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Abstract

Search for the scissors resonance in 182Ta
C.P. Brits

Department of Physics,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: M.Sc. Physics
December 2016

Relatively small changes to the overall shape of the photon strength function
such as the scissors or pygmy resonances can have a significant impact on reac-
tion rates. Reaction rates are important for modeling processes that take place
in astrophysical environments and nuclear reactors. Recent results indicate the
existence of a significant amount of scissors resonance strength in the photon
strength function for nuclei in the actinide region. In order to investigate the
extent and persistence of the scissors resonance strength towards lighter nuclei,
an experiment was performed utilizing the NaI(Tl) gamma-ray detector array
(CACTUS) and silicon particle telescopes (SiRi) at the cyclotron laboratory at
the University of Oslo. Particle-gamma coincidences from the 181Ta(d,p)182Ta
and 181Ta(d,d’)181Ta reactions were used to measure the nuclear level density
and photon strength function of the well-deformed 182Ta and 181Ta systems.
From these data (n,γ) cross sections were calculated with the Talys reaction
code.

While there are possible bumps in the photon strength function of 181Ta that
may be due to the scissors resonance, it appears to be absent for 182Ta. These
results are discussed in the context of nuclear structure and other work done
in this and other mass regions.
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Uittreksel

Soektog na die skêr resonansie in 182Ta
(“Search for the scissors resonance in 182Ta”)

C.P. Brits
Departement Fisika,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: M.Sc. Fisika
Desember 2016

Relatief klein veranderinge aan die algehele vorm van die foton krag funksie
soos die skêr of dwerg resonansies kan beduidende invloed op reaksiesnelhede
hê. Reaksiesnelhede is belangrik vir die modellering van prosesse wat plaas-
vind in astrofisiese omgewings en kern reaktors. Onlangse resultate dui daarop
dat daar ’n beduidende bedrag skêr resonansie krag in die foton krag funksie
vir kerne in die aktinied streek is. Ten einde die omvang en volharding van
die skêr resonansie krag teenoor ligter kerne te bepaal, is ’n eksperiment uit-
gevoer met behulp van die NaI(Tl) gammastraal-detektor matriks (CACTUS)
en silikon deeltjie teleskoop (SiRi) by die siklotron laboratorium aan die Uni-
versiteit van Oslo. Deeltjie-gamma toevallighede van die 181Ta(d,p)182Ta en
181Ta(d,d’)181Ta reaksies is gebruik om die kern vlak digtheid en foton krag
funksie van die goed vervormde 182Ta en 181Ta stelsels te bepaal. Van hierdie
data is (n,γ) dwarssnitte bereken met die Talys reaksie kode.

Hoewel daar moontlike bewyse vir die skêr resonansie in die foton krag funksie
van 181Ta is, is dit afwesig in 182Ta. Hierdie resultate word bespreek in die
konteks van kernstruktuur en ander werk wat in hierdie en ander massa streke
gedoen is.
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Chapter 1

Introduction

When a nucleus is excited, a particle (neutron, proton or both) moves to a
higher energy level. At low energy these levels are discrete and the energy of
the γ-rays emitted, when the nucleus de-excites, can be measured individually.
At higher energies the level density increases exponentially and the levels begin
to overlap and they form a quasi-continuum. This is illustrated in figure 1.1.
The different γ-rays emitted when a highly excited nucleus de-excites from
the quasi continuum cannot be resolved with the present experimental reso-
lution. With the levels overlapping, statistical properties become the relevant
concepts, in particular two important statistical quantities are: the photon
strength function (PSF) and the nuclear level density (NLD). The PSF is also
known as the radiative strength function and γ-ray strength function in litera-
ture. The PSF characterises the average electromagnetic properties of excited
nuclei. It is related to radioactive decay and photo-absorption processes. The
level density is an indication of the amount of levels per unit of excitation
energy. These statistical properties are closely related to their discrete coun-
terparts, the transition strengths and number of discrete (countable) energy
levels.

The PSF and NLD are used for many physical applications:

• They are used as input parameters for the calculation of reaction cross
sections in reaction codes like Talys [1].

• The PSF and NLD are used in the design phase of nuclear power reac-
tors. Simulations of the reactor depends on the evaluated data of all the
various nuclear reactions involved [2].

• The PSF and NLD also play a central role in elemental formation during
stellar nucleosynthesis and it is important to know and understand the
PSF for all nuclides involved. Theoretical calculations have shown that
small changes to the shape of the PSF, such as a pygmy or scissors

1

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 2

resonance, can effect the rate of elemental formation by up to an order
of magnitude [3].

• The behaviour of the PSF and NLD can be used to make statements
about the structure of the nucleus.

Figure 1.1: The level density as the excitation energy increases [4].

The breaking of nucleon cooper pairs or excitation modes such as the E1 pygmy
resonance and the M1 scissors resonance can be observed as local deviations
in the NLD and PSF, respectively.

The scissors resonance was first observed in an inelastic electron scattering
experiment of 156Gd [5] and it was later confirmed in 158Gd as shown in figure
1.2. At a bombarding energy of 25 MeV the scissors resonance can be seen
at Ex = 3.074 MeV for 156Gd and at Ex = 3.2 MeV for 158Gd. The scissors
resonance has been observed in various nuclei using nuclear resonance fluores-
cence (NRF) experiments [6] and also through the Oslo method (e.g. [7]). The
scissors resonance was first observed in well deformed nuclei, but it has since

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 3

been observed in vibrational, transitional and γ-soft nuclei. It has also been
found that in some cases the scissors resonance of even-even nuclei have differ-
ent properties to that of odd-even nuclei, which can have a large fragmented
scissors strength distribution [8].

Figure 1.2: The first observed scissors resonance in the 156Gd observed at Ex =
3.074 MeV compared with the scissors resonance of 158Gd at Ex = 3.2 MeV, popu-
lated using (e,e’) at 25 MeV [5].

Although much knowledge has been obtained about the scissors resonance over
the years [9], its extent across the nuclear chart is still not well understood.
In particular, the evolution of a well developed scissors resonance from one
region of the nuclear chart to another, such as from the rare-earth to the ac-
tinide region has not been systematically investigated. To fully understand
the interplay of the scissors resonance with other nuclear structure aspects
(e.g. coupling to unpaired nucleons, dependence on nuclear shapes etc.) and
its potential impact on astrophysical reaction rates, its extent and persistence
have to be carefully measured.

The aim of this thesis is to investigate the scissors resonance in the well de-
formed 181Ta and 182Ta nuclei which lie in the transitional region from prolate
to oblate shapes. It also lies between the rare-earth and actinide systems, both

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 4

of which exhibits large scissors resonance modes. The location of Ta in the β2
deformation chart of nuclei is shown in figure 1.3.

Figure 1.3: Chart of nuclei showing the Hartree-Fock-Bogoliubov calculated defor-
mation parameters β2 [10]. The region of Ta is shown by the black circle.
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Chapter 2

Theory

2.1 Nuclear level density
The amount of available quasi-particles is the basis block that determines the
nuclear level density (NLD). The density of available single-particle orbitals
in the vicinity of the fermi-level is the other factor that plays a role in the
NLD. It has been shown that neighboring isotopes can have 5-7 times more
energy levels if one or more proton or neutron are unpaired [11]. The breaking
of J = 0 nucleon cooper pairs creates additional states in a nucleus. The two
free nucleons can be excited to available single-particle levels in the vicinity of
the Fermi surface, thus increasing the NLD exponentially [12].

At low energies, excitation levels of the nucleus can be discriminated experi-
mentally by measuring the energy of theγ-ray from gamma transitions origi-
nating from these levels. At high energies (above 2-4 MeV excitation energy,
depending on nucleus mass) the levels are too dense to be discriminated. A
model is then used to predict how many levels there are present at a given
excitation energy, parity and spin. The method used to extract the level den-
sity will be discussed in Chapter 3. In this section a few nuclear level density
models considered for this project will be presented.

The first description of NLD ρ(Ex) was accomplished in 1936 by starting with
an individual particle picture and using Fermi statistics to calculate ρ(Ex) as
[13]:

ρ(Ex) =
1

12

√
π

a
2

1
4E
− 5

4
x exp(

√
2Exa) (2.1)

where Ex is the excitation energy and a is the level-density parameter. This
model predicted that the level density increases as the exponential of the square
root of the energy times the level-density parameter. While this prediction

5
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CHAPTER 2. THEORY 6

is correct to first order, the model had many limitations by not taking into
account shell-effects, pairing correlations and collective phenomena.

2.1.1 Back-shifted Fermi Gas model

The model described in reference [14] includes pairing and the shell-correction
energies. This model can also be used to calculate the level densities of nu-
clei for which no experimental information has been measured. The term
"back-shifted" comes from the energy Ex being shifted by the proton, ∆p, and
neutron, ∆n, pairing energy so that the model agrees better with experimen-
tal results. This shift turned out to be too big so it was "back-shifted" by a
parameter C. The adopted level density formula at a given excitation energy
Ex and angular momentum J (for both parities) is given by:

ρ(Ex, J) =
(2J + 1) exp (− (J+ 1

2
)2

2σ2 )

2
√

2πσ3

√
π exp (2

√
aU)

12a
1
4U

5
4

. (2.2)

Integrating over all possible J gives the the observable level density:

ρ(Ex) =
exp (2

√
aU)

12a
1
4U

5
4

√
2σ
. (2.3)

where U = Ex−E1 is the back-shifted excitation energy, a is the level density
parameter and σ2 is the back-shifted spin cut-off parameter given by:

σ2 = 0.08888A
2
3

√
a(Sn − E1). (2.4)

The back-shifted parameter E1 and level density parameter a can be obtained
from reference [15] or calculated from shell corrections, S, and nuclear mass
number, A, if there is no experimental information. For spherical nuclei, a can
be calculated by: a

A
= 0.00917S + 0.142 and for deformed nuclei the equation

is a
A

= 0.00917S + 0.120. These equations were obtained from first degree
polynomial fits to experimental data and does not depend on deformation
magnitude. The typical S value for 182Ta is 6.69 and for 181Ta it is 6.83, values
for S can be found in reference [14].

A correction to this model was noted in reference [15] where it is shown that
the spin cut-off parameter (as a function of A and Ex) can also be calculated
by:

σ2 = 0.319A0.675(Ex − 0.5Pa′)0.312 (2.5)

where Pa′ is the deuteron pairing energy.
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2.1.2 Constant Temperature model

As stated in the previous section, the model used in [14] uses a constant tem-
perature formula at energies lower than 10 MeV. This gives the level density
for all angular momenta as:

ρ(Ex) =
exp(Ex−E0

T
)

T
(2.6)

where T is the nuclear temperature and E0 is the energy-shift parameter.
Reference [15] gives these parameters as:

E0 = −1.004 + 0.5Pa′ (2.7)

T =
1

A
2
3 (0.0597 + 0.00198S ′)

(2.8)

where the shifted shell correction is given by S ′ = S + 0.5Pa′. The values
of the deuteron separation energy, Pa′, and shell correction, S, can also be
obtained from [15].

2.2 Photon strength function
The PSF fXL(Eγ) characterizes the average electromagnetic properties of ex-
cited nuclei. It is a distribution of average reduced widths for transitions of a
certain multipole type XL between two different states of energies. The tran-
sition can occur either due to photo absorption processes or radiative decay.
During photo absorption (fXL(Eγ ↑)) a photon is absorbed and a transition
occurs from a low energy state to a higher energy state. During radiative decay
(fXL(Eγ ↓)) a photon is emitted and a transition occurs from a high energy
state to a low energy state.

The first PSF for radiative decay is introduced in [16] as:

fXL(Eγ ↓) =
< Γγl >

E2L+1
γ Dl

(2.9)

where X is the electromagnetic character, L is the multipolarity, Eγ is the
γ-ray energy, Dl is the resonance spacing for l-wave resonances and < Γγl >
is the average radiative width. The PSF for photo absorption is introduced in
[16] as:

fXL(Eγ ↑) =
< σXL(Eγ) >

(2L+ 1)(πh̄c)2E2L−1
γ

(2.10)

where < σXL(Eγ) > is the average photo-absorption cross section. According
to Fermi’s Golden rule [18] and detailed balance, fXL(Eγ ↓) and fXL(Eγ ↑)
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Figure 2.1: A diagram of the shell model with spin-orbit interaction [17].

correspond to each other, provided that the same states are populated. This
project focuses on fXL(Eγ ↓) so the ↓ will be omitted for the rest of the
thesis. The photon strength function can also be written in terms of the γ-ray
transmission coefficient:

TXL(Eγ) = 2π
< Γγl >

Dl

. (2.11)

The derivation of this equation will be explained in Chapter 3. Various models,
called resonance models, are used to describe photon strength functions. They
will be discussed briefly in section 2.4.

2.3 Nuclear models
The basic model to describe nuclear structure is the shell model, where the
nucleons are placed within levels that form shells. Excitation and de-excitation
correspond to nucleons moving up or down in levels. The unpaired nucleons,
then determine the properties of the nucleus. The shell model has also been
expanded to include the spin-orbit interaction to properly reproduce sub shells
and thereby the magic numbers observed experimentally. The shell model with
the spin-orbit interaction included is shown in figure 2.1.

The shell model with spin-orbit interaction however only works if the nuclear
potential is spherical. The energy levels in a deformed potential depend on
the spatial orientation of the orbit. Ω is the quantum number used to describe
the projection of the total angular momentum onto the symmetry axis [18],
as shown in figure 2.2. The early model that took deformation into account is
the Nilsson model, an example of resulting energy levels of s-d nuclei is shown
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Figure 2.2: The projection of the total angular momentum on the symmetry axis
forms the quantum number Ω [18].

Figure 2.3: The Nilsson diagram of nuclei between the 82 and 126 shell gaps [18].

in figure 2.3.

It has also been noted that collective motion of all the nucleons give rise to
collective nuclear properties. The shell model treatment of collective motion
has to take into account all valence nucleons outside the core and not just the
unpaired nucleons. The spin-flip transition is an example of single nucleon
transitions that is used to clarify the single particle properties of the nuclear
wave function. The pygmy and scissors resonances are examples of collective
motion and give information on the collective properties of the nucleus [19].
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Figure 2.4: Different modes of nuclear vibrations [18].

These resonances will be explain in detail in section 2.4.

Other examples of collective motion is vibration and rotation. To envision nu-
clear vibration, a liquid drop vibrating at a high frequency can be considered.
The liquid drop will have an average spherical shape, but its instantaneous
shape will be deformed. Nuclear vibration is seen as dynamic deformations
and the shape of the nucleus changes over time. Different modes of vibration
is given by λ, where λ = 1 corresponds to a dipole vibration and λ = 2 corre-
sponds to a quadrupole vibration, as shown in figure 2.4. The quantized unit
of vibration energy is called a phonon. Each mode of vibration also carries a
similar angular momentum value, for example in the λ = 2 mode, the phonon
carries 2 units of angular momentum.

A common deformation parameter is β, which represents the eccentricity of
ellipsoid deformation [18]. Static deformed nuclei with β > 0 have a prolate el-
lipsoid shape and nuclei with β < 0 have an oblate ellipsoid shape as shown in
figure 2.5. Static deformed nuclei are commonly found in atomic mass ranges
150 < A < 190 (rare-earth region) and A > 220 (actinide region). The nuclei
in these mass ranges have nucleons far from filled proton and neutron shells.

Vibrations in deformed nuclei can occur along either the β or the γ axis. β vi-
brations correspond to a vibrating deformation parameter β while the nucleus
keeps it cylindrical shape. γ vibrations on the other hand violate the cylindri-
cal shape. This can be visualized with a rugby ball, γ vibrations correspond
to the push and pull on the sides and β vibration is the push and pull on the
ends of the rugby ball.

Rotations are only observable in deformed nuclei, because rotation can only
take place if one axis is longer or shorter than the other. The nucleus needs
an axis to rotate about. Rotational energy can be expressed by [18]:

E =
h̄2

2Θ
I(I + 1) (2.12)
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Figure 2.5: Static deformations of the nucleus: spherical (left), prolate (middle)and
oblate (right).

where Θ is the moment of inertia and I is the angular momentum. By adding
units of angular momentum to the energy, results in the creation of rota-
tional bands in the nuclear excitation states. These nuclear models are used
to describe nuclear structure effects and can be used to explain the origin of
collective phenomena.

2.4 Resonance models

2.4.1 Giant resonances

Giant resonances are characterized using three quantum numbers: angular
momentum J , spin S and isospin T . L indicates the multipole order:

• monopoles have L = 0

• dipoles have L = 1

• quadrupoles have L = 2

• octupoles have L = 3

Spin can have a value of 0 or 1. S = 0 refers to electric resonances and S = 1
refers to magnetic resonances. An electric resonance is seen as a purely spa-
tial oscillation of the nuclear mass, while a magnetic resonance is seen as spin
oscillation.

Isospin is a quantum number related to the strong interaction. Particles that
are affected by the strong force equally but have different charges, such as pro-
tons and neutrons, can be treated as being in different states with isospin val-
ues related to the number of charges. There are two types of isospin: isoscalar
(T = 0) and isovector (T = 1). For isocalar resonances the neutrons and pro-
tons oscillate in phase and for isovector resonances the neutrons and protons
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oscillate out of phase.

The isoscalar electric monopole resonance is also known as the breathing mode,
because the nucleus has purely radial oscillations, similar to the expanding and
contracting of lungs. The energy of this resonance is important when calcu-
lating the nuclear compressiblity [20].

The giant electric dipole resonance (GEDR) is induced by the absorption or
emission of a γ-ray. The movement of the nucleus in the GEDR is shown in
Figure 2.6 and for giant magnetic dipole resonance (GMDR) in Figure 2.7.

Figure 2.6: The motion of the neutron and proton distributions in the giant electric
dipole resonance [21].

Figure 2.7: Illustration of the motion of the neutron and proton distributions
during a giant magnetic dipole resonance [21]. For isoscalar GMDR (a) the protons
and neutrons oscillate in phase and for isovector GMDR (b) the protons and neutrons
oscillate out of phase.
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2.4.2 Pygmy resonances

The pygmy resonance can be explained on a macroscopic level by the pro-
ton and neutron core oscillating against the neutron skin, as illustrated in
figure 2.8. On a microscopic level there is still some debate, with some (e.g.
[22]) interpreting the pygmy resonance as a collective excitation, where the
characteristic calculated levels are coherent superpositions of particle-hole or
quasiparticle-hole states. Others (e.g. [23]) characterize the pygmy resonance
as a collective state with two-quasiparticle states. It has been accepted, how-
ever, that the pygmy resonance decays by emitting E1 type γ-rays [24].

The strength of the pygmy resonance is usually a small part of the energy
weighted sum rule, e.g. for 208Pb the pygmy resonance strength takes 3− 6%
of the sum rule energy [25]. However the pygmy resonance has a very large
effect on the radiative neutron capture cross section. For example with the
inclusion of this resonance the abundance of A ≈ 130 elements is calculated to
increase by an order of magnitude compared to a simulation where the pygmy
resonance is not included [3]. There are many microscopic approaches to de-
scribe the pygmy resonance, the quasiparticle-phonon model, the generalized
theory of finite Fermi systems, the QRPA plus coupling to phonons model
and the relativistic quasi-particle time-blocking approximation, see [26] and
references therein for information on these models.

Figure 2.8: Oscillation of the neutron proton core against the neutron skin resulting
in the pygmy resonance [21].
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2.4.3 M1 resonance modes

Using an algebraic collective model the interacting fermion system (protons
and neutrons) can be treated as bosons. This interacting boson system (IBM)
has been studied in detail in references [27, 28] so only the results relevant to
the current work will be discussed here. For protons and neutrons the mag-
netic dipole operator is [9]:

T̂ (M1) =

√
3

4π

∑
i

{gl(i)l̂i + gs(i)ŝi}µN (2.13)

where gl and gs are the orbital and spin factors for the protons and neutrons
in a fermion system, l̂i and ŝi are the angular momentum and spin operators
and µN is the nuclear magneton. T (M1) can be split into an isoscalar and
isovector term [9]:

T̂ (M1) =

√
3

4π
(gJ Ĵ + gSŜ)µN + T̂ (M1, IV ) (2.14)

where Ĵ and Ŝ is the total angular momentum and spin operators. The Ĵ part
of the isoscalar term does no induce any M1 transitions and the Ŝ part con-
tributes very little to the M1 transitions. The isovector part can be given by [9]:

T̂ (M1, IV ) =

√
3

4π

{
1

2
(L̂π − L̂ν) +

1

2
(gπs − gνs )(Ŝπ − Ŝν)

}
µN (2.15)

where gπs and gνs are the spin boson factors and L̂ and Ŝ are the orbital angu-
lar momentum and spin operators of the boson system respectively. The first
part describes the scissors motion and the second part describes the spin-flip
motion.

2.4.3.1 Deformation and pairing

The correlation between deformation and pairing is not straight forward at
first. In a quadrupole deformed potential, the M1 strength between Nilsson
orbitals distinguished by Ω, can be approximately expressed by [9]:

B(M1) =
3

4π
(u1v2 − u2v1)2| < Ω1|gl l̂+ + gsŝ+|Ω2 > |2 (2.16)

where vi (with ui = 1− vi) is the occupation probability of the Nilsson orbits
Ω. Here the first term represents the pairing factor and the second term the
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transition matrix element between the Ω orbits. The effect of deformation
on the Ω orbits are shown in figure 2.9. For small deformations the pairing
factor smothers the M1 strength and it vanishes for zero deformation. As
the deformation increases, the Nilsson single-particle orbits originating from a
single j shell-model orbit, become dispersed and the occupation probabilities
change giving larger pairing factors. Assuming that the Nilsson orbitals differ
linearly with the deformation (for not to big deformations), the pairing factor
becomes proportional to the deformation parameter δ2.

Figure 2.9: Representation of the deformation effect on the M1 scissors transitions
[29].

2.4.3.2 Scissors resonance

The first evidence of a low-lying M1 mode, the scissors resonance, was reported
in reference [5]. Many models have been applied since to describe and explain
this resonance, the two-rotor model [30], the interactive Boson model (IBM)
[31] and microscopic models [32].

The two-rotor model describes the scissors resonance as a distribution of pro-
tons and neutrons oscillating against each other like the blades of a scissor.
This is illustrated in figure 2.10. The IBM describes it as the lowest 1+ member
of a group with wave functions that are not symmetrical under the exchange
of proton and neutron bosons. The microscopic models try to describe the
nuclear structure of the nuclei involved and the fragmentation of the mode.
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Figure 2.10: The oscillation of the neutron and proton distributions form the
scissors resonance [21].

The scissors resonance is a collective excitation mode dominated by single-
particle events. The scissors resonance results from transitions between mag-
netic substates differing by one unit of angular momentum. On a Nilsson
scheme the transitions will correspond to Ω± 1 transitions with similar spher-
ical j components, see figure 2.11. The centroid of the scissors resonance can
be found at an excitation energy of [32]:

Ex ' 66δA−1/3MeV (2.17)

where δ is the deformation parameter. Axially symmetric Hartree-Fock-Bogoliubov
(HFB) calculations using Cogny effective nucleon-nucleon interaction can be
used to calculate the axial deformation parameter β2 [10], which is related to
δ up to first order by [33]:

β2 =

√
π

5

4

3
δ. (2.18)

The B(M1) strength is given by a set of resonance parameters [34]:
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B =
h̄9c

32π2

(
σΓ

ω

)
(2.19)

where σ is the cross section, ω is the average centroid energy and Γ is the
radiative width of the scissors resonance. A sum-rule approach can be used
to calculate the scissors resonance strength and energy centroid. The linearly
and inverse energy-weighted sum rules are given by [35]:

S+1 =
3

2π
Θrigidδ

2ω2
D

(
Z

A

)2

ξ[µ2
N ]MeV (2.20)

S−1 =
3

16π
Θrigid

(
2Z

A

)2

[µ2
N ]MeV (2.21)

where Θrigid is the rigid moment of inertia given by [35]:

Θrigid =
2

5
mNr

2
0A

5
3 (1 + 0.31δ) (2.22)

and mN is the mass of the nucleon and ξ is the reduction factor given by [35]:

ξ =
ω2
Q

ω2
Q + 2ω2

D

(2.23)

where ωQ and ωD are the isovector giant dipole resonance and isoscalar giant
quadrupole resonance frequency [35]:

ωD ≈ (31.2A
−1
3 + 20.6A

−1
6 )(1− 0.61δ)MeV (2.24)

ωQ ≈ 64.7A
−1
3 (1− 0.3δ)MeV. (2.25)

These two sum rules can be used to calculate the energy centriod ωSR and
resonance strength BSR [35]:

ωSR =

√
S+1

S−1
= |δ|ωD

√
2ξ (2.26)

BSR =
√
S+1S−1 =

3

4π
(
Z

A
)2ΘrigidωSR (2.27)

The scissors resonance was identified in the rare-earth region and several ac-
tinides and it is believed that it can be found in all deformed nuclei [7]. The
scissors resonance has also been observed in less deformed transitional nuclei:

• γ-soft nuclei 196Pt [36] and 134Ba [37].
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• transitional osmium nuclei [38].

• vibrational tellurium isotopic nuclei [39, 40].

In the transitional nuclei, the decay properties are different from those in the
well-deformed nuclei due to the loss of axial symmetry. The M1 strength
distribution is greatly reduced for γ-soft nuclei for example in 196Pt [36]. In
odd-even nuclei the odd-particle (-hole) coupling to the 1+ modes creates a big
fragmentation in the M1 strength distribution for some nuclei, such as 167Er.
In some other nuclei like 161Dy the M1 strength is localized, but has reduced
strength. It has been pointed out in reference [8] that the scissors resonance
strength for odd-even nuclei may be comparable to that in the even-even nu-
clei, but due to the fragmentation of the the scissors resonance, a large part
of it lies below the experimental detection threshold. The findings of reference
[41] supports this.

2.4.3.3 Spin-flip resonances

Neutron and proton single-particle transitions of the kind (J = l−1/2)→ (J =
l+ 1/2) between levels, separated due to the spin-orbit interaction, form what
is known as the spin-flip resonance. Various theoretical descriptions have been
developed to study the spin-flip resonance: a single-particle model to study
the strength and centroid energy [42], QRPA and QTDA models to study the
strength distribution [43, 44, 42].

The residual particle-hole interaction on the spin-isospin channel moves the
spin-flip resonance to higher energies and also acts as a doorway into the frag-
mentation of the M1 strength. The particle-hole interaction however has a very
small effect on the scissors resonance (orbital part of the M1 strength) and it
remains at lower energies 2-4 MeV [44]. The scissors and spin-flip resonances
are shown in figure 2.12 for nuclei in the medium-heavy (56Fe), heavy (156Gd)
and very heavy (238U) regions [45]. While the scissors resonance remains be-
tween 2-4 MeV excitation energy, the spin-flip resonance’s centroid varies over
many MeV. It can also be seen that the spin-flip resonance contributes most
to the M1 strength.

Possible spin-flip and scissors transitions are shown in the Nilsson diagram,
for the transition 1h9

2
− >1h11

2
, in figure 2.11. The spin-flip is a single-particle

transition between levels separated by the spin-orbit interaction, hence the
spin-flip strength will be localized at the energy of the spin-orbit gap in closed
shells for spherical nuclei. Deformed nuclei have a splitting of the Nilsson
energy levels causing the spin-flip strength to be spread apart around the
spherical energy centroid. The spin-flip resonance centroid is usually found at
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Figure 2.11: Illustration of the spin-flip and scissors resonance with the example
of the 1h9

2− >1h
11
2 transition.

a typical excitation energy [46]:

Ex ' 41A−1/3MeV. (2.28)

Studies (in the rare-earth region) using a schematic model and QRPA have
shown that when the spin-spin proton-neutron coupling is not too strong, the
M1 strength is separated into a pure proton and neutron collective spin-flip
state [47, 48]. With increasing strength an isovector and isoscalar mode can
be identified separately. The isovector part is normally at higher energies than
the isoscalar part. This is illustrated in figure 2.13 where the splitting of the
spin-flip strength in 238U, 208Pb and 154Sm can be clearly seen.

2.4.4 Lorentzian functions

Lorentzian functions are used to describe the resonances. The GEDR was first
described through a standard Lorentzian (SLO) with an energy and tempera-
ture independent width [49]:

fSLOE1 = 8.68× 10−8
σ0EγΓ

2
0

(E2
γ − E2

0)2 + E2
γΓ

2
0

(2.29)
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Figure 2.12: The spin-flip and scissors resonance for nuclei in the medium-heavy
(56Fe), heavy (156Gd) and very heavy (238U) regions [45].

where σ0, Γ2
0 and E2

0 are the peak cross-section, GEDR width and peak cen-
troid respectively. It was found that this function overestimates the strength
at and below the neutron separation energy. The Lorentzian function was then
used with an energy dependent width Γ(Eγ) [49]:

fLOE1 = 8.68× 10−8
σ0EγΓ0Γ(Eγ)

(E2
γ − E2

0)2 + E2
γΓ

2
0

. (2.30)

The width was also improved to be temperature and energy dependent. The
width is then given by [49]:

Γ(Eγ, T ) = Γ0

E2
γ + 4π2T 2

E2
0

(2.31)

where Sn, a and T is the neutron separation energy, BSFG level density pa-
rameter and temperature T =

√
Sn−Eγ

a
respectively. The short coming of this

description is that it fails to describe the electric operator in the limit of zero
Eγ. The LO function was then improved to the generalized Lorentzian (GLO)
function [50]:
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Figure 2.13: The spin-flip strength distribution for 238U, 208Pb and 154Sm showing
the split spin-flip resonance [32].

fGLOE1 = 8.68× 10−8σ0Γ0

[
EγΓ(Eγ, T )

(E2
γ − E2

0)2 + E2
γΓ

2
0

+ 0.7
Γ(Eγ = 0, T )

E3
0

]
. (2.32)

This description was found to work in the mass region A ≈ 55− 150 and A ≈
175− 197. For the mass region A ≈ 150− 175 this description underestimates
the f(Eγ) for strongly deformed nuclei. For the mass region A ≈ 150− 175 an
adapted width is used [50]:

Γ(Eγ, T ) = k0 + (1− k0)
(
Eγ − ε0
E0 − ε0

)
Γ0(E

2
γ + 4π2T 2)

E2
0

(2.33)

where k0 is an empirical expression depending on the mass of the nucleus. Us-
ing this width with the Lorentzian function is known as the enhanced gener-
alized Lorentzian (EGLO) function. For M1 resonances the SLO is commonly
used, but any of the Lorentzian function can be used depending on the nucleus
mass and the reproduction of experimental values.
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2.5 Astro-physical implications
The program Talys [1] uses the statistical emission model Hauser-Feshbach
(HF) to calculate astrophysical reaction rates, such as (n,γ). It simulates nu-
clear reactions which involve γ-rays, neutrons, protons, deuterons, tritons, 3He
and α-particles. The NLD and PSF are needed as input parameters for the
HF model.

Photon strength functions play an important role in nuclear reactions occur-
ring in nature. The rate of electron capture reactions depends on the properties
of the giant Gamow-Teller resonance. Electron capture reactions are impor-
tant because they cool the core of stars involved in explosions and accelerate
the stars gravitational collapse. High energy neutrinos traveling outward from
the star may heat nuclei in the mantle, exciting various giant resonances in
the process. It is believed that certain elements can only be formed by giant
resonance decay products in these reactions [20].

Resonances on the low-energy part of the GEDR such as the E1 pygmy res-
onance have an impact on the r-process nucleosynthesis [3]. The blue curve
in figure 2.14 shows the r-abundance calculated using the GEDR and pygmy
resonances. This produces nuclei in the mass region of A ≈ 130 with more ac-
curacy. The green curve is the r-abundance calculated using only the GEDR,
this calculation produces nuclei in the mass region of A ≈ 90-110 with more
accuracy. The inclusion of the pygmy resonance clearly has a large impact
on the result of the calculation. The red curve shows the solar r-abundance
distribution.

Figure 2.14: The red curve is the solar r-abundance distribution, the blue curve
is the r-abundance excluding the pygmy resonance, and the green curve is the r-
abundance including the pygmy resonance [3].
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The magnetic dipole responses of nuclei are important for supernova modeling.
It is used in calculating the inelastic neutrino-nucleus scattering cross section
used in supernova dynamics [51]. To be able to describe inelastic scattering
processes, information is needed on the T0 → T0 isospin component of Gamow-
Teller (GT) strengths, where T0 is the ground-state isospin. Since a large
amount of nuclei is typically involved in supernova reactions, it will take a
lot of time and resources to measure each GT strength individually and the
use of models are preferred. Figure 2.15 shows the neutrino inelastic scattering
cross section of 52Cr. The solid histograms are neutrino cross sections obtained
from M1 strengths and the dashed histogram is cross sections obtained from
shell-model calculations [52].

Figure 2.15: Neutrino differential inelastic scattering cross section of 52Cr for two
typical neutrino scattering energies Eν =15 (blue) and 25 MeV (red). The solid
histogram is cross sections obtained from M1 strengths and the dashed histogram is
data obtained from shell-model calculations [52].

Stellenbosch University  https://scholar.sun.ac.za



Chapter 3

The Oslo Method

By using various analytical techniques the NLD and PSF can be simultaneously
extracted from particle-γ data. The combination of these techniques are called
the Oslo method. The main steps in this method are:

1. Calculate and remove Compton background, single and double escape
peaks and effects from pair production. This leaves only full-energy
deposit events.

2. Extract the first generation γ-rays using the first generation method.

3. Simultaneous extraction of the NLD and PSF.

4. Normalization of the NLD and PSF.

The Oslo method is described in detail in various articles so only a brief
overview of the methods will be given. For more details consult references
[4, 53].

3.1 Full energy deposit events
Nuclei at excitation energies above 2-4 MeV (depending on the nucleus mass)
have a high density of levels. γ-transitions in this high density region cannot
be distinguished, since the spacing between levels are to small. This results in
a statistical γ-spectrum with no identifiable discrete γ-ray energies. To extract
useful information the statistical spectra have to be corrected by removing the
Compton scattering, photo-electric and pair production events that do not
result in a full energy deposit. Only full γ-ray energy deposit events are con-
sidered.

A γ-ray can enter the detector, deposit some energy and then escape before
depositing all its energy. Such an event will form part of the Compton back-
ground scattering. If pair production occurs an annihilation event can produce

24
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two annihilation photons with 511 keV energy each. If this annihilation pro-
cess is close to the edge of the detector, one photon may escape resulting in
a single escape peak at Eγ − 511 keV. If both annihilation photons escape a
double escape peak is formed at Eγ − 1022 keV. All these events need to be
removed. Many unfolding methods were developed over the years that can
do this: The inverse matrix method [54, 55], stripping method [56], neural
network method [57] and the folding iteration method [58]. According to ref-
erence [59] the inverse matrix method and the folding iteration method give
the unfolded spectra a realistic shape, however large oscillations from channel
to channel may introduce a wrong overall shape due to systematical errors for
the stripping method.

The Oslo method uses a folding iteration method to estimate the shape of a
spectrum that includes single and double escape peaks and the Compton back-
ground. The photoelectric effect is the dominant transfer mechanism for ener-
gies below ≈ 100 keV. The threshold of the experiment is usually set higher and
the possible photoelectric effects are ignored. The spectrum is then smoothed
and normalized to minimize oscillation from channel to channel. The smoothed
and normalized spectrum is then subtracted from the experimental spectrum
in the Compton subtraction method that utilizes the response function. The
result is a matrix that contains only the full energy deposit events called the
unfolded matrix [59].

3.1.1 Response function

The detector response function (used in the folding iteration method) is given
by R(E,Eγ) where E is the energy deposited into the detector and Eγ is
the energy of the incoming γ-ray. Ideally this should be measured for every
Eγ, however this is not possible. Instead, the response function is measured
for a few mono-energetic γ-rays and the spectra is interpolated to obtain the
response function for all Eγ. The mono-energetic γ-rays that were measured
with the NaI(Tl) CACTUS-array (see chapter 4) are [59]: 122, 245, 344, 662,
1173, 1333, 1836, 4439, 6130 and 15110 keV. From these spectra the single and
double escape, the full energy and annihilation peaks are removed. The parts
remaining are the Compton, back scattering and pile-up events. The reason
for removing these peaks are:

• to simplify the interpolation between different response functions because
the positions and intensities have different energy dependencies.

• to easily create a new response function if the energy resolution of the
current response function differs from the experimental energy resolution.

• to smooth parts of the spectrum with different energy resolutions as is
needed in the Compton subtraction method (see section 3.1.3).
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Figure 3.1: The Compton interpolation between channels with the same scattering
angle θ [59].

The single and double escape, the full energy and annihilation peaks can be in-
terpolated by a Gaussian distribution. The length of the Compton background
differs due to their respective full energy values. This means the Compton
background must be interpolated between channels that correspond to the
same γ-ray scattering angle θ. This is illustrated in figure 3.1. As γ-rays scat-
ter off electrons in the detector material they transfer energy E given by:

E = Eγ −
Eγ

1 + Eγ
mec2

(1− cosθ)
. (3.1)

Below 200 keV the spectrum is dominated by backscattering and background
events and interpolation can happen between the same channel numbers. The
energy deposited into the detector below 200 keV is given by:

Ebackscatter = EγI

(
1 +

2Eγ
mec2

)
. (3.2)

Above the Compton edge, interpolation is done between channels with the
same channel number. To calculate the counts in the interpolated spectrum
the following equation is used [59]:
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c(E) =

(
dE

dθ

)−1
Eγ

[
c1(E1)

(
dE

dθ

)
Eγ1

+
Eγ − Eγ1
Eγ2 − Eγ1

×(
c2(E2)

(
dE

dθ

)
Eγ2

− c1(E1)

(
dE

dθ

)
Eγ1

)]
(3.3)

where Eγ, Eγ1 and Eγ2 are the centroids for the full energy deposit peaks of the
interpolated and reference spectra. E, E1 and E2 are the energies deposited
into the detector by the γ-ray.

(
dE
dθ

)
Eγ1

and
(
dE
dθ

)
Eγ2

is due to the scattering
angle on the energy deposited by the γ-ray [59].

3.1.2 The folding iteration method

The response matrix Rij is defined as the response in channel i from a γ-ray
of energy corresponding to channel j. Folding can then be expressed as:

f = Ru

where f is the folded spectra, u is the unfolded spectra and R is the measured
spectra. There are two ways of operating the folding iteration method: the
ratio approach which calculates the next trial function by:1

ui+1 = ui(
r

fi
).

where r is the measured spectrum. The second way of operating the folding
iteration method is the difference approach which calculates the next trial
function by:

ui+1 = ui + (r − fi).

According to reference [59] the ratio approach gives problems when f = 0,
since it divides by f . The Oslo method utilizes the difference approach. The
method is as follows [59]:

1. Let u0 = r

2. Then f0 = Ru0

3. Using the difference approach u1 is calculated by: u1 = u0 + (r - f0)

4. Repeat step 2 and 3 until fi ≈ r. Normally it takes 10 to 30 iterations:
1The i indexes here refer to the number of iterations.
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f1 = Ru1

u2 = u1 + (r − f1)
...

fi+1 = Rui+1

ui+1 = ui + (r − fi).

Figure 3.2 shows the results from continuous foldings. After each folding the
observed spectra is reproduced better. It has been observed that there are un-
dershoots next to pronounced peaks in the unfolded spectrum [59]. To account
for this let FWHMresponse = 0.5FWHMexperiment. The iteration method gives
an unfolded spectrum that can be used as a starting point for the Compton
subtraction method.

Figure 3.2: The results from continuous unfolding on a spectrum of 162Dy. r is the
observed spectrum, u is the unfolded spectrum and Fu is the folded spectrum [59].

3.1.3 The Compton subtraction method

The Compton subtraction method begins once you have the unfolded spectrum
u. Subtract the Compton contribution from the observed spectrum by: 2

2The (i) indexes here refer to the channel number of the spectra.
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v(i) = pf (i)u0(i) + w(i) (3.4)
where

w(i) = us(i) + ud(i) + ua(i)

us(i− i511) = ps(i)u0(i)

ud(i− i1022) = pd(i)u0(i)

ua(i511) =
∑
i

pa(i)u0(i)

pf (i)u0(i) is the full energy peak, ps(i)u(i) is the single escape peak, pd(i)u(i)
is the double escape peak,

∑
i pa(i)u(i) is the contribution from annihilation,

i511 and i1022 are the channels corresponding to energy 511 keV and 1022 keV.
The probabilities for a single, ps, and double, pd, escape peak, full energy de-
posit, pf , and annihilation event, pa, are taken from [59].

~ua has all its counts in one channel so it should be smoothed by 1 FWHM so
that it can have the same energy resolution as the observed spectrum. The
energy resolution of the spectra pfu0, ud, us, is determined by the response
matrix and observed spectrum’s energy resolution:

√
12 − 0.52 = 0.87 FWHM.

These spectra should be smoothed by 0.5 FWHM to have the same energy
resolution as the observed spectrum. The Compton background spectrum can
then be extracted by:

c(i) = r(i)− v(i). (3.5)
This spectrum can then be further smoothed by 1 FWHM to obtain a smoothed
Compton background that is a slow changing function of energy. The smoothed
Compton background and peak structures w are then subtracted from the
observed spectrum r and corrected for the full energy probability pf :

u(i) =
r(i)− c(i)− w(i)

pf (i)
(3.6)

u(i) is then the spectrum without the single and double escape peak, Comp-
ton background and annihilation contributions. The observed spectrum r, the
Compton background c and the resulting spectrum after unfolding and Comp-
ton background subtraction u of 152Eu and 162Dy [59] are shown in figure 3.3.
This spectrum can still be corrected for the detector efficiency ε, taken from
reference [59]. ε is also multiplied by the efficiency of the discriminator level
of the experimental setup i.e. the ADC thresholds and timing should also be
taken into account. This then gives:

U(i) =
u(i)

ε(i)
(3.7)
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Figure 3.3: The observed spectrum r, the Compton background c and the resulting
spectrum after unfolding and Compton background subtraction u of 152Eu and 162Dy
[59].

3.2 First generation matrix
The distribution of the primary γ-rays contains the relevant information that
is needed to calculate the nuclear level density and photon strength function.
Highly excited nuclei will primarily decay through a cascade of γ-rays. The
technique to sort through and obtain the primary γ-rays is called the first
generation method. This method assumes that a state populated by a γ decay
has the same properties as when that state is populated directly through the
reaction. This assumption is true for high level densities where the nucleus is
in a compound state prior to γ-emission [60].

Beginning at the highest excitation region (bin) of the unfolded and Compton
subtracted spectrum, a γ-ray spectrum, fi, is produced from the particle-γ
coincidences 3. The first generation γ-ray spectrum for the highest excitation
region is found by:

hi = fi − gi (3.8)

where hi is the first generation spectrum and gi =
∑

j nijwijfj is the weighted
sum of all the γ-ray spectra where i < j. wij is the probability of a decay of
states in bin i to states in bin j where

∑
j wij = 1. wij can be seen as the

branching ratio for primary γ-rays depopulating level i. Each level i and j
have different populating cross sections and nij is the correcting factor that

3The i indexes here refer to the subsequent bin number.
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accounts for this. It is calculated so that the area of each γ-ray spectrum fij
multiplied by the correcting factor nij has the same number of cascades [61].

The distribution of wij is the same as hi, so they can be simultaneously deter-
mined through a fast converging iterative method [62]:

1. Apply a trial function wij, for example a constant function or an unfolded
spectrum fi

2. Calculate hi using equation 3.8

3. Let hi have the same energy calibration as wij and normalise the area of
hi to 1

4. if wij ≈ wi−1,j−1 the method has converged. If this is not true repeat
from step 2. Normally this takes 10-30 iterations.

nij can be calculated in two ways:

Singles normalisation: The cross section, as determined from single particle
events, is equivalent to the density of populated states and therefore to the
number of cascades [62]. The normalisation factor is given by:

ni =
Sj
Si

(3.9)

where Sj and Si are the cross-sections for bins j and i, respectively.

Multiplicity normalisation: Assume a N-fold population of a level Ex. The
outcome of decays from this level will be N γ-rays cascading with the ith
cascade containing Mi γ-rays. The average γ-ray energy given by, 〈Eγ〉, will
be equal to the total energy of the emitted γ-rays divided by the total number
of γ-rays emitted [63]:

〈Eγ〉 =
ExN∑N
i=1Mi

=
Ex
〈M〉

. (3.10)

The multiplicity is then given by:

〈Mi〉 =
Ei
x

〈Eγ〉
(3.11)

where Ei
x is the excitation energy of bin i. The single particle cross-section

is then given by Si = A(fi)
〈Mi〉 where A(fi) denotes the area of the spectrum fi.

Substituting this into equation 3.9 returns a normalization factor of:

ni =
〈Mi〉A(fj)

〈Mj〉A(fi)
. (3.12)
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If the multiplicity is considered to be well defined an area consistency check
can be used on equation 3.8. Introduce a correction by setting g = αg where
α is close to unity. The area of the first generation γ-ray matrix is then given
by:

A(h) = A(fi)− αA(g) (3.13)

This correlates to a γ-ray multiplicity of one. It can also be expressed by:

A(h) =
A(fi)

〈Mi〉
(3.14)

By combining equations 3.13 and 3.14 we get a new expression for the correc-
tion factor α:

α =
(1− 1

〈Mi〉)A(fi)

A(g)
. (3.15)

The correction is always useful in case an improper weighting function wij is
used [62].

3.3 Extracting nuclear level density and
photon strength function

Fermi’s Golden Rule about decay rates states:

λif =
2π

h̄
| < f |Ĥint|i > |2ρ(Ef ) (3.16)

where λif is the decay rate from the first state i to the final state f , ρ(Ef ) is
the level density at the final energy and < f |Ĥint|i > is the transition matrix
element [64].

The decay of a γ-ray to a specific final energy is independent of the reaction
that formed the nucleus. The probability for a γ-ray to decay from excitation
energy Ex to Ef , with energy Ef = Ex−Eγ, is proportional to the level density
at the final energy ρ(Ef ) and the γ transmission coefficient Tif (Eγ). The first
generation matrix is proportional to the decay probability and therefore it can
be factorized as [53, 4]:

P (Ex, Eγ) ∝ ρ(Ef )Tif (3.17)

where ρ(Ef ) is the level density at the final energy and Tif is the gamma
transmission coefficient. Brink’s hypothesis states that the collective giant
dipole mode built on an excited state has the same properties as if it was built
on the ground state [65]. This hypothesis implies that the gamma transmission
coefficient does not depend on the initial and final states, but only the γ-ray
energy:
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P (Ex, Eγ) ∝ ρ(Ef )T (Eγ). (3.18)

Equation 3.16 is comparable to 3.18, with the only difference being that equa-
tion 3.16 depends on the initial and final states, while equation 3.18 depends
only on the γ-ray energy. As long as the experimental first generation matrix
has been correctly normalized for every excitation energy bin Ef through either
the singles or multiplicity normalization described above, the total probability
P (Ef , Eγ) for γ-decay is unity [4]:

Ex∑
Eγ=Eminγ

P (Ex, Eγ) = 1. (3.19)

A theoretical approximation for the normalized first generation matrix can
now be found by:

Pth(Ex, Eγ) =
T (Eγ)ρ(Ex − Eγ)∑Ex

Eγ=Eminγ
T (Eγ)ρ(Ex − Eγ)

. (3.20)

Equation 3.20 fulfills the condition set by 3.19. The Zeroth-order estimate of
T can be found by choosing ρ(0) = 1, this gives [4]:

T (0)(Eγ) =

Emaxi∑
Ex=max(Emini ,Eγ)

P (Ex, Eγ). (3.21)

In order to find the higher order estimates of ρ and T a χ2 least squares method
is used to fit the P (Ex, Eγ) deduced from measurements to the theoretical
Pth(Ex, Eγ):

χ2 =
1

Nfree

Emaxi∑
Ex=Emini

Ex∑
Eγ=Eminγ

(
Pth(Ex, Eγ)− P (Ex, Eγ)

δP (Ex, Eγ)

)2

(3.22)

where Nfree is the number of degrees of freedom and δP (Ex, Eγ) is the uncer-
tainty in the first generation matrix. Through minimizing the χ2 all possible
solutions are constructed:

ρ̃(Ex − Eγ) = ρ(Ex − Eγ)A exp(α(Ex − Eγ)) (3.23)

T̃ (Eγ) = T (Eγ)B exp(αEγ) (3.24)

where α is the slope and A and B are the normalization constants which will
be discussed in the section 3.4. A and α are the free parameters in the χ2

minimization. There is an infinite number of solutions that can be calculated
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using equations 3.23 and 3.24.

Normally this method converges well, however in some cases where there are
few data points, e.g. at high energies, the method needs to be enhanced. By
restricting the maximum change of data points in ρ and T within one iteration
to a certain percentage N , the method can be generalized. In other words,
the data points calculated in the new iteration is checked if it lies within an
interval determined by the old iteration:

old

1 + N
100

≤ new ≤ (1 +
N

100
)× old. (3.25)

The possible errors made during the unfolding and extraction procedure is
calculated through a simulation in order to simplify the process. It is described
in detail in reference [4]. The errors in ρ(Ef ) and T (Ef ) are calculated 100
times and then averaged for reasonable statistics by:

δρ(Ef ) =
1√
100

√√√√ 100∑
i=1

[ρ
(s)
i (Ef )− ρ(Ef )]2 (3.26)

δT (Ef ) =
1√
100

√√√√ 100∑
i=1

[T
(s)
i (Ef )− T (Ef )]2. (3.27)

3.4 Normalisation
Since there exists an infinite amount of solutions for ρ(Ef ) and T (Eγ), their
normalization to experimental data needs to be performed. This finds the
correct solution, in other words, the correct values for A, B and α are found.
At low excitation energies (below 2 MeV) the level density normalization can
be accomplished using experimentally measured level densities by just counting
observed levels. At the neutron separation energy normalization is achieved
from level densities calculated from neutron resonance spacing data [4]. The
starting point is equations 2.2 and 2.3. The average neutron resonance spacing
Dl=0 can now be written as:

1

D0

=
1

2
(ρ(Sn, J = I +

1

2
) + ρ(Sn, J = I − 1

2
)) (3.28)

where I is the spin of the target nucleus as determined from neutron resonance
experiments. It is assumed that both spin +1

2
and −1

2
contribute equally to

the level density at the neutron binding energy Sn. The total NLD at the
neutron separation energy can be found by combining equations 2.2,2.3 and
3.28. This gives:
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ρ(Sn) =
2σ2

D0

× 1

(I + 1) exp(− (I+1)2

2σ2 ) + I exp(− I2

2σ2 )
(3.29)

where σ2 is calculated by equation 2.4. The calculated level density cannot
be compared directly at the neutron separation energy since the ρ function is
extracted up to Emax − Eγ min. Emax is the maximum Ex cut and Eγ min is
the minimum γ-ray energy cut on the first generation matrix. This problem is
solved by extrapolating the extracted ρ function with a constant temperature
level density.

The parameters A and α of the transformation 3.23 are adjusted until the
data fit the level density equation in an excitation energy interval between for
example 0-1 MeV and 4-5 MeV. The energy interval may change depending on
experimental data.

The parameter B is calculated from the experimental average total radiative
width < Γγ(Sn, JT ± 1

2
, πT ) > according to [53]:

< Γγ(Sn, JT ±
1

2
, πT ) >=

D0

4π

∫ Sn

0

dEγT (Eγ)ρ(Sn − Eγ)×

1∑
J=−1

g(Sn − Eγ, JT ±
1

2
+ J) (3.30)

where JT , πT are the spin and parity of the target nucleus, ρ(Sn − Eγ) is the
experimental level density and g is the spin distribution of the level density
given by [14]:

g(E, J) ' 2J + 1

2σ2
exp[−(J +

1

2
)2/2σ2]. (3.31)

The spin distribution is normalized to
∑

J g(E, J) ≈ 1. D0 and Γγ values can
be obtained from literature, for e.g. [66] or if no information is known, like in
the case of short lived targets, then D0 and Γγ can be calculated using Talys
[1]. Assuming the decay is dominated by dipole radiation (L = 1) we get:

BT (Eγ) = B(TE1(Eγ) + TM1(Eγ)). (3.32)

The relation between the photon strength function and γ transmission coeffi-
cient is given by

TX,L=1(Eγ) = 2πE3
γfX1(Eγ). (3.33)

The photon strength function can then be easily calculated by:

f(Eγ) =
1

2πE3
γ

BT (Eγ). (3.34)
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Assuming the γ transitions are of dipole nature, the PSF can be written in
terms of the (γ, n) cross section σ(Eγ) by [67]:

f(Eγ) =
σ(Eγ)

3Eγ(πh̄c)2
. (3.35)

By using this equation σ(Eγ) can be converted to PSF and vice versa. The
converted PSF can then be used to compare results.

3.5 Accuracy and possible shortcomings of the
Oslo Method

A brief summary of the assumptions and systematic errors of the Oslo method
will be given in this section. In the following the findings of reference [53] are
briefly outlined.

3.5.1 The unfolding method

The unfolding method has been extensively tested and found to be accurate.
A possible shortcoming of this method is that the γ-ray spectra have to be
corrected for the total absorption efficiency of the NaI(Tl) crystals, used in
the CACTUS array, for a given γ-ray energy. The influence of the absorption
efficiency was tested in reference [53] by reducing it by 20% for γ-ray energies
above 1 MeV. The level density extracted with this absorption efficiency was
impervious to the total absorption efficiency, but the slope of the γ-ray strength
function was increased due to the low efficiency at high γ-ray energy. However,
the overall shape off the PSF remained unchanged.

3.5.2 The first generation method

The first generation method assumes that it does not matter how a nucleus
is excited to an energy level with regards to γ-ray decay. In other words, it
should not make a difference whether the energy level is populated by a decay
from a higher energy level or directly by the nuclear reaction. This was tested
in reference [53] by looking at the same compound nucleus created with differ-
ent reactions, (3He,α) and (3He,3He). 96,97Mo [68], 161,162Dy [69] and 171,172Yb
[70] were investigated using both reactions and the nuclear level densities and
photon strength functions were similar, except at very low excitation energies.

Another assumption is that the nucleus is in a compound state before γ-ray
emission. The characteristic time for compound nucleus formation is ≈ 10−18s
and the life time of states in the quasi-continuum is ≈ 10−15s. The nucleus
thermalizes before γ-ray emission. Calculations have supported this by show-
ing that both, 160Dy(3He, αγ) [71] with a 45 MeV 3He beam and 46Ti(p, p′γ)
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with a 15 MeV proton beam have small pre-equilibrium contributions for en-
ergies below 10 MeV. With excitation energies above 10 MeV this assumption
is questionable, however the experiments analyzed using the Oslo method deal
only with energies below 10 MeV.

Nuclei with large gaps between energy levels at low energies may lead to ex-
citation energy regions called "empty valleys". These need to be excluded
otherwise over or under subtraction may result that changes the low-energy
part of the photon strength function. Mistakes in determining the weighting
functions, such as the finite or mismatch of the detector resolution of the par-
ticle telescopes and CACTUS array (see section 5.2) have only minor influence
on the results.

3.5.3 Extraction of level density and photon strength
function

The extraction of the level density and PSF assume the validity of the Brink
hypothesis. With high temperatures and/or spins in nuclear reactions, the
Brink hypothesis may not be valid anymore. If the Brink hypothesis is not
valid then equation 3.17 cannot be simplified to equation 3.18 which compli-
cates the extraction method. Simulations [72] have shown that if the strength
function is temperature dependent, the overall shape of the PSF remains sim-
ilar, but the low γ-ray energy region is changed. Two sets of decay intensities
and level schemes (nuclear realizations) were used, the results from these sim-
ulations are shown in figure 3.4. The temperature dependence of the PSF has
been investigated experimentally several times in references [73, 74, 68, 75] and
there has been no experimental evidence of any temperature dependence for
excitation energies below 10 MeV, supporting the validity of the Brink hypoth-
esis for the regions studied with the Oslo method. It should also be noted that
the Oslo method does not take the uncertainties of D0 and Γγ into account,
however steps can be taken to include these uncertainties. These steps will be
discussed in section 6.4

3.5.4 Parity and spin distribution

The positive and negative-parity distribution is assumed to be equal, an as-
sumption which may break down for very light nuclei (but not for heavy nuclei).
A large parity asymmetry will change the normalization point ρ(Sn) up to a
factor of 2 [53]. The change in normalization point ρ(Sn) will change the slope
of the NLD and PSF. Experiments suggest that the parity asymmetry is small
for light nuclei so the change of ρ(Sn) is small. The error of ρ(Sn) and the
absolute normalization of the PSF will not exceed 50% [53].
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Figure 3.4: Simulated spectra of 163Dy. The black and white squares are PSF
for two different realizations of the nucleus. The solid line is the input PSF us-
ing a constant temperature model and the dashed line is the input PSF using a
temperature=

√
Sn − Eγ [53].

One of the largest uncertainties is the spin distribution of the reaction, since
the intensity of the populated spin at the neutron separation energy is used in
determining the slope of the NLD and PSF. Simulations [72] show that higher
spins on initial levels of light nuclei lead to an enhanced PSF at low γ-ray ener-
gies. Different spin ranges, 1

2
≤ J ≤ 7

2
, 1

2
≤ J ≤ 13

2
and 7

2
≤ J ≤ 13

2
, were used

and the effect on the NLD and PSF of 57Fe were investigated using simulated
data, as shown in figure 3.5. The NLD remained reasonably unchanged, but
the PSF has increased strength at low Eγ.

Spin cutoff parameters are usually taken from, but are not limited to references
[76] or [14] and a bell like spin distribution is assumed according to reference
[14]. Different spin distributions, as shown in figure 3.6, can lead to a ρ(Sn)
value that is 10 − 50% different. Typical reactions at the Oslo Cyclotron
Laboratory (OCL) reach spins in the range 0-8h̄ which is a relatively narrow
spin range. This can be counterbalance by normalizing the NLD at the neutron
separation energy. Calculations show that the main structures in level densities
are present for a rather narrow spin range, and as such the narrow spin range
has a small effect on the results.
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Figure 3.5: Different initial spin ranges and its effect on the level density and PSF
for 57Fe [53].
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Figure 3.6: Various spin distributions of 44Sc at E = 8 MeV that can be used in
calculating ρ(Sn) [53].
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Chapter 4

Experimental Setup

The experiment was performed in Norway at the Cyclotron Laboratory of
the University of Oslo (OCL). Using a MC-35 Scanditronix cyclotron a 12.5
MeV deuterium beam impinged on a self-supporting 181Ta target of thickness
0.8 mg

cm2 . The beam is collimated using slit D1 and focused using quadrapole
magnet Q1. The analyzing magnet bends the beam 90◦ towards the target
chamber. Further collimation and focusing is done by slits D2, D3 and D4 and
by quadrapole magnets Q2 and Q3. A diagram of the setup at the OCL is
shown in figure 4.1. The beam reaching the target chamber typically has a di-
ameter of 1-2 mm. The investigated reactions are 181Ta(d, p)182Ta (Q = 3838.4
keV) and 181Ta(d, d′)181Ta. The beam intensity was ≈ 2 particle nA. The SiRi
particle telescope and CACTUS array detector systems, located in the target
chamber, where used in this project. The CACTUS array is used to detect
γ-rays and the SiRi particle telescopes detect charged particles.

4.1 Detector systems

4.1.1 SiRi particle telescope

The SiRi particle telescope, shown in Figure 4.2 consists of 8 thin silicon de-
tectors (∆E) segmented into 8 slices with thicknesses 130 µm positioned in
front of the telescopes. The segmentation of the ∆E detectors are illustrated
in figure 4.3. The SiRi particle telescopes also has 8 thick silicon detectors (E)
positioned in the back of the telescope with thicknesses 1550 µm [78]. The
detectors are positioned in a circle around the target. This gives a total of 64
detectors that are used to measure energy deposition used to identify particles
produced in the nuclear reactions.

Each particle telescope covers a scattering angle between θlab = 126◦ − 140◦

in steps of 2◦. A 10.5 µm aluminum foil is placed in front of the particle
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Figure 4.1: Diagram of the setup at the Oslo Cyclotron Laboratory [77].

telescopes to shield them from δ electrons that are produced in the reaction.
The resolution for this work was 124 keV as obtained from the deuteron elastic
peak. The SiRi particle telescope (figure 4.2) was placed at θlab = 133◦ with
respect to the beam axis, this is illustrated in figure 4.4.

Figure 4.2: The SiRi particle telescope [79].
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Figure 4.3: Layout of the front ∆E detector [79].

Figure 4.4: The SiRi particle telescope position relative to the beam line axis [79].

4.1.2 CACTUS array

The CACTUS array consists of 26 NaI(Tl) detectors positioned spherically
around the target to detect the γ-rays coming from the reactions. The CAC-
TUS array is shown in Figure 4.5. Each NaI(Tl) detector has a crystal with
dimension 5”× 5” and is positioned 22 cm away from the target [80] covering
a total of 17% of 4π sr. Each crystal has a 10 cm thick lead collimator of 7
cm internal diameter. The CACTUS array has a total efficiency of 14.1% and
energy resolution of 7% FWHM for a 1332 keV transition. 2 mm copper plates
are used as X-ray suppressors at the front of each crystal and 3 mm thick lead
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shields are used between the NaI(Tl) detectors to avoid cross talk.

Figure 4.5: CACTUS multi-detecor setup [61].

4.2 Electronics
A Caen SY2527 Universal Multichannel Power Supply System is used to power
the photo-multiplier tubes of the NaI(Tl) detectors. This system includes a
CPU and front panel section to monitor and change the high voltage of each
detector remotely. The photo-multiplier tubes of the NaI(Tl) detectors are
biased with a high voltage between 700-800 V. Mesytec MHV-4 modules were
used to bias the silicon detectors, this module can also be monitored and volt-
age adjusted remotely. The ∆E detectors where biased to 30 V and to 350 V
for the E detectors.

A schematic of the electronic setup is shown in 4.6. Signals from the E and
∆E detectors are split into two parts. One part (black) is connected to a spec-
troscopy amplifier and Analog to Digital Converter (ADC) awaiting the trigger
signal to record energy information. The other part (red) is sent through time
filter amplification (TFA) and leading edge discriminator (LED) modules to a
coincidence module where a 200 ns wide window is used to determine if the
signal identifies a true charged particle event as long as the E and ∆E signals
overlap. The charged particle signal (green) is sent to another coincidence
module to determine particle-γ coincidences.
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Signals from the NaI(Tl) detectors are also split into two parts. One part
(black) connects to a spectroscopy amplifier and ADC awaiting the trigger
signal to record energy information. The other part is sent through TFA and
LED modules where it is split again. One signal goes to a Time to Digital
Converter (TDC) (black) awaiting the trigger signal to record time informa-
tion, the other signal is connected to a coincidence module (green).

To ensure overlap of γ-rays with charged particle, the signal from the NaI(Tl)
detectors are delayed. This enables the charged particle signal to be used as
the start signal (black) in the TDC module and the NaI(Tl) signal to provide
the stop signal. The charged particle and the NaI(Tl)(green) signals are sent to
the coincidence module to determine particle-γ coincidences. Particle-γ events
are then used as trigger signals (purple) for the ADC’s and TDC’s.

Figure 4.6: Schematic overview of the electronics used at Oslo Cyclotron laboratory
[77].
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Calibration

5.1 SiRi array
The events recorded during the experiment need to be calibrated. The SiRi
array is calibrated by fitting experimentally measured elastic peaks to calcu-
lated elastic peaks. The SiRi kinematic calculator [81] is used to compute the
energies deposited by the charged particles. The calculator uses the Bethe-
Bloch formula [82], which includes energy loss calculations that the charged
particles may experience in the aluminum foil and target. Figure 5.1 shows
the calculated energy deposition matrix that expected for the first strip of a
detector with a scattering angle of θlab = 126◦ and a deuteron beam energy
of 12.5 MeV [81]. The vertical axis corresponds to the energy deposited in
the thin front ∆E detector and the horizontal axis corresponds to the residual
energy deposited in the back E detector. A similar plot has been generated
for every strip.

Each line in figure 5.1 corresponds to energy deposited by the same type of
charged particles. From top to bottom the corresponding charged particles
are: 4He, tritons, deuterons and protons. Each charged particle has a different
mass and amount of protons, which makes the energy deposited while traveling
though the ∆E and E detectors different.

By measuring two or more experimental elastic peaks that are several MeV
apart from each other along the E and ∆E axis and fitting these values to the
corresponding computed elastic peak we can calibrate the experimental data.
For calibration purposes a 3.5 mg

cm2 thick 28Si target was also exposed to the
deuteron beam. The 181Ta(d,d’)181Ta elastic peak and 28Si(d,p)29Si ground
state peak was used to calibrate the Ta data and the 28Si(d,d’)28Si elastic
peaks, the 28Si(d,d’)28Si excited state and the 28Si(d,p)29Si ground state peak
was used for the Si data calibration. This was repeated for every strip of the
SiRi array. The 181Ta(d,d’)181Ta and 28Si(d,p)29Si calibrated ∆E-E matrices
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Figure 5.1: The calculated ∆E−E plot obtained with the calculator SiRi.

are shown in figure 5.2 and figure 5.3 respectively.

Figure 5.2: Experimentally measured ∆E−E matrix of 181Ta(d,x)181Ta without a
time gate.

In Figure 5.2 some suspected random and pile up events (most notably the
diagonal and straight lines) can be seen. The random events will be removed
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Figure 5.3: The E-∆E matrix of 28Si(d,x)29Si that was used to calibrate the SiRi
telescopes.

through the use of placing a time gate on the prompt peak, this is discussed
in section 5.3. The four different hyperbolas corresponding to the different
types of charged particles that were clearly visible in the calculated figure 5.1,
namely p, d, t, 4He, are visible in the experimental figure 5.2.

5.2 CACTUS array
After calibration of the silicon detectors, the excitation energy spectrum can
be obtained. The measured energies of the protons where converted into ex-
citation energy using kinematics and Q-values of the reactions. To keep only
the 182Ta events a banana gate is set on the 181Ta(d,p)182Ta reaction. Putting
a gate on the 181Ta(d,d’)181Ta reaction will only keep the 181Ta events. The
effect of the banana gate on the 181Ta(d,p)182Ta reaction is shown in figure
5.4. Figure 5.5 shows the excitation energy spectrum of 182Ta and figure 5.6
shows the excitation energy spectrum of 29Si.

By putting a gate on individual particle peaks in the excitation energy spec-
trum the γ-rays can be calibrated. The excitation energy spectrum of 29Si was
used for the γ-ray calibration. The states that were gated on is shown in table
5.1, for example by gating on the 3067 keV state the 1273 and 1793 keV γ-rays
decaying from this state can be seen in the γ-ray spectrum.
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Figure 5.4: Gating on the 181Ta(d,p)182Ta reaction.

Figure 5.5: The excitation energy spectrum of 182Ta.

The experimental values of the γ-ray photo peaks are fitted to the evaluated
database values obtained from the national nuclear data center (NNDC) [83]
to calibrate the γ-ray energies. In Figure 5.7 the calibrated γ-ray spectrum of
29Si is shown. The centroids agree with NNDC within a standard deviation of
≈ 20 keV.
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Figure 5.6: The calibrated excitation energy spectrum of 29Si.

Table 5.1: The states that were gated on and the corresponding γ-ray photo peaks
that was used to calibrate the CACTUS detector array.

State (keV) γ-ray photo peaks (keV)
1273 1273
2028 2028
3067 1273, 1793
3623 1595, 2028
4079 1273, 2806

4895, 4933 1273, 3621, 4933

5.3 Time calibration
For the time calibration, the centroid of the prompt peaks are arbitrarily set to
channel 200. This defines the time for the NaI(Tl) detectors. The calibrated
time-energy matrix is shown in figure 5.8 with time on the vertical axis and
energy deposited into the NaI(Tl) detectors on the horizontal axis. At low
energies a "tail" can be seen in the prompt time peak. This "tail" is known
as the walk effect.

The low energy γ-rays have a shorter rise time compared to higher energy
γ-rays. Since the leading edge discrimination (LED) threshold is constant,
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Figure 5.7: The calibrated γ-ray spectrum of 29Si showing the 1273, 1595, 1793,
2028 and 4933 keV γ-rays transitions.

the lower energy γ-rays are recorded later than the high energy γ-rays. This
produces a tail in the time distribution. It was corrected by using a fitting
function of the form shown in equation 5.1.

t(x) = a+
b

x+ c
+ dx+ 200 (5.1)

where t(x) are channels corresponding to corrected time and x are channels
corresponding to γ-ray energy. The fitting parameters a, b, c and d are then
used to align the time peak at channel 200. After correcting for the walk ef-
fect, the time-energy matrix has a straight prompt peak corresponding to the
correlated events, this is shown in figure 5.9. The structures in the matrix are
due to the other beam particle pulses due to the cyclotron frequency. These
lines can be seen as oscillations in the projection of figure 5.10 where the time
between events are shown.

Figure 5.10 shows the projection of the time between events following walk
correction. The peak around channel 200 shows the correlated events. A cor-
related time gate is placed at channels 185− 215 to exclude most uncorrelated
events. The random and background events that fall inside channels 185−215
still need to be removed. To do this, a background gate is placed at chan-
nels 270 − 300. The events in the background gate is subtracted from the
events in the correlated time gate, effectively removing the background from
the correlated events. This means that only the correlated events that fall in
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Figure 5.8: Time-energy matrix without walk correction. Time is on the y-axis
and energy deposited into the NaI(Tl) detectors is on the x-axis.

the correlated time gate will be analyzed. Using these gates to remove the
random and background events of Figure 5.2 a new E-∆E matrix is created,
this matrix is shown in Figure 5.11.

Comparing figure 5.2 with figure 5.11, most of the random events were elim-
inated. The remaining events could be due to particles going through the
∆E detector and undergoing nuclear reactions in the E detector, therefore the
residual energy is missing the Q-value and γ-rays emanating thereof. This
concludes the calibration procedures, the NLD and PSF can now be extracted
from the calibrated data.
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Figure 5.9: Time-energy matrix with walk correction. Time is on the y-axis and
energy deposited into the NaI(Tl) detectors is on the x-axis.

Figure 5.10: Time between γ-particle events after walk correction.
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Figure 5.11: This is the E-∆E graph with the time gate to remove most uncorre-
lated events.
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Chapter 6

Results

6.1 Unfolding and Extracting
Now that all the experimental data have been calibrated and all the gates are
set, unfolding and extraction can begin. The extraction procedure for 182Ta
and 181Ta is the same, the only difference being the banana gate. For 182Ta
the gate is set on the protons from the (d, p) reaction and for 181Ta the gate is
set on the deuterons of the (d, d′) reaction. The 181Ta data does not reach the
neutron separation energy of 7.5 MeV due to reaction kinematics, adding extra
uncertainties to the extraction of the NLD and PSF. The excitation energy,
γ energy matrix for 182Ta and 181Ta is shown in figures 6.1 and 6.2 respectively.

Two triangular shapes can be seen in figure 6.1. There cannot be a γ-ray with
a higher energy than the excitation energy so there is a 45◦ line originating
at the ground states. The 45◦ line is an indication of an accurate calibra-
tion. At an excitation energy of 6.06 MeV the γ-ray energy drops suddenly for
182Ta. This is the neutron separation energy. The neutron separation energy
is the energy where the nucleus has enough energy to emit either a γ-ray or a
neutron, depending on the spin of the nuclear state and angular momentum
barrier effects. When a neutron is emitted the nucleus is no longer 182Ta, but
rather 181Ta. Events below 6.06 MeV excitation energy belong to 182Ta and
events above 6.06 MeV excitation energy belong predominantly to 181Ta.

Two blobs are also observed around the excitation energy of 8 to 9 MeV in
figure 6.1. These are due to the 12C contaminant in the target which under-
goes the reaction 12C(d,p)13C. The resultant 13C emits γ-rays of energies 3854
keV and 3089 keV which can be observed as two blobs. At high γ energies
the statistics is generally lower because the detector efficiency is lower. At low
excitation energies there are gaps in the energy spectrum. This is due to the
excitation energy gap between 0.771-1.308 MeV [84].
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Figure 6.1: The excitation energy versus γ-ray energy matrix of 182Ta before the
Oslo method implementation.

Figure 6.2: The excitation energy versus γ-energy matrix of 181Ta before the Oslo
method implementation.
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Figure 6.3: The unfolded matrix of 182Ta.

From figure 6.1 the unfolded matrix is calculated using the unfolding method
explained in section 3.1.2. During the unfolding a 45◦ cut is implemented to
discard random events with Eγ > Ex. Various background and escape events
are also removed and the unfolded matrix, for 182Ta is shown in figure 6.3.

From the unfolded matrix the first generation Ex vs Eγ matrix is extracted
using the first generation method explained in section 3.2. During this method
another cut is placed above Sn (Ex = 6.4 MeV for 182Ta), excluding the 13C
contaminants and all events from 181Ta. The first generation matrices are
shown in figure 6.4 for 182Ta and in figure 6.5 for 181Ta.

For the NLD and PSF extraction procedure upper and lower bounds in the
excitation energy and a lower bound for the γ-energy are set. The upper exci-
tation energy bound of the excitation energy is set at the Sn−energy resolution,
which is 5.9 MeV for 182Ta. For 181Ta the upper excitation energy bound is
set to 3.8 MeV due to low statistics. Below 2.5 MeV excitation energy some
discrete states can still be observed. The lower band is set at Ex = 2.5 MeV
for both 182Ta and 181Ta to ensure that only events from the quasi-continuum
region are used and that Brink’s hypothesis is valid. Due to the systematics
some over and under subtraction are observed as vertical lines at low γ ener-
gies. The lower bound for the γ-energy is set at 950 keV for 182Ta and 800 keV
for 181Ta.

The experimental events of 182Ta, P (Ex, Eγ), which are left after all the bounds
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Figure 6.4: The first generation matrix of 182Ta with background and random data
removed.

Figure 6.5: The first generation matrix of 181Ta with background and random data
removed.
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Figure 6.6: Experimental first generation matrix, P (Ex, Eγ), of 182Ta.

have been set are shown in figure 6.6. The corresponding theoretical events,
Pth(Ex, Eγ), are shown in figure 6.7. P (Ex, Eγ) and Pth(Ex, Eγ) are used in
the χ2 minimization given by equation 3.22.

In order to test if the extraction was accurate and also to evaluate the statisti-
cal and systematical errors made during the extraction, P (Ex, Eγ) is compared
to Pth(Ex, Eγ). Experimental γ energies are compared to theoretically calcu-
lated γ energies as shown in figure 6.8. The data points are the experimental
data and the line is the theoretical data. The theoretical data lie within the
error bars of the experimental data, making the extraction accurate.

6.2 Photon strength function and nuclear level
density

From Figure 6.4 the photon strength function f(Eγ) and nuclear level density
ρ(Ex) are extracted. The NLD normalization parameters, D0 and < Γγ(Sn) >
are averaged between references [66] and [85], see table 6.1 for values.

The nuclear level densities for 182Ta and 181Ta are shown in figures 6.9 and 6.10
respectively. The black squares are the experimental ρ(Ex), the solid black line
indicates the known levels obtained from [83], the empty square is calculated
from neutron resonance data and the dashed line is the interpolated nuclear
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Figure 6.7: Theoretical first generation matrix, Pth(Ex, Eγ), of 182Ta.

Table 6.1: The parameters, D0 and < Γγ(Sn) >, used in normalizing the NLD are
averaged between [66] and [85]. The parameters, σ and ρ(Sn), used in normalizing
the PSF are obtained from [15]. See text for details.

Nucleus D0 (eV) < Γγ(Sn) > (meV) σ ρ(Sn)
181Ta 1.11 ± 0.2 51 ± 3.2 4.88 ± 0.5 2.02× 106 ± 3.02× 105

182Ta 4.185 ± 0.3 59 ± 3.7 4.96 ± 0.5 1.46× 107 ± 3.5× 106

level density obtained from the constant temperature model. As explained
in chapter 2, at low energies normalization is done with known level densi-
ties and at high energies normalization is performed with neutron resonance
data. The arrows show the areas where the experimental NLD was normalized.

The NLD includes points with negative excitation energy, the reason for this is
to account for the Si detector resolution. At high energies the detector resolu-
tion and efficiency deteriorates so when the nucleus decays from a high energy
state to the ground state (Ex = 0), the emitted γ-ray appears to have Ex < 0,
because the ground state peak is so broad. This effect is artificial, the γ-ray
goes to Ex = 0. By taking these negative events into account some statistics is
recovered. The data points for the NLD of 182Ta and 181Ta are given in tables
A.1 and A.2 respectively.

At Ex = 24A−0.5 MeV [86] the pair breaking can be observed as a slight in-
crease in the NLD. Above the breaking point the temperature remains constant
since all available energy will be used to break nucleon cooper pairs, which can
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Figure 6.8: The systematical and statistical errors made during the extraction pro-
cedure of 182Ta. The points are the experimental data and the line is the theoretical
calculations.
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Figure 6.9: The nuclear level density of 182Ta.

Figure 6.10: The nuclear level density of 181Ta.
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Figure 6.11: The nuclear level density plotted with the gamma transmission coef-
ficient of 182Ta to compare their slopes.

be seen as a first order phase transition. For 182Ta the breaking point is at
1.778 MeV and for 181Ta it is at 1.783 MeV. This is below 2 MeV (not in the
quasi-continuum), which is why a constant temperature model can be used
above it.

The slope of ρ(Ex) and the gamma transmission coefficient should be the
same. In figure 6.11 the ρ(Ex) and gamma transmission coefficient are plotted
together, note that the NLD has been multiplied by a constant factor to com-
pare the two figures slopes. It can be seen that the slope of the nuclear level
density and gamma transmission coefficient are very similar, suggesting that
the slope α is correct.

The normalization parameters for the PSF, σ and ρ(Sn), are calculated from
the back-shifted Fermi gas model with parameters taken from [15], see Table
6.1 for values. The PSF for 182Ta with excitation energies between 2.5 MeV
and 6 MeV is shown in figure 6.12 and for 181Ta with excitation energies be-
tween 2.5 MeV and 4 MeV is shown in figure 6.13. The data points for the
PSF of 182Ta and 181Ta are given in tables A.3 and A.4 respectively.

The strength functions look quite similar with no obvious resonances observed.
The bumps at low energies, in particular for 181Ta, are most likely due to
statistics and not resonances. For 182Ta the error bars are relatively small
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Figure 6.12: The photon strength function of 182Ta.

Figure 6.13: The photon strength function of 181Ta.
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Figure 6.14: Different energy cuts for the photon strength function of 182Ta.

making it unlikely that well localized resonances are present. For 181Ta the
error bars are larger, but still small enough to be sensitive to well localized
resonances. For the Brink hypothesis to be valid strength functions from dif-
ferent excitation regions of the same nucleus should be similar. In figure 6.14
the strength function of 182Ta for excitation regions 2500-3600 keV, 3600-4700
keV and 4700-5800 keV are plotted. At low γ-ray energy (Eγ < 2 MeV) some
variations are observed but these are most likely due to low energy statistical
effects. It can be concluded that the strength functions are similar enough for
different excitation energy regions validating Brink’s hypothesis.

Figure 6.15 shows the strength functions for 181Ta and 182Ta plotted together.
They have the same slope and similar strength which is consistent with obser-
vations in other systems also. In figure 6.16 the PSF for 181Ta from two reac-
tions, 181Ta(3He,3He’)181Ta [87] and 181Ta(d,d’)181Ta, from the present work,
are compared. The two PSF’s are similar and overlap, not only providing info
on the reaction independence of the PSF but also giving confidence to the
present analysis.
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Figure 6.15: The photon strength function of 181Ta and 182Ta.

Figure 6.16: The photon strength function of 181Ta extracted using two different
reactions, 181Ta(3He,3He’)181Ta [87] and 181Ta(d,d’)181Ta.
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Figure 6.17: 182Ta resonance fits, see text for details.

6.3 Resonance fitting
Possible resonances of 182Ta are fitted with Lorentzian functions in figure 6.17.
The green dotted line is a resonance added so that the total fit matches the ex-
perimental data, this resonance is fitted with a standard Lorentzian function.
The blue dotted line is due to contributions from the overlapping pygmy and
spin-flip resonances, this resonance is also fitted with a standard Lorentzian
function. The black and purple dotted lines are the GEDR, which is split due
to deformation, is fitted with an enhanced generalized Lorentzian function.
The black squares in figure 6.17 are the current experimental results. The
black triangles, blue and red squares are cross sections converted to PSF from
[88], [89] and [90] using equation 3.35. The red line is the sum of all Lorentzian
funtions that form a total fit to the data.

The information on the Lorentzian parameters that were used to fit the reso-
nance is given in table 6.2. The GEDR parameters are modified from [66] and
the other resonances’ parameters σ and Γ0, for which no theoretical data is
available, is adjusted until the total fit match the experimental data. Although
the neutron separation energy is at 6.06 MeV, the resonance at 7.05 MeV was
identified in the photo absorption cross section for 181Ta where an increase in
the cross section at 7.05 MeV was found [91] as shown in figure 6.18. Note
that reference [91] only gives information on the centroid (parameter E0) of
this resonance.
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Table 6.2: The resonance parameters used in the Lorentzian functions of 182Ta for
figure 6.17. The GEDR parameters are modified from [66], see text for more details.

Resonances E0 (MeV) σ (mb) Γ0 (MeV)
Res1 4.6 1.6 1.8
Res2 7.05 42 1.33

GEDR1 12.46 345 2.62
GEDR2 15.9 450 3.4

Figure 6.18: Cross section for 181Ta taken from reference [91].

6.4 Talys Results
Using the Talys code [1] the NLD and PSF are used to calculate (n,γ) cross
sections. Since the Oslo method only considers statistical and systematical un-
certainties any uncertainties due to the parameters, D0 and < Γ(Sn) >, need
to be estimated. To take all possible errors into account an upper and lower
error bands for the PSF are calculated with the uncertainties from references
[66] and [85]. The upper error band is defined by:

D0 = D0 − δD0

< Γ(Sn) >=< Γ(Sn) > + < δΓ(Sn) >

.
The lower error band is defined by:
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Table 6.3: Table on the error band parameters based on values from reference [66]
and [85]

upper band D0 − δD0 (eV) Γ + δΓ (meV)
181Ta 0.9 54.2
182Ta 3.9 62.7

lower band D0 + δD0 Γ− δΓ
181Ta 1.3 47.8
182Ta 4.5 55.3

D0 = D0 + δD0

< Γ(Sn) >=< Γ(Sn) > − < δΓ(Sn) >

.
The calculated values are shown in table 6.3. The upper and lower error bands
that were used to calculate the cross sections for 182Ta and 181Ta are shown in
figures 6.19 and 6.20.

The PSF error bands are given as input for the Talys calculations. Talys uses
a constant temperature model to calculate the NLD, however it is in good
agreement with the experimental NLD from the present work, see figures 6.21
and 6.22. In figure 6.23 the error bands are plotted along with the Talys cal-
culated error bands for 182Ta. The Talys calculations fits in well for 182Ta,
but for 181Ta an extra 20% uncertainty was added due to low statistics, this is
shown in figure 6.24.

The Lorentz parameters used for the upper and lower error band resonances are
shown in tables A.5 and A.6 for 182Ta and 181Ta respectively. The calculated
cross sections for 182Ta are shown in figure 6.25 and for 181Ta they are shown
in figure 6.26. The calculated cross section bands are also compared to (n,γ)
experimental data from references [92, 93, 94]. There is a good agreement
between the calculated cross sections using the PSF and NLD compared to
cross sections measured from other experimental work, therefore the NLD and
PSF can be used to calculate accurate (n,γ) cross sections.
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Figure 6.19: 182Ta photon strength function with the upper and lower error bands.
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Figure 6.20: 181Ta photon strength function with the upper and lower error bands.
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Figure 6.21: 182Ta NLD compared to the constant temperature (CT) model used
in Talys calculations.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. RESULTS 73

Figure 6.22: 181Ta NLD compared to the constant temperature (CT) model used
in Talys calculations.

Figure 6.23: 182Ta resonance and Talys calculated PSF band.
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Figure 6.24: 181Ta resonance and Talys calculated PSF band.

Figure 6.25: 182Ta cross sections. The green band represents the cross sections
calculated from the NLD and PSF. The open squares are experimentally measured
cross sections from references [92, 93].
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Figure 6.26: 181Ta cross sections. The green band represents the cross sections
calculated from the NLD and PSF. The open squares are experimentally measured
cross sections from reference [94].
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Discussion

The scissors resonance was first observed in an inelastic electron scattering
experiment of 156Gd [5]. The scissors resonance has also been observed in var-
ious other well deformed nuclei using nuclear resonance fluorescence (NRF)
experiments [6] and through the Oslo method (e.g. nuclei in the actinide [7]
and rare earth regions [95]). Generally it is accepted that the total scissors
resonance strength is proportional to the square of the deformation parameter:∑
B(M1) ≈ δ2 [96].

The investigation for the scissors resonance was extended to less deformed
nuclei, for example γ-soft, vibrational and transitional nuclei. The scissors
resonance was found to be reduced by 25% in γ-soft nuclei compared to other
good rotors [36]. Initially, scissors resonance experiments dealt only with even-
even nuclei, since it was thought that in odd-even nuclei the scissors resonance
strength would be more fragmented. The fragmentation is due the unpaired
particle inducing a large fragmentation in the M1 strength distribution [8].
However in figure 7.1 contradictory M1 strength distributions are shown. Note
in figure 7.1 the quantity gΓred0 represents the reduced excitation probabilities
B(E1) ↑ or B(M1) ↑ used to compare dipole strengths. It is the product of
the reduced transition probability Γred0 and the spin factor g.

Some odd-even nuclei, 155Gd, 157Gd, 165Ho, 167Er and 169Tm are characterized
by large fragmented M1 strength distributions which may be attributed to the
unpaired nucleon. It should be noted that the even-even Gd isotopes have a
localized M1 strength as expected. Other odd-even nuclei, 161Dy, 159Tb and
163Dy, however, also show localized M1 strength distributions. Comparing the
even-odd summed M1 strengths to even-even M1 strengths in the same mass
region, it was concluded that the summed strength is reduced (see bottom part
of figure 7.1) [8].

Recently, data from Oslo have shown that the scissors resonance is strongly
observable in the actinide region. Unlike in the rare-earth region, the scissors
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Figure 7.1: Top: Comparing the M1 strength distributions between various even-
odd nuclei. Bottom: The dashed line shows the typical average B(M1) ↑ value for
even-mass. The points are the typical average B(M1) ↑ value for odd-mass nuclei
[8].

resonance is not fragmented for odd-odd [34], even-odd [7] or even-even [7]
nuclei in the actinide region, but are consistently localized, although some ex-
hibit an unexplained double-humped structure, see figure 7.2 [7].

In reference [97] the unfolded capture γ-ray spectra of various odd-even nuclei
are compared, this is shown in figure 7.3. A bump in this spectrum, presum-
ably the scissors resonance, can be seen between energies 1-3 MeV for Pr, Tb,
Ho and Lu, but no resonances can be seen in Ta or Au in this energy region.
This has recently been confirmed for 197,198Au [67], where no clear scissors res-
onance is observed. The PSF of 197,198Au is shown in figure 7.4.

In reference [41] the low-lying excitation of 181Ta was investigated using NRF
experiments. It was found that the scissors resonance was rather weak and
fragmented. The total strength in the energy range Ex = 1.8−4 MeV of 181Ta
is reduced by a factor 3.5 compared to the scissors resonance strength of 180Hf.
The M1 strength distribution of 180Hf is surprisingly also fragmented for this
even-even nucleus. The low-lying excitations of 181Ta and 180Hf are shown in
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Figure 7.2: The scissors resonance for 231Th, 232Th, 232Th, 232Pa and 233Pa [7].
In all actinide nuclei the scissors resonance exhibits an unexpected double humped
structure that is yet to be understood.

figure 7.5.

In reference [9] it is concluded that fragmentation of the scissors resonance is
not yet understood. Only 33-50% M1 strength for the odd-mass nuclei could
be detected in the energy range 2.5-3.7 MeV in some experiments, due to large
fragmentation. Figure 7.6 shows ground state width decays for 163Dy from
two experiments. The sensitivity of the latest experiment was greatly im-
proved and a large number of previously undetectable transitions were found.
The M1 strength of the latest experiment compares better to close lying even-
mass M1 strength and accounts for the lost M1 strength in odd-mass nuclei.
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Figure 7.3: The unfolded capture γ-ray spectra various odd-even nuclei: Pr, Tb,
Ho, Lu, Ta and Au are compared. Scissor resonances can be seen as small bumps in
all nuclei except Ta and Au [97].

From axially symmetric HFB calculations using the Cogny effective nucleon-
nucleon interaction the axial deformation parameter β2 is calculated to be
≈ 0.27 for 182Ta and ≈ 0.28 for 181Ta [10]. The HFB calculations of the de-
formation parameter for 182Ta is shown in figure 7.7. This is consistent with
the measurement of a positive quadrupole deformation of Q = +2.6(3) eb for
182Ta [83]. According to equation 2.18 this gives a δ parameter of ≈ 0.255 for
182Ta and ≈ 0.265 for 181Ta.

According to equation 2.28 the spin-flip resonance should be around Ex = 7.2
MeV for both 181Ta and 182Ta, the energy region overlapping with the pygmy
resonance. According to equation 2.17 the scissors resonance centroid should
be at Ex = 2.98 MeV for 182Ta and at Ex = 3.1 MeV for 181Ta. The results of
this work (figure 6.12) is quite similar to the results of [67], where no signif-
icant scissors resonance can be observed. Tantalum-182 is in the transitional
region, from prolate to oblate shapes, see figure 1.3. Tantalum-182 also has
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Figure 7.4: The PSF of 197Au and 198Au are shown with the 197Au error band [67].

2 odd particles giving the M1 strength the possibility to couple to both an
unpaired proton and neutron spreading the strength apart. This combination
may induce a very large fragmentation making the resonance un-observable
with the current experimental detection threshold.

Comparing the PSF of 181Ta (figure 6.13) to the M1 strength distribution of
[41] a weak scissors resonance may be observable at energies Ex = 2.5 − 3.5
MeV. With only 1 odd particle the fragmentation may not be as large as in
182Ta, unfortunately the analyzed data set has relatively large uncertainties
and does not extend above Ex = 4 MeV. Another 181Ta(d,d’)181Ta data set
is available with a beam energy of 15 MeV instead of the current 12.5 MeV.
This will increase the excitation energy from ≈ 4 MeV to ≈ 6.5 MeV. This
data set also has ≈ 3 times more data, reducing the uncertainties. Once this
data set has been analyzed, which is beyond the scope of this thesis, a better
understanding of a possible scissors resonance in 181Ta will be obtained.
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Figure 7.5: Dipole strength comparison between odd-even 181Ta and even-even
180Hf [41].

Figure 7.6: M1 strength distributions from two experiments of 163Dy from [98] and
[99]. The transitions of both experiments agree, however the second experiment,
with better sensitivity, shows previously undetected weak transitions.
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Figure 7.7: HFB calculations of 182Ta from the online database of [10].
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Conclusion

From the 181Ta(d,p)182Ta and 181Ta(d,d’)181Ta reactions the PSF and NLD of
182Ta and 181Ta were extracted using the Oslo method. The PSF and NLD
were also used to calculate 180Ta(n,γ) and 181Ta(n,γ) cross sections using the
Talys reaction code.

No identifiable scissors resonance is observed for 182Ta, in fact, overall the PSF
appears quite featureless. A weak scissors resonance may be present for 181Ta
at energies Ex = 2.5− 3.5 MeV. This resonance weakness could be due to the
fact that Tantalum is in the transitional region, despite being well deformed,
from prolate to oblate shapes. The unpaired nucleons, two for 182Ta and one
for 181Ta, give the M1 strength the possibility to couple to one or two unpaired
nucleons, respectively spreading the strength further apart. Having unpaired
nucleons as well as being in a transitional region may induce a very large frag-
mentation making the resonance un-observable with the current experimental
detection threshold of the Oslo method.

The disappearance of the scissors resonance in Ta isotopes requires the inves-
tigation of other nuclei in this region, specifically nuclei that are γ-soft and
odd-odd in nature. Work has to be done to identify the extent and persistence
of the scissors resonance in order to understand the evolution of this resonance
which can have a significant impact on astrophysical reaction rates. The Oslo
group will soon be performing experiments on isotopes of W and Os, nuclei
in the same mass region as Ta, that will further our knowledge of the scissors
resonance and its evolution.
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Table A.1: The data points of the NLD of 182Ta.

Ex (MeV) NLD (MeV−1) δNLD (MeV−1)
-0.196 1.908 0.613
-0.068 20.190 1.139
0.060 39.650 2.035
0.188 52.215 2.461
0.316 63.032 2.450
0.444 75.278 2.970
0.572 95.545 3.628
0.700 117.842 3.860
0.828 143.209 4.405
0.956 179.177 5.266
1.084 231.394 7.159
1.212 314.064 8.309
1.340 417.082 10.436
1.468 565.510 10.441
1.596 756.483 14.565
1.724 987.341 19.609
1.852 1303.8 21.936
1.980 1635.7 34.766
2.108 2048.6 37.767
2.236 2517.3 54.491
2.364 3089.5 74.359
2.492 3874.4 117.99
2.620 4944.1 140.99
2.748 6250.3 189.96
2.876 7710.6 283.01
3.004 9630.2 372.71
3.132 11783.3 462.78
3.260 14757 674.23
3.388 18101 939.55
3.516 22210 1079
3.644 27850 1535.1
3.772 33370 1884.3
3.900 41370 2532.9
4.028 50480 3253.9
4.156 60450 4262.5
4.284 74960 6291.7
4.412 85140 7619.2
4.540 108400 11141
4.668 151400 15618
4.796 192000 22152
4.924 243500 46162
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Table A.2: The data points of the NLD of 181Ta.

Ex (MeV) NLD (MeV−1) δNLD (MeV−1)
-0.235 0.431 0.244
-0.118 3.121 0.450
-0.001 14.569 0.578
0.116 19.059 0.855
0.233 20.511 0.908
0.350 21.724 1.185
0.467 22.375 1.571
0.584 22.779 1.735
0.701 22.267 1.675
0.818 22.232 2.389
0.935 30.358 2.678
1.052 52.801 4.001
1.169 70.943 5.571
1.286 112.21 6.640
1.403 151.02 9.987
1.520 187.14 10.933
1.637 231.08 15.132
1.754 291.12 19.938
1.871 396.00 30.784
1.988 578.92 44.682
2.105 717.43 69.412
2.222 659.01 83.956
2.339 768.81 119.69
2.456 916.40 157.38
2.573 1205.1 283.31
2.690 1390.0 402.76
2.807 1920.5 620.99
2.924 2631.5 1005.3
3.041 2301.3 1547.9
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Table A.3: The data points of the PSF of 182Ta. Upper and lower bound represents
the difference between the PSF and upper and lower bound.

Eγ (MeV) PSF δPSF upper bound lower bound
(10−8 MeV−3) (10−8 MeV−3) (10−8 MeV−3) (10−8 MeV−3)

0.956 1.127 0.036 0.0933 -0.089
1.084 1.453 0.036 0.112 -0.107
1.212 1.511 0.033 0.116 -0.111
1.340 1.503 0.035 0.122 -0.116
1.468 1.274 0.039 0.111 -0.105
1.596 1.722 0.048 0.157 -0.147
1.724 1.844 0.051 0.172 -0.161
1.852 2.016 0.057 0.194 -0.181
1.980 2.066 0.057 0.203 -0.189
2.108 2.065 0.070 0.222 -0.205
2.236 2.238 0.076 0.247 -0.228
2.364 2.399 0.079 0.268 -0.246
2.492 2.566 0.098 0.308 -0.282
2.620 2.805 0.122 0.36 -0.327
2.748 3.040 0.130 0.396 -0.359
2.876 3.256 0.152 0.447 -0.403
3.004 3.404 0.168 0.487 -0.437
3.132 3.604 0.197 0.546 -0.487
3.260 3.899 0.207 0.594 -0.529
3.388 4.225 0.244 0.677 -0.6
3.516 4.664 0.285 0.777 -0.686
3.644 5.120 0.355 0.915 - 0.802
3.772 5.552 0.381 1 -0.877
3.900 6.192 0.431 1.14 -0.996
4.028 6.768 0.492 1.29 -1.12
4.156 7.307 0.538 1.42 -1.23
4.284 7.922 0.665 1.65 -1.42
4.412 8.635 0.702 1.8 -1.55
4.520 9.050 0.800 1.99 -1.69
4.668 9.519 0.900 2.18 -1.85
4.796 9.806 0.921 2.27 -1.92
4.924 9.998 0.875 2.7 -1.92
5.052 11.149 1.101 2.71 -1.92
5.180 11.723 1.156 2.88 -2.41
5.308 12.350 1.451 3.33 -2.77
5.436 13.381 1.577 3.66 -3.027
5.564 12.814 1.501 3.53 -2.91
5.692 15.285 1.918 4.4 -3.61
5.820 18.232 2.614 5.68 -4.63
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Table A.4: The data points of the PSF of 181Ta. Upper and lower bound represents
the difference between the PSF and upper and lower bound.

Eγ (MeV) PSF δPSF upper bound lower bound
(10−8 MeV−3) (10−8 MeV−3) (10−8 MeV−3) (10−8 MeV−3)

0.935 2.228 0.254 -0.564 0.539
1.052 2.294 0.198 -0.504 0.454
1.169 1.728 0.167 -0.377 0.339
1.286 1.252 0.165 -0.298 0.276
1.403 1.057 0.115 -0.219 0.192
1.520 1.895 0.149 -0.322 0.26
1.637 2.556 0.161 -0.369 0.279
1.754 2.689 0.176 -0.363 0.266
1.871 2.024 0.151 -0.268 0.195
1.988 2.168 0.166 -0.265 0.187
2.105 2.444 0.159 -0.243 0.153
2.222 2.650 0.199 -0.258 0.162
2.339 2.866 0.213 -0.179 0.277
2.456 3.221 0.228 0.236 -0.322
2.573 3.147 0.243 0.296 -0.375
2.690 2.962 0.248 0.342 -0.4
2.807 3.321 0.265 0.42 -0.468
2.924 3.787 0.324 0.559 -0.589
3.041 4.025 0.353 0.665 -0.672
3.158 4.575 0.401 0.828 -0.806
3.275 3.886 0.456 0.892 -0.822
3.392 4.227 0.526 1.072 -0.958
3.509 4.600 0.531 1.198 -1.045
3.626 5.449 0.693 1.586 -1.34
3.743 6.021 0.949 2.07 -1.689
3.860 6.874 1.427 2.89 -2.27
3.977 8.163 2.442 4.479 -3.382
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Table A.5: The resonance parameters used in the Lorentzian functions for 182Ta
for the Talys cross section calculations. The GEDR parameters are modified from
[66] and σ is modified from [15].

Upper error band E0(MeV) σ(mb) Γ0(MeV)
Res1 4.6 1.9 1.8
Res2 6.98 46 1.33

GEDR1 12.66 345 2.62
GEDR2 15.65 323 3.4

Lower error band E0(MeV) σ(mb) Γ0(MeV)
Res1 4.6 1.4 1.8
Res2 7.05 35 1.33

GEDR1 12.66 345 2.62
GEDR2 15.65 323 3.4

Table A.6: The resonance parameters used in the Lorentzian functions for 181Ta
for the Talys cross section calculations. The GEDR parameters are modified from
[66] and σ is modified from [15].

Upper error band E0(MeV) σ(mb) Γ0(MeV)
Res1 4.6 1.75 1.95
Res2 6.85 47.7 1.73

GEDR1 12.66 345 2.62
GEDR2 15.65 323 3.4

Lower error band E0(MeV) σ(mb) Γ0(MeV)
Res1 4.6 0.95 1.95
Res2 6.95 39.5 1.73

GEDR1 12.66 345 2.62
GEDR2 15.65 323 3.4
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