined with any other treatment outcome, 3. data was analyzed that contained a combination 

of people from SSA with those from other regions, and 4. immune response prior to ART 

initiation was analyzed.  

 Model outcomes were categorized into 3 general groups, further sub-divided by the 

type of regression used:  

1. the trajectory of CD4 counts within particular time-frames after ART initiation, or 

‘slope’ models, with Generalized Estimating Equations (GEE), and Generalized Linear 

Mixed Effects (GLME), 

2. the time to a particular immune response, or ‘survival’ models, with Cox Proportional 

Hazards (CPH) and  

3. the specified overall gain in CD4 count, or ‘asymptote’ models, with Logistic, Simple 

Linear, Difference-in-Difference, Log-Binomial and Poisson regression.  

Data extraction 

 The following data was extracted from each study: first author, year published, 

country, the sex/es studied, sample size, study design, ART follow-up years, initiating ART 

regimen (if reported), outcome/s analyzed, variable scale transformation methods, criteria for 

model variable/s selection (e.g. statistical methods and/or a priori clinical information), 

assessment of confounding and covariates adjusted for in the final model. For each of the final 

model variables, the unit and scale of measurement, effect sizes, 95% confidence intervals and, 

where available, standard deviations were noted. Effect sizes were rounded off to the nearest 

whole number and 95% confidence intervals and standard deviation to one decimal place. If 
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‘immunologic failure’ was mentioned, we checked if it was defined according to the WHO 

criteria [11].  

Risk of bias was also assessed in each study as follows: Low risk— covariate adjusted for in 

model based on its clinical/biological plausibility; medium risk—covariates included based on 

both biological and statistical significance; and high risk—model employed only statistical 

significance (p-value). The provision by authors of biological reasoning, including references, 

for their covariate adjustments was noted. 

Statistical analysis 

 All data was collated in MS Excel (version 2013) and comparisons made as per the 

tables below. In R version 3.2.2 using package ‘wordcloud’ [103], variables adjusted for in the 

final multivariate models were presented. In wordclouds, the size and color of each word is 

determined by the frequency of its appearance in a list, in this case all covariates adjusted-for 

within a specified outcome. This enabled the comparison of variables with potentially different 

units and/or numeric scales. A minimal frequency cutoff of ≥3 was used to define the 

‘consensus’ set of covariates across all models reviewed.  
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3.3 Results 

Figure 3.1: systematic review flow chart 

 

 

 Of the 615 articles identified 580 were excluded based on the specified inclusion 

criteria (Figure 3.1). Of the remaining 35 the median sample size (and IQR) was 1002 (351-

5448) with follow-up of 2 years (1-5). Across all models, 75 unique covariates were included 

in multivariate analysis, of which 69 were adjusted for in the final models. In the majority of 

cases the effect sizes of covariates were not directly comparable in view of the combination of 

different variables and varying scale transformations methods across models. However, the 

frequency of the occurrence of variables, independent of their scales, enabled the identification 

of a consensus set (Figure 3.2). 
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Figure 3.2: Wordclouds for the categorized immune response outcomes from SSA 

models. 

 

Figure 3.2A: Covariates adjusted for in the final slope models; Figure 3.2B: Covariates 
adjusted for in the final Survival models; and figure 3.2C: Covariates adjusted for in the final 
Asymptote models. The word size and color represents the frequency of covariates, hence the 
larger the size of the covariate, the higher its frequency in the list of adjusted covariates.  

Legend:  Site – location of the study; KSincid – Kaposis’ sarcoma diagnosed after ART start; HBVprev – 
Hepatitis B virus diagnosed at ART start; TBprev – History of TB at ART start; TDFbl – treated with tenofovir 
at ART start; 3TCbl – treated with lamivudine  at ART start; DistanceHC – distance from health center; 
Maritstatus – marital  status of the subject; Season – season of the tear when patient was initiated on ART; 
ALTbl – alanine aminotransferase at ART start; sdNVP – history of single does nevirapine; Parity – number of 
children; CD8bl – CD8 count at ART start; CONSULTratio – cadre levels at health center; Hhassets – 
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possession of any household assets; OralCandida – Oral candidiasis at ART start; ChronDiarrhea – Chronic 
diarrhea at ART start; VLsupress – ever had viral suppression; NNRTIcr – time-updated exposure to either 
nevirapine or efavirenz; NRTIcr – time-updated exposure to d4Tcr (stavudine) or AZTcr (zidovudine) or TDFcr 
(tenofovir) or 3TCcr (lamivudine); CD4preART – pre-ART start CD4 count; VLpreART – pre-ART start viral 
load; PreARTexp – pre-ART exposure; AlcoholCons – consumption of alcohol; DurapreART – duration 
between ART start and diagnosis; duraCD4<200 – duration while CD4 <200 cells/µL before ART start; and 
antiTBstart – patient initiated on anti-tuberculosis medicine. For other variable definitions, please refer to the 
notes below tables 2, 3, and 4. 

For slope models this included, gender, baseline age, baseline CD4 count, baseline WHO stage, 

ART initiating or ‘baseline’ regimen, e.g. efavirenze vs nevirapine, baseline exposure to 

zidovudine or stavudine, ART duration, log viral load, baseline hemoglobin level, baseline 

Body Mass Index (BMI), year of ART start, study site and tuberculosis incidence. For survival 

models: baseline CD4 count, gender, baseline age and either prevalent or incident tuberculosis. 

For asymptote models, gender, baseline age, baseline CD4 count, baseline zidovudine 

exposure, year of ART start, ART adherence, log viral load and baseline BMI. Across all three 

types of models, Sex, Age, baseline log viral load, baseline CD4, ART initiation regimen and 

ART duration count were the most commonly adjusted for covariates and also those most often 

significantly associated with the immunological outcomes (Table 3.1).  
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Table 3.1: The high frequency (≥3) covariates adjusted for in multivariate models 

Description Slope 
models 

Survival 
models 

Asymptote 
models 

Baseline CD4 count 13 7 9 

Sex of the participants 13 5 8 

Age at baseline 13 3 9 

WHO stage at baseline 10 1 1 

Type non-nucleoside reverse transcriptase Inhibitor (i.e efavirenze 
or nevirapine) 

7 1 2 

Initiated on zidovudine at baseline  6 1 4 

Duration while on antiretroviral therapy  6 0 2 

Log10 viral load at baseline  5 2 3 

hemoglobin level at baseline  5 1 2 

Calendar year of ART start  4 1 4 

Body Mass Index at baseline  4 1 3 

Initiated on stavudine at baseline  4 0 1 

Location of treatment program or clinic  3 3 1 

Incident tuberculosis diagnosis after ART start  3 3 1 

History of TB at baseline 2 3 0 

Antiretroviral therapy adherence  2 1 4 

Notes: 
‘Baseline’ - Refers to the measurement at ART initiation 

 

 Differences were found in the estimation of effect sizes and residuals across all 19 

slope models (Table 3.2, below). Two authors reported using GEEs without additional details 

[96,104]. Hermans et al. 2010 used a GEE with robust standard errors and exchangeable 

correlation matrix [99].  Hawkins et al. 2011 applied GEE with step-wise restricted cubic 

splines to fit the non-linear CD4 count response [105]. Sudfeld et al. 2012 and Sudfeld et al. 

2013 used GEE with restricted cubic splines and an m-dependent correlation matrix [106,107]. 

Hardwick et al. modeled slope of CD4 count using a GEE model with type 3 sums of squares 

and variance correction to correct for longitudinal CD4 count time points [108].  Boullé et al. 

2013, Velen et al. 2013, Schomaker et al. 2013, Hamers et al. 2012, and Hamers et al. 2013 

used GLMEs of slope of CD4 count [109–113]. Maman et al. 2012 and Reda et al. 2013 used 

GLME with random intercept and coefficients, while the former extended this by adding a 

second degree polynomial for time on ART [114,115]. Maskew et al. 2013 used GLME with 
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random slope and intercepts and specified an unstructured correlation matrix for repeated 

measures [116]. Mayanja et al. 2012 and Wandeler et al. 2013 used a GLME with functional 

polynomials [97,117]. Sarfo et al. 2014 used GLME with a log-link and assumed a Poisson 

distribution for CD4 count response [118], while De Beaudrap et al. 2009 applied a non-linear 

mixed effects model [119]. Vinikor et al 2014 used analysis of covariance (ANCOVA) [120].  
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Table 3.2: ‘Slope’ models of CD4 count trajectory in SSA  

Authors Location Period Study 
size 

End point Significant covariates 

Hermans et al. 2010 [99]  Uganda 2003-09 5982 Mean CD4 count  change from 
baseline 

TBincid, CD4bl, sex  

Peterson et al. 2011 [104]  The Gambia 2004-09 359 Mean CD4 count  change from 
baseline 

LogVLbl, CD4bl, ARTdura 

Hawkins et al. 2011 [105]  Tanzania 2004-08 12842 Mean CD4 count  change between 
visits 

Sex 

Mayanja et al. 2012 [117]  Uganda 2004-09 88 Mean CD4 count response ARTdura, Pregnancy and their interaction, CD4preg, 
TIMEpreg 

Sudfeld et al. 2012 [107]  Tanzania 2006-10 875 Mean CD4 count  change between 
visits 

None reported 

Hardwick et al. 2012 
[108] 

Ethiopia and Tanzania No details 1002 Mean CD4 count response Beta-defensin 

Maman et al. 2012 [114]  Malawi, Uganda, Kenya 2001-09 12946 Mean CD4 count response Sex, site, Agecr, CD4bl 

Maskew et al. 2013 [116]  South Africa 2008-09 232 Mean CD4 count  change from 
baseline 

Sex, CD4bl, Agecurr 

Sempa et al. 2013 [96]  Uganda 2004-12 356 Mean CD4 count  change from 
baseline 

Sex, CD4bl, log VLbl, AZTbl, ARTt, HBcr 

Boullé et al. 2013 [109]  Cameroon 2006-10 459 Mean CD4 count response Sex, Agebl, logVLbl, ARTdura 
Reda et al. 2013 [115]  Ethiopia 2005-10 1540 Mean CD4 count response ARTdura 
Sudfeld et al. 2013 [106]  Tanzania 2006-09 2145 Mean CD4 count  change between 

visits 
None reported 

Velen et al. 2013 [110]  South Africa 2007-2009 6196 Mean CD4 count response d4Tcr, AZTcr, TDFcr 

Wandeler et al. 2013 [97]  Southern Africa No details 72597 Mean CD4 count response AZTcr 

Schomaker et al. 2013 
[111]  

South Africa 2003-10 15646 Mean CD4 count  change between 
visits* 

Sex, TBincid, CD4bl, Agebl, WHOst 

Sarfo et al. 2014 [118]  Ghana 2004-10 3990 Gains in CD4 count CD4bl, Agebl, YrARTstart, Sex, WHOst, NRTIbl, 
NNRTIbl, ARTdura 

Vinikoor et al. 2014 [120]  Zambia 2004-10 43152 Mean CD4 count  change from 
baseline 

Agebl 

Hamers et al. 2012 [112]  Kenya, Nigeria, South 
Africa, Uganda, Zambia, 
and Zimbabwe 

2007-09 2439 Mean CD4 count response ARTresist 
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Hamers et al. 2013 [113]  Zambia and South Africa 2007-08 1127 Mean CD4 count response None reported 

De Beaudrap et al. 2009 
[119]  

Senegal 1998-07 346 Mean CD4 count response** CD4bl, and logVLbl 

*cells/µL per 6 months; **Square root cells/µL 

Note: site – study location; Agebl – baseline age; Agecr – current age; WHOst – baseline WHO stage; Log10VLbl – baseline Log Viral Load; CD4bl – baseline CD4count; HBcr 

– current hemoglobin level; YrARTstart – year of ART start; ARTdura – duration on ART; AZTbl exposure to zidovudine at baseline; NRTIbl – exposure to d4Tbl (stavudine) 
or 3TCbl (lamivudine) at ART start; NNRTIbl – exposure to either efavirenze or nevirapine at ART start; ARTresist – pre-ART drug resistance; TBincid – Incident tuberculosis 
diagnosis after ART start; TIMEpreg – duration between pregnancies; CD4preg – whether CD4 count was taken during pregnancy; 

 

Table 3.3: ‘Survival’, or time-to immune response, models in SSA  

Authors Location Period sample 
size 

End point * (criteria) Significant covariates 

Assefa et al. 2014 [100]  Ethiopia 2007-11 400 Time to immunologic failure (4) Sex, CD4bl 

Kigozi et al. 2009 [121]  Uganda 2002-06 427 Time to CD4 increase ≥50 cells/µL nonAIDS, CD4bl, ARTadhere, TLCbl 

Palladino et al. 2013 [122]  Mozambique 2002-06 142 Time to immunologic failure (4) CD4bl, Log10VLbl 

Alemu Melsew et al. 2013 
[123]  

Ethiopia 2007-12 509 Time to immunologic failure (4) Recurrpneum, Employed, WEIGHTch, CD4bl 

Teshome et al. 2014 [124]* Ethiopia  2004-12 268 Attain α, (4) CD4bl 
Hawkins et al. 2011 [105]  Tanzania 2004-08 762 Time to immunologic failure (1, 2, 3, & 4) Sex 

Mudiope et al. 2013 [125]  Uganda 2003-11 289 Time to immunologic failure (4) CD4bl 
*WHO criteria; 1) CD4 cell count falls below baseline in the absence of other concurrent infections, 2) CD4 cell count falls to less than 50% of peak levels without coexistent 
infections, or 3) CD4 cell count is persistently below 100 cells/µL, or 4) Any one of the 3 criteria above 

Note: Log10VLbl – baseline Log Viral Load; CD4bl – baseline CD4count; TLCbl – baseline total lymphocyte count; ARTadhere – Antiretroviral therapy adherence; 
WEIGHTch – change in weight from baseline; Recurrpneum – recurrent pneumonia; Employed – employment status; nonAIDS – AIDS or non-AIDS defining conditions 
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More similar methods were employed in Survival and Asymptote models to 

estimate effect sizes and their residuals. In survival models, six out of seven models estimated 

effect sizes using CPHs [100,105,121–123,125] and Teshome et al. 2014 used a stratified-CPH 

[124] (Table 3.3, above). Four variants of asymptote models, were found: 1. Factors associated 

with reaching a particular threshold CD4 count or not, analyzed using multivariate logistic 

regression [97,99,120,126–129]; 2. Overall change in CD4 count, using multivariate linear 

regression [98,104,130,131]; 3. Maskew et al. 2013 assumed the outcome followed a log-

binomial distribution [132]; and 4. Takuva et al. 2012 assumed a Poisson distributed with 

robust standard errors [133], see Table 3.4, below. 
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Table 3.4: ‘Asymptote’ models in SSA  

Authors Location Period sample 
size 

End point Significant covariates 

Anude et al. 2013 [126]  Nigeria 2008-09 596 CD4 count increase ≥50 cells/µL Sex, Agebl,  

Efraim et al. 2013 [129]  Tanzania 2009-11 351 Attain α, (1, 3)  Schistosome, BMIbl, CD4bl, EDUClevel 

Hermans et al. 2010 [99] Uganda 2003-09 5982 Attain α, (4)  TBincid, CD4bl, AZTbl 

Diabaté et al. 2009 [127] Ivory coast 2005 303 CD4 count increase ≥50 cells/µL ARTadhere, TLCch 

Wandeler et al. 2013 [97]  South Africa, 
Botswana, Zambia, 
and Lesotho 

No details 14529 Attain α, (4) AZTcr, sex, Agebl, CD4bl, HBbl, YrARTstart, 
Monitorstrat 

Maskew et al. 2013 [132]  South Africa 2001-08 8676 CD4 count increase ≥50 cells/µL or 
≥100 cells/µL 

None reported 

Nglazi et al. 2011 [128]  South Africa 2002-08 3162 CD4 ≤200 cells/µL at week 48 Sex, Agebl, CD4bl, VLbl 

Vinikoor et al. 2014 [120]  Zambia 2004-10 43152 Attain CD4 count ≥350 cells/µL Agebl 

McKinnon et al. 2010 [131]  Kenya 2005-11 60 Overall change in CD4 count CD4nadir  

Alemu et al. 2012 [130] Ethiopia 2009-10 1722 Overall change in CD4 count Depression, SOCIALsup 

Crawford et al. 2015 [98]  Uganda 2011 325 Overall increase in CD4 count CD4cr, ARTdura, Agebl, CAREsatisf, and TLCch HBch 

Peterson et al. 2011 [104]  The Gambia 2004-09 359 Overall increase in CD4 count HIVsubtype, ARTdura, and their interaction 
Takuva et al. 2012 [133]  South Africa 2004-09 1499 CD4 count increase ≥50 cells/µL None reported 

* Case-control study; αWHO criteria;  
1.CD4 cell count falls below baseline in the absence of other concurrent infections, or  
2.CD4 cell count falls to less than 50% of peak levels without coexistent infections, or 
3.CD4 cell count is persistently below 100 cells/µL, or  
4 Any one of the criteria above 
Note: Agebl – baseline age; BMIbl – Body Mass Index; EDUClevel – level of education; CD4bl – baseline CD4count; CD4cr – current/most recent CD4 count; HBbl – 

hemoglobin level at ART start; HBch – change in hemoglobin; YrARTstart – year of ART start; ARTdura – duration on ART; AZTbl – exposure to zidovudine at baseline; 
AZTcr – current exposure to zidovudine; TBincid – incident tuberculosis; TLCch – change in total lymphocyte count; Monitorstrat – monitoring strategy (clinical or 
immunological or virological); Depression – symptoms depression while on ART; SOCIALsup – perceived social support; CAREsatisf – patient satisfaction with care; 
CD4nadir – nadir CD4 count; HIVsubtype – HIV-1 subtype 
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For criteria used to select covariates for final multivariate models and assessment 

for confounding (table 3.5 below), 9 studies reported using significance cutoffs ranging from 

0.05 to 0.25, and biological plausibility, i.e. the causal association between the immune 

response and the covariate, to generate this list of covariates [96,99,107,109,121,124–126]. 

Three authors used only statistical significance (p-values) as a basis for covariate selection in 

multivariate analysis [112,113,127]. Four of the above 12 studies employed step-wise 

regression [99,112,113,126], and two used step-wise regression and ‘prior’ reasoning to arrive 

at their final multivariate model [106,109]. Mayanja et al. 2012 listed model assumptions based 

on biological CD4 dynamics [117] and Sudfeld et al 2013 referred to prior studies [106]. Only 

two studies assessed covariates for confounding [108,116]. 
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Table 3.5: Summary of different multivariate immune response modeling methods in 

SSA 

 

  

Author Criteria for selecting variables 
into the multivariate model 

How they arrived at 
the Final model 

Confounding 

Biological 
plausibility 

Cutoff 
used 

Cutoff Stepwise 
selection 
only 

Step-
wise and 
a priori 

Assessed 
confounding 

Anude et al. 2013 [126]   0.20  0 0 

Assefa et al. 2014 [100]   0 
 

0 0 0 

Efraim et al. 2013 [129]   0   0 0 

Hermans et al. 2010 [99]    0.20  0 0 

Kigozi et al. 2009 [121]    0.05 0 0 0 

Maman et al. 2012 [114]   0 
 

0 0 0 

Maskew et al. 2013 [132]   0 
 

0 0 0 

Maskew et al. 2013 [116]   0 
 

0   

McKinnon et al. 2010 [131]   0 
 

 0 0 

Palladino et al. 2013 [122]  0 0 
 

0 0 0 

Reda et al. 2013 [115]   0 
 

0 0 0 

Sempa et al. 2013 [96]    0.20 0 0 0 

Sudfeld et al. 2012 [107]    0.20 0  0 

Teshome et al. 2014 [124]    0.05 0 0 0 

Velen et al. 2013 [110]   0 
 

0 0 0 

Alemu Melsew et al. 2013 [123]  0 0 
 

0 0 0 

Alemu et al. 2012 [130]  0 0 
 

0 0 0 

Boullé et al. 2013 [109]    0.25 0  0 

Crawford et al. 2015 [98]  0 0 
 

 0 0 

Diabaté et al. 2009 [127]  0  0.25 0 0 0 

Hamers et al. 2012 [112]  0  0.10  0 0 

Hamers et al. 2013 [113]  0  0.15  0 0 

Hardwick et al. 2012 [108]   0 
 

0   

Hawkins et al. 2011 [105]    0.20 0 0 0 

Mayanja et al. 2012 [117]   0 
 

0 0 0 

Mudiope et al. 2013 [125]   0.20 0 0 0 

Peterson et al. 2011 [104]   0 
 

0 0 0 

Sarfo et al. 2014 [118]   0 
 

0 0 0 

Sudfeld et al. 2013 [106]   0 
 

0 0 0 

Vinikoor et al. 2014 [120]   0 
 

0 0 0 

Wandeler et al. 2013 [97]   0 
 

0 0 0 

Nglazi et al. 2011 [128]   0 
 

0 0 0 

Takuva et al. 2012 [133]  0 0 
 

0 0 0 

Schomaker et al. 2013 [111]   0 
 

0 0 0 

De Beaudrap et al. 2009 [119]   0   0 0 
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3.4 Discussion 

This study systematically reviewed recent statistical or empirically-defined models 

of CD4 count response in HIV-infected adults on ART in SSA.  The aim was to arrive at a set 

of model covariates and outcomes that might allow the comparison of modeling results between 

cohorts. From the studies reviewed, Sex, Age, baseline log viral load, baseline CD4, ART 

initiation regimen and ART duration were the most commonly adjusted covariates and also 

those most often significantly associated with the different metrics of immune response across 

all models reviewed. Many permutations were found, in fact, the majority of the models were 

different with respect to variable transformations and scales, varying model assumptions, 

modeling strategies, model reporting methods and the use of different covariates, even if the 

same outcomes had been studied.  In particular: 

 In the CPH models studied, authors did not adjust for time-updated variables [121–

123,125]. It was assumed that patients remained on their initiation regimen throughout the 

period of follow-up. It is known from studies of ART regimen durability and tolerability that 

drug toxicity will often occur in the period soon after initiation, necessitating drug substitutions 

[134,135]. Such switches are obviously important in understanding CD4 responses, particularly 

if more potent drugs are subsequently employed. ‘Joint’ time-to-event and longitudinal (or 

repeated) measure models may be used for time-updated covariates, in which a 2-phase process 

involves combining the model/s of the endogenous longitudinal covariate/s with a CPH model 

[136]. 

 All seven studies which analyzed time to immunological failure did so for only the 

time to the first failure episode [100,121–124]. However, it has been conjectured that multiple 

failures may actually occur and be hidden by the normal variability seen in adult CD4 counts 

[95]. CPH models are not appropriate for multiple failure-time points since the outcome 
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terminates after the first event. Further, the assumption of the independence of outcomes is 

violated since events within an individual are correlated [137]. Corrections to such models for 

correlated failure time points have been implemented in the form of Andersen-Gill, Marginal 

Wei-Lin-Weissfeld or Prentice-Williams-Peterson methods [77,137]. If multiple episodes of 

immunologic failure are present, as defined by the WHO criteria, then the Andersen-Gill 

method would appear to be a good choice [77].  

 In selecting regression methods, considerations regarding covariate distributions 

and the mathematical assumptions regarding their relationship/s with the outcome are 

important. These assumptions can be tested a priori using the dataset at hand. Only 4 of the 

studies reviewed  indicated that such tests had been used to confirm that the particular 

covariates fulfilled the model assumptions [98,106,115,124]. If the assumptions are violated it 

is not possible to estimate the effect of the covariates on the outcome with both precision and 

accuracy [138].  

 Six studies used GEEs to model the slope of the CD4 count response. Three defined 

the outcome as the change in CD4 count from baseline, i.e. from ART initiation [96,99,104] 

and the others used the change in CD4 count between each subsequent visit [105–107]. Of the 

11 studies that used GLMEs, 2 used the increase from the baseline as outcome [115,116], one 

used change in CD4 count between  subsequent visits [110] and 8 used absolute change in CD4 

counts over time [97,108,109,111–114,117]. Only one study used non-linear mixed effects 

regression [119]. Selecting either GEE - population averaged effects, or GLMM - individual 

averaged effects, is possible using tests of assumptions regarding the underlying mechanisms 

of CD4 count response [139].  CD4 counts vary due to both individual patient characteristics 

and laboratory procedures [140–142]. Given the individual effects, GLMEs may be preferable 

to GEEs in this context. Non-Linear Mixed Effect models (NLMEs) may also be used since 

they take into consideration mechanistic biological assumptions and both the underlying 
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subject-specific longitudinal responses (CD4) and the variation of these across the study group 

over time [139]. 

 Sarfo et al 2014 [118] modelled CD4 count response using a GLMM with a Poisson 

distribution. Baseline CD4 counts, being female, increasing ART duration and baseline WHO 

stage (stage 1 and stage 2) where associated with increasing CD4 counts, while initiating ART 

on efavirenz and zidovudine based regimens and higher baseline age were associated with 

decreasing CD4 counts. These results apparently support prior studies [43,45]. However, the 

incident rate ratios (IRR) in their final model were close to null. The Poisson distribution 

assumption may have biased the results towards the null and presumably explains their 

rounding off IRR to 3 decimal places of [118]. The Poisson model assumes that the probability 

of the occurrence of any two events ݔ)݌ ∩  is negligible, and the probability of the (ݕ

occurrence of an event (ݔ)݌ is constant throughout the interval,  In [118] the sampling .ݐ∆

frequency for CD4 count was 6 monthly, thus, the probability of having another CD4 count 

measurement was never negligible. Further, the probability of increasing CD4 counts 

throughout the sampling interval is variable due to adherence, opportunistic infections, and 

drug resistance [90]. 

 There was also variation in approaches to adjustment for confounding between 

covariates. Confounding usually refers to a ≥10% change in the coefficient estimate of the main 

predictor after adjusting for the effect of a covariate [138]. It does not relate to the significance 

of the p-values for covariates in the model. Four studies did not report the criteria used to select 

covariates to be adjusted for in the multivariate models [122,123,130,133]. In others 

[119,121,124,129], covariates were excluded from the final model since they were not 

statistically significant. This practice may exacerbate confounding [143,144].  Directed Acyclic 

Graphs (DAGs) can be used as a non-statistical modeling strategy for multivariate analysis 

[145]. Such causal diagrams, which are based on clinical or biological assumptions, are useful 
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for deciding on the minimal set of covariates to adjust for (we discuss this further in appendix 

3.3 using the model described in Chapter 2). Some studies [100,123,125,126,129] did not adjust 

for covariates, such as age and baseline CD4 count, even if appropriate data had been collected. 

Prior reviews by Pinzone et al 2012 [43] and Corbeau et al. 2011 [45] have shown that both 

baseline age and baseline CD4 count are associated with immunological response to ART.  

 Covariate scale transformations were reported to have been assessed in only five 

studies [97,107,108,115,117]. Others, report a square root transformation of CD4 counts 

[97,115,119]. Variable transformations are obviously important in meeting the distributional 

assumptions of the model/s [138]. Reda et al. [115] investigated a wide range of variable 

transformations for all variables in their model, while Sudfeld et al 2012 [107] transformed 

only the main predictor—Vitamin D levels. Other studies employed  polynomial 

transformations of time on treatment [97,108,117] or regression splines on time [105–107,111]. 

Graphical inspection of the effect of covariate transformation are possible prior to modelling, 

while statistical tests such as Akaike’s Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC) are useful afterwards [146]. It is also possible to apply Martingale 

residuals [77] for CPHs. Caution is always required in variable transformation since, for 

example, categorizing continuous variables may result in residual confounding [147,148]. 

Further, the interpretation or translation of results into practice becomes problematic as it is no 

longer direct.  

 In terms of model validation, only 5 out of 34 studies provided goodness of fit 

metrics. These included the AIC [98], Hosmer-Lemeshow test [126], and the Log-likelihood 

ratio [114,115,128] goodness of fit tests. Other possible techniques include cross-validation, 

i.e. regressing the model on the training dataset to see if it still predicts the outcome, and 

graphical methods, i.e. analyzing whether model residuals are random by plotting predicted 

versus observed values. Without such validations there is a risk of overfitting to data [138]. 
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Similarly, the dissemination of results also has a bearing on the comparability of models. Six 

studies reported only p-values without beta coefficients or confidence intervals [105–

108,129,131] and two studies reported only model coefficients and p-values [117,129]. Ideally, 

both model coefficients and confidence intervals should be reported. Significant p-values 

continue to be commonly employed in modeling practice, but these do not indicate clinical 

significance nor the precision of parameter estimates [149]. 

 Criticism of routine CD4 monitoring in ART has occurred due to the innate 

biological variation in these counts [95]. However, the value of such criticism seems 

questionable when it is presented in the absence of suggestions for alternatives, particularly 

given the fact that HIV is a disease which targets the immune system. Arguably, the limitation 

of immunological monitoring to only CD4, particularly in SSA, has been based more on 

considerations of public-health affordability than individual patient welfare. Alternative 

biomarkers, though considered as indirect immune markers [93], have existed for some time, 

including among others: Natural Killer (NK) cells, which secrete interferon activating 

macrophages, which in turn feed off infected and stressed cells and Plasmacytoid Dendritic 

Cells, which secret type-1 antiviral  interferons [93]; β-defensins, which aid in the production 

of NK cells have also been associated with immunologic response [108,150]; and Co-

stimulatory CD28 or co-inhibitory cytotoxic T-lymphocyte antigen 4 proteins, which are 

expressed by all  T-cells in HIV infected people [43,93,151]. The possibility obviously exists 

to use a combination of CD4 and alternative biomarkers to provide a robust description of the 

immune system in ART. 

 This study has limitations. Publication bias may be present in view of the inclusion 

of only studies published in peer reviewed journals. While specified in the inclusion criteria, 

only statistical or empirically-derived models were reviewed. This excluded those originating 
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in mechanistic biological theory but did include those expressly incorporating assumptions 

regarding biological causality. All data collected regarding the models was contingent on the 

information provided in each study, and based on the assumption that these models should be 

reproducible using other similar datasets. In comparing the frequency of variables across 

models, we used a threshold of >3 which may have excluded ‘rare’ covariates in SSA cohorts. 

Only a small number of studies analyzed covariates on comparably transformed or 

untransformed scales. This negated the possibility of a meta-analysis, i.e. direct quantitative 

comparisons, since the models adjusted for varying sets of covariates. This situation may be 

understandable in terms of the facts that certain studies aimed at elucidating particular 

treatment effects, and that authors are incentivized to publish unique results.  

In conclusion, for purposes of comparing immunological, i.e. CD4 count, outcomes across 

cohorts in SSA, statistical models would benefit from the application of more uniform 

modelling techniques. The value of the historic models to public health in SSA is questionable 

since the modeling was apparently performed in the absence of a priori comparisons across 

studies. That is, since such efforts have produced results that are anecdotal to individual cohorts 

only. However, this study was able to define ‘prior’ knowledge, in the Bayesian sense. 

Qualitative and semi-quantitative, rather than quantitative and completely comparable effect 

sizes, for variables in models of immunological response to ART were defined. Such 

information has value in terms of prospective modeling efforts in the future. 
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Chapter Four 

A Bayesian interpretation of immune response to antiretroviral therapy in resource 

limited South African settings using cumulative HIV log Viral Load 

4.1 Background 

This chapter uses the defined ‘slope’ and ‘asymptote’ models as described in chapter 3. 

Reproducible methods for model building are used to define immune response models which 

are then prospectively employed on the data of an as yet undescribed HIV-cohort from South 

Africa. Linear mixed models are employed with specified parameter distributions (qualitative 

effect sizes) and estimated informative priors (semi-quantitative effect sizes) from the reviewed 

models. We also adjust for some of the covariates listed in table 3.1. We use the definition of 

transformed cumulative log viral load (i.e. cumulative log viral load), from Chapter 2, to define 

and adjust for this variable in our analysis. 

4.2 Introduction  

The roll out of effective combination antiretroviral therapy (ART) has markedly 

improved the survival of sub-Saharan African (SSA) Human Immunodeficiency Virus (HIV)-

infected populations [6]. However, resource-poor settings have been characterized by late 

initiation of ART [14] and limited ongoing immunologic or virologic monitoring [152,153]. 

Since thymic CD4+ T-cell production declines with age [154], HIV-infected people are likely 

to have difficulty in recovering the CD4+ T-cell quantities destroyed by the direct and indirect 

effects of chronic viral infection [155]. Further, in part due to its recent roll-out in SSA, the 

long term immunological consequences of ART remain incompletely understood [43,93,156].  

Statistical modelling of the relationship of HIV viral load to CD4 counts holds 

challenges [145]. Mechanistic models, which make particular assumptions regarding 

underlying biological processes, have mostly been used for this purpose [157]. In a previous 
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review of statistical models of immune response to ART in SSA we revealed an immense 

diversity in the methodologies employed [2]. Previous studies demonstrated that the 

distribution of CD4 counts is not normally distributed, i.e. right-skewed [140–142]. Despite 

this, assumptions of Gaussian normality were common [2]. This may in part have been due to 

the applied software requiring this assumption. Bayesian methods in combination with Markov 

Chain Monte Carlo (MCMC) computational techniques allow for more flexibility than 

Frequentist estimation methods, for example, alternative distributions to Gaussian normals. In 

addition, prior information can be included into the model and posterior outputs provide direct 

statements regarding the unknown model parameters. For a general overview of the Bayesian 

methodology please refer to Lesaffre and Lawson 2012 [149] and Gelman 2014 [158].  

Cumulative HIV-1 Log viral load (cumulative log viral load), is a readily definable 

predictor [1].  It involves the numerical summation of the area under the log viral load curve 

above the viral load detection limit. It can be used as an indicator of long-term in vivo exposure 

to a detectable virus. We previously found that cumulative log viral load  was associated with 

mortality [1]. Few studies have investigated it as a covariate associated with immune response. 

Marconi et al 2011 [60] used log cumulative viral load (i.e. log of total area under the viral 

load) as a main-predictor of immune response in the data of a North American cohort. 

However, the methods they employed have statistical weaknesses [1] and the relevance of their 

findings to resource-constrained SSA settings may be limited. Cumulative log viral load has 

not previously been used as a covariate in statistical models of immune response to ART. 

In this study we define statistical models of immune response on ART based on a 

consensus of those previously systematically reviewed [2]. We employ Bayesian MCMC 

methods to examine the effect of non-standard distributions on the random part of the models. 

We then prospectively apply these models to the data of an as yet unpublished SSA ART cohort 

and simultaneously determine if cumulative log viral load is an important covariate. This study 
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is an effort to encourage reproducible modelling practices which have been lacking to date in 

historical models, as previously described [2].  

 

4.3 Methods 

 

Ethics statement 

This study was approved by the Research Ethics Committee of the Faculty of Health Sciences 

at the University of Pretoria (13/2010) and the Tshwane Metsweding Region Research 

Committee (TMREC 2011/05). 

 

Study setting and patient population 

The comprehensive demographic and long-term treatment data of the first, consecutive, 963 

patients older than 18 years of age who presented for ART at the Tshwane District Hospital in 

Gauteng, South Africa during 2004 and 2005 were selected for analysis. All patients had started 

HAART after 2004 as part of the South African national HIV treatment plan and were treated 

according to the National Department of Health HIV guidelines (2004) operative during this 

time, i.e. eligibility for ART was CD4 <200 cells/µL or WHO stage 4 disease regardless of 

CD4 count. Treatment was initiated using a standardized triple-drug regimen consisting of two 

nucleoside reverse transcriptase inhibitors (mostly d4T and 3TC) and one non-nucleoside 

reverse transcriptase inhibitor (either NVP or EFV). CD4 and HIV-1 viral load monitoring was 

performed at baseline and then 6-monthly, according to the national protocol. Demographic, 

anthropometric, clinical, ART and 5 year longitudinal treatment response data were collected. 

We excluded all second-line ART visits for all patients who were switched to second-line 

therapy.  
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Data collection and inclusion criteria  

Data was collated in Microsoft Excel spreadsheets. Of an initial 963 patients, 213 patients were 

excluded as they only had a baseline visit, which prevents the calculation of cumulative viral 

load. Of the 750 analysed, 59 patients had missing data on either sex, baseline CD4 count or 

baseline log viral load and model outcomes. Missing data for baseline CD4 count and baseline 

log viral load was imputed through a linear regression of baseline age, sex, while sex was 

imputed through a logistic regression of baseline age, baseline CD4 count and baseline log 

viral load. Missing data on the outcomes in the Bayesian approach is imputed directly in each 

model iteration [149] (see also Appendix 4.2). We analysed data of 750 patients for the slope 

model, and 745 in the asymptote model as 5 patients had a CD4 count ≥500 cells/µL at baseline 

(Figure 4.1).  

Figure 4.1: Data selection diagram 

 

 

963 Patients 

213 Patients excluded1 

750 Patients analysed in the 
slope of CD4 count model 

745 Patients analysed in 
the asymptote model  

1 Patients had only one visit, at baseline 

2 Patients had a baseline CD4 count ≥500 cells/µL 

5 Patients excluded2 
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Statistical methods   

Models 

Two types of statistical models were investigated:  

Model 1: ‘Slope model’, the mean annual increase in CD4 counts, and the dependent variable 

was the absolute CD4 count at each 6 monthly visit following initiation of ART, and  

Model 2: ‘Asymptote model’, the odds of having a CD4 count ≥500 cells/µL, where the 

dependent variable was coded ‘1’ if at a particular visit a patient had a CD4 count ≥500 

cells/µL, and 0 if they did not. Patients were not excluded after they had a CD4 count ≥500 

cells/µL. This value was chosen as it is the described lower end of the healthy reference range 

of CD4 count for the SSA population at the time [159]. Previous studies have shown that 

patients with CD4 count ≥500 cells/µL have an almost equal life expectancy to the general 

population [44,160]. For both types of models we also investigated the utility of cumulative 

log viral load as an important covariate in immune response models.  

The detection limit for the viral load assay used in this cohort was 50 copies/mL. 

However, time-updated log viral load was used to calculate cumulative log viral load, using a 

detection threshold of 400 copies/mL as reported in our initial publication [1]. This enabled us 

to exclude episodes of transient viremia [161], and since 1000 copies/mL had no detectable 

quantitative change in the results [1].  

Cumulative log viral load, measured as copy-yr/mL, for the i-th patient at their j-th visit 

in the cohort is given by, 

ଶ௜௝ܮܸܿ = ෍൫ݐ௜,௞ − ௜,௞ିଵ൯ݐ

௞ୀ௝

௞ୀଶ

×
ଵ଴݃݋݈)  ൬ ௜ܸ,௞

400൰  + ଵ଴݃݋݈  ൬ ௜ܸ,௞ିଵ
400 ൰ )

2
                     (4.1) 

where ݐ௜,௞ and ௜ܸ,௞ represent the time (in years) and log viral load measurement of the k-th visit, 

respectively. Since the baseline viral load is measured before starting ART, cumulative log 
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viral load at that visit was set to 0. Other covariates adjusted for in the model include baseline 

CD4 count and viral load, sex, baseline age, and time on treatment as per consensus of the 

previously reviewed models [2]. 

We used linear mixed effects models and incorporated random intercept and slope as 

absolute CD4 counts vary between and within patients [43,162]. Further, CD4 measurements 

taken further apart in time were less correlated than those closely adjacent. Nash et al 2008 

[44] demonstrated that CD4 counts on treatment reach a peak at approximately 2.5 years 

following initiation in patients with <200 cells/µL, which represents 91.7% of the current 

cohort, and then declines after 3.5 years. Following this trend, our slope models (equation 4.2) 

were defined as second-degree polynomials. These are denoted as ‘crude’ or M1.10 when they 

are not corrected for cumulative log viral load and ‘adjusted’ or M1.20, when they are:  

൜
௜࢟  = ௜࢞  ௜ࢠ + ࢼ  ௜࢈   + ௜ࢿ  ,

௜࢈ ,( ,0)ࡺ ~  ,0)ࡺ ~௜ࢿ ఌߪ
ଶ),

                              (4.2) 

for ݅ = (1, … , ݊) patients and ࢟௜ = ൫ݕ௜ଵ, , ௜ଶݕ … , ௜௠೔ݕ
൯ ݉௜ ܺ 1 matrix of response variable i.e. 

absolute CD4 count is normally distributed  ‘ࡺ’ such that ࢟௜ ௜ݔ)ࡺ ~  + ߚ  ௜ݖ   ܾ௜ ,  ଶ) withߪ

variance ߪଶ. ࢞௜ = ൫ݔ௜ଵ
் , ௜ଶݔ

் , … , ௜௠೔ݔ
் ൯

்
  is a (݉௜ ܺ (݌ + 1)) matrix of ݌ fixed effects including 

sex (0 for males and 1 for females), baseline age, baseline CD4 count, baseline log viral load, 

time on treatment, and cumulative log viral load. ࢼ = ,ଵߚ) ,ଶߚ … , ݌)) ௣)் isߚ + 1) ܺ 1) matrix 

of unknown fixed regression coefficients. ࢠ௜ =  ൫ݖ௜ଵ
் , ௜ଶݖ

் , … , ௜௠೔ݖ
் ൯

்
 is a (݉௜  design matrix (ݍ ܺ 

for the i-th (2 ܺ ݍ) vector of ࢈௜ = (ܾ௜଴, ܾ௜ଵ) random effects for the intercept and slope on time 

on treatment). We assume that ࢈௜ have zero-mean with bivariate Gaussian normal distribution 

and that  is a (ݍ ܺ ݍ) covariance matrix. The measurement error ࢿ௜ = ൫ߝ௜ଵ, ,௜ଶߝ … , ௜௠೔ߝ
൯

்
 is 
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(݉௜ ܺ 1) matrix with mean zero and variance ߪఌ
ଶ and are assumed to be independent of the 

random effects.  

An alternative implementation involved replacing the second-degree polynomial in equation 

4.2 with a cubic B-spline with 3 inner knots at (-0.001, 1.230, 2.5, 3.751, 5.001), and also 5 

inner knots (-0.001, 0.833, 1.666, 2.5, 3.334, 4.167, 5.001) (see spline models in Appendix 2). 

This model assumes that the measurement errors and random effects are normally distributed. 

However, this is not usually the case in HIV populations as CD4 count distribution and 

response to treatment is usually skew-normal distributed (see for example Fig 4.4 below). 

Skew-normal distributions are a class of normal probability distributions that are extended to 

have a skewness shape parameter, or dispersion from the mean [163]. To address this we 

proceeded as follows:  

a. We changed the CD4 count distribution from a Gaussian normal to a Student’s-t with 3 

degrees of freedom. The latter has longer tails and will sample values that fall further from the 

mean [149], e.g. ݔ)ݐ݀ ~ ݐ݊ݑ݋ܿ 4ܦܥ௜ ߚ  + ,௜ ܾ௜ݖ ,ଶߪ 3). While doing so we assumed that model 

errors have Student’s t-distributions, but the random-effects were still Gaussian normal.  

b. We assumed that only the random-effects had a skew-normal distribution ‘[163,164] ’ࡺࡿ, 

i.e. ࢈௜~ ࡺࡿ௤(0, ,ߑ ∆௕), where ∆௕ is the dispersion from normality in the random-effects, and 

  ;the covariance matrix ߑ

c. We assumed skew-normal distributions ‘ࡺࡿ’ for: CD4 count measurement 

error ࡺࡿ ~࢏ࢿ௣ ൫0, ܴ, ∆ఌ೔
൯, where ∆ఌ೔

 is the dispersion term in the CD4 count measurement error 

and ܴ the covariance matrix; and random-effects such that ࢟௜|࢈௜ ~ ࡺࡿ௣൫࢞௜ ࢼ  + ,௜࢈௜ࢠ ܴ, ∆ఌ೔
൯.  
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The asymptote models (equation 4.3) were also defined as second-degree polynomials, 

and all variables used in the slope model were also adjusted for. The ‘crude’ model is denoted 

by M2.10 and the ‘adjusted’ by M2.20. 

ቐ
௜௝൯ߨ൫ݐ݅݃݋݈  = ௜ݔ   + ߚ  ௜ݖ   ܾ௜  + , ௜ߝ

 
ܾ௜ ~ ௜ܰ(ߤ, ߬), ,௜~ ܰ(0ߝ ఌߪ

ଶ),
                                             (4.3) 

We assume that response ݕ௜௝ , is 0 if CD4 count <500 cells/µL and 1 if CD4 count ≥500 

cells/µL for patient ‘i’ at visit ‘j’, and follows a Bernoulli distribution,  ܾ݁݊ݎ൫ߨ௜௝൯ = + ߚ ௜ݔ 

 ௜ ܾ௜. All remaining variables are defined in the same way as in equation 4.2. Sensitivityݖ 

analysis was performed in the same way as for the slope models, but we excluded option c.  

Refer to Appendix 4.2 for the OpenBUGS model implementations. 

Prior distributions 

Let ߶ = ሼߚ, Σ, ߬ሽ be the unknown parameters in the models 2 and 3. Their vague prior 

distributions are specified as follows: ߚ)ࡺ ~ ߚ௄, ௄ߪ
ଶ) for ‘K’ number of covariates, and both ߬ 

and Σ had ࢃ(ܴ, ݇), where the independent Gaussian normal (N) and Wishart (W) vague prior 

distributions were used to facilitate computation. We assumed R to be diagonal matrices.  

We also investigated the effect of using informative priors for female-sex, baseline age, 

baseline log viral load and polynomial terms on model outputs. These were estimated from 

historical models [109,114,115] as previously discussed [2]. Variance ݏଶ was calculated from 

ݔ̅  = 1.96 ∗ √ቀݏଶൗ݊ ቁ, where ̅ݔ is the mean or effect size and ݊ the study size. We assumed that 

the variance of CD4 count recovery in both female and male was the same. Variance for 

female-gender, however, is not available in historical models. In the asymptote models, 
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historical studies used different CD4 count thresholds, meaning that informative priors were 

not possible. Refer to Appendix 4.2, Table 1. 

Data analysis 

R version 3.2.2 (R Foundation for Statistical Computing, Vienna, Austria, https://cran.r-

project.org/) and OpenBUGS (http://www.openbugs.net) were used. With the exception of 

time on treatment, all continuous covariates were standardized to have mean zero and standard 

deviation equal to 1.  In both models we employed 3 MCMC chains.  For the second degree 

polynomial slope of CD4 count models, we used a burn-in of 20k, followed by a further 45k 

iterations. For other variations of the slope and asymptote models, we used a burn-in of 80k 

followed by 100k iterations. The skew-normal random-effects asymptote model had a 250k 

burn-in followed by 250k iterations. To confirm convergence the Brooks-Gelman-Rubin 

(BGR) diagnostic was used.  

Model selection employed the Deviance Information Criterion (DIC) [165]. Better 

models have smaller DICs but should differ with at least 5. Parameter means and 95% credible 

intervals are reported.  

4.4 Results  

Descriptive results 

In the data of the 750 patients analysed, 69.6% (n = 522) were female, with a median 

baseline age of 36 years (IQR: 31, 42). Patients had a median baseline CD4 count of 89 cells/µL 

(IQR: 43, 143) and median baseline log viral load of 5.1 log10 copies/mL (IQR: 4.64, 5.48). In 

these patients, the overall increase in cumulative log viral load was 0.3 log10 copy-yr/mL (IQR: 

0.30, 0.43). Patients who were initiated on ART at baseline CD4 counts >200 cells/µL (n = 43) 

experienced a 278 cells/µL median increase starting at 261 cells/µL (IQR: 219, 298) ending at 
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529 cells/µL (IQR: 420, 633). Those with CD4 counts 101-200 cells/µL (n = 291) at baseline 

had a 241 cells/µL median increase from 143 cells/µL (IQR: 120, 173) to 386 cells/µL (IQR: 

253, 525) at the end of follow-up. Patients with ≤100 cells/µL (n = 416) at baseline had a 270 

cells/µL median increase in CD4 counts from 47 cells/µL (IQR: 20, 72) to 317 cells/µL (IQR: 

188, 496). The 213 patients excluded from the analysis were most likely to have a higher 

median baseline log viral load (5.3 log10 copies/mL (IQR; 4.76, 5.54) vs 5.07 log10 copies/mL 

(IQR: 4.64, 5.48), p = 0.003) and older (39years (IQR: 34, 47) vs 36 years (IQR: 31, 42), 

p<0.001)  

Patients with baseline log viral load >5 log10 copies/mL (n = 411) experienced a CD4 

count median increase of 268 cells/µL during follow-up, from 78 cells/µL (IQR: 41, 131) to 

367 cells/µL (IQR: 232, 515), while those with ≤5 log10 copies/mL (n = 339) had a 237 cells/µL 

increase in CD4 counts from 103 cells/µL (IQR: 47, 161) to 365 cells/µL (IQR: 226, 512). The 

increase in cumulative log viral load by baseline CD4 count category was 0.6 log10 copy-yr/mL 

(IQR: 0.44, 0.82), 0.7 log10 copy-yr/mL (IQR: 0.50, 0.90), and 0.7 log10 copy-yr/mL (IQR: 

0.55, 1.28) for patients with baseline CD4 count >200, 101-200, and ≤100 cells/µL, 

respectively. Only 33.8% of the patients, in the data used in the asymptote model, ever reached 

a CD4 count ≥500 cells/µL.  

In bivariate analysis, in the data used for the slope models, patients with baseline CD4 

count >200 cells/µL, and those with 101 – 200 cells/µL had greater increases in CD4 counts 

than those with ≤100 cells/µL. Those with >200 cells/µL and 101 – 200 cells/µL had 247 

cells/µL (95%CI: 221.0, 272.7), and 101 cells/µL (95%CI: 87.9, 112.7) increases, respectively, 

compared to ≤100 cells/µL. Females had an increase of 31 cells/µL (95%CI: 19.6, 52.7) greater 

than males. Patients with a baseline log viral load >5 log10 copies/mL experienced an annual 

decrease in CD4 count of 16 cells/µL (95%CI: 30.8, 0.1) compared to those with ≤5 log10 

copies/mL during follow-up. There was no statistically significant difference in CD4 count 
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increase by age categories, i.e. <50 years and ≥50 years, during follow-up. Only baseline CD4 

count and sex were significantly associated with having CD4 counts ≥500 cells/µL in the 

bivariate analysis of the asymptote model. There was a weak correlation, ranging from -0.41 

to 0.01, between cumulative log viral load and other covariates in both slope of CD4 counts 

and asymptote models (Appendix 4.1, Figure 1). 

 

Slope of CD4 count models 

After adjusting for sex, baseline age, baseline CD4 count, baseline log viral load and time on 

treatment a 1log10 copy-yr/mL increase in cumulative log viral load was associated with a -

19.2 cells/µL (95% credible interval:-27.82, -10.48) decrease in absolute CD4 count, (Table 

4.1). Other than baseline log viral load all other covariates were associated with slope of CD4 

counts. The adjusted (with-cumulative log viral load) model had a substantially lower DIC 

compared to the crude (without-cumulative log viral load) model (M1.20 = 47480 vs M1.10 = 

47510) (Table 4.3). The predicted median CD4 counts response for those with baseline CD4 

counts ≤100 cells/µL, was low compared to those with >200 cells/µL, and remained low though 

similar to those in the 101 – 200 cells/µL category, especially towards the 5th year of ART 

(Figure 4.2A). Female-sex demonstrated a slightly higher increase in CD4 than males (Figure 

4.2B). The predicted median CD4 count in baseline age, more so by baseline log10 viral load, 

remained similar during follow-up (Figure 4.2C and Figure 4.2D). 
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Table 4.1: Model for factors associated with slope of CD4 count (Posterior mean and 

95% credible intervals)  

Parameter 
Model without cVL2 Model with cVL2 

Estimate 95% CI Estimate 95% CI 

Female-gender 23.5 (12.35, 34.65) 23.0 (11.90, 34.23) 
Per one year increase in 
baseline age, years 

-6.4 (-11.57, -1.26) -5.9 (-11.11, -0.67) 

Per one cell increase in baseline 
CD4 count, cells/µL 

77.6 (72.21, 83.10) 78.1 (72.56, 83.57) 

Per log10  increase in baseline 
log viral load , log10 copies/mL 

1.8 (-0.95, 4.75) 1.8 (-0.95, 4.70) 

Time on treatment 52.2 (45.43, 58.87) 55.5 (48.46, 62.58) 
Time on treatment-squared -22.9 (-24.93, -20.84) -22.7 (-24.79, -20.70) 
Per log10 increase in cumulative 
log viral load, log10 copy-
year/mL 

– – -19.2 (-27.82, -10.48) 

Legend: Model without and with cumulative log viral load (cVL2) are M1.10 and M1.20 respectively. In 
these models, CD4 counts outcome have a Gaussian normal distribution. 
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Figure 4.2: Predicted median CD4 counts trajectory by covariate strata from slope of 

CD4 count model  

 

Legend: A. baseline CD4 count, B. sex, C. Baseline age, D. baseline log10 viral load. Median predicted 
CD4 counts from model M1.20, is plotted without adjusting for the variable by which it is stratified. The 
red, black or blue dots represent predicted median CD4 count at different time point, and the bars are 
the whiskers. The red, black and blue lines, those connecting the different dots, show the trend of 
predicted CD4 counts across visits. 
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CD4 asymptote models 

After adjusting for sex, baseline age, baseline CD4 count, time on treatment and baseline log 

viral load, each 1log10 copy-yr/mL increase in cumulative log viral load reduces the odds to 

0.42 odds (95% CI: 0.242, 0.725) of having a CD4 count ≥500 cells/µL during 5 years of 

follow-up (Table 4.2). Apart from baseline log viral load, all other variables were associated 

with having CD4 counts ≥500 cells/µL. The adjusted compared to the crude model, had a 

significantly smaller DIC, respectively M2.20 = 1695 and M2.10 = 1724 (Table 4.5). Thus 

adjusting for cumulative log viral load provided a better model fit to the data. With the 

exception of patients whose baseline CD4 count was >200 cells/µL, the median probability of 

having a CD4 count ≥500 cells/µL remained less than 0.5 throughout the 5 years on ART 

(Figure 4.3A). Female-sex had a higher median predicted probability of having a CD4 count 

≥500 cells/µL compared to males, however, this difference disappeared after 5-years of ART 

(Figure 4.3B). Following 1.5-years of treatment, patients with a baseline age ≤50 years old had 

a higher predicted median probability of having a CD4 count ≥500 cells/µL compared to those 

>50 years old (Figure 4.3C). Patients with higher baseline log10 viral load (≤5) had a lower 

predicted median probability of having CD4 counts ≥500 cells/µL after 4 years (Figure 4.3D).  
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Table 4.2: Model for factors associated with having a CD4 count ≥500 cells/µL (Posterior 

odds ratios and 95% credible intervals)  

Parameter 
Model without cVL2 Model with cVL2 

Estimate 95%CI Estimate 95%CI 

Female-gender 5.81 (2.793, 12.846) 6.11 (2.793, 12.846) 
Per one year increase in baseline 
age, years 

0.57 (0.412, 0.774) 0.57 (0.412, 0.774) 

Per one cell increase in baseline 
CD4 count, cells/µL 

2.45 (1.793, 3.310) 2.53 (1.793, 3.310) 

Per log10  increase in baseline log 
viral load , log10 copies/mL 

1.09 (0.874, 1.362) 1.09 (0.874, 1.362) 

Time on treatment 3.53 (2.656, 4.707) 4.18 (2.656, 4.707) 
Time on treatment - squared 0.66 (0.573, 0.763) 0.64 (0.573 0.763) 
Per log10 increase in cumulative 
log viral load, log10 copy-year/mL 

– – 0.42 (0.242, 0.724) 

Legend: cVL2—cumulative log viral load; M2.10 and M2.20 are the crude and adjusted models, 
respectively where random effects are Gaussian normally distributed.  
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Figure 4.3: Predicted median probability trajectory of having a ≥500 cells/µL CD4 count 

by covariate strata  

  

Legend: A) baseline CD4 count, B) sex, C) Baseline age, D) baseline log10 viral load. Median predicted 
probability of having CD4 count ≥500 cells/µL from model M2.20, for each for the strata are plotted 
above. The red, black or blue dots represent predicted probability of having CD4 count ≥500 cells/µL 
at different time point, and the bars are the whiskers. The red, black and blue lines, those connecting 
the different dots, show the trend of predicted median probability across visits. 
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Sensitivity analysis 

In the slope of CD4 count, changing model structure from a second-degree polynomial to cubic 

splines (M1.21 and M1.23), yielded significantly higher DICs (Table 4.3), indicating that the 

polynomial model, i.e. M1.20 was still the better fit. The skew distributional plot of the random-

effects (Figure 4.4) emphasised the requirement for changing assumptions. The change to a 

skew-normal distribution led to a significantly smaller DIC for the unadjusted and adjusted 

compared to Gaussian normal models. The greatest change could be seen between M1.14 = 

47270 vs M1.20 = 47480. Further, when the distribution of the CD4 count was changed to 

Student’s t, the DIC reduced from M1.14 = 47270 in the unadjusted skew-normal model, to M1.22 

= 46490 in the adjusted model (Table 4.3). Since the difference in the DIC between the two 

models is ≥10 points, M1.22 is the better fit. These changes improved the precision of model 

covariates, particularly for the Student’s t-distribution. With the exception of the spline models 

(Appendix 4.1 Table 3 and 4), cumulative log viral load remained significantly associated with 

immune response (Table 4.4). Interestingly, models M1.15 and M1.25, which assumed skew-

normal random-effects and measurement error had the smallest DICs, despite their multiple 

imputation models failing to converge. Using informative priors did improve the estimation of 

covariate effects (see M1.20
* and M1.22

* in Appendix 4.1, Table 5 and Table 6, respectively).  
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Table 4.3: Comparison of goodness of fit for slope of CD4 count models  

Model Crude Model Adjusted 

DIC DIC 

M1.10 47510 M1.20 47480 

M1.11 48120 M1.21 48130 

M1.12 46510 M1.22 46480 

M1.13 48120 M1.23 48130 

M1.14 47270 M1.24 47330 

M1.15 -3186 M1.25 -29310 

Legend: M1.10 : M1.20—models errors and random effects are Gaussian normally distributed; M1.11 : 
M1.21—models errors and random effects are Gaussian normally distributed and has cubic splines with 
3 inner knots; M1.12 : M1.22—Student’s t-distributed CD4 count outcome; M1.13 : M1.23—models errors 
and random effects are Gaussian normally distributed and has cubic splines with 5 inner knots ; M1.14 : 
M1.24—random-effects are Skew-normal distributed. 
 

Figure 4.4: Histograms of estimated random intercept and slope obtained from the slope 

of CD4 count polynomial models 
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Table 4.4: The effect of changing distributional assumptions of parameters from 

Gaussian normal to skew-normal and Student’s t on the precision of covariates in the 

slope model (Posterior mean and 95% credible intervals)  

Parameter 
Model M1.20 Model M1.24 Model M1.22 

Estimate 95% CI Estimate 95% CI Estimate 95% CI 

Female-gender 23.0 (11.99, 34.24) 23.2 (11.94, 34.31) 8.3 (1.59, 14.97) 
Per one year increase 
in baseline age, years 

-5.9 (-11.11, -0.69) -5.95 (-11.15, -0.71) -1.2 (-4.28, 1.94) 

Per one cell increase 
in baseline CD4 count, 
cells/µL 

78.1 (72.54, 83.56) 78.0 (72.48, 83.48) 80.8 (77.35, 84.17) 

Per log10  increase in 
baseline log viral load 
, log10 copies/mL 

1.8 (-0.95, 4.71) 1.8 (-0.98, 4.69) 0.98 (-0.89, 2.95) 

Time on treatment 55.6 (48.45, 62.56) 55.6 (48.69, 62.44) 60.5 (53.14, 67.53) 
Time on treatment-
squared 

-22.7 (-24.79, -20.7) -22.8 (-24.78, -20.7) -21.9 (-23.66, -20.24) 

Per log10 increase in 
cumulative log viral 
load, log10 copy-
year/mL 

-19.2 (-27.84, -10.49) -19.2 (-27.85, -10.44) -13.4 (-20.73, -6.00) 

Legend: M1.20—cumulative log viral load adjusted model where model errors and random effects are 
Gaussian normally distributed slope model; M1.24—cumulative log viral load adjusted model where 
model errors and random effects are skew-normally distributed slope model; M1.22—cumulative log 
viral load adjusted model where CD4 count is Student’s t-distributed. 

 

In the asymptote model, the distribution of the random-effects of the polynomial model 

was also skew (Figure 4.5), which means that using a normal prior for the random effects is 

inappropriate. Using a skew-normal led to a significantly lower DIC compared to Gaussian 

normal distribution M2.21 = 829 vs M2.20 = 1695 in the adjusted model and similarly in the crude 

model M2.11 = 1108 vs M2.10 = 1716 (Table 4.5). The adjusted skew-normal model still had the 

lowest DIC in the asymptote models. Cumulative log viral load remained associated with 

having CD4 counts ≥500 cells/µL. However, this model has slightly larger credible intervals, 

implying a loss in precision of model coefficients in the model with a Gaussian normal versus 

skew-normal random effects (Table 4.6). 
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Figure 4.5: Histograms of estimated random intercept and slope obtained from the 

asymptote model  

 

 

Table 4.5: Comparison of goodness of fit for asymptote models 

Model 
Crude 

Model 
Adjusted 

DIC DIC 

M2.10 1716 M2.20 1695 

M2.11 1108 M2.21 829 

M2.12 1701 M2.22 1695 

M2.13 1702 M2.23 1689 

Legend: M2.10 and M2.20—random effects are Gaussian normally distributed; M2.11 and M2.21 –random 
effects are skew-normally distributed; M2.12 and M2.22—random-effects are Gaussian normally 
distributed with cubic splines and 3 inner knots; M2.13 and M2.23—random-effects are Gaussian normally 
distributed with cubic splines and 5 inner knots. 
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Table 4.6: The effect of changing distributional assumptions of random-effects from 

Gaussian normal to skew-normal on precision of covariates in the asymptote models 

(Posterior odds ratios and 95% credible intervals)  

Parameter 
Model M2.20 Model M2.21 

Estimate 95%CI Estimate 95%CI 
Female-gender 6.11 (2.793, 12.846) 6.36 (2.998, 13.722) 
Per one year increase in 
baseline age, years 

0.57 (0.412, 0.774) 0.57 (0.406, 0.783) 

Per one cell increase in baseline 
CD4 count, cells/µL 

2.53 (1.793, 3.310) 2.53 (1.855, 3.543) 

Per log10  increase in baseline 
log viral load , log10 copies/mL 

1.09 (0.874, 1.362) 1.11 (0.878, 1.377) 

Time on treatment 4.18 (2.656, 4.707) 4.01 (3.056, 5.328) 
Time on treatment - squared 0.64 (0.573 0.763) 0.65 (0.568, 0.747) 
Per log10 increase in cumulative 
log viral load, log10 copy-
year/mL 

0.42 (0.242, 0.724) 0.42 (0.245, 0.736) 

Legend: M2.20—cumulative log viral load adjusted model where random effects are Gaussian normally 
distributed; M2.21—cumulative log viral load adjusted model where random-effects are skew-normal 
distributed 
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4.5 Discussion  

Viral load can usually only be suppressed to undetectable levels in plasma by complete 

ART adherence. When this is not achieved ongoing viral replication causes progressive 

depletion of CD4+ lymphocytes through direct and indirect mechanisms [43,45,93]. The extent 

of damage by a detectable viral load in the short term may not be readily apparent as CD4 

counts are inherently biologically variable [140–142].  

In addition to baseline log viral load, increasing baseline age, associated with a 

reduction in the size and functionality of the thymus [45,154], and lower baseline CD4 counts 

[44,46,96] are associated with ineffective CD4 count recovery. Lawn et al [166] have shown 

that late ART initiators, with baseline CD4 count <200 cells/ µL, equivalent to 94% of our 

cohort, often take longer than 5 years of follow-up before they reach CD4 count ≥500 cells/µL. 

Patients with baseline CD4 count ≤200 cells/µL never reached a 0.5 median predicted 

probability of having a CD4 count ≥500 cells/µL. Further, they are at risk of developing 

suboptimal immune response, i.e. failure to reach CD4 count >350 cells/µL after 5 years of 

ART [37]. Patients with >200 cells/µL at baseline experienced a decline in the median 

predicted probability of having CD4 count ≥500 cells/µL after 3 years. This may have been 

due to insufficient treatment adherence, possibly as a result of drug toxicity, as patients were 

initiated on Stavudine as one of two nucleoside reverse transcriptase inhibitors, and 

development of HIV drug resistances over time [167]. Our finding of increased CD4 count 

response in females compared to male appear to be consistent with other studies [43–

45,96,114].  

In a previously undescribed SSA cohort, we have demonstrated the long-term 

consequences of a history of detectable viral load, i.e. the cumulative log viral load biomarker, 

on immune response while on ART. Cumulative log viral load was strongly associated with 

and provides better model fits for both slope of CD4 count and having an asymptote of CD4 
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count ≥500 cells/µL. These combined CD4 count-viral load dynamics have not previously been 

demonstrated in causal statistical models and are in apparent agreement with prior biologically 

‘mechanistic’ mathematical models [11]. After adjusting for sex, baseline age, baseline CD4 

count, baseline log10 viral load and time on treatment, each log10 copy-yr/mL increase in 

cumulative log viral load was associated with a decrease in both slope of CD4 counts and lower 

odds of having CD4 count of  ≥500 cells/µL while on ART. The median probability of having 

CD4 count ≥500 cells/µL was still <0.5 among patients with a baseline CD4 count ≤100 

cells/µL after 5 years of follow-up. Having a CD4 count ≥500 cells/µL while on ART was 

previously associated with a similar life expectancy to that in the normal population [160]. Our 

findings provide evidence for the increased benefit of early ART initiation, as the chance of 

having a CD4 count ≥500 cells/µL is then increased.  

For the slope of CD4 count, assuming a prior Student’s t-distribution produced better 

model fits compared to using a Gaussian normal. The Student’s t-distribution also has narrower 

and, by implication, more precise credible intervals. Despite a failure to converge, the slope of 

CD4 count skew-normal random-effects and measurements errors model had the lowest DIC, 

i.e. the best fit. Given that both the slope and asymptote models had skew random-effects 

distributions (Figure 4.4 and Figure 4.5), it was not surprising that using skew priors produced 

better fits compared to Gaussian normals. Due in part to inherent variation biological 

parameters often have non-linear functional forms [1]. 

A Bayesian approach enabled us to apply informative prior estimates from three 

historical models [109,114,115] as previously discussed [2]. The impact of informative priors 

is mostly visible in the variance of posterior distributions. Thus, we expected that in this case 

our outputs using non-informative and informative priors would be similar, and this was indeed 

observed (see Appendix 4.1 Table 5 and Table 6). It seems likely that in previous Frequentist 

approaches, the normality assumptions implicit in the analysis software may have contributed 
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to their inaccurate estimation of the underlying dynamics of CD4 count change over time. For 

example, models which assumed non-Gaussian distributions of either random-effects or CD4 

counts had significantly smaller DICs compared to those with Gaussian normal. 

This study has limitations. As for most Bayesian models using larger datasets, they 

were computationally intensive. As alluded to previously [1], estimation of cumulative log viral 

load may be affected by sampling frequency. Viral load was measured bi-annually in the 

current cohort, thus, possible unmeasured viral rebounds occurring between sampling intervals 

were excluded. This cohort included patients who were initiated on ART at very low CD4 

counts, i.e. 87 cells/µL (IQR: 43, 144), potentially predisposing them to poor CD4 count 

responses (Figure 4.2) as compared to cohorts with early ART initiation in resource rich 

settings.  

However, this study was successful at implementing Bayesian models in an as yet 

undescribed SSA cohort using prior CD4 count information. To facilitate model reproducibility 

we also explicitly state all covariate inclusions and distributional assumptions. Future efforts 

to model the slope and attaining a particular asymptote of recovery of CD4 count on ART 

should consider using Bayesian approaches owing to the flexibility in the choice of prior 

distributions, hierarchical model design and the incorporation of mixed effects. Quantifying 

the effect of viral rebounds occurring between sampling intervals will likely further improve 

estimates of cumulative log viral load. Cumulative log viral load might also be included in 

within-host models of HIV replication and pathogenesis, in which all parameters are defined.  
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Chapter Five 

Discussion 

 In the complete IDI cohort there were many deaths  in the first 2 years of ART [75]. 

This is similar to many other SSA cohorts [168,169]. Patients often suffered from incident OIs 

occurring after at least one detectable viral load measurement (Figure 2.3C). During the period 

of scale–up of ART in SSA from 2004, inadequate experience in medical management of 

advanced immunodeficiency and almost non-existent clinical resources contributed to 

rendering viral loads large enough to be detectable [168,169]. Any episode of detectable viral 

load triggers an increase in cumulative log viral load, hence the association. In addition, many 

patients have extensive inflammation before ART initiation (Appendix 2.1 table 2). In chronic 

infections like HIV inflammation may increase morbidity and mortality [93]. Inflammation is 

minimized during viral load suppression [43,45] and amplified during episodes of detectable 

viral load.  

We found (in Chapter two) that most recent viral load, and not cumulative HIV-

Viremia, was associated with incident OIs. It is likely that sub-optimal immune responders [47] 

remain at risk of incident OIs due to initially compromised immune systems  [47,166] and the 

increased loss of CD4 cell counts due to detectable viral load (Figure 2.2C). Subsequent 

analysis of the IDI cohort [170] has demonstrated that viral suppression was associated with a 

remarkable reduction in incident OIs, which corroborates our findings. Our model censored 

individuals that died or were lost to follow-up regardless of the number of incident OIs in their 

history. Thus, the failure of cumulative HIV-Viremia to predict incident OIs may have been 

due to a statistical model artifact. With most OIs occurring within the first two years of follow-

up, patients may have remained in care with a high, but stable, cumulative HIV-Viremia 

(Figure 2.2C). Subsequently, (in Chapter four) higher cumulative log viral load was strongly 
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associated with poor long-term immune response, and the association was significant. Patients 

with a history of detectable viral load stand a high risk of developing poor immune response 

[171]. Previously, detectable viral load was an indicator of poor adherence and treatment failure 

[9,55,56], but our findings now demonstrate that it also affects a patient’s long term CD4 count 

response while on first-line ART. However, we assume that other incompletely understood 

factors may also cause a sub-optimal immune response in ART. 

Hemoglobin and CD4 counts, in that order, were more reliable predictors of incident 

OIs (i.e. 0> slope <1) than most recent viral load (Appendix 2.1 figure 3). This may be due to 

patient-doctor responses to detectable viral load’s, i.e. adherence counselling, in meticulously 

monitored cohorts [74]. Both hemoglobin and CD4 counts have been shown to be affected by 

long term exposure to HIV before ART and to have sub-optimal responses after initiation, 

hence they are linked to an increased risk of incident OIs [41,42,166,172–174].  

We are not currently aware of a consensus definition for ‘sub-optimal immune 

response’ for people on ART. In a systematic review, Kelly et al. 2016 found a variety of 

differences in definitions, including for example, those based on CD4 increases or thresholds, 

viral suppression levels and durations of follow-up [175]. In this study we use the term, ‘sub-

optimal immune responders’, to describe people who fail to reach the lower end of the normal 

CD4 count range, i.e. 500 cells/µL [159], after 5 years on ART. We found (in chapter four) 

that individuals with CD4 counts ≤100 cells/µL at initiation had sub-optimal immune 

responses, and failed to reach even a 50% probability of achieving CD4 counts  ≥500 cells/µL 

after 5 years of ART (Figure 4.3A). Such findings suggest that ongoing CD4 count monitoring 

remains necessary in the treatment of HIV in SSA, particularly in individuals who have low 

CD4 counts at initiation.  
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Despite its inherent variability [140,142], CD4 count remains an appropriate marker of 

immune response for an immune impairing disease such as HIV [43,45]. CD4 counts are useful 

for benchmarking the initial risk of OIs [176] and for monitoring long term sub-optimal 

immune response [37]. Due to its variability there have been suggestions that CD4 counts are 

not a good predictor of OIs before ART initiation [49]. However, these findings should not be 

generalized to SSA where treatment initiation at low CD4 counts is common [14,177]. Further, 

it has been shown that at low levels CD4 count is a reliable indicator of prognosis [178].  

The WHO guidelines recommend that CD4 count monitoring should not be mandatory 

for people who are virally suppressed on ART [9]. This makes sense from a public health 

perspective in terms of the reduction of laboratory detection costs. However, from a clinical 

perspective the guidelines do not cater for sub-optimal responders. Such people should ideally 

be monitored at least until they reach a lower end of uninfected-normal CD4 count level [39]. 

A recent cost-benefit analysis of different combinations of CD4 count and/or viral load 

monitoring has demonstrated that a combination of biannual CD4 count, with at least one viral 

load, is more cost effective than having no CD4 count at all [179]. In light of this, continued 

biannual CD4 count in addition to viral load monitoring makes sense. Particularly for sub-

optimal immune responders, so that predicting risk and facilitating the management of OIs is 

possible. This also corroborates our findings (in chapter two) that CD4 count is a more reliable 

predictor of incident OIs than viral load [1]. 

Ying et al. 2016 [49] have suggested that CD4 count measurements should not be 

conducted at ART initiation, citing unnecessary costs and delays in receiving CD4 count results 

as an impediment to successful ART scale-up. However, baseline CD4 count has been shown 

to correlate with a variety of treatment outcomes, such as CD4 response after ART initiation, 

incident OIs and viral failure [50,180]. Its removal may make patient management difficult. 

For example, without the baseline initial CD4 count the subsequent impact on CD4 count 
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cannot be quantified, thus, suboptimal immune response cannot be identified [47]. In East 

Africa, 40% of ART patients with ≥95% self-reported adherence demonstrated sub-optimal 

immune responses during 5 years of ART [37]. Alternate options exist, such as streamlining 

service delivery to reduce waiting times. In the future, ART programs might also scale-up less 

expensive, more rapid and more accurate CD4 count point-of-care technology [181]. 

Our results do support the WHO guideline to initiate ART as early as possible after a 

positive HIV test [9]. We found (in chapter four) that patients initiated on ART with low 

baseline CD4 counts have difficulty in achieving even lower end of normal CD4 counts (figure 

4.3A). While early ART is clearly beneficial [13,18], many countries in SSA struggle to meet 

the guideline due to limitations in funding and infrastructure [177]. Many ART programs in 

SSA countries depend on donor funding [182] which is dwindling [183]. Greater within-

country advocacy to increase funding towards HIV programs is necessary [184].  

An important aim of this thesis was to improve the reproducibility of our findings. For 

this reason, we explicitly provide information regarding model assumptions and structure, in 

contrast to that done in the reviewed historical models. We report inconsistences in the 

construction and reporting of multivariate immune response models in SSA (in chapter three). 

Unless comparable methods are used, the results of such models are not reproducible even 

when data from the same cohort is used. Modelling CD4 count response is not trivial. It is 

necessary to minimize ‘noise,’ in the form of its inherent variability [95,141], requiring robust 

statistical methods. The reviewed CD4 slope models (in chapter three) mostly assumed that 

outcomes were Gaussian normally distributed (Table 3.2). However, we found that the 

Student’s t-distribution was more suitable owing to its broader tails [149]. It seems that 

modelling the asymptotic nature of CD4 count response on ART, in addition to using random 

intercept and slope models provide better approximations of the CD4 count dynamics. Further, 

we demonstrated that using ‘prior’ knowledge in Bayesian model construction, on the data of 
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a previously undescribed cohort, led to the definition of a robust model with respect to its 

predictive abilities for immune response. 

 It is conceivable that  cumulative log viral load may be implemented in within-host 

models of HIV replication and pathogenesis, such those of Perelson et al. [185] in which all 

the parameters are defined. This would require that appropriate units of measurements for 

cumulative log viral load be used, in order to be compatible with the other model parameters. 

However, a challenge remains in estimating cumulative log viral load, as it does not include 

the impact of viral rebounds, which may occur between sampling intervals. Unfortunately, viral 

load monitoring is expensive at finer resolutions than every 6 months.  

 It is understood that comprehensively monitoring cumulative log viral load would 

entail an increase, i.e. a scale-up, in the frequency of sampling, with associated increases in 

cost. In many resource constrained SSA settings, viral load testing was subsidized from 2015 

[36].  This was driven by evidence from treatment as prevention trials that reducing community 

viral load reduces the risk of HIV transmission [186,187]. However, strategies have now 

become available, such as sample pooling [33] and finger-prick dried blood spot tests [34,35], 

that reduce both the cost and complexity of  viral load testing methods [35,188]. Point of care 

viral load tests are also being developed, which will facilitate decentralized testing and 

reductions in waiting times for results [31,32]. Challenges remain in the scale-up of viral load 

testing, for example, an inadequate supply of suitably trained laboratory personnel along with 

the necessary equipment [188].  

 There are some limitations. Biannual viral load was used to estimate cumulative 

log viral load, which may have resulted in its underestimation, i.e. as unmeasured viral 

rebounds occurring between sampling intervals were by definition excluded. We used time lags 

between measurements as a means to overcome this (in chapter two), but this remains an 
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approximation. It was not possible to implement time lags (in chapter four) as exact visit dates 

were not available although measurement intervals were. We had missing data (<10%) but this 

was insufficient to alter the results from the analyses [189].  

 Sub-Saharan Africa, like many other resource constrained regions, lags in the 

implementation of WHO ART treatment polices for a variety of reasons [14,190–192]. CD4 

count thresholds at ART initiation are still <200 cells/µL [14], representing over 90% of the 

patients whose data we analyzed in chapters 2 and 4. While some countries in SSA have been 

able to implement early ART start, the majority of patients still present into care with low CD4 

counts [14]. Our findings do appear representative of many SSA first-line ART treatment 

cohorts in which a large fraction of patients initiate on ART with low CD4 counts and where 

viral load data is routinely collected. We were fortunate to analyze data from cohorts in which 

there was very little missing data. Good quality data in SSA is rare, despite its value in 

improving treatment outcomes and facilitating the decentralization of services [193–195]. It is 

foreseeable that our analysis could be extended to treatment programs with better quality data.  
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Chapter Six 

Conclusions and Recommendations 

Conclusions 

A central theme of this thesis has been the (systematic) review of existing literature 

prior to any statistical analysis, the purpose being to construct more comparable and robust 

statistical models than have been available to date. In Chapter two we present the first peer-

review published article on cumulative HIV-Viremia in SSA and the first to adjust for the 

detection limit of the viral load assay in the calculation of cumulative log viral load [1]. The 

systematic review [2] includes only published articles, thereby comparing only peer-reviewed 

statistical methods. We also analyzed data from two SSA cohorts, including one that was 

previously undescribed (in chapter four). To our knowledge, we describe the first model/s of 

immune response in SSA using Bayesian methods. 

For purposes of comparing immunological, i.e. CD4 count, outcomes across cohorts in 

SSA, statistical models would benefit from the application of more uniform modelling 

techniques. Most historic multivariate immune response models from SSA appear to be 

anecdotal at best to the respective cohorts on which they were defined.  There is tremendous 

variation in these models, such as the use of different covariates, variable transformations, 

scales, modelling assumptions and reporting methods, even for the same outcomes. This study 

succeeded in defining ‘prior’ knowledge, which has value for prospective modeling efforts in 

the future.  

Cumulative log viral load is associated with both mortality and long term immune response, 

while most recent viral load is associated with incident OIs. Hemoglobin and CD4 counts are 

more reliable predictors of incident OIs compared to most recent viral load. Adjusting for 
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cumulative log viral load with the use of appropriate distributional assumptions improves the 

prediction of immune response. Assuming a Student’s t-distribution provides better predictions 

compared to a Gaussian normal distribution. Patients who initiate ART at lower CD4 counts 

(i.e. ≤100 cells/µL) have <50% probability of reconstituting CD4 counts to ≥500 cells/µL 

during 5 years of ART. In the systematic review, qualitative and semi-quantitative, rather than 

quantitative and completely comparable effect sizes, for variables in models of immunological 

response to ART were defined. 

Recommendations 

To ensure generalizability, the construction of de novo statistical models requires prior 

review of existing models. Further, comparison across cohorts needs the application of more 

uniform modelling techniques. 

The construction of ART mortality and immune response models ideally should adjust 

for cumulative log viral load, particularly when longitudinal viral load data is available. 

However, further investigation of causal relationships in cumulative log viral load is necessary. 

The measurement of viral rebounds occurring between sampling intervals will improve the 

numerical estimation and calibration of cumulative log viral load. This, in turn, will further 

resolve thresholds for heightened mortality risk. Cumulative log viral load might be included 

in dynamical within-host models of HIV replication and pathogenesis, in which all parameters 

are defined. Future models of immune response would benefit from the use of Bayesian 

methods owing their flexibility in the choice of prior distributions, hierarchical model designs 

and the incorporation of mixed effects.  

Our results support the early initiation of ART in SSA. Continued monitoring of CD4 

counts and hemoglobin levels are advisable, to enable targeted management of incident OIs, 

particularly in individuals with low initiating CD4 counts.   
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Appendix 2.1 

All-Cause Mortality Outcome 

While we assessed all-cause mortality as an outcome, we censored one patient who died after 

a motor accident at their death, excluding this outcome a priori from the analysis since this was judged 

to be unrelated to exposure to HIV. 

 

Cox Proportional Regression Equations 

We used the following Cox proportional hazards model: 

 

for the hazard experienced by the i-th individual in the t-th time interval, allowing an interaction 

between laboratory measurements and the time since measurement ௟ܺ௔௚,௜,௧ (governed by ߚ∗ ). In this 

way, declining predictive utility of explanatory variables with time since measurement can be fit directly 

from the data. Laboratory variables included current and baseline viral load, current and baseline CD4, 

current hemoglobin and log cumulative Viral Load or cumulative log Viral Load. Non-laboratory 

variables included current age and sex. We dealt with the detection threshold of viral load by using a 

categorical dummy variable and associated coefficients for undetectable viral load measurements, such 

that the regression terms for time-updated viral load in the model were;  
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where XundetVL,i,t is an indicator variable (1 if undetectable and 0 if detectable). Thus, for example, the 

adjusted relative hazard for a 1 log10 difference in viral load over the 0-12 weeks post-measurement is 

given by 

ARHVL, 0-12 wk = exp(ߚመ௏௅ + ෢∗ߚ
௏௅ × 12) 

 

Wald Chi Squared Confidence Intervals 

We used Wald confidence interval calculations to assess the significance of the relationship between 

each predictor and outcome, after controlling a number of other variables. As noted above, we have 

used two coefficients for laboratory measurement variables (and three for viral load due to the 

detectability dummy variable). Confidence intervals were constructed based on linear combinations of 

fitted coefficients using their variance covariance matrix and the appropriate variance transformations.  

 

Cox Proportional Hazards Models and Rounded Observation Intervals 

We simulated lognormal viral load data for the patient observation time points for the 489 

patients from the IDI cohort, calculating time-updated cumulative viral load according to the methods 

in the main text. We then simulated incident OI times based on time-varying hazards and an assumed 

causal relationship between viral load, but not cumulative viral load. Using actual start and end times 

and visit intervals, we simulated the dataset (adding incident OIs, viral load and cumulative HIV-

Viremia) 1000-times. We analyzed the resulting simulated datasets (10,657 data points of 489 patients 

with an average of 1,162 OI events) with Cox proportional hazards model as in the main text and also 

with a Poisson regression model (cloglog link generalized linear mixed model; GLMM), using exact 

start and end points for each inter-visit observational interval. We found that results from the Cox 

proportional hazards model, but not from the Poisson GLMM to be biased. Specifically, Cox 

proportional hazards models consistently found cumulative HIV-Viremia to be significantly predictive 

of OI risk even when though was no underlying causal effect, while P-values for the association of 
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cumulative HIV-Viremia with the outcome were uniformly distributed from 0 to 1 for the Poisson 

GLMM (Appendix 2.1 figure 4). However, when we analyzed the simulations with a Cox proportional 

hazards model in which inter-visit intervals were rounded to their approximate 12 week values (as 

designated by the original study design), the analysis was unbiased, failing to spuriously attribute a 

significant association between cumulative HIV-Viremia and OI risk more than the nominal 0.05 = ߙ 

false positive rate. We therefore used rounded inter-visit observation intervals when using the Cox 

proportional hazards model to analyze the IDI cohort data in the main text. Please follow this link: 

https://Sempa@github.com/ICI3D/SempaetalAJE-00426-2015.git, to view or run the R-file 

“Coxph_glm.R” for simulation details. 

 

Baseline regimen 

Including baseline ART regimen (nevirapine or efavirenz based regimen) as covariates in 

survival models could cause confounding bias because at baseline patients were allocated to nevirapine 

or efavirenz based on aspects of clinical presentation that are already included via other covariates 

[196]. To avert this situation, we used regression trees to generate propensity scores [197] using baseline 

variables: viral load, CD4 count, hemoglobin, ART regimen, age, and gender to adjust for bias in 

treatment allocation (nevirapine or efavirenz) at ART initiation (see Appendix 2.1 figure 5). After 

pruning—removing highly specific nodes—there was only one root, which implied that these variables 

were not informative with regard to treatment allocation. We therefore completed the analysis without 

using propensity scores or ART regimen. 
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List of tables 

Appendix 2.1 table 1: Review of all Published Studies Evaluating Cumulative HIV-Viremia as a Prognostic Predictor. 

 

Study Cumulative Viremia 
Calculation 

Modela Resultsb 

Cole et al. 2010 [58]  
 
 

MACS, USA, 1984-1998 
 

 

cVL1: Calculated by 
summing under the viral 
load curve (6 monthly 
measurements), starting 
from seroconversion 
dates, which were known 
and assumed to 
correspond to a viral load 
of zero. 

Cox proportional hazards 
model of progression to AIDS 
or mortality (combined) vs. 
viral load measures including 
viral set point and time-updated 
values of log viral load, cVL1 
and peak viral load to date. 
Adjusted for time-updated CD4 
(spline). 

Baseline CD4c (at seroconversion): 701 (513-916) 
 
All four viral load measures significantly associated 
with hazard of AIDS/death in univariate models. 
Univariate model with the cVL1 model chosen as the 
best univariate model by AIC selection.  
 
No viral load predictors significant in full multivariate 
model, perhaps partly due to collinearity. CD4 effect 
not shown. 

Zoufaly et al. 2009 [70]  
 

ClinSurv, Germany, 
1999-2006 

cVL2: Calculated by 
summing under the log 
viral load curve (3 
monthly measurements) 
and above the log 
(500copies/μl), starting 
from ART initiation; log 
(500) cutoff was chosen so 
that undetectable viral 
loads did not contribute to 
cumulative viremia. 
Baseline cumulative 
viremia assumed to be 
zero. 

Cox proportional hazards 
model of incident AIDS 
lymphoma vs. time-updated 
viral load (categorized) and 
cVL2 (continuous). Adjusted 
for baseline (< vs ≥200) and 
time-updated CD4 (<200, 201-
350, ≥350). 

Baseline CD4 (at ART initiation) lymphoma:      90 
(38-220) 
Baseline CD4 (at ART initiation) no lymphoma: 204 
(80-340) 
 
Both time-updated viral load and cVL2 significantly 
associated with hazard of AIDS lymphoma in 
univariate models. 
 
cVL2 was also significantly associated with hazard in a 
multivariate model, but this model excluded time-
updated viral load. Low baseline and time-updated 
CD4 also predictive of increased risk in multivariate 
model. 
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Marconi et al. 2011 [60]  
 

Military HIV Natural 
History Study, USA 

1986-2008 
 

cVL1: Calculated by 
summing under the viral 
load curve (6 monthly 
measurements) starting 
from ART initiation.  
 
cVL1 was calculated only 
once per individual 
corresponding to their 
entire post-ART follow-up 
time (i.e. not time-
updated). 

Poisson regression of 
progression to AIDS vs. viral 
load decay rate over total 
follow-up time or within first 
year post-ART, viral load slope 
in first year post-ART and 
cVL1. All four of these viral 
loads were dichotomized into 
binary variables based on their 
median values. Also included 
CD4 (continuous). 

Baseline CD4 (at ART initiation): 278 (167-378) 
 
cVL1, when included as a dichotomous but not 
continuous variable, was a statistically significant 
predictor of AIDS risk in either univariate or 
multivariate models. CD4 effect not shown. 
 

Mugavero et al. 2011 
[59] 

 
CNICS, USA, 

2000-2008 
 

cVL1: Calculated by 
summing under the viral 
load curve (6 monthly 
measurements) and then 
taking the logarithm, 
starting from 24 weeks 
post-ART initiation.  
 
In sensitivity analyses, 
summed cumulative 
viremia starting from ART 
start, 48 weeks and 2-
years post-ART start. 

Cox proportional hazards 
model of all-cause mortality 
vs. log viral load, cVL1, log 
viral load at ART initiation and 
log viral load at 24 weeks post-
ART initiation. Used marginal 
structural models to account for 
time-dependent confounding 
between viral load measures 
and CD4 counts. 

Baseline CD4 (at ART initiation): 222 (97-325) 
 
Of four viral load measures in the multivariate 
adjusted model, only increasing cVL1 was 
significantly associated with increased mortality risk. 
Lower time-updated CD4 was also associated with 
increased mortality risk. 
 
Sensitivity analyses were consistent (data not shown). 
 
 

Mugavero et al. 2012 
[84] 

 
UAB1917 clinic and UW 
Harborview Clinic, USA, 

2007-2010 

cVL1; Calculated by 
summing the area under 
the viral load curve (6 
monthly measurements) 
and then taking the 
logarithm, starting from 

Linear regression model of 2-
year cVL1 as an outcome 
variable as a function of clinic 
visit adherence, adjusting for 
baseline viral load and CD4, 
age, sex, race/ethnicity and 
health insurance. 

Baseline CD4 at ART initiation: <200 (33%); 200-
3500 (24%); and >350 (43%). 
 
Higher early retention rates were significantly 
associated with lower cVL1 in a multivariate analysis. 
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ART initiation and going 
up to two years. 

Saracino et al. 2013 [83]  
 

Clinic of Infectious 
Diseases, Italy 
1997-present 

Calculated by summing 
the area under the viral 
load curve (other details 
not provided). 

Mann-Whitney test of cVL1 
over total time followed up as 
an outcome variable as a 
function of HIV strain. 

Found significant differences in cVL1 between 
patients infected with different strains. 

Lima et al. 2014 [82] 
 

RCT NCT00162643, 
Mexico 

2005-2007 

Calculated as total area 
under linear and log viral 
load curves (median (IQR) 
5 (4-5) viral load test) 
each cVL measure 
included either baseline or 
≥6months, to week 48.  
 
 

Wilcoxon rank sum test 
analysis was used to assess 
association between cVL1 or 
cVL2 with viral load at 48 
weeks post-ART initiation. 
Also assessed both cVL metrics 
as an outcome of randomized 
treatment assignment.  

Median baseline CD4 count: median (IQR) 
56cells/mm3 (25-117) 
 
cVL2 correlated with viral load at 48 weeks, though 
the former was derived from the latter. Patients 
initiated on efavirenz had significantly lower cVL2 
compared to lopinavir/r. cVL1 did not significantly 
correlate with viral load at 48 weeks (likely because 
this measure is closely correlated with peak viral load, 
which generally occurs earlier post-ART initiation) or 
treatment assignment. 

Kowalkowski et al. 2014 
[81]  

 
HIV-CCR, 

USA 
1985-2010 

cVL1; Calculated by 
summing the area under 
the viral load curve 
(inconsistent inter-
measurement duration, but 
averaging 3 per year) and 
then taking the logarithm, 
starting from first 
observation. Included 
individuals who had ever 
initiated treatment, 
including in the analysis 
person-time at risk pre-
ART initiation. 

Cox proportional hazards 
model for incidence of non-
AIDS events 
(Hepatocarcinoma, Hodgkin 
lymphoma and squamous cell 
carcinoma of the anus) vs cVL1, 
time-updated and pre-ART 
nadir CD4 count, log viral load 
and time-updated cumulative % 
of measurements with 
undetectable viral loads and 
several other variables. 

Nadir CD4 (pre-ART initiation)e:<200 (45%); 200-
350 (29%); and >350 (18%) 
 
cVL1 was associated with all three non-AIDS events 
in a univariate analysis, but only associated with 
Hodgkin lymphoma and squamous cell carcinoma of 
the anus in a multivariate analysis. 
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Chriouze et al. 2015 [69] 
 

APROCO-COPILOTE  
 

France 
1997-2010 

cVL1; Calculated by 
summing under the viral 
load curve starting from 
8 months post-baseline 
(at baseline cohort 
included both pretreated 
and ART-naïve patients) 
and then taking the 
logarithm. 

Cox proportional hazards 
model of all-cause mortality 
vs. dichotomized cVL1. 
Adjusted for sex, age, ART 
status at baseline, history of 
AIDS event, baseline and time-
updated CD4, baseline and 
time-updated log viral load. 

Baseline CD4 (at ART initiation): 278 (125-416) 
 
cVL1 (dichotomized) was only statistically 
significantly associated with all-cause mortality when 
time-updated log viral load was excluded from the 
analysis. 

Sempa et al. 2015 
(Current article) 

 
IDI Cohort, 

Uganda 
2004-2013 

Calculated by summing 
under the viral load 
(cVL1) or log viral load 
(cVL2) curve (6 monthly 
measurements) and above 
the log (400cp/μl) 
detectability threshold 
starting from ART 
initiation; log (400) cutoff 
was chosen so that 
undetectable viral loads 
did not contribute to 
cumulative viremia.  
 
In a sensitivity analysis we 
used 1og (1000) 

Cox proportional hazards 
model of opportunistic 
infection, AIDS-related 
mortality, or all-cause 
mortality vs. either cVL1 or 
cVL2. Adjusted for time-
updated and baseline log viral 
load, time-updated and baseline 
CD4, baseline age and sex. 
Included interaction between 
laboratory measurements and 
time since measurement to 
include declining effect of 
measurement over time when 
outcomes observed more 
frequently than covariates. 

Baseline CD4 (at ART initiation): 100 (38-168) 
 
Neither cVL measure was significantly associated 
with opportunistic infection risk, which was better 
predicted by time-updated viral load, hemoglobin 
levels and CD4 count. 
 
cVL2, but neither cVL2 nor time-updated log viral 
load, was significantly associated with mortality risk. 
Lower CD4 and lower hemoglobin were also 
significantly associated with increased mortality risk. 
 
Viral load measurements were only predictive of 
opportunistic infection or mortality risk for the 12 
weeks post-measurement, while other variables were 
predictive of mortality (hemoglobin, CD4) or 
opportunistic infection (hemoglobin) risk for up to 24 
weeks. 
 
cVL2 remained a significant predictor 

aOnly covariates corresponding to viral load or CD4 measures are described in this table. 
bWe do not report hazard ratios because they are not directly comparable between studies that modeled viral loads and cumulative viremia calculated in 
different ways. 
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dAll baseline CD4 given as median (IQR) except for e. 
eBreakdown of pre-ART CD4 nadirs by category 

We use cVL1 and cVL2 to designate cumulative HIV-vremia metrics accumulated on a linear and log scale, respectively.  
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Appendix 2.1 table 2: Characteristics of the 489 for HIV Patients on ART in the IDI 

cohort, Kampala, Uganda, 2004-2013 included in the analysis. 

Variable Median (IQR) 

Baseline Age (years) 35.3 (30.2 – 41.8) 

Gender: n (%) 
 

Female 341 (69.7) 

Male 148 (30.3) 

Baseline CD4 count (cells/μL) 100 (30-168) 

Nevirapine based regimen at baseline: n (%) 363 (74.2) 

Baseline viral load : Log10 copies/ml 5.4 (5.1 – 5.8) 

Follow-up time (years) 8.3 (2.3 – 8.8) 
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Appendix 2.1 table 3: Spearman Correlation Matrix between Viral Load and CD4 

variables among HIV Patients on ART in the IDI cohort, Kampala, Uganda, 2004-2013. 

 
log (VL) cVL1 cVL2 baseline 

log (VL) 

peak log 

(VL) 

log (CD4) 

log (VL) 1 -0.69 -0.034 0.045 0.07 -0.49 

cVL1  1 0.47 0.32 0.34 0.47 

cVL2   1 0.15 0.22 0.094 

baseline log 

(VL)    1 0.89 0.0049 

peak log 

(VL)     1 -0.0094 

log (CD4)      1 

Legend: Correlations displayed include 11819 observations of 489 patients where variables indicate 
either time-varying measurements (log (viral load, cVL1—log cumulative viral load, cVL2—
cumulative log viral load, log (CD4)) or a single measurement for each patient (baseline log viral 
load, peak log viral load). 
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Appendix 2.1 table 4: Sensitivity analysis of Opportunistic Infection Model Results 

using different viral load detection thresholds among HIV Patients on ART in the IDI 

cohort, Kampala, Uganda, 2004-2013. 

 

Threshold for cVL2 calculation  

400 copies/ml 1000 copies/ml 

AHR 95% CI AHR 95% CI 

per log10 increase in VL, log10 copies/ml       

predicting 0-12 weeks ahead 1.34 1.120, 1.610 c 1.35 1.130, 1.620 b 

predicting 0-24 weeks ahead 1.21 0.969, 1.500 1.21 0.968, 1.500 

per log10 increase in cumulative viremia  
 

  
 

predicting 0-12 weeks ahead 0.78 0.523, 1.150 0.72 0.442, 1.180 

predicting 0-24 weeks ahead 1.00 0.679, 1.480 0.99 0.610, 1.600 

per 2-fold increase in CD4 count, cells/µL 
 

  
 

predicting 0-12 weeks ahead 0.90 0.804, 0.998 a 0.90 0.803, 0.999 a 

predicting 0-24 weeks ahead 0.91 0.755, 1.110 0.91 0.754, 1.110 

per 10% increase in hemoglobin 
 

  
 

predicting 0-12 weeks ahead 0.91 0.859, 0.959 c 0.91 0.859, 0.959 c 

predicting 0-24 weeks ahead 0.89 0.819, 0.971 b 0.89 0.818, 0.971 b 

per 2-fold increase in baseline CD4 count, 

cells/µL 

0.98 0.898, 1.080 0.98 0.898, 1.080 

Baseline viral load, log10 copies/ml     

1st  1   1 

2nd  0.96 0.692, 1.320 0.96 0.693, 1.320 

3rd  1.20 0.869, 1.640 1.20 0.872, 1.650 

4th  1.01 0.715, 1.420 1.01 0.718, 1.430 

Gender 
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Female 1   1 

Male 0.78 0.602, 1.010 0.78 0.603, 1.010 

per 10 year increase in baseline age 0.91 0.791, 1.040 0.91 0.791, 1.040 

a Statistical significance: P <0.05; b P <0.01; c P <0.001 

Quartile: 1st—<105.07; 2nd—105.08 - 105.44; 3rd—105.45 - 105.77; 4th—105.78 - 106.15 

ART—Antiretroviral therapy; AHR—Adjusted Hazard Ratio; HIV—Human Immune Virus; cVL1—
log cumulative viral load; cVL2—cumulative log viral load; VL— Viral Load. Values give adjusted 
hazard ratios (95% confidence interval) for the hazard of acquiring an incident opportunistic infection 
from multivariate Cox proportional hazard models with cVL2 calculated using either viral load detection 
thresholds of either 400 or 1000 copies/ml. 
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Appendix 2.1 table 5: Sensitivity analysis of All-cause Mortality Model Results using 

different viral load detection thresholds among HIV Patients on ART in the IDI cohort, 

Kampala, Uganda, 2004-2013.  

Variable 

Threshold for cVL2 calculation 

400 copies/ml 1000 copies/ml 

AHR 95% CI AHR 95% CI 

per log10 increase in VL, log10 copies/ml       

predicting 0-12 weeks ahead 1.13 0.722, 1.770 1.11 0.710, 1.740 

predicting 0-24 weeks ahead 0.89 0.512, 1.550 0.85 0.491, 1.490 

per log10 increase in cumulative viremia, 

log10 copy-yrs/ml  

 
  

 

predicting 0-12 weeks ahead 1.63 1.020, 2.600 a 1.86 1.060, 3.260 a 

predicting 0-24 weeks ahead 0.50 0.168, 1.490 0.28 0.0623, 1.210 

per 2-fold increase in CD4 count, cells/µL 
 

  
 

predicting 0-12 weeks ahead 0.57 0.454, 0.723 c 0.57 0.453, 0.720 c 

predicting 0-24 weeks ahead 0.69 0.514, 0.922 a 0.69 0.517, 0.926 a 

per 10% increase in hemoglobin, g/dl 
 

  
 

predicting 0-12 weeks ahead 0.77 0.702, 0.832 c 0.76 0.702, 0.831 c 

predicting 0-24 weeks ahead 0.73 0.650, 0.817 c 0.73 0.654, 0.822 c 

per 2-fold increase in baseline CD4 count, 

cells/µL  

1.1 

 

0.920, 1.280 1.08 

0.920, 1.280 

Baseline viral load, log10 copies/ml 
 

  
 

1st  1   1 

2nd  1.51 0.682, 3.330 1.53 0.687, 3.390 

3rd  1.28 0.527, 3.090 1.31 0.535, 3.220 

4th  3.62 1.710, 7.640 c 3.71 1.740, 7.930 c 
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Gender     

Female 1   1 

Male 1.07 0.556, 2.050 1.07 0.556, 2.050 

Baseline age, years     

≤35 1   1 

36 – 45 1.29 0.713, 2.340 1.31 0.719, 2.370 

46 – 55 1.71 0.815, 3.600 1.74 0.828, 3.650 

≥56 3.02 1.300, 6.970 b 3.09 1.340, 7.150 b 

a Statistical significance: P <0.05; b P <0.01; c P <0.001 

Quartile: 1st—<105.07; 2nd—105.08 - 105.44; 3rd—105.45 - 105.77; 4th—105.78 - 106.15 

ART—Antiretroviral therapy; AHR—Adjusted Hazard Ratio; HIV—Human Immune Virus; cVL1—
log cumulative viral load; cVL2—cumulative log viral load; VL— Viral Load. Values give adjusted 
hazard ratios (95% confidence interval) for the hazard of dying of any cause from multivariate 
Cox proportional hazard models with cVL2 calculated using either viral load detection 
thresholds of either 400 or 1000 copies/ml. 
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Appendix 2.1 table 6: Sensitivity Analysis of Opportunistic Infection Model Results 

among HIV Patients on ART in the IDI cohort, Kampala, Uganda, 2004-2013.  

Variable 
Model with cVL1 Model with cVL2 

AHR 95% CI AHR 95% CI 

per log10 increase in VL, log10 copies/ml       

predicting 0-12 weeks ahead 1.30 1.030, 1.640 a 1.30 1.030, 1.640 a 

predicting 0-24 weeks ahead 1.57 1.130, 2.180 b 1.53 1.090, 2.150 a 

per log10 increase in cumulative viremia, 

log10 copy-yrs/ml  

 
  

 

predicting 0-12 weeks ahead 0.91 0.689, 1.190 0.76 0.416, 1.400 

predicting 0-24 weeks ahead 0.89 0.659, 1.190 0.86 0.451, 1.630 

per 2-fold increase in CD4 count, cells/µL 
 

  
 

predicting 0-12 weeks ahead 0.88 0.635, 1.230 0.89 0.639, 1.230 

predicting 0-24 weeks ahead 0.98 0.645, 1.500 0.97 0.646, 1.460 

per 10% increase in hemoglobin, g/dl 
 

  
 

predicting 0-12 weeks ahead 0.91 0.840, 0.987 a 0.91 0.838, 0.981 a 

predicting 0-24 weeks ahead 0.85 0.749, 0.962 a 0.85 0.751, 0.966 a 

per 2-fold increase in baseline CD4 count, 

cells/µL 

1.01 0.716, 1.420 1.01 0.715, 1.420 

Baseline viral load, log10 copies/ml     

1st  1   1 

2nd  0.87 0.551, 1.380 0.87 0.550, 1.370 

3rd  1.10 0.705, 1.720 1.10 0.705, 1.720 

4th  0.86 0.539, 1.360 0.85 0.537, 1.350 

Gender 
 

  
 

Female 1   1 
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Male 0.88 0.588, 1.310 0.88 0.590, 1.310 

per 10 year increase in baseline age 1.10 0.917, 1.330 1.10 0.916, 1.330 

a Statistical significance: P <0.05; b P <0.01; c P <0.001 

Quartile: 1st—<105.07; 2nd—105.08 - 105.44; 3rd—105.45 - 105.77; 4th—105.78 - 106.15 

ART—Antiretroviral therapy; AHR—Adjusted Hazard Ratio; HIV—Human Immune Virus; cVL1—
log cumulative viral load; cVL2—cumulative log viral load; VL— Viral Load. The sensitivity analysis 
involved recalculating cumulative HIV-Viremia by moving baseline viral load from baseline visit to 24 
week measurement. Values give adjusted hazard ratios (95% confidence interval) for the hazard of 
acquiring an incident opportunistic infection from multivariate Cox proportional hazard models with 
cumulative viremia calculated as one of either cVL1 or cVL2. 
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Appendix 2.1 table 7: Sensitivity Analysis of All-cause Mortality Model Results among 

HIV Patients on ART in the IDI cohort, Kampala, Uganda, 2004-2013.  

Variable 
Model with cVL1 Model with cVL2 

AHR 95% CI AHR 95% CI 

per log10 increase in VL, log10 copies/ml       

predicting 0-12 weeks ahead 0.93  0.529, 1.630 1.20  0.671, 2.160 

predicting 0-24 weeks ahead 1.17  0.684, 2.010 1.32  0.768, 2.270 

per log10 increase in cumulative viremia, 

log10 copy-yrs/ml  

 
  

 

predicting 0-12 weeks ahead 1.81  1.270, 2.580 b 1.81  1.010, 3.230 a 

predicting 0-24 weeks ahead 0. 90  0.601, 1.350 0.58 0.219, 1.520 

per 2-fold increase in CD4 count, cells/µL 
 

  
 

predicting 0-12 weeks ahead 0.54  0.399, 0.733 c 0.55 0.402, 0.738 c 

predicting 0-24 weeks ahead 0.67  0.410, 1.110 0.61 0.378, 0.980 a 

per 10% increase in hemoglobin, g/dl 
 

  
 

predicting 0-12 weeks ahead 0.78  0.718, 0.856 c 0.79 0.718, 0.862 c 

predicting 0-24 weeks ahead 0.74  0.634, 0.868 c 0.73 0.633, 0.848 c 

per 2-fold increase in baseline CD4, cells/µL 

count  

1.00 0.710, 1.400 0.93  0.660, 1.310 

Baseline viral load, log10 copies/ml 
 

  
 

1st 1   1 

2nd 1.50  0.630, 3.580 1.59  0.648, 3.900 

3rd 1.09  0.416, 2.860 1.14  0.428, 3.020 

4th  2.46  1.100, 5.490 a 2.73  1.200, 6.230 a 

Gender     

Female 1   1 
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Male 1.06  0.495, 2.260 1.08  0.488, 2.390 

Baseline age, years     

≤35 1   1 

36 – 45 1.61  0.737, 3.510 1.68  0.752, 3.760 

46 – 55 1.94  0.765, 4.920 1.90  0.742, 4.850 

≥56 3.98  1.430, 11.100 b 3.88  1.390, 10.800 b 

a Statistical significance: P <0.05; b P <0.01; c P <0.001 

Quartile: 1st—<105.07; 2nd—105.08 - 105.44; 3rd—105.45 - 105.77; 4th—105.78 - 106.15 

ART—Antiretroviral therapy; AHR—Adjusted Hazard Ratio; HIV—Human Immune Virus; cVL1—
log cumulative viral load; cVL2—cumulative log viral load; VL— Viral Load. The sensitivity analysis 
involved recalculating cumulative HIV-Viremia by moving baseline viral load from baseline visit to 24 
week measurement. Values give adjusted hazard ratios (95% confidence interval) for the hazard of 
dying of any cause from multivariate Cox proportional hazard models with cumulative viremia 
calculated either as cVL1 or cVL2. 
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Appendix 2.1 table 8: HIV specific Mortality Model Results among HIV Patients on 

ART in the IDI cohort, Kampala, Uganda, 2004-2013.  

Variable 
Model with cVL1 Model with cVL2 

AHR 95% CI AHR 95% CI 

per log10 increase in VL, log10 copies/ml       

predicting 0-12 weeks ahead 1.05  0.580, 1.900 0.94  0.464, 1.920 

predicting 0-24 weeks ahead 1.58  0.789, 3.150 0.93  0.446, 1.960 

per log10 increase in cumulative viremia, log10 

copy-yrs/ml  

      

predicting 0-12 weeks ahead 1.18  0.493, 2.820 1.34  0.601, 2.980 

predicting 0-24 weeks ahead 1.74  1.000, 3.030 a 1.20  0.415, 3.440 

per 2-fold increase in CD4 count, cells/µL       

predicting 0-12 weeks ahead 0.60  0.429, 0.831 b 0.58 0.416, 0.798 c 

predicting 0-24 weeks ahead 0.65  0.435, 0.969 a 0.72  0.489, 1.060 

per 10% increase in hemoglobin, g/dl       

predicting 0-12 weeks ahead 0.71  0.637, 0.792 c 0.71 0.632, 0.786 c 

predicting 0-24 weeks ahead 0.59  0.459, 0.760 c 0.63  0.509, 0.777 c 

per 2-fold increase in baseline CD4 count , 

cells/µL 

1.00  0.822, 1.220 1.01  0.822, 1.230 

Baseline viral load, log10 copies/ml       

1st  1   1 

2nd  2.19  0.694, 6.890 2.24  0.754, 6.630 

3rd  1.95  0.528, 7.200 2.13 0.646, 7.040 

4th  5.93  1.840, 19.200 b 6.99 2.580, 18.900 c 

Gender       

Female 1   1 
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Male 0.87  0.335, 2.250 0.85  0.321, 2.250 

Baseline age, in years     

≤35 1   1 

36 – 45 1.65  0.782, 3.480 1.58  0.719, 3.460 

46 – 55 1.32  0.428, 4.060 1.33  0.432, 4.110 

≥56 2.29  0.563, 9.340 2.32  0.599, 8.980 

a Statistical significance: P <0.05; b P <0.01; c P <0.001 

Quartile: 1st—<105.07; 2nd—105.08 - 105.44; 3rd—105.45 - 105.77; 4th—105.78 - 106.15 

ART—Antiretroviral therapy; AHR—Adjusted Hazard Ratio; HIV—Human Immune Virus; cVL1—
log cumulative viral load; cVL2—cumulative log viral load; VL— Viral Load. Values give adjusted 
hazard ratios (95% confidence interval) for the hazard of HIV-related causes from multivariate Cox 
proportional hazard models with cumulative viremia calculated either as cVL1 or cVL2 
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List of figures 

Appendix 2.1 figure 1: Loess-smoothed Martingale Residuals for All-cause Mortality 

Outcomes versus Hemoglobin counts for HIV Patients on ART in the IDI cohort, 

Kampala, Uganda, 2004-2013.  

 

Legend: Multivariate Cox proportional hazards were fit with all variables as indicated in the main text 
except for time-updated hemoglobin. Martingale residuals were then plotted versus hemoglobin on a 
linear (A) and logarithmic scale (B), with a loess trend to visually inspect their functional relationship. 
The trend with hemoglobin on a log scale is better approximated by a linear relationship, justifying the 
inclusion of hemoglobin’s inclusion in the model as log hemoglobin. Similar visual inspections were 
used to determine the specification of each covariate.  
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Appendix 2.1 figure 2: Correlation between Cumulative HIV-Viremia Metrics and log 

Viral Load for HIV Patients on ART in the IDI cohort, Kampala, Uganda, 2004-2013.  

 

Legend: A— correlation between log viral load, and cumulative HIV-Viremia measures when baseline 
is at baseline visit. B— correlation between log viral load, and cumulative HIV-Viremia measures 
when baseline is shifted to week 24. Each point shows a single laboratory measurement, with color 
indicating the time since ART initiation (i.e. years of follow-up) for that measurement. A linear model 
(black line) is displayed to illustrate the correlation shown in Appendix 2.1 table 3. The strong negative 
correlation between log cumulative viral load and log viral load is driven by log cumulative viral 
load’s rapid increases at the baseline visit when viral load is high. Because accumulation on a linear 
scale means that log cumulative viral load only increases slightly for subsequent intermediate viral 
load measurements. 
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Appendix 2.1 figure 3: Declining Prognostic Value with Increasing Time since 

Measurement among HIV Patients on ART in the IDI cohort, Kampala, Uganda, 2004-

2013.  

 

Legend: Lines and shaded regions show the adjusted hazard ratio (AHR) and 95% confidence intervals, 
respectively, for the hazard of acquiring an incident OI per log10 increase in viral load (A), per log10 
increase in cumulative log viral load (B), per 50 increase in CD4 count (C) and per 1g/dl increase in 
hemoglobin (D). The AHR is modeled as a function of the time since the laboratory measurement was 
made, facilitating the estimation of how the predictive utility of each measurement declines over time. 
Inset histograms show the frequency distribution of time lags between a clinic visit and the time of the 
last laboratory measurement. Because most patients visited quarterly but only had laboratory assays 
performed every other visit, most time lags were at 12 and 24 weeks and visits are rounded to 12-week 
intervals in the analysis. 
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Appendix 2.1 figure 4: Distribution of P-values for the effect of cumulative HIV-Viremia 

on OI risk amongst 1000 simulations assuming no actual effect.  

 

Legend: The graphs are in the order Cox proportional hazards model with unrounded inter-visit 
intervals, Poisson regression with unrounded inter-visit intervals and Cox proportional hazards model 
with rounded inter-visit intervals. 
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Appendix 2.1 figure 5: Probability of receiving nevirapine or efavirenz among HIV 

Patients on ART in the IDI cohort, Kampala, Uganda, 2004-2013.  

 

Legend: NVP - nevirapine; EFV- efavirenz; base.age – Age at baseline; cd4.base – Baseline CD4 count, 
logv.l – Baseline HIV log viral load; hb.l – Baseline hemoglobin 
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Appendix 3.1 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) check list 

Section/topic  # Checklist item  
Reported 
on page #  

TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both.  1 

ABSTRACT   

Structured summary  2 Provide a structured summary including, as applicable: background; objectives; data sources; study 
eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; 
limitations; conclusions and implications of key findings; systematic review registration number.  

2, 3 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already known.  4 

Objectives  4 Provide an explicit statement of questions being addressed with reference to participants, interventions, 
comparisons, outcomes, and study design (PICOS).  

5 

METHODS   

Protocol and registration  5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, 
provide registration information including registration number.  

N/A 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years 
considered, language, publication status) used as criteria for eligibility, giving rationale.  

5 

Information sources  7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to 
identify additional studies) in the search and date last searched.  

5 

Search  8 Present full electronic search strategy for at least one database, including any limits used, such that it could 
be repeated.  

5, 
Appendix 
3.2 
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Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if 
applicable, included in the meta-analysis).  

5, 6 

Data collection process  10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any 
processes for obtaining and confirming data from investigators.  

6, 7 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any 
assumptions and simplifications made.  

6 

Risk of bias in individual 
studies  

12 Describe methods used for assessing risk of bias of individual studies (including specification of whether 
this was done at the study or outcome level), and how this information is to be used in any data synthesis.  

7 

Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in means).  6 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, if done, including measures of 
consistency (e.g., I2) for each meta-analysis.  

7 

 

 

Section/topic  # Checklist item  
Reported 
on page #  

Risk of bias across studies  15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, 
selective reporting within studies).  

7 

Additional analyses  16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, 
indicating which were pre-specified.  

7 

RESULTS   

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for 
exclusions at each stage, ideally with a flow diagram.  

7, 8 

Study characteristics  18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up 
period) and provide the citations.  

11, 12, & 
14 

Risk of bias within studies  19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).  15 

Results of individual 
studies  

20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each 
intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.  

8 
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Synthesis of results  21 Present results of each meta-analysis done, including confidence intervals and measures of consistency.  N/A 

Risk of bias across studies  22 Present results of any assessment of risk of bias across studies (see Item 15).  16 

Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 
16]).  

8 

DISCUSSION   

Summary of evidence  24 Summarize the main findings including the strength of evidence for each main outcome; consider their 
relevance to key groups (e.g., healthcare providers, users, and policy makers).  

17 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete 
retrieval of identified research, reporting bias).  

21, 22 

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and implications for future 
research.  

22 

FUNDING   

Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of 
funders for the systematic review.  

23 

 
From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA 
Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097  

For more information, visit: www.prisma-statement.org.  

Page 2 of 2  
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Appendix 3.2 

SCOPUS search strategy 

Immune response: 402,690 

TITLE-ABS-KEY ( "Immune response"  OR  "CD4 count change"  OR  "CD4 
trajectory"  OR  "CD4 count"  OR  "CD4"  OR  "cd4 lymphocyte 
count"  OR  "CD4 counts"  OR  "immunity cellular"  OR  "cellular immune 
response"  OR  "cellular immune recovery"  OR  "cellular immune 
reconstitution"  OR  "cellular immune trajectory"  OR  "CD4 
recovery"  OR  "CD4 trajectory"  OR  "CD4 response"  OR  "CD4 
gains" )  AND  ( LIMIT-TO ( LANGUAGE ,  "English" ) )  

HAART: 54,159 

TITLE-ABS-KEY ( "antiretroviral therapy"  OR  "HAART"  OR  "combination 
antiretroviral therapy"  OR  "cART"  OR  "highly active antiretroviral 
therapy" )  AND  ( LIMIT-TO ( LANGUAGE , "English" ) )  
 

Statistical Model: 1,022,199 

TITLE-ABS-KEY ( "Likelihood Functions"  OR  "Linear Models"  OR  "Logistic 
Models"  OR "Proportional Hazards Models"  OR  "Least-Squares 
Analysis"  OR  "Nomograms"  OR "Models, 
Statistical"  OR  "regression" )  AND  ( LIMIT-TO ( LANGUAGE ,  "English" ) )  

SSA: 555,920 

TITLE-ABS-KEY ( "Angola"  OR  "Benin"  OR  "Botswana"  OR  "Burkina 
Faso"  OR  "Burundi" OR  "Cameroon"  OR  "Cape Verde"  OR  "Central 
African Republic"  OR  "Chad"  OR "Comoros"  OR  "Congo"  OR  "Côte 
d'Ivoire"  OR  "Djibouti"  OR  "Equatorial 
Guinea"  OR "Eritrea"  OR  "Ethiopia"  OR  "Gabon"  OR  "Gambia"  OR  "G
hana"  OR  "Guinea"  OR "Guinea-
Bissau"  OR  "Kenya"  OR  "Lesotho"  OR  "Liberia"  OR  "Madagascar"  OR 
"Malawi"  OR  "Mali"  OR  "Mauritania"  OR  "Mauritius"  OR  "Mozambique
"  OR  "Namibia" OR  "Niger"  OR  "Nigeria"  OR  "Réunion"  OR  "Rwanda" 
 OR  "Sao Tome and Principe"  OR "Senegal"  OR  "Seychelles"  OR  "Sierra 
Leone"  OR  "Somalia"  OR  "South 
Africa"  OR "Sudan"  OR  "Swaziland"  OR  "Tanzania"  OR  "Togo"  OR  "Ug
anda" OR  "Zambia"  OR  "Zimbabwe"  OR  "Sub-Saharan 
Africa"  OR  "Subsaharan Africa"  OR  "Africa, Sub-Saharan"  OR  "south of 
sahara" )  AND  ( LIMIT-TO ( LANGUAGE , "English" ) )  

 

Immune response AND HAART = 20,476 

Stellenbosch University  https://scholar.sun.ac.za



 

130 | P a g e  
 

( ( TITLE-ABS-KEY ( "Immune response"  OR  "CD4 count change"  OR  "CD4 
trajectory"  OR  "CD4 count"  OR  "CD4"  OR  "cd4 lymphocyte 
count" OR  "CD4 counts"  OR  "immunity cellular"  OR  "cellular immune 
response"  OR  "cellular immune recovery"  OR  "cellular immune 
reconstitution"  OR  "cellular immune trajectory" OR  "CD4 
recovery"  OR  "CD4 trajectory"  OR  "CD4 response"  OR  "CD4 
gains" ) )  AND ( TITLE-ABS-KEY ( "antiretroviral 
therapy"  OR  "HAART"  OR  "combination antiretroviral 
therapy"  OR  "cART"  OR  "highly active antiretroviral 
therapy" ) ) )  AND (LIMIT-TO (LANGUAGE , "English" ) )  

 

(Immune response AND HAART) AND SSA =2588 

 ( ( TITLE-ABS-KEY ( "Immune response"  OR  "CD4 count change"  OR  "CD4 
trajectory"  OR  "CD4 count"  OR  "CD4"  OR  "cd4 lymphocyte 
count" OR  "CD4 counts"  OR  "immunity cellular"  OR  "cellular immune 
response"  OR  "cellular immune recovery"  OR  "cellular immune 
reconstitution"  OR  "cellular immune trajectory" OR  "CD4 
recovery"  OR  "CD4 trajectory"  OR  "CD4 response"  OR  "CD4 
gains" ) )  AND ( TITLE-ABS-KEY ( "antiretroviral 
therapy"  OR  "HAART"  OR  "combination antiretroviral 
therapy"  OR  "cART"  OR  "highly active antiretroviral 
therapy" ) ) ) )  AND  ( TITLE-ABS-
KEY ( "Angola"  OR  "Benin"  OR  "Botswana"  OR  "Burkina 
Faso"  OR  "Burundi"  OR "Cameroon"  OR  "Cape Verde"  OR  "Central 
African Republic"  OR  "Chad"  OR "Comoros"  OR  "Congo"  OR  "Côte 
d'Ivoire"  OR  "Djibouti"  OR  "Equatorial 
Guinea"  OR "Eritrea"  OR  "Ethiopia"  OR  "Gabon"  OR  "Gambia"  OR  "G
hana"  OR  "Guinea"  OR "Guinea-
Bissau"  OR  "Kenya"  OR  "Lesotho"  OR  "Liberia"  OR  "Madagascar"  OR 
"Malawi"  OR  "Mali"  OR  "Mauritania"  OR  "Mauritius"  OR  "Mozambique
"  OR  "Namibia" OR  "Niger"  OR  "Nigeria"  OR  "Réunion"  OR  "Rwanda" 
 OR  "Sao Tome and Principe"  OR "Senegal"  OR  "Seychelles"  OR  "Sierra 
Leone"  OR  "Somalia"  OR  "South 
Africa"  OR "Sudan"  OR  "Swaziland"  OR  "Tanzania"  OR  "Togo"  OR  "Ug
anda"  OR  "Zambia"  OR  "Zimbabwe"  OR  "Sub-Saharan 
Africa"  OR  "Subsaharan Africa"  OR  "Africa, Sub-Saharan"  OR  "south of 
sahara" ) ) )  AND  ( LIMIT-TO ( LANGUAGE ,  "English" ) )  

(Immune response AND HAART AND SSA) AND Statistical models = 614 

( ( TITLE-ABS-KEY ( "Immune response"  OR  "CD4 count change"  OR  "CD4 

trajectory"  OR  "CD4 count"  OR  "CD4"  OR  "cd4 lymphocyte 

count" OR  "CD4 counts"  OR  "immunity cellular"  OR  "cellular immune 

response"  OR  "cellular immune recovery"  OR  "cellular immune 
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reconstitution"  OR  "cellular immune trajectory" OR  "CD4 

recovery"  OR  "CD4 trajectory"  OR  "CD4 response"  OR  "CD4 

gains" ) )  AND ( TITLE-ABS-KEY ( "antiretroviral 

therapy"  OR  "HAART"  OR  "combination antiretroviral 

therapy"  OR  "cART"  OR  "highly active antiretroviral 

therapy" ) ) ) )  AND  ( TITLE-ABS-

KEY ( "Angola"  OR  "Benin"  OR  "Botswana"  OR  "Burkina 

Faso"  OR  "Burundi"  OR "Cameroon"  OR  "Cape Verde"  OR  "Central 

African Republic"  OR  "Chad"  OR "Comoros"  OR  "Congo"  OR  "Côte 

d'Ivoire"  OR  "Djibouti"  OR  "Equatorial 

Guinea"  OR "Eritrea"  OR  "Ethiopia"  OR  "Gabon"  OR  "Gambia"  OR  "G

hana"  OR  "Guinea"  OR "Guinea-

Bissau"  OR  "Kenya"  OR  "Lesotho"  OR  "Liberia"  OR  "Madagascar"  OR 

"Malawi"  OR  "Mali"  OR  "Mauritania"  OR  "Mauritius"  OR  "Mozambique

"  OR  "Namibia" OR  "Niger"  OR  "Nigeria"  OR  "Réunion"  OR  "Rwanda" 

 OR  "Sao Tome and Principe"  OR "Senegal"  OR  "Seychelles"  OR  "Sierra 

Leone"  OR  "Somalia"  OR  "South 

Africa"  OR "Sudan"  OR  "Swaziland"  OR  "Tanzania"  OR  "Togo"  OR  "Ug

anda" OR  "Zambia"  OR  "Zimbabwe"  OR  "Sub-Saharan 

Africa"  OR  "Subsaharan Africa"  OR  "Africa, Sub-Saharan"  OR  "south of 

sahara" ) ) )  AND  ( TITLE-ABS-KEY ( "Likelihood Functions"  OR  "Linear 

Models"  OR  "Logistic Models"  OR "Proportional Hazards 

Models"  OR  "Least-Squares Analysis"  OR  "Nomograms"  OR "Models, 

Statistical"  OR  "regression" ) )  AND  ( LIMIT-

TO ( LANGUAGE ,  "English" ) )  
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Appendix 3.3 

Time-dependent confounding and Marginal Structural Models 

In chapter 2, using longitudinal data from an ART cohort, the effect of exposure 

to most recent viral load and cumulative HIV-Viremia on incidence of opportunistic 

infection and mortality was investigated. Cox-proportional hazards regression with 

Andersen-Gill standard errors were used (see Appendix 2.1). Time-dependent 

confounding is a potential danger in such analyses. This occurs if a covariate is a risk 

factor/ predictor for a particular outcome and its history predicts its current level [198]. 

For example, CD4 count can be a time-dependent confounder when investigating the 

effect of antiretroviral therapy on time to mortality. CD4 counts determine the baseline 

regimen, any subsequent regimens, and are also independently associated with 

mortality. 

Directed Acyclic Graphs (DAGs) are useful for visually demonstrating 

covariate-outcome relationships, with potential time-dependent confounding. A 

confounder is causal to (i.e. is an ancestor of) the outcome, is associated with the 

exposure but is not causal to (i.e. not a descendant of) exposure or outcome [145]. 

Figure 1 below is a DAG for the outcome of mortality as investigated in Chapter 2. In 

this case CD4 counts and hemoglobin were not time-dependent confounders as they did 

not confound the relationship of cumulative HIV-viremia to mortality. Adjustment was 

made for the following potential confounders: age, baseline HIV viral load, sex and 

baseline CD4 count, as well as time-updated CD4 count and hemoglobin. We also 

adjusted for HIV viral load as one of the two main predictors under study (Appendix 

3.3 Figure 1). 
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Marginal Structural Models (MSM’s) or Structural Nested Models (SNMs) are 

useful when analyzing data containing potential time-dependent confounding. The 

parameters of MSMs can be estimated using the inverse probability of treatment, with 

censored weights [198], while for SNMs G-parameter estimation is done [199]. To 

obtain the combined inverse probability of treatment and censoring, the two inverse 

probabilities are multiplied by each other. The former is the conditional probability of 

treatment, given baseline covariates and past treatment history divided by the 

conditional probability of receiving treatment given the past treatment history. The 

latter is the conditional probability of not being censored, given baseline covariates and 

past treatment history, divided by the conditional probability of not being censored, 

given previous treatment history and covariate history. It is possible to adjust for these 

in Cox proportional hazards models [198]. 

Appendix 3.3 Figure 1: Directed acyclic graph showing the different relationships 
between covariates adjusted for in the mortality analysis  

 
Legend: blue with black boarder is the outcome which is mortality; the white circle with a 
black border is for the variable we ‘forcefully’ adjust for which is HIV viral load; yellow circle 
with black boarder and black arrow is the main exposure which is cumulative HIV-Viremia; 
blue circles represents ancestors of exposure and outcome; and pink circles represent ancestor 
of exposure and outcome. Green lines represent causal path; pink arrows represent the 
relationships that need to adjust for to avoid biased estimates and; black line is for unmeasured 
makers.  
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Appendix 4.1 

Appendix 4.1 Figure 1: Cross correlation plots between corresponding parameters 

adjusted for in the primary models  

 

Legend: M1.10 and M1.20 are models without or with cumulative log viral load, respectively. In 
these models, CD4 counts outcome in the likelihood follows normal distribution, while beta 
priors follow independent Gaussian normal distribution; and M2.10 and M2.20 are models without 
or with cumulative log viral load, respectively. In these models, are having ≥500 cells/µL 
follows Bernoulli distribution, beta priors follow independent Gaussian normal distribution. 
Beta[2] up to beta[6] represents sex, baseline age, baseline CD4 count, baseline log  viral load 
and time on treatment. For M1.10 and M1.20 beta[7] and beta[8] are time on treatment-squared 
and cumulative log viral load, respectively, while beta[7] was for cumulative log viral load in 
M2.10 and M2.20 and beta[6] is cumulative log viral load. 
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Appendix 4.1 Table 1: Effect of using a Student’s t-distributed CD4 count in the 

slope of CD4 count model (Posterior mean and 95% credible intervals)  

Parameter 
Model without cVL2 Model with cVL2 

Estimate 95% CI Estimate 95% CI 
Female-gender 8.77 (2.148, 15.4) 8.301 (1.588, 14.97) 
Per one year increase in 
baseline age, years 

-1.36 (-4.452, 1.749) -1.181 (-4.278, 1.939) 

Per one cell increase in 
baseline CD4 count, cells/µL 

80.56 (77.11, 83.94) 80.79 (77.35, 84.17) 

Per log10  increase in 
baseline log viral load , log10 
copies/mL 

0.97 (-0.933, 2.938) 0.9843 (-0.8866, 2.949) 

Time on treatment 58.74 (51.7, 65.83) 60.51 (53.14, 67.53) 
Time on treatment-squared -21.97 (-23.7, -20.25) -21.94 (-23.66, -20.24) 
Per log10 increase in 
cumulative log viral load, 
log10 copy-year/mL 

– – -13.39 (-20.73, -6.001) 

Legend: cVL2—cumulative log viral load 

 

 

Appendix 4.1 Table 2: Implementing the model with cubic splines and 3 inner 

knots for the slope of CD4 counts model (Posterior mean and 95% credible 

intervals)  

Parameter 
Model without cVL2 Model with cVL2 

Estimate 95% CI Estimate 95% CI 
Female-gender 16.8 (5.549, 28.1) 16.85 (5.658, 28.08) 
Per one year increase in 
baseline age, years 

-6.453 (-11.62, -1.287) -6.501 (-11.65, -1.322) 

Per one cell increase in 
baseline CD4 count, cells/µL 

79.16 (73.67, 84.69) 79.12 (73.63, 84.61) 

Per log10  increase in 
baseline log viral load , log10 
copies/mL 

1.661 (-1.09, 4.496) 1.667 (-1.095, 4.534) 

Per log10 increase in 
cumulative log viral load, 
log10 copy-year/mL 

– – -0.2658 (-9.299, 8.803) 

Legend: cVL2—cumulative log viral load 
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Appendix 4.1 Table 3: Effect of using cubic splines with 5 inner knots for the slope 

of CD4 counts model (Posterior mean and 95% credible intervals)  

Parameter 
Model without cVL2 Model with cVL2 

Estimate 95% CI Estimate 95% CI 
Female-gender 16.83 (5.604, 28.0) 16.92 (5.692, 28.18) 
Per one year increase in 
baseline age, years 

-6.484 (-11.62, -1.363) -6.525 (-11.66, -1.364) 

Per one cell increase in 
baseline CD4 count, cells/µL 

79.13 (73.66, 84.6) 79.07 (73.62, 84.58) 

Per log10  increase in 
baseline log viral load , log10 
copies/mL 

1.694 (-1.066, 4.539) 1.692 (-1.061, 4.524) 

Per log10 increase in 
cumulative log viral load, 
log10 copy-year/mL 

– – -0.2218 (-9.273, 8.861) 

Legend: cVL2—cumulative log viral load 

 

Appendix 4.1 Table 4: Effect of using skew-normal random effect in the slope of 

CD4 count model (Posterior mean and 95% credible intervals)  

Parameter 
Model without cVL2 Model with cVL2 

Estimate 95% CI Estimate 95% CI 
Female-gender 24.08 (13.0, 35.21) 23.19 (11.94, 34.31) 
Per one year increase in 
baseline age, years 

-6.605 (-11.79, -1.409) -5.941 (-11.15, -0.7084) 

Per one cell increase in 
baseline CD4 count, cells/µL 

77.26 (71.78, 82.73) 77.98 (72.48, 83.48) 

Per log10  increase in 
baseline log viral load , log10 
copies/mL 

1.867 (-0.9285, 4.747) 1.808 (-0.9761, 4.692) 

Time on treatment 52.11 (45.13, 58.95) 55.63 (48.69, 62.44) 
Time on treatment-squared -22.9 (-24.94, -20.86) -22.75 (-24.78, -20.7) 
Per log10 increase in 
cumulative log viral load, 
log10 copy-year/mL 

– – -19.15 (-27.85, -10.44) 

Legend: cVL2—cumulative log viral load 
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Appendix 4.1 Table 5: Effect of using informative priors in the slope of CD4 count 

model where parameters followed Gaussian normal distribution (Posterior mean 

and 95% credible intervals)  

Parameter 
Model M1.20 Model M1.20* 

Estimate 95% CI Estimate 95% CI 
Female-gender 23.03 (11.99, 34.24) 23.8 (12.37, 35.34) 
Per one year increase in 
baseline age, years 

-5.892 (-11.11, -0.6867) -5.894 (-11.11, -0.6808) 

Per one cell increase in 
baseline CD4 count, cells/µL 

78.05 (72.54, 83.56) 78.01 (72.5, 83.49) 

Per log10  increase in 
baseline log viral load , log10 
copies/mL 

1.821 (-0.9488, 4.705) 1.787 (-0.9821, 4.627) 

Time on treatment 55.55 (48.45, 62.56) 56.22 (49.26, 63.16) 
Time on treatment-squared -22.74 (-24.79, -20.7) -22.65 (-24.69, -20.6) 
Per log10 increase in 
cumulative log viral load, 
log10 copy-year/mL 

-19.16 (-27.84, -10.49) -19.37 (-28.03, -10.66) 

Legend: M1.20 – Gaussian normally distributed CD4 count in the likelihood; and M1.20
* – 

Gaussian normally distributed CD4 count in the likelihood but with informative priors. 
 

Appendix 4.1 Table 6: Effect of using informative priors in the slope of CD4 count 

model where CD4 count had Student’s t-distribution (Posterior mean and 95% 

credible intervals)  

Parameter 
Model M1.22 Model M1.22* 

Estimate 95% CI Estimate 95% CI 
Female gender 8.301 (1.588, 14.97) 8.326 (1.574, 15.15) 
Per one year increase in 
baseline age, years 

-1.181 (-4.278, 1.939) -1.196 (-4.3, 1.894) 

Per one cell increase in 
baseline CD4 count, cells/µl 

80.79 (77.35, 84.17) 80.8 (77.34, 84.2) 

Per log10  increase in 
baseline log viral load , log10 
copies/mL 

0.9843 (-0.8866, 2.949) 0.992 (-0.889, 2.963) 

Time on treatment 60.51 (53.14, 67.53) 61.39 (53.93, 68.47) 
Time on treatment-squared -21.94 (-23.66, -20.24) -21.84 (-23.58, -20.12) 
Per log10 increase in 
cumulative log viral load, 
log10 copy-year/mL 

-13.39 (-20.73, -6.001) -13.55 (-20.96, -6.119) 

Legend: M1.22 – Student’s t-distributed CD4 count; and M1.22
* – Student’s t-distributed CD4 

count with informative priors. 
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Appendix 4.1 Table 7: Effect of using skew-normal for random effect in the 

asymptote model (Posterior odds ratios and 95% credible intervals)  

Parameter 
Model without cVL2 Model with cVL2 

Estimate 95%CI Estimate 95%CI 
Female-gender 5.82 (1.044, 12.466) 6.36 (2.998, 13.722) 
Per one year increase in 
baseline age, years 

0.57 (0.410, 0.773) 0.57 (0.406, 0.783) 

Per one cell increase in 
baseline CD4 count, cells/µL 

2.44 (1.812, 3.391) 2.53 (1.855, 3.543) 

Per log10  increase in 
baseline log viral load , log10 
copies/mL 

1.10 (0.881, 1.360) 1.11 (0.878, 1.377) 

Time on treatment 3.49 (2.689, 4.522) 4.01 (3.056, 5.328) 
Time on treatment - squared 0.67 (0.584, 0.761) 0.65 (0.568, 0.747) 
Per log10 increase in 
cumulative log viral load, 
log10 copy-year/mL 

– – 0.42 (0.244, 0.736) 

Legend: cVL2—cumulative log viral load 

 

Appendix 4.1 Table 8: Effect of using cubic splines with 3 inner knots in the 

asymptote model (Posterior odds ratios and 95% credible intervals)  

Parameter 
Model without cVL2 Model with cVL2 

Estimate 95%CI Estimate 95%CI 
Female-gender 4.58 (2.214, 11.12) 4.495 (2.201, 9. 964) 
Per one year increase in 
baseline age, years 

0.66 (0.498, 0.857) 0.66 (0.502, 0.864) 

Per one cell increase in 
baseline CD4 count, cells/µL 

2.08 (1.647, 2.616) 2.10 (1.668, 2.678) 

Per log10  increase in 
baseline log viral load , log10 
copies/mL 

1.03 (0.886, 1.194) 1.03 (0.885, 0.839) 

Per log10 increase in 
cumulative log viral load, 
log10 copy-year/mL 

– – 0.76 (0.470, 1.258) 

Legend: cVL2—cumulative log viral load 
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Appendix 4.1 Table 9: Effect of using cubic splines with 5 inner knots in the 

asymptote model (Posterior odds ratios and 95% credible intervals)  

Parameter 
Model without cVL2 Model with cVL2 

Estimate 95%CI Estimate 95%CI 
Female-gender 4.48 (2.292, 9.125) 4.24 (0.7587, 8.645) 
Per one year increase in 
baseline age, years 

0.66 (0.497, 0.858) 0.66 (0.507, 0.867) 

Per one cell increase in 
baseline CD4 count, 
cells/µL 

2.06 (1.637, 2.603) 2.08 (1.652, 2.633) 

Per log10  increase in 
baseline log viral load , 
log10 copies/mL 

1.03 (0.886, 1.195) 1.03 (0.889, 1.195) 

Per log10 increase in 
cumulative log viral load, 
log10 copy-year/mL 

– – 0.77 (0.476, 1.281) 

Legend: cVL2—cumulative log viral load 
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Appendix 4.2 

OpenBUGS code for slope of CD4 count models: 

Model M1.20: primary cumulative log viral load model 

model{ 
 for( i in 1 : N ) { 
  for( j in 1 : M ) { 
   CD4[i , j] ~ dnorm(mu[i , j], tau.int) 
   mu[i , j] <- beta[1] + beta[2] * sex.f[i] + beta[3] * age_count[i] 
+ beta[4] * base.cd4[i] + beta[5] * base.logvl[i] + beta[6] * (yrs.fu[j] - 2.5) + beta[7] * 
pow(yrs.fu[j] - 2.5, 2) + beta[8] * cumvl[i , j] * cumvlFlag[i , j] + U[i , 1] + U[i , 2] * 
yrs.fu[j] 
  } 
  U[i , 1:2] ~ dmnorm(U0[], tau[ , ]) 
  basecd4.imp[i] <- cut(base.cd4[i]) 
  baselogvl.imp[i] <- cut(base.logvl[i]) 
  base.cd4[i] ~ dnorm(mu1[i], tau1.int) 
  mu1[i] <- beta1[1] + beta1[2] * sex.f[i] + beta1[3] * age_count[i] 
  base.logvl[i] ~ dnorm(mu2[i], tau2.int) 
  mu2[i] <- beta2[1] + beta2[2] * sex.f[i] + beta2[3] * age_count[i] 
  sex.f[i] ~ dbern(p[i]) 
  p[i] <- max(1.0E-5, min(0.99999, ptemp[i])) 
  logit(ptemp[i]) <- beta3[1] + beta3[2] * age_count[i] + beta3[3] * 
baselogvl[i] + beta3[4] * basecd4[i] 
  baselogvl[i] ~ dnorm(mua[i], taua.int) 
  mua[i] <- betaa[1] + betaa[2] * sex.f[i] + betaa[3] * age_count[i] 
  basecd4[i] ~ dnorm(mub[i], taub.int) 
  mub[i] <- betab[1] + betab[2] * sex.f[i] + betab[3] * age_count[i] 
  for( j in 1 : M ) { 
   cd4.p1[i , j] ~ dnorm(mu[i , j], tau.int) 
   r12[i , j] <- CD4[i , j] - cd4.p1[i , j] 
   sqr[i , j] <- r12[i , j] * r12[i , j] 
  } 
 } 
 mspe <- mean(sqr[ , ]) 
 sigmau0 ~ dunif(0, 100) 
 sigmau1 ~ dunif(0, 100) 
 cor ~ dunif(-1, 1) 
 sigmaU[1 , 1] <- pow(sigmau0, 2) 
 sigmaU[2 , 2] <- pow(sigmau1, 2) 
 sigmaU[1 , 2] <- sigmau0 * sigmau1 * cor 
 sigmaU[2 , 1] <- sigmaU[1 , 2] 
 tau[1:2 , 1:2] <- inverse(sigmaU[ , ]) 
 tau.int <- pow(sigma1,  -2) 
 sigma1 ~ dunif(10, 1000) 
 tau1.int <- pow(sigma1.imp,  -2) 
 sigma1.imp ~ dunif(10, 100) 
 tau2.int <- pow(sigma2.imp,  -2) 
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 sigma2.imp ~ dunif(10, 100) 
 taua.int <- pow(sigmab.imp,  -2) 
 sigmaa.imp ~ dunif(10, 100) 
 taub.int <- pow(sigmab.imp,  -2) 
 sigmab.imp ~ dunif(10, 100) 
 for( k in 1 : 8 ) { 
  beta[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta1[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta2[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 4 ) { 
  beta3[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  betaa[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  betab[k] ~ dnorm(0, 0.001) 
 } 
} 
 

Model with cumulative log viral load – M1.21: cubic b-splines with 3 inner knots 

model{ 
 for( i in 1 : N ) { 
  for( j in 1 : M ) { 
   CD4[i , j] ~ dnorm(mu[i , j], tau.int) 
   mu[i , j] <- beta[1] * sex.f[i] + beta[2] * age_count[i] + beta[3] 
* base.cd4[i] + beta[4] * base.logvl[i] + beta[5] * cumvl[i , j] * cumvlFlag[i , j] + U[i , 
1] + U[i , 2] * yrs.fu[j] + bspline[1] * time1[i , j] + bspline[2] * time2[i , j] + 
bspline[3] * time3[i , j] + bspline[4] * time4[i , j] + bspline[5] * time5[i , j] + 
bspline[6] * time6[i , j] + bspline[7] * time7[i , j] + bspline[8] * time8[i , j] 
  } 
  U[i , 1:2] ~ dmnorm(U0[], tau[ , ]) 
  basecd4.imp[i] <- cut(base.cd4[i]) 
  baselogvl.imp[i] <- cut(base.logvl[i]) 
  base.cd4[i] ~ dnorm(mu1[i], tau1.int) 
  mu1[i] <- beta1[1] + beta1[2] * sex.f[i] + beta1[3] * age_count[i] 
  base.logvl[i] ~ dnorm(mu2[i], tau2.int) 
  mu2[i] <- beta2[1] + beta2[2] * sex.f[i] + beta2[3] * age_count[i] 
  sex.f[i] ~ dbern(p[i]) 
  p[i] <- max(1.0E-5, min(0.99999, ptemp[i])) 
  logit(ptemp[i]) <- beta3[1] + beta3[2] * age_count[i] + beta3[3] * 
baselogvl[i] + beta3[4] * basecd4[i] 
  baselogvl[i] ~ dnorm(mua[i], taua.int) 
  mua[i] <- betaa[1] + betaa[2] * sex.f[i] + betaa[3] * age_count[i] 
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  basecd4[i] ~ dnorm(mub[i], taub.int) 
  mub[i] <- betab[1] + betab[2] * sex.f[i] + betab[3] * age_count[i] 
  for( j in 1 : M ) { 
   cd4.p1[i , j] ~ dnorm(mu[i , j], tau.int) 
   r12[i , j] <- CD4[i , j] - cd4.p1[i , j] 
   sqr[i , j] <- r12[i , j] * r12[i , j] 
  } 
 } 
 mspe <- mean(sqr[ , ]) 
 sigmau0 ~ dunif(0, 100) 
 sigmau1 ~ dunif(0, 100) 
 cor ~ dunif(-1, 1) 
 sigmaU[1 , 1] <- pow(sigmau0, 2) 
 sigmaU[2 , 2] <- pow(sigmau1, 2) 
 sigmaU[1 , 2] <- sigmau0 * sigmau1 * cor 
 sigmaU[2 , 1] <- sigmaU[1 , 2] 
 tau[1:2 , 1:2] <- inverse(sigmaU[ , ]) 
 tau.int <- pow(sigma1,  -2) 
 sigma1 ~ dunif(10, 1000) 
 tau1.int <- pow(sigma1.imp,  -2) 
 sigma1.imp ~ dunif(10, 100) 
 tau2.int <- pow(sigma2.imp,  -2) 
 sigma2.imp ~ dunif(10, 100) 
 taua.int <- pow(sigmab.imp,  -2) 
 sigmaa.imp ~ dunif(10, 100) 
 taub.int <- pow(sigmab.imp,  -2) 
 sigmab.imp ~ dunif(10, 100) 
 for( k in 1 : 5 ) { 
  beta[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta1[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta2[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 4 ) { 
  beta3[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  betaa[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  betab[k] ~ dnorm(0, 0.001) 
 } 
 for( d in 1 : 8 ) { 
  bspline[d] ~ dnorm(0, 1.0E-6) 
 } 
} 
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Model with cumulative log viral load – M1.22 : CD4 count with Student’s t-

distribution 

model{ 
 for( i in 1 : N ) { 
  for( j in 1 : M ) { 
   CD4[i , j] ~ dt(mu[i , j], tau.int, 3) 
   mu[i , j] <- beta[1] + beta[2] * sex.f[i] + beta[3] * age_count[i] 
+ beta[4] * base.cd4[i] + beta[5] * base.logvl[i] + beta[6] * (yrs.fu[j] - 2.5) + beta[7] * 
pow(yrs.fu[j] - 2.5, 2) + beta[8] * cumvl[i , j] * cumvlFlag[i , j] + U[i , 1] + U[i , 2] * 
yrs.fu[j] 
  } 
  U[i , 1:2] ~ dmnorm(U0[], tau[ , ]) 
  basecd4.imp[i] <- cut(base.cd4[i]) 
  baselogvl.imp[i] <- cut(base.logvl[i]) 
  base.cd4[i] ~ dnorm(mu1[i], tau1.int) 
  mu1[i] <- beta1[1] + beta1[2] * sex.f[i] + beta1[3] * age_count[i] 
  base.logvl[i] ~ dnorm(mu2[i], tau2.int) 
  mu2[i] <- beta2[1] + beta2[2] * sex.f[i] + beta2[3] * age_count[i] 
  sex.f[i] ~ dbern(p[i]) 
  p[i] <- max(1.0E-5, min(0.99999, ptemp[i])) 
  logit(ptemp[i]) <- beta3[1] + beta3[2] * age_count[i] + beta3[3] * 
baselogvl[i] + beta3[4] * basecd4[i] 
  baselogvl[i] ~ dnorm(mua[i], taua.int) 
  mua[i] <- betaa[1] + betaa[2] * sex.f[i] + betaa[3] * age_count[i] 
  basecd4[i] ~ dnorm(mub[i], taub.int) 
  mub[i] <- betab[1] + betab[2] * sex.f[i] + betab[3] * age_count[i] 
  for( j in 1 : M ) { 
   cd4.p1[i , j] ~ dnorm(mu[i , j], tau.int) 
   r12[i , j] <- CD4[i , j] - cd4.p1[i , j] 
   sqr[i , j] <- r12[i , j] * r12[i , j] 
  } 
 } 
 mspe <- mean(sqr[ , ]) 
 sigmau0 ~ dunif(0, 100) 
 sigmau1 ~ dunif(0, 100) 
 cor ~ dunif(-1, 1) 
 sigmaU[1 , 1] <- pow(sigmau0, 2) 
 sigmaU[2 , 2] <- pow(sigmau1, 2) 
 sigmaU[1 , 2] <- sigmau0 * sigmau1 * cor 
 sigmaU[2 , 1] <- sigmaU[1 , 2] 
 tau[1:2 , 1:2] <- inverse(sigmaU[ , ]) 
 tau.int <- pow(sigma1,  -2) 
 sigma1 ~ dunif(10, 1000) 
 tau1.int <- pow(sigma1.imp,  -2) 
 sigma1.imp ~ dunif(10, 100) 
 tau2.int <- pow(sigma2.imp,  -2) 
 sigma2.imp ~ dunif(10, 100) 
 taua.int <- pow(sigmab.imp,  -2) 
 sigmaa.imp ~ dunif(10, 100) 
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 taub.int <- pow(sigmab.imp,  -2) 
 sigmab.imp ~ dunif(10, 100) 
 for( k in 1 : 8 ) { 
  beta[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta1[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta2[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 4 ) { 
  beta3[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  betaa[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  betab[k] ~ dnorm(0, 0.001) 
 } 
} 
 

 

Model with cumulative log viral load – M1.23: cubic B-splines with 5 inner knots 

model{ 
 for( i in 1 : N ) { 
  for( j in 1 : M ) { 
   CD4[i , j] ~ dnorm(mu[i , j], tau.int) 
   mu[i , j] <- beta[1] * sex.f[i] + beta[2] * age_count[i] + beta[3] 
* base.cd4[i] + beta[4] * base.logvl[i] + beta[5] * cumvl[i , j] * cumvlFlag[i , j] + U[i , 
1] + U[i , 2] * yrs.fu[j] + bspline[1] * time1[i , j] + bspline[2] * time2[i , j] + 
bspline[3] * time3[i , j] + bspline[4] * time4[i , j] + bspline[5] * time5[i , j] + 
bspline[6] * time6[i , j] + bspline[7] * time7[i , j] + bspline[8] * time8[i , j] + 
bspline[9] * time9[i , j] + bspline[10] * time10[i , j] 
  } 
  U[i , 1:2] ~ dmnorm(U0[], tau[ , ]) 
  basecd4.imp[i] <- cut(base.cd4[i]) 
  baselogvl.imp[i] <- cut(base.logvl[i]) 
  base.cd4[i] ~ dnorm(mu1[i], tau1.int) 
  mu1[i] <- beta1[1] + beta1[2] * sex.f[i] + beta1[3] * age_count[i] 
  base.logvl[i] ~ dnorm(mu2[i], tau2.int) 
  mu2[i] <- beta2[1] + beta2[2] * sex.f[i] + beta2[3] * age_count[i] 
  sex.f[i] ~ dbern(p[i]) 
  p[i] <- max(1.0E-5, min(0.99999, ptemp[i])) 
  logit(ptemp[i]) <- beta3[1] + beta3[2] * age_count[i] + beta3[3] * 
baselogvl[i] + beta3[4] * basecd4[i] 
  baselogvl[i] ~ dnorm(mua[i], taua.int) 
  mua[i] <- betaa[1] + betaa[2] * sex.f[i] + betaa[3] * age_count[i] 
  basecd4[i] ~ dnorm(mub[i], taub.int) 
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  mub[i] <- betab[1] + betab[2] * sex.f[i] + betab[3] * age_count[i] 
  for( j in 1 : M ) { 
   cd4.p1[i , j] ~ dnorm(mu[i , j], tau.int) 
   r12[i , j] <- CD4[i , j] - cd4.p1[i , j] 
   sqr[i , j] <- r12[i , j] * r12[i , j] 
  } 
 } 
 mspe <- mean(sqr[ , ]) 
 sigmau0 ~ dunif(0, 100) 
 sigmau1 ~ dunif(0, 100) 
 cor ~ dunif(-1, 1) 
 sigmaU[1 , 1] <- pow(sigmau0, 2) 
 sigmaU[2 , 2] <- pow(sigmau1, 2) 
 sigmaU[1 , 2] <- sigmau0 * sigmau1 * cor 
 sigmaU[2 , 1] <- sigmaU[1 , 2] 
 tau[1:2 , 1:2] <- inverse(sigmaU[ , ]) 
 tau.int <- pow(sigma1,  -2) 
 sigma1 ~ dunif(10, 1000) 
 tau1.int <- pow(sigma1.imp,  -2) 
 sigma1.imp ~ dunif(10, 100) 
 tau2.int <- pow(sigma2.imp,  -2) 
 sigma2.imp ~ dunif(10, 100) 
 taua.int <- pow(sigmab.imp,  -2) 
 sigmaa.imp ~ dunif(10, 100) 
 taub.int <- pow(sigmab.imp,  -2) 
 sigmab.imp ~ dunif(10, 100) 
 for( k in 1 : 5 ) { 
  beta[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta1[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta2[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 4 ) { 
  beta3[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  betaa[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  betab[k] ~ dnorm(0, 0.001) 
 } 
 for( d in 1 : 10 ) { 
  bspline[d] ~ dnorm(0, 1.0E-6) 
 } 
} 
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Model with cumulative log viral load – M1.24: Skew-normal random-effects 

model{ 
 for( i in 1 : N ) { 
  for( j in 1 : M ) { 
   CD4[i , j] ~ dnorm(mu[i , j], tau.int) 
   mu[i , j] <- beta[1] + beta[2] * sex.f[i] + beta[3] * age_count[i] 
+ beta[4] * base.cd4[i] + beta[5] * base.logvl[i] + beta[6] * (yrs.fu[j] - 2.5) + beta[7] * 
pow(yrs.fu[j] - 2.5, 2) + beta[8] * cumvl[i , j] * cumvlFlag[i , j] + U[i , 1] + U[i , 2] * 
yrs.fu[j] 
  } 
  U0.t[i , 1] ~ dnorm(0, 1) 
  U0.t[i , 2] ~ dnorm(0, 1) 
  U0[i , 1] <- deltab.abs[1] * U0.t[i , 1] 
  U0[i , 2] <- deltab.abs[2] * U0.t[i , 2] 
  U1[i , 1:2] ~ dmnorm(meanb[1:2], tau[1:2 , 1:2]) 
  for( ii in 1 : 2 ) { 
   U[i , ii] <- U0[i , ii] + U1[i , ii] 
  } 
  basecd4.imp[i] <- cut(base.cd4[i]) 
  baselogvl.imp[i] <- cut(base.logvl[i]) 
  base.cd4[i] ~ dnorm(mu1[i], tau1.int) 
  mu1[i] <- beta1[1] + beta1[2] * sex.f[i] + beta1[3] * age_count[i] 
  base.logvl[i] ~ dnorm(mu2[i], tau2.int) 
  mu2[i] <- beta2[1] + beta2[2] * sex.f[i] + beta2[3] * age_count[i] 
  sex.f[i] ~ dbern(p[i]) 
  p[i] <- max(1.0E-5, min(0.99999, ptemp[i])) 
  logit(ptemp[i]) <- beta3[1] + beta3[2] * age_count[i] + beta3[3] * 
baselogvl[i] + beta3[4] * basecd4[i] 
  baselogvl[i] ~ dnorm(mua[i], taua.int) 
  mua[i] <- betaa[1] + betaa[2] * sex.f[i] + betaa[3] * age_count[i] 
  basecd4[i] ~ dnorm(mub[i], taub.int) 
  mub[i] <- betab[1] + betab[2] * sex.f[i] + betab[3] * age_count[i] 
  for( j in 1 : M ) { 
   cd4.p1[i , j] ~ dnorm(mu[i , j], tau.int) 
   r12[i , j] <- CD4[i , j] - cd4.p1[i , j] 
   sqr[i , j] <- r12[i , j] * r12[i , j] 
  } 
 } 
 mspe <- mean(sqr[ , ]) 
 Om[1 , 1] <- a * Omega[1 , 1] 
 Om[1 , 2] <- a * Omega[1 , 2] 
 Om[2 , 1] <- a * Omega[2 , 1] 
 Om[2 , 2] <- a * Omega[2 , 2] 
 Q[1:2 , 1:2] ~ dwish(Om[1:2 , 1:2], 3) 
 tau[1 , 1] <- pow(D1,  -2) * Q[1 , 1] 
 tau[1 , 2] <- pow(D1,  -1) * pow(D2,  -1) * Q[1 , 2] 
 tau[2 , 1] <- pow(D2,  -1) * pow(D1,  -1) * Q[2 , 1] 
 tau[2 , 2] <- pow(D2,  -2) * Q[2 , 2] 
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 sigmab2[1:2 , 1:2] <- inverse(tau[ , ]) 
 sigmab[1] <- sqrt(sigmab2[1 , 1]) 
 sigmab[2] <- sqrt(sigmab2[2 , 2]) 
 corrb <- sigmab2[1 , 2] / sigmab[1] * sigmab[2] 
 D1 ~ dunif(0.001, 100) 
 D2 ~ dunif(0.001, 100) 
 deltab[1] ~ dnorm(0.0, 1.0E-6) 
 deltab[2] ~ dnorm(0.0, 1.0E-6) 
 deltab.abs[1] <- abs(deltab[1]) 
 deltab.abs[2] <- abs(deltab[2]) 
 tau.int <- pow(sigma1,  -2) 
 sigma1 ~ dunif(10, 1000) 
 tau1.int <- pow(sigma1.imp,  -2) 
 sigma1.imp ~ dunif(10, 100) 
 tau2.int <- pow(sigma2.imp,  -2) 
 sigma2.imp ~ dunif(10, 100) 
 taua.int <- pow(sigmab.imp,  -2) 
 sigmaa.imp ~ dunif(10, 100) 
 taub.int <- pow(sigmab.imp,  -2) 
 sigmab.imp ~ dunif(10, 100) 
 for( k in 1 : 8 ) { 
  beta[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta1[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta2[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 4 ) { 
  beta3[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  betaa[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  betab[k] ~ dnorm(0, 0.001) 
 } 
} 
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Appendix 4.2 Table 1: estimated informative priors used for slope of CD4 count 

model  

Variable Same model Coef.a 
  

Informative priors 
Historical 
study 

Current 
study 

M1.20 

Coef. 
Changeb Coef.c Variance Precision  

Female-gender [109] 35,2 36,17 23 -13,17 22,03 12038,79 8,31E-05 
Baseline log10 viral 
load (copies/mL) [109] 

13,9 -10,09 1,8 -11,89 2,01 340,7415 0,002935 

Baseline age (years) 
[115] 

-0,97 -6,283 -5,9 -0,383 -1,353 733,8447 0,001363 

Time on treatment 
(years) [114] 

65 56,18 55,5 -0,68 64,32 13941694 7,17E-08 

Time on treatment 
(years)-squared [114] 

-6 -22,97 -22,7 -0,27 -6,27 132482,5 7,55E-06 

a list coefficients from historical models as published in the respective articles 
(historical study) and from the same reanalysed models using our data (current study); 
b obtained by subtracting current study coefficients from full model (M1.20); c obtained 
by adding both Change and historical study columns.  

 

OpenBUGS code for Asymptote models: 

Model without cumulative log viral load – M2.20: primary model 

model{ 
 for( i in 1 : N ) { 
  for( j in 1 : M ) { 
   response[i , j] ~ dbern(p[i , j]) 
   p[i , j] <- max(1.0E-5, min(0.99999, ptemp[i , j])) 
   logit(ptemp[i , j]) <- beta[1] + beta[2] * sex.f[i] + beta[3] * 
age.count[i] + beta[4] * base.cd4[i] + beta[5] * base.logvl[i] + beta[6] * (yrs.fu[j] - 
2.5) + beta[7] * pow(yrs.fu[j] - 2.5, 2) + beta[8] * cumvl[i , j] * cumvlflag[i , j] + 
b[id[i] , 1] + b[id[i] , 2] * yrs.fu[j] 
  } 
  b[i , 1:2] ~ dmnorm(meanb[], tau[ , ]) 
  basecd4.imp[i] <- cut(base.cd4[i]) 
  baselogvl.imp[i] <- cut(base.logvl[i]) 
  base.cd4[i] ~ dnorm(mu1[i], tau1.int) 
  mu1[i] <- beta1[1] + beta1[2] * sex.f[i] + beta1[3] * age.count[i] 
  base.logvl[i] ~ dnorm(mu2[i], tau2.int) 
  mu2[i] <- beta2[1] + beta2[2] * sex.f[i] + beta2[3] * age.count[i] 
  sex.f[i] ~ dbern(phi[i]) 
  phi[i] <- max(1.0E-5, min(0.99999, phitemp[i])) 
  logit(phitemp[i]) <- beta3[1] + beta3[2] * age.count[i] + beta3[3] * 
baselogvl[i] + beta3[4] * basecd4[i] 
  baselogvl[i] ~ dnorm(mua[i], taua.int) 
  mua[i] <- betaa[1] + betaa[2] * sex.f[i] + betaa[3] * age.count[i] 
  basecd4[i] ~ dnorm(mub[i], taub.int) 
  mub[i] <- betab[1] + betab[2] * sex.f[i] + betab[3] * age.count[i] 
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 } 
 sigmau0 ~ dunif(0, 100) 
 sigmau1 ~ dunif(0, 100) 
 cor ~ dunif(-1, 1) 
 sigmaU[1 , 1] <- pow(sigmau0, 2) 
 sigmaU[2 , 2] <- pow(sigmau1, 2) 
 sigmaU[1 , 2] <- sigmau0 * sigmau1 * cor 
 sigmaU[2 , 1] <- sigmaU[1 , 2] 
 tau[1:2 , 1:2] <- inverse(sigmaU[ , ]) 
 tau1.int <- pow(sigma1.imp,  -2) 
 sigma1.imp ~ dunif(10, 100) 
 tau2.int <- pow(sigma2.imp,  -2) 
 sigma2.imp ~ dunif(10, 100) 
 taua.int <- pow(sigmab.imp,  -2) 
 sigmaa.imp ~ dunif(10, 100) 
 taub.int <- pow(sigmab.imp,  -2) 
 sigmab.imp ~ dunif(10, 100) 
 for( k in 1 : 8 ) { 
  beta[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta1[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta2[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 4 ) { 
  beta3[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  betaa[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  betab[k] ~ dnorm(0, 0.001) 
 } 
} 
 

 

Model with cumulative log viral load – M2.21: skew-normal random-effects 
distribution model 

model{ 
 for( i in 1 : N ) { 
  for( j in 1 : M ) { 
   response[i , j] ~ dbern(p[i , j]) 
   p[i , j] <- max(1.0E-5, min(0.99999, ptemp[i , j])) 
   logit(ptemp[i , j]) <- beta[1] * sex.f[i] + beta[2] * age.count[i] + 
beta[3] * base.cd4[i] + beta[4] * base.logvl[i] + beta[5] * cumvl[i , j] * cumvlflag[i , j] 
+ b[id[i] , 1] + b[id[i] , 2] * yrs.fu[j] + bspline[1] * time1[i , j] + bspline[2] * time2[i , 
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j] + bspline[3] * time3[i , j] + bspline[4] * time4[i , j] + bspline[5] * time5[i , j] + 
bspline[6] * time6[i , j] + bspline[7] * time7[i , j] + bspline[8] * time8[i , j] 
  } 
  b[i , 1:2] ~ dmnorm(meanb[], tau[ , ]) 
  basecd4.imp[i] <- cut(base.cd4[i]) 
  baselogvl.imp[i] <- cut(base.logvl[i]) 
  base.cd4[i] ~ dnorm(mu1[i], tau1.int) 
  mu1[i] <- beta1[1] + beta1[2] * sex.f[i] + beta1[3] * age.count[i] 
  base.logvl[i] ~ dnorm(mu2[i], tau2.int) 
  mu2[i] <- beta2[1] + beta2[2] * sex.f[i] + beta2[3] * age.count[i] 
  sex.f[i] ~ dbern(phi[i]) 
  phi[i] <- max(1.0E-5, min(0.99999, phitemp[i])) 
  logit(phitemp[i]) <- beta3[1] + beta3[2] * age.count[i] + beta3[3] * 
baselogvl[i] + beta3[4] * basecd4[i] 
  baselogvl[i] ~ dnorm(mua[i], taua.int) 
  mua[i] <- betaa[1] + betaa[2] * sex.f[i] + betaa[3] * age.count[i] 
  basecd4[i] ~ dnorm(mub[i], taub.int) 
  mub[i] <- betab[1] + betab[2] * sex.f[i] + betab[3] * age.count[i] 
 } 
 sigmau0 ~ dunif(0, 100) 
 sigmau1 ~ dunif(0, 100) 
 corrb ~ dunif(-1, 1) 
 sigmaU[1 , 1] <- pow(sigmau0, 2) 
 sigmaU[2 , 2] <- pow(sigmau1, 2) 
 sigmaU[1 , 2] <- sigmau0 * sigmau1 * cor 
 sigmaU[2 , 1] <- sigmaU[1 , 2] 
 tau[1:2 , 1:2] <- inverse(sigmaU[ , ]) 
 tau1.int <- pow(sigma1.imp,  -2) 
 sigma1.imp ~ dunif(10, 100) 
 tau2.int <- pow(sigma2.imp,  -2) 
 sigma2.imp ~ dunif(10, 100) 
 taua.int <- pow(sigmab.imp,  -2) 
 sigmaa.imp ~ dunif(10, 100) 
 taub.int <- pow(sigmab.imp,  -2) 
 sigmab.imp ~ dunif(10, 100) 
 for( k in 1 : 5 ) { 
  beta[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta1[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta2[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 4 ) { 
  beta3[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  betaa[k] ~ dnorm(0, 0.001) 
 } 
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 for( k in 1 : 3 ) { 
  betab[k] ~ dnorm(0, 0.001) 
 } 
 for( d in 1 : 8 ) { 
  bspline[d] ~ dnorm(0, 1.0E-6) 
 } 
} 
 
 
 
Model with cumulative log viral load – M2.23: cubic B-splines with 5 inner knots 
model{ 
 for( i in 1 : N ) { 
  for( j in 1 : M ) { 
   response[i , j] ~ dbern(p[i , j]) 
   p[i , j] <- max(1.0E-5, min(0.99999, ptemp[i , j])) 
   logit(ptemp[i , j]) <- beta[1] * sex.f[i] + beta[2] * age.count[i] + 
beta[3] * base.cd4[i] + beta[4] * base.logvl[i] + beta[5] * cumvl[i , j] * cumvlflag[i , j] 
+ b[id[i] , 1] + b[id[i] , 2] * yrs.fu[j] + bspline[1] * time1[i , j] + bspline[2] * time2[i , 
j] + bspline[3] * time3[i , j] + bspline[4] * time4[i , j] + bspline[5] * time5[i , j] + 
bspline[6] * time6[i , j] + bspline[7] * time7[i , j] + bspline[8] * time8[i , j] + 
bspline[9] * time9[i , j] + bspline[10] * time10[i , j] 
  } 
  b[i , 1:2] ~ dmnorm(meanb[], tau[ , ]) 
  basecd4.imp[i] <- cut(base.cd4[i]) 
  baselogvl.imp[i] <- cut(base.logvl[i]) 
  base.cd4[i] ~ dnorm(mu1[i], tau1.int) 
  mu1[i] <- beta1[1] + beta1[2] * sex.f[i] + beta1[3] * age.count[i] 
  base.logvl[i] ~ dnorm(mu2[i], tau2.int) 
  mu2[i] <- beta2[1] + beta2[2] * sex.f[i] + beta2[3] * age.count[i] 
  sex.f[i] ~ dbern(phi[i]) 
  phi[i] <- max(1.0E-5, min(0.99999, phitemp[i])) 
  logit(phitemp[i]) <- beta3[1] + beta3[2] * age.count[i] + beta3[3] * 
baselogvl[i] + beta3[4] * basecd4[i] 
  baselogvl[i] ~ dnorm(mua[i], taua.int) 
  mua[i] <- betaa[1] + betaa[2] * sex.f[i] + betaa[3] * age.count[i] 
  basecd4[i] ~ dnorm(mub[i], taub.int) 
  mub[i] <- betab[1] + betab[2] * sex.f[i] + betab[3] * age.count[i] 
 } 
 sigmau0 ~ dunif(0, 100) 
 sigmau1 ~ dunif(0, 100) 
 corrb ~ dunif(-1, 1) 
 sigmaU[1 , 1] <- pow(sigmau0, 2) 
 sigmaU[2 , 2] <- pow(sigmau1, 2) 
 sigmaU[1 , 2] <- sigmau0 * sigmau1 * cor 
 sigmaU[2 , 1] <- sigmaU[1 , 2] 
 tau[1:2 , 1:2] <- inverse(sigmaU[ , ]) 
 tau1.int <- pow(sigma1.imp,  -2) 
 sigma1.imp ~ dunif(10, 100) 
 tau2.int <- pow(sigma2.imp,  -2) 
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 sigma2.imp ~ dunif(10, 100) 
 taua.int <- pow(sigmab.imp,  -2) 
 sigmaa.imp ~ dunif(10, 100) 
 taub.int <- pow(sigmab.imp,  -2) 
 sigmab.imp ~ dunif(10, 100) 
 for( k in 1 : 5 ) { 
  beta[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta1[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  beta2[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 4 ) { 
  beta3[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  betaa[k] ~ dnorm(0, 0.001) 
 } 
 for( k in 1 : 3 ) { 
  betab[k] ~ dnorm(0, 0.001) 
 } 
 for( d in 1 : 10 ) { 
  bspline[d] ~ dnorm(0, 1.0E-6) 
 } 
} 
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