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ABSTRACT 

A wide variety of speciaIty chemicals are now available from technology based on the olefin 

metathesis reaction. This versatile reaction aIIows the conversion of simpIe, relatively 

inexpensive olefins into specialty, high-purity olefins which are useful intermediates in the 

fragrance, agricuIturaI, and many other specialty chemical industries. 

Literature has shown that low value (C5-C9) olefins produced from a Fischer-Tropsch reaction 

can be used as important feedstocks for the manufacture of high value, detergent range linear 

internal alkenes (C10-C18). These detergent range internal alkenes could then be 

subsequently functionalised during hydroformylation to asymmetric aldehydes, which can be 

used as intermediates for manufacturing Guebert-type surfactants. The DST-NRF Centre of 

Excellence in Catalysis (change) have investigated the efficacy of homogeneous catalysts 

towards upgrading low value, unique olefinic feedstocks from a Fischer-Tropsch product 

stream through the RSA Olefins programme. The homogeneous catalysts are reported to be 

highly selective and reactive but are not employed industrially because they are expensive 

and decompose as the high boiling products are distilled from the reaction medium. Hence, 

the RSA Olefins programme of the DST-NRF Centre of Excellence in Catalysis has been 

active in developing organic solvent nanofiltration (OSN) membrane technology to allow for 

efficient separation and subsequent recycling of the homogeneous catalysts. 

Using literature sources and industrial catalogues, an initial screening of catalyst systems was 

done to select candidate catalytic systems for the metathesis of low value 1-octene (C8) and 

the subsequent hydroformylation of 7-tetradecene (C14) to detergent range products. The 

criteria such as catalyst cost, selectivity (product distribution), turnover number (TON) together 

with economic potential (EP) values determined at five levels of design were used to develop 

candidate processes using the Douglas hierachichal method. The Hoveyda-Grubbs 2 (HGr-2) 

precatalyst and water-soluble Rh-TPPTS were selected for the metathesis of 1-octene and 
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hydroformylation of 7-tetradecene respectively. Two process scenarios A (liquid multiphase 

system) and B (OSN membrane) were developed and evaluated using a techno-economic 

analysis (TEA) model. The viewpoints of design and performance were developed by 

integrating the technical and economic information through Aspen PlusTM process simulation 

and sensitivity analysis of the key operating parameters. The goal was to detect promising 

process concepts as early as possible and to single out the crucial parameters such that 

experimental and modelling work can be focused on those alternatives that most likely will 

lead to an economic process.   

The discounting cash flow (DCF) method was used to evaluate the two process scenarios A 

(liquid multiphase system) and B (OSN membrane process) producing 10 000 tonnes per 

annum of 2-hexyl-nonanal at a purity of 99 wt. %. The feedstock to be used is low value 

1- octene a Fischer-Tropsch Synthol product stream. The performance criterion is to maximise 

the net present value (NPV) of the process. The NPV included revenues, total capital 

investment and depreciation costs was determined based on interest rate of 15 % and the 

lifetime of 15 years. Economic parameters such as internal rate of return (IRR %) and payback 

period (PBP) were calculated for each scenario. The results were then used to determine the 

configuration with the most favourable economic indicators. The two process scenarios 

studied proved to be profitable with IRR % ranging between 58 % and 83 % with scenario B 

having the highest NPV and IRR %. The NPV for scenario A and scenario B were $ 439 M 

and $ 563 M respectively at the end of project life of 15 years. The IRR % for process scenario 

A was 59 % compared to scenario B of 83 % for the same pay back period of 3 years. 

Sensitivity analysis were performed on the two process scenarios. The parameters 

investigated were: 2-hexyl-nonanal selling price; Rh-TPPTS catalyst cost; 1-octene feed cost; 

HGr-2 catalyst cost and tax rate %. Their impact on NPV and IRR % was evaluated. Curve 

diagrams were constructed to illustrate the effect of variation of different cost parameters on 

NPV and IRR %. The most effective input variables for the two process scenarios were 

2-hexyl-nonanal selling price, Rh-TPPTS and HGr-2 catalyst cost on both NPV and IRR. The 
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process scenario B which considers OSN membrane technique for catalyst recovery was the 

most profitable configuration and the NPV was 22 % better than the liquid multi phase system. 

Keywords: Low value olefins, metathesis, hydroformylation, functionalized hydrocarbons, 

OSN membrane, techno-economic evaluation, DCF, NPV, IRR %. 
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OPSOMMING 

Proses ontwikkeling vir die opgradering van lae waarde alpha-C8 olefiene vanaf die Fischer-Tropsch 

proses na 2-heksiel nonaal. 

 

ŉ Groot verskeidenheid gespesialiseerde chemikalieë is hedendaags beskikbaar te danke aan 

tegnologie wat gebaseer is op die olefiene-metathesis reaksie. Hierdie veelsydige reaksie laat 

die omskakeling van eenvoudige en relatief goedkoop olefiene toe na meer gespesialiseerde, 

suiwer olefiene. Hierdie meer gespesialiseerde olefiene, is bruikbare oorbrugging chemikalieë 

vir die parfuum, landbou en verskeie ander chemiese industrieë. 

Literatuur wys daarop dat lae-waarde (C5-C9) olefiene, wat geproduseer word vanaf die 

Fisher-Trospch reaksie, gebruik kan word as belangrike roumateriale vir die vervaardiging van 

waardevolle, lineêre interne skoonmaakmiddel-reeks alkene (C10-C18). Hierdie reeks 

internerne skoonmaakmiddel alkene, kan gevolglik gefunctionaliseer word tydens 

hidroformilasie tot asimmetriese aldehiede, wat gebruik kan word as intermediêre middels vir 

die vervaardiging van Geubert-tipe benatters. Die doeltreffendheid van homogene katalisators 

om lae waarde, unieke olefiene voerstowwe van die Fischer-Tropsch synthol produkstroom 

op te gradeer, is ondersoek deur die olefiene program DST-NRF Centre of Excellence in 

Catalysis. Dit word gerapporteer dat die homogene katalisators hoogs selektief asook reaktief 

is, maar dat dit nie industrieel in werking gestel word nie, omdat dit baie duur is en ontbind 

tydens die distillasie proses, wanneer die produkte gedistilleer word vanaf die reaksie medium. 

Daarom is die olefiene program van die DST-NRF Centre of Excellence in Catalysis aktief 

besig om organiese oplosmiddel-nanofiltrasie (OSN) membraan tegnologie te ontwikkel, wat 

effektiewe skeiding en daaropvolgende herwinning van die homogene katalisator, toe te laat.  

ŉ Aanvanklike keuring van katalisators is gedoen, om kandidaat katalisator sisteme te 

identifiseer deur die gebruik van literatuur bronne en industriële katalogusse, vir die metatesis 

van lae waarde 1-okteen (C8) en daaropvolgende hidroformilasie van skoonmaakmiddels 
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7-tetradekeen (C14) produk alkene. Katalisator koste, selektiwiteit (produk distribusie), TON 

tesame met EP waardes (teen 5 ontwerpsvlakke) is gekies vir die kriteria om katalisator 

sisteme te skep. Hierdie sisteme is geskep deur die hiërargiese metode soos gestipuleer in 

Douglas (1988). HGr-2 voor-katalisator en water oplosbare Rh-TPPTS was gekies vir die 

metatesis van 1-okteen en daaropvolgende hidroformilasie van 7-tetradekeen, onderskeidelik. 

Twee proses scenario’s, scenario A (vloeistof multi-fase sisteem) en scenario B (OSN 

membraan) was ontwikkel en deur ŉ tegno-ekonomiese analise (TEA model) te ondersoek. 

Die ontwerp en prestasie oogpunte was ontwikkel deur die tegniese en ekonomiese inligting 

in die simulasie program (Aspen PlusTM) te integreer, asook deur die sensitiwiteitsanalises van 

die kern bedryf parameters. Die doel was om belowende proses konsepte so vroeg as 

moontlik te identifiseer, en dus ook die kern parameters, sodat eksperimentele en 

modelleringswerk só opgestel kon word om te lei na die mees belowende ekonomiese 

prosesse.  

Die verdiskontering kontantvloei (DCF) metode was gebruik om die twee proses scenario’s, A 

(vloeistof multifase sisteem) en B (OSN membraan proses), te evalueer teen 10 000 ton per 

jaar 2-heksiel-nonanal, met ŉ massa suiwerheid van 99% vanaf die lae waarde 1-okteen 

Fischer-Tropsch Synthol produkstroom. Die Ekonomiese parameters, soos die internerne 

opbrengskoers (IRR %), terugbetalingstydperk (PBP) en netto huidige waarde (NPV), was 

bereken vir elke scenario. Die resultate is gebruik om die opset met die mees gunstige 

ekonomiese aanwysers te bepaal. Dit is gevind dat die twee proses-scenario’s (A en B), 

ekonomies gunstig is, met IRR % waardes wat varieer tussen 58 en 83%. Scenario B het die 

hoogste NPV en IRR %. Die NPV vir scenario A en B, teen die einde van die 15 jaar projek 

lewe, was $ 439 M en $563 M onderskeidelik.  Die IRR % vir proses scenario A was 59 % in 

vergelyking met scenario B wat 83 % was vir dieselfde terugbetalingstydperk van 3 jaar. Die 

twee proses-scenario’s het ook sensitiwiteitsanalises ondergaan. Die parameters wat 

ondersoek is sluit die verkoopsprys van 2-heksiel-nonanal, Rh-TPPTS katalisator koste, 1-

okteen voerstof koste, HGr-2 katalisator koste en rente koerse % in. Die impak van die verkeie 
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parameters op die NPV en IRR % is ondersoek. Kurwe diagramme is opgestel om die invloed 

van die verskillende parameter kostes op die NPV en IRR % parameters aan te dui. Die mees 

doeltreffende inset veranderlikes vir die twee proses scenario’s was die verkoopsprys van 2-

heksiel-nonanal en die prys van die Rh-TPPTS en HGr-2 katalisators op die NPV en IRR % 

parameters. Proses scenario B, wat die OSN membraan tegniek insluit vir katalisator 

herwinning, is gevind om die mees ekonomiese winsgewende opset te wees. Die NPV was 

22 % beter as scenario A, wat die multifase sisteem gebruik het.  

Sleutelwoorde: Lae waarde olefiene, Metatesis, Hidroformilasie, gefunksionaliseerde 

koolwaterstowwe, OSN membraan, Tegno-ekonomiese evaluasie, DCF, NPV, IRR % 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



viii 

 

 

 

ACKNOWLEDGEMENTS 

 

To God be the honour, glory and praise! 

I would like to appreciate the following individuals and organisations for their assistance and 

support.  

First, Dr. Percy Van der Gryp and Professor Manie H.C Vosloo for their assistance and 

feedback in preparing this work.  

The DST-NRF Centre of Excellence in Catalysis (c*change) and Stellenbosch University for 

their financial support in this project. I would also like to thank the Catalysis Society of South 

Africa (CATSA) for allowing me a myriad of opportunities to present my research at various 

academic forums.  

Upon completion of this study, I would like to acknowledge several individuals without whom 

this work would not have been possible:  

 Dr Mandeguiri for his generosity and kindness assistance with Aspen PlusTM.  

 Dr Marco Haumann from Technical University of Berlin for his insights into 

hydroformylation 

 Dr David Muller from Technical University of Berlin for insights into catalyst recovery 

systems and product separation 

 Dr. Frans Marx from North-West University and Professor Eric Van Steen from 

University of Cape Town fruitful discussions.  

 My colleagues and friends at Stellenbosch University.  

Finally, to Precious my fiancé who changed my life and has been supportive ever since. 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



ix 

 

 

 

TABLE OF CONTENTS 

DECLARATION ..................................................................................................................... I 

ABSTRACT ........................................................................................................................... II 

OPSOMMING ....................................................................................................................... V 

ACKNOWLEDGEMENTS .................................................................................................. VIII 

TABLE OF CONTENTS ....................................................................................................... IX 

LIST OF ABBREVIATIONS ............................................................................................... XIV 

NOMENCLATURE ............................................................................................................ XVI 

CHAPTER 1: INTRODUCTION ............................................................................................. 1 

Overview ........................................................................................................................................... 1 

1.1 Background and motivation ........................................................................................................ 1 

1.2 Objectives ................................................................................................................................... 4 

1.3 Scope of Investigation and thesis outline ................................................................................... 4 

1.4 References .................................................................................................................................. 8 

CHAPTER 2: RESEARCH APPROACH ............................................................................. 11 

Overview ......................................................................................................................................... 11 

2.1 Introduction: Conceptual approach ........................................................................................... 12 

2.2 Literature review: Design approach .......................................................................................... 14 

2.3 This study: Design approach .................................................................................................... 19 

2.3.1 Motivation for the Douglas methodology ............................................................................. 20 

2.4 References ................................................................................................................................ 26 

CHAPTER 3: LITERATURE REVIEW ................................................................................. 30 

Overview ......................................................................................................................................... 30 

3.1 Introduction: Centre of excellence in catalysis ......................................................................... 31 

3.2 Metathesis ................................................................................................................................. 32 

3.2.1 Olefins Conversion Technology (OCTTM) ............................................................................ 33 

3.2.2 The Shell Higher Olefins Process (SHOP) .......................................................................... 34 

3.2.3 The Meta-4 process ............................................................................................................. 35 

3.2.4 The Polynorbornene process ............................................................................................... 35 

Stellenbosch University  https://scholar.sun.ac.za



x 

 

 

 

3.2.5 Polydicyclopentadiene ......................................................................................................... 36 

3.2.6 Metathesis of 1-octene......................................................................................................... 36 

3.2.6.1 Effect of temperature on product distribution .............................................................. 37 

3.2.6.2 Catalyst activity and extent of reaction ........................................................................ 37 

3.2.6.3 Catalyst stability and alkene isomerisation .................................................................. 38 

3.2.6.4 Selection of operating conditions ................................................................................. 39 

3.2.6.5 Selection of optimal precatalyst loading ...................................................................... 40 

3.2.6.6 Selection of catalyst ..................................................................................................... 40 

3.2.6.7 Effect of solvent ........................................................................................................... 41 

3.2.7 Summary of olefin metathesis ............................................................................................. 42 

3.3 Hydroformylation ....................................................................................................................... 43 

3.3.1 Rhodium based hydroformylation processes ...................................................................... 46 

3.3.1.1 The Union Carbide Corporation (UCC) process .......................................................... 48 

3.3.1.2 The Ruhrchemie/Rhone-Poulenc (RCH/RP) process ................................................. 49 

3.3.1.3 The BASF process ....................................................................................................... 51 

3.3.1.4 The Mitsubishi process ................................................................................................ 51 

3.3.1.5 The Technische Universitat Berlin (TUB) mini-plant ................................................... 52 

3.3.2 Hydroformylation of long chain alkenes ............................................................................... 53 

3.3.2.1 The hydroformylation reaction system ......................................................................... 54 

3.3.2.2 Reaction scheme ......................................................................................................... 56 

3.3.2.3 Selectivity and product distribution .............................................................................. 57 

3.3.2.4 Effect of temperature ................................................................................................... 58 

3.3.2.5 Effect of hydrogen partial pressure .............................................................................. 58 

3.3.2.6 Effect of CO partial pressure ....................................................................................... 58 

3.3.2.7 CO: H2 stoichiometric ratio .......................................................................................... 59 

3.3.2.8 Agitation on reaction rate ............................................................................................. 59 

3.3.2.9 Effect of catalyst concentration .................................................................................... 59 

3.3.2.10 Ligands for special applications ................................................................................. 60 

3.3.3 Product purification .............................................................................................................. 61 

3.4 Catalyst recovery from metathesis and hydroformylation systems .......................................... 63 

Stellenbosch University  https://scholar.sun.ac.za



xi 

 

 

 

3.4.1 Liquid multiphase systems (LMS) ........................................................................................ 65 

3.4.2 Thermomorphic multicomponent solvent systems (TMS) ................................................... 67 

3.4.3 Distillation ............................................................................................................................. 68 

3.4.4 Organic solvent nanofiltration (OSN) membrane process ................................................... 69 

3.4.4.1 Effect of OSN step on catalyst activity .............................................................................. 72 

3.4.4.2 Effect of precatalyst concentration on catalyst recovery .................................................. 73 

3.5 Previous studies on simulation of metathesis and hydroformylation systems .......................... 73 

3.5.1 Aspen PlusTM custom models on OSN separation in hydroformylation ............................... 74 

3.5.1.1 Cascade membrane systems ...................................................................................... 74 

3.6 Summary ................................................................................................................................... 75 

3.7 References ................................................................................................................................ 77 

CHAPTER 4: PROCESS DEVELOPMENT ......................................................................... 84 

Overview ......................................................................................................................................... 84 

4.1 Introduction ............................................................................................................................... 85 

4.2 The Dougas methodology ......................................................................................................... 86 

4.2.1 Input-output information (Level 1) ........................................................................................ 87 

4.2.2 Reactor and recycle structure (Level 2) ............................................................................... 89 

4.2.3 Separation system design (Level 3) .................................................................................... 90 

4.3 Overall process development ................................................................................................... 92 

4.3.1 Metathesis process section ................................................................................................. 92 

4.3.1.1 Input-output information (Level 1) ................................................................................ 92 

4.3.1.2 Reactor and recycle structure (Level 2) ....................................................................... 95 

4.3.1.3 Separation and recycle system design (Level 3) ....................................................... 101 

4.3.2 Hydroformylation process section ...................................................................................... 107 

4.3.2.1 Input-output information (Level 1) .............................................................................. 107 

4.3.2.2 Reactor and recycle structure for hydroformylation process (Level 2) ...................... 111 

4.3.2.3 Separation and recycle system for hydroformylation process design (Level 3) ........ 117 

4.4 Final process flow diagram ..................................................................................................... 125 

4.4.1 Process Scenario A: Liquid multiphase system (LMS) ...................................................... 126 

4.4.2 Process Scenario B: OSN membrane separation ............................................................. 126 

Stellenbosch University  https://scholar.sun.ac.za



xii 

 

 

 

4.5 Summary ................................................................................................................................. 129 

4.6 References .............................................................................................................................. 130 

CHAPTER 5: ASPEN PLUSTM SIMULATION .................................................................... 136 

Overview ....................................................................................................................................... 136 

5.1 Simulation software selection ................................................................................................. 137 

5.1.1 Selection of thermodynamic model .................................................................................... 140 

5.2 Final Aspen Plus™ process scenarios ................................................................................... 143 

5.3 Scenario A: Liquid multiphase system .................................................................................... 145 

5.3.1 Section AREA-A100: Metathesis section........................................................................... 146 

5.3.2 Section AREA-A200: Ethylene recovery section ............................................................... 149 

5.3.3 Section AREA-A 300: HGr-2 catalyst recovery section ..................................................... 151 

5.3.3.1 Developing membrane Aspen PlusTM Model ............................................................. 151 

5.3.4 Section AREA-A 400: 1-octene recovery section .............................................................. 158 

5.3.5 Section AREA-A500: 7-tetradecene hydroformylation section .......................................... 161 

5.3.6 Section AREA-A 600: Rh-TPPTS catalyst recovery section ............................................. 166 

5.3.7 Section AREA-A 700: 7-Tetradecene recovery section ..................................................... 170 

5.3.8 Section AREA-A 800: Product Purification Section ........................................................... 172 

5.4 Aspen PlusTM simulation scenario B (OSN membrane separation)........................................ 174 

5.4.1Section AREA- B100 –1-octene metathesis section .......................................................... 175 

5.4.2 Section AREA-B200 – Ethylene recovery section ............................................................. 175 

5.4.3 Section AREA-B300 –Catalyst recovery section ............................................................... 175 

5.4.4 Section AREA-B400-1-octene recovery column ................................................................ 175 

5.4.5 Section AREA-B500 Hydroformylation Section ................................................................. 176 

5.4.6 Section AREA-B600 Phase separator ............................................................................... 176 

5.4.7 Section AREA-B700 Rh-TPPTS catalyst recovery process .............................................. 179 

5.4.7.1 Development of Aspen PlusTM custom model of membrane unit .............................. 181 

5.4.8 Section AREA-B800 7-Tetradecene Recovery Section ............................................... 185 

5.4.9 Section AREA-B900 Product Purification Section ........................................................ 185 

5.5 Process heat recovery system design .................................................................................... 185 

5.6 References .............................................................................................................................. 189 

Stellenbosch University  https://scholar.sun.ac.za



xiii 

 

 

 

CHAPTER 6: ECONOMIC EVALUATION ......................................................................... 194 

Overview ....................................................................................................................................... 194 

6.1 Introduction ............................................................................................................................. 195 

6.2 Methodology and assumptions ............................................................................................... 196 

6.2.1 Assumptions ...................................................................................................................... 197 

6.3 Estimation of capital cost ........................................................................................................ 197 

6.4 Operating costs (OC) .............................................................................................................. 200 

6.4.1 Fixed operating costs (FOC) .............................................................................................. 201 

6.4.2 Variable operating expenses (VOC) .................................................................................. 201 

6.4.3 Effect of production capacity on profitability ...................................................................... 205 

6.5 Revenue .................................................................................................................................. 206 

6.6 Profitability analysis ................................................................................................................ 206 

6.6.1 Discounted cash flow (DCF) .............................................................................................. 206 

6.6.2 Sensitivity analysis ............................................................................................................. 208 

6.6.2.1 Sensitivity of NPV ...................................................................................................... 208 

6.6.2.2 Sensitivity of IRR % ................................................................................................... 209 

6.7 Economic analysis summary .................................................................................................. 211 

6.3 References .............................................................................................................................. 213 

CHAPTER 7: CONCLUSIONS & DIRECTIONS FOR FUTURE RESEARCH.................... 216 

Overview ..................................................................................................................................... 216 

7.1 Main process findings ............................................................................................................. 217 

7.2 Main contributions ................................................................................................................... 219 

7.3 Directions for future research.................................................................................................. 220 

7.3.1 Extending this research ..................................................................................................... 221 

APPENDIX ........................................................................................................................ 222 

Appendix A: Chapter 3: Literature review ................................................................................... 223 

Appendix B: Chapter 4: Process Development .......................................................................... 227 

Appendix C: Chapter 5: Aspen PlusTM Simulation ...................................................................... 271 

Appendix D: Chapter 6: Economic evauation ............................................................................. 293 

 

Stellenbosch University  https://scholar.sun.ac.za



xiv 

 

LIST OF ABBREVIATIONS 

Abbreviation Description 

2-HN     2- hexyl-nonanal 

APEA     Aspen Process Economic Analyser 

CAPEX    Capital Expenditure 

DCF     Discounted Cash Flow 

EC     Equipment Cost 

EPM      Economic Potential for metathesis process 

EPH     Economic Potential for hydroformylation process 

EOS     Equation of State 

FT     Fischer-Tropsch 

IRR     Internal Rate of Return 

LKP     Lee-Kesler-Plocker 

LMS     Liquid Multiphase System 

LPO     Low Pressure Oxo-process 

NPV     Net Present Value 

NRTL     Non-Random Two-Liquid 

OSN      Organic Solvent Nanofiltration 

PBP      Pay Back Period 

PC-SAFT    Perturbed Chain Statistical Associating Fluid Theory 

PR     Peng-Robinson 

PRBM     Peng-Robinson- with Boston-Mathias 

RCH     Ruhrchemie 

RCH/RP    Ruhrchemie Rhone-Poulenc Process 

RKSBM    Redlich-Kwong-Soave with Boston-Mathias 

RKS     Redlich- Kwong-Soave 

Stellenbosch University  https://scholar.sun.ac.za



xv 

 

 

 

SARS     South African Revenue Services 

SRK     Soave-Redlich-Kwong 

TEA     Techno economic analysis 

TDC     Total Direct Costs 

TFCI     Total Fixed Capital Investment 

UNIFAC    UNIQUAC Functional-group Activity Coefficients 

UNIQUAC    UNIversal QUAsiChemical

Stellenbosch University  https://scholar.sun.ac.za



xvi 

 

NOMENCLATURE 

Symbol      Description                         Unit 

S    Percent selectivity      % 

X    percentage conversion     % 

Y    percentage yield      % 

𝑊𝑐𝑎𝑡     Weight of catalyst      g 

PMP    primary metathesis products     - 

IP    Isomerisation products     - 

SMP    secondary metathesis products    - 

Gr-2    Grubbs second generation catalyst     

Gr-1    Grubbs first generation catalyst    - 

TMS    Thermomorphic multicomponent solvent   - 

TPPTS    Trisulfonated triphenylphosphine 

RRP    Ruhrchemie-Rhone-Poulenc process   - 

DMF    dimethylformamide      - 

Syngas   synthesis gas (CO+ H2)     - 

PC-SAFT   Perturbed chain statistically associating fluid theory   

n-Aldehydes   normal aldehydes      - 

iso-Aldehydes   isomeric aldehydes    -   

Subscripts  

C8    octene        - 

C9    nonene       - 

C10    decene       - 

C11    undecene       - 

C12    dodecene       - 

C13    tridecene       - 

C14    tetradecene 

Stellenbosch University  https://scholar.sun.ac.za



 

  

 

CHAPTER 1: INTRODUCTION 

“When you don’t know where you are going all roads will take you there”  

Yiddish Proverb 

 

 

Overview 

Chapter 1 gives an introduction to the work carried out to solve the challenge of upgrading low 

value olefins from a Fischer-Tropsch Synthol product stream to Guerbet-type surfactants. The 

chapter is subdivided into four sections namely; Section 1.1 (discusses the background and 

motivation towards development of this work), Section 1.2 (objectives set out to map direction 

towards the solution to this challenge), Section 1.3 (gives an outline of the scope of this work) 

and finally, Section 1.4 (an outline of the thesis). 
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CHAPTER 1 INTRODUCTION 

1.1 Background and motivation 

The DST-NRF Centre of Excellence in Catalysis (c*change) RSA Olefins program is focused 

primarily on upgrading low value olefins (C5-C9 alkenes) from a Fischer-Tropsch product 

stream to detergent range long chain internal alkenes (C10-C18). These alkenes can then be 

functionalized and subsequently converted to surfactants of the Guerbet-type, a specialty 

chemical. Guerbet-type alcohols are normally synthesized through a 4-step process, oxidation 

of alcohol to aldehyde, aldol condensation, dehydration of the aldol product and hydrogenation 

of the allylic aldehyde (Lubrizol Advanced Chemical, 2012). The reactions selected to achieve 

these conversions are the homogeneous self-metathesis of shorter chain 1-alkenes to long 

chain internal alkenes followed by the hydroformylation of the internal alkenes into aldehydes 

(Figure 1.1). According to Mills and Chaudhari (1997), Guerbet-type aldehydes typically serve 

as intermediates and building blocks for alcohols, other derivatives, which have applications 

in pharmaceuticals, fine chemicals and perfumery chemicals. 

 

Metathesis Hydroformylation

C5-C9

alkenes

C10-C18

n-alkenes

functionalized

C15-C19

aldehydes

Guebert-type 

Surfactants

(>C10)

  

Figure 1.1.: Proposed upgrading of low value olefins to high value surfactants 

 

Challenges of separation of homogeneous catalysts from their post reaction mixtures 

particularly due to low thermal stability of the metal-based complexes have been reported in 

literature (Maynard and Grubbs, 1999, Sharma and Jasra, 2015). These challenges have been 

identified as a major hindrance towards commercialization of such processes. Losses as low 

as 1 ppm have been reported in previous hydroformylation studies but economics depends 

on quantity of Rh loss and cost of metal (Sharma, 2008). The leaching of 1 ppm Rh during 

1-octene hydroformylation in a 400 000 ton per year plant may result in the financial loss of 
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US $ 500 000 per year (Wiese and Obst, 2006). According to Sharma (2008), a loss of 1 ppm 

Rh for 100 000 tons per year plant will result in a loss of US $ 400 000 per year.  

In many catalytic transformations, the post-treatment of the reaction product for 

catalyst/product separation is an important concern in particular when products formed have 

higher boiling points (Huang et al., 2015). The higher boiling point of these products means 

higher temperatures for their volatilization, hence separation problems due to the narrowing 

differences in product and catalyst solution volatilities (Schmidt et al., 2014). More importantly, 

the catalyst’s thermal stability range is encroached at these higher distillation temperatures 

and degradation significantly increases (Beller et al., 1995, Dreimann et al., 2015). Irreversible 

destruction of the sensitive catalyst during thermal separation of the reaction products is a 

serious challenge towards catalyst recycle (Wiese et al., 2006). Michrowska and Grela (2008) 

identified finding a subtle balance between the stability of the catalyst, and its high activity as 

one of the “Holy Grails” of catalysis. The challenge is especially visible in the field of olefin 

metathesis, a fairly old reaction that has long remained a laboratory curiosity without 

significance for advanced organic chemistry (Michrowska and Grela, 2008). According to 

Westhus et al. (2004), removal of the metal-containing by-products upon completion of the 

metathesis reaction is a serious drawback which affects subsequent synthetic reactions.  

The low reactivity of long chain olefins due to poor solubility in aqueous catalyst media have 

also been identified as a major challenge in aqueous rhodium-catalyzed hydroformylation 

processes (Herrmann and Cornils, 1997; Haumann et al., 2002a; Haumann et al., 2002b; 

Porgzeba et al., 2015; Hentschel et al., 2014; Muller et al., 2013; Muller et al., 2014; Muller et 

al., 2015; Zagajewski et al., 2016). Herrmann and Cornils (1997) have reported that the 

solubility of propylene in water is 1 000 times more than that of 1-octene. According to 

Haumann et al. (2002b), the reactivity of linear terminal alkenes is about four times that of 

linear internal alkenes e.g. 7-tetradecene.  
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Several novel techniques especially aimed at an efficient combination of reaction and catalyst 

separation have been reported for homogeneous metathesis and also hydroformylation of 

long chain olefins. Behr et al. (2007), Zagajewski et al. (2014), Brunsch and Behr (2013), 

Schafer et al. (2012) and Hentschel et al. (2014) propose thermomorphic multicomponent 

solvent systems (TMS) as a possible solution to reaction and catalyst separation in 

hydroformylation process. Muller et al. (2013), Muller et al. (2014), Haumann et al. (2002a) 

and Haumann et al. (2002b) have demonstrated successful application of liquid multiphase 

system (LMS) in Rh-catalyzed hydroformylation of long chain olefins. The use of organic 

solvent nanofiltration (OSN) membrane to recover homogeneous catalysts has been reported 

in literature (Bhanushali, 2002; Vankelecom et al., 2002; Schmidt et al., 2014). Bhanushali 

(2002) and Van der Gryp et al. (2012) have demonstrated the successful use of novel organic 

solvent nanofiltration (OSN) technique in separation and reuse of homogeneous Ru-based 

catalysts. Schmidt et al. (2014) and Seifert et al. (2013) have developed models to investigate 

OSN membrane technique as a potential solution towards reduction of Rh-catalyst losses 

during hydroformylation process.  

According to the author’s knowledge, no open source data or publication is currently available 

for a process of upgrading low value (C5-C9) olefins from a Fischer-Tropsch Synthol product 

stream to functionalized Guebert-type aldehydes. It is therefore the aim of this study to develop 

a conceptual process of upgrading low value terminal C8 from a Fischer-Tropsch Synthol 

product stream to 10 000 tonnes per annum 2-hexyl-nonanal at 99 wt.% purity. 

2-hexyl-nonanal can be is a reactive intermediate which can be used to manufacture 

especially expensive personal care products due to its low irritational potential and low 

volatility. The viewpoints of this study will contribute to the DST-NRF Centre of Excellence in 

Catalysis RSA Olefins programme’s knowledge base and will help focus research on 

development of more efficient catalysts and or catalytic systems. 
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1.2 Objectives 

The aim of this study is to develop a conceptual process for upgrading low value terminal C8 

olefins from Fischer-Tropsch Synthol product stream to 2-hexyl-nonanal (C15-aldehyde). In 

order to achieve the main aim of this study the following sub-objectives are set: 

Objective 1: 

 Investigate current technologies for C5-C9 olefin metathesis 

 Investigate current technologies for C10-C18 olefin hydroformylation  

 Investigate current technologies for recovering homogeneous catalysts from post 

reaction mixtures. 

Objective 2: 

 Propose and develop several conceptual processes for upgrading low value C8 olefins 

to C15 functionalised hydrocarbons 

Objective 3: 

 Develop Aspen PlusTM simulation models for the various process scenarios as 

proposed in objective 2 

 Validate Aspen PlusTM models with literature data 

 Propose possible optimized operating conditions for the process 

Objective 4: 

 Compare and evaluate from both a techno-economic and energy viewpoint the various 

proposed scenarios 

1.3 Scope of Investigation and thesis outline 

The study proposes the use of metathesis and hydroformylation reaction pathways for the 

upgrading of low value olefins from Fischer-Tropsch Synthol product stream to functionalised 

hydrocarbons using literature data. Figure 1.2 is the scope of this investigation. 
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Study Aspect

 Catalyst recovery
 Investigate different techniques 

currently available for recovery of 

homogeneous metathesis and 

hydroformylation catalyst from post 

reaction products to enable 

comparison of performance with 

organic solvent nanofiltration (OSN) 

membrane. 

 Determine parameters for modelling 

of membrane systems for recovery 

of catalysts. 

 Compare different simulation 

models available for recovery of 

homogeneous catalysts from post 

reaction products

 Determine key economic 

parameters for catalyst recoevery

      (Chapter 1, 2 & 3)

Olefin Metathesis
 Investigate different technologies 

available for the metathesis of 

low value olefins (C5-C9). 

 Compare literature data on 

performance of different 

commercially available 

metathesis catalysts. 

 Investigate different kinetic 

models for metathesis of C8. 

 Evaluate operating conditions for 

metathesis of C8. 

 Compare different simulation 

models available for olefin 

metathesis

 Determine key economic 

parameters for the metathesis 

process

(Chapter 1, 2 & 3)

 Olefin Hydroformylation
 Investigate different technologies 

available for the hydroformylation of 

long chain olefins (C10-C18). 

 Compare literature data on novel 

techniques for hydroformylation of 

long chain olefins.  

 Compare different Rh-catalyst 

systems for homogeneous 

hydroformylation of long chain 

olefins. 

 Determine kinetic data for the 

hydroformylation of C14. 

 Evaluate form literature the operating 

conditions for hydroformylation of 

C14. 

 Compare different simulation in 

literature on hydroformylation of long 

chain olefins

 Determine key economic parameters

(Chapter 1, 2 & 3)

Conceptual Process Development

Determine different process designs using process design techniques available such as Douglas (1988), Smith and 

Linnhoff (2005), Turton et al. (2012), Alqahtani et al. (2007).   

(Chapter 4)

Simulation
Use ASPEN Plus simulation package to develop models that allow investigation of operating parameters

(Chapter 5)

Techno-economic Evaluation
Evaluate the various processes from both energy requirements and key engineering economic indicators such as NPV, 

IRR, PBP

(Chapter 6)

Outcomes

Olefin Metathesis

 Efficient catalyst

 Reaction systems

 Reaction conditions

 Kinetic data

 Design specifications

 Different process 

scenarios

 Material Requirements

 Material balances

 Energy requirements

 Utility requirements

 Product cost

 Capital requirements

 Equipment costs

 Energy costs

Objectives

Objective 

1, 2 & 3

Objective 

2 & 3

Objective 

3

Objective 

4

Olefin Hydroformylation

 Most efficient catalyst

 Reaction systems

 Reaction conditions

 Kinetic data

 Design specifications

Catalyst recovery
 Catalyst stability

 Separation philosophy

 Recovery technique

 Separation Efficiency

 Techno-economics

Figure 1.2.: Scope of investigation 
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Chapter 2: Research approach  

In Chapter 2, the approach for solving the problem and methodology of evaluating a viable 

solution is discussed. Chapter 2 covers the conceptual framework and design approach. 

 

Chapter 3: Literature review  

Chapter 3 addresses Objectives 1, 2 and 3. Chapter 3 covers olefin metathesis, 

hydroformylation technologies and recovery of homogeneous catalysts especially focusing on 

OSN membrane process. A discussion of operating conditions and processes designs of 

commercial plants and pilot plants for metathesis and hydroformylation including 

homogeneous catalysts recovery technologies is presented along with the previous simulation 

work done by other researchers. 

 

Chapter 4: Process Development  

Chapter 4 addresses Objectives 2 and 3. Chapter 4 outlines how different process scenarios 

were developed. The chapter covers decisions and heuristics considered in development of a 

conceptual process for upgrading low value olefins from a Fischer-Tropsch Synthol product 

stream into functionalised hydrocarbons. 

 

Chapter 5: Aspen PlusTM Simulation 

Chapter 5 details how different Aspen PlusTM simulation models for the different process 

scenarios were developed. Chapter 5 also discusses how optimal conditions for the various 

processes were obtained. This chapter addresses Objective 3. 

 

Chapter 6: Energy Analysis and Economic Evaluation  

Chapter 6 addresses Objective 4. In Chapter 6, the simulation results are used to carry out a 

techno-economic evaluation the various process scenarios to determine the most profitable. 
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Chapter 7: Conclusions and recommendations for future work 

In Chapter 7, the main findings of this study are discussed. A summary of the main process 

findings is also presented. Chapter 7 also outlines recommendations for future work.
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CHAPTER 2: RESEARCH APPROACH 

“Research is to see what everybody else has seen, and to think what nobody else has 

thought” 

Albert Szent-Gyorgyi- Biochemist 

 

 

Overview 

Chapter 2 provides a detailed description of the methodology and framework that was followed 

in this investigation. The Chapter is subdivided into three main sections, starting with Section 

2.1, which gives a brief background into conceptual process design. Section 2.2 highlights 

current available design approaches and Section 2.3 presents the design approach used in 

this study. A motivation for the Douglas methodology was also given in Section 2.3.1. 
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2.1 Introduction: Conceptual approach 

The conceptual bases to design and solving problems in chemical engineering are well known 

(Potier et al., 2015). The three most acknowledged models in conceptual process design 

according to Frillici et al. (2015) are the Pahl and Beitz (2007), Ulrich and Eppinger (2010) and 

Ullman (2007) models. Table 2.1 is a summary of the main steps of these design models.  

 

Table 2.1.: Conceptual processes and related activities 

Ullman  (2010) Paul and Beitz (2007) Ulrich & Eppinger (2007) 

i. Generate concepts 1. Abstract to identify essential 

problems 

1. Identify customer needs 

2. Evaluate concepts 2. Establish function structures 2. Establish target 

specifications 

3. Make concepts 

decisions 

3. Search for working principles 3. Generate product concepts 

4. Document and 

communicate 

4. Combine working principle 4. Select product concepts 

5. Refine plan 5. Select suitable combinations 5. Test product concepts 

6. Approve concepts 6. Firm up into principle solution 

variants 

6. Set final specifications 

 7. Evaluate variants against 

technical and economic criteria 

7. Plan downstream 

development 

 

Although at first sight the three models appear quite different, it is possible to identify a 

common path, i.e. starting from the requirement list, a set of concept variants is generated and 

then a selection of the preferred ones is performed by means of evaluation parameters. Curry 

(2010) and Frillici et al. (2015) agrees also that when it comes to generating concepts variants, 

all the three models proposes substantially the same steps. The steps are: (i) formulation and 
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decomposition of the design problem (by means of functional analysis and decomposition) (ii) 

definition of the solutions related to single sub-functions and (iii) combination of the solutions 

related to single functions.  

With respect to a process conceptualisation problem, Steimel and Engell (2015) describes 

process synthesis as the choice of the best options from a set of promising design candidates 

during the early stages of process development. Hence, steps can be translated to 

identification of candidate processes, evaluating the processes and presenting the most viable 

option. Usually the decision has to be made under complete information and hence all 

alternatives have to be explored either in experimental work on the laboratory or pilot plant 

level. Steimel and Engell (2015) reiterates the need to stop laboratory or pilot plant 

experiments as soon as sufficient information has been gathered as one of the main 

challenges towards the use of such tools. Steimel and Engell (2015) confirms that the 

quantification of the point in time when the information is sufficient is usually difficult. Moreover, 

though this had an advantage of proving that the process really worked, it is costly and not 

very flexible with regard to major changes in the process especially for processing challenges 

such as metathesis and hydroformylation where expensive catalysts are involved. However, 

evaluation of candidate processes can be done using process simulators which allow virtually 

all options to be explored using computer tools such as FLOWTRAN, PROIITM, GPROMS, 

HYSYS and Aspen PlusTM (Mizsey and Fonyo, 1990).  

Oden et al. (2006) defines simulation as application of computational models and computing 

power to the prediction of system behaviour. Howat (1997) states that prior to simulation, some 

preparatory work needs to be done in order to allow smooth flow of work and to ensure that 

everything is done systematically to reduce oversight. Oden et al. (2006) also pointed out that 

if simulation is not approached systematically, the output from the simulation might be 

misleading or meaningless. 

Stellenbosch University  https://scholar.sun.ac.za



14 

 

 

 

CHAPTER 2 RESEARCH APPROACH 

2.2 Literature review: Design approach 

Conceptual process design and synthesis originated from the concept of unit operation and 

was first introduced by Little in 1915 (Li and Kraslawski, 2004). Little (1915) pointed out that 

any chemical process can be represented as a series of ‘unit operations’ (King, 2000). Until 

the late 1960s, the unit operation concept was a cornerstone of process design, thanks to the 

works of Rudd and Watson (1968) who dealt with the synthesis problem using systematic 

approaches. The later 20 years saw considerable research being performed in the area of 

process synthesis (Johns, 2001). During that time, most of the research was related to 

well-defined sub-problems. It was believed that general-purpose process synthesis systems 

would be soon in routine use. However, until now, only limited progress has been observed in 

the practical application of process synthesis tools (Johns, 2001).  

The task of defining appropriate process configuration requires the generation of and 

evaluation of many technological schemes (process flowsheets) in order to find those 

exhibiting better performance indicators. A series of solving strategies have been proposed 

being classified into two large groups i.e. knowledge-based process synthesis and 

optimization-based process synthesis (Cardona et al., 2012). Different types of models have 

been used previously for the two classes of approach as shown in Table 2.2. 

 

Table 2.2.: Process design approach 

Knowledge based Optimization based  

Douglas (1988) hierarchical approach MINLP, LP, LGDP, QP, NLP techniques 

Smith and Linnhoff (2005) onion approach Branch and bound method 

Turton et al. (2009) evolutionary approach Outer-approximation method 

Siirola and Rudd (1971) systematic heuristic 

approach 

Generalized benders method 

 Extended cutting plane methods 
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Optimisation based methods use not only traditional algorithmic methods, such as 

mixed-integer non-linear programming (MINLP), but also stochastic ones such as simulated 

annealing and evolutionary algorithms such as genetic algorithms (GA). Two common 

features of optimisation-based methods are the formal, mathematical representation of the 

problem and the subsequent use of optimisation.  

A lot of studies (Grossmann and Tresalacios, 2013; Grossmann and Cabellero, 2000; Friedler 

et al., 1993) have been carried out into the optimisation based approach, and it has been 

widely applied in process design and synthesis. An important drawback of optimisation-based 

methods is the lack of the ability to automatically generate a flowsheet superstructure 

(Kraslawski and Li, 2004). While several tools and methods have been proposed to solve the 

process superstructure design problem, none has yet been established as the standard 

(Grossmann and Tresalacios, 2013). Especially in the early phases of process synthesis, no 

formalized method or tool for the screening of alternatives is available (Cardona et al., 2012). 

Another disadvantage is the need for a huge computational effort and the fact that the 

optimality of the solution can only be guaranteed with respect to the alternatives that have 

been considered a priori (Grossmann, 1985).  

Li and Kraslawski (2004) concluded that a key topic for the advancement of conceptual 

process design is the “improvement of optimization and simulation techniques as well as of 

information management tools in order to handle more information and knowledge from 

various sources”.  

Knowledge-based methods like heuristic methods are based on the long-term experience of 

engineers and researchers and combines heuristics with an evolutionary strategy for process 

design (Li and Kraslawski, 2004). Siirola and Rudd (1971) made their first attempt to develop 

a systematic heuristic approach for the synthesis of multi component separation sequences. 

In the subsequent years, a lot of research has been carried out (Douglas, 1988; Jaksland et 

al., 1995; and Grossmann et al., 2001; Sieder et al., 2004; Smith and Linnhoff, 2005; Alqahtani 

et al., 2007; Turton et al., 2009) into knowledge-based methodologies.  
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Douglas (1988) has proposed a method in which any process can be decomposed into five 

levels of analysis for its design as shown in Figure 2.1. 

 

DEFINE OBJECTIVES

Operation
Procedure for   

Non-continous Operation

LEVEL 1

Identification of Input/Output 

structure

Design of non-continuous 

operation

LEVEL 2

Identification of Recycle 

structure

LEVEL 3

Identification of Separation 

structure

LEVEL 4

Unit integration and Heat 

Integration

LEVEL 5

Evaluate continuous 

process

Non-continuous Continuous

 

Figure 2.1.: Douglas method of design (Douglas, 1988) 

 

Douglas’ (1988) methodology has a hierarchical sequential character considering that in each 

level different decisions are made based on heuristic rules. Douglas’ (1988) strategy allows 

the generation of different alternatives, which are evaluated from an economic viewpoint using 

short-cut methods. According to Douglas (1988), the hierarchical decomposition comprises 

the analysis of the process in the following levels: (i) batch vs. continuous, (ii) input–output 

structure of the flowsheet, (iii) recycle structure of the flowsheet, (iv) separation system 

synthesis, and (v) heat recovery network. The whole chemical process is taken into account 

at each of the five decision levels. These five levels generate a base case design that will be 
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used for the successive detailed engineering analysis in simulation. Each level includes new 

decisions and additional flowsheet structures. Heuristics are used to help the designer to make 

those decisions and the opposite decisions are accumulated in a list of process alternatives 

to be considered after a base-case design has been generated. Also at each level, the 

dominant design variables are identified, and both capital and operating costs are evaluated 

as a function of these variables. The hierarchical heuristic method emphasizes the strategy of 

decomposition and screening. The Douglas’ (1988) methodology has been mostly applied to 

chemical and petro-chemical processes. Hierarchical design approach is absolutely 

necessary due to the inherent hierarchy nature of conceptual process design (Yang and Shi, 

2000). It allows the quick location of flowsheet structures that are often ‘near’ optimum 

solutions (Li and Kraslawski, 2004).  

However, the major limitation of the Douglas (1988) method is due to its sequential nature, 

hence, it is impossible to manage the interactions between different design levels (Yuan et al., 

2013). The importance of the simultaneous optimization of various subsystems has been 

demonstrated (Duran and Grossmann, 1986). The same reason causes problems in the 

systematic handling of multi-objective issues within hierarchical design. Therefore, the 

hierarchical heuristic method offers no guarantee of finding the best possible design (Yuan et 

al., 2013).  

Since the physical and chemical properties of the involved chemical system plays a very 

important role for the design/synthesis of a process, a thermodynamic insight based hybrid 

method to select the separation process was proposed by Jaksland et al. (1995).  

A set of criteria to be used to evaluate the process alternatives was proposed by Turton et al. 

(1998). Turton et al. (1998) defined design as an evolutionary process that can be represented 

as a sequence of diagrams that describe the chemical process. Thus, a chemical engineer 

can start the design of a process with the block flow diagram, in which only the feeds and the 

output products are represented, then decomposes the process in basic functional elements, 

such as reaction and separation sections. The engineer can also identify recycle streams and 
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consider the use of additional units to obtain the required operating conditions (temperature 

and/or pressure). In order to identify these basic elements, more detailed diagrams are built. 

With the mass balance a preliminary block flow diagram (BFD) can be obtained. As more 

detailed mass and energy balances are developed, calculations of unit operations 

specifications can be made, resulting in a process flow diagram (PFD). Finally, when the 

mechanical details and instrumentation are considered, they are represented by means of a 

piping and instrumentation diagram (P&ID).  

Hostrup et al. (2001) further developed this method by including a reverse design approach 

where process design variables are “back-calculated” for known design targets. Seider et al. 

(2004) proposed a step-by-step method for design of chemical processes. Similarly, Smith 

and Linnhoff (2005) have proposed an onion model for decomposing the chemical process 

design into several layers (Figure 2.2). The design process starts with the selection of the 

reactor and then moves outward by adding other layers, the separation and recycle system, it 

also includes the heating and cooling utilities, and wastewater and effluent treatment. 

 

 

Figure 2.2.: Onion method of design (Smith and Linnhoff, 2005) 

Utilities and 
Waste Water 

(level 4)

Heat Recovery 
Design

(level 3)

Recycle 
Design

(level 2)

Reactor 
Design

(level 1)
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The effort to keep the system simple and not adding equipment in early stages of design may 

result in missing benefits of interactions between different items of equipment in a more 

complex system. Gani and d’ Anterroches (2005) also proposed a reverse approach for 

process flowsheet design based on process knowledge similar to knowledge of molecular 

structures. Alqahtani et al. (2007) developed the design method for synthesis of 

reaction-separation-recycle systems similar to the onion model by Smith and Linnhoff (2005). 

The methods according to Gani and d’ Anterroches (2005), Alqahtani et al. (2007), Smith and 

Linnhoff (2005) however, focus on processes with one main product for a fixed 

reaction-catalyst and do not consider process alternatives in terms of diversion of resources 

to another product within the same overall process. A systematic step-by-step methodology 

which considers a large number of alternative processes including all feasible separation 

techniques should be considered and developed for design.  

2.3 This study: Design approach 

The objective of this study is to develop a process of manufacturing 2-hexyl-nonanal an 

intermediate feedstock for the Guerbet-type surfactants by upgrading low value 1-octene 

feedstock from a Fischer-Tropsch Synthol product stream at Sasol Secunda. The design 

capacity is given in Table 2.3 
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Table 2.3.: A summary of the design base used in this study 

Design parameter Description Justification 

Product name 2-hexyl-nonanal    

(99 wt. %) 

Market requirement (Hentschel et al., 2014, Steimel 

et al., 2014) 

Desired production rate 10 000 ton per 

year 

Petrochemical 10 000-500 000 tonnes per year 

attractive to investors (Arnoldy, 2000) 

Feedstock 1-octene  

(100 % mol basis) 

Feed stock purity selected was 100 % purity for 

academic purpose and the fact that the literature 

used excluded effects of feed purities. 

Plant location Secunda, SA Proximity to raw materials (syngas, 1-octene) and 

developed building facilities 

 

 

2.3.1 Motivation for the Douglas methodology 

The "Douglas Method" is based on hierarchical decision-making using economic feasibility as 

a main criterion for process evaluation. A complex problem is gradually solved through 

completion of a number of arbitrary "stages" or levels of analysis. The Douglas’ (1988) 

hierarchical approach is a simple but powerful methodology for the synthesis of process 

flowsheets. It consists of a top-down analysis organised as a clearly defined sequence of tasks 

grouped in levels. In applying the methodology, the designer has to identify dominant design 

variables and make design decisions. As a result, a number of alternatives are produced that 

are submitted to an evaluation from an economic viewpoint using short-cut methods, an 

advantage of the Douglas methodology compared to reducible methodologies such as the 

Smith and Linnhoff (2005). Thus, the major advantage of the hierarchical approach is that it 

offers a consistent frame for developing alternatives rather than a single design. Checking the 

projected economic potential at early stages of the design process allows for quick elimination 

of non-feasible design alternatives.  

Stellenbosch University  https://scholar.sun.ac.za



21 

 

 

 

CHAPTER 2 RESEARCH APPROACH 

The hierarchical design approach of Douglas is necessary due to the inherent hierarchy nature 

of conceptual process design (Yang and Shi, 2000). In a chemical process, the transformation 

of raw materials into desired products is broken down into a number of steps that provide 

intermediate transformations. The transformations are carried out in reactors, separators etc. 

In this study, a holistical step-wise layout of the design approach based on Douglas (1988) 

was used as summarized in Figure 2.3. The evaluation of optimal process conditions involves 

examining possible process solutions developed by applying the adopted design approach, 

using a steady state simulator and a set of key engineering criteria. For the same reason that 

the design can be approached in many ways, it is necessary to consider more deeply the 

design approach to be used. 
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(Step 1)
Problem definition

(Step 4)
Simulation Results & Analysis

(Step 5)
Economic evaluation

(Step 3)
Process development

(Step 2)
Literature search

Process Capital requirements

Process Optimal Parameters

Process Economic Indicators

Process Operating Costs

3.4 Unit Intergration

3.3 Separation 
structure

3.2 Recycle structure

3.1 Input/Output

(a) Metathesis Process
Catalysts

Selection of Thermodynamic 
Model

Selection Simulator

Product distributions

Selectivities

Kinetic data

(b) Hydroformylation Process
Catalysts

Product distributions

Selectivities

Kinetic data
(c) Catalyst Recovery Process

Recovery efficiency

Cost of technique

Operating conditions

Operating conditions

Operating conditions

 

Figure 2.3.:  Design approach used in this study
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Step 1: Problem definition 

The objective was to design a chemical process to produce 10 000 tonnes per year of 

2-hexyl-nonanal at a purity of 99 wt. % which can be used as a feedstock for the manufacture 

of Geubert-type surfactants. The feedstock to be used is low value 1-octene from a 

Fischer-Tropsch product stream. The performance criterion is to maximise the net present 

value (NPV) of the process. The NPV included revenues, total capital investment and 

depreciation costs were determined based on interest rate of 15 % and the life time of 15 

years. According to Miremadi et al. (2013), for preliminary economic evaluation of 

petrochemical plants the project life of 15 years is used. The net present value is a function of 

a number of process variables, such as flow rate, pressure, and temperature which determines 

heat and mass requirements. Decision variables such as equipment size (diameter, height 

etc.) define total capital investment and material costs such as 1-octene, syngas, and catalysts 

will determine revenues.  

 

Step 2: Search literature 

The second step involved literature search (Chapter 3) on the properties of the chemicals 

involved in order to develop alternatives of conceptual process for upgrading low value 

1-octene from Fischer-Tropsch product stream to 2-hexy-nonanal a feedstock to Geurbet-type 

surfactants. The objectives of Chapter 3 were to: 

2.1 Understand the field of olefin metathesis, hydroformylation and catalyst recovery in 

detail 

2.2 Acquire relevant input information 

2.3 Review of what others did in the process simulation (previous Aspen PlusTM 

simulations etc.) 

2.4  Review previous membrane simulations 

2.5 The missing data was also estimated based on thermodynamic models. Information 

on raw materials, main products, side products, reactions, catalysts, reaction 
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conversion and operating conditions was also gathered. Information on all available 

flowsheets was also considered as alternative heuristics in process development.  

Step 3: A hierarchical approach to process development 

In the third step (Chapter 4) the hierarchical decomposition method of Douglas (1988) was 

applied to develop a continuous process to manufacture 10 000 tons per year of 

2-hexy-nonanal at a purity of 99 wt. % as shown in Figure 2.4.  

3.1 Input-output information 

3.2 Recycle structure 

3.3 Separation structure 

3.4 Unit and Heat integration 

 

(Step 3.2)
Recycle structure

(Step 3.3)
Separation structure

(Step 3.4)

Unit Integration and Heat Integration

(Step 3.1)
Input/Output 

structure

Iterative loop

Iterative loop

Iterative loop

 

Figure 2.4.: Adopted design approach based on Douglas’ (1988) methodology 

 

The approach considered also aspects of Turton et al. (2009) evolutionary method to 

conceptual process development for developing process flow diagrams (PFDs) for the various 

process scenarios. Thermodynamic insights and a simple mass balance is used to generate 
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possible process alternatives by considering alternative separation techniques and different 

reaction catalysts together with a list of decision variables that will need to be determined. The 

alternatives were screened by considering design constraints in a hierarchical manner with 

conventional techniques applied first. The high costs of the catalyst and problem of separation 

of catalyst from product stream was the criteria behind selection of separation technique.  

 

Step 4: Aspen PlusTM simulation development 

After some process alternatives are eliminated the remaining alternatives that include feasible 

unit operations such as reactors, flash operators, distillation, membrane separators and 

decanter within flowsheets, are simulated by using Aspen PlusTM (Chapter 5) before 

corresponding performance criteria are computed in the next step for economic analysis and 

final process selection. The general approach for simulation by using Aspen PlusTM has been 

described elsewhere by Quintero et al. (2008) and Aspen Tech Pvt Ltd. etc.  

 

Step 5: Economic evaluation of process scenarios 

Finally, an energy requirement and economic analysis of the process alternatives was 

performed in Chapter 6. The alternative process configurations are analysed through 

profitability indicators such as a net present value (NPV). The following assumptions were 

adopted to determine NPV; interest rate is 15 %, a linear depreciation and project life of 15 

years. According to Miremadi et al. (2013), for preliminary economic evaluation of 

petrochemical plants, the project life of 15 years is used. A sensitivity analysis was carried out 

to determine key economic parameters. Finally, an optimal process was selected. 

.
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CHAPTER 3: LITERATURE REVIEW 

“In great literature, I become a thousand different men but still remain myself.”  

C.S. Lewis 

 

 

Overview 

Chapter 3 is a detailed study of the properties of chemicals and reactions involved in this 

investigation, which enabled the development of various conceptual processes. The chapter 

is subdivided into three main sections, starting with Section 3.1 which introduces Centre of 

Excellence in Catalysis background. Section 3.2 and Section 3.3 highlights current 

technologies in metathesis and hydroformylation. Section 3.4 details conventional as well as 

novel technologies for homogeneous catalyst recovery. Section 3.5 is a review of previous 

studies on process development. Finally, a summary of the findings is given in Section 3.6. 

  

Stellenbosch University  https://scholar.sun.ac.za



31 

 

 

 

CHAPTER 3: LITERATURE REVIEW 

3.1 Introduction: Centre of excellence in catalysis 

Within the RSA Olefins programme of the DST-NRF Centre of Excellence in Catalysis, the 

efficacy of homogeneous catalysts for upgrading low value olefinic feedstocks (C5-C9) to 

higher value functionalized hydrocarbons (C10-C19) is investigated. Fundamental research is 

focused primarily on selection of catalysts and maximizing productivity using product 

selectivity and substrate conversion as catalyst performance indicators and process 

conditions as optimization parameters. Over 90 % of the world’s industrial processes are 

dependent on catalysis and homogeneous catalysts are usually preferred due to their high 

activity and selectivity since they remain in the same phase as the substrate (Mao and Yu, 

2013).  

One important unit operation for an economic process is the separation and recovery of 

reagents, products, solvents, catalysts and intermediates from each other. Separation 

techniques, which are increasingly evident in chemical catalysis, have proven to be 

challenging in hydrocarbon processes due to catalyst instability at operating conditions. 

Therefore, when migrating from proof of concept stage to industrial application, catalyst 

efficiency cannot be the only deciding factor in identifying the most productive route, as this 

does not necessarily translate to an economically viable solution.  

Low value olefins (C5-C9), especially in the case of alpha olefins, can readily be subjected to 

metathesis reactions to produce longer chain internal olefins (C10-C18) (Mol, 2001). The 

internal alkenes can then be further functionalized through hydroformylation to the 

Guerbet-type aldehydes (C11-C19). The oligomerisation route normally produces a full range 

of products hence the challenge of a lack of selectivity and higher costs incurred in separation 

of products into individualistic products. In the detergent industry, the perennial balancing act 

is between surfactant chain length, biodegradability and solubility.  

Traditionally linear alpha-olefins in the C12 to C15 range are used in the manufacture of 

alcohol sulphates. Longer chain linear alcohol sulphate surfactants leads to higher surfactancy 

and performance but is offset by low hardness tolerance and limited cold water solubility. The 
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branching in Guerbet-type surfactants allows the use of chain lengths as long as C16 and C17 

without incurring the historical negatives such as lack of biodegradability (Sasol, 2008). 

Asymmetric hydroformylation is a very promising catalytic reaction that produces chiral 

aldehydes from inexpensive feedstock (alkenes, syngas) in a single step under essentially 

neutral reaction conditions (Gual et al., 2010). Even though asymmetric hydroformylation 

offers great potential for the fine chemical industry the reaction has not yet been utilised on an 

industrial scale due to several technical challenges (Gual et al., 2010). 

The overall aim is to develop a substantial body of knowledge regarding the application of 

catalyst technologies in various forms of “small production platforms” so as to reduce the 

requirement for huge initial capital investments.  

3.2 Metathesis 

Olefin metathesis is increasing becoming an established valuable synthetic tool, which is 

providing increasing access to numerous specialty chemical markets (Banks et al., 1982 and 

Grubbs, 2003). According to Mol (2004), the technology allows the conversion of simple, 

relatively inexpensive olefins into specialty, high purity olefins which are intermediates in the 

fragrance, and many other specialty industries. Olefin metathesis is one of the few 

fundamentally novel organic reactions discovered in the last 60 years (du Toit et al., 2013, 

Balcar and Cejka, 2013, Tomasek and Jürgen Schatz, 2013). The first catalysts for the olefin 

metathesis reaction were ill-defined, multicomponent initiators consisting of transition metal 

halides or oxides with alkylating co-catalysts, such as WCl6-SnMe4 or MoCl5-EtAlCl2 (Irvin 

and Mol, 1999). The advantages of well-defined, single-component catalysts over ill-defined 

initiators is that they provide control over reaction initiation and functional group compatibility 

(Grubbs et al., 2003). Richard Schrock and Robert Grubbs pioneered homogeneous 

metathesis catalysts (du Toit et al., 2014). Yves Chauvin proposed the metallacycle 

mechanism for metathesis involving carbenes long before any stable carbenes had been 

detected (Vougioukalakis, 2012). Grubbs, Schrock and Chauvin were awarded the Nobel 

Prize for Chemistry in 2005 for their work in the field of olefin metathesis (Vougioukalakis, 
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2012). The metathesis reaction involves the reaction of two olefins in a disproportionation 

reaction via a metallacyclobutane intermediate 1 as depicted in Figure 3.1. 
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Figure 3.1.: General olefin metathesis reaction 

 

Homogeneous metathesis has become an extremely useful tool in organic synthesis due to 

well-defined metathesis catalysts. Grubbs based and Hoveyda-Grubbs based precatalysts 

were introduced by the groups of Grubbs in the mid 1990s and Hoveyda in 1999 respectively. 

According to Mol (2004), homogeneous metathesis reaction has already found application in 

the production of pharmaceutical products. In small volumes, high value products the cost of 

the catalyst is not a major factor in the process economics (Mol, 2001). In pharmaceutical 

processes, the catalyst is not recycled, and decomposition of the catalyst is not a serious issue 

(Mol, 2004). The major industrial scale uses of metathesis are the production of propene via 

the reaction of ethylene and 2-butene over a heterogeneous catalyst (OCT process), and the 

Shell Higher Olefin Process (SHOP) (Leeuwen, 2004) which involves homogeneous ethylene 

oligomerisation followed by metathesis over a heterogeneous catalyst (Mol, 2004) and 

polymerization reactions.  

3.2.1 Olefins Conversion Technology (OCTTM) 

An alternative route to propene is by applying the metathesis reaction for the conversion of a 

mixture of ethene and 2-butene into propene (Mol 2004). OCTTM uses the Phillips Triolefin 

Process in reverse, (i.e. the conversion of ethylene and 2-butene to propene) and this process 

is now offered for licence by ABB Lummus Global, Houston (USA) (Mol, 2004). The feed (a 

mixture of C4s and high purity ethylene) is heated prior to introducing into the metathesis 

+ 

1 
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reactor. The reaction takes place in a fixed-bed reactor over a mixture of WO3/SiO2 (the 

metathesis catalyst) and MgO (an isomerization catalyst) at >260 oC and 30−35 bar (Mol, 

2004). 1-Butene in the feedstock is isomerized to 2-butene as the original 2-butene is 

consumed in the metathesis reaction. The conversion of butene is above 60 % per pass and 

the selectivity for propene is >90 %. The catalyst is retained in the reactor and is regenerated 

on a regular basis (Mol, 2004). Figure 3.2 shows a simple process flow diagram of the OCT 

process.  

 

 

Figure 3.2.: The OCTTM process (Mol, 2004) 

 

3.2.2 The Shell Higher Olefins Process (SHOP) 

The Shell (SHOP) process according to Leeuwen (2004) includes a heterogeneous 

metathesis reaction step for the production of α-olefins. In the first step, ethylene is 

oligomerised in the presence of a homogeneous catalyst and a polar solvent, giving 

even-numbered α-olefins with a Schultz-Flory distribution. In the second stage, these alkenes 

undergo double bond isomerization over a solid alkali-metal based isomerization reactor to an 
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equilibrium mixture of terminal alkenes (Mol, 2004). In the third stage, the mixture is upgraded 

by metathesis to detergent range internal olefins (C11-C14). The desirable C11 to C14 olefins 

are separated by distillation and fractionated into individual compounds for use as 

co-monomers for further processing into plasticizer and detergent alcohols, or synthetic 

lubricants. Shell Chemicals units at Geismar, USA, produces 920 000 tonnes per year of 

higher alkenes using this technology (Singh, 2006). The olefins formed are immiscible with 

the solvent, product and catalyst phases are thereby readily separated so that the Ni catalyst 

can be recycled repeatedly (Mol, 2004). 

3.2.3 The Meta-4 process 

The Institute of Petroleum in France and the Chinese Petroleum Corporation have jointly 

developed a process for the production of propene, called Meta-4 (Mol, 2004). In their process, 

ethylene and 2-butene react with each other in the liquid phase in the presence of a 

Re2O7/Al2O3 catalyst at 35 oC and 60 bar. The process is not yet commercialized mainly 

because of the cost of the catalyst and the requirement of a high purity of the feed stream 

(Mol, 2004).  

3.2.4 The Polynorbornene process 

The first commercial metathesis polymer according to Banks et al. (1982) was 

polynorbornene, which was put on the market in 1976 by CdF-Chimie in France, and in 1978 

in the USA and Japan, under the trade name NorsorexTM. The polymer is obtained by ROMP 

of 2-norbornene (bicyclo [2.2.1]-2-heptene), the Diels-Alder product of dicyclopentadiene and 

ethylene, and gives a 90 % trans-polymer with a very high molecular weight (>3×106 g/mol) 

and a glass transition temperature (Tg) of 37 °C. The process uses a RuCl3/HCl catalyst in 

butanol, operates in air, and produces a useful elastomer. Due to the difference in density 

between the catalyst phase and product, it is possible to achieve lower than ppm losses of 

catalyst in product stream. 

Stellenbosch University  https://scholar.sun.ac.za



36 

 

 

 

CHAPTER 3: LITERATURE REVIEW 

3.2.5 Polydicyclopentadiene 

The technology using the well-defined Grubbs ruthenium catalyst is made available for 

poly-DCPD production by Materia (Pasadena, CA, USA) (Van Arnum, 2003). Cymetech also 

uses the technology of DCPD polymerization based on ruthenium catalysis to produce 

polymers under the trade name PrometaTM. The difference in weight between the polymer 

product and the catalyst allows the recovery and reuse of the catalyst without significant 

losses. 

3.2.6 Metathesis of 1-octene 

Although metathesis reaction has been investigated for producing long chain alkenes 

(C10-C18) from low value alkenes (C5-C9) (Ivin and Mol, 1997, Mol, 2004, Sanford, 2003, 

Jordaan et al., 2006, Boeda et al., 2008, du Toit et al., 2014, Lehmann et al., 2003, Van der 

Gryp et al., 2012, Vougioukalakis, 2012, du Toit et al., 2013) none have yet been implemented 

and commercialised. Major obstacles to the commercialisation of homogeneous metathesis 

technology for bulk chemical products include the relatively short lifetime of the catalysts, and 

side reactions (such as isomerisation and cross metathesis) that take place concurrently with 

self-metathesis.  

Homogeneous metathesis precatalysts including Grubbs (1st, 2nd) generation, 

Hoveyda-Grubbs (1st, 2nd), and ruthenium allenylidene catalyst precursors have been 

investigated extensively for 1-octene metathesis. According to Stark et al. (2006), many of 

these reactions feature high selectivities and high reaction rates in the first run which then 

decrease upon recycling or deactivation of the catalysts. Jordaan et al. (2006) investigated 

the catalytic activity and selectivity of the Grubbs 1st generation precatalyst, (Gr-1) towards 

the primary metathesis products, in the 1-octene metathesis reaction. Grubbs 1st generation 

precatalyst, (Gr-1) is active for the metathesis of 1-octene at 25 oC yielding 7-tetradecene as 

the major product even at 1-octene/Ru molar ratio of 10 000. However, the product mixture 

consisted of three groups of products, i.e. primary metathesis products (PMP), isomerisation 

products (IP) and secondary metathesis products (SMP). Jordaan et al. (2006) observed that 

using Gr-1 precatalyst, 1-octene was converted to approximately 62 % 7-tetradecene (PMP) 
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and 5 % SMP due to simultaneous double bond isomerisation and cross metathesis. This 

indicates that Grubbs first generation precatalyst (Gr-1), has a high selectivity towards PMP 

(94%). Similar conclusions could be drawn for Hoveyda-Grubbs first (HGr-1) and second 

generation (HGr-2) pre-catalyst reported by different authors. Several authors (Jordaan et al., 

2006, Boeda et al., 2008, du Toit et al., 2014, Lehmann et al., 2003, Van der Gryp et al., 2012) 

have confirmed that temperature has a strong influence towards product distribution in olefin 

metathesis. Table A.1 in Appendix A summarises some of the best catalysts results of 

1-octene metathesis reactions from the reviewed literature. 

3.2.6.1 Effect of temperature on product distribution 

During metathesis reaction, temperature significantly affects the product distribution. As the 

reaction temperature increases from 30 to 100 °C, the percentage of PMP products 

decreases, while IP and SMP formations becomes significant (Lehmann et al., 2003, Jordaan 

et al., 2006, Du Toit et al., 2014). Van der Gryp et al. (2012), Van der Gryp et al. (2010), and 

Du Toit et al. (2013) have observed that when the temperature is increased above 50 °C, the 

formation of IP started to increase rapidly and PMP formation decreases. du Toit et al. (2014) 

also observed that at temperatures ≥ 80 °C, an increase in SMP formation was visible for all 

the pre-catalysts due to possible precatalyst decomposition or reversible allyl-hydride 

formation. Van der Gryp et al. (2010) have also shown that, when the temperature increases 

above 50 °C, IP and SMP increases exponentially (from 11 % to 40 %). It can be seen again 

from Table A.1 in Appendix A.3 for all precatalysts, that within the observed optimal 

temperatures, the selectivity towards PMP was highest at low temperatures (< 60 oC) and low 

for high temperatures especially >80 oC although catalytic activities (TON) increased with 

temperature. In reaction engineering, the optimal temperature is normally that which 

minimises formation of by-products (IP, SMP) therefore decreasing separation costs and loss 

of yields but also ensuring shorter reaction times so as to minimise reactor sizes. 

3.2.6.2 Catalyst activity and extent of reaction 

A number of authors have investigated the effects of several process parameters on catalysts 

activity and extend of reaction. Boeda et al. (2008) investigated the activity of Phoban-based 

Stellenbosch University  https://scholar.sun.ac.za



38 

 

 

 

CHAPTER 3: LITERATURE REVIEW 

Ru precatalyst in the self-metathesis reaction of 1-octene at different temperatures ranging 

from 40 to 60 °C and 1-octene/Ru molar ratio of 9 000 in different solvent systems and noted 

that higher final conversions were obtained at higher temperatures. According to Boeda et al. 

(2008), higher conversions were obtained when the catalyst was introduced as is, rather than 

in toluene solution. Motoboli (2010) also confirms that second generation Grubbs catalysts 

has a high activity than first generation Grubbs (Gr-1) catalysts. The overall efficiency of the 

pre-catalyst (TON) defined as the number of 1-octene molecules that are converted to 

metathesis products by one molecule of a pre-catalyst, was found to be 2756 for Gr-2 and 

1429 for Gr1.  Van der Gryp et al. (2012) also observed that 1-octene/precatalyst molar ratio 

have a little effect on TON up to 1-octene/precatalyst molar ratios of 10 000. The TON only 

started to drop as 1-octene/precatalyst molar ratio increases above 10 000. 

3.2.6.3 Catalyst stability and alkene isomerisation 

Olefin isomerization reaction is responsible for cross metathesis reactions, which leads to loss 

of yield and low selectivity. Schrock et al. (2003) conducted a model study to determine the 

extent to which olefin isomerization occurs during olefin metathesis of simple 1-octene with 

Grubbs ruthenium catalysts and Schrock’s molybdenum catalyst. It was found that the 

N-heterocyclic carbene ligated ruthenium complex promotes extensive isomerization of both 

internal and terminal olefins at temperatures of 50-60 oC, whereas the bisphosphine ruthenium 

complex and Schrock’s molybdenum complex do not. Schrock molybdenum did not promote 

significant isomerization of 1-octene or 2-octene at 30 or 45 oC. The latter kinetic situation 

would be expected to yield a distribution of products typically classified under primary 

metathesis products.  

First and second generation precatalyst were found to promote olefin isomerization to a very 

small extent after long reaction times although temperature played a significant role towards 

isomerization (Schrock et al., 2003). According to Lehmann et al. (2003), simultaneous 

metathesis and isomerization could easily describe the formation of a product mixture (PMP, 

IP, SMP) during the reaction of 1-alkenes. The current conceivable pathway for the formation 

of these olefins by isomerization and metathesis is illustrated in Scheme 3.1. 
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Scheme 3.1.: Typical reactions and pathways leading to PMP, IP and SMP olefins by olefin 

isomerization and metathesis (adapted from Lehman et al., 2003, Van der Gryp, 2009). 

 

3.2.6.4 Selection of operating conditions 

Jordaan et al. (2006) and Lehmann et al. (2003) confirmed the mechanistic viewpoint 

suggested by Van der Gryp et al. (2012) which states that two competing mechanisms which 

are temperature dependent are responsible for the product distribution in metathesis reaction 

systems. One mechanism is towards the selective formation of PMPs and SMPs (metathesis 

active mechanism) and the other is selective towards the formation of IP’s (isomerization 

active mechanism). According to Van der Gryp et al. (2012), the isomerization active 

mechanism starts to occur at temperatures above 50 oC, while the metathesis active 

mechanism is observed for the whole temperature range. du Toit et al. (2014) concluded that 

at temperatures above 80 oC, the precatalysts starts to decompose, lose activity for metathesis 

and possibly deactivates and promotes isomerisation reactions. Reaction engineering 

identifies a small reactor size and maximization of PMP products as the two extremely 

important requirements in designing a reactor. For designing multi-reaction reactors such as 

this reaction system, the objective must be to minimize the formation of undesired products 
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and to maximize the formation of the desired product, because the greater the amount of 

undesired product formed, the greater the cost of downstream separation processes. A reactor 

must therefore be designed in such a way that the selectivity and TON are maximized. From 

an economic standpoint, maximizing selectivity and TON will maximize profits. 

3.2.6.5 Selection of optimal precatalyst loading 

In separate experimental investigations by Van der Gryp et al. (2012), Huijsmans et al. (2009), 

and du Toit et al. (2014) using different metathesis precatalysts, the TON generally increased 

with 1-alkene/precatalyst molar ratios. The optimal 1-octene/HGr-2 molar ratio according to 

Van der Gryp et al. (2012) was found to be 10 000 as further increase in 1-octene substrate 

resulted in a significant drop in TON. However, catalyst load did not show any significant effect 

on selectivity with relatively constant values of 96 % at 1-octene/precatalyst molar ratios of 5 

000 and 10 000 respectively. Hence, from economic and environmental point of view it is 

important to operate the reactor at high 1-octene/precatalyst loadings. 

3.2.6.6 Selection of catalyst 

Grubbs’ “first-generation” ruthenium catalyst possesses in general a remarkable application 

profile combining satisfactory activity with an excellent tolerance for a variety of functional 

groups and moisture but unfortunately, its lifetime in the reaction medium is limited (Grubbs 

and Chang, 1998, Schrock, 1998, Furstner, 2000, Trnka and Grubbs, 2001, Hoveyda and 

Schrock, 2001). The more expensive but more stable and active “second-generation” catalysts 

are gaining popularity (Vougioukalakis, 2012). Despite general superiority offered by modern 

homogeneous Grubbs and Hoveyda–Grubbs catalysts, they share some disadvantages. The 

most undesirable feature of these complexes is the formation of ruthenium by-products which 

are difficult to remove from the reaction products, presenting a problem when the olefin 

metathesis reaction is used in pharmaceutical processes (Bhanushali et al., 2013). However, 

most of these undesirable characteristics can be minimised by operating the reactor at <60 oC 

(Lehmann et al., 2003, Jordaan et al., 2006, Du Toit et al., 2014. Van der Gryp et al., 2012 

and Du Toit et al., 2013). Table 3.1 is a comparison of some commercial metathesis catalysts. 
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Table 3.1.: Comparison of different commercial catalysts (du Toit et al., 2014) 

Precatalyst 
Optimum 

temperature[a] 

Formation 

of IPs[b] 

Formation of 

SMPs[b] 

Relative 

activity[c] 

Relative life-

time[d] 

Gr-1 Low (30 oC) >70 oC X 2801 ≈ 2 

Gr-2 Low(30 oC) >60 oC >60 oC 5337 ≈ 3 

HGr-1 Low(30 oC) >50 oC X 4458 ≈ 8 

HGr-2 Medium (50 oC) >60 oC >60 oC 6448 ≈ 10 

a Temp which gives highest selectivity to PMP at catalyst load 7 000 

b temperature where > 35 starts to format catalyst load 7000 (molar ratio) 

c TON at optimum temperature and catalyst load of 10 000 

d time in hrs measured of catalyst activity for PMP formation with consecutive separation and 

reuse 

 

3.2.6.7 Effect of solvent 

According to Van der Gryp (2009), the addition of organic solvents had a significant effect on 

the metathesis, and is mostly detrimental. Table 3.2 shows the influence of different solvents 

towards the metathesis reaction of 1-octene with precatalyst HGr-2 was investigated at 50 °C 

and a precatalyst load of 7000.  
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Table 3.2.: Effect of different organic solvents on the metathesis of 1-octene at 50 oC using HGr-2 

(Van der Gryp, 2009) 

Solvent C8 PMP % IP % SMP % S % TON 

(-) neat 30.16 68.60 0.24 1.01 98.22 4802 

Toluene 57.25 41.25 0.25 0.98 96.50 2887 

Acetic Acid 94.53 2.23 3.09 0.15 40.77 156 

Phenol 87.40 11.01 1.50 0.10 87.36 771 

Ethanol 90.05 2.52 6.73 0.71 25.33 177 

 PMP = Primary metathesis produsts (%) 

 IP = Percentage of isomeric products (%) 

 SMP = Percentage of secondary metathesis products (%) 

 S  = Selectivity to PMP = 
𝑃𝑀𝑃

𝑃𝑀𝑃+𝐼𝑃+𝑆𝑀𝑃
 % 

 

3.2.7 Summary of olefin metathesis 

Olefin metathesis is an organic reaction that entails the redistribution of fragments of alkenes 

(olefins) by the scission and regeneration of carbon-carbon double bonds. Catalysts for this 

reaction have evolved rapidly for the past few decades. Because of the relative simplicity of 

olefin metathesis, it often creates fewer undesired by-products and hazardous wastes than 

alternative organic reactions. Olefin metathesis was first commercialized in petroleum 

reformation for the synthesis of higher olefins from cross metathesis products (alpha-olefins) 

from the Shell Higher Olefin Process under high pressure and high temperatures.  

To the author’s knowledge, the simulation and operation of a commercial plant for the 

self-metathesis of low value olefins (C5-C9) from a Fischer-Tropsch Synthol product stream 

is not reported in literature. The low activity of commercially available catalysts and challenges 

of recovery and separation of the homogeneous catalysts from the reaction product have 

hampered commercialization.  
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3.3 Hydroformylation 

One of the most important applications of homogeneous catalysis according to Zagajewski et 

al. (2013) is the hydroformylation of unsaturated hydrocarbons. The hydroformylation or 

oxo-reaction is the transition metal mediated addition of carbon monoxide and dihydrogen to 

the double bond of an alkene. It is one of the most versatile methods for the functionalization 

of C=C bonds and can be considered consequently as a very robust synthetic tool (Kegl, 

2015). The primary products of the exothermic reaction are aldehyde isomers. Like many 

landmark discoveries, hydroformylation was discovered serendipitously. In 1938, while 

investigating the intermediacy of alkenes in Fischer-Tropsch reaction, Otto Roelen discovered 

that a formyl group is added to the olefinic double bond by the use of synthesis gas (CO/H2) 

in the presence of a homogeneous transitional catalyst (Roelen 1934, 1964).  

According to Sharma and Jasra (2015), the development of hydroformylation, which originated 

within the German coal-based industry, is considered one of the premier achievements of 20th 

century industrial chemistry. According to Kohlpaintner et al. (2001), the 60 years of 

oxo-syntheses has experienced at least five quantum leaps of development (1) “Diaden 

process” with heterogeneous cobalt catalysts; (2) high pressure process with homogeneous 

Co catalyst; (3) introduction of Rh as the central atom of complex catalysts and (4) of 

ligand-modified Rh or Co catalysts (5) the two-phase catalysis. Sharma and Jasra (2015) 

defined the process as inspired by three phases of catalytic developments namely first 

generation (Co-metal), second generation (Rh-modified by PPh3) and the third generation 

(Rh-modified by TPPTS).  

The developments are all inspired by the need to achieve high catalysts activity, moderate 

operating conditions and more significantly the need to minimize leaching of the highly 

expensive Rh-based catalyst. Ever since, this clean and mild method for the functionalization 

of hydrocarbons has grown to be among the most important homogeneously catalysed 

reactions in industry (Kohlpaintner et al., 2001).  
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Industrial processes generally use Rh-based catalysts for lower olefins and cobalt (Co)-based 

catalysts for C5+ olefins (Billig and Bryan, 2000). However, Co-based catalysts require rather 

harsh conditions. For example, the most common cobalt catalyst, cobalt carbonyl hydrides, 

requires pressures of 200−350 bar and temperatures of 150−180 °C in order to prevent 

decomposition of the catalyst and avoid syngas starvation (Frohning et al., 2002). 

Cobalt-based catalysts require more forcing conditions than their rhodium counterparts, a 

consequence of their lower catalytic activity, and although separation technologies have been 

developed for Co systems, they are by no means simple (Frohling and Kohlpaintner, 1996). 

Recycling of the Co-catalyst is usually accomplished in a series of unit operations that are not 

only energy intensive but also require significant amounts of acid and base resulting in sizable 

waste streams (Cornils, 1980). On the other hand, Rh-based catalysts are known to provide 

higher activity and better product selectivity toward the linear aldehydes at much milder 

operating conditions (40−130 °C, 10−40 bar). 

The annual production and consumption of aldehydes is 12 million tons per year with expected 

growth rate of 4.0 % of various aldehydes for the manufacture of detergents, soaps, and 

plasticiser alcohols and speciality chemical industry (Sharma and Jasra, 2015). Current 

technology for the synthesis of detergent range alcohols (C11-C20), which produces over 1 

million tons per annum, is based on less efficient cobalt catalysts, often modified with tertiary 

phosphines (Webb et al., 2003). According to Franke et al. (2012), hydroformylation also has 

some potential for removing unsaturated compounds from the refinery cracking process. 

Commonly these undesired olefins, which might produce viscous polymers or solids capable 

of blocking the carburettors and injectors of vehicles, are converted into harmless alkanes by 

hydrogenation (Franke et al., 2012).  

In general, the n-aldehyde is desired product due to biodegradability of linear carbon chains 

(Wiese and Obst 2006) but highly branched products are often desirable for their properties 

(Marray et al. 1998) e.g. as lubricating oil additives in order to depress the freezing point of 

the oil. This has led to the key parameter for regioselectivity in hydroformylation, which is 

specified by the l/b-ratio (Van Leeuwen and Claver, 200, Behr et al., 2012; Cornils and 
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Hermann, 2002). Figure 3.3 shows a basic process flowsheet depicting the main steps of 

hydroformylation process.  

 

Alkenes

Iso-aldehyde

N-aldehyde

Reaction Syngas Catalyst Educts ProductsSyngas

Catalyst
Catalyst

 

Figure 3.3.: Basic flowsheet of the hydroformylation process (redrawn, Steimel et al., 2013) 

 

The most important oxo products are in the range C3 – C19. The economic importance of oxo 

synthesis is mainly based on n-butanal with a share of 73 % of overall hydroformylation 

capacity (Subramanian et al., 2014). The n-butanal is converted to 2-ethyl-hexanol which is 

used in the production dioctyl phthalate (DOP), a plastic used in polyvinyl chloride (PVC) 

applications.  

Industrially important oxo-processes can be divided into four main catalytic systems (Mol, 

2003). Table 3.3 gives an overview of these catalyst system and reaction conditions. The most 

important of the rhodium based process on an industrial scale uses so-called phosphine 

modified catalyst system. The unmodified rhodium carbonyl complex is used for the reaction 

of special olefins (Ruhrchemie Process).  
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Table 3.3.: List of industrial important oxo processes and process parameters (Mol, 2003) 

Catalyst Metal Variant Cobalt Process Rhodium Process 

Ligand Non Modified Phos Non Modified Phos 

Process BASF Shell Ruhrchemie RHC/RP 

Active Catalyst  HCo(CO)4 HCo(CO)8/(L3)    HRh(CO)(L)3 HRh(CO)(L3)       

Phosphine: metal ratio - 02:01 50:1 50:1-100:1 

Pressure (bar) 200-300 50-100 15-25 40-60 

Temperature (oC) 110-160 160-200 80-120 110-130 

Cat conc.(%metal/Olefin) 0.1-1.0 0.6 0.01-0.06 0.001-1 

Products Aldehydes Alcohols Aldehydes Aldehydes 

n/iso-Product ratio 80:20 88:12 50:50 92:8 

Olefin hydrogenation (%) <2 15 5 <2 

By-products amounts High High Low Low 

Catalyst recovery difficult  Simpler for C3 and C4 Facile 

 

 

Up until the mid-1970’s cobalt was used as catalyst metal in commercial processes e.g., by 

BASF, Ruhrchemie, Kuhlmann (Mol, 2003). Although the activity of rhodium catalysts is about 

1 000 times higher than cobalt, the application of cobalt catalysts in technical hydroformylation 

of long chain olefins was widely spread due to the lower Co-metal price (Zagajewski et al. 

2015, Xie et al., 2014). However, Rh-metal is highly promising for technical usage, because 

of milder reaction conditions (lower temperature and pressure). The ligand modification 

introduced by Shell researchers was a significant progress in hydroformylation as it allowed 

separation, recovery and reuse of expensive Rh-catalysts (Sharma and Jasra, 2015). 

3.3.1 Rhodium based hydroformylation processes 

Rh-based hydroformylation processes are also known as low pressure oxo-processes (LP 

Oxo) due to comparatively low operating pressures than Co-based processes (Beller et al., 
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1999). The highly sophisticated RCH/RP process, which together with Union Carbide’s Mark 

IV process represents the state-of-the-art in today’s oxo technology in terms of the variable 

and fixed costs per ton of product (Kohlpaintner et al., 2001). Major factors attributing for the 

reduction in the overall manufacturing costs are a highly efficient catalyst and energy recovery 

system and minimum capital requirements for an RCH/RP oxo unit. According to Gursel et al. 

(2015), the Rh-catalysed process is an environmental benign and green process. 

Cole-Hamilton and Tooze (2006) have also confirmed that the environmental (E) factor for 

conventional cobalt catalyzed hydroformylation processes is about 0.6–0.9. This factor falls 

below 0.1 for the RCH/RP process due to conservation of resources and minimization of waste 

(Cole-Hamilton and Tooze, 2006).  

The lifetime of Rh catalyst charge may exceed 1 year under the condition that sufficient purity 

of the feed and careful process control is guaranteed (Franke et al., 2012). According to Beller 

et al. (1999), for plants operating the LP OxoTM process, the variable cost contribution from 

rhodium is often barely US $1 per ton of product, which is extremely modest but however, the 

rhodium price can have a large impact on the working capital needed for a new plant 

investment. Rhodium is currently 25 times more expensive in U.S. dollar terms than it was 

when the strong economic drivers for rhodium oxo-synthesis first emerged in the early 1970s 

while the price of aldehydes has only increased to four times (Market and Marketers, 2016). 

The increase in the rhodium price have caused concerns among companies contemplating 

investing in TPP/rhodium-based technology. The main problem of rhodium is its high, very 

volatile price over the years. The price on the world market is dictated by the automotive 

industry, which uses ∼80 % of the metal in catalytic converters. In July 2008, rhodium broke 

the $220.000 per kg barrier for the first time (Kitco, 2016). Because of the global financial 

crisis, which began in the last quarter of 2008, the rhodium price fell from this level to about 

$40,000 per kg within a few months. The Volkswagen scandal of 2015 has also seen rhodium 

prices falling to $ 100,000 per kg in December of the same year (Infomine, 2015).  

The higher price of rhodium is offset by mild reaction conditions, simpler and therefore cheaper 

equipment, high efficiency, and high yield of linear products and easy recovery of the catalyst 
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(Beller et al., 1999). The reactions are usually carried out at a temperature range of 120−190°C 

and a syngas pressure of 10−30 bar in large industrial companies, such as BASF, Exxon, 

Sasol, and Shell (Franke et al., 2012). In addition, with respect to raw material utilization and 

energy conversation, the LP OxoTM processes is more advantageous than the cobalt 

technology, thus leading to their rapid growth (Dreimann et al., 2015). One of the main 

differences between large-scale Rh-catalysed hydroformylation processes according to 

Franke et al. (2012) is the technology used to separate the product and the catalyst with the 

aim of catalyst recycle. 

3.3.1.1 The Union Carbide Corporation (UCC) process  

The process of hydroformylation of propylene was developed by a joint venture between Union 

Carbide Corporation (UCC), Johnson Matthey and Co. and the former Davy Powergas Ltd. 

(today Davy McKee) (Beller et al., 1999). Several modifications predominantly aimed at 

improvements in the product/catalyst separation led to the emergency of two process versions, 

which were later on named the gas recycle process and liquid recycle process (Dreimann et 

al., 2015). The gas phase recycle, aimed at removal of the product aldehydes from the catalyst 

solution by applying a large gas recycle in order to evaporate the aldehydes (Pruett and Smith, 

1969). The catalyst solution consisted of high boiling aldehyde condensation products (dimers, 

trimers and various other aldehyde consecutive products) in which an excess of 

triphenylphosphine and Rh complex itself was dissolved (Morrel and Sherman, 1978).  

However, according to Brewester and Pruett (1977) requirements for constant reaction 

mixture, temperature and pressure conditions, gas flux for continuous evaporation of the 

aldehyde product resulted in the process being a fairly complex one. To avoid these 

drawbacks and following RCH/RP’s excellent experiences with liquid recycles, the gas recycle 

was replaced by the liquid recycle variant Figure 3.4, which is in use in most modem LPO 

plants. 
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Figure 3.4.: UCC liquid recycle process (Beller et al., 1999) 

 

3.3.1.2 The Ruhrchemie/Rhone-Poulenc (RCH/RP) process 

The idea of E. Kuntz (Rhone-Poulenc) to apply water-soluble rhodium complexes as catalysts 

for the hydroformylation reaction was taken up and commercialized by Ruhrchemie AG for the 

hydroformylation of propylene. After only two years of development on the laboratory scale 

the first plant was erected in 1984 followed by rapid further increases in capacity to more than 

11 million tonnes per year today (European Chemical News, 2012). According to Obrecht et 

al. (2013), the operational simplicity, robustness and the excellent economics of the process 

(loss of rhodium by leaching into the organic phase lies in the ppb range) make the RCH/RP 

a benchmark process in the field of aqueous biphasic transition metal catalysis.  

The RCH/RP unit is essentially a continuous stirred tank reactor (R1), followed by a phase 

separator (FD) and a strip column (C1 & C2) as shown in Figure 3.5. The reactor (R1) which 

contains the aqueous catalyst, is fed with propylene and syngas. The crude aldehyde product 

passes into decanter (FD) where it is degassed and separated into the aqueous catalyst 

solution and the organic aldehyde phase. 
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Figure 3.5.: The Rhuhiechemie/Rhone Poulenc process (adapted from Wise and Obst, 2006) 

 

In aqueous phase hydroformylation, slightly higher concentration of catalyst (150-500 ppm 

rhodium) at reaction temperature (120-130 oC) and pressure (40-60 bar) are used to achieve 

the satisfactory levels of space time yields (Sharma and Jasra, 2015). Due to the use of a 

water soluble catalyst system the catalyst can be considered to be ‘heterogeneous’ hence 

very simple recycling of the homogeneous oxo-catalyst by immobilization in “mobile support” 

water (Dreimann et al., 2015). Accordingly, excellent economics owing to minimal losses of 

the catalyst metal rhodium, low purity demands on the reactants, excellent process potential 

from safety and environmental points of view (Sharma and Jasra, 2015). 

The process is very energy efficient as the reaction heat from the exothermic hydroformylation 

is recovered and used in the reboiler of the distillation column that separates the organic phase 

into n- and iso-butyraldehyde (Cole-Hamilton and Tooze, 2006). Therefore, during its lifetime 

less than 1 ppb of Rh-catalyst is lost reflecting high economy of the process (Baerns et al., 

2006). The high selectivity, yields and high-energy efficiency achieved with this RCH/RP 

process enable it to have about 10 % lower manufacturing costs compared to other Rh 
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catalyzed hydroformylation processes that do not use aqueous phase operation (Wiebus and 

Cornils, 1994). 

3.3.1.3 The BASF process 

Developed nearly in parallel to UCC’s LP OxoTM process, the BASF process also makes use 

of a gas recycle to separate aldehydes and catalyst solution (Schwirten and Kummer, 1983). 

Propylene and synthesis gas (CO/H2= 45/55) are fed to a stainless steel tank reactor with 

intense mixing. While the catalyst remains in the reactor, aldehydes are withdrawn by a recycle 

gas stream, condensed by partial cooling and freed from dissolved gases in a stabilizer column 

(Fischer et al., 1981). The combined gaseous streams from these operations are 

recompressed and sent to the reactor. 

3.3.1.4 The Mitsubishi process 

Mitsubishi uses a modification of the Rh-catalyzed high-pressure hydroformylation of 

long-chain olefins octene and nonenes (Onada, 1993, Sato et al., 1994). Hydroformylation is 

carried out in the presence of the weakly complexing triphenylphosphine oxide (TPPO) as 

ligand at pressures up to 200 bar. It is claimed that the activity of rhodium is diminished less 

by TPPO than by TPP, thus reducing the rhodium inventory in comparison to TPP as ligand 

(Beller et al., 1999). According to Beller et al. (1999), TPP is added to stabilize rhodium catalyst 

before conventional distillation is used to separate catalyst from the organic product. TPP is 

then oxidized to TPPO before re-use of the catalyst solution by a non-disclosed oxidation 

procedure (OX) as shown in Figure 3.6. Part of the catalyst solution is purged for external 

upgrading. 
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Figure 3.6.: Mitsubishi process (adapted from Beller et al., 1999) 

 

3.3.1.5 The Technische Universitat Berlin (TUB) mini-plant 

In the field of homogeneous catalysis, miniplants are often useful for the analysis and 

verification of new recycling concepts for catalysts. A continuously operated miniplant has 

been designed and investigated by Professor Schomacker’s group at Technische Universitat 

Berlin, with special focus on the catalyst activity and recycling in the hydroformylation of 

1-dodecene. According to Behr et al. (2012), experiments in a continuously operated miniplant 

allows a comprehensive optimization of the selectivity based on the entire process including 

all recycling streams. The results show that optimal reaction conditions of 110 oC and 50 bar 

and a mass fraction of surfactant of between 8 % is required to achieve yields above 50 % at 

the same time attaining low catalysts losses of close to 1 ppm.  

Figure 3.7 shows the miniplant flowsheet diagram for Rh(acac)(CO)2, and a Water/Marlipal 

solvent system for hydroformylation of long chain olefins at the miniplant conditions at TUD 

Dortmund, Germany. 
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Figure 3.7.: Miniplant hydroformylation of 1-dodecene (redrawn Muller et al., 2013) 

 

3.3.2 Hydroformylation of long chain alkenes 

In the case of short chain olefins (Cn<C6) an efficient process, namely the 

Ruhrchemie-Rhone/Poulenc (RCH/RP) process has been developed to minimize the rhodium 

losses (Zagajewski et al., 2014, Hentschel et al., 2014, Porgzeba et al., 2015, Muller et al., 

2014). Kohlpaintner et al. (2001) also confirmed that with the RCH/RP process it is possible 

to hydroformylate propene up to pentene with satisfying space time yields (STY). The rate of 

aqueous phase hydroformylation of alkenes depend upon the alkene solubility in water which 

makes process practicable at commercial scale (Sharma and Jasra, 2015). The gaseous 

olefins and the co-reactants hydrogen and carbon monoxide can be solved in an aqueous 

catalytic phase, where the liquid product directly forms a separate organic phase.  

The solubility of long chain olefins in an aqueous phase is not sufficient, for example, C8 

olefins are typically 1 000 times less soluble in water than propylene (Cornils, 1999). 

Zagajewski et al. (2016) observed the decrease in the olefin conversion rate with the increase 

in its chain length which he describes as due to the reduction of its reactivity. Previous work 

by Vogelpohl et al. (2013), Markert et al. (2013), Zagajewski et al. (2014) and Hentschel et al. 
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(2014), Sharma and Jasra (2015) have confirmed that reaction times are long and conversions 

are low and hence the concept is not applicable for these reactants (Cn ≥ C6).  

3.3.2.1 The hydroformylation reaction system 

Different media solutions have been proposed to enhance the solubility of higher olefins and 

hence reactivity during hydroformylation reactions. Hentschel et al. (2014), Steimel et al. 

(2014), Peschel et al. (2012), Kierdorf et al. (2014) and Hentschel et al. (2015) have confirmed 

successful results of hydroformylation of 1-dodecene and 1-octene in different thermomorphic 

solvent and liquid multiphase systems. According to Kierdorf et al. (2014), in order to ensure 

a fast reaction and ensure an efficient recycling of the precious catalyst-ligand complex, the 

reaction system must maintain a certain composition of the components.  

Kierdorf et al. (2014) observed that the reaction solution must contain 20 wt. % 1-dodecene, 

32 % of the polar solvent DMF and 48 % of decane in order to achieve high conversions and 

minimise catalyst leaching in the organic product. The TMS system was characterised as 

homogeneous above 85 oC and heterogeneous at lower temperatures allowing reaction 

mixture to be separated into organic product and aqueous catalyst phases. According to 

Kierdorf et al. (2014), conversions of 1-dodecene around 70 % and selectivities around 98 % 

towards the linear aldehyde products were observed in a CSTR reactor at 105 oC, 30 bar. 

Hentschel et al. (2014) used experimental results by Kierdorf et al. (2014) to develop a 

technoeconomic model. The results of technoeconomic study concluded that conversion and 

recycle rates affected the sizes of compressors and reactant recovery columns indirectly.  

According to Porgzeba et al. (2015), a non-ionic surfactant is able to solubilize the hydrophobic 

substrate in an aqueous environment and thus supports the catalytic reaction and facilitates 

catalyst recycling in its active form. Rost et al. (2013) observed that the hydroformylation in a 

microemulsion solution started at 80 oC giving a conversion of about 50 %. According to Rost 

et al. (2013), an appropriate temperature has to be chosen in order to achieve a desired 

catalyst separation and that to ensure economic feasibility of overall process a further 

extraction step is needed to reduce catalyst losses to lower than 1 ppm. Muller et al. (2014) 

have reported hydroformylation results of 1-dodecene in CSTR reactor over a mini-plant 
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developed for the hydroformylation at 85 oC and 30 bar. Haumann et al. (2002a) investigated 

the Rh-TPPTS catalysed hydroformylation of 1-dodecene in a microemulsion using Marlipal 

O13/aqueous biphasic phase system and found out that the reaction rate was a function of 

the microemulsion concentration of the surfactant.  

The use of surfactant with Rh-TPPTS catalyst in an aqueous solution resulted in reasonable 

TOF of 440 h-1 which is almost half the TOF of the RCH/RP (700 h-1) process for the 

hydroformylation of propylene (Haumann et al., 2002a). Relatively poor selectivities for the 

n:iso ratio of between 70/30 and 80/20 was reported and thus lower than the ones obtained 

for propylene conversion in the two-phase RCH/RP process (95/5) (Haumann et al., 2002). 

Rost et al. (2013) investigated bidentate water-soluble ligands, like SulfoXantPhos in the 

hydroformylation reaction of 1-dodecene together with alkyl-phenol-ethoxylates (like 

Marlophen NP-9 from Sasol) as surfactants in N,N-dimethylformamide/n-decane system. High 

activities and selectivities of n:iso 98:2 % were observed.  

Literature study have shown that no conversion of long-chain olefins was detected without 

addition of surfactant, but fast reaction rates are obtained when surfactants are used to 

formulate a multiphase system (Porgzeba et al., 2015). Schwarze et al. (2015) suggest that 

the selection of an appropriate surfactant for a reaction is crucial and has to be done carefully. 

Markert et al. (2013) investigated the hydroformylation of 1-dodecene using Rh(acac)(CO)2 

and a ligand in a TMS system of N,N-dimethylformamide/n-decane system. According to 

Markert et al. (2013), overall aldehyde yields exceeding 95 % were reported with Rh-TPPTS. 

Homogeneity was observed above 90 oC and catalyst recycling was investigated and 

successful reused in a series of 30 runs. Steimel et al. (2013) observed high selectivities of 

n:iso of 98:2 % in homogeneous hydroformylation of 1-dodecene in liquid multiphase system 

(LMS) and thermomorphic solvent systems N,N-dimethylformamide/n-decane/methanol 

(TMS). 

According to Muller at al. (2013), phase separation of the microemulsion after the reaction is 

very much dependent on the conversion as well as on the composition. Li et al. (2002) studied 

the hydroformylation of 1-dodecene in biphasic catalytic system containing mixed micelle 
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using a water-soluble rhodium phosphine complex, RhCl(CO)(TPPTS)2 in the presence of 

various micelles. High conversion and regioselectivities were observed in mixed micellar 

solutions than in single micelle. However, Li et al. (2002) model did not consider the recovery 

of the catalyst from the organic product which is an important aspect of the economical 

process.  

3.3.2.2 Reaction scheme 

The corresponding reaction network for the hydroformylation of 7-tetradecene (Scheme 3.2) 

was developed according to Leeuwen et al. (2000) and Koeken et al. (2011) models. The yield 

of 2-hexyl-nonanal can be enhanced by reducing the isomerization using an optimal process 

trajectory manipulating the process variables (T,𝑝𝐶𝑂) during the reaction (Market et al., 2013).  

From experimental investigations by Markert et al. (2013), Haumann et al. (2002a) and Muller 

et al. (2013) consecutive hydrogenation of the aldehydes leading to corresponding alcohols is 

not observed in hydroformylation of long chain olefins with Rh-catalysed systems at the typical 

reaction conditions. Scheme 3.2 shows the possible reactions during hydroformylation of 

7-tetradecene. 
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Scheme 3.2.: Illustration of main reaction and possible side reaction patterns during 

hydroformylation of 7-tetradecene (adapted from Markert et al., 2013) 

 

3.3.2.3 Selectivity and product distribution  

According to Dabbawala et al. (2011), interests in selective formation of the branched 

aldehydes in the case of linear alkenes have increased recently due to their use in the 

preparation of polyols and plasticizers. The production of branched aldehydes already 

represents 9 % of the world consumption of oxo-chemicals and is expected to increase 

steadily in the near future (Dabbawala et al., 2011). The catalytic systems which give branched 

aldehydes regioselectivity in linear alkene are limited. Literature has indicated that branched 

aldehydes are mostly formed during hydroformylation of internal alkenes. Of note is an 

investigation conducted by Haumann et al. (2002b) into the hydroformylation of 7-tetradecene 
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in a microemulsion solution. Haumann et al. (2002b) observed that the product distribution is 

predominantly 2-hexyl-nonanal. Albers et al. (2008) investigated the hydroformylation of 

4-octene at syngas pressures ranging from 7 to 50 bar with a ratio of CO/H2 of 1:1 and found 

that yield and conversion increased with increasing pressure. High syngas pressure favours 

hydroformylation over the isomerization of the starting olefin. Albers et al. (2008) concluded 

that, at a high pressure and with 4-octene used as a substrate, mainly internal aldehydes were 

formed. Table A.2 in Appendix A3 shows the different models and reactions conditions for the 

hydroformylation of long chain alkenes.  

3.3.2.4 Effect of temperature 

Generally, rhodium catalysed systems are run at moderate temperatures (80-190 °C) 

compared to cobalt catalysed processes mainly because rhodium catalyst is more reactive 

than cobalt catalyst (Beller et al., 1995). However, the optimum temperature will also be 

determined by the upper critical temperature of the solvent system which will determine extent 

of homogeneous mixture and how much reactant is in contact with the catalyst and ability to 

separate catalyst and product phases after reaction. 

3.3.2.5 Effect of hydrogen partial pressure  

The rhodium catalyst equilibrium depends on reaction conditions (T, CH2, CCO) and hence also 

the selectivity (Peschel et al., 2013). Hydrogen has a linear influence on the reaction rate and 

according to results of Peschel et al. (2013), the catalyst agglomerates if the hydrogen 

concentration is too low. Hence, a high CO/H2 ratio will increase the activity of the 

hydroformylation system, which was proved experimentally to be between 0.8 and 1.2 for 

1-dodecene by Haumann et al. (2002). However, if the hydrogen concentration is too high, the 

hydrogenation of the reactants and products will be promoted (Kiedorf et al., 2014, Peschel et 

al., 2013). 

3.3.2.6 Effect of CO partial pressure  

High CO partial pressures inhibited all reactions especially isomerisation (Kiedorf et al., 2014) 

indicating formation of inactive Rh-dimers and Rh-dicarbonyl complexes at high carbon 
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monoxide partial pressures. According to the Wilkinson cycle, a high CO concentration leads 

to the formation of an inactive species in the catalyst cycle. Therefore, a high CO concentration 

will reduce the activity of the hydroformylation system (Peschel et al., 2012) which is in 

accordance to Wilkinson cycle Figure 3.8. 

 

  

Figure 3.8.: Catalyst equilibrium of the TPPTS modified rhodium 

 

3.3.2.7 CO: H2 stoichiometric ratio 

According to Kierdorf et al. (2014), the CO/H2 ratio affects the n/iso ratio and for the 

hydroformylation of 1-dodecene, the maximum amount of desired product tridecanal formed 

was observed for the stoichiometric ratio CO/H2 = 1:1. It was observed that if CO partial 

pressure is increased the conversion of 1-dodecene was decreased, which decreased extent 

of the reaction. According to Haumann et al. (2002b), the formation of the unmodified rhodium 

species should result in an increased activity as well as decreased selectivity towards linear 

aldehydes. 

3.3.2.8 Agitation on reaction rate 

According to Haumann et al. (2002b), no significant influence on the rate of reaction was 

observed for stirrer speeds between 500 and 2000 rpm and experimental investigations can 

be conducted at 1500 rpm. Bhanage (1997) concurred that all reactions should be conducted 

at agitation speeds above 900 rpm to ensure that reactions occurred in kinetic regime. 

3.3.2.9 Effect of catalyst concentration 

The effect of the concentration of the catalyst precursor Rh(CO)2(acac) (with the P:Rh ratio 

constant) was investigated by different authors (Bhanage et al., 1997, Hentschel et al., 2008, 

Haumann et al., 2002, Kiedorf et al., 2013) at constant partial pressures of H2 and CO and 
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octene concentration. Haumann et al. (2002) confirmed that the rate of the reaction increased 

with an increase in the catalyst concentration with a first order dependence. This type of 

behaviour is expected since an increase in the catalyst concentration will enhance the 

concentration of active catalytic species and the rate of the reaction. 

3.3.2.10 Ligands for special applications 

A crucial point in the workup of a hydroformylation reaction is the separation of product and 

catalyst (Franke et al., 2012). In aqueous biphasic hydroformylation system, excellent 

water-soluble ligands are usually used to “fix” the metal complex catalysts in the aqueous 

phase. The immobilization of the noble rhodium catalyst in aqueous phase is crucial to the 

potential scale-up of this technique (Fu et al., 2008). When a surfactant is used to promote the 

aqueous biphasic hydroformylation of higher olefin, the addition of surfactant indeed can break 

the mass transfer barrier, and therefore accelerate the reaction. However, the surfactant can 

also lead to the leaching of the catalyst from aqueous phase to organic phase.  

According to Fu et al. (2008), experimental results showed that increasing the amount of 

water-soluble ligand could significantly mitigate the catalyst leaching when surfactant was 

used. However, there exists a critical value for the mole ratio of TPPTS to surfactant, which is 

important for catalyst ‘fixation’. A lower mole ratio of TPPTS to surfactant will lead to catalyst 

leaching, whereas a higher ratio will cause the catalyst to be fixed in the aqueous phase (Fu 

et al., 2008). Different critical values exist for different surfactants. In best-case scenarios, the 

latter can be recycled and used for subsequent runs.  

A breakthrough was the use of the sulfonated phosphine ligand TPPTS (trisodium salt of 

3,3,3″-phosphinidyne tris(benzenesulfonic acid) in the Ruhrchemie/Rhone-Poulenc process 

for hydroformylation of propene, which, to the best of the author’s knowledge, is the only 

aqueous two-phase hydroformylation used in industry to date. TPPTS exhibits excellent 

solubility in water (∼1.1 kg/L) and is in general insoluble in most organic solvents used for 

two-phase catalytic reactions (Franke et al., 2013). 
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3.3.3 Product purification 

The purified aldehydes are essential intermediates for bulk and fine chemicals like diluents or 

odorants in the flavour and fragrance industry (Beierling et al., 2013). According to Hentschel 

et al. (2014) and Steimel et al. (2014) downstream processing require purities above 98 wt. 

%. Distillation is still the most commonly used separation technology in the chemical industry. 

However, due to close physical properties, the separation of close boiling mixtures is generally 

difficult due to low driving forces (Beierling et al., 2013, Micovic et al., 2012). Examples of 

close boiling mixtures are mixtures of isomers that are formed in some non-regiospecific 

reactions, such as hydroformylation.  

According to Hentschel et al. (2014), the investment costs during hydroformylation of 

1-dodecene to n-tridecanal are dominated by the product separation column, followed by 

compressor and reactor. The costs of the n/iso-column arise from the comparably difficult 

separation of the two very similar aldehydes; hence, a high number of stages is required 

(Hentschel et al., 2014). The separation process requires a large number of theoretical stages 

and a high reflux ratio, which lead to high investment and operating costs. According to Micovic 

et al. (2012), the distillation separation of long-chain isomers tends to be more costly or even 

technically infeasible due to the decreasing difference in boiling points with increasing chain 

length.  

Several methods have been described for the separation of isomeric long-chain aldehydes. 

One separation technique combines a precipitation of the aldehydes with hydrogen sulfite 

compounds and a subsequent extraction (Beierling et al., 2013). Since amongst others the 

aldehydes are used as flavours, no impurities are allowed to remain in the aldehydes that 

affect the odour or smell, therefore this method is not favourable. Furthermore, hydrogen 

sulfite compounds catalyze a polymerization of aldehydes to cyclic trimers. Another method is 

the supercritical CO2 (scCO2) extraction of aldehydes from a reaction medium containing ionic 

liquids. Therefore, scCO2 works as a carrier, which inserts the educts into the reaction media 

and extracts the products. Since less than 100 % conversion can be realized in a continuous 
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process, the scCO2 takes amongst the product also not converted educt out of the reaction 

media. Therefore, an additional subsequent separation after the reaction step is required.  

Layer melt crystallization, in contrast, is a technically-proven and selective method for 

separating isomeric compounds. Micovic et al. (2012) and Steimel et al. (2014) have 

recommended hybrid processes of melt crystallisation and distillation. The combination of melt 

crystallisation and distillation in an integrated hybrid process may lead to enormous benefits 

through the synergetic effects of the high capacity of distillation and the high selectivity of melt 

crystallisation (Steimel et al., 2014). Such hybrid separations have found industrial application 

for the separation of isomers. Stepanski and Haller (2000) have described the recovery of 

xylenes from isomeric mixtures using combination of crystallization and distillation. Ruegg 

(1989) have described the use of distillation plus crystallization for purification of 

dichlorobenzenes. Bastiaensen (2002) have demonstrated use of crystallization and 

distillation in purification of acrylic acids or methycrylic acid.  

All contributions have demonstrated that the use of stand-alone distillation presents 

challenges of high operating costs as a result of high energy demand and investment costs 

as a result of packaging height. 
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3.4 Catalyst recovery from metathesis and hydroformylation systems  

Commercialisation of metathesis and hydroformylation reactions in fine-chemical/specialty 

chemical/pharmaceutical product transformation is hindered by the high costs of catalysts and 

problems of recovery of homogeneous catalysts (Huang et al., 2014). Vougioukalakis (2012) 

states that pharmaceutical processes and medical regulation requires ruthenium complexes 

in post reaction products to be less than 9 ppm. Due to high boiling points of long chain olefins 

and crude aldehyde products the catalysts cannot be separated from reaction mixtures by 

conventional distillation due to thermal instability of catalysts at the operating temperatures 

(Hentschel et al., 2014, Muller et al., 2013, Huang et al., 2014). Hence, it is evident from these 

shortcomings that one must look at different separation processes for the recovery of 

catalysts.  

An arsenal of techniques in homogeneous catalyst recovery has offered remarkable progress 

in recent years. Above all, these improvements concentrate on the modification and the 

handling of homogeneous catalysts in general and the removal and subsequent recycling of 

catalysts in particular. Among the possibilities considered so far include multiphase operation 

of homogeneous catalysis and are not limited to; processes with organic/organic, 

organic/aqueous, or “fluorous” solvent pairs (solvent combinations), nonaqueous ionic 

solvents, supercritical fluids, systems with soluble polymers and OSN membrane processes. 

Figure 3.9 shows the progress of homogeneous catalyst recovery using multiphase operation 

of homogeneous catalysis. 

According to Cornils et al. (2005), the advent of multiphase system at 

Ruhrchemie/Rhone-Pouenc’s oxo plant at Oberhausen gave an enormous impetus to the 

homogeneous catalysis community. The use of liquids in homogeneous catalysis means not 

only a liquid support from the basic handling of the catalyst but also a modern separation 

technique. However, because of high catalyst costs requirements for close to 100 % catalyst 

recovery have often prompted the need for a second separation step to reduce the catalyst 

loss. According to Schmidt et al. (2014), multistage OSN membrane set can be used to 
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achieve > 99,9 % rejection of catalyst. Figure 3.9 shows the techniques currently applied for 

homogeneous catalyst recovery from post reaction mixtures. 
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Figure 3.9.: Schematic of homogeneous catalysis utilising 2-phase catalyst recovery system 

 

Concerning two-phase systems, only two processes (Ruhrchemie/Rhône-Poulenc and Shell 

SHOP) are operative industrially so far (Wiese and Obst, 2006). Sections 3.4.1 to Section 
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3.4.4 herein discuses some of the potential techniques to address the challenge of recovery 

and recycle of homogeneous catalyst. 

3.4.1 Liquid multiphase systems (LMS) 

Different solution systems have been proposed to enhance the solubility of higher olefins 

(Cn>C5) and separation of catalyst from product stream. According to Kohlpaintner et al. 

(2001), a liquid multiphasic system would solve the problem of product/catalyst separation in 

a very elegant manner. A liquid multiphase system consists of two immiscible solvents A and 

B to promote solubility of reaction substrates and or catalyst during reaction and allows 

separation of reactants and products from the catalyst when allowed to settle in a decanter 

(Beller et al., 1999). The principle behind this technique is that the catalyst is dissolved in the 

solvent B and the product is separated within the solvent A while reactants are soluble in both 

phases, so that good mass transfer between the two phases in the reactor ensures good 

reaction performance (Dreimann et al., 2014). However, a good phase separation and catalyst 

recovery has to be ensured (Hentschel et al., 2014) in order to minimize loss of the valuable 

Rh-catalyst.  

Dreimann et al. (2016) owes the excellent catalyst recovery of the 

Ruhrchemie/Rhone-Poulenc (RCH/RP) process, one of the most important industrial 

applications of homogeneous catalysts to the successful application of the liquid multiphase 

system. According to Liu et al. (2015), the RCH/RP process was a milestone for liquid/liquid 

biphasic catalysis and greatly promoted the development of aqueous/organic biphasic 

catalysis. However, adopting this process to more complex substrates (higher olefins) leads 

either to poor catalyst activity, due to mass transport limitations or to the loss of precious metal 

catalysts (Muller et al., 2013, Dreimann et al., 2016). Behr and Brunsch (2013) investigated 

the effect of the chain length of the product on the catalyst leaching as dissolved in the product 

phase. Table A.3 in Appendix A summarises different solvent reaction systems used in 

hydroformylation of long chain alkenes to maximise solubility of long chain alkenes. 

According to Porgzeba et al. (2016), microemulsion systems are ternary mixtures consisting 

of a non-polar compound (oil), a polar compound (water), and a surfactant (often non-ionic 
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surfactants are chosen in this context). Figure 3.10 shows the schematic diagram of the liquid 

multiphase system for the promotion of reaction and recovery of catalysts. Figure 3.10 

illustrates the enormous importance of the biphasic technique for homogeneous catalysis: the 

catalyst solution is charged into the reactor together with the reactants A and B, which react 

to form the solvent-dissolved reaction products C and D. The products C and D have different 

polarities than the catalyst solution and are therefore simple to separate from the catalyst 

phase (which may be recycled in a suitable manner into the reactor) in the downstream phase 

separation unit. 

 

Alkenes+Syngas

Decanter

Suplimentary 

aqeous solution

Aqueous catalyst

Crude aldehyde

Reactor Crude aldehyde + Aqueous 

catalyst

 

Figure 3.10.: Principle of two-phase catalysis (Cornils et al., 2005) 

 

A number of advantages of the aqueous/organic biphasic catalysis system, such as 

environment benignity and facile catalyst recovery have stimulated researchers to extend the 

system to the hydroformylation of higher olefins. In using surfactant systems as part of an 

integrated reaction and separation process, the surfactant will have a huge impact on the 

phase behaviour of the mixture and the distribution of catalyst and reactants between the 

aqueous and organic phase (Muller et al., 2013). Rhodium losses after phase separation as 

low as 1 ppm have been reported for biphasic post reaction systems of 1-dodecene (Muller et 
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al., 2013, Hentschel et al., 2014). However, for a 100,000 ton per year production plant this 

value would result in catalyst costs of 40 million US $ per year (2002) which is far too high for 

an economical process based on microemulsion (Sharma et al., 2002). The concept of catalyst 

recycling based on the specific properties of the surfactant system gave an efficiency for 

catalyst recycling of >97 % with minor loss in activity (Schwarze at al., 2015).  

3.4.2 Thermomorphic multicomponent solvent systems (TMS) 

Liquid multiphase techniques for recycling of homogeneous catalyst typically suffer from mass 

transfer problems of the product into the catalyst phase or vice versa (Dreimann et al., 2015). 

Literature (Hentschel et al., 2014, Muller et al., 2011, Kierdorf et al., 2014, and Zagajewski et 

al., 2014) have recommended an integrated setup of reaction and phase separation 

developed in terms of thermomorphic multicomponent solvent (TMS) systems as a novel 

solution to improved mass transfer and greater degree of certainty in expensive catalyst 

recovery in hydroformylation of long chain olefins.  

The method is based on the temperature-dependent miscibility gap of two or three solvent 

components hence, at least two of the selected components must be immiscible at low 

temperatures and must form a single phase at reaction temperatures to overcome mass 

transport limitations (Dreimann et al., 2016). Cooling below the critical solution temperature 

leads to a biphasic system, then the catalyst phase can be separated from the extract phase 

and can be used again (Figure 3.11).  

 

Homogeneous 

reaction

T (HIGH)

Liquid/liquid separation

T (LOW)

Catalyst, solvent B

substrate(s), 

solvent A

product(s), 

solvent A

 

Figure 3.11.: Novel process concept for reaction and separation of catalyst (TMS) 

 

According to Behr and Brunsch (2013), the solubility of the polar solvent (for example DMF) 

in the product phase increases with increasing chain length and therefore catalyst leaching. 
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Hence the shorter the chain length of the substrate or product, the lower the undesirable 

leaching of the rhodium catalyst. Zagajewski et al. (2014) and Kiedorf et al. (2014) quantified 

the rhodium concentration between 4 and 7 ppm, while phosphorous lies between 7 and 17 

ppm and concluded that lower catalyst leaching could be achieved at low temperatures of up 

to 5 oC. 

3.4.3 Distillation 

Distillation has remained an important technique for the separation of liquid mixtures into its 

components (Kooijman and Taylor, 2014, Fraser, 2014). The driving force of this separation 

technique are different volatilities of involved species. During the distillation process, the more 

volatile component is enriched in the vapour phase and the less volatile component is enriched 

in the liquid phase. In contrast to membrane distillation, the membrane acts as a porous barrier 

providing the interfacial area between gas and liquid. The separation is still based on the 

different volatilities as in distillation; however, through the use of phobic materials towards the 

liquid solvent, the membrane hinders the liquid to enter the membrane (Kooijman and Taylor, 

2014).  

Advantages towards the use of distillation systems are the provision of high specific surface 

area, the potential use of milder conditions at lower pressures while disadvantages are large 

pressure drops as well as the identification of suitable and stable membrane materials as well 

as fouling (Beller et al., 1999). Distillation has been used in the Low-Pressure-Oxo process 

(e.g. Ruhrchemie/Rhone Poulenc Process) to recover a high boiling solvent, used in 

hydroformylation to dissolve the homogeneous catalyst. Figure 3.12 shows the schematic 

representation of distillation process to recover catalyst. 
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Figure 3.12.: Distillation system for catalyst recovery 

 

Distillation is not suitable in the hydroformylation of long chain olefins due to their low vapour 

pressures. Evaporating the products may lead to degradation of the aldehydes and the 

catalyst complex due to high temperatures. 

3.4.4 Organic solvent nanofiltration (OSN) membrane process 

Nanofiltration in non-aqueous media, denoted as organic solvent nanofiltration (OSN) is a 

recent membrane process, which can replace traditional separation systems in the chemical, 

pharmaceutical and biotechnology industry where organic solvents are used in production 

(Vandezande et al., 2008, Livingston et al., 2003). An increasing number of successful 

applications has been reported in catalysis (Janseen et al., 2011) the petrochemical industry 

(White, 2006) and the pharmaceutical industry (Sheth et al., 2003).  

In comparison to conventional unit operations like distillation, OSN is less energy consuming 

(Dreimann et al., 2015, Schmidt et al., 2013, Seifert et al., 2014) due to low separation 

temperatures. Both, the rejection coefficient, R and the flux, J are useful parameters to 

evaluate the efficiency of a membrane process. Rejection is defined as a function of the 

concentration of a specific component in the feed (F) compared to concentration in the 
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permeate (P) and represents the selectivity of the membrane. The flux, J, represents the liquid 

volume flowing through a specific membrane area during a specific time (L/m²h) or (kg/m²h).  

To recycle homogeneous catalysts, organic solvent nanofiltration (OSN) has been 

investigated in the last 10 to 15 years with the development of membranes stable in organic 

solvents (Ormerod et al., 2013). Although initial attempts on catalyst recovery by Wijkens et 

al. (2000), were unsuccessful, Vougioukalakis, (2012) and Vogt et al., (2011) have 

demonstrated that OSN approach has great potential in homogeneous catalysis. Livingston et 

al. (2013) also confirmed that organometallic catalysts recycling can be performed by OSN 

technology as an alternative route.  

Only a few large scale applications of OSN exist. Mobil’s MAX-DEWAX™ process installed at 

Beaumont refinery in 1998 is the largest with a design feed rate of 11 500 m3/day (White and 

Nirsch, 2000). It is used for solvent recovery from the dewaxed oil filtrate stream. The 

Max-DewaxTM process is used for solvent recovery in lube dewaxing and allowed 20 % energy 

savings and 3–5 % increased yield (White, 2000,2006). 

Several patent applications have been made by companies on the use of membranes for 

homogeneous catalyst separation, e.g. DSM (Borman et al., 2003, Vries et al., 2013), Evonik 

(Wiese et al., 2007, Priske et al., 2007) and BASF (Peter et al., 2004). Reliable membranes 

possessing long term resistance to a wide range of organic solvents are now being 

commercially available (Schmidt et al., 2014). One example of the pilot plant application of 

this technique is given by Evonik (Franke et al., 2010) (Figure 3.13). In the test plant for OSN, 

they used as a model the Rh-catalyzed hydroformylation of 1-octene and 1-dodecene. In OSN, 

a pressurised liquid feed stream (transmembrane pressure (TMP) around 20-60 bar) is split 

into a liquid retentate and liquid permeate (Schmidt et al., 2014). 
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Figure 3.13.: Continuous reaction integrated separation for hydroformylation of higher olefins 

using OSN at Evonik (redrawn from Franke et al., 2010).  

 

Janssen et al. (2010) operated a pilot scale combining two separate loops, the reaction loop 

containing a CSTR and the membrane loop containing the membrane unit in a continuous 

process for 13 days. The results showed that 99.96 % of the Rh-TPPTS can effectively be 

retained by the nanofiltration membrane, thus tremendously simplifying the workup as the Rh 

concentration in the product is extremely low. Priske et al. (2010) reported an efficient 

separation of a homogeneous Rh-catalyst in the hydroformylation of n-dodecene.  

Using the Starmem-240 membrane by Grace Davison, high rhodium rejections were achieved 

and the preservation of the catalyst activity was shown on the basis of the n-dodecene 

conversion. According to Priske et al. (2010), StarmemTM membranes are phase inversion 

polyimide membranes that contains nanopores which under pressure, are mechanically 

deformed to a smaller cross-section which leads to better rejection. The main part of this 

deformation is reversible, i.e. as soon as the pressure is lowered the primary membrane 

structure will be recaptured hence can be reused in consecutive separation cycles. 

Membrane separations are also low energy and thus often considered green separations. 

However, the prerequisite being that the membranes are stable in organic solvents. Van der 

Gryp et al. (2012) presented a solution to overcoming the challenge of separating and reusing 

homogeneous Ru catalysts from postreaction products using OSN in the metathesis reaction 
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of 1-octene to 7-tetradecene and ethylene using HGr-2 precatalyst. Various precatalyst 

loadings from 340 to 1400 ppm were successfully retained by the StarmemTM 228 membrane.  

Different precatalyst loadings and transmembrane pressures were also investigated for 

different metathesis precatalysts (Gr-1, Gr-2, HGr-1, HGr-2) using StarmemTM 228 membrane 

from post reaction mixtures and gave rejections as high as 99.9 %. According to Van der Gryp 

et al. (2012) the process of coupling reaction, separation, and catalyst recycling increased the 

turnover number to 4 times for the overall consecutive reaction−separation steps of four cycles 

investigated. Peeva and Livingston (2012) investigated the recovery of Ru catalyst using 

StarmemTM 228 and PuraMemTM 280 membranes in toluene. The catalyst was successfully 

retained by the OSN membranes, and its high reactivity upon reuse was demonstrated by 84 

% conversion. Nair et al. (2009) also demonstrated the feasibility of OSN catalyst recycle on 

the homogeneous, asymmetric hydrogenation of dimethyl itaconate (DMI) to dimethyl 

methylsuccinate (DMMS) with Ru-BINAP. The optimization of the process allowed 5 times 

higher substrate to catalyst ratio as well as 10 reaction cycles to be carried out with only 20 % 

addition of the initial catalyst while still maintaining a high reaction rate, conversion, and 

selectivity (Nair et al., 2009). 

3.4.4.1 Effect of OSN step on catalyst activity 

Apart from demonstrating that it is possible to recover homogeneous precatalysts Gr-1, Gr-2, 

HGr-1 and HGr-2 using the Starmem series of membranes at optimal reaction conditions Van 

der Gryp (2009) also confirmed that the catalysts could also be recovered in their “active” form 

contrary to previous reports by Wijkens et al. (2000) and Vorfalt et al. (2008). Van der Gryp et 

al. (2012) concluded that it is not the lack of stability of organic solvent nanofiltration 

membrane, although stability is highly sought after, but the short catalyst lifetimes that prevent 

the successive re-use of Grubbs type catalysts after separation.  

Van der Gryp (2009) established that catalyst stability with respect to reaction lifetime with 

OSN process for the metathesis of 1-octene with different precatalysts are in the order 

Gr-1<Gr-2<HGr-1<HGr-2 with the life of HGr-2 estimated at close to 10 hrs. The coupled 

reaction-separation and recycling process increased the turnover number from 1 400 for a 
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single pass reaction to 5 500 for the overall consecutive reaction–separation steps (Van der 

Gryp, 2009). 

3.4.4.2 Effect of precatalyst concentration on catalyst recovery  

Rabiller-Baudry et al. (2013) studied the effect of precatalyst concentration on catalyst 

recovery at 40 bar in cross-flow mode with different initial pre-catalyst concentrations ranging 

from 0.05 x 10-3 to 1.40 x 10-3 mol/L. The pre-catalyst retention increased from 94.8 % to 99.5 

% when the concentration was increased from 0.05 x 10-3 mol/L to 1.40 x 10-3 mol/L. However, 

an important limitation of the investigation was that the membrane was first selected on a 

single criterion ‘‘to have a high retention of the precatalyst’’. It should be probably better 

adapted to look for a compromise between the high retention of the pre-catalyst and the high 

transmission or flux of the product in order to limit nanofiltration stages or total membrane 

area. However, Van Der Gryp (2009) established that hydrophobic type membranes such as 

MPF-50 and StarmemTM series give higher fluxes for non-polar components and that 

StarmemTM 228 with a MWCO of 280g/mol gives high recoveries greater than 99 % and fluxes 

up to 15L/m2h for 1-octene and 7-tetradecene mixtures.  

3.5 Previous studies on simulation of metathesis and hydroformylation systems 

No information for previous olefin metathesis is available from open source literature and 

articles. Hentschel et al. (2014) developed an Aspen PlusTM model of hydroformylation of 

1-dodecene in a thermomorphic multicomponent solvent system (TMS) Figure 3.14. The 

reactor was developed using the identified reaction network given by (Markert et al., 2013 and 

Kierdorf et al., 2014). The solubilities of CO and H2 in neat solvents (decane, DMF), 

1-dodecene and n-tridecanal were also modelled with PC-SAFT. Results of 10 000 tonnes per 

annum Aspen PlusTM simulation for this system concluded that a residence time of 16,3 

minutes, a volume of 11,5 m3 could give 65.4 % conversion of 1-dodecene and a selectivity of 

91,4 % n-tridecanal and optimum parameters for the reactor being100 oC, 30 bar. 
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Figure 3.14.:1-dodecene hydroformylation Process (redrawn, Hentschel et al., 2014) 

 

3.5.1 Aspen PlusTM custom models on OSN separation in hydroformylation 

Schmidt et al. (2014) presented results of Aspen Custom Modeller to simulate and optimize 

the recovery of Rh-catalyst in hydroformylation. Triphenylphosphine was selected to represent 

the catalyst complex. Triphenylphosphine stage rejections of 90 %, 80 % and 70 % 

corresponding to three, four and five stages respectively gave overall rejections of 99.99 % 

for Puramem™ 280 membrane at transmembrane pressures (TMP) of 50 bar with appreciable 

permeate fluxes per unit membrane area. However, the methodology used for model 

interfacing is not revealed. 

3.5.1.1 Cascade membrane systems 

Vanneste et al. (2011), Vanneste et al. (2012) and Caus et al. (2009a & 2009b) extrapolated 

single-stage experimental data to multi-stage membrane cascades. The simple filtration unit 

can be arranged in multistage membrane cascades, to overcome the selectivity limit intrinsic 

to a single filtration stage. Marchetti et al. (2015) and Caus et al. (2009a) studied the 

applicability of integrated counter current cascades for the separation of individual organic 

components (xylose and maltose) in aqueous solutions. Caus et al. (2009a) concluded that 
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membranes with a low rejection for the desired component are preferred to obtain a high 

product recovery, whereas membranes with a much higher rejection for the undesired 

component are preferred to obtain a high product purity or a high selectivity product purity or 

a high selectivity.  

3.6 Summary 

From the findings of the literature study carried out, it is apparent that the process of upgrading 

1-octene to functionalised hydrocarbons through a sequence of reactions namely metathesis 

and hydroformylation is a high potential candidate. Organic solvent nanofiltration (OSN) 

membrane process is attractive because of high catalyst retentions and stability of Starmem 

membranes (Priske et al., 2010). Specific opportunities could lie in the optimization study of 

the multiphase reaction system to improve the solubility of long chain olefins in aqueous 

catalyst media and efficient catalyst recovery and recycle. Previous simulation of 

hydroformylation of 1-dodecene by Hentschel et al. (2014) exposes challenges of separation 

of catalyst and purification of products. 

Hence, using the data as obtained from literature it is possible to conduct a techno-economic 

study of producing 10 000 tonnes per annum of 2-hexyl-nonanal (99 wt. %) by upgrading low 

value 1-octene form a Fischer-Tropsch product stream. Kinetic data for self-metathesis of 

1-octene as given by Van der Gryp (2009) and hydroformylation of 7-tetradecene as given by 

Haumann et al. (2002b) will be used to develop reactor models. In order to develop the 

reaction system design specifications for solvent and alkene mixtures by Haumann et al. 

(2002a, 2002b) and Muller et al. (2013) will be used. The species permeability data by Van 

der Gryp (2009) together with Bhanushali et al. (2002) model will be used to develop OSN 

membrane units in Aspen PlusTM. Figure 3.15 shows a block flow diagram for some identifiable 

process units.  
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Figure 3.15.: Block flow diagram for the process 
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CHAPTER 4: PROCESS DEVELOPMENT 

“Engineers like to solve problems. If there are no problems handily available, they 

will create their own problems.”  

 Scott Adams  

 

Overview 

Chapter 4 provides a detailed procedure for developing a process of upgrading low value 

1-octene from a Fischer-Tropsch Synthol product stream to 2-hexyl-nonanal an important 

intermediate for the manufacture of Guerbet-type surfactants at Sasol Secunda. This chapter 

is subdivided into four sections which are, Section 4.1 (Introduction), Section 4.2 (Douglas 

methodology for process development), Section 4.3 (Overall process development of the 

process section), Section 4.4 (Overall process integration) and finally Section 4.5 (A summary 

of the chapter). 
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4.1 Introduction 

The process to be developed can be defined as the homogeneous metathesis of 1-octene 

from a Fischer-Tropsch product stream to produce 7-tetradecene (n-alkene) and the 

subsequent hydroformylation of 7-tetradecene to 2-hexyl-nonanal. The process will produce 

10 000 tonnes per annum of 2-hexyl-nonanal at a purity of 99 wt. % from raw materials and 

feedstocks such as 1-octene, syngas, solvents and utilities purchased on site at Sasol 

Secunda, South Africa. According to Arnoldy (2000), annual design capacities for 

petrochemical process of 10 000-500 000 tonnes are more attractive to investors. The required 

product purity for 2-hexyl-nonanal is 99 wt. %. According to Hentschel et al. (2014) and Steimel 

et al. (2014), downstream processing requires aldehyde purities above 98 wt. %.  Table 4.1 is 

a summary of the process requirements. 

 

Table 4.1.: A summary of basic process requirements 

Design parameter Description Justification 

Product name 2-hexyl-nonanal    

(99 wt. %) 

Market requirement (Hentschel et al., 2014; Steimel 

et al., 2014) 

Desired production rate 10 000 ton per 

annum 

Petrochemical 10 000-500 000 tonnes per year 

attractive to investors (Arnoldy, 2000) 

Feedstock 1-octene  

(100 % mol basis) 

Feed stock purity selected was 100 % purity for 

academic purpose and the fact that the literature 

used excluded effects of feed purities. 

Nature of Process Continuous The production rate was over batch maximum 

(Douglas, 1988, McKenna and Malone, 1990) 

 

It will therefore most likely be an annexed plant built alongside the extractive distillation section 

of the Chemicals Plant, sharing common systems such as utilities, effluent treatment, and 

personnel. Therefore, facilities to produce utilities at the required capacity, a laboratory, and 
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waste disposal areas are not included in the designs. The approach to developing a 

conceptual process of upgrading 1-octene from a Fischer-Tropsch product stream to 

2-hexyl-nonanal at Secunda South Africa was adopted from the Douglas’ (1988) methodology. 

4.2 The Dougas methodology 

The hierarchical decomposition based approach of Douglas (1988) was used in this study and 

this section is a short summary of the methodology. Appendix B gives further details to the 

Douglas methodology. The Douglas’ (1988) methodology for single-product, continuous 

vapour-liquid processes is a hierarchical design approach, which was adopted in this study 

due to the inherent hierarchy nature of the conceptual design (Yang and Shi, 2000). Each level 

includes new decisions and additional flowsheet structures. Heuristics are used to help the 

designer to make those decisions and the opposite decisions are accumulated in a list of 

process alternatives to be considered after a base-case design has been generated. The 

essence of a hierarchical decomposition based approach is a sequential design procedure 

and each decision level terminates with an economic analysis (McKenna and Malone, 1990). 

At each hierarchy level, the dominant design variables and parameters are identified, both 

capital and operating costs are evaluated as a function of these variables.  

According to the Douglas methodology, before the hierarchical approach is applied to 

conceptual process development, the designer has to make a decision on whether to operate 

a “continuous” or “batch” process. In this investigation, the plant capacity of 10 000 tonnes per 

annum was used. According to Douglas (1988), a continuous process is used if production 

rate is more than 500 tonnes per annum. McKenna and Malone (1990) recommends that for 

petrochemicals with production rate of more than 1 000 tonnes per year (8 000 hrs) a 

continuous process must be selected. Hence, from the specified design specification in this 

study, it is clear the process is continuous due to the high production rate. Figure 4.1 is an 

illustration of the Douglas methodology for developing a continuous process. 
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Cost 

Factors

Level 1 
 Section 4.2.1 (Input/output)

 Section 4.3.1.1 (Metathesis Sect.)

 Section 4.3.2.1 (Hydroformylation Sect.)

Product Value 

(PV)

Input Costs  

(IC)

EP1 = PV - IC

Level 2 
 Section 4.2.2 (Reactor recycle)

 Section 4.3.1.2 (Metathesis Sect.)

 Section 4.3.2.2 (Hydroformylation Sect.)

Reactor Costs    

(RC)
EP2 = EP1 – RC-CC

Level 3 
 Section 4.2.3 (Separation system)

 Section 4.3.1.3 (Metathesis Sect.)

 Section 4.3.2.3 (Hydroformylation Sect.)  

Separation Costs 

(SC)
EP3 = EP2 - SC

EPM-1, EPH-2 >0, 

(continue to Level 3)

EPM-1, EPH-3 >0, 

(optimal condition)

EPM-1, EPH-3 <0, 

(abandon project)

Economic 

Potential (EP)

EPM-1,EPH-1 >0, 

(continue to Level 2)

EPM-1, EPH-1 <0, 

(abandon project)

+

-

-

-

Douglas Hierarchy 

Level

Single pass conversion

Selectivity

Single pass conversion

Selectivity

L/D

Single pass conversion

Selectivity

Parameters

EPM-2, EPH-2 <0, 

(abandon project)Compressor Costs 

(CC)

-

-

-
-

-
-

-

-

 

Figure 4.1.: An illustration of the Douglas methodology for continuous process development 

 

4.2.1 Input-output information (Level 1) 

According to Douglas (1988), in order to understand the decisions required to fix the 

input-output structure of a flowsheet, the designer merely draws a box around the total process 

as shown in Figure 4.2.  

 

Process

Streams By-products

Feed Products

 

Figure 4.2.: Input-output structure of flowsheet (Douglas, 1988) 
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Thus, attention is focused on what raw materials are fed to the process and what products 

and by-products are removed. Figure 4.2 indicates that no reactants leave the system. Since 

the raw materials costs normally fall in the range from 33 to 85 % of the total processing costs, 

it is required to calculate these costs before addition of any other detail to the design (Douglas, 

1988). Design variables considered at Level 1 are single pass conversion and selectivity or 

yield to the required product. The “best" values of the design variables depend on the process 

economics, hence, at Level 1, it is required to calculate the stream costs, i.e., the cost of all 

raw materials and product streams in terms of the design variables. The economic potential 

at Level 1 (EP-1) is defined as the difference between the product value and raw material 

costs. The formula for EP-1 is: 

         𝐸𝑃-1 = 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠) − 𝐶𝑜𝑠𝑡 (𝑅𝑎𝑤 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠),
$

𝑦𝑟
                 (4.1) 

The EP-1 for the metathesis process (EPM-1) is the difference between the revenue from 

7-tetradecene and raw material costs, which include 1-octene and catalyst. It is the annual 

profit obtained without paying anything for capital costs or utilities costs. Thus, formula for 

EPM-1 is: 

                       𝐸𝑃𝑀-1 = 𝑉𝑎𝑙𝑢𝑒 (7 − 𝑡𝑒𝑡𝑟𝑎𝑑𝑒𝑐𝑒𝑛𝑒) − 𝐶𝑜𝑠𝑡 (1-𝑜𝑐𝑡𝑒𝑛𝑒, 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡𝑠),
$

𝑦𝑟
 (4.2) 

The EP-1 for hydroformylation process section (EPH-1) is the difference between the revenue 

from the 2-hexyl-nonanal product and the costs of raw materials (1-octene, catalysts) and cost 

incurred in developing the metathesis process section. The formula for determining EPH-1 is: 

𝐸𝑃𝐻-1 = 𝑉𝑎𝑙𝑢𝑒 (2 − 𝐻𝑁 ) − 𝐶𝑜𝑠𝑡 (1-𝑜𝑐𝑡𝑒𝑛𝑒, 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡𝑠) − 𝐶𝑜𝑠𝑡 (𝑀𝑆),
$

𝑦𝑟
       (4.3) 

Where,  

 2-HN = 2-hexyl-nonanal product 

 MS = Metathesis Section 

Hence, if the EPM-1 or EPH-1 is negative (EP-1<0), i.e., the raw materials are worth more 

than the products, the decision is either to terminate the design project, look for a less 
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expensive source of raw materials, or look for another chemistry route that uses less 

expensive raw materials. 

4.2.2 Reactor and recycle structure (Level 2) 

At Level 2, the annualised reactor costs, annualized compressor costs and operating costs of 

the gas-recycle compressors are considered. The catalyst type, temperature, pressure, single 

pass conversion and L/D ratio of the reactor are parameters investigated at Level 2. A kinetic 

model is used to estimate the variation of reactor cost and recycle rate with a change in the 

single pass conversion of 1-octene for the metathesis process and 7-tetradecene for the 

hydroformylation process. The detailed description of equations for reactor costs and 

compressor costs is given in Appendix B.2.2. Appendix B.2.2 details the heuristics used to 

determine the number of reactors, the number of recycle streams and heat effects at Level 2 

of process development. At Level 2, the separation system is treated as a perfect-separation 

unit (black-box) and Figure 4.3 shows the flowsheet structure. 

 

SEPARATION Product 

Recycle

Catalyst

PurgeCOMPRESSION
Gas recycle

Feed
REACTOR

 

Figure 4.3.: Reactor and recycle structure (Douglas, 1988) 

 

The recycle of unconverted reactants (1-octene, syngas and 7-tetradecene) is considered. 

EP-2 is defined as profit obtained after subtracting the annualized reactor cost and the 

compressor costs (annualized capital and power) from the EP-1. The formula for EP-2 is: 

𝐸𝑃-2 = 𝐸𝑃-1 − 𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝐶𝑜𝑠𝑡 − 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 𝐶𝑜𝑠𝑡𝑠,
$

𝑦𝑟
 (4.4) 
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Thus, EPM-2 for the metathesis process section is the annual profit that could be realised after 

considering the annualised metathesis reactor costs.  

                       𝐸𝑃𝑀-2 = 𝐸𝑃𝑀-1 − 𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝐶𝑜𝑠𝑡,
$

𝑦𝑟
                                                              (4.5) 

The EPH-2 for the hydroformylation process section is the annual profit that could be obtained 

if annualised reactor cost and syngas-recycle compressor costs are considered.  

𝐸𝑃𝐻-2 = 𝐸𝑃𝐻-1 − 𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝐶𝑜𝑠𝑡 − 𝑆𝑦𝑛𝑔𝑎𝑠 − 𝑅𝑒𝑐𝑦𝑐𝑙𝑒 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 𝐶𝑜𝑠𝑡𝑠,
$

𝑦𝑟
       (4.6) 

Hence, if EPM-2 or EPH-2 is negative, i.e., raw materials, reactor and syngas-recycle 

compressor are worth more than the products. The designer may want to terminate the design 

project, look for a less expensive source of raw materials, or look for another chemistry route 

that uses less expensive raw materials and cheaper equipment. 

4.2.3 Separation system design (Level 3) 

At Level 3, the analysis considers only the synthesis of a separation system to recover 

gaseous and liquid components as shown in Figure 4.4. The selectivity, single pass 

conversion of 1-octene in metathesis process and 7-tetradecene in hydroformylation process 

are parameters used to develop the separation system at Level 3.  

 

PHASE SPLIT

Liquid

Products

Liquid recycle

LIQUID 

SEPARATION 

SYSTEM

Feed streams REACTOR 

SYSTEM

VAPOUR 

RECOVERY 

SYSTEM

Liquid

Vapour

Vapour

 

Figure 4.4.: Flowsheet structure for liquid-vapour effluent (Douglas, 1988) 
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The analysis is broken down into vapor recovery system and liquid separation system as 

shown in Figure 4.4. The rules and heuristics used to develop the separation system at Level 

3 of are given in detail in Appendix B.2.3. The model for the total annual cost of separation 

included a flash drum, membrane, column shell and trays costs, condenser and reboiler costs, 

cooling water and steam costs. The equations used to determine separation costs are given 

in Appendix B.2.3. The economic potential at Level (EP-3) is defined as the profit obtained 

after considering raw material costs, annualised reactor costs, compressor costs and 

separation costs. EP-3 is obtained by subtracting the total separation costs from EP-2. The 

formula for EP-3 is: 

𝐸𝑃-3 = 𝐸𝑃-2 − 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝑠,
$

𝑦𝑟
 (4.7) 

EPM-3 at Level 3 of metathesis process section is obtained by subtracting the separation cost 

for the removal of ethylene, recovery of unreacted 1-octene and the catalyst from EPM-2. The 

formula for EPM-3 is: 

                  𝐸𝑃𝑀-3 = 𝐸𝑃𝑀-2 − 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝑠,
$

𝑦𝑟
 (4.8) 

EPH-3 for the hydroformylation process section is obtained by subtracting the separation cost 

for recovering unreacted 7-tetradecene, unreacted syngas, catalyst and purification of 

2-hexyl-nonanal product from EPH-2. The formula for EPH-3 is: 

         𝐸𝑃𝐻-3 = 𝐸𝑃𝐻-2 − 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝑠,
$

𝑦𝑟
 (4.9) 

If the economic potential at Level 3 is negative, then the designer may decide to terminate the 

project, look for a less expensive source of raw materials, or look for another chemistry route 

that uses less expensive raw materials and cheaper separation equipment.  

The results of analysis at Level 3 of process development for the metathesis and 

hydroformylation process sections generates base case process flow diagrams (PFDs) in 

Section 4.4. The base case PFDs, ‘best’ catalyst type, temperature and single pass conversion 

of 1-octene for metathesis and single pass conversion of 7-tetradecene for the 
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hydroformylation process section are used in detailed design engineering evaluation in 

simulation (Chapter 5). 

4.3 Overall process development 

The overall process was first subdivided into two process units namely metathesis and 

hydroformylation process sections as shown in Figure 4.5.  

 

Grubbs-based 

catalyst

Syngas 

C14

Solvent, Rh-cat

2-Hexyl-nonanal

(10 000 ton/yr)

Ethylene

HYDROFOMYLATION PROCESS 

SECTION

(Section 4.3.2)

METATHESIS PROCESS 

SECTION

(Section 4.3.1)

1-octene 

 

Figure 4.5.: Simplified block flow diagram of the overall process 

 

These two process sections were synthesised separately using the idea of the hierarchical 

design methodology developed by Douglas (1988) as shown in Section 4.3.1 and Section 

4.3.2.  

4.3.1 Metathesis process section 

4.3.1.1 Input-output information (Level 1) 

This section focused on the development of a process to produce 7-tetradecene which will be 

used as a feedstock in the hydroformylation process to manufacture 2-hexyl-nononal. Table 

4.2 gives the relevant input information obtained from literature as was used in this study.  
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Table 4.2.: Input-output information for Level 1 metathesis section process 

Variables Description References 

1-octene conversion (%) 100 Lehmann et al. ( 2003); Van der Gryp et al. (2012) 

aSelectivity to C14 (%) 100 Van der Gryp (2009) 

C14 conversion (%) 100 Haumann et al. (2002b) 

bSelectivity 

2-hexyl-nonanal (%) 

70 Haumann et al. (2002a, 2002b)  

1-octene/HGr-2  

molar ratio 

10 0000 Van der Gryp et al. (2012) 

C14/Rh-TPPTS  

molar ratio 

2 500 Haumann et al. (2002b) 

1-octene $ 1.30/kg Sasol chemicals (2016) 

7-tetradecene $ 35.50/kg Alibaba (2016) 

HGr-2 catalyst $ 28 746.00/kg Alibaba (2016) 

HGr-1 catalyst $ 46 533.00/kg Alibaba (2016) 

Gr-1 catalyst $ 6 720.00/kg Alibaba (2016) 

Gr-2 catalyst $ 19 600.00/kg Alibaba (2016) 

Schrock $ 42 667.00/kg Alibaba (2016) 

aSelectivity to 7-tetradecene (%) = 
𝑁𝑜.𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 7−𝑡𝑒𝑡𝑟𝑎𝑑𝑒𝑐𝑒𝑛𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑
 % 

bSelectivity to hexyl-nonanal (%) = 
𝑁𝑜.𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 7−𝑡𝑒𝑡𝑟𝑎𝑑𝑒𝑐𝑒𝑛𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑
 % 

 

The design parameters used in this study were the 1-octene to catalyst molar ratio of 10 000 

in order to increase conversion rate (TON), selectivity (ratio of moles of primary product to 

total moles of all products formed) and decrease size of reactor volume at the same time 

minimising catalyst usage and cost. At Level 1 of metathesis process development, an overall 

mass balance and a test for the presence of a vapour recycle and purge stream was 

conducted. The assumptions considered for mass balance calculations at Level 1 are listed in 

Table 4.2. According to the mass balance calculations, for the production rate of 10 000 tonnes 

per annum of 2-hexyl-nonanal at 99 wt. % purity, it was found that the feed rate of 1-octene 
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required is 14 160 tonnes per annum in order to produce 12 390 tonnes per annum of C14 as 

intermediate. Figure 4.6 illustrates the input-output structure of the flowsheet at Level 1 of 

metathesis process design.  

 

REACTOR

1-C8

 Catalyst

C14H28

C2H4 purge

(14160 ton per yr) (12 390 ton per yr)

(1770 ton per yr)

 

Catalyst

PERFECT 

SEPARATOR

 

Figure 4.6.: Input-output structure at Level 1 of metathesis process development 

 

The components enter the process in two streams: the first containing 1-octene and the 

second stream contains precatalyst dissolved in 1-octene. The raw material and product prices 

were based on supplier bulky costs as summarized in Table 4.2. Equation 4.2 gives EPM-1 

for Level 1 of metathesis process design. Moreover, EPM-1 was also determined as a function 

of catalyst cost. If the value of the purified 7-tetradecene leaving the process was set at US $ 

35.50 per kg, then the EPM-1 for different commercial catalysts was determined as 

summarized in Figure 4.7. 

 

 

Figure 4.7.: EPM-1 for different commercial metathesis catalysts 
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The EPM-1 for all commercial catalysts considered gave preferable indicators per year hence; 

the project was sufficiently promising for further development. It can be seen that 

Grubbs-based precatalysts gave higher EPM-1 compared to Schrock catalyst. Furthermore, 

Schrock catalyst has a shorter catalyst lifetime of only seconds compared to Grubbs-based 

catalysts. Moreover, at Level 1 of metathesis process development, it would be premature to 

select the best catalyst based on EPM-1 values only, hence, results of EPM-1 together with 

other design parameters considered in Level 2 will be used to select the best catalyst. 

4.3.1.2 Reactor and recycle structure (Level 2) 

The main aim of Level 2 was to find operating conditions (single pass 1-octene conversion, 

catalyst type and optimum temperature) that would maximize EPM-2 by minimizing reactor 

cost. The parameters investigated at Level 2 includes catalyst type, temperature, single pass 

1-octene conversion and the L/D ratio of the reactor. Figure 4.8 shows the reactor and recycle 

structure at Level 2 of metathesis process design. 
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Figure 4.8.: Reactor and recycle structure at Level 2 of metathesis process development  

 

According to Lehmann et al. (2003), simultaneous metathesis and isomerization could easily 

describe the formation of a product mixture of PMPs, IPs and SMPs during the metathesis 

reaction of 1-alkenes. The current conceivable pathway to 1-octene metathesis is illustrated 

in Figure 4.9. 
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Figure 4.9.: Typical reactions and pathways for 1-octene metathesis (adapted, Lehman et al., 

2003, Van der Gryp, 2009) 

 

In this study, only one reactor was required since the objective was to maximise production of 

7-tetradecene (PMP). Literature data (Motoboli, 2012; Van der Gryp et al., 2012; Jordaan et 

al., 2009) for the metathesis of 1-octene using different commercially available metathesis 

precatalysts including Gr-1, Gr-2, HGr-1, HGr-2 and Schrock catalyst was used. In this study, 

independent operating conditions which includes temperature, 1-octene/catalyst molar ratio 

and reaction time were compared together with output variables such as single pass 

conversion, TON and selectivity to select the best catalyst. Table 4.3 shows a summary of 

literature data for comparison of the investigated catalysts based on the reported optimal 

conditions for each catalyst. 
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          Table 4.3.: Comparison of different commercial catalysts 

Catalyst 

Operating parameters Product distribution Activity 

References 

T  1-octene/Cat Rxn Time XC8 PMP IP SMP S TON 

 (oC) (molar ratio) (mins) (%) (%) (%) (%) (%) (-)  

HGr-1 50 10 000 420 39.53 36.87 2.29 0.37 93.28 3 687 Van der Gryp (2009) 

HGr-2 50 10 000 420 64.5 64.48 0.25 0.87 98.28 6 448 Van der Gryp et al. (2012) 

Gr-1 60 9 000 60 32 30.49 0.6 0.53 98 2 756 Motoboli (2012) 

Gr-2 60 9 000 60 44 42.71 0.62 0.6 98 1 429 Motoboli (2012) 

Schrock 85 100 210 67 63.6 2.5 0.9 - - Xaba (2011) 

Gr-1 35 9 000 420  - 40.8 0.4 0.3 98.31 - Max (2014) 

Gr-2 35 9 000 420  - 60.8 0 1.3 97.1 - Max (2014) 

Gr-1 25 1 000 300 67 62 5  94 - Jordaan et al. (2009) 

Gr-2 60 9 000 995  - 93 0.1 5.1 94.8 6 373 Huijsmans (2009) 

Gr-2 60 9 000 420  - 80.6 0 3.7 96.3 5 250             du Toit et al. (2014) 

 XC8  = 1-octene conversion 

 S = Selectivity (S =
PMP

PMP+IP+SMP
× 100%) 

 TON = Total number of moles product / mole catalyst. 
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In this study, HGr-2 precatalyst was the best catalyst as it gave high selectivity to 

7-tetradecene (PMP), economic catalyst to substrate molar ratio, a high TON and a 

comparatively longer catalyst life. HGr-2 was the most efficient catalyst as it gave the highest 

catalyst life, selectivity and single pass conversion at low temperatures. It could be concluded 

that HGr-2 precatalyst offers the advantage of a reduction in volume as it gave high activities 

(TON) compared to the other commercial catalysts reported in literature. Figure 4.10 shows 

the effect of temperature on the selectivity to 7-tetradecene for the metathesis of 1-octene in 

HGr-2 catalyst. 

 

 

Figure 4.10.: Effect of reaction temperature on selectivity to C14 for the metathesis reaction of 

1-octene in HGr-2 catalyst (experimental data from: Van der Gryp, 2009)  

 

It can be seen from Figure 4.10 that operating the reactor at temperatures less than 60 oC 

resulted in high selectivities (approximately 100 %). However, the design must also consider 

the effect of conversion (catalytic activity) on the size of the reactor. The effect of single pass 

1-octene conversion on the reactor cost and subsequently EPM-2 was determined in order to 
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find a range of operating single pass 1-octene conversion for a profitable metathesis process. 

The experimental data by Van der Gryp (2009) was used to determine the size of the 

metathesis reactor at different single pass 1-octene conversions. Figure 4.11 shows the effect 

of single pass 1-octene conversion on cost and EPM-2 at Level 2 of metathesis process 

development. 

 

 

Figure 4.11.: Effect of single pass C8 conversion on (a) Reactor cost and (b) EPM-2 at Level 2 

for operating the reactor at 50 oC and 2 bar using HGr-2. 

 

It can be seen from Figure 4.11 that the cost of the reactor increased with single pass 1-octene 

conversion. It can be seen from Figure 4.11 that for single pass 1-octene conversion above 

60 % the reactor cost increase exponentially as a result of larger reactor sizes required. The 

metathesis reactor in this case could however be operated at single pass 1-octene 

conversions below 60 % as operating outside this range resulted in an increase in the cost of 

reactor and hence, a decrease in EPM-2.  

The effect of length to diameter ratio (L/D) on the reactor cost and subsequently EPM-2 was 

also evaluated in this study. The L/D ratio has an effect on degree of mixing in a CSTR. 

Engineering design heuristics has identified L/D ratios between 1.0 and 1.5 as near optimum 
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(Douglas, 1988). Figure 4.12 shows the effect of L/D ratio on the reactor cost and EPM-2 at 

single pass 1-octene conversion of 10 %. 

 

 

Figure 4.12.: Effect of L/D ratio on (a) Reactor cost and (b) EPM-2 at 50 oC and 2 bar and C8 

single pass conversion of 10 %. 

 

Continuous stirred tank reactors (CSTR) offer the best control over metathesis product quality 

since concentration and temperature in the tank are uniform and easy to control (McKenna 

and Malone, 1990). It can be seen from Figure 4.12 that the higher the L/D ratio the higher the 

cost of the reactor and subsequently the lower the EPM-2. The design of a longer shaft can 

be more difficult. The cost of a mixer for a tall tank is likely to be greater than an equivalent 

mixer for a tank with an L/D = 1. Hence, in order to minimise the reactor cost and ensure 

perfect mixing in the CSTR reactor, the minimum L/D ratio of 1 was used in the design of the 

metathesis reactor.  
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is 30 oC to 80 oC since the catalyst complex undergoes irrevesible decomposition above 80 

oC (du Toit et al., 2014). The ethylene product stream could be used as fuel to heat the 

metathesis reactor. 

Maynard and Grubbs (1999), Sharma and Jasra (2015) have emphasized requirements for 

recovery and recycle of HGr-2 catalyst from the reaction product. According to Westhus et al. 

(2004), removal of the metal-containing by-products upon completion of the metathesis 

reaction is a serious drawback, which affects subsequent synthetic reactions. Hence, there 

was a need to seriously consider separation of the HGr-2 catalyst species. 

4.3.1.3 Separation and recycle system design (Level 3) 

The optimal single pass 1-octene conversion lies below 100 %. The requirement to recover 

unreacted 1-octene, HGr-2 catalyst and ethylene gas from the 7-tetradecene product makes 

it necessary to design a separation system. The streams emerging from the metathesis reactor 

(or reactor effluent) comprises of 7-tetradecene as main product, ethylene by-products, HGr-2 

catalyst and unreacted 1-octene. A consideration was placed on the equipment required to 

isolate, recover and recycle HGr-2 catalyst and unreacted 1-octene and more importantly 

removal of ethylene from the system. Ethylene accumulation promotes formation of hydride 

species responsible for olefin isomerisation (Loock, 2009). Olefin isomerisation leads to the 

cross metathesis and hence, loss of reactants. Due to high selectivities for HGr-2 catalyst at 

the reaction conditions, only the primary metathesis product was considered for the recycle 

system design. Table 4.4 was used to make decisions for the number of recycle streams. 

 

Table 4.4.: Identification of number of recycle streams and destination of recycle streams  

Component Destination Normal Boiling Point (oC) Mr (g/mol) 

C8H16 Recycle (Reactor)              121 oC 112.2 

C2H4 Purge/fuel             -107 oC 28.03 

C14H28 Primary product             255 oC 196.37 

HGr-2 catalyst Recycle (reactor)             220 oC 626.62 
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It can be seen that the base case process will have 1 product stream, 2 recycle streams and 

1 purge stream. In the development of 1-octene metathesis process, the following decisions 

were made (1) not to purify ethylene from the process but to use it as a fuel instead (2) to 

recover and recycle HGr-2 catalyst and (3) to recycle 1-octene. However, other alternatives 

for the 1-octene metathesis process could be: 

1. To purify ethylene product stream 

2. To remove HGr-2 catalyst from the process 

3. To purify 1-octene recycle stream 

An attempt to simultaneously develop designs that corresponds to each process alternative 

could be considered. However, less than 1 % of ideas for new designs become 

commercialised hence the goal is to eliminate with little effort projects that are unprofitable 

(Douglas, 1988). Heuristics given in Appendix B.2.3 were used to help make these decisions. 

More importantly, the sequence of physical separation design to be employed had to consider 

catalyst stability. The HGr-2 catalyst complex and unreacted 1-octene should be recovered 

and recycled to the reactor. This was in line with the economic requirements and the fact that 

the presence of HGr-2 catalyst can be very sensitive to subsequent reactions such as 

hydroformylation. Even though unreacted 1-octene and HGr-2 catalyst were going to be mixed 

at the reactor inlet, different separation methods were considered for each of the components 

(Douglas, 1988). The first consideration was to remove ethylene from reactor effluent. The 

cost of an additional flash drum was considered in order to make a decision on the single pass 

1-octene conversion. The decision to use phase separation was based on the heuristic that 

phase separation is the cheapest method of separation (Douglas, 1988).  

The next stage of separation at Level 3 considered the liquid phase product stream which 

contains unreacted 1-octene, HGr-2 catalyst complex and 7-tetradecene product. The design 

of the metathesis process liquid product separation system aims to: 

 recover > 99 wt. % of unreacted 1-octene. 
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 retain > 99.99 wt. % of HGr-2 catalyst for reuse as an active catalyst to the metathesis 

reactor and also to avoid product contamination. 

It was considered first to separate and recover HGr-2 catalyst in its active form from the liquid 

effluent. The catalyst separation requirements are characterised by the following 

specifications as reported by Van der Gryp (2009) and Schmidt et al. (2014): 

 Highly dilute systems (concentrating catalysts in mixtures 200 ppm). 

 High recovery of 99.9 wt. %. 

 HGr-2 catalyst is component of highest molecular weight (MW). 

 Catalyst is often component with lowest vapour pressure. 

 At atmospheric pressures and moderate temperatures, the catalyst is solid. 

The key challenge to the recovery of active catalyst in this process was catalyst instability at 

high temperatures (Vougioukalakis et al., 2013). The higher boiling points of 7-tetradecene 

product requires higher temperatures for their volatilization, which causes separation 

problems due to the narrowing differences in product and catalyst solution volatilities (Schmidt 

et al., 2014). The biggest problem for the sensitive catalyst system was the irreversible 

destruction of the catalyst during thermal separation from the reaction products (Wiese et al., 

2006). It was considered to manipulated physical properties namely, the difference in boiling 

points and molecular sizes of the species. 

(a) Separation alternative using distillation 

It was considered to manipulate the difference in boiling points between HGr-2 catalyst and 

the alkenes to effect separation from the product stream. Figure 4.13 shows the proposed 

separation structure for the catalyst system in this work. 
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Figure 4.13.: Distillation configuration to recover the HGr-2 catalyst 

 

Distillation technique cannot be used in this study to recover HGr-2 catalyst due the 

requirement to recover the catalyst in its active form. High distillation temperatures as a result 

of high boiling points of alkenes in product stream are not practicable, as the catalyst will 

decompose irreversibly (Vougioukalakis et al., 2013). 

(b) Separation alternative using OSN membrane  

In this study, it was also considered to employ organic solvent nanofiltration (OSN) membrane 

process for organic systems because of the need to recover the HGr-2 catalyst in its active 

form. Figure 4.14 shows the proposed separation structure for the catalyst recovery system. 
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Figure 4.14.: OSN membrane set-up for recovery of HGr-2 catalyst 
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Organic solvent nanofiltration (OSN) membrane process to recover the HGr-2 catalyst from 

the product solution can be carried at or below the reaction temperature. In comparison to 

conventional unit operations like distillation, OSN is less energy consuming (Dreimann et al., 

2015; Schmidt et al., 2013; Seifert et al., 2014) due to low separation temperatures. 

Permeability data by Van der Gryp (2009) and Bhanushali et al. (2001) was used to predict 

recovery of HGr-2 catalyst from the product stream. The cost of the membrane stage was 

determined as a function of mass flux using Equations B.11 to Equations B.14 as detailed in 

Appendix B.2.3. The retained HGr-2 catalyst was recycled back to the reactor as retentate 

while the liquid permeate was purified in subsequent steps to recover 7-tetradecene.  

Finally, liquid recovery system considered the recovery of 1-octene and recycling to 

metathesis reactor. The separation of 1-octene from 7-tetradecene can be accomplished by 

traditional distillation methods and there is a large body of literature (Turton et al., 2012; Peters 

and Timmerhaus, 2001; Kister, 1992) concerning the synthesis of such processes. Thus, if the 

annualized flash drum costs, annualised membrane costs and 1-octene column costs are 

added together then the total separation cost at Level 3 of the metathesis process could be 

determined. Figure 4.15 shows the effect of single pass 1-octene conversion on separation 

costs and EPM-3 (determined using Equation 4.6).  

 

  

Figure 4.15.: Effect of single pass C8 conversion on (a) Separation costs and (b) EPM-3  
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At Level 3 of metathesis process development, it can be seen that operating the reactor at 

lower than 20 % single pass 1-octene conversion resulted in an exponential increase in the 

separation cost. The increase in the separation costs at lower single pass 1-octene conversion 

is a result of an increase in membrane area requirement and larger column diameters due to 

larger recycle volumes. Higher single pass 1-octene conversions above 60 % resulted in an 

increase in separation costs due to an increase in the size of the flash drum required to contain 

a large volume of ethylene gas produced. However, it was expected that the true economic 

potential to be higher than the calculated value at Level 3 by considering the cost savings 

brought by recovering the HGr-2 catalyst.  

Overall, the EPM-3 obtained for all single pass 1-octene conversions were favourable for 

advanced design. It can be seen from Figure 4.15 that at Level 3 of metathesis process 

development, the optimum single pass conversion of 1-octene must be set at 50 % since it 

gave the highest EPM-3. Figure 4.16 shows the flowsheet structure generated for the 

metathesis process section. 
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Figure 4.16.: Final flowsheet structure for metathesis process section 
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The primary product (7-tetradecene) from the metathesis process section will be directed to 

the hydroformylation process section where it will be further functionalised to a Guebert-type 

aldehyde, 2-hexyl-nonanal (2-HN) in the presence of a homogeneous Rh-based catalyst. A 

summary of optimal parameters corresponding to the highest final economic potential for the 

metathesis process section is listed in Table 4.5. 

 

Table 4.5.: Optimal design parameters for metathesis process section 

Parameter Optimal value 

Temperature  50 oC 

Conversion (C8) 50 % 

L/D ratio (Reactor) 1.0 

H/D ratio (Column) 10 

R/Rm 1.2 

 

 

4.3.2 Hydroformylation process section 

4.3.2.1 Input-output information (Level 1) 

Level 1 of hydroformylation process development gives the input-output information obtained 

from literature for the development of a process to produce 10 000 tons per annum of 

2-hexyl-nonanal at a purity of 99 wt. % at Sasol Secunda. The catalyst type, temperature and 

single pass 7-tetradecene conversion are the parameters used to develop the 

hydroformylation process section at Level 1. The assumptions for mass balance evaluation at 

Level 1 of hydroformylation (Table 4.2) were taken at optimum reactor conditions as reported 

in literature. The 7-tetradecene produced from the metathesis process section is reacted with 

purified syngas (CO/H2) purchased from the Sasol/Lurgi Gasification Plant at Secunda. The 

hydroformylation process was considered continuous according to heuristics by Douglas 

(1988). The required product purity for 2-hexyl-nonanal was 99 wt. %. According to Hentschel 

Stellenbosch University  https://scholar.sun.ac.za



108 

 

 

 

CHAPTER 4: PROCESS DEVELOPMENT  CHAPTER 4: PROCESS DEVELOPMENT  

et al. (2014) and Steimel et al. (2014), downstream processing requires purities above 98 wt. 

%. Figure 4.17 shows the input-output flowsheet structure at Level 1 of hydroformylation 

process development.  
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Figure 4.17.: Input-output flowsheet structure at Level 1 of hydroformylation process 

development 

 

Table 4.6 shows a summary of the input-output information for the hydroformylation section.
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     Table 4.6.: Input-output (Level 1) information as given in leiterature for hydroformylation process 

Variables Operating parameters References 

Temperature (oC) 60-180  Rost et al. (2013), Muller et al. (2013, 2015) 

Pressure (bar) 10-100 Haumann et al. (2002a, 2002b), Muller et al. (2013, 2015) 

Maximum Selectivity (%) 70 Markert et al. (2013), Haumann et al. (2002b)  

Conversion (%) 100 Haumann et al. (2002b) 

Catalyst concentration overall 200 ppm Haumann et al. (2002b) 

7-tetradecene/Rh-TPPTS catalyst molar  ratio 2 500 Haumann et al. (2002b) 

CO/H2 molar ratio 1:1 Hentschel et al. (2014), Haumann et al. (2002b)  

alkene: water mass ratio (α) 0.5 Muller et al. (2013, 2015), Haumann et al. (2002a, 2002b)  

surfactant concentration mass (γ) 0.08 Muller et al. (2013, 2015), Haumann et al. (2002a, 2002b) 

2-hexyl-nonanal $ 150,00/kg (bulk price) Alibaba (2016) 

7-tetradecene $ 35.50/kg (bulk price Sasol chemicals (2016) 

Rh catalyst $ 120 000.00/kg (bulk price) kitco.com (2016) 

Bulk syngas from gasifier $ 0.03/kg (bulk price) Piet et al. (2014) 

Marlipal O13/80 $ 29.00/kg (bulk price) Sasol chemicals (2016) 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



   
   110 

 

 

 

CHAPTER 4: PROCESS DEVELOPMEMNT  

The following design specifications for water and marlipal were used. An alkene to water ratio 

in the mixture (α) = 50 %, a surfactant concentration (γ) = 8 % and CO:H2 =1:1. These 

conditions have been recommended in previous work by Haumann et al. (2002a, 2002b), 

Muller et al. (2013), Muller et al. (2014), Muller et al. (2015), Rost et al. (2013), Schwarze et 

al. (2009) and Harmela et al. (2012). The resulting multiphase system offers an improved 

conversion and the possibility to separate the valuable rhodium catalyst from the organic 

product (Muller et al., 2013).  

The EPH-1 for the input-output structure at Level 1 of hydroformylation process development 

was the difference between revenue from products and raw material costs (1-octene and 

syngas cost) and catalysts cost (HGr-2+Rh-TPPTS) and the cost of metathesis process 

section (Section 4.3.1). EPH-1 also considered single pass 1-octene conversion in the 

metathesis process section. The graph of the EPH-1 at varying 1-octene single pass 

conversion is shown in Figure 4.18.  

 

 

Figure 4.18.: Effect of single pass C8 conversion on EPH-1 at Level 1 of hydroformylation 

process development 
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EPH-1 for the hydroformylation process section was sufficiently promising for all single pass 

conversions of 1-octene in the metathesis process section. It could be concluded again that 

an optimum single pass 1-octene conversion of 50 % in the metathesis process section gave 

the highest EPH-1 at Level 1 of hydroformylation process design. Hence, using 50 % 

conversion of 1-octene in the metathesis process section the hydroformylation process section 

was further developed as shown in Section 4.3.2.2 and Section 4.3.2.3.  

4.3.2.2 Reactor and recycle structure for hydroformylation process (Level 2) 

The parameters investigated at Level 2 of hydroformylation process design are single pass 

7-tetradecene conversion, Rh-based catalyst type, temperature, pressure and the L/D ratio of 

the reactor on both the annualised cost of the reactor and syngas-recycle compressor costs. 

Figure 4.19 shows the reactor and recycle structure for the hydroformylation process at Level 

2 of process development.  
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Figure 4.19.: Reactor and recycle structure at Level 2 of hydroformylation process 

development 
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In this investigation, the experimental results of hydroformylation of 7-tetradecene in 

Rh-TPPTS catalyst was used due to the limited kinetic information on hydroformylation of 

7-tetradecene. In order to analyse the product distribution, simplify the complex reaction 

network and identify most relevant reactions, Markert et al. (2013) reaction scheme was used. 

Leeuwen et al. (2000) and Koeken et al. (2011) identified isomerization and hydroformylation 

reactions as only dominant reactions during hydroformylation of long chain alkenes (Cn > C9). 

Markert et al. (2013) and Haumann et al. (2002a) also confirmed that consecutive 

hydrogenation of aldehydes leading to corresponding alcohols was not observed during 

Rh-catalysed hydroformylation of long chain alkenes (Cn > C9). Markert et al. (2013) proposed 

a reduced and simplified reaction scheme for the hydroformylation of long chain alkenes. The 

most relevant reactions of long chain alkenes are reduced to six main reactions as shown in 

Figure 4.20.  
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Figure 4.20.: Postulated reduced reaction network of the hydroformylation of 7-tetradecene  

 

Hentschel et al. (2014) used pseudo-components such as “iso-alkene” and “iso-aldehyde” to 

represent a class of compounds with identical physical properties. These pseudo-components 

will be represented for example by 6-tetradecene for isomeric alkenes and 2-pentyl-decanal 

for isomeric aldehydes. 

A number of decisions were made at Level 2 for the vapour-liquid process including the set of 

possible reactors, requirement of catalyst and reactants recycle, the number of recycle 
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streams, requirements for gas recycle compressor and heat effects in the reactor. Heuristics 

given in Appendix B.2.3 were used to make these decisions. In commercial plants, continuous 

stirred tank reactors (CSTR) have been used extensively. The highly sophisticated RCH/RP 

process, which together with Union Carbide’s Mark IV process represents the state-of-the-art 

in today’s hydroformylation technology in terms of the variable and fixed costs per ton of 

product (Kohlpaintner et al., 2001). In this study, only one reactor was choosen in order to 

produce 2-hexyl-nonanal product from 7-tetradecene and the reactor was modelled as a 

CSTR with kinetic parameters developed by Haumann et al. (2002b). Table 4.7 summarises 

kinetic data for the hydroformylation process as obtained from literature. 

 

Table 4.7.: Kinetic data for the hydroformylation of 7-tetradecene (Haumann et al., 2002b) 

Parameter Equations Units  Values 

K 
ko. exp (

−Eareaction

RT
) 

mol/(𝑚3s) - 

P Reaction pressure bar 30-100 

T Reaction temperature oC 60-130 

−𝐸𝑎,𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 Activation Energy kJ/mol 70.05 

𝑘𝑜 Pre- exponential factor (mol/m3s) 2.201 × 106 

(-) ΔH Heat of reaction kJ/mol 215.14 

 

 

Figure 4.21 shows the effect of reaction temperature on reactor cost at with varying single 

pass 7-tetradecene conversion using experimental data by Haumann et al. (2002b). Guthrie's 

correlation (Equation B.1 in Appendix B.2.2) was used to calculate the annualised cost for the 

hydroformylation reactor. The variation of reactor cost with single pass 7-tetradecene 

conversion was used to select the best temperature for the hydroformylation reactor. 
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Figure 4.21.: Reactor cost versus single pass C14 conversion at varying temperatures (100 bar) 

 

According to Figure 4.21, operating the hydroformylation reactor at high temperatures above 

80 oC resulted in a significant reduction in reactor cost. It is evident that for single pass 

7-tetradecene conversion above 80 %, all reaction temperatures will result in an increase in 

reactor cost. In this case, in order to promote the reaction, minimise the reactor volume and 

cost, the reactor must be operated at higher temperatures between 100 and 180 oC.  

In engineering reactor design, minimizing reactor volume and attaining mild operating 

conditions are basic “rules of thumb” for an optimal design. According to Haumann et al. 

(2002b), operating the reactor at high temperatures resulted in significant reduction in size of 

reactor. It is comparatively safe to conduct a hydroformylation reaction using a small reactor 

volume due to the high operating pressure involved although consideration need to be made 

on the extend of recycle volumes. Figure 4.22 shows the effect of pressure on conversion at 

two reaction temperatures 80 oC and 100 oC.  

 

0

500

1000

1500

2000

2500

3000

0 0.2 0.4 0.6 0.8 1

R
e
a
c
to

r 
C

o
s
ts

 (
k
$
/y

r)

Single pass C14 conversion (-)

60  C

80  C

100  C

120  C

o 

o 
o 

o 

Stellenbosch University  https://scholar.sun.ac.za



115 

 

 

 

CHAPTER 4: PROCESS DEVELOPMENT  CHAPTER 4: PROCESS DEVELOPMENT  

 

Figure 4.22.: Effect of pressure on single pass C14 conversion at 80 oC and 100oC 

 

According to Khan et al. (1989), Koelliker et al. (1993) and Srivatsan et al. (1995), the solubility 

of syngas in an aqueous catalyst solution increases with increasing temperature hence 

conversion. Hence, for such systems as the hydroformylation reaction carried out at high 

pressure, it is important to choose the operating conditions that promotes conversion at the 

same time not compromising on safety. In light of this, conditions for the reactor were chosen 

to have the lowest pressure practically possible and the highest economic temperature.  

Since, a stream of syngas has to be recycled back to the hydroformylation reactor, operating 

the reactor at low single pass 7-tetradecene conversion has a significant effect on total cost 

considering syngas-recycle compression requirements. Hence, the effect on total cost of 

reactor and syngas-recycle compressor with single pass 7-tetradecene conversion was 

investigated. If annualised reactor cost and syngas-recycle compressor costs (determined 

using Equation B.1 and Equation B.2 in Appendix B.2) are subtracted from the EPH-1, then 

an EPH-2 (determine from Equation 4.6) can be found. Figure 4.23 shows the effect of single 

pass 7-tetradecene conversion on the reactor plus syngas-recycle compressor costs and 

EPH-2 at Level 2 of design.  
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Figure 4.23.: Effect of single pass C14 conversion on (a) Reactor plus syngas-recycle 

compressor costs and (b) EPH-2 of hydroformylation process at 120 oC and 100 bar 

 

It can be seen from Figure 4.23 that single pass 7-tetradecene conversion has a significant 

effect on the total cost (reactor plus syngas-recycle compressor). It can be seen that the 

optimum single pass 7-tetradecene conversion obtained after including a reactor plus 

syngas-recycle compressor lies between 20 % and 50 %. It can be concluded that lower single 

pass 7-tetradecene conversion below 20 % and high single pass 7-tetradecene conversions 

above 50 % resulted in an increase in costs due to high syngas-recycle compressions and 

larger reactor volumes required respectively.  

The heat released for a 12 390 tonnes per annum (7.9 kmol/hr) 7-tetradecene fresh feed was 

found to be 1.7 MJ/hr. The reactor base temperature was set at 120 oC and the adiabatic 

temperature rise was found to be 368.44 oC. The reactor temperature limit in long chain 

aldehyde processing was 180 oC to avoid aldehyde product decomposition (Hentschel et al., 

2014; Steimel et al., 2014). The heat of reaction can be utilised in either the reboiler of product 

purification column. A similar arrangement is found in the RCH/RP process a very energy 

efficient process where the reaction heat from the exothermic hydroformylation reactor is 

recovered and used in the reboiler of the distillation column (Cole-Hamilton and Tooze, 2006). 

Because of the importance of recovery and need for reuse of highly expensive Rh-TPPTS 
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catalyst, a consideration was put on the choice and design of separation equipment to be 

employed.  

4.3.2.3 Separation and recycle system for hydroformylation process design (Level 3) 

For the reactor used in the hydroformylation process development, the 7-tatradecene single 

pass conversions considered optimum in Level 2 was between 20 % and 50 %, hence, less 

than 100 % of reactants (7-tetradecene and syngas) were converted. This makes it necessary 

to have a system that separates products and un-reacted reactants. In removing the 

hydroformylation product from the reactor, the Rh-TPPTS catalyst complex and unreacted 

7-tetradecene should be recovered and recycled to the reactor for economic reasons.  

The presence of Rh-TPPTS catalyst in 2-hexyl-nonanal product was sensitive to subsequent 

use in either pharmaceutical products or speciality chemicals (Vougioukalakis, 2012). The 

physical separation method to be employed had to consider catalyst stability. Hence, it was 

important to determine the separation structure of an efficient recycle system. Moreover, 

different separation methods must be considered even though recycle streams containing 

7-tetradecene and Rh-TPPTS catalyst species going to be re-mixed at the reactor inlet 

(Douglas, 1988). Table 4.8 was used to make decisions on the number of recycle streams and 

destinations. 

 

Table 4.8.: Identification of number of recycle streams and destination of recycle streams  

Component Destination Normal Boiling Point Molecular weight 

CO Recycle (Reactor) -191 oC 28.01(g/mol) 

H2 Recycle (Reactor) -252 oC 2.02(g/mol) 

Water  Recycle (Reactor) 100 oC 18.02(g/mol) 

7 − C14H28 Recycle (Reactor) 250 oC 196.37(g/mol) 

Rh-TPPTS catalyst Recycle (reactor) 400 oC 626.2 (g/mol) 

2 − C15H30O Primary product 269 oC 223.01(g/mol) 

Iso-Aldehydes Waste  275 oC 223.01 (g/mol) 

Marlipal (24/70) Waste  250-270 oC 200 (g/mol) 
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The base case process will have 1 product stream, 4 recycle streams and 1 waste stream. 

The reactor effluent needed to be treated in subsequent steps to recover unreacted syngas, 

7-tetradecene and highly expensive Rh-TPPTS catalyst. The phase separators can be defined 

either by heuristics (e.g., is it possible to separate syngas with an evaporator) or by short-cut 

models (e.g., using relative volatilities) (Steimel et al., 2014). According to Vougioukalakis 

(2013), pharmaceutical processes and medical regulation requires metal complexes in post 

reaction products to be less than 9 ppm. Haumann et al. (2002a) has predicted Rh losses as 

low as 1 ppm for a 100 000 ton per year potentially leading to US $ 40 million loss as far too 

high for an economical process based on microemulsion technology. The objectives of the 

separation system design were to: 

 purify 2-hexyl-nonanal product to 99 wt. % purity as required by market specifications 

(Hentschel et al., 2014; Steimel et al., 2014). 

 recover > 99.99 wt. % active Rh-catalyst for reuse in hydroformylation reactor.  

 recover and recycle excess syngas (CO/H2). 

 recover and recycle > 99 wt. % unreacted 7-tetradecene. 

 recycle solvent for reuse in the hydroformylation reactor.  

The treatment of the liquid stream to recover Rh-TPPTS catalyst was considered first. 

According to Dreimann et al. (2016), the catalyst separation requirements are characterised 

by the following specifications: 

 Highly dilute systems (concentrating catalysts in mixtures << 1 wt. %). 

 High recovery of 99.9 wt. %. 

 Catalyst is often component of highest molecular weight (MW). 

 Catalyst is often component with lowest vapour pressure. 

 Fragile coordination of ligand to the metal centre. 

 At atmospheric pressures and moderate temperatures, the catalyst is solid. 

The biggest problem for the sensitive Rh-TPPTS catalyst system is the irreversible destruction 

of the catalyst complex during thermal separation (Wiese et al., 2006). The Rh-TPPTS 
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catalyst-ligand complex cannot be recycled by distillation processes as it tends to cluster at 

higher temperatures and lower CO partial pressures (Schmidt et al., 2014). Moreover, the 

applied metal, Rhodium is very valuable (Priske et al., 2010) and must be recovered for 

recycle. Hence, in line with these objectives it was necessary to consider other different 

techniques of catalyst recovery. 

(a) Separation alternative using liquid multiphase system (LMS) 

Since LMS has previously been chosen as a reaction medium in this study one alternative 

was to manipulate the concept of LMS to effect catalyst recovery. Previous studies have 

confirmed that it is possible to reduce Rh-TPPTS catalyst loss in hydroformylation of long 

chain olefins by using the principle of LMS (Muller et al., 2013; Muller et al., 2015; Rost et al., 

2013). The Rh-TPPTS catalyst removal takes place in the 3-phase separation unit (flash drum) 

in which most of the rhodium is drawn into the aqueous phase. However, preliminary 

investigations have shown that this step is quite challenging (Muller et al., 2014). The split 

factor for the catalyst carrying aqueous phase is usually uncertain and depends on conversion, 

surfactant concentration and operating conditions of temperature and pressure (Muller et al., 

2013; Muller et al., 2014; Behr et al., 2006). After recovering Rh-TPPTS catalyst and 

unreacted syngas, unreacted 7-tetradecene was also recovered in a separate distillation 

column. The final separation column was used to purify 2-hexyl-nonanal from isomeric 

aldehydes. The total separation cost at Level 3 of hydroformylation process development 

included the flash drum cost, the 7-tetradecene column cost and the 2-hexyl-nonanal 

purification costs.  

If the total separation costs at Level 3 is subtracted from EPH-2 (Equation 4.7), then EPH-3 

versus single pass 7-tetradecene conversion at Level 3 can be found. Figure 4.24 shows the 

relationship between total separation cost and EPH-3 with single pass 7-tetradecene 

conversion at Level 3 of hydroformylation process development.  
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Figure 4.24.: Effect of single pass C14 conversion on (a) Separation costs and (b) EPH-3 (Liquid 

multiphase system) 

 

It can be seen from Figure 4.24 that for single pass 7-tetradecene conversion below 20 % 

there is an increase in separation costs mainly due to large volume of flash drum and an 

increase in diameter of C14 column and product column as a result of large recycle volumes. 

Figure 4.24 also shows that higher single pass 7-tetradecene conversions above 50 % will 

result in increase in sepation costs particulary the C14 column. The increase in conversion led 

to reduction in mass fraction of 7-tetradecene in feed to C14 column (𝑋𝐹𝐶14)  which leads to 

an increase in reflux ratio and number of separation stages in C14 column. Figure B.2 in 

Appendix B.2 shows the effect of single pass 7-tetradecene conversion on the reflux ratio and 

number of stages in C14 column.  

It could be deduced from Figure 4.24 of EPH-3 versus single pass 7-tetradecene conversion 

that the optimum conversion for this process scenario was 35 %. Table 4.9 shows the optimal 

parameters for an economic hydroformylation process development utilising liquid multiphase 

system (LMS) for Rh-TPPTS catalyst recovery. 
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Table 4.9.: Parameters for the hydroformylation process 

Parameter Value 

Temperature 100-180 oC 

Pressure  < 100 bar 

Conversion (7-tetradecene) 35 % 

L/D ratio (reactor) 1 

L/D ratio (column) 10 

R/Rm 1.2 

 R/Rm = ratio of reflux to minimum reflux (-) 

 L/D = length to diameter ratio (-) 

  

Figures 4.25 shows the flowsheet structure for the proposed base case scenario. 
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Figure 4.25.: Flowsheet at Level 3 using liquid multiphase system for Rh-TPPTS catalyst 

recovery 
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(b) Separation alternative OSN membrane 

The other alternative was the OSN membrane process applied directly in the organic phase 

in which preselection was based on a minimum catalyst rejection of 99.9 wt. % (Schmidt et 

al., 2014). The decision was influenced by the exploitable difference in molecular weight of 

the Rh-TPPTS complex (626.2 g/mol) which is larger than the molecular weight of 

2-hexyl-nonanal (262.3 g/mol). Janssen et al. (2010) have demonstrated that organic solvent 

nanofiltration membrane can effectively retain 99.96 wt. % of the Rh-TPPTS catalyst, thus 

tremendously simplifying the work-up as the Rh-TPPTS catalyst concentration in the product 

is extremely low. However, incorporating the cost of OSN membrane process (detailed in 

Equations B11 to Equation B14 in Appendix B) for the recovery of Rh-TPPTS catalyst species 

will influence the total cost at Level 3 of design.  

In order to investigate the effect of including an OSN membrane separation stage for the 

recovery Rh-TPPTS catalyst, the membrane area and hence cost, was evaluated for every 

single pass 7-tetradecene conversion. After recovering Rh-TPPTS catalyst, the next stage 

was to investigate the effect of total separation cost on the inclusion of 7-tetradecene 

separation column. The final stage considered the purification of 2-hexyl-nonanal product from 

a mixture of isomeric products or waste. In order to investigate the effect of single pass 

7-tetradecene conversion on the total separation cost, the total separation costs versus single 

pass 7-tetradecene conversion was plotted as shown in Figure 4.26.  Equation 4.7 was used 

to determine the EPH-3 at Level 3 of hydroformylation process design with varying 

7-tetradecene single pass conversion.  
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Figure 4.26.: Effect of single pass C14 conversion on (a) Separation costs and (b) EPH-3 at Level 

3 hydoformylation process (OSN membrane process) 

 

It can be seen from Figure 4.26 that single pass 7-tetradecene conversion below 20 % leads 

to an increase in separation costs mainly due to large recycle volumes that results in large 

membrane area, volume flash drum, C14 column and 2-hexyl-nonanal column. Figure 4.26 

also shows that an increase in single pass 7-tetradecene above 60 % will leads to an increase 

in separation costs; this is particulary dominated by membrane costs. Figure B.4 in Appendix 

B.2 shows that an increase in single pass 7-tetradecene conversion leads to a decrease in 

mass fraction of 7-tetradecene in feed to the membrane. This in turn led to a reduction in mass 

flux (
𝑘𝑔

𝑚2𝑠
⁄ ) across the membrane resulting in an increase in membrane area requirement. 

The increase in membrane area led to an increase in membrane separation costs. 

However, at Level 3 of hydroformylation process development, the EPH-3 obtained for all 

single pass 7-tetradecene conversions proved it was possible to operate the hydroformylation 

process at a profit. It can be seen from Figure 4.26 that the highest EPH-3 at Level 3 of 

hydroformylation process developmnent could be achieved at a conversion of 35 % as it gave 

the highest EPH-3. Table 4.10 shows the optimal parameters for an economic 

hydroformylation process. 
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Table 4.10.: Parameters for the hydroformylation process 

             Value 

Temperature 120-180 oC 

Pressure < 100 bar 

Conversion (7-tetradecene) 35 % 

L/D ratio (reactor) 1 

L/D ratio (column) 10 

R/Rm 1.2 

R/Rm = ratio of reflux to minimum reflux (-) 

 L/D = length to diameter ratio (-) 

 

Figure 4.27 shows the overall process flowsheet at this level of design. 
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Figure 4.27.: Flowsheet at Level 3 of hydroformylation process development 
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(c) Separation alternative using distillation (Level 3) 

Distillation is usually a dominant alternative because it provides pure components and is 

economically more attractive for many large-scale petrochemical processes. Malone et al. 

(1995) have however argued that common heuristics used for selecting distillation columns 

can be misleading in some cases. Figure 4.28 shows the distillation separation structure for 

the separation of Rh-TPPTS catalyst complex from long chain aldehyde product stream. 

 

Reactor effluent

Aldehydes 

Rh-catalyst  

Figure 4.28.: Distillation procedure for catalyst recovery 

 

Evaporation and distillation have been used to recover Rh-TPPTS catalysts in short chain 

aldehydes streams such as Ruhrchemie/Rhone-Poulenc, BASF, UCC and Mitsubishi process. 

However, the high boiling point of long chain 2-hexyl-nonanal poses great difficulties (Garton 

et al., 2003; Razak, 2013). At higher distillation temperatures synonymous with long chain 

aldehydes, the catalyst will decompose and hence this technique will not be used in this study.  

4.4 Final process flow diagram 

Finally, the process alternatives in metathesis and hydroformylation were combined to form 

two base case scenarios. In the metathesis process section, the solution to HGr-2 catalyst 

recovery was limited to the application of organic solvent nanofiltration (OSN) membrane 

because of catalyst stability and irreversible degradation thereof. In the hydroformylation 

process section two Rh-TPPTS catalyst recovery techniques namely, liquid multiphase 
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system (LMS) and organic solvent nanofiltration (OSN) membrane were considered for further 

detailed engineering investigation. 

4.4.1 Process Scenario A: Liquid multiphase system (LMS) 

This process scenario integrates metathesis process section and the hydroformylation 

process section which utilises the alternative of liquid multiphase system (LMS) to recover 

Rh-TPPTS catalyst from the post hydroformylation reaction products. The base case process 

flow diagram which will be investigated further in Aspen PlusTM is shown in Figure 4.29. 

 4.4.2 Process Scenario B: OSN membrane separation 

This process scenario integrates metathesis process section and hydroformylation process 

section which utilises the alternative of organic solvent nanofiltration (OSN) membrane to 

recover Rh-TPPTS catalyst from post hydroformylation reaction products. The base case 

process flow diagram is shown in Figure 4.30 which will be further investigated in Aspen PlusTM 

simulation.  
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  Figure 4.29.: Process flow diagram for Process Scenario A 
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Figure 4.30.: Process flow diagram Process Scenario B
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4.5 Summary 

Chapter 4 covers preparatory aspects of simulation, such as the defining of process units used 

in process development, simulation conditions for the simulation study of the process of 

upgrading low value 1-octene a Fischer-Tropsch product stream to 2-hexyl-nonanal. In the 

selection of simulation conditions, some of the conditions were extracted entirely from 

literature and other conditions were determined from results of economic potential. Key 

outputs from this chapter were two conceptual process flow diagrams, Figure 4.29 for Scenario 

A and Figure 4.30 for process Scenario B. The two process flow diagrams will be used to 

develop complete Aspen Plus™ flowsheets which were used to determine optimal conditions 

for the process of upgrading low value 1-octene from Fischer-Tropsch into 2-hexyl-nonanal. 

The results obtained from the simulation study are discussed in Chapter 5 of this dissertation.
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CHAPTER 5: Aspen PlusTM SIMULATION 

“Simulation is no longer a referential being or a substance. It is the generation by 

models of a real without origin or reality: a hyper reality” 

 Jean Baudrillard 

 

 

Overview 

Chapter 5 provides a detailed description of the simulation of the two process alternatives 

developed in Chapter 4 for upgrading low value 1-octene from a Fischer-Tropsch product 

stream to 2-hexyl-nonanal a Guebert-type surfactant feedstock. The chapter is subdivided into 

five main sections which are, section 5.1 which gives a brief background into the selection of 

simulation software. Section 5.2 details the final Aspen PlusTM process scenarios. Section 5.3 

and Section 5.4 detailed description of models for the two process scenarios A and B. Section 

5.5 presents the design approach to heat integration. 
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5.1 Simulation software selection 

The next stage after the application of Douglas’ (1988) qualitative process synthesis technique 

to identify potential solutions to a design problem is usually a quantitative approach to 

determine optimal process conditions (Halim and Srinivasm, 2011) by process simulation. The 

need to evaluate many, often complex, process alternatives leaves the process engineer with 

no choice but to use computer models if he is to find the ‘best’ solution within the resources at 

his disposal. In recent years there have been a dramatic increase in the use of, and the 

reliance on, process simulation programs, for modelling of steady-state mass and energy flow 

in the chemical and petroleum industries (Brannock et al., 1979). The main advantages of the 

process simulator are that various process modifications can be evaluated easily using 

standard software packages (such as CHEMCAD, Aspen PlusTM, Hysys, PRO/II and 

gPROMS) in a short time without the need for extensive experimentation or pilot plant testing 

(Halim and Srinivasm, 2011). It is generally agreed that a comprehensive simulator represents 

2-60 man-years of development and more than one million dollars in investment (Aspen 

Technology, 2009).  

The usefulness of simulation results depend on how accurately the simulated process is 

modeled and how well the simulation software can handle complex block interactions which 

result from recycle streams and complex equipment such as distillation columns. In order to 

handle complex systems, simulation software must have flexible input submission interface 

with input error control, a robust calculation execution capacity and capacity for easy retrieval 

of results without unreasonable demands on computing hardware (Franks, 1972). 

The modern day simulation software is no longer just expected to provide results but more 

expectations are in line with how the process model is developed and inbuilt properties such 

as property databases and result analysis tools (Sundaran, 2005). A detailed comparison of 

some of the popular advanced process simulators available is tabulated in Table 5.1. 
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Table 5.1.: Selection of simulation package (Adapted: WinSim Inc. 2015) 

Category 

DESIGN for 

WindowsTM 
Hysys® Pro/II ProMax® Aspen Plus® Chem CAD 

  

General 

1-Click Data Export to MS Excel  

    

  

Component library  

    

  

Thermodynamic options  

    

  

Recycle convergence  

    

  

Gas processing  

    

  

Batch simulation  + +  +  + 

Dynamic simulation  + +  +  + 

Heat exchanger rating  + + 
 

+  + 

Claus process  + + 
 

+  + 

 

Unit Modules 

Rigorous distillation columns  

    

  

Batch distillation column  

  

 
 

  

Pipeline  
    

  

Heat exchangers  

    

  

Flash  

    

  

Reactors 
  

 
  

  

Pumps & compressors 
     

  

Storage tanks 
  

+  
 

 + 

 

Interface 

Windows based GUI 
     

  

Text based UI 
       

 

Training 

Onsite 
     

  

Offsite 
     

  

Seminar 
     

  

 

Support and 
Upgrades 

Usage support 
     

  

Expert process support 
     

  

Support by phone 
     

  

Support by e-mail 
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In Table 5.1, the (+) shows optional features and ( ) shows standard features. Results from 

Table 5.1 shows that there are many possible commercial simulators on the market and using 

functional comparisons alone, it is difficult to objectively select a software that can be said to 

be the best. For the current work additional considerations were made on top of the functional 

considerations in Table 5.1. The additional considerations used in the selection of simulation 

software include; software availability, licensing requirements and cost, user friendliness of 

interface, depth and accuracy of unit operation calculation models, vailability of component 

data and technical support functionally available within reasonable communication cost 

After factoring in additional factors Aspen Plus™ was selected by this author. Key motivation 

for the selection were the availability of a current license for the software and the relatively 

short time required to learn the software. Aspen Plus™ has been developed for the simulation 

of a wide variety of processes, such as chemical and petrochemical, petroleum refining, 

polymer, coal based processes (Jana, 2012). Aspen Technology Inc. has also included many 

inbuilt unit operation models which are sufficient to cover the diverse processes of its users, 

yet leaving room for customized models called user models (Aspen Technology, 2009). Close 

interaction with users has also ensured that the inbuilt models in Aspen Plus™ software has 

a closer representation of unit operations modelled in chemical process industries. The most 

important advantage of Aspen PlusTM package compared to other simulation packages is the 

availability of an experimental data bank for thermodynamic and physical parameters. 

Therefore, limited input data is required for solving even a process plant having a large number 

of units, thus avoiding human errors (Jana, 2012). Having inbuilt properties helps provide 

some level of consistence in simulation as automated manipulation and retrieval of properties 

tend to reduce the errors of entry. 

Aspen Plus™ offers two simulation approaches which allow the user to manipulate a 

simulation differently depending on the desired objectives. Typical user objectives in choosing 

a particular approach may include speeding up the simulation convergence or increasing the 

level of simulation sequence customization. The simulation approaches are the sequential 
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modular approach and equation oriented approach (Aspen Technology, 2009). Sequential 

modular flowsheets solve the blocks individually according to a particular sequence. Equation 

oriented simulations solve block equations simultaneously, thus a good starting point is 

necessary for use of equation oriented simulation. Sequential modular modelling is used 

especially when simulating a large number of blocks, and equation oriented simulation is more 

useful where precise solutions are required (Aspen Technology, 2009). A combination of the 

two approaches can be used in simulation. When combining the approaches, sequential 

modular simulation is used to obtain an initial solution and then equation oriented approach is 

used to optimize the solution. 

Aspen Plus™ has many analytical capabilities which enable the user to analyse the model. 

Some of these analysis tools include sensitivity analysis, optimization and constraint analysis 

and regression tools. The sensitivity analysis tool allows the user to carry out parametric 

studies of the model to understand the influence of particular variables on the cycle (Aspen 

Technology, 2009). An example of sensitivity analysis could be the study of the flow rate of a 

particular stream on the conversion of either the whole process or just one reactor. 

Optimization and constraint analysis tools allow one to maximize or minimize certain functions 

representing aspects of the simulated process while taking into consideration bottlenecks in 

the cycle (Aspen Technology, 2009). The regression tool allows analysis of results to see 

trends in the data and fit relationships, etc. (Aspen Technology, 2009). Having such a set of 

tools inbuilt in the software ensures that a process being simulated can be better understood 

and made to operate at the best conditions. Hence, Aspen PlusTM tools also make it possible 

to minimize the capital and operational costs associated with the development and testing of 

processes. 

5.1.1 Selection of thermodynamic model 

It is important to select a thermodynamic properties model which enable the accurate 

description of the system which is being modelled. Selection of inappropriate property 

methods results in wrong properties which will result in wrong specifications of plant equipment                         
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and operating conditions (Aspen Technology, 2009). Physical property methods used in 

Aspen Plus™ for simulation calculations are either based on a property model or on a grouping 

of these property models (Aspen Technology, 2009). Simple methods, for instance, use the 

ideal models and more advanced methods can be a combination of equation of state (EOS) 

and activity coefficient models. In a combined property method, the vapour phase calculations 

can be done using an equation of state model, and the liquid phase done using an activity 

coefficient method.  

Several detailed ways of choosing a property method, including consideration of process type 

there are available. The Aspen Tech property method selection algorithm (Aspen Technology, 

2009), Bob Seader method (Seider et al., 2004) and the Eric Carlson (1996) method were 

used in this study as illustrated in Appendix C. It was also important to define different sections 

of the process into low pressure (<10 bar), the high pressure (>10 bar), polar and nonpolar 

mixtures according to Aspen Tech property method selection algorithm. The Eric Carlson 

(1996) method uses criteria of nature of mixture and operating range (<10 bar or >10 bar) for 

the selection of appropriate property model. The Bob Seader method groups different mixtures 

into polar and non-polar hydrocarbons. According to the Bob Seader method, for non-polar 

hydrocarbons the difference in boiling points can be used as a guide to the selection of 

property method while for polar hydrocarbons the choice of property method depends on the 

availability of binary interaction parameters.  

The Aspen PlusTM method recommends the use of Peng-Robinson (PR) EOS, 

Redlich- Kwong-Soave (RKS) EOS and Lee-Kesler-Plocker (LKP) EOS for nonpolar mixtures 

at low pressures (<10 bar) of the metathesis section and Soave-Redlich-Kwong (SRK) EOS, 

Redlich-Kwong-Soave (RKS) EOS for the polar mixtures at high pressures (>10 bar) 

especially the hydroformylation process section. The Bob Seader method recommends 

Soave- Redlich-Kwong (SRK) EOS, Peng-Robinson (PR) EOS for hydrocarbons with narrow 

and wide boiling points especially treated in the metathesis section. In consideration of the 

hydroformylation section where both polar compounds and hydrocarbon mixtures are being 
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treated and binary interaction parameters are not available Bob Seader recommends the use 

of UNIFAC property method. Either Peng-Robinson (PR) EOS, Redlich-Kwong-Soave (RKS) 

EOS, Lee-Kesler-Plocker (LKP) EOS, Peng-Robinson-BM (PRBM) EOS and 

Redlich-Kwong-Soave-BM (RKSBM) EOS can be used for the metathesis process (<10 bar) 

section according to Carlson (1996). In consideration of higher pressures (>10 bar) and polar 

components and in cases where interaction parameters are not available such as in the 

hydroformylation section Carlson (1996) recommends the use of, Peng-Robinson (PR) EOS, 

Soave-Redlich-Kwong (SRK) EOS, Soave-Redlich-Kwong (SRK) EOS, Wilson, NRTL, and 

UNIQUAC property methods. 

In previous simulation study on the hydroformylation of long chain alkenes, Hentschel et al. 

(2014) and Schafer et al. (2012) considered PC-SAFT property method for the 

hydroformylation system and the UNIFAC-Dortmund to model the three phase decanter 

system. However, PC-SAFT property method is still under developed and binary interaction 

parameters for many compounds are difficult to find in literature. Vogelpohl et al. (2013) has 

recomendend Peng-Robinson (PR) EOS and Soave-Redlich-Kwong (SRK) EOS for systems 

of CO and H2 in hydrocarbons over a wide temperature and pressure range.  

Using the three methods of thermodynamic property method selection and a consideration of 

process type, conditions and other modelling constrains, the Soave-Redlich-Kwong (SRK) 

EOS method was selected in this study for both metathesis section and hydroformylation 

section. The phase separation units in hydroformylation were treated with UNIFAC method. 

Appendix A.5 shows how the thermodynamic method was selected in this study. A summary 

is given in Table 5.2. 
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Table 5.2.: Summary of property methods  

Property method 

Metathesis section Hydrofomylation section 

(Non-polar hydrocarbons, <10 bar) (Polar hydrocarbons >10 bar) 

Aspen Tech (2009) 

Lee-Kesler-Plocker (LKP) EOS, 

Peng-Robinson (PR) EOS, 

Redlich-Kwong-Soave (RKS) EOS 

Soave-Redlich-Kwong (SRK) EOS, 

Redlich-Kwong (RK) EOS 

Seider et al. (2004) 
Peng-Robinson (PR) EOS, 

Redlich-Kwong-Soave (RKS) EOS 

UNIFAC 

Carlson (1996) 

Pen-Robinson (PR) EOS, 

Redlich-Kwong-Soave (RKS) EOS, 

LK-Plock (LKP) EOS, 

Peng-Robinson-BM (PRBM) EOS, 

Rendlich-Kwong-Soave-BM 

(RKBM) EOS 

Peng-Robinson (PR) EOS, 

Soave-Redlich-Kwong (SRK) EOS, 

Wilson, NRTL, and UNIQUAC 

Hentschel et al. (2014) - PC-SAFT, UNIFAC-Dortmund 

Schafer et al. (2012) - PC-SAFT 

Vogelpohl et al. (2013 - 
Peng-Robinson (PR) EOS and 

Soave-Redlich-Kwong (SRK) EOS 

Current study 
Soave-Redlich–Kwong (SRK) 

EOS 

Soave-Redlich-Kwong (SRK) 

EOS, UNIFAC 

 

5.2 Final Aspen Plus™ process scenarios 

Section 5.3 and 5.4 discusses the final Aspen Plus™ simulation for the two process scenarios 

developed for upgrading 1-octene from a Fischer-Tropsch product stream to 2-hexyl-nonanal 

an important feedstock for the Guerbet-type surfactants. The process being analysed in this 

project can be described as an integrated metathesis of 1-octene from a Fischer-Tropsch 

Synthol product stream to an internal alkene, 7-tetradecene and subsequent hydroformylation 
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of 7-tetradecene to 2-hexyl-nonanal, separation and recovery of catalysts, purification and 

separation of products. The Aspen Plus™ flowsheets were developed from base case process 

flow diagrams developed in Section 4.4 as discussed in Chapter 4. The two process 

simulations for Scenario A (liquid multiphase system) and Scenario B (OSN membrane 

system), arose from two different design approaches to recovery of Rh-TPPTS catalyst from 

post reaction mixtures developed in Chapter 4. Scenario A proposes the use of liquid 

multiphase system (LMS) while Scenario B proposes the use organic solvent nanofiltration 

(OSN) membrane as a solution to the recovery of Rh-catalyst from post hydroformylation 

reaction mixture. The data used in these designs have been demonstrated in either a 

laboratory, pilot plant, or previously operated full-scale plant. To avoid redundancy in the 

description of separate model sub-sections, process design Scenario A (liquid multiphase 

system) is used as basis for the two process designs discussed hereafter. Only changes 

between this basis and subsequent designs are discussed in the subsections of the altered 

process design itself. Important assumptions made for all the process designs include: 

 A 10 000 tonnes per annum 2-hexylnonanal product of 99 % purity will be produced 

and that the resulting size of the process designs are optimal for industry. 

 A 1-octene/HGr-2 catalyst initial feed ratio of 10 000 according to Van der Gryp et al. 

(2012) was used. 

 A 7-tetradecene/Rh-TPPTS catalyst initial feed ratio of 2 500 according to Haumann 

et al. (2002) was used. 

 A water/7-teytradecene feed ratio (α) of 0.5 was used in the hydroformylation reactor 

according to Muller et a. (2013, 2015), Haumman et al. (2002a, 2002b), Rost et al. 

2013). 

 A marlipal to water mass fraction (γ) of 0.08 was used according to Muller et a. (2013, 

2015), Haumman et al. (2002a, 2002b), Rost et al. (2013). 
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5.3 Scenario A: Liquid multiphase system 

The simulation model used in this study was divided into Sections (AREAs) that corresponds 

to each of the main process steps developed in Chapter 4 that make up the overall process 

as shown in Figure 5.1;  

 

Rh- Makeup, solvent

CO/H2

Make-up 

HGr-2

2-hexyl-nonanal

SECTION 

AREA-A100

SECTION 

AREA-A200

SECTION 

AREA-A300

SECTION 

AREA-A400

SECTION 

AREA-A500

SECTION 

AREA-A600

SECTION 

AREA-A700

SECTION 

AREA-A800

octene

 

Figure 5.1.: Block flow diagram for process scenario A 

 

A description of the sections of the main process steps is as follows; 

 Section AREA-A100 describes the 1-octene metathesis reaction and considered as 

the metathesis section, 

 Section AREA-A200 details the ethylene removal and considered as the Ethylene 

removal section, 

 Section AREA-A300 is where HGr-2 catalyst is recovered for recycle into the 

metathesis process and is considered the catalyst recovery section. This is the most 

important section since the operating cost is influenced by catalyst cost.  
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 Section AREA-A400 is where unreacted 1-octene is recovered and is termed 1-octene 

recovery section,  

 Section AREA-A500 contains the hydroformylation reactor and is considered the 

hydroformylation section. This section is however the most understated section in the 

process due to the limited information on the kinetic data for the hydroformylation of 

long chain internal alkenes.  

 Section AREA-A600 considered the use of a liquid multiphase system to recover 

homogeneous Rh-TPPTS catalyst. This is the most important section as the operating 

costs are mostly influenced by the Rh-TPPTS catalyst loss. This section is however, 

underrated due to the limited information on recovery of Rh-catalyst in post reaction 

mixtures of high boiling points long chain aldehydes.  

 Section AREA-A700 is where unreacted 7-tetradecene is recovered and recycled back 

to the hydroformylation reactor.  

 Section AREA-A800 is where 99 wt. % 2-hexyl-nonanal is separated from isomeric 

aldehydes. This section reflects major challenges of separation of long chain isomeric 

aldehydes especially when selectivities and yields are low.  

5.3.1 Section AREA-A100: Metathesis section 

This process Section AREA-100 was modelled with four Aspen PlusTM user models as 

depicted in Figure 5.2 and described in detail in Table 5.3.The process begins when a pure 

stream of 1-octene from Fischer-Tropsch Synthol product stream at 30 oC and 1 bar is sent to 

mixer (M-101) where it was mixed with 1-octene recycle (403) from 1-octene column. A 

steam-jacketed reactor is used to maintain an optimum temperature of 50 oC to achieve high 

activity since the reaction is endothermic (108.45 kJ/mol) (Ivin and Mol, 1997, Jordaan and 

Vosloo, 2011). HGr-2 make-up catalyst was also added to the reactor to satisfy a design 

specification (DES-HGr-2) of 1-octene/HGr-2 of 10 000 (mol) as given in literature by Van der 

Gryp (2009). 
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R-101

HX-101P-101

Recycle HGr-2 from 

Section A-300

Recycle 1-octene from 

Section A-400

M-101

7-tetradece (50 o
C, 2 bar) 

to C2H4 recovery section 

A-200

Fresh 1-C8 

(30 o
C, 1 

bar)

103

102C102B102A

302

402

101

HGr-2 

Make-up

 

Figure 5.2.: Metathesis flow sheet for the metathesis of 1-octene Section AREA-A100  

 

A description of the modelling purpose is shown in Table 5.3. 

 

Table 5.3.: Metathesis process unit operations 

Equipment name Modelling purpose and description 

M - 101 Models a mixing tank for fresh 1-octene stream (101), HGr-2 catalyst recycle 

streams (303) from Section AREA-300 and 1-octene recycle stream (403) 

from section AREA-A400 

P - 101 Models a pump which is used to raise the feed stream (102A) pressure to 2 

bar before it reaches the feed heater 

HX - 101 Models a heat exchanger which is used to raise the feed stream (102B) 

temperature to stream (102C) at 50 oC 

R – 101 Models a continuous stirred tank reactor. The reactor is modelled using 

kinetics by Van Der Gryp (2009). 
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(i) Validation of metathesis reactor model 

A plot of selectivity against temperature for Aspen PlusTM model results compared to literature 

results (Van der Gryp, 2009) is shown in Figure 5.3. It can be seen from Figure 5.3 that the 

Aspen PlusTM metathesis reaction model results agree considerably well with literature data 

throughout the whole temperature range, hence is a reliable prediction of self-metathesis at 

low temperature (below 60 oC) and isomerisation at high temperatures (above 60 oC). This 

was also in agreement with literature results by Lehmann et al. (2003), du Toit et al. (2014) 

and Jordaan et al. (2008). 

 

 

Figure 5.3.: Comparison between model and Van der Gryp (2009) experimental data for 1-octene 

metathesis with HGr-2 precatalyst (RMSE=0,988) 

The EP3 calculated for separation and recycle system in Chapter 4 confirmed that selectivity 

rather than conversion has a significant effect on the separation equipment cost. The higher 
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the selectivity the lower the separation costs. From an economic standpoint, maximizing 

selectivity and TON will maximize profits.  

Reaction engineering identifies a small reactor size and maximization of PMP products as the 

two extremely important requirements in designing a reactor. Literature data of activity against 

temperature for HGr-2 catalyst (Van der Gryp, 2009) confirms that TON increases with 

temperature up to 50 oC but starts to decrease as temperatures increases. Literature results 

(du Toit et al., 2014; Lehmann et al., 2003; Jordaan et al., 2008) have also confirmed that at 

temperatures above 60 oC, the precatalyst starts to decompose, lose activity for metathesis 

and possibly deactivates and promotes isomerisation reactions. Since high selectivities and 

TON could be obtained at 50 oC, the optimal temperature for the metathesis reactor in this 

simulation was set at 50 oC. 

5.3.2 Section AREA-A200: Ethylene recovery section 

After metathesis reaction, the product was passed onto the ethylene recovery section. The 

purpose of this section was to remove ethylene from the main product 7-tetradecene stream 

(201A). Ethylene gas stream could be purged directly from the reactor but however, due to 

solubility in the alkenes an additional separator was required in order to avoid complicating 

the reactor system. In previous work by Lee et al. (2008), experimental results show that the 

solubility of ethylene in a 2,2,4-trimethylpentane and 1-octene mixture increases with system 

pressure but decreases with system temperature. Ethylene accumulation promotes 

coordination to the catalyst complex, forming hydride species (decomposition catalyst) that 

increases isomerization and reverse metathesis of 7-tetradecene (Loock et al., 2009). Hence, 

ethylene must be removed before unreacted 1-octene is recovered and recycled to the 

metathesis section area. A detailed description of this section is shown in Figure 5.4. 
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Figure 5.4.: Schematic diagram for the removal of ethylene in product stream 

 

Product stream (201A) from the metathesis Section AREA-100 at 2 bar and 50 oC is precooled 

to 32 oC before it enters the flash drum (V-201). Results of a temperature sensitivity analysis 

in Figure 5.5 shows that if the flash drum is operated at 32 oC and 1 bar it is possible to achieve 

96 % recovery of ethylene from the product stream. Outlet water temperature from a cooling 

tower at Sasol Secunda can be obtained at 22 oC (Kloppers and Kroger, 2005).  

 

 

Figure 5.5.: Temperature versus mass fraction of ethylene in flash drum vapour stream 
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Table 5.4 shows the modelling purpose and description of each unit operation used in 

developing section A-200 in this work. 

 

Table 5.4.: Description of unit operations 

Equipment name Modelling purpose and description 

HX - 201 Models a heat exchanger for cooling product stream (201A) from 50 oC to 32 

oC. 

V - 201 Models a flash drum which is used to separate product stream (201B) into 98 

wt.% ethylene in stream (202) and liquid stream (203) which is predominantly 

7-tetradecene. The vessel is operated at 1 bar and 33 oC to achieve high 

ethylene recovery (96%) also minimising 1-octene loss. 

 

5.3.3 Section AREA-A 300: HGr-2 catalyst recovery section 

The liquid product from the ethylene recovery section is directed to the catalyst recovery 

Section AREA-A300. The main purpose is to achieve >99.99 % recovery of expensive HGr-2 

catalyst from the product stream in its active form so that it can be reused. A point of high 

interest is that degradation products of these ruthenium catalysts can be highly active and 

selective double-bond isomerization and hydrogenation catalysts leading to product 

degradation (Huang et al., 2015). Moreover, for pharmaceutical and fragrances, the 

separation of the homogeneous catalysts and ligands from the product is critical to meet 

regulations of less than 9 ppm (Bhanushali et al., 2001).  

5.3.3.1 Developing membrane Aspen PlusTM Model 

A model of a membrane unit is not (yet) available as a build-in process model in Aspen PlusTM 

model library. As a result, the objective of section 5.3.3.1 was to develop a generic custom 

model of a HGr-2 catalyst separation membrane unit interfaced for use in Aspen PlusTM as 

like the other unit models available in Aspen PlusTM model library. A FORTRAN block of an 

Aspen Custom Model of a nanofiltration membrane unit interfaced in Aspen PlusTM was 
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developed for recovery of species whose permeabilities are given in Table 5.5. A modified 

Hagen-Poiseuille-2 (HP-2) model was used to predict solvent flux (J) in StarmemTM membrane 

as a function of both species permeability (p) and mass fractions (x). Algorithms used in Aspen 

PlusTM are shown Appendix A. Fixed structural parameters such as recycling structure were 

adopted from Seifert et al. (2013) and Schmidt et al, (2014). In every membrane stage, a 

parallel setup of membrane modules is simulated. The membrane area in every stage is 

calculated based on the feed flow demand of industrial OSN membrane modules. As OSN 

membrane modules, 2.5″x 40″ spiral-wound StarmemTM 228 membrane modules with a 

membrane area of 2.09 m² (Evonik MET, 2011) were applied. 

 

Table 5.5.: Species permeabilities using StarmemTM 228 membrane 

Species Permeability(m) Reference 

1-octene 6.581 x10-16 Van der Gryp (2008) 

2-octene 6.581 x10-16 Van der Gryp (2008) 

6-tridecene 2.834 x10-18 Correlated using Bhanushali et al. (2001) model 

7-tetradecene 1.311 x10-18 Van der Gryp (2009) 

 

(ii) Modelling limitations 

In this approach, several critical points or challenges have been identified. Key factors in this 

approach have been the effects of interactions in a multi-component system. It is not clear at 

what magnitude the interactions between solute and solvent and the inorganic matrix is on 

membrane rejections. Finally, the second critical point is identified as the non-availability of 

pilot-plant data necessary for model validation.  

(iii) Model assumptions 

The key assumptions made in this model are (Wijmans et al., 1995): 
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i. Each species diffuses across the membrane in an uncoupled manner due to its own 

chemical potential gradient, which is the result of the concentration and pressure 

differences across the membrane. 

ii. The driving force is essentially the difference in pressure on the feed side and 

permeate side. 

iii. No concentration polarization. 

(iv) Aspen PusTM custom model validation 

The objective of simulation model validation was to determine how accurately the measures 

extracted from the model corresponds to the measures obtained from the represented system. 

Hence, two important criteria i.e. non-separation of species and flux versus mass fraction of 

1-octene were used to validate the OSN membrane model developed in this work. The 

non-separation of species in membrane models has been used previously as a characteristic 

test of the Hagen-Poiseuille-2 model (Bhanushali et al., 2001). This phenomenon has been 

reported in different studies of Silva et al. (2005), Van der Gryp et al. (2012) and Schmidt et 

al. (2014). According to Van der Gryp et al. (2012), the non-separation of the solvent species 

is attributed to the StarmemTM-228 membrane's MWCO of 280 gmol-1, compared to 

7-tetradecene's molecular weight of 196 g.mol-1 and 1-octene's of 112 g.mol-1. Figure 5.6 

shows results of mass fraction of 1-octene in retentate vs mass fraction of 1-octene in the 

permeate stream plotted against literature data of Van der Gryp et al. (2012).  
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Figure 5.6.: Results for 1-octene mass fraction in retentate vs. 1-octene mass fraction in 

permeate obtained with Aspen Plus and experimental data by Van Der Gryp et al. (2012).  

 

It can be concluded from fit of model data to literature results that the Aspen PlusTM custom 

model of HGr-2 catalyst separation membrane unit developed in this work sufficiently 

describes the membrane process as regards separation of species into retentate and 

permeate.  

The results of flux versus mass fraction of 1-octene for the model was also compared with the 

literature results. In this investigation, the mass fraction of 1-octene in feed stream to 

membrane was varied by changing the residence time of the RCSTR metathesis reactor unit. 

Results of total flux at varied mass fraction of 1-octene for model compared to literature results 

is shown in Figure 5.8. 
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Figure 5.7.: Comparison of literature vs. model solvent fluxes at 30 bar 

 

Figure 5.7 shows a graph of the comparison of Aspen Custom Model results of OSN 

membrane module against literature, for the total flux as a function of 1-octene mass fraction 

in feed. It can be shown that simulated results fits quite well between literature results and an 

ideal scenario where flux is proportional to mass fraction of 1-octene. Moreover, the model 

developed in this work was based on Hagen-Poiseuille-2 model with the assumption that 

pole-flow model provides the best fit between experimental data which has been previously 

recommended by Van der Gryp (2009) and Bhanushali et al., (2001). Hence, it can be 

concluded that solvent properties such as viscosity, solvent-membrane interaction together 

with solvent-solvent structural properties were sufficiently incorporated in the model (Silva et 

al., 2005). Hence, from model complexity viewpoint the model developed in this work is valid 

and adequately describes the transport across StarmemTM 228 membrane. 
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(v) Optimisation results 

In this section, the optimisation results for recycling of homogeneous Rh-catalyst based on 

the results of the validated model of Starmem™ 228 membrane is presented. The objective 

was to minimize the membrane costs per kg of 2-hexyl-nonanal product. The optimisations 

were performed individually for different membrane setups, i.e. fixed structural parameters 

such as stage rejections and recycling structure were assumed. Then, operational parameters 

in the membrane part were optimised and finally given the optimised membrane cascade. For 

operating costs of the OSN membranes, a membrane price/stability factor of 250 $ m2/yr 

(Schmidt et al., 2014) was assumed. As can be seen from Figure 5.9, the overall membrane 

costs per kg 2-hexyl-nonanal is a function of the number of OSN membrane stages, with 

higher costs for processes with more stages and less costs for processes with fewer stages. 

These results are a direct consequence of the low individual stage rejections, resulting in 86.16 

% overall HGr-2 catalyst rejection for the one-stage process up to 99.96 % rejection in case 

of the five-stage process.  

 

 

Figure 5.8.: Membrane cost versus reaction and number of stages 
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The overall rejection in this study was almost constant for 3, 4 and 5 stages configuration while 

cost of membrane per kg of 2-hexyl-nonanal increased linearly. The cost for a three-stage 

process lies within a reasonable range (0.0293 $/kg) whereas the five-stage process has a 

two times higher production cost of 0.04 ($/kg). This promotes the application of OSN, as 

mostly, in industrial settings, the number of stages can be a key operating criterion for an 

investment decision within early phases of process development. In this study a 3-stage 

membrane set-up was selected based on a low operating cost per kg of 2-hexyl-nonanal and 

also maximising catalyst rejection. Figure 5.9 shows an optimised three-stage cascade model 

arrangement used to develop the catalyst recovery unit. The arrangement of retentate and 

permeate streams is similar to one proposed by Seifert et al. (2013).  
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Figure 5.9.: Schematic diagram for the 3-Stage process of recovery of HGr-2 precatalyst 

 

Details of OSN membrane and a description of modelling purpose is shown in Table 5.6.  
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Table 5.6.: Membrane process unit operations and description 

Equipment name Modelling purpose and description 

 

MEMB Stage 1, 

MEMB Stage 2, 

MEMB Stage 3, 

Models a membrane separator used to recover the catalyst species from the 

product stream (301) into catalyst retentate stream (302) and product 

permeate stream (303). A custom build membrane was developed using 

FORTRAN blocks which predicts species flux by a modified 

Hagen-Poiseuille-2 model with 3 stages in order to achieve >99.99 % overall 

recovery of HGr-2 catalyst. 

P – 201, 202, 203 Models OSN pumps required to provide the transmembrane pressure of 40 

bar as driving force for the species flux through the membrane  

 

5.3.4 Section AREA-A 400: 1-octene recovery section 

The purpose of this section is to recover unreacted 1-octene from the product stream so that 

it can be recycled back to the metathesis reactor (section AREA-100). Distillation provides a 

convenient way to make the separation and there will be a large break between the boiling 

point of the 1-octene (120 oC) and 7-tetradecene (250 oC). For the simulation boiling points 

are good initial estimates for the separation system design, however, detailed design of the 

physical system would require calculation of the bubble points and dew points. According to 

US patent US 4,386,229, the separation of the alpha olefins from the internal olefins utilizing 

olefins with 8 to 10 carbon atoms can be carried out by distillation in which the end point for 

alpha olefins at atmospheric pressure is not above about 175° C and the initial boiling point of 

the internal olefin is not below about 213° C. Figure 5.10 below shows the set-up of the 

1-octene recovery section and the units used in Aspen PlusTM to develop the section.  
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1-octene (96 %) 

150 
o
C, 1bar to 
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7-tetradecene
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o
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AREA-A 500
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AREA-A 300

(30 
o
C, 1 bar)

HX-401P-401

C-401

401C401B401A

402

403

 

Figure 5.10.:  Schematic diagram for the 1-octene recovery section A300 

 

This column operates at 1 bar, has 21 equilibrium stages assuming a column efficiency of 70 

% and a minimum reflux to actual reflux of 1.2 stages with the feed on stage 10 a reflux ratio 

of 0.163667, and operates as total condenser. A sensitivity analysis of the recovery of 

1-octene versus the number of stages (Figure 5.12) shows that 99.99 wt. % of 1-octene can 

be recovered with a minimum equilibrium stages of 21.  

 

Stellenbosch University  https://scholar.sun.ac.za



160 

 

 

 

CHAPTER 5 Aspen PlusTM SIMULATION 

 

Figure 5.11.: Recovery and number of stages relationship for 1-octene column 

 

A sensitivity analysis on the effect of the reflux ratio on condenser and reboiler duty was also 

carried out which also shows that both the reboiler and condenser duties increased with 

increase in reflux ratios however an optimal reflux ratio of 0.25305 was selected so as to 

achieve a 99.9 % recovery of 1-octene. Since 1-octene is very reactive compared to 

7-tetradecene the objective of designing the 1-octene column must be to maximise its recovery 

so as to prevent its presence in the hydroformylation reactor to prevent formation of short 

chain aldehydes and alcohols. Table 5.7 describes the purpose of the model and description 

of each unit. 
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Table 5.7.: Description of each unit and modelling purpose 

Equipment name Modelling purpose and description 

C - 401 Models a distillation column used to separate the product stream into 99 % 

1-octene distillate stream (402) and bottoms product steam (403) which is 

predominantly 7-tetradecene and the column operates at 0.01 bar. The feed 

enters the column at 150 oC and 1 bar. 

HX - 401 Models a heat exchanger which is used to heat the feed stream (401A) 

coming in at 30 oC to feed stream (401B) at 120 oC. 

P - 401 Models the pump used to raise the pressure in order to overcome pressure 

losses during liquid transport. The pump is used to supply the feed to the 

column at 2 bar. 

 

5.3.5 Section AREA-A500: 7-tetradecene hydroformylation section 

The base conditions for the simulation of hydroformylation reactor was set at 100 bar and 120 

oC (Haumann et al., 2002b). A design specification (RHO-CAT) was used to set the Rh-TPPTS 

catalyst to 7-tetradecene feed to 200 ppm (Haumann et al., 2002b). The folowing graph 

(Figure 5.12) shows  results of invetsigation eof temperature on conversion for the Aspen 

PlusTM model. Figure 5.12 shows that conversion increase as temperature is increases, hence, 

inorder to ensure a small reactor volume and improve safety of the hyfroformylation reactor, it 

was decided to opearte the reactor at a higher temperature. 
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Figure 5.12.: Effect of temperature on conversion at 100 bar 

 

However, aldehydes have been known to be temperature sensitive and degrade above180 oC 

(Hentschel et al., 2014, Steimel et al., 2014), an optimal temperature for this work was chosen 

to be 160 oC. In order to determine the optimal reaction pressure the effect of pressure on 

both conversion and cost of reactor was investigated as shown in Figure 5.13. 

 

 

Figure 5.13.: Effect of pressure on conversion  
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A balance between conversion, operational cost and capital cost of the reactor, were critical 

considerations in the initial selection of the operating pressure. Since the recycle of 

7-tetradecene mainly depends on the conversion in the reactor, conversion has an influence 

on the total production costs and hence needs to be investigated (Hentschel et al., 2014). The 

increase in production costs at lower conversions results from the higher costs for the 

unreacted 7-tetradecene recycle, whereas the cost increase for higher conversions results 

from decreasing selectivity and n/iso ratio hence, higher costs for the product separation and 

higher energy demands. It can be seen from Figure 5.13 that an increase in pressure had a 

minor effect on the conversion of 7-tetradecene as an increase in pressure from 40 to 140 bar 

caused a minor change in conversion of 0.0078. Figure 5.15 shows the effect of the operating 

pressure on the cost of the hydroformylation reactor due to material of construction and safety 

demands. It can be seen below that pressure has a significant effect on the cost of the reactor 

due to a high demand in material of construction. An increase in pressure of 1 bar resulted in 

an increase in the cost of the reactor by approximately US $0.575 million.  

 

 

Figure 5.14.: Effect of pressure on Cost of reactor 
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It can be seen above that an increase in pressure causes an increase in conversion, the rapid 

rise in the cost of the reactor from $ 30 million to $ 99 million at the expense of an only 0.0078 

increase in conversion meant that it was profitable to operate the reactor at 40 bar in order to 

minimise reactor cost and operating costs. In light of this, conditions for the reactor were 

chosen to have the lowest pressure practically possible and the highest economic 

temperature.  

Figure 5.15 shows the set-up of the 7-tetradecene hydroformylation section and the units used 

in Aspen PlusTM to develop the section. 

 

Aldehyde product to 

Catalyst recovery 

section A-600

 (160 
o
C, 100 bar)

Syngas Recycle 

from AREA-A 600     

(71 
o
C, 15bar)

Make-up 

Syngas       

(30 
o
C, 15bar)

7-C14 recycle 

from AREA-A-700      

(104 
o
C, 2 bar)

HX-504

HX-502

C-502

HX-505

M-501

HX-501P-501

HX-503

502A

502B

505C

507

502C

502B

Cat. Recycle 

(71 
o
C, 15 bar)

501C501B

503B

R-501

504A

7-C14 from 

AREA-A 400

(250 
o
C, 2bar) 

501A

503C

5
0

4
B

Solvent 

Makeup  

(30 
o
C, 1bar) P-503

506

P-505

P-504

505B

Fresh Rh 

(30 
o
C, 1 bar)

 

Figure 5.15.: Schematic diagram for the hydroformylation area A400 in Aspen PlusTM 

 

Table 5.8 describes the description of each unit and purpose in the model. 
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Table 5.8.: Description of unit operations and modelling objective 

Equipment name Modelling purpose and description 

R - 501 Models a continuously stirred tank reactor for the hydroformylation of 

7-tetradecene. The optimum operating temperature of the reactor was 160 oC 

and was maintained by means of a water-cooled jacket. Pressure is kept at 

40 bar by means of syngas injection. The reactor was modelled using kinetics 

by Haumann et al. (2002b). 

C - 501 Models a compressor that was used to raise the make-up syngas feed stream 

(503) pressure from 15 bar to stream (503A) at 40 bar.  

C - 502 Models a compressor that was used to raise the recycle syngas feed stream 

(504) pressure from 2 bar to stream (504A) at 40 bar. 

P - 501 Models a positive displacement pump used raise feed stream (501) pressure 

from 1 bar to stream (501A) at pressure 40 bar.  

P - 502 Models a positive displacement pump used raise solvent stream (502) 

pressure from 1 bar to stream (502A) at pressure 40 bar. 

P - 503 Models a positive displacement pump used raise catalyst recycle stream 

(504) pressure from 1 bar to stream (504A) at pressure 40 bar. 

P - 504 Models a positive displacement pump used raise recycle 7-tetradecene 

stream (506) pressure from 1bar to stream (506A) at pressure 40 bar. 
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Table 5.9.: Description of unit operations and modelling objective 

Equipment name Modelling purpose and description 

HX - 501 Models a heat exchanger to preheat feed stream (501A) at 30 oC to stream 

(501B), 160 oC before it enters the CSTR reactor (R-501). High pressure 

steam at 200 oC is used to preheat the feed.  

HX - 502 Models a heat exchanger to preheat solvent stream (502A) from 30 oC to 

stream (502B) at 160 oC before it enters CSTR (R-501). High pressure steam 

at 200 oC is used to preheat the feed. 

HX - 503 Models a heat exchanger to preheat catalyst recycle stream (504A) from 70 

oC to stream (504B) at 160 oC before it enters CSTR (R-501). High pressure 

steam at 200 oC is used to preheat the feed. 

HX - 504 Models a heat exchanger to heat 7-tetradecene recycle stream (505A) from 

150 oC to stream (L-512) at 160 oC before it enters the CSTR (R-501).  

HX - 505 Models a heat exchanger to preheat syngas make-up stream (503A) from 30 

oC to stream (503B) at 160 oC before it enters the CSTR (R-501). High 

pressure steam at 200 oC is used to preheat the feed. 

HX - 506 Models a heat exchanger to preheat syngas recycle stream (505A) from 30 

oC to stream (505B) at 160 oC before it enters the CSTR (R-501). High 

pressure steam at 200 oC is used to preheat the feed. 

 

5.3.6 Section AREA-A 600: Rh-TPPTS catalyst recovery section 

The purpose of this section is to recover the catalyst in its active form so that it can be recycled 

back into the hydroformylation reactor (R-501) hence reducing the cost of catalyst. The 

objective of simulation for this section was to determine optimal conditions for catalyst 

recovery. Figure 5.16 shows the graph of sensitivity analysis for the mass fraction of catalyst 

leached in organic product stream versus pressure at a temperature of 72 oC (upper limit of 

heterogeneity, Muller et al. (2013)). It can be seen that catalyst leaching as low as 1 ppm can 

be achieved by operating the flash drum at 15 bar. Pilot plant results have also confirmed 
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rhodium concentrations lower than 1 ppm in the organic product phase (Muller et al., 2013, 

Rost et al., 2012, Harmela et al., 2012). 

 

 

Figure 5.16.: Mass fraction and operating pressure in flash drum at 71 oC  

 

The separation progress of the flash drum at different temperatures can be seen in Figure 

5.17 below. As can be seen the separation of this mixture into the individual phases is affected 

by temperature thus the formation of a homogeneous mixture at temperatures above 80 oC 

resulted in an increase in catalyst leached with the organic product.  
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Figure 5.17.: Effect of temperature on the catalyst separation in flash drum 

 

Rost et al. (2013) previously confirmed that the separation of the product mixture into three 

phases occurs faster at 72 oC hence a need to determine the sharpness of separation. In this 

investigation the mass fraction of water was used to determine the effectiveness of separation 

since the catalyst was dissolved in the aqueous media.  

The set of optimal conditions for the operation of the flash drum to ensure that less than 9 ppm 

of the catalyst is leached with the organic product and hence ensure an economic process in 

this work was chosen to be 15 bar and 72 oC. Figure 5.18 shows the set-up of the liquid 

multiphase system for Rh-TPPTS catalyst recovery section and the units used in Aspen PlusTM 

to develop the section. 
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Figure 5.18.: Schematic diagram of the phase separator for recovery and recycle catalyst 

 

Table 5.9 shows the description of each unit and model purpose. 

Table 5.9.: Description of unit operations and modelling purpose 

Equipment name Modelling purpose and description 

D - 601 Models a 3-phase Vapour-Liquid-Liquid flash to separate the product stream 

(601A) into polar catalyst stream (604) and nonpolar organic product stream 

(603). The flash drum operates at 71 oC and 15 bar base conditions according 

to Muller et al., 2013. 

HX - 601 Models a feed cooler to reduce the temperature of product stream (601A) at 

160 oC to stream (601B) at 71 oC before it enters the flash drum while the 

pressure is kept at 100 bar. 
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5.3.7 Section AREA-A 700: 7-Tetradecene recovery section 

The purpose of this section is to recover > 99 % of unreacted 7-tetradecene in organic product 

and then recycle it back to the hydroformylation reactor section. In order to avoid product 

degradation at temperatures above 180 oC the column is operated under vacuum conditions 

and it is also assumed that a pressure loss of 50 % can be maintained between reboiler and 

condenser (Hentschel et al., 2014). It can be seen (Figure 5.19) from results of sensitivity 

analysis that as the number of stages increases the recovery also increases until 29 

equilibrium stages are attained assuming 70 % column efficiency and 
𝑅𝑚

𝑅⁄  of 1.2. An 

investigation was also carried out on the reflux ratio versus condenser and reboiler duty and 

it was found that both reflux ratio and condenser and reboiler duties remained approximately 

constant between 83 and 99 % recoveries of 7-tetradecene.  

 

 

Figure 5.19.: Recovery versus number of stages in 7-tetradecene recovery column 
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 Figure 5.20.: Schematic diagram of 7-tetradecene recovery section 

 

Table 5.10 shows the description of each unit operation and modelling purpose. 

 

Table 5.10.: Description of each unit operation and modelling purpose. 

Equipment name Modelling purpose and description 

C - 601 Models a distillation column used to recover unreacted 7-tetradecene from 

the product stream (701A) operated at 1 bar and the optimum number of 

stages required to achieve 99 % recovery is 29. 

HX-701  Models a feed preheater used to raise the temperature of feed stream (701A) 

from 30 oC to 150 oC stream (701B) 

V-701 Models a pressure reduction valve used to reduce stream pressure from 15 

bars to 0.01 bar. 

P-701 Models a pump used to raise the pressure of bottoms product to atmospheric 

pressure 
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5.3.8 Section AREA-A 800: Product Purification Section 

According to Hentschel et al. (2014) and Steimel et al. (2014) downstream processing require 

minimum aldehyde purities of 98 %. The purpose of this section is to separate 2-hexyl-nonanal 

into a distillate stream of 99 % wt. purity which can be used as a feedstock to Geubert-type 

surfactants. Since the products will degrade at temperatures above 180 oC the pressure of 

columns is at vacuum conditions (Hentschel et al., 2014). The actual number of of stages were 

determined assuming a column efficiency of 70 % and ratio of minimum to actual reflux of 1.2. 

The pressure levels of the columns have been estimated assuming a pressure loss of 50%. 

Figure 5.21 below is a graph of the number of stages against 2-hexyl-nonanal purity.  

It can be seen that the separation of 2-hexyl-nonanal from its isomers is a challenging step 

hence a larger number of steps are required. Hentschel et al. (2014) also observed that 

production costs during hydroformylation of 1-dodecene to n-tridecanal are dominated by the 

product separation column. The costs of the n/iso column arise from the comparably difficult 

separation of the two very similar aldehydes, hence a high number of stages is required 

(Hentschel et al., 2014). Micovic et al. (2012) also confirmed that the distillation separation of 

long-chain isomers tends to be more costly or even technically infeasible due to the decreasing 

difference in boiling points with increasing chain length. 
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Figure 5.21.: Number of stages versus 2-hexyl-nonanal purity  

 

Figure 5.22 shows arrangement of equipment models used in Aspen PlusTM to achieve this 

purpose.  
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Figure 5.22.: Schematic diagram of product purification section 
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Table 5.11shows the description of each unit operation and modelling purpose. 

 

Table 5.11.:  Description of each unit operation and modelling purpose 

Equipment name Modelling purpose and description 

C - 801 Models a distillation column used to separate 2-hexyl-nonanal from isomeric 

aldehydes identified by 2-pentyl-decanal. The column is operated at vacuum 

conditions. 

HX-802 & HX-803 Models feed coolers used to reduce the temperature of product streams to 

storage temperatures (30 oC) 

P-801&P-802 Models centrifugal pumps used to pump distillate and bottoms product 

streams to storage conditions 

 

5.4 Aspen PlusTM simulation scenario B (OSN membrane separation) 

Process scenario B is similar to scenario A except that liquid multiphase system was replaced 

by a two phase flash drum to separate unreacted syngas and OSN membrane process which 

was investigated as an alternative solution to reduce Rh-TPPTS catalyst loss during the 

hydroformylation process. According to Muller et al. (2013) and Wiese and Obst (2000) there 

is a need to guarantee at least 99,99 % recovery of Rh-TPPTS catalyst to ensure economic 

feasibility. Organic solvent membrane (OSN) is a plausible method to ensure recovery of 

active Rh-TPPTS catalyst considering high boiling points of aldehyde products (Schwarze et 

al., 2008). Together with models described in process scenario A in Section 5.3, OSN 

membrane model developed for Rh-TPPTS catalyst recovery was investigated in this 

scenario. Figure 5.23 shows the block flow diagram for process scenario B.  
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Figure 5.23.: Block Flow diagram for process scenario B: membrane process 

 

5.4.1Section AREA- B100 –1-octene metathesis section  

Refer to section AREA-A100 of Process Scenario A (pg. 94-98) as its process description is 

similar to that of this design.  

5.4.2 Section AREA-B200 – Ethylene recovery section 

Refer to Area A200 of Process Scenario A (pg.98-100), as its process area description is 

identical to this design. 

5.4.3 Section AREA-B300 –Catalyst recovery section 

Refer to Area A200 of Process Scenario A (pg.101-105), as its process area description is 

identical to this design. 

5.4.4 Section AREA-B400-1-octene recovery column 

Refer to Area A200 of Process Scenario A (pg. 106-108), as its process area description is 

identical to this design. 
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5.4.5 Section AREA-B500 Hydroformylation Section 

Refer to Area A200 of Process Scenario A (pg. 108-115), as its process area description is 

identical to this design. 

5.4.6 Section AREA-B600 Phase separator 

After the hydroformylation reaction, the product is passed onto syngas recovery section. The 

purpose of this section is to recover unreacted syngas from the aldehydes product stream 

(201A). According to Vogelpohl et al. (2013) syngas is soluble in aldehyde and alkenes at high 

pressures hence can be separated from the product stream by using a flash drum. Figures 

5.24 and Figure 5.25 shows the effect of temperature and pressure on the recovery of syngas 

from the flash drum. It can be seen that cooling the product stream to 45 oC resulted in an 

increase in the syngas recovered, however, due to high conversions attained in the reactor 

the change in syngas composition in the product stream was not significant hence an optimal 

temperature of 45 oC was chosen so as to limit recovery of the product. 

 

 

Figure 5. 24.: Effect of Temperature on the recovery of CO in V-L flash drum 
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The effect of operating pressure on the recovery of syngas is shown in Figure 5.25. It can be 

seen that operating the flash drum at pressures lower than 15 bar resulted in high recovery of 

syngas from the product stream. The result agrees well with Vogelpohl et al. (2013) who 

observed an increase in solubility of syngas in aldehyde product. The optimal pressure for the 

flash drum in this case was chosen to be 15 bar in order to maximise recovery of syngas. 

 

 

Figure 5.25.: Effect of pressure on Co recovery in V-L flash drum 

 

A detailed description of the section is shown in Figure 5.26. 
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Figure 5.26.:  Schematic diagram for the recovery of syngas in product stream 

 

Product stream (601A) from the hydroformylation reactor, section AREA-B-500 at 2 bar and 

160 oC is precooled to 45 oC before it enters the flash drum (V-201). Results of a temperature 

and pressure sensitivity analysis shows that if the flash drum is operated at 40 oC and 15 bar 

it is possible to achieve a 98 % recovery of syngas from the product stream. Outlet water 

temperature from a cooling tower at Sasol Secunda can be obtained at 22 oC (Kloppers and 

Kroger, 2005). Table 5.12 below shows the description of units and modelling purposes 

 

Table 5.12.: Description of unit operations 

Equipment name Modelling purpose and description 

HX - 601 Models a heat exchanger for cooling product stream (601A) from 160 oC to 

45 oC. 

HX - 602 Models a heat exchanger for cooling product stream (601A) from 45 oC to 

30 oC. 

V - 601 Models a flash drum which is used to separate product stream (601B) into 

98 % syngas in stream (602) and liquid stream (603). The vessel is operated 

at 15 bar and 45 oC in order to achieve high syngas recovery (98%). 
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5.4.7 Section AREA-B700 Rh-TPPTS catalyst recovery process 

This objective of this section is to demonstrate the recovery of Rh-TPPTS catalyst using OSN 

membrane process. Due to high costs of Rh-TPPTS catalysts and high catalyst loadings 

during hydroformylation of long chain internal alkenes, an efficient catalyst separation step 

especially an ultra-filtration step is needed to reduce the losses to a minimum (lower than 1 

ppm) and attain recoveries > 99.9 % and to ensure economic feasibility of the overall process 

(Rost et al., 2013; Muller et al., 2015). In order to develop an Aspen Custom Model of 

Rh-TPPTS catalyst-OSN recovery unit in this work permeability of species which could not be 

obtained from literature were correlated and compared to experimental values for hydrophobic 

membranes with physical properties obtained from Aspen Plus physical properties data bank.  

(i) Determining permeabilities using the Bhanushali et al. (2001) Correlation 

The Bhanushali et al. (2001) model uses two factors that govern transport (P) through a 

membrane to determine permeability of unknown species using permebilities of known 

species using the following relationship: 

• Viscosity (𝜂) 

• Molar volume (𝑉𝑚) 

𝑃 ∝
𝑉𝑚

𝜂
 

Eqn. 5.1 

According to Bhanushali et al. (2001) the permeability of a reference species can be chosen 

as the basis to normalize the different solvent permeabilities through different hydrophobic 

membranes. A similar approach was also employed previously by Machado et al. (1999) 

where permeability of acetone was used to normalize other solvents permeabilities. According 

to Bhanushali et al. (2001) and Machado et al. (1999) it could be shown that a reasonable 

prediction (𝑅2 = 0.89) could be obtained using the correlation: 

Species (i) permeability

Permeability of known specie
= k (

Vm

η
) 

Eqn. 5.2 
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In this work nonanal permeability at 30 oC is chosen as the basis to normalize the species 

permeabilities through hydrophobic StarmemTM 240 membrane. Permeabilities of species 

were correlated and compared to experimental values and a correlation coefficient of R2 = 0.91 

was obtained. Figure 5.27 shows a correlation of solvent permeabilities (using nonanal 

permeability) of polar and non-polar solvents with ration of molar volume and viscosity for 

hydrophobic StarmemTM 240 membrane. 

 

 

Figure 5.27.: Correlation of solvent permeabilities (using nonanal permeability) for hydrophobic 

StarmemTM-240 membrane. 

 

Thus, these permeabilities (Table 5.13) were used to develop an Aspen PlusTM Customized 

membrane for Rh-TPPTS catalyst separation and recovery system. 

 

 

R² = 0.9105

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350 400 450

P
e

rm
e

a
b

il
it

y
 o

f 
s

p
e

c
ie

s
/P

e
rm

e
a

b
il

it
y
 o

f 
n

o
n

a
n

a
l

(cm3/ mol cP)
𝐕𝐦

𝛍

1-octene 

Nonanal 

1-decene 

*1-octene

 

 
 1-octene 

Undecanal 1-nonanol 
1-undecanal 

6-tridecene 
7-tetradecene 

2-HN, 2-PD 

Water 

Marlipal 

Stellenbosch University  https://scholar.sun.ac.za



181 

 

 

 

CHAPTER 5 Aspen PlusTM SIMULATION 

Table 5.13.: Normalised permeabilities of species used in modified Hagen-Poiseuille model 

Species Pi(cm3/cm2bar) Pi(m) 

1-octene 9,11159E-05 1,26833E-14 

7-tetadecene 3,60047E-05 5,01185E-15 

6-tridecene 3,92416E-05 5,46244E-15 

2HN 2,26074E-05 3,14695E-15 

2PD 2,26074E-05 3,14695E-15 

Water 6,46337E-05 8,99701E-15 

Marlipal 24/70 2,63547E-05 1,66857E-16 

 

5.4.7.1 Development of Aspen PlusTM custom model of membrane unit 

A model of a membrane unit is not (yet) available as a build-in process model in Aspen PlusTM 

model library. The purpose of simulation in this section is to determine the optimal parameters 

required for an annual production of 10 000 tonnes of 2-hexyl-nonanal using commercial OSN 

membrane modules, 2.5″x 40″ spiral-wound StarmemTM 240 by Evonik. A FORTRAN block of 

an Aspen Custom Model of a nanofiltration membrane unit interfaced in Aspen PlusTM was 

developed to demonstrate recovery of Rh-TPPTS catalyst. Algorithms used in Aspen Plus are 

shown Appendix A. Fixed structural parameters such as number of stages and recycling 

structure was adopted from Seifert et al. (2013) and Schmidt et al. (2014) with objective of 

achieving > 99.99 % Rh-catalyst. recovery. 

(i) Modelling Limitations 

This model uses flexible parameters from Aspen PlusTM physical properties data bank like 

viscosity and molar volume of the solvent to obtain a reasonable prediction of pure solvent 

flux (polar and non-polar) for hydrophobic membranes. By extending model developed by 

Bhanushali et al. (2001) to different types of membranes (polar and non-polar) using 

membrane properties measured from independent experiments permeabilities of species 

were correlated and compared to experimental values and a correlation coefficient of R2= 0.91. 
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The result agreed well to previous results reported by Bhanushali et al. (2001) and Machado 

et al. (1999).  

(ii) Model assumptions 

The key assumptions made in this model are: 

1. The factor that controls the transport through a given membrane is the viscosity of the 

solvent (Bhanushali et al., 2001, Machado et al., 1999). 

2. Both solute and solvent dissolve in the non-porous and homogeneous surface layers 

of the membrane (Wijmans et al., 1995) 

3. The flow is convective in nature and can be predicted by the Hagen–Poisuelle-2 

equation for convective flow (Bhanushali et al., 2001), 

4. Each species diffuses across the membrane in an uncoupled manner due to its own 

chemical potential gradient, which is the result of the concentration and pressure 

differences across the membrane. 

5. The pressure within a membrane is uniform and that the chemical potential gradient 

across the membrane is essentially due to a concentration gradient. 

6. No concentration polarization. 

(iii) Optimisation results 

In this section, the optimisation results for recycling of homogeneous Rh-TPPTS catalyst 

based on the results of the validation experiments are shown for Starmem™ 240, focusing on 

the effect of total production costs per kg of 2-hexyl-nonanal product. The optimisations were 

performed individually for different membrane setups, i.e. fixed structural parameters such as 

stage rejections and recycling structure were assumed. Then, operational parameters in the 

membrane part were optimised and finally given the optimised membrane cascade. For 

operating costs of the OSN membranes, a membrane price/stability factor of 250 ($ m2 yr1) 

was assumed. As can be observed, the overall membrane production costs of 2-hexyl-nonanal 

is a function of the number of OSN membrane stages, with more costs for processes with 

more stages and less costs for processes with fewer stages. These results are a direct 
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consequence of the low individual stage rejections, resulting in 86.16 % overall Rh-TPPTS 

catalyst rejection, overall for the one-stage process up to 99.98 % rejection in case of the 

five-stage process. Comparing the overall membrane cost per kg of 2-hexyl-nonanal with 

overall rejection, it can be observed that the optimal configuration was a 3-stage OSN 

membrane setup. 

Moreover, the production costs for a 3-stage process lies within a reasonable range (0.0941 

$/kg) whereas the five-stage process has a two times higher production cost of 0.1277 ($/kg). 

This promotes the application of OSN, as mostly, in industrial settings, the number of stages 

can be a key operating criterion for an investment decision within early phases of process 

development. Figure 5.28  is the diagram of membrane optimization with number of stages. 

 

 

Figure 5.28.: Membrane rejection and cost versus number of stages 

 

Figure 5.29 shows an optimised three-stage cascade model arrangement used to develop the 

catalyst recovery unit. The arrangement of retentate and permeate streams is similar to one 

proposed by Seifert et al. (2014).  
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Figure 5.29.: Single-stage membrane process for Rh-TPPTS catalyst recovery process  

 

Table 5.14 shows the description of each unit operation and modelling purpose. 

 

Table 5.14.: Description of each unit operation and modelling purpose. 

Equipment name Modelling purpose and description 

Membranes 

MEMB Stage 1,  

MEMB Stage 2, 

MEMB Stage 3, 

Models a membrane separator used to recover the catalyst species from the 

product stream (701) into catalyst retentate stream (702) and product 

permeate stream (703). A custom build membrane was developed using 

FORTRAN blocks which predicts species flux by modified Hagen-Poiseuille-2 

model.  

P – 701,P-702, 

P-703 

Models OSN pumps required to provide the transmembrane pressure as 

driving force for the species flux through the membrane. 
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5.4.8 Section AREA-B800 7-Tetradecene Recovery Section 

Refer to Area A800 of Process Design 1.1 (pg.119-121), as its process area description is 

identical to this design. 

5.4.9 Section AREA-B900 Product Purification Section 

Refer to Area A800 of Process Design 1.1 (pg.121-123), as its process area description is 

identical to this design. 

5.5 Process heat recovery system design 

Heat integration was considered in order to recover energy from process streams and to use 

it to reduce external utility demands. Heat transfer limitations in unit operations were also 

treated as part of equipment design. A properly designed heat recovery network can reduce 

the amount of energy required by a process when heat rejected by one unit is recovered and 

reused in another that requires heat. For an effective heat recovery system, the heat recovery 

system design has to be systematic. Hence, “pinch analysis” is one such recommended 

method in use in heat exchanger network design (Sinnot, 2005). Pinch analysis builds the heat 

exchanger network design around a thermodynamic constraint known as the process pinch 

(Smith, 2005). Using the heating and cooling targets established in the design of reactors and 

the separation system, design of the heat exchanger network is done to avoid transfer of heat 

across the thermodynamic constraint (Smith, 2005).  

In 2001, ASPEN Tech’s Nick Hallale highlighted that, “pinch analysis” has an enormous 

amount of applications, with thousands of projects having been commissioned all over the 

world with companies such as Shell, Exxon, BP-Amaco, Neste-Oy, and Mitsubishi reporting 

fuel savings of up to 25 % and similar emissions reductions, worth millions of dollars per year” 

(Friedler, 2010). The largest energy-consuming site ever analysed by pinch techniques is the 

fuels and petrochemicals at the coal complex of Sasol Synthetic Fuels in South Africa (Neelis 

et al., 2008). 
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According to ASPEN Tech’s Nick Hallale (Friedler, 2010), “pinch analysis” has an enormous 

amount of applications, with thousands of projects having been carried out all over the world, 

companies such as Shell, Exxon, BP-Amaco, neste Oy and mitsusbish have reported fuel 

savings of up to 25 % and similar emissions reductions, worth millions of dollars. 

The application of pinch analysis to the simulated process of upgrading low value 1-octene to 

2-hexylnonanal was done in this design. Data from the simulation of process Scenario A was 

used to demonstrate the application of pinch analysis. The process starts with the extraction 

of process Stream data. The data required is summarized in Table 5.15 

 

Table 5.15.: Scenario A process stream summary 

Stream 

Name 

Supply 

Temp. 

Target 

Temp. 
Heat Duty Heat Flow Stream Type 

Supply 

Shift 

Target 

Shift 

 °C °C kW kW  °C °C 

L103 30 50 161.706 161.706 COLD 35.0 55.0 

L201 50 30 370.780 370.78 HOT 45.0 25.0 

L401 45 30 274.643 274.643 HOT 40.0 25.0 

L401B 39 121 710.751 710.751 COLD 44.0 126.0 

L402 121 30 1647.010 1647.01 HOT 116.0 25.0 

L502 265 160 129.082 129.082 HOT 260.0 155.0 

L504 34 160 0.003 0.0035 COLD 39.0 165.0 

L506A 103 160 1.829 1.8293 COLD 108.0 165.0 

L507B 68 160 385.766 385.766 COLD 73.0 165.0 

L601A 160 72 680.835 680.835 HOT 155.0 67.0 

L701 67 150 170.433 170.433 COLD 72.0 155.0 

L802 159 30 106.626 106.626 HOT 154.0 25.0 

L803 170 30 49.957 49.9569 HOT 165.0 25.0 
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After collecting the process stream information in the next stage of pinch analysis was to find 

the pinch conditions through application of the problem table method. The problem table 

method is a numerical method which, when used, can indicate the position of the 

thermodynamic constraint on system of process streams (Sinnot, 2005). It is an iterative 

process where heat loads are cascaded to identify the thermodynamic constraint. Table 5.16 

summarizes the results of application of the problem table method to the process scenario A. 

 

Table 5.16.: Problem Table Algorithm results summary for process Scenario A 

Actual 

Temp. 
MCP Hot MCP Cold ∆H Cold ∆H Hot ∆H Cascade 

 
kW/K kW/K kW kW kW 

265 1,2294 0,0 0,0 0,0 0,0 

170 1,5862 0,0 0,0 116,7885 116,7885 

160 8,0936 4,2252 4,2252 15,8619 132,6504 

159 8,9202 4,2252 38,0271 8,0936 136,5187 

150 8,9202 6,2786 182,0805 80,2814 178,7730 

121 27,0192 14,9463 269,034 258,6845 255,3770 

103 27,0192 14,9142 462,3415 486,345 472,6880 

72 19,2824 14,9142 59,657 837,5941 847,9406 

68 19,2824 10,7211 10,7211 77,1296 865,4133 

67 19,2824 8,6677 147,3513 19,2824 873,9745 

50 37,8214 16,753 83,7651 327,8009 1054,4241 

45 56,1309 16,753 100,5181 189,107 1159,7660 

39 56,1309 8,0853 40,4266 336,7856 1396,0335 

34 56,1309 8,0853 32,3412 280,6547 1636,2616 

30 0,0 0,0 0,0 224,5237 1828,4441 
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The problem table results above shows the temperature interval in which the heat recovery 

constraint is located and the utility demands. In Table 5.16 the values of ∆ H are all positive 

indicating that all the process streams are above pinch. The overall ∆ H cascade (in bold) 

represents the cold utility requirement. The interval with the zero ∆ H cascade in this scenario 

is the pinch interval (in bold case). The procedure was repeated for the second scenario and 

results are summarized in Table 5.17. 

 

Table 5.17.: Summary of pinch results for the two process scenarios 

 Scenario A Scenario B 

Hot Utility (kJ/kmol 2-HN) 0 0 

Cold Utility (kJ/kmol 2-HN) 
182,844 
 

151.175 

Pinch temperature (oC) 265 265 

Net Heat 182.844 151.175 

 

The heat exchanger network was designed with the aid of an Aspen Plus Energy AnalyserTM 

see Appendix C for more detail. 
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CHAPTER 6: ECONOMIC EVALUATION 

“There are three rules to a successful business. Rule # 1, if it doesn’t make money 

the other rules don’t matter” 

T Boone Pickens 

 

Overview 

Chapter 6 presents results of economic evaluation of the two process scenarios of upgrading 

low value 1-octene from Fischer-Tropsch product stream to 2-hexyl-nonanal. Section 6.1 is 

introduction to economic evaluation. Section 6.2 discusses the methodology and assumptions 

of TEA. Section 6.3 details the capital cost estimation. Section 6.4 provides details of operating 

costs. Section 6.4 is subdivided into Section 6.4.1 and Section 6.4.2 detailing fixed operating 

costs and variable operating costs respectively. Section 6.5 considers the revenue. A 

profitability assessment is detailed in Section 6.6. Finally, Section 6.6 summarises the results 

of economic analysis. More details to this chapter is also given in Appendix D.
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6.1 Introduction 

Techno-economic analysis (TEA) is defined as a systematic analysis used to evaluate the 

economic feasibility (Simba et al., 2012). In conceptual design of a new plant, 

techno-economic analysis, (TEA), is used to compare alternative plant configurations. In 

testing alternatives, designers require both an absolute measure and a normalized measure 

in order to make a definitive evaluation (Mellichamp, 2013). In recent years, NPV (Net Present 

Value) has often been chosen as the absolute metric and IRR % (Internal Rate of Return) as 

the normalized one. In this study several standard engineering profitability criteria according 

Turton et al. (2009) were used, namely; 

(i) Net Present Value (NPV), gives the profit of the plant for a certain period by considering 

the time value of money. NPV gives the present value of all payments and provides a 

basis of comparison for projects with different payment schedules but similar lifetimes 

(Biegler et al., 1997). In making comparisons between projects, the larger the NPV, 

the more favourable the investment (Peters and Timmerhaus, 2003). The NPV always 

provides a reliable indication of project profitability and it can handle both positive and 

negative cash flows throughout the project (Turton et al., 2009). 

(ii) Internal Rate of Return (IRR %), is a measure that provides the rate of interest or 

discount factor which when applied to a series of projected cash flows will yield a zero 

NPV (Poherecki et al., 2010). It is the maximum rate at which a loan could be raised 

to finance an investment such that the investment would just pay off the capital and 

interest by the end of the investment period (Turton et al., 2009). To evaluate if the 

project is worth considering, the IRR is compared to the cost of capital (hurdle rate), i, 

if the IRR equals or exceeds the cost of capital then the project is acceptable 

(Poherecki et al., 2010). According to Miremadi et al. (2013), the average IRR % for 

specialty chemical products lie within 13 and 17 %. 
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(iii) Pay Back Period (PBP), is the calculation of the time it takes to recover the initial capital 

outlay from the project’s cash flows. It is the length of time taken for a project to pay 

for itself (Turton et al., 2009). It is shown on the cumulative cash flow diagram as a 

point where the cumulative cash flow becomes positive. Project with a shorter PBP are 

normally attractive (Poherecki et al., 2010).  

6.2 Methodology and assumptions 

In the past two to three decades, the methodology for TEA at the conceptual design stage has 

converged to use of just a few main approaches and metrics. The discounted cash flow (DCF) 

method is a well-known economic assessment method estimating the attractiveness of an 

investment opportunity and several economic indexes can be chosen as NPV, IRR % and 

PBP (Cucchiella et a., 2015, Bortoluzzi et al., 2014). The DCF method has been defined in 

recent years by Douglas (1988); Peters and Timmerhaus (2003) and Turton, et al. (2012). The 

methodology framework adopted for a TEA in this study is shown in Figure 6.1 and important 

stages shown which will serve as a route map for the remainder of this chapter.  
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Figure 6.1.: A framework for DCF method for TEA in this study 
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The DCF definition and their use in design practice have been aided via spreadsheet 

calculations (Mellichamp, 2013). The preliminary economic analysis was based on a set of 

assumptions outlined below. 

6.2.1 Assumptions 

Table 6.1 is a list of basic assumptions used to simplify the preliminary economic analysis. 

 

Table 6.1.: List of assumptions 

Definition  Value References 

Construction schedule 2 years Seifert et al. (2014) 

Depreciation 5 years South African Taxation and Investment (2015) 

Project life 15 years Sinnot (2005) 

Taxation rate 28 % South African Revenue Services (2016) 

Discount rate 15 %  Miremadi et al. (2013) 

 

6.3 Estimation of capital cost 

The capital investment is funds required to design and purchase equipment, structures, and 

buildings as well as to bring the facility into operation (Green and Perry 2008). Figure 6.3. 

shows the standard capital investment estimation methodology adopted in this study. 

 

Equipment Cost 
(EC=IC/2.262)

Installed Cost
 (IC)

Indirect Cost
(IDC=EC*20%)

Project Contingency
(PC =20%(IC+IDC))

Fixed Capital Investment 
(FCI=IC+IDC+PC)

Working Capital 
(WC=5%FCI)

Capital Investment
(TCI=WC+FCI)

 

Figure 6.2.: Capital investment estimation methodology (adapted from Shemfe et al., 2015) 
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Indirect cost (IDC), which includes design and engineering costs and contractor’s fees, is 

taken as 20 % of purchased equipment cost (PEC). Project contingency (PC) is taken as 20 

% of the sum of Installed Cost (IC) and indirect costs (IDC). Fixed Capital Investment (FCI) is 

estimated from the sum of IC, IDC and PEC. The capital investment (CI) is estimated from the 

summation of working capital (5% of FCI) and FCI. 

6.3.1 Installed equipment costs 

Equipment cost estimation and sizing was carried out in Aspen Process Economic Analyser 

V8.2 (APEA) based on Q1. 2016 cost data. APEA maps unit operations from Aspen Plus flow 

sheet to equipment cost models, which in turn size them based on relevant design codes and 

estimate the Purchased Equipment Costs (PEC) and Total Direct Costs (TDC) based on 

vendor quotes. The installed capital cost of specialized unit process such as the metathesis 

and hydroformylation isothermal reactors was obtained from Aspen PlusTM and Cost Tables 

given by Turton et al. (2012). The costs of the OSN membrane equipment that cannot be 

estimated from APEA are estimated from supplier costs reported by Evonik Industries (2015) 

as basis for estimation. The exponential scaling expression is used to determine the new cost 

based on the new size or other valid size related characteristics as shown in Appendix D.  

In the estimation of equipment cost a variety of sources were used, hence, the equipment 

costs were derived based upon different cost years. In this case cost indices can be used for 

estimating the escalation of costs over the years. Several indices are available to the process 

engineer. The Nelson–Farrar Refinery Cost Index (NFRCI) published in the Oil and Gas 

Journal is widely used in the oil and gas industry. The Marshall and Swift equipment cost index 

(M&S) is intended for the wider process and allied industries (chemicals, minerals, glass, 

power etc.). The Chemical Engineering Plant Cost Index (CEPCI) was used in this work.  

The best known process plant cost index worldwide is the CEPCI, which has appeared every 

month in the publication Chemical Engineering since 1963 (Mignard, 2014). According to The 

Institution of Chemical Engineers (2000), the relative lack of local and specialised cost indices 

for the process industries amongst the countries in the world might explain its widespread 
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adoption. The dominance of the United States dollar (US $) as an international currency has 

also favoured the use of an index based in the US (Mignard, 2014). Therefore, all capital costs 

were adjusted with the CEPCI to a common basis period April 2016 (Chemical Engineering, 

2016). Table 6.2 is a list of the basic equipment cost for the investigation of capital investment 

for process scenarios A and B. 

 

Table 6.2.: Basic equipment list 

Scenario A Scenario B Est. Method 

Equipment Unit Instal. Cost 

($ M) 

Equipment Unit Instal. Cost 

($ M) 

 

Hydroform. Rctr. 60.71 Hydroform. Rctr 61.32 Guthrie, (1974) 

Metathesis Rctr 2.60 Metathesis Rctr. 2.60 Guthrie, (1974) 

Ethylene flash 0.13 Ethylene flash 0.13 Aspen PlusTM 

C8 column 0.20 C8 column 0.20 Aspen PlusTM 

OSN (HGr-2) 

Stage 1 

Stage 2 

Stage 3 

 

2.793 

2.155 

1.803 

OSN (HGr-2) 

Stage 1 

Stage 2 

Stage 3 

 

2.793 

2.155 

1.803 

 

Evonik Industry & 

(6/10)’s Rule details 

in Appendix A 

3-phase flash drum 0.161 2-phase flash drum 0.161 Aspen PlusTM 

 

- 

OSN (Rh-TPPTS) 

Stage 1 

Stage 2 

Stage 3 

 

2.612 

2.013 

1.753 

 

Evonik Industry & 

(6/10)’s Rule details 

in Appendix A 

Syngas Compr 2.37 Syngas Compr 2.37 Aspen PlusTM 

C14 column 0.24 C14 column 0.20 Aspen PlusTM 

Product column 14.76 Product column 14.76 Guthrie, (1974) 
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Figure 6.3 shows a comparison of the installed equipment costs for the two process scenarios.  

 

 

Figure 6.3.: Equipment cost structure for process scenario A and B 

 

It could be shown from Figure 6.3 that the hydroformylation reactor had the highest installed 

cost followed by the product column, the membrane stage and metathesis reactor. The high 

cost of hydroformylation reactor could be attributed to the material of construction requirement 

as a result of high operating pressures and the bigger volumes as a result of liquid-gas phase 

reaction. The total capital investment for scenario A was estimated as $ 182 M, which was the 

lowest, compared to scenario B with $ 186 M. 

6.4 Operating costs (OC) 

Operating expenses occur annually and are characterized as either fixed or variable. Fixed 

operating expenses are constant expenses and independent of production levels. Variable 
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expenses are not constant and are proportional to the levels of production. Each type of 

expense is explained in the following section.  

6.4.1 Fixed operating costs (FOC) 

Fixed operating costs recur every year regardless of the amount of finished product. These 

expenses include insurance, taxes, and maintenance and plant staff salaries. For a new 

product or process, most costs components of product cost are not accurately known and 

experience based order of magnitude estimates are commonly used (Turton et al., 2012). 

Fixed operating expenses were estimated from capital expenses based on heuristics in the 

literature and personal experts familiar with process. A 10 % of OC was included on top of 

these estimates in a manner similar to the general expenses to account for overhead costs. 

Figure 6.4 shows the methodology used to summarise the fixed operating expenses. 

 

Fixed Charges
(25 % FCI)

Plant Overheads
(10 % OC)

General Expenses
(19  % OC)

Fixed Capital Investment 
(FCI)

Fixed Operating Costs
(FOC)

 

Figure 6.4.: Methodology for determination of fixed operating cost (FOC) 

 

6.4.2 Variable operating expenses (VOC) 

Variable operating expenses depend on the amount of production at the facility. For example, 

if the facility cuts its production rate in half, then the variable operating expenses would be 

exactly one half as expensive because producing less products requires less material and 
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energy. The expenses include utility costs, such as electricity, boiler feed water, solvents and 

raw materials such as 1-octene and syngas.  

(i) Catalysts costs 

Catalysts have a finite lifetime and need to be replaced or regenerated periodically. Initial 

catalysts expenses were calculated from (Van der Gryp et al., 2012 and Haumann et al., 

2002b) for the standard metathesis and hydroformylation reactors. The operating costs were 

analysed based on costs for not-retained (make-up) quantities. Table 6.3 shows the raw 

material and product prizes. 

 

Table 6.3.: Raw material costs 

Variables Description References 

2-hexyl-nonanal $ 150,00 /kg 

(bulk) 

Alibaba (2016) 

1-octene $ 1.30/kg Sasol chemicals (2016) 

7-tetradecene $ 35.50/kg Alibaba (2016) 

HGr-2 catalyst $ 28 746.00/kg Alibaba (2016) 

HGr-1 catalyst $ 46 533.00/kg Alibaba (2016) 

Gr-1 catalyst $ 6 720.00/kg Alibaba (2016) 

Gr-2 catalyst $ 19 600.00/kg Alibaba (2016) 

2-hexyl-nonanal $ 150,00 /kg 

(bulk) 

Alibaba (2016) 

7-tetradecene $ 35.50 Bulk 

Price/kg 

Sasol chemicals(2016) 

Rh catalyst $ 120 000.00 

Bulk Price/kg 

kitco.com (2016) 

Bulk syngas from 

gasifier 

$ 0.03 Bulk 

Price/kg 

Piet et al. (2014) 

MarlipalO13/80 $ 29.00 Bulk 

Price/kg 

Sasol chemicals (2016) 
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(ii) OSN membrane operating cost 

Concerning membrane module cost parameters, a medium membrane price/stability factor of 

$ 500/m2yr (Schmidt et al., 2014). This represented a unit cost of $ 1000/m2 with a stability of 

two years due to uncertainties in both OSN membrane lifetime and large-scale fabrication 

costs (Schmidt et al., 2014).  

The total variable costs for the two process scenarios were $ 130.22 per kg of 2-hexyl-nonanal 

and $ 129.80 per kg 2-hexyl-nonanal for Scenario A and Scenario B respectively. Although 

the variable costs increased with additional OSN membrane unit in scenario B, (as a result of 

costs membrane replacement), the additional benefit of recovery of expensive Rh-TPPTS 

catalyst led to an overall lower total variable costs. Moreover, it can be seen from Table D.10 

in Appendix D that the total variable costs were influenced mostly by raw materials costs. In 

order to compare individual cost parameters which contributes towards raw material costs, the 

raw material costs were further broken down as shown in Figure 6.5. Figure 6.5 shows a 

comparison of variable operating costs for the two process scenarios A and B. 

 

 

 

Figure 6.5.: Comparison of raw material costs of process Scenarios A and B 
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It could be shown from Figure 6.5 that the Rh-TPPTS catalyst followed by HGr-2 catalyst 

followed by 1-octene feedstocks had the most significant contribution towards raw material 

costs. The high catalyst loading required for hydroformylation of internal alkenes has a major 

influence towards Rh-TPPTS catalyst cost. This could also be attributed to the high cost of 

Rh-metal on the global market. Hence, in order to reduce operating costs in such scenarios, 

catalyst recovery techniques especially OSN membrane process must be seriously 

considered. 

It could be shown from Figure 6.5 that the benefits of OSN membrane (Scenario B) outweighs 

liquid multiphase system (scenario A). Although the use of OSN membrane process brings 

with it additional costs such as membrane replacement (membrane stability), it could be shown 

that the overall operating costs were less than that obtained for liquid multiphase system. The 

results of Rh-TPPTS catalyst loss for scenario A using liquid multiphase system were also 

compared to literature results. Sharma (2009) investigated the rhodium loss in the 

microemulsion by simple phase separation and observed rhodium loss in the range of 0.6-6 

ppm. Fang (2009) reported Rh-TPPTS recovery rate equivalent to 560 ppb in crude product 

stream when Rh concentration in the reactor is 280 ppm, in which the yearly loss of Rh for a 

200 kton production plant was about 118 kg. According to Fang (2009), the 118 kg loss of 

Rh-TPPTS accounted for 3.5 million dollars at an assumed Rh price of $30,000/kg. Sharma 

and Jasra (2015) further highlighted that the leaching of 1 ppm rhodium per kg of product from 

a 400 000 ton per annum plant may result into the financial loss of several million dollars. 

Weise and Obst (2006) also observed that for a liquid multiphase system, a loss of only 1 ppm 

(1 mg/kg of product), would led to a loss of $ 32 million per year on the year 2006 Rh price 

basis ($ 80 000/kg) for a world scale 400 000 ton per year plant. Haumann et al. (2002) also 

confirmed that with Rh-TPPTS losses after phase separation as low as 1 ppm, for a 100 000 

tonnes per year production plant will result in $ 40 million losses per year. 
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6.4.3 Effect of production capacity on profitability 

The challenge of liquid multiphase system could be the increase in Rh-TPPTS loss as a result 

of an increase in production tonnage. Literature results also indicates that total Rh-TPPTS 

losses are a function of production rate. A promising separation technique in Rh-TPPTS could 

be the use of OSN membrane process. Table 6.4 is a summary of the comparison of literature 

results of Rh-TPPTS catalysts losses in liquid multiphase systems. 

 

Table 6.4.: Comparison of literature results on Rh-TPPTS catalyst loss in microemulsion 

Source Product Ton per yr. Rh loss (ppm) Cost of Rh $ (M) 

Haumann et al. (2002) n-tridecanal 100 000 1,00 40 

Fang (2009) n-nonanal 200 000 0,56 3,5 

Sharma and Jasra (2014) Butyl-aldyhyde 400 000 1,00 40 

Wiese and Obst (2006) n-nonanal 400 000 1,00 16 

Current Study 2-hexylnonanal 10 000 1,02 3,73 

 

 

According to the current study, 1.02 ppm Rh-TPPTS catalyst was leached with the crude 

product when 1:2 500 ratio of 7-tetradecene to Rh-TPPTS is available in the reactor. The 

yearly loss of Rh-TPPTS for a 10 000 ton per annum production plant was 31 kg accounting 

for $ 3.7 million at an assumed Rh-TPPTS price of $ 120 000/kg. Hence, the make-up Rh 

catalyst cost per kg of 2-hexyl-nonanal was calculated as; 

= 1 𝑘𝑔 𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑥 1,02 𝑝𝑝𝑚 𝑥10−6𝑥$120 000/(𝑘𝑔 𝑅ℎ)

1 𝑘𝑔 𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑥 0.7 𝑘𝑔 2 − ℎ𝑒𝑥𝑦𝑙 − 𝑛𝑜𝑛𝑎𝑛𝑎𝑙/𝑘𝑔𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
 

= $0.17/𝑘𝑔 2 − ℎ𝑒𝑥𝑦𝑙 − 𝑛𝑜𝑛𝑎𝑛𝑎𝑙 

Hence, compared to OSN membrane process of scenario B the cost of make-up Rh-TPPTS 

catalyst per kg of 2-hexyl-nonanal product resulted in an additional increase in operating costs. 
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6.5 Revenue  

In this study only the sales of 2-hexyl-nonanal product were considered. The ethylene product 

stream was not considered since initial design considered ethylene as a purge stream and did 

not consider vapour recovery system. The ethylene purge stream will be used as fuel instead. 

The isomeric product stream was treated as waste. 

6.6 Profitability analysis 

The knowledge of the economic viability/feasibility of a project is a prerequisite tool investors 

look out for before investing money into any project (Turton et al., 2012). Economic viability of 

the two scenarios A and B modeled in this study were therefore evaluated through a DCF 

method. A DCF analysis was used to compare the two process scenarios based on the 

different profitability criteria of NPV, IRR % and PBP. 

6.6.1 Discounted cash flow (DCF) 

A DCF determines the cash flow obtained in nth year but it also includes the net present value 

(NPV) of those cash flows over the entire economic life of the project. The construction period 

is estimated to be two years (24 months), which includes engineering, procurement and 

construction phases. Construction costs were distributed between first and second years with 

60 % and 40 % of the TCI for each year, respectively. The plant operates for 8 000 hours per 

year, which is equivalent to a 90 % on-stream capacity. The net present value was calculated 

in the last year of the construction period (year n).  

 

Stellenbosch University  https://scholar.sun.ac.za



207 

 

 

 

CHAPTER 6: ECONOMIC EVALUATION 

 

Figure 6.6.: DCF diagram of Scenarios A and B if total capacity is installed at production start-up. 

 

The graph of CDCF diagram of Scenarios A and B if total capacity is installed at production 

start-up is shown in Figure 6.6. Figure 6.6 clearly shows the benefit of the OSN membrane 

process for catalyst recovery. The NPV for scenario A and scenario B were $ 439 M and $ 

563 M after 15 years respectively. The OSN membrane process design lead to an NPV 

improvement of $ 124 M compared to liquid multiphase process. It can be seen from Figure 

6.6 that the two process scenarios had almost similar PBP of 3 years. The IRR was 58.7 % 

for scenario A and 81.3 % for scenario B. The high IRR % for scenario B was a direct result 

of the reduction in raw material, especially Rh-TPPTS catalyst, consumption. As investment 

costs are slightly different for the two process alternatives present value index (PVI) has to be 

used to allow for a meaningful statement. PVI is the quotient of the present value of the 

cumulative cash flows and the present value of the investment. The result represents the 

profitability of an investment. The PVI for process scenario B is 0.67 while for scenario A is 

0.57. As the difference in investment cost is small it is obvious that scenario B (OSN 

membrane) is more economic compared to process scenario A (liquid multiphase system). 
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6.6.2 Sensitivity analysis  

To evaluate the relative importance of input parameters over the project’s economic results, a 

sensitivity analysis was performed. Sensitivity analysis measured the impact on project 

out-comes when input values about which there was some uncertainty were changed. In this 

case, the sensitivity analysis was performed over the main economic parameters of the model: 

the commercialization price of 2-hexyl-nonanal, the cost of Rh-TPPTS, the cost of HGr-2, the 

cost 1-octene and the income tax. A change in the parameters of ± 25 % in relation to the 

typical market values was considered: Taxation rate-28 %, input HGr-2- $ 26 762/kg, 

Rh-TPPTS- $ 120 000/kg, 2-hexyl-nonanal $ 150/kg and 1-octene-$ 1.92/kg. The analysis 

was performed for scenario A (liquid multiphase system) and scenario B (OSN membrane 

process). The results are presented in Figure 6.7.-6.11. 

6.6.2.1 Sensitivity of NPV 

The horizontal axis in Figure 6.7 and Figure 6.8 shows the percentage change of the 

parameter in relation to the base value. The vertical axis shows the NPV result. It can be 

observed that all curves intersect at the same place, which is the standard behaviour, when 

all variables are replaced with their base values. 

 

 

Figure 6.7.: Sensitivity of NPV to process scenario A variables  

(600)

(400)

(200)

0

200

400

600

800

1000

1200

1400

1600

1800

-25 -20 -15 -10 -5 0 5 10 15 20 25

N
P

V
 (

$
 M

)

Change in parameter (%)

NPV Scenario A

Tax selling price Rh-TPPTS cost HGr-2 cost 1-octene

Stellenbosch University  https://scholar.sun.ac.za



209 

 

 

 

CHAPTER 6: ECONOMIC EVALUATION 

 

Figure 6.8.: Sensitivity of NPV to process variables 

 

The main aspect to take into consideration in Figure 6.7 and Figure 6.8 is how the curves 

behave regarding the variations in the horizontal axis. The curves that have higher gradient, 

either positive or negative, deserve special attention, because a small change in the expected 

value will be reflected as large changes of the NPV. For both scenarios A and B it was 

observed that the curves with greater gradient were 2-hexyl-nonanal selling price, Rh-TPPTS 

and HGr-2 catalysts, which obviously meant that these parameters have great influence on 

the project viability, because their variation had a great influence over the investment return. 

6.6.2.2 Sensitivity of IRR % 

In the same way, the horizontal axis in Figure 6.9 and Figure 6.10 shows the percentage 

change of the parameter in relation to the base value. The vertical axis shows the IRR % 

result. It can be observed that all curves intersect at the same place, which is the standard 

behaviour, when all variables are replaced with their base values. 

 

(600)

(400)

(200)

0

200

400

600

800

1000

1200

1400

1600

1800

-25 -20 -15 -10 -5 0 5 10 15 20 25
N

P
V

 (
$

 M
)

Change in parameter (%)

NPV Scenario B

Tax selling price Rh-TPPTS cost HGr-2 cost 1-octene

Stellenbosch University  https://scholar.sun.ac.za



210 

 

 

 

CHAPTER 6: ECONOMIC EVALUATION 

 

Figure 6.9.: Sensitivity of IRR to process variables (scenario A) 

 

 

 Figure 6.10.: Sensitivity of IRR to process variables (scenario B) 

 

As shown in Figure 6.10, the product selling price, Rh-TPPTS cost and HGr-2 cost have the 

greatest impact on IRR in both scenarios A and B. To achieve an IRR % greater than 15 % in 

scenario A, the product selling price should not be 5 % lower than that of the baseline ($ 
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above $ 138 000/kg, $ 30 776.3/kg and $ 2.22/kg (15 %), from the base line costs respectively. 

In a similar manner, to achieve an IRR % greater than 15 % in scenario B, the product selling 

price should not be 10 % lower than that of the baseline ($ 150 /kg), or at least one of the 

Rh-TPPTS cost, HGr 2 cost and 1-octene cost must not increase above $ 138 000/kg, $ 

30 776.3/kg and $ 2.22/kg (15 %), from the base line costs respectively. A ± 20% range in 

Rh-TPPTS cost results in an IRR % range of 96- -6.3 % for scenario A and 133-7.5 % in 

scenario B. A ± 20% range in 1-octene cost results in an IRR % range of 60.68-56.75 % for 

scenario A and 83.98-78.75 % in scenario B. A ± 20% range in taxation rate results in an IRR 

% range of 61.45-55.92 % for scenario A and 85.52-76.96 % in scenario B.  

The high sensitivity to cost of Rh-TPPTS catalyst is expected because of the high cost of 

Rh-metal and Rh-TPPTS catalyst loading required during the hydroformylation of internal 

alkenes (Haumann et al., 2002b). The low sensitivity to 1-octene was expected as the process 

recycles the unreacted 1-octene. The change in cost price of 1-octene feed has little effect on 

the profitability of this process.  

6.7 Economic analysis summary  

Table 6.6 summarizes the key economic results, which are the capital requirements, 

2-hexyl-nonanal price and the respective project internal rate of returns. The present values 

indices (PVI) were included to allow comparison of the economic viability of the different plant 

configurations. 

 

Table 6.6.: Summary economic analysis results ($/kg) a Cost per kg of 2-hexyl-nonanal   

Scenario  TCI Min. S/Price NPV IRR % PBP 

($ millions) ($/kg)a ($ millions) % (Years) 

Scenario A 181.6 142.12 439 58.75 3 

Scenario B 186.2 140.12       563 81.3 3 
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In this work, economic benefit of OSN membrane technology was demonstrated. The 

improvement in catalyst rejection and recycling of Rh-TPPTS catalyst lead to a reduction in 

Rh-TPPTS catalyst consumption of nearly $ 4 million per annum with nearly the same 

investment costs compared to conventional process for Rh-TPPTS catalyst recovery 

(Scenario A). The two scenarios proved to be economic at the set production rate. The 

membrane process led to an NPV improvement of $ 124 M dollars at the end of 15-year project 

life. Catalyst loss in scenario A utilising conventional Rh-TPPTS catalyst recovery method is 

a factor of production rate hence, process becomes riskier with high production tonnages 

demanding further recovery of Rh-TPPTS catalyst. 

The Aspen In-Plant Cost Estimator has been used for over 30 years in commercial plants and 

engineering designs, and provides more accurate estimation (Seider et al., 2004). Aspen 

In-Plant Cost Estimator provides specifications for detailed design, estimation and economic 

data, allowing quick modifications of the process equipment and sensitivity analysis. In this 

work, a three step targeted model validation step, process modelling and optimisation design 

work flow for OSN processes was developed and implemented accounting for the currently 

limited database and understanding in OSN technology. The optimisation results were 

compared to literatiure results by Scmidt et al. (2014), who also used a cascade approach 

recommended by Seifert et al. (2014). Hence, the results of this study are very important for 

the understanding of homogeneous catalyst system especially utilising OSN membrane 

process.  
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CHAPTER 7: CONCLUSIONS & 

DIRECTIONS FOR FUTURE RESEARCH 

“Once the toothpaste is out of the tube, it’s hard to get it back in” 

Harrold Robbins Haldeman 

 

 

Overview 

This chapter summarizes the work that has been presented in this thesis. Section 7.1 details 

the main findings of an optimal process of upgrading low value unique olefinic feedstocks from 

Fischer-Tropsch Synthol product stream to functionalised hydrocarbons for the manufacture 

of Geubert-type surfactants. Section 7.2 describes the main contributions of this work and 

finally Section 7.3 discusses recommendations for future research.  
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7.1 Main process findings 

The metathesis reaction of low value unique olefinic feedstocks (C5-C9) from the 

Fischer-Tropsch process can be used an important tool to increase access to speciality 

chemicals. The detergent range linear internal alkenes (C10-C19) produced during metathesis 

of low value olefins can be functionalised during hydroformylation to produce intermediate 

feedstocks for manufacturing specialty surfactants, especially of the Geubert-type. The 

complete separation of highly expensive homogeneous catalysts employed during metathesis 

and hydroformylation reactions, from their post reaction mixtures has been identified as a 

major challenge to the commercialisation these technologies. This is particularly true when 

high catalyst loadings are necessary, as increased catalyst loadings will result in increased 

residual metal impurities in the final product. Besides relatively low acceptable metal content 

in pharmaceutical chemistry applications, residual metal species may cause isomerization, 

decomposition, or other undesirable side reactions in subsequent synthetic steps. Advances 

in development of very active and selective homogeneous based, yet stable catalysts now 

allow for the possible recovery and reuse by employing novel techniques such as organic 

solvent nanofiltration (OSN) membrane process.   

Although Rh-based catalysts have been used commercially for the hydroformylation of short 

chain alkenes (C2-C5), it is seemingly impossible to use for higher alkenes (Cn > C5). The 

Rh-catalyst complex is often the component with lowest vapour pressure hence, decomposes 

at temperatures below the boiling point of the aldehyde product making catalyst separation 

and reuse difficult. Commercially, this separation problem is overcome by the use of 

water-soluble catalysts in aqueous-organic biphase systems. The aqueous biphasic approach 

is only applied to the hydroformylation of short chain olefins (C2-C5) because of the limited 

solubility of higher olefins in water resulting in rates that are simply too slow for the process to 

be commercially viable. The development of Rh catalysed processes, for the hydroformylation 

of long chain alkenes (C8-C20), therefore remains one of the biggest challenges in this area. 

The Rhodium catalysts system have not been commercialised for this reaction despite their 
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attractive features of milder operating conditions and higher selectivity to the desired linear 

aldehyde. Moreover, in Rh-catalysed hydroformylation processes, the exorbitant cost of Rh, 

has made it a requirement to achieve nearly total catalyst recovery and recycle.  

This dissertation focused on the development of a process of metathesis of 1-octene from a 

Fischer-Tropsch Synthol product stream using Grubbs based precatalsysts. The 

7-tetradecene produced was further functionalised to 2-hexyl-nonanal in a reaction with 

syngas in a microemulsion using Rh-TPPTS catalyst. Using the Douglas (1988), methodology 

to develop the metathesis and hydroformylation processes optimum conditions were 

evaluated using economic potentials calculated at each decision level. In the metathesis 

process, HGr-2 precatalyst was selected as the best catalyst and the optimum conversion for 

1-octene and HGr-2/1-octene molar ratios were found to be 0.5 and 10 000 respectively. 

These conditions were then used to develop an Aspen PlusTM model in which optimum 

conditions of pressure and temperature were obtained on the basis of selectivity or product 

distribution. The highest selectivity to 7-tetradecene was found to be 98.28 % at 50 oC and 2 

bars. In developing the hydroformylation process and using the condition of highest economic 

potential the optimum 7-tetradecene conversion was found to be 0.35 at 120 oC and 60 bars. 

Two process scenarios utilizing liquid multiphase system and organic solvent nanofiltration 

membrane (OSN) to recover Rh-TPPTS catalysts were developed and investigated in Aspen 

PlusTM.  Using Aspen PlusTM to develop the hydroformylation reactor, optimum conditions of 

pressure and temperature were found to be 160 oC and 40 bars. The application OSN 

membrane technique to recover HGr-2 and Rh-TPPTS catalysts was demonstrated and 99.96 

% recovery of catalysts achieved. The Rh-TPPTS catalyst leached in product was reduced to 

1 ppm using liquid multiphase system. 

A techno-economic study of the two process scenarios was conducted and key economic 

indicators such as NPV and IRR % were used to select the most profitable process. The 

process scenario B which utilises organic solvent nanofiltration (OSN) membrane process to 

recover Rh-TPPTS was the most profitable configuration compared to the liquid multiphase 
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system. The most sensitive parameters were 2-hexyl-nonanal selling price, Rh-TPPTS 

catalyst cost, HGr-2 catalyst cost and 1-octene costs. However, challenges to the process are 

separation and purification of aldehyde product from isomeric mixtures. There is a potential 

for reducing separation costs by developing highly selective Rh-based catalyst systems. 

7.2 Main contributions  

(a) Conceptual process for upgrading low value olefins from Fischer-Tropsch process  

In this dissertation the Douglas’s (1988) methodology of process synthesis which generates 

EP values at each of the five decision levels of process development was applied to develop 

a conceptual process of upgrading low value 1-octene to 2-hexyl-nonanal. Key design 

parameters such as effect of conversion, reactor and column configuration were evaluated in 

order to develop the most economic process of upgrading 1-octene to 2-hexyl-nonanal. The 

impact on cost of OSN membrane stage at different conversions were evaluated for both 

metathesis and hydroformylation processes. The EP values for product purification confirmed 

that in order to reduce separation equipment costs for product purification it is important to 

develop a catalyst with high selectivity. Two conceptual process scenarios for the upgrading 

of low value 1-octene feedstock from Fischer-Tropsch Synthol product stream to high value 

functionalised aldehydes were presented. The generic conceptual process developed in this 

study could be extended to other low value C5, C6, C7, and C9 olefinic feedstocks from the 

Fische-Tropsch process.  

(b) Detailed Aspen PlusTM simulation  

The optimum process conditions for a process upgrading low value 1-octene olefinic 

feedstocks from a Fischer-Tropsch to 2-hexyl-nonanal were determinined with the aid of 

Aspen PlusTM simulator. The limited kinetic data from literature for the hydrofomylation of 

7-tetradecene could be cited as a major challenge in comparing different kinetic models for 

the hydroformylation of 7-tetradecene. Aspen PlusTM models for the two candidate process 

scenarios A (liquid multiphase system) and scenario B (OSN membrane process) were 

developed to allow a quantitative comparison between the two process scenarios.  
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(c) Development of Aspen PlusTM OSN custom models of HGr-2 and Rh-TPPTS 

The successful recovery of HGr-2 and Rh-TPPTS catalysts using OSN membrane process 

was demonstrated using the developed custom models in Aspen PlusTM. The results obtained 

were comparable to literature data confirming that OSN membrane process for recovery of 

species can be successfully up scaled and commercialised for highly sensitive homogeneous 

HGr-2 and Rh-TPPTS catalysts. The use of OSN in recovering Rh-TPPTS catalyst resulted 

in a catalyst cost saving of nearly $ 4 million per annum. Overally, OSN membrane process 

has a potential of improving the profitability of the process by reducing catalyst loss. Despite 

having a slightly higher capital cost, the membrane process (scenario B) offers the best 

solution to recovery and reuse of homogeneous catalysts.  

(d) Techno-economic analysis 

The key economic indicators, net present value (NPV), internal rate of return (IRR) and 

payback period (PBP) were evaluated for the two process scenarios. A sensitivity analysis 

was performed for the main economic model parameters: the selling price of 2-hexyl-nonanal, 

Rh-TPPTS cost, HGr-2 cost, 1-octene cost and tax rate, results of such evaluation show that, 

selling price of 2-hexyl-nonanal, Rh-TPPTS cost, HGr-2 cost have great influence, because 

their variations have a decisive influence on the NPV and IRR %. Further work can also include 

the effect of plant capacity on profitability especially using liquid multiphase process, according 

to literature Rh-TPPTS cost contribution to the total operating costs is directly proportional to 

the plant capacity. It was proposed that process scenario B (OSN membrane process) has an 

economic benefit for all the two cases in the plant sizes for the 10 000 t/yr. considered in this 

study. 

7.3 Directions for future research 

The limitations of the research presented in this thesis and the related directions for future 

work are now discussed. 
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7.3.1 Extending this research 

The development of a data bank of kinetic models for the metathesis of different olefinic 

feedstocks and hydroformylation of long chain internal alkenes considering different 

commercially available catalysts cannot be over emphasised. Due to challenges of separation 

of isomeric aldehydes, the development of highly selective catalysts has been emphasised 

especially during hydroformylation of internal alkenes (Muller et al., 2015). In general, isomer 

separation is difficult to achieve. The question should of course be asked if the effort to 

separate is truly worth it. Moreover, membrane selection has been on a single criterion; ‘to 

have high retention of the catalysts’. It should be probably better adapted to look for a 

compromise between high retention of the catalyst and the high transmission of product 

species in order to limit the number of filtration steps. 
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APPENDIX  

The appendix is divided into several chapters (A, B, C and D). This is done to ease the search 

for tables or figures from the respective chapters. In Appendix A.: Chapter 3 the literature 

results concerning metathesis, hydroformylation catalyst recovery processes are given. In 

Appendix B: Chapter 4 results and information concerning the Douglas (1988) methodology 

for process development is presented. In Appendix C: Chapter 5 the Aspen PlusTM process 

simulation flow sheets for the different sections of process models are presented. Secondly, 

a summary of Aspen PlusTM codes used in developing models are also given. In Appendix D: 

Chapter 6 the economic model parameters, initial conditions, solver parameters, and 

additional results are given. 
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Appendix A: Chapter 3: Literature review 
Table A.1: Summary of 1-octene metathesis and high efficiency commercial catalysts, product distribution at optimal conditions (a, C8/Ru mol ratio) 

Author, Year Description of Investigation Pre-catalyst C8a  T  X1-C8 PMP IP SMP S 

   (mol/mol) (oC) (%) (%) (%) (%) (%) 

2003 

Lehman et al.  

 

Olefin isomerization promoted by olefin metathesis 

catalysts 

 

Grubbs 2nd  

Schrock 

Grubbs 1st 

 

1000 

1000 

1000 

 

60 

45 

50 

 

86 

- 

 

54.1 

99.9 

9.4 

0.01 

2.7 

- 

81.7 

99 

2006 

Jordaan et al. 

 

 

Experimental and DFT investigation of the 1-octene metathesis 

reaction mechanism with the Grubbs 1 precatalyst 

 

Grubbs 1st  

 

 

1000 

 

 

25 

 

67 

 

62 

 

- 

 

5 

 

94.0 

2009 

Van der Gryp 

 

Separation of Grubbs-based catalysts with Nanofiltration (coupled 

reaction and separation) 

 

Hoveyda-Grubbs 1st 

Hoveyda-Grubbs 2nd  

PUK-Grubbs 2nd  

 

5000 

7000 

7000 

 

30 

50 

50 

 

57.96 

65.86 

25.21 

 

75.03 

64.48 

24.79 

 

0.41 

0.25 

0.29 

 

0.51 

0.87 

0.47 

 

98.41 

98.28 

97.01 

Huijmans Modelling and synthesis of Grubbs type catalyts with hamilable 

catalysts 

Hoveyda-Grubbs 2nd 

PUK-Grubbs 

9000 

9000 

60 

60 

- 93 0.1 5.1 94.8 

Boeda et al. Phosphabicyclononane-Containing Ru Complexes: Efficient 

Pre-Catalysts for Olefin Metathesis Reactions 

Grubbs 1st 9000 50 65 - - - - 

2010 

Motoboloi  

 

Synthesis and modelling of imine derivatives as ligands for 

Grubbs type pre-catalysts 

Grubbs 1st 

Grubbs 2nd 

9000 

9000 

60 

60 

68 

56 

30.49 

42 

1.22 

1.4 

0.53 

0.6 

98 

98 

2011 

Xaba 

 

Synthesis and modelling of Tungsten catalysts for alkene 

metathesis 

 

Schrock 

 

100 

 

85 

 

77 

 

63.6 

 

2.5 

 

0.9 

 

94.9 

2012 

Van der Gryp et 

al. 

 

Experimental, DFT and kinetic study of 1-octene metathesis with 

Hoveyda–Grubbs second generation precatalyst 

 

Hoveyda-Grubbs 2nd 

 

7000 

 

60 

 

64.48 

 

68.60 

 

0.24 

 

1.01 

 

98.00 

2014 

du Toit et al. 

Improved Metathesis Lifetime: Chelating Pyridinyl-Alcoholato 

Ligands  

 

Grubbs 2nd 

 

9000 

 

35 

 

- 

 

80.6 

 

0 

 

3.7 

 

96.1 
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Table A.2: Table Summary of Literature on Biphasic Hydroformylation of Long Chain alkenes (Tempa = upper critical temperature) 

Year & Author Description of Reaction system      Solvent system Catalysts Ligands Tempa 

1997 

Bhanage et al. 

Kinetics of Hydroformylation of 1-dodecene 

using homogeneous HRh(CO) (PPh,) 3 catalyst 

  

Water/toluene 

 

HRh(CO)(PPh3)3 

 

TPPS 

 

50 

2002 

Haumann et al. 

 

Hydroformylation of 1-dodecene using Rh-

TPPTS in a microemulsion 

  

Water/ MarlipalO13/Ei ) 

 

HRh(CO)2(TPP)2 

 

TPPTS) 

 

80 

2003 

Li et al. 

Studies on 1-dodecene Hydroformylation in 

biphasic catalytic system containing mixed 

micelle 

  

Water/ Triton X-100 

 

RhCl(CO)(TPPTS)2 

 

TPPTS 

 

90 

2005 

Behr et al. 

 

Selection process of new solvents in 

temperature-dependent multi-component 

solvent systems and its application in 

isomerising Hydroformylation (4-C8) 

 Ethylene carbonate/n-Dodecane/N-octyl-2-

pyrrolidone 

propylene carbonate/n-Dodecane/N-octyl-

2-pyrrolidone 

butylene carbonate/n-Dodecane/N-octyl-2-

pyrrolidone 

 

Rh(acac)(CO)2 

 

Biphephos 

 

125 

2008 

Behr et al. 

 

Advances in thermomorphic liquid/liquid 

recycling of homogeneous transition metal 

catalysts (4-C8) 

 N,N-Dimethylformamide/N,N-dimethyl 

propylene urea/ n-decane 

N,N-Dimethylformamide, 

N/methylpyrrolidone/n-decane 

Methanol/N,N-dimethyl propylene urea/n-

decane 

 

Rh(acac)(CO)2 

 

Biphephos 

 

- 
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Table A.2 (cont’d): Summary of Literature on Biphasic Hydroformylation systems for Long Chain alkenes 

Year & Author Description of reaction system Solvent System Precatalyst Ligand Tempa 

2012 

Schafer et al., 

 

Hydroformylation of 1‑Dodecene in the Thermomorphic 

Solvent System Dimethylformamide/Decane. Phase 

Behaviour−Reaction Performance−Catalyst Recycling 

  

N,N-Dimethylformamide 

(DMF)/decane 

 

Rh(acac)(CO)2 

 

Biphephos 

 

100 

2013 

Markert et al., 

 

Analysis of the reaction network for the Rh-catalysed 

hydroformylation of 1-dodecene in thermomophic 

multicomponent solvent system 

  

N,N-Dimethylformamide 

(DMF)/decane 

 

Rh(acac)(CO)2 

 

TPPS, 

Xantphos, 

Biphephos 

 

90 

Rost et al., Development of a continuous process for the 

hydroformylation of long-chain 

olefins in aqueous multiphase systems 

 Water/ Marlophen NP9 

Water/ MarlipalO13/200 

Rh(acac)(CO)2 SulfoXantPhos 80 

Steimel et al., Model-based conceptual design and optimization tool 

support for the early stage development of chemical 

process under uncertanity 

 Dimethylformamide 

(DMF)/decane 

Rh(acac)(CO)2 - - 

Behr & Brunsch  Temperature-Controlled Catalyst Recycling in 

Homogeneous 

 

 Propylene carbonate/decane 

Acetonitrile/decane 

Dimethylformamide/decane 

Rh(acac)(CO)2 BIPHEPHOS 100 
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Table A.2 (cont’d): Summary of Literature on Biphasic Hydroformylation systems for Long Chain alkenes 

Year & Author Description of reaction system Solvent system Precatalyst Ligand Tempa 

2014 

Zagajewski et al., 

 

Continuously operated miniplant for the hydroformylation of 

1-C12 in a thermomophic multicomponent solvent system 

(TMS) 

 

 

 

N,N-Dimethylformamide 

(DMF)/decane 

 

Rh(acac)(CO)2 

 

BIPHEPHOS 

 

- 

Steimel et al., A framework for the modelling and optimization of process 

superstructure under uncertainty 

 Dimethylformamide/decane/metha

nol 

Rh(acac)(CO)2 BIPHEPHOS - 

Hentschel   et al., Simultaneous design of the optimal reaction and process 

concept for multiphase systems 

 Dimethylformamide (DMF)/decane Rh(acac)(CO)2 BIPHEPHOS - 

Muller et al., Towards a novel process concept for the hydroformylation of 

higher alkenes: Mini-plant operation strategies via model 

development and optimal experimental design 

 Water/Marlipal O13/200 

Water/Marlophen NP 9 

Water/Marlophen NP 6 

Rh(acac)(CO)2 BIPHEPHOS 110 

Kiedorf et al., Kinetics of 1C12 hydroformylation in a thermomophic solvent 

system using rhodium-biphephos catalysts 

 N,N-Dimethylformamide 

(DMF)/decane 

Rh(acac)(CO)2 BIPHEPHOS 85  

Schafer et al., Calculation of complex phase equilibria of DMF/alkanes(C5-

C10) system using the PCP-SAFT equation of state 

 N<N-Dimethylformamide(DMF)/de

cane 

 

- 

 

- 

 

- 

2015 

Jorke et al., 

 

Isomerization of 1-decene: Estimation of thermodynamic 

properties equilibrium condition  calculation and experimental 

validation using Rh-BIPHEPHOS catalyst 

  

N<N-Dimethylformamide/(DMF)/tol

uene 

 

Rh(acac)(CO)2 

 

BIPHEPHOS 

 

105 
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Appendix B: Chapter 4: Process Development 

B.1: Definition of terms and assumptions  

B.1.1 Economic potential 

The first step in the analysis of any design problem is to evaluate the economic significance 

of the project. Initially, the fraction of the product to be recovered is unknown, however, rather 

than spending time on this decision, the base calculation assumes complete recovery. Thus, 

an economic potential at Level n (EP-n) is determined whose definition when used in the 

Douglas methodology depends on the level of decision-making. 

B.1.2 Operating time 

It is conventional practice to report operating costs or stream costs on an annual basis. 

Different design companies use somewhat different values for the number of operating hours 

per year, and they may even use different values for different types of projects. Normally, in 

process engineering design, 8000 hr/yr is used for continuous processes and 7000 hr/yr for 

batch (thus operating time includes scheduled shutdowns for maintenance, unplanned 

downtime due to mechanical failures, and/or production losses caused capacity limitations or 

lack of feed).  

B.1.3 Assumption of maximum selectivity 

Information concerning how the product distribution changes with conversion and or reactor 

temperature, molar ratio of reactants, etc., is often difficult to obtain. A chemist’s focus is on 

scouting different catalyst attempting to define a mechanism and looking for ways to write a 

broad patent claim. During these scouting expeditions, the chemist normally attempts to find 

reaction conditions that maximize the yield. Thus, experience indicates that the existing data 

base will have most of the points grouped in a small range of conversions close to the 

maximum yield. Normally, raw material costs and selectivity losses are the dominant factors 

in the design of a petrochemical process. Raw materials costs are usually in the range from 

35 to 85% of the total production costs. The optimum economic conversion is nornally fixed 
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by an economic trade-off between large selectivity losses and large reactor costs at high 

conversions balanced against large recycle costs at low conversions. 

B.1.4 Raw material purity 

A chemist normally uses very pure chemical reagents in laboratory studies, whereas natural 

or purchased raw materials always contam some impurities. Hence, there is a need to gather 

some information from the marketing group about raw-material price versus purity in order to 

decide whether to include a purification facility as part of the design project or not. Moreover, 

designers must work with the chemist to see whether the impurities in the raw materials are 

inert or will affect the reactions. The effect of impurities on the separation system must also 

be investigated. In particular, trace amounts of impurities can build up to large values in recycle 

loops unless the impurities are removed from the process.  

B.1.5 Effect on economics of purify the feed 

A decision to purify the feeds before they enter the process is equivalent to a decision to 

design a preprocess purification system, which is different from a decision to feed the process 

through a separation system that is required in any event. At this stage of process synthesis 

and analysis procedure it is not know what kind of separation system will be required for the 

process with no feed impurities, hence, it is difficult to make a definite decision. According to 

Douglas (1988), some guidelines may be used to make a decision, “consider a separation unit 

if the feed impurity is not inert, if the feed impurity is a gas, if the feed impurity is present in 

large quantities or if a feed impurity is a catalyst poison”. The decision of purifying the feed 

streams before they are processed involves an economic trade-off between building a 

preprocess separation system and increasing the cost of the process because we are handling 

the increased flow rates of inert materials. Therefore, according to Douglas (1988), there is no 

simple design criterion that always indicates the correct decision.  
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B.2.1 Douglas methodology 

The "Douglas Method" is based on hierarchical decision-making using economic feasibility as 

a main criterion for process evaluation. A complex problem is gradually solved through 

completion of a number of arbitrary "stages" or levels of analysis. The Douglas’ (1988) 

hierarchical approach is a simple but powerful methodology for the synthesis of process 

flowsheets. It consists of a top-down analysis organised as a clearly defined sequence of tasks 

grouped in levels. In applying the methodology, the designer has to identify dominant design 

variables and take design decisions. Each level includes new decisions and additional 

flowsheet structures. Heuristics are used to help the designer to make those decisions, and 

the opposite decisions are accumulated in a list of process alternatives to be considered after 

a base-case design has been generated. 

B.2.1 Level 1 of process development (Input-output) 

Level 1 consideres raw materials input and product output from a process. There is a “rule of 

thumb” in process design that it is desirable to recover more than 99 % of all valuable 

materials. For initial design calculations, the order-of-magnitude argument which says that this 

rule of thumb is equivalent to requiring that we completely recover and then recycle all valuable 

reactants is applied (Douglas, 1988). 

B.2.2 Level 2 of process development (Recycle and recycle structure) 

Level 2 of Douglas methodology considers the reactor and compressor costs on the economic 

potential of the project. The economic analysis for the input-output structure considered only 

the stream costs, i.e., products minus raw-material costs. However, when recycle of 

unconverted reactants (1-octene, syngas and 7-tetradecene) is considered, an infinite recycle 

is required, hence high costs of reactor and compression when the conversion is close to zero. 

Thus, the annualized reactor cost and the annualized compressor costs (both capital and 

power) is subtracted from the EP-1 (EPM-1, EPH-1), then it is expect to find both an optimum 

conversion. These values for the optimum at Level 2 are not the true optimum values because 
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they have not included any separations of the 1-octene, 7-tetradecene, syngas and catalysts 

or purification of the 2-hexyl-nonanal product or heating and cooling costs. 

B.2.2.1 Annualised reactor cost 

Guthrie's correlation (Equation B.1) can be used to calculate the installed cost for various 

types of reactors. A capital charge factor of 1/3 per year is used to annualize the installed 

equipment cost in terms of the design variables. For first designs, a volume fill efficiency of 75 

% is assumed to account for fluid for the volume fraction of reactor that is not filled by the 

liquid. 

𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑜𝑠𝑡 =  (
𝑀&𝑆

282
)

(101.9)𝐷1.066𝐿0.82(2.18+𝐹𝑚+𝐹𝑝)

3
 , $/yr                        (B.1) 

Where; 

M&S = Marshal and Swift Index published each month in Chemical Engineering.  

𝐹𝑚  =material factor 

𝐹𝑝 = pressure factor 

 L = length of reactor, ft 

 D = diameter, ft 

For stirred tank reactos (CSTR) the optimum L/D is consider optimum between 1 and 1.5 

(Peters and Timmerhaus, 2004). 

B.2.2.2 Annualised compressor cost 

Equation B.2 in gives the design equation for the costs of the syngas-recycle compressor.  

𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝐶𝑜𝑠𝑡 =  (
𝑀&𝑆

280
) (517.5)(𝑏ℎ𝑝)0.82(2.11 + 𝐹𝑐)                                                       (B.2) 

Where,  

M&S = Marshal and Swift Index published each month in Chemical Engineering.  

bhp  = brake horse power (
ℎ𝑝

0.9⁄ ) 

𝐹𝑐 = material factor for centrifugal compressor 
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A fixed temperature and a constant pressure difference was assumed for the isentropic 

compression of the gas stream in a cascade of NCPS = 4 isentropic compressors with 

intermediate cooling in a similar effort by Hentschel et al. (2014). 

For first designs, a compressor efficiency of 90 % is assumed to account for fluid friction in 

suction and discharge valves, ports, friction of moving metal surfaces, fluid turbulence, etc. A 

driver efficiency of 90 % is assumed to account for the conversion of the input energy to shaft 

work. 

ℎ𝑝 = (
3.03𝑥10−5

𝛾
) 𝑃𝑖𝑛𝑄𝑖𝑛 [(

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
)

𝛾
− 1]                                                                            (B.3) 

 

The exit temperature form the compressor is given by: 

𝑇𝑜𝑢𝑡

𝑇𝑖𝑛
= (

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
)

𝛾
                                                                                                                       (B.4) 

Where; 

𝑃𝑖𝑛 = 1bf/ft2 

𝑄𝑖𝑛 = ft3/min 

𝛾 = compression factor 

T = Temperature (K) 

P = Pressure (are absolute values, barg). 

B.2.2.3 Decision on the number of reactors 

According to the Douglas methodology, if the reactions take place at different temperatures or 

pressures, or if they require different catalysts, then different reactor systems are considered 

for these reaction sets. Hence, if only one reactor is required or if the all the reactions place at 

the same temperature and pressure without a catalyst, only one reactor is required. 

B.2.2.4 Decision on the number of recycle streams 

The components leaving the reactor are listed according to the order of their normal boiling 

points, and the reactor number is used as the destination code for each recycle stream. The 

recycle components having neighbouring boiling points can then be grouped together if they 
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have the same reactor destination. The number of recycle streams is merely the number of 

groups.This simple procedure is based on this common sense heuristic that “do not separate 

two components and then remix them at a reactor inlet”. The gas and liquid recycle streams 

are also distinguished, because gas recycle streams require compressors, which are always 

expensive. A stream is considered a gas-recycle stream if it boils at a lower temperature than 

propylene (i.e. propylene can be condensed with cooling water at high pressure, whereas 

lower-boiling materials require refrigerated condensers, which require a compressor). 

Liquid-recycle streams require only pumps. In overall design calculations, the costs of the 

pumps are not included because they are usually small compared to reactors, compressors, 

furnaces, distillation columns, etc. 

B.2.2.5 Decision on reactor heat effects  

To make the decision concerning the reactor heat effects, the reactor head load and the 

adiabatic temperature change are estimated. These calculations provide some guidance as 

to the difficult of dealing with the reactor heat effects. Similarly, any temperature constrains 

imposed on the design problem is considered. For single reactions, all the fresh feed of the 

limiting reactant usually gets converted in the process (the per-pass conversion might be small 

so that there is a large recycle flow, but all the fresh feed is converted except for small losses 

in product and by-product streams or losses in a purge stream). Thus, for single reactions: 

Reactor heat load = Heat of reaction x Fresh feed rate                                  (B.4) 

Where, the heat of reaction is calculated at the reactor operating conditions. 

B.2.2.6 Decision on compressor cost and design 

According to Douglas (1988), a gas-recycle compressor is required whenever a gas-recycle 

stream is present. Equation B.3 gives the design equation for the theoretical horsepower (hp) 

for a centrifugal gas compressor. The Guthrie's correlation (Equation B.2) or some equivalent 

correlation can be used to calculate the installed cost for various types of compressors. The 

operating cost, the utility cost is obtained by dividing the brake horsepower by the driver 

efficiency, and then multiply the utility factor by 8 000 hrs per annum. 
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B.2.3 Level 3 of process development (Separation system design) 

When separation costs and recycle are considered, high separation costs and an infinite 

recycle is required when the conversion is close to zero. According to Douglas (1988), the 

phase of the reactor effluent stream determines the general structure of the separation system 

for vapour-liquid processes. 

B.2.3.1 Separation system design decisions 

In design of separation system general structure, there are only three possibilities: 

(a) Reactor effluent is liquid 

If the reactor effluent is a liquid, it is assumed that only a liquid separation system is required. 

This system might include distillation columns, extraction units, azeotropic distillation, etc., but 

normally there will not be any gas absorber, gas adsorption units. etc. 

(b) Reactor effluent is a two phase mixture 

If the reactor effluent is a two-phase mixture, the reactor can be used as a phase splitter (or 

put a flash drum after the reactor). The liquids are send to a liquid separation system. If the 

reactor is operating above cooling-water temperature, the reactor vapor stream is cooled to 

30 oC and the stream is phase-split. If the low-temperature flash liquid obtained containts 

mostly reactants (and no product components that are formed as intermediates in a 

consecutive reaction scheme), then reactants are recycled to the reactor. However, if the 

low-temperature flash liquid contains mostly products, the stream is send to the liquid recovery 

system. The low-temperature flash vapor is usually sent to a vapor recovery system. However, 

if the reactor effluent stream contains only a small amount of vapor, the reactor effluent is 

often send directly to a liquid separation system (i.e, distillation train). 

(c) Reactor effluent is all vapour 

If the reactor effluent is all vapour, the stream is cooled to 30 oC (cooling-water temperature) 

and attempt to achieve a phase split or to completely condense this stream. The condensed 

liquid is sent to a liquid recovery system, and the vapor is sent to a vapor recovery system. 
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B.2.3.2 Decision on vapour recovery system 

In an attempt to synthesise the vapour recovery system two decision are made on the best 

location vapour recovery system and the choice of a cheapest vapour system recovery system 

(Douglas, 1988). The decisions are based on the heurisctic;  

1) Place the recovery system on the purge stream if significant amounts of valuable 

matenals are being lost in the purge. The reason for this heuristic is that the purge 

stream normally has the smallest flow rate.  

2) Place the vapour recovery system on the gas-recycle stream if materials that are 

deleterious to the reactor operation (catalyst poisoning, etc.) are present in this stream 

or if recycling of some components degrades the product distribution. The gas recycle 

stream normally has the second smallest flow rate.   

3) Place the vapor recovery system on the flash vapor stream if both items (1) and (2) 

are valid. i.e., the flow rate is higher but two objectives are accomplished.  

4) Do not use a vapor recovery system if neither item (1) nor item (2) are important. 

B.2.3.3 Decision on adjusting material balance 

However, it is required to realise that unless item (3) in Section B.2.3.2 is chosen, our simple 

material balance equations will not be valid; i.e., some materials that was assumed to be 

recovered as liquids will be lost in the purge stream or recycled with the gas stream (which 

will change the compressor size). However, in many cases, the errors introduced are small, 

so, that previous approximations still provide good estimates (Douglas, 1988). It is also 

expected to develop a rigorous material balances if development proceed to a final design, 

and therefore, engineering judgment is used to see whether corrections need to be made at 

this point. Moreover, rather than attempting to evaluate the various alternatives at this time, 

designers merely make some decisions and continue to develop a base case. The other 

alternatives are listed as items that need to be considered after estimating the profitability of 

the process and have a better understanding of the allocation of the costs. The design of 

vapour recovery system is considered first before considering the liquid separation system 
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because each of the vapour recovery processes usually generates a liquid stream that must 

be further purified. 

B.2.3.4 Decision on compining vapour and liquid recovery 

If a partial condenser and a flash drum is used to phase-split the reactor effluent some of the 

lightest liquid components will leave with the flash vapour (i.e., a flash drum never yields 

perfect spilt) and therefore will not be recovered in the liquid recovery system. However, if 

there is only a small amount of vapor in the stream leaving the partial condenser and if the 

first split in the liquid separation system is chosen to be distillation, the phase splitter can be 

eliminated and reactor effluent stream is fed directly into the distillation column. The diameter 

of a distillation column with the two-phase feed will need to be larger (to handle the increased 

vapour traffic) than a column that follows a flash drum. However, this increased cost may be 

less than the cost associated with using a vapor recovery system to remove the liquid 

components from the flash vapour stream. According to Douglas (1988), there does not seem 

to be a heuristic available for making this decision and so there is need to add another process 

alternative to our list. 

B.2.3.5 Decision on the liquid recovery system 

The decisions that need to be considered in the synthes of the liquid separation system 

include:  

1) How should light ends be removed if they might contaminate the product?  

2) What should be the destinations of the light ends?  

3) Do components that form azeotropes with the reactants need to be eliminated  or split 

the azeotropes?  

4) What separations can be made by distillation?  

5) What is the sequence of columns to be used?  

6) How should separations be accomplished if distlllation is not feasible?  

In general, distillation is the least expensive means of separating mixtures of liquids. However, 

If the relative volatilities of two components with neighboring boiling points is less than 1.1, 
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distillation becomes very expensive; i.e., a large reflux ratio is required which corresponds to 

a large vapor rate, a large column diameter, large condensers and reboilers, and large steam 

and cooling water costs. Whenever two neighbouring components having a relative volatility 

of less than 1.1 in a mixture are encountered, the components are grouped together and 

treated as a single component to the mixture. In other words, the best distillation sequence for 

the group and the other components is developed and then lumped components are separated 

by using other procedures. 

B.2.3.6 Decision on the sequence of the distillation columns 

Some general heuristics can be used to simplify the selection procedure for column 

sequences. The first heuristic in this list is based on the fact that the material of construction 

of the column is much more expensive than carbon steel if corrosive components are present. 

Thus, the more columns that a corrosive component passes through, the more expensive will 

be the distillation train. Other heuristics used in column sequencing include:  

1) Most plentiful first 

2) The lighest first 

3) The highest recovery first 

4) The next separation should be cheapest.  

It must also be noted that as a result of change the conversion in a process; it is expected that 

the unconverted reactant will go from being the most plentiful component at very low 

conversions to the least plentiful at very high conversions. Hence, the heuristics (1) to (4) imply 

that the best column sequences will change as we alter the design variables. However, studies 

used to develop the heuristics were limited to sequences of simple columns having a single 

feed stream that were isolated from the remainder of the process, so that different results may 

be obtained when we consider the interactions between a distillation train and the remainder 

of the plant.  
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B.2.3.7 Decision on cost of the column and size 

Once the tower height and diameter are determined, Guthrie’s correlations (Equation B.5 to 

Equation B.10) can be used to estimate the total cost, i.e., the shell cost is evaluated assuming 

a pressure vessel and this include the cost of trays. As a quick approximation, it is assumed 

that the cost of the trays is about 20 % the cost of the column shell (assuming that everything 

is carbon steel). For dlistillation columns, the design include the condenser and reboiler. In 

addition, the the coolling-water and steam requirements must also be considered. Usually for 

short-cut design, it is assumed that an overall heat transfer coefficient for the condenser of Uc 

is equal to 100 Btu/(hr· ft2 .oF) gives reasonable results (Douglas, 1988). 

 

𝐶𝑜𝑙𝑢𝑚𝑛 𝐶𝑜𝑠𝑡 =  (
𝑀&𝑆

280
)

(3.28)(101.9)𝐷1.066𝐿0.82

3
 , $/y                                                            (B.6) 

Where; 

M&S = Marshal and Swift Index published each month in Chemical Engineering.  

 L = length of reactor (ft) 

 D = diameter (ft) 

𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟 𝐶𝑜𝑠𝑡 =  (
𝑀&𝑆

280
)

(3.28)(101.3)(
∆𝐻

𝑈∆𝑇
)

1.066
𝑉0.65

3
 , $/y            (B.7) 

Where; 

M&S = Marshal and Swift Index published each month in Chemical Engineering.  

ΔH = Enthalpy of vaporization (Btu/klbmol) 

𝑈 = Heat transfer coefficient, (100 Btu/(hr.ft2.oF) 

 V = Volumetric flow (ft3/hr) 

𝑅𝑒𝑏𝑜𝑖𝑙𝑒𝑟 𝐶𝑜𝑠𝑡 =  (
𝑀&𝑆

280
)

(3.28)(101.3)(
∆𝐻

11250
)

0.92
𝑉0.65

3
, $/y           (B.8) 

Where; 

M&S = Marshal and Swift Index published each month in Chemical Engineering.  
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ΔH  =enthalpy of vaporization (Btu/klbmol) 

𝑆𝑡𝑒𝑎𝑚 𝐶𝑜𝑠𝑡 = (𝐶𝑠) (
∆𝐻

933
) (8000)𝑉, $/yr               (B.9) 

Where; 

𝐶𝑠 = Cost of steam ($/gal) 

ΔH = Heat value Btu/klbmol 

𝑉 = Volumetric flow, (ft3) 

𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑤𝑎𝑡𝑒𝑟 𝐶𝑜𝑠𝑡 = (𝐶𝐶𝑊) (
1

8.13
) (

∆𝐻

30
) (8000)𝑉, $/yr                       (B.10) 

Where; 

𝐶𝐶𝑤 = Cost of cooling water ($/gal)  

ΔH = Enthalpy of vaporization (Btu/klbmol) 

𝑉 = Volumetric flow rate (ft3/h) 

(Let 𝑅 𝑅𝑚
⁄ =1.2 to ensure that the column is operated above optimum but in the neighbourhood 

of the optimum) 

For optimum reflux ratio assume; 

Uc = 100 Btu/ (hr.ft2.oF) 

𝑁 =
𝑁𝑚,

𝐸𝑜
⁄ , 𝑁𝑚 is the minimum number of stages, 𝐸𝑜 is column efficiency 

The driving force in the reboiler must be considered to be constrained to be within 0 to 8 oC to 

prevent film boiling. It is expected to that the high value of overall heat transfer can be obtained 

because heat transfer is between the condensing vapour and a boiling liquid.  

B.2.3.8 Decision on membrane cost 

At any 1-octene or 7-tetradecene conversion, the mass fraction (x) of 1-octene or 

7-tetradecene in the feed to the membrane can be found: 

𝑀𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑋𝐶𝑥) =
𝑁𝑜.𝑚𝑜𝑙𝑒𝑠 𝐶𝑥∗𝑀𝑟 𝐶𝑥

𝑁𝑜.𝑚𝑜𝑙𝑒𝑠 𝑥∗𝑀𝑟 𝐶𝑥+𝑁𝑜.𝑚𝑜𝑙𝑒𝑠 𝐶𝑦∗𝑀𝑟𝐶𝑦+𝑁𝑜.𝑚𝑜𝑙𝑒𝑠 𝐶𝑧∗𝑀𝑟 𝐶𝑧
                                   (B.11) 
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To determine the mass flux across the membrane, a correlation of mass flux versus 1-octene 

was carried out using experimental data as shown in Figure B.1  

𝐹𝑙𝑢𝑥 = 9.422𝑋𝐶8 − 2.5102𝑋𝐶8 + 1.0856                                                                                         (B.12) 

Where,  

                        𝑋𝐶8 = mass fraction of 1-octene 

Hence, the membrane area required for this quantity of flux: 

𝑀𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑎𝑟𝑒𝑎 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑋𝐶8 =
𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 (

𝑚3

ℎ𝑟
)∗𝐷𝑒𝑛𝑠𝑖𝑡𝑦(

𝑘𝑔

𝑚3)

𝐹𝑙𝑢𝑥(
𝑘𝑔

𝑚2ℎ
)

                              (B.13) 

Using the membrane area the total cost of membrane required at any conversion becomes: 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 ∗ 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 (
$

𝑚2)                               (B.14) 

 

 

                     

Figure B.1:  A correlation between flux and C8 mass fraction 

Experimental data

1-Octene          

mass 

fraction (-

)

Total flux                  

(kg.m
-2

.h
-

1
)

0 0.67

0.1 1

0.2 1.13

0.32 1.66

0.43 1.95

0.5 2.42

0.6 2.84

0.69 3.66

0.81 4.65

0.92 5.78

1 9.19

y = 9.4222x2 - 2.5102x + 1.0856
R² = 0.9504

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1 1.2

M
as

s 
Fl

u
x 

(k
g/

m
2
se

c)

Mass fraction of C8 (-)

(a) Experimental data (b) Flux correlation 

Stellenbosch University  https://scholar.sun.ac.za



240 

 

 

 

Table B.1: Determination of stream costs and EPM-1 at Level 1 of metathesis process development 

Properties of species:   Cost Aspects   EPM-1 catalysts $/kg $/kmol 

C8       C8 1.6 $/kg 416.57525 HGr-2 28 746 18012818.5 

  MW= 112.2 g/mol C14 35.5 $/kg 416.55957 HGr-1 46533.33333 27948385.3 

  density= 715 kg/m3       416.59494 Gr-1 6720 5530291.2 

C14       EPM-1= 
                     
416.58    416.57741 Gr-2 19600 16639812 

  MW= 196.37 g/mol M&S (2016) 1595.645965  416.10084 Schrock 421667 318746519 

  density= 700 kg/m3        

C2              

  MW= 28.05 g/mol        

  density= 567.65 kg/m3        

HGr-2  626.62 g/mol   A = 1-octene    

HGr-1  600.61 g/mol  2A ->  B + C B = 7-tetradecene    

Gr-1  822.96 g/mol   C = ethylene    

Gr-2  848.97 g/mol        

Sc  755.92 g/mol        
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Table B.2: Determination of reactor cost and EPM-2 at Level 2 of metathesis process process development 

Reaction 2A ->  B + C  A = 1-octene, B = 7-tetradecene, C= ethylene   Conversion Ft to m (0.3048) 

    '(kmol/hr)   % Filled Volume 75.00%    

  min hr In Out must be 1.0-1.5 Douglas (1988) pg 262 Cost ($M/yr) 

Conv 
tim
e time A A B C v0 (m3/hr) 

Volum
e (m3) D L L/D 

Reactor Cost 
($M/yr) EPM-2 ($M/yr) 

0.1 10 0.17 157.7 142.0 7.9 7.9 24.75272347 5.501 6.28 6.277093 1.00 0.11  
                    
416.47  

0.2 20 0.33 78.9 63.1 7.9 7.9 12.37636173 5.501 6.28 6.277093 1.00 0.11  
                    
416.47  

0.27 28 0.47 58.4 42.6 7.9 7.9 9.167675359 5.704 6.35 6.353651 1.00 0.11  
                    
416.47  

0.35 40 0.67 45.1 29.3 7.9 7.9 7.072206706 6.286 6.56 6.562801 1.00 0.11  
                    
416.46  

0.48 60 1.00 32.9 17.1 7.9 7.9 5.156817389 6.876 6.76 6.761794 1.00 0.12  
                    
416.45  

0.54 75 1.25 29.2 13.4 7.9 7.9 4.58383768 7.640 7.00 7.003488 1.00 0.13  
                    
416.45  

0.65 120 2.00 24.3 8.5 7.9 7.9 3.808111303 10.155 7.70 7.700422 1.00 0.15  
                    
416.42  

0.69 240 4.00 22.9 7.1 7.9 7.9 3.587351227 19.133 9.51 9.510703 1.00 0.23  
                    
416.35  

Material Properties   

Fp 1  

Fm 3.67 SS cladding 

Fc 3.67  
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Table B.3: Detemination of flash drum cost at Level 3 of metathesis process development 

       Material of construction 

     

Ft conversion 
(0.3048)  Fp 1 < 50 bar 

       Fm 1 Stainless steel 

   Flash residence 5 mins Fc 1  

Separation-part with drum        

1) Assume single drum  (size depend on volume of outlet from reactor)  L/D 3  

 outlet flow M3/hr calculated from reactor oulet mol/hr     

Conversion A B C flow(m3/hr) Volume drum D L L/D 
Cost of drum 
($M/yr) 

0.1 22.28  2.2125 0.3897 24.88  2.073306354 3.143903097 9.431709 3 0.037870709 

0.2 9.90  2.2125 0.3897 12.50  1.041942876 2.499554604 7.498664 3 0.024673937 

0.27 6.69  2.2125 0.3897 9.29  0.774552345 2.264287572 6.792863 3 0.020513665 

0.35 4.60  2.2125 0.3897 7.20  0.599929957 2.079448528 6.238346 3 0.017496785 

0.48 2.68  2.2125 0.3897 5.28  0.44031418 1.875723773 5.627171 3 0.014431469 

0.54 2.11  2.2125 0.3897 4.71  0.392565871 1.805311597 5.415935 3 0.013436016 

0.65 1.33  2.2125 0.3897 3.94  0.327922007 1.700218926 5.100657 3 0.012011966 

0.69 1.11  2.2125 0.3897 3.71  0.309525334 1.667810583 5.003432 3 0.011587804 
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Table B.4: Determination of  HGr-2 membrane cost at level 3 of metathesis process development 

      

R/P = 0.6   membrane+reactor+drum 

Conversion A B 
wt-frac 
C8 Flux 

Area need 
for 60% pass 

Cost of 
membrane 

0.1 141.96  7.9 0.947368 7.165595568 34.85429               0.69  

0.2 63.10  7.9 0.888889 6.299753086 18.77906               0.37  

0.27 42.65  7.9 0.843931 5.677958502 14.83355               0.29  

0.35 29.29  7.9 0.787879 4.956124885 12.50341               0.25  

0.48 17.09  7.9 0.684211 3.777229917 11.02006               0.22  

0.54 13.44  7.9 0.630137 3.242750985 10.95974               0.22  

0.65 8.49  7.9 0.518519 2.31388203 11.7987               0.23  

0.69 7.09  7.9 0.473282 2.004345901 12.45101               0.25  

        

Membrane Cost = 1970.44335 $/m2  membrane cost 

609 cm2        

120 pound per sheet     1970.44335 

0.0609 m2                                 
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Table B.5: Determination of 1-octene column cost at Level 3 of metathesis process development 

     PvapouC8 17.4 mmHg  Btu/bmol 2.32601 kJ/kmol 

ΔH 

(Btu/lbmol)      PvapourC14 7.25 mmmHg  Gal 3.79  kg 

1-octene 107.526     α 2.4      

Tetradecene 376.01    R/Rm 1.2      

Hexyl-

nonal 201.778    N/Nm 2      

     % recovery 0.995      

     % purity 0.9997      

     Eo 0.5      

Separation part with 1-octene column       

  feed to column        

converion  A B xf Rm R dC8 wC8 dC14 wC14 xw 

0.1  141.96  7.886897 0.947368 0.75396825 0.9047619 141.2543286 0.709820746549894 0.04238902 7.844508169 0.090486 

0.2  63.10  7.886897 0.888889 0.80357143 0.96428571 62.77970158 0.315475887355504 0.01883956 7.868057622 0.040096 

0.27  42.65  7.886897 0.843931 0.84637965 1.01565558 42.43442792 0.213238331268073 0.01273415 7.874163035 0.027081 

0.35  29.29  7.886897 0.787879 0.90659341 1.08791209 29.14771859 0.146470947700770 0.00874694 7.878150244 0.018592 

0.48  17.09  7.886897 0.684211 1.04395604 1.25274725 17.00283585 0.085441386158781 0.00510238 7.881794802 0.01084 

0.54  13.44  7.886897 0.630137 1.13354037 1.36024845 13.36975126 0.067184679714599 0.00401213 7.882885055 0.008523 

0.65  8.49  7.886897 0.518519 1.37755102 1.65306122 8.451113675 0.042467907913240 0.00253609 7.884361089 0.005386 

0.69  7.09  7.886897 0.473282 1.50921659 1.81105991 7.051343294 0.035433885898625 0.00211604 7.884781146 0.004494 
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Table B.6: Determination of 1-octene column cost at Level 3 of metathesis process development 

         

     Ft 0.3048 
(in/m) (Stainless 

steel) 

         

     L/D 10   

        
Cost 

($Million /yr) 

Nm N Nactual H D H D  

Cost of 
column 
($M/yr) 

 
  12.5925 23.8024 47.6048 110.209 11.0209 110.209 11.0209  0.00696789 

12.8925 25.7850 51.5700 118.140 11.8140 118.140 11.8140  0.00793365 

13.3561 26.7123 53.4246 121.849 12.1849 121.849 12.1849  0.00840528 

13.7956 27.5913 55.1827 125.365 12.5365 125.365 12.5365  0.00886402 

14.4208 28.8417 57.6834 130.366 13.0366 130.366 13.0366  0.00953602 

14.6982 29.3965 58.7930 132.586 13.2586 132.586 13.2586  0.00984150 

15.2260 30.4520 60.9041 136.808 13.6808 136.808 13.6808  0.01043500 

15.4339 30.8679 61.7358 138.471 13.8471 138.471 13.8471  0.01067325 
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Table B.7: Comparison of separation cost and EPM-3 at Level 3 of metathes process development 

Conversion 
Flash 
drum membrane column 

Total 
separation 
Costs EPM-3 

0.1 0.0378707 
             
0.69  0.018125     742.78  

    
415.73  

0.2 0.0246739 
             
0.37  0.020721     415.43  

    
416.05  

0.27 0.0205137 
             
0.29  0.021992     334.79  

    
416.13  

0.35 0.0174968 
             
0.25  0.023231     287.10  

    
416.17  

0.48 0.0144315 
             
0.22  0.025049     256.62  

    
416.20  

0.54 0.013436 
             
0.22  0.025877     255.27  

    
416.19  

0.65 0.012012 
             
0.23  0.027489     271.99  

    
416.15  

0.69 0.0115878 
             
0.25  0.028136     285.06  

    
416.06  
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Figure B.2 shows the effect of single pass 7-tetradecene conversion on the number of stages 

of C14 column and reflux ratio 

 

Figure B. 2: Effect of single pass C14 conversion on Reflux ratio and number of stages 

Figure B.3 shows the effect of mass fraction of 7-tetradecene in feed to membrane with mass 

flux across the membrane. 

 

Figure B.3: Effect of C14 mass fraction on membrane flux 
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Figure B.4 shows the effect of 7-tetradecene conversion on the mass fraction of 7-tetradecene 

in feed to the membrane. Figure B.4 also shows the effect of single pass 7-tetradecene 

conversion on the total membrane area required. 

 

Figure B.4: Effect of single pass C14 conversion on mass fraction of C14 in feed to membrane 

and membrane area 
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Table B.8: Determination of stream costs and EPH-1 at Level 1 of hydroformylation process development 

       Metathesis Section 

 Properties of species:    Conversion 
Cost 
MU 

Catalyst (Rh+HGr-
2) ($M/yr) 

Cost syngas 
($M/yr) 

Cost C8 
($M/yr) 

EPH-1 
($M/yr) 

C15       Cost Aspects   0.1 
                   
0.83  0.166679947 0.05684698 22.65542 

   
976.29  

  MW= 226.89 g/mol C15 100.0 $/kg 0.2 
                   
0.50  0.166679947 0.05684698 22.65542 

    
976.62  

  density= 715 kg/m3 CO/H2 0.0 $/kg 0.27 
                   
0.42  0.166679947 0.05684698 22.65542 

    
976.70  

CO       C14 
                        
35.45    0.35 

                   
0.38  0.166679947 0.05684698 22.65542 

    
976.74  

  MW= 28.01 g/mol EP2= 
                     
976.77    0.48 

                   
0.35  0.166679947 0.05684698 22.65542 

    
976.77  

  density= 793.2 kg/m3 M&S (2016) 1595.645965  0.54 
                   
0.36  0.166679947 0.05684698 22.65542 

    
976.76  

H2          0.65 
                   
0.40  0.166679947 0.05684698 22.65542 

    
976.72  

  MW= 28.05 g/mol 
Mr-Rh-
TPPTS 365.2 g/mol 0.69 

                   
0.49  0.166679947 0.05684698 22.65542 

    
976.64  

  density= 70.85 kg/m3 Cost 120000 $/kg       

C14        43824000 $/kmol       

  MW= 196.37 g/mol          

  density= 700 kg/m3  

 REACTION:                A+B+C>D+W 
    

D = C15  A=C14                              

W = waste  B=CO   

   C=H2   
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Table B.9: Determination of Reactor Cost and EPH-2 with single pass C14 conversion at Level 2 of hydroformylation process development 

Data at 120 oC, 100 bar, Haumman et al 2002b    

Conversion time time In (kmol/hr) A =7-tetradecene Out (kmol/hr)   

   A(C14) B (CO) C (H2) A(C14) B(CO) C(H2) W(waste) 

0.12 40 0.666666667 65.7291689 65.729169 65.7291689 60.20791871 60.2079187 60.20792 2.36625 

0.22 80 1.333333333 35.8522739 35.852274 35.85227395 30.33102376 30.3310238 30.33102 2.36625 

0.35 140 2.333333333 22.5357151 22.535715 22.53571505 17.01446486 17.0144649 17.01446 2.36625 

0.7 400 6.666666667 11.2678575 11.267858 11.26785753 5.746607338 5.74660734 5.746607 2.36625 

0.8 580 9.666666667 9.85937534 9.8593753 9.859375335 4.338125147 4.33812515 4.338125 2.36625 

0.9 900 15 8.76388919 8.7638892 8.763889187 3.242638999 3.242639 3.242639 2.36625 

0.96 1260 21 8.21614611 8.2161461 8.216146113 2.694895925 2.69489592 2.694896 2.36625 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



251 

 

 

 

Table B.10: Determination of Reactor costs and EPH-2 at Level 2 of hydroformylation process development  

      Material Properties   

      Fp 1.05 Design pressure(100 bar) 

      Fm 3.67 Stainless steel Clad 

  Vary L/D 1  Fc 3.8535   

   % fill 0.75    Ft/m 0.3048 

          

V0A (m3/hr) V0B (m3/hr) V0C (m3/hr) 
v0 
(m3/hr) Volume (m3) D L L/D 

Reactor Cost 
($Million/yr) 

EPH-2 ($ 
million/yr) 

18.4389099 2.321071635 26.0226279 46.78261 41.5845417 12.31967 12.31967 1 0.399385061                      976.37  

10.0575872 1.266039074 14.1941607 25.51779 45.3649546 12.68222 12.68222 1 0.421840453                      976.35  

6.32191195 0.795795989 8.92204386 16.03975 49.90145 13.0916 13.0916 1 0.447889031                      976.32  

3.16095597 0.397897995 4.46102193 8.019876 71.2877858 14.74439 14.74439 1 0.560469682                      976.21  

2.76583648 0.348160745 3.90339419 7.017391 90.4463782 15.96193 15.96193 1 0.650940368                      976.12  

2.45852131 0.309476218 3.46968372 6.237681 124.753625 17.76804 17.76804 1 0.796786643                      975.97  

2.30486373 0.290133954 3.25282849 5.847826 163.739133 19.45387 19.45387 1 0.945338066                      975.82  
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Table B.11: Determination of compressor costs at Level 2 of hydroformylation process development 

  

Assume  
E 70 %   X 2088.544    

           

      bar lb/ft2  Material of construction 

     Pin 15 31328.16  Fp 1.05 

 Recycle Compressor cost  Pout 100 208854.4  Fm 3.67 

         Fc 3.8535 

 
Qin 
(m3/hr)  X  0.588578      

Conversion B C Vtotal  Q(ft3/min) hp (BTU) bhp (BTU) 
Cost 
($M/yr) 

0.12 2.1261016 23.83673 25.96282879  15.28114 34.49987 38.33319 0.123738 

0.22 1.0710691 12.00826 13.07932899  7.698202 17.38004 19.31116 0.070524 

0.35 0.600826 6.736143 7.336969083  4.318377 9.749495 10.83277 0.043899 

0.7 0.202928 2.275121 2.478049161  1.458525 3.292876 3.658751 0.018026 

0.8 0.1531907 1.717493 1.87068417  1.101043 2.485798 2.761998 0.014314 

0.9 0.1145062 1.283783 1.398289178  0.823002 1.858071 2.064524 0.011275 

0.96 0.0951639 1.066928 1.162091681  0.683981 1.544208 1.715787 0.009688 
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Table B.12: Determination of flash drum costs at Level 3 (Separation costs) of hydroformylation process development 

Separation with flash drum       Residence time    5 mins 

 Inlet flow           

Conv A B C W D VA VB VC VW VD V(m3/hr) 

0.12 60.207919 60.20792 60.20791871 2.36625008 5.52125 16.89004 2.126102 23.83673 0.750879 1.752051 45.35580019 
0.22 30.331024 30.33102 30.33102376 2.36625008 5.52125 8.508719 1.071069 12.00826 0.750879 1.752051 24.09097774 
0.35 17.014465 17.01446 17.01446486 2.36625008 5.52125 4.773044 0.600826 6.736143 0.750879 1.752051 14.61294259 

0.7 5.7466073 5.746607 5.746607338 2.36625008 5.52125 1.612088 0.202928 2.275121 0.750879 1.752051 6.593066688 
0.8 4.3381251 4.338125 4.338125147 2.36625008 5.52125 1.216968 0.153191 1.717493 0.750879 1.752051 5.590582201 
0.9 3.242639 3.242639 3.242638999 2.36625008 5.52125 0.909653 0.114506 1.283783 0.750879 1.752051 4.810872044 

0.96 2.6948959 2.694896 2.694895925 2.36625008 5.52125 0.755995 0.095164 1.066928 0.750879 1.752051 4.421016966 
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Table B.13: Determination of flash drum costs at Level 3 of hydroformylation process development 

 Material of construction (Stainless steel) Fc =1 L/D = 3 

 Fp 1 Fm 

Vdrum D L 
Cost of flash 
($M/yr) 

3.77965 3.840595 11.5217852 0.05504115 

2.007581 3.110325 9.33097387 0.03711865 

1.217745 2.632895 7.89868372 0.02718947 

0.549422 2.019374 6.05812162 0.01656441 

0.465882 1.911349 5.73404606 0.01494769 

0.400906 1.818007 5.45402051 0.01361305 

0.368418 1.767509 5.30252704 0.01291524 
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Table B.14: Determination of membrane costs at Level 3 hydroformylation process development (OSN membrane scenario) 

Separation-part with membrane     

        

 Feed to membrane    X 0.6 

Conversion A W D wt-frac C8 Flux 
Area need for 60% 
pass 

Cost of 
membrane 
($M/yr) 

0.12 60.20792 2.36625 5.52125 0.88417 0.523777 209.15134 4.12120867 

0.22 30.33102 2.36625 5.52125 0.793621 0.421989 141.600353 2.79015474 

0.35 17.01446 2.36625 5.52125 0.683258 0.312784 120.081455 2.36613705 

0.7 5.746607 2.36625 5.52125 0.421488 0.119027 157.777722 3.10892064 

0.8 4.338125 2.36625 5.52125 0.354839 0.08436 194.787626 3.83817982 

0.9 3.242639 2.36625 5.52125 0.291339 0.056868 256.84719 5.06102837 

0.96 2.694896 2.36625 5.52125 0.254658 0.04345 315.156406 6.20997845 

  Membrane cost  1970.44335 $/m2   
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Table B.15: Determination of 7-tetradecene column column costs at Level 3 of hydroformylation process development (OSN membrane) 

     PvapouC8 7.25 mmHg     

     PvapourC14 3.7 mmHg     

     α 1.95945946      

     R/Rm 1.2      

     N/Nm 2      

     % recovery 0.995      

     % purity 0.9997      

     Eo 0.5      

Convers A W D xf Rm R dC14 wC14 dC15 wC15 xw 

0.12 60.20792 2.36625 5.521250188 0.8841698 1.178793284 1.4145519 59.90688 0.30104 0.017977 7.869523 0.038254 

0.22 30.33102 2.36625 5.521250188 0.7936210 1.313288716 1.5759464 30.17937 0.151655 0.009057 7.878444 0.019249 

0.35 17.01446 2.36625 5.521250188 0.6832579 1.525417405 1.8305008 16.92939 0.085072 0.00508 7.88242 0.010793 

0.7 5.746607 2.36625 5.521250188 0.4214876 2.47279757 2.9673570 5.717874 0.028733 0.001716 7.885784 0.003644 

0.8 4.338125 2.36625 5.521250188 0.3548387 2.937259923 3.5247119 4.316435 0.021691 0.001295 7.886205 0.00275 

0.9 3.242639 2.36625 5.521250188 0.2913385 3.577464789 4.2929577 3.226426 0.016213 0.000968 7.886532 0.002056 

0.96 2.694896 2.36625 5.521250188 0.2546583 4.092751632 4.9113019 2.681421 0.013474 0.000805 7.886696 0.001709 
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Table   B.16: Determination of 7-tetradecene column costs at Level 3 of hydroformylation process development (OSN membrane process) 

    PvapouC8 7.25 mmHg       

    PvapourC14 3.7 mmHg       

    α 1.95945946        

    R/Rm 1.2        

    N/Nm 2        

    % recovery 0.995        

    % purity 0.9997        

    Eo 0.5        

ALTERNATIVE            

Separation with C14 recovery  X 0.5        

Inlet             

Conver A D xf Rm R dC14 wC14 dC15 wC15 xw Nm Nactual 

0.12 30.10395936 5.52125 0.845018 1.23340919 1.48009103 29.95344 0.150519797 0.008989 5.512261 0.027306 11.68438 46.73751 

0.22 15.16551188 5.52125 0.733102 1.42170279 1.70604335 15.08968 0.075827559 0.004528 5.516722 0.013745 12.38466 49.53866 

0.35 8.507232432 5.52125 0.606426 1.71868296 2.06241955 8.464696 0.042536162 0.00254 5.51871 0.007708 12.96924 51.87694 

0.7 2.873303669 5.52125 0.342282 3.04501519 3.65401823 2.858937 0.014366518 0.000858 5.520392 0.002602 14.06013 56.2405 

0.8 2.169062574 5.52125 0.282051 3.69526248 4.43431498 2.158217 0.010845313 0.000648 5.520603 0.001965 14.34197 57.36788 

0.9 1.6213195 5.52125 0.226994 4.5915493 5.50985915 1.613213 0.008106597 0.000484 5.520766 0.001468 14.63355 58.53421 

0.96 1.347447962 5.52125 0.196172 5.31295088 6.37554105 1.340711 0.00673724 0.000402 5.520848 0.00122 14.81884 59.27537 
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Table B.17: Determination of 7-tetradecene column at level 3 of hydroformylation process development (OSN membrane process) continoued 

    Material of construction   

Ft 0.3048   Fp 1   

    Fm 1   

L/D 10   Fc 1   

        

        

H D H D 
Cost of 
column 

Total cost ($ 
M/yr) 

R+C ($ 
M/yr) 

Total 
cost 
($M/yr) 

108.475 10.8475 33.06319 3.30631862 0.10927372 0.687437831 
                             
0.01  

              
0.70  

114.0773 11.40773 34.77077 3.4770767 0.12005163 0.649534286 
                             
0.01  

              
0.66  

118.7539 11.87539 36.19618 3.61961836 0.12940823 0.64838605 
                             
0.01  

              
0.66  

127.481 12.7481 38.85621 3.88562113 0.1477379 0.742798197 
                             
0.01  

              
0.75  

129.7358 12.97358 39.54346 3.95434618 0.15265651 0.83285901 
                             
0.01  

              
0.84  

132.0684 13.20684 40.25445 4.02544538 0.15782371 0.979498588 
                             
0.01  

              
0.99  

133.5507 13.35507 40.70627 4.07062677 0.16114881 1.12909005 
                             
0.01  

              
1.14  
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Table B.18: Determination of 2-hexyl-nonanal column costs at Level 3 of hydroformylation process development (OSN membrane process) 

     PvapouC8 7.25 mmHg     

     PvapourC14 3.7 mmHg     

     α 1.95945946      

     R/Rm 1.2      

     N/Nm 2      

     % recovery 0.995      

     % purity 0.9997      

     Eo 0.5      

Convers A W D xf Rm R dC14 wC14 dC15 wC15 xw 

0.12 60.20792 2.36625 5.521250188 0.8841698 1.178793284 1.4145519 59.90688 0.30104 0.017977 7.869523 0.038254 

0.22 30.33102 2.36625 5.521250188 0.7936210 1.313288716 1.5759464 30.17937 0.151655 0.009057 7.878444 0.019249 

0.35 17.01446 2.36625 5.521250188 0.6832579 1.525417405 1.8305008 16.92939 0.085072 0.00508 7.88242 0.010793 

0.7 5.746607 2.36625 5.521250188 0.4214876 2.47279757 2.9673570 5.717874 0.028733 0.001716 7.885784 0.003644 

0.8 4.338125 2.36625 5.521250188 0.3548387 2.937259923 3.5247119 4.316435 0.021691 0.001295 7.886205 0.00275 

0.9 3.242639 2.36625 5.521250188 0.2913385 3.577464789 4.2929577 3.226426 0.016213 0.000968 7.886532 0.002056 

0.96 2.694896 2.36625 5.521250188 0.2546583 4.092751632 4.9113019 2.681421 0.013474 0.000805 7.886696 0.001709 
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Table B.19: Determination of 2-hexyl-nonanal column costs at Level 3 of hydroformylation process development (OSN membrane process) continued 

       Material of construction  

   Ft 
0.3048 
(Ft/m)   Fp 1   

       Fm 1   

   L/D 10   Fc 1   

Nm N Nactual H D H D 
Column 
($M/yr) 

Total cost 
($M/yr) 

Reboiler 
($M/yr) 

Total cost 
($M/yr) 

411.3359 422.67187 453.3437 905.6875 90.56875 905.6875 90.56875          1.32  5.657131 
                      
0.01  

                         
5.66  

412.0422 424.08454 485.1690 911.3381 91.13381 911.3381 91.13381          1.32  4.375265 
                      
0.01  

                         
4.38  

412.6294 425.25893 502.5178 916.0357 91.60357 916.0357 91.60357          1.32  4.025462 
                      
0.01  

                         
4.03  

413.7225 427.44509 542.8901 924.7804 92.47804 924.7804 92.47804          1.32  5.010095 
                      
0.01  

                         
5.02  

414.0046 482.00933 562.0186 927.0373 92.70373 927.0373 92.70373          1.32  5.868972 
                      
0.01  

                         
5.88  

414.2964 488.59291 572.1858 929.3717 92.93717 929.3717 92.93717          1.32  7.280021 
                      
0.01  

                         
7.29  

414.4818 489.96371 572.9274 930.8548 93.08548 930.8548 93.08548          1.32  8.605311 
                      
0.01  

                         
8.62  
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Table B.20: Effect of single pass C14 conversion on Separation Cost and EPH3 at Level 3 of hydroformylation process developmet 

 (OSN scenario) 

C14 
conversion flash membrane C14 column C15 column Total sep cost 

Total separation 
cost (k$/yr) EPH-2 EPH-3 

0.12 0.055041 4.12120867 
                
0.70  

                             
1.32                6.19                6 194.06  

    
855.68  

    
849.48  

0.22 0.037119 2.79015474 
                
0.66  

                             
1.32                4.81                4 808.00  

    
855.71  

    
850.90  

0.35 0.027189 2.36613705 
                
0.66  

                             
1.32                4.37                4 373.62  

    
855.71  

    
851.34  

0.7 0.016564 3.10892064 
                
0.75  

                             
1.32                5.20                5 201.59  

    
855.62  

    
850.42  

0.8 0.014948 3.83817982 
                
0.84  

                             
1.32                6.02                6 019.68  

    
855.54  

    
849.52  

0.9 0.013613 5.06102837 
                
0.99  

                             
1.32                7.39                7 388.23  

    
855.39  

    
848.01  

0.96 0.012915 6.20997845 
                
1.14  

                             
1.32                8.69                8 686.33  

    
855.25  

    
846.56  
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Table B.21: Determination of 7-tetradecene column column costs at Level 3 of hydroformylation process development (Liquid multiphase system) 

     PvapouC8 7.25 mmHg     

     PvapourC14 3.7 mmHg     

     α 1.95945946      

     R/Rm 1.2      

     N/Nm 2      

     % recovery 0.995      

     % purity 0.9997      

     Eo 0.5      

Convers A W D xf Rm R dC14 wC14 dC15 wC15 xw 

0.12 60.20792 2.36625 5.521250188 0.8841698 1.178793284 1.4145519 59.90688 0.30104 0.017977 7.869523 0.038254 

0.22 30.33102 2.36625 5.521250188 0.7936210 1.313288716 1.5759464 30.17937 0.151655 0.009057 7.878444 0.019249 

0.35 17.01446 2.36625 5.521250188 0.6832579 1.525417405 1.8305008 16.92939 0.085072 0.00508 7.88242 0.010793 

0.7 5.746607 2.36625 5.521250188 0.4214876 2.47279757 2.9673570 5.717874 0.028733 0.001716 7.885784 0.003644 

0.8 4.338125 2.36625 5.521250188 0.3548387 2.937259923 3.5247119 4.316435 0.021691 0.001295 7.886205 0.00275 

0.9 3.242639 2.36625 5.521250188 0.2913385 3.577464789 4.2929577 3.226426 0.016213 0.000968 7.886532 0.002056 

0.96 2.694896 2.36625 5.521250188 0.2546583 4.092751632 4.9113019 2.681421 0.013474 0.000805 7.886696 0.001709 

  

 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



263 

 

 

 

Table   B.22: Determination of 7-tetradecene column costs at Level 3 of hydroformylation process development (Liquid multiphase system) 

    PvapouC8 7.25 mmHg       

    PvapourC14 3.7 mmHg       

    α 1.95945946        

    R/Rm 1.2        

    N/Nm 2        

    % recovery 0.995        

    % purity 0.9997        

    Eo 0.5        

ALTERNATIVE            

Separation with C14 recovery  X 0.5        

Inlet             

Conver A D xf Rm R dC14 wC14 dC15 wC15 xw Nm Nactual 

0.12 30.10395936 5.52125 0.845018 1.23340919 1.48009103 29.95344 0.150519797 0.008989 5.512261 0.027306 11.68438 46.73751 

0.22 15.16551188 5.52125 0.733102 1.42170279 1.70604335 15.08968 0.075827559 0.004528 5.516722 0.013745 12.38466 49.53866 

0.35 8.507232432 5.52125 0.606426 1.71868296 2.06241955 8.464696 0.042536162 0.00254 5.51871 0.007708 12.96924 51.87694 

0.7 2.873303669 5.52125 0.342282 3.04501519 3.65401823 2.858937 0.014366518 0.000858 5.520392 0.002602 14.06013 56.2405 

0.8 2.169062574 5.52125 0.282051 3.69526248 4.43431498 2.158217 0.010845313 0.000648 5.520603 0.001965 14.34197 57.36788 

0.9 1.6213195 5.52125 0.226994 4.5915493 5.50985915 1.613213 0.008106597 0.000484 5.520766 0.001468 14.63355 58.53421 

0.96 1.347447962 5.52125 0.196172 5.31295088 6.37554105 1.340711 0.00673724 0.000402 5.520848 0.00122 14.81884 59.27537 
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Table B.23: Determination of 7-tetradecene column (Hydroformylation Process section) (Liquid multiphase system) continoued 

    Material of construction   

Ft 0.3048   Fp 1   

    Fm 1   

L/D 10   Fc 1   

        

        

H D H D 
Cost of 
column 

Total cost ($ 
M/yr) 

R+C ($ 
M/yr) 

Total 
cost 
($M/yr) 

108.475 10.8475 33.06319 3.30631862 0.10927372 0.687437831 
                             
0.01  

              
0.70  

114.0773 11.40773 34.77077 3.4770767 0.12005163 0.649534286 
                             
0.01  

              
0.66  

118.7539 11.87539 36.19618 3.61961836 0.12940823 0.64838605 
                             
0.01  

              
0.66  

127.481 12.7481 38.85621 3.88562113 0.1477379 0.742798197 
                             
0.01  

              
0.75  

129.7358 12.97358 39.54346 3.95434618 0.15265651 0.83285901 
                             
0.01  

              
0.84  

132.0684 13.20684 40.25445 4.02544538 0.15782371 0.979498588 
                             
0.01  

              
0.99  

133.5507 13.35507 40.70627 4.07062677 0.16114881 1.12909005 
                             
0.01  

              
1.14  
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Table B.24: Determination of 2-hexyl-nonanal column costs at Level 3 of hydroformylation process development (Liquid multiphase system) 

continoued 

    Material of construction   

Ft 0.3048   Fp 1   

    Fm 1   

L/D 10   Fc 1   

        

        

H D H D 
Cost of 
column 

Total cost ($ 
M/yr) 

R+C ($ 
M/yr) 

Total 
cost 
($M/yr) 

108.475 10.8475 33.06319 3.30631862 0.10927372 0.687437831 
                             
0.01  

              
0.70  

114.0773 11.40773 34.77077 3.4770767 0.12005163 0.649534286 
                             
0.01  

              
0.66  

118.7539 11.87539 36.19618 3.61961836 0.12940823 0.64838605 
                             
0.01  

              
0.66  

127.481 12.7481 38.85621 3.88562113 0.1477379 0.742798197 
                             
0.01  

              
0.75  

129.7358 12.97358 39.54346 3.95434618 0.15265651 0.83285901 
                             
0.01  

              
0.84  

132.0684 13.20684 40.25445 4.02544538 0.15782371 0.979498588 
                             
0.01  

              
0.99  

133.5507 13.35507 40.70627 4.07062677 0.16114881 1.12909005 
                             
0.01  

              
1.14  

 

 

 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



266 

 

 

 

 

Table B.25: Determination of 2-hexyl-nonanal column costs at Level 3 of hydroformylation process development (LMS scenario) 

     PvapouC8 7.25 mmHg     

     PvapourC14 3.7 mmHg     

     α 1.95945946      

     R/Rm 1.2      

     N/Nm 2      

     % recovery 0.995      

     % purity 0.9997      

     Eo 0.5      

Convers A W D xf Rm R dC14 wC14 dC15 wC15 xw 

0.12 60.20792 2.36625 5.521250188 0.8841698 1.178793284 1.4145519 59.90688 0.30104 0.017977 7.869523 0.038254 

0.22 30.33102 2.36625 5.521250188 0.7936210 1.313288716 1.5759464 30.17937 0.151655 0.009057 7.878444 0.019249 

0.35 17.01446 2.36625 5.521250188 0.6832579 1.525417405 1.8305008 16.92939 0.085072 0.00508 7.88242 0.010793 

0.7 5.746607 2.36625 5.521250188 0.4214876 2.47279757 2.9673570 5.717874 0.028733 0.001716 7.885784 0.003644 

0.8 4.338125 2.36625 5.521250188 0.3548387 2.937259923 3.5247119 4.316435 0.021691 0.001295 7.886205 0.00275 

0.9 3.242639 2.36625 5.521250188 0.2913385 3.577464789 4.2929577 3.226426 0.016213 0.000968 7.886532 0.002056 

0.96 2.694896 2.36625 5.521250188 0.2546583 4.092751632 4.9113019 2.681421 0.013474 0.000805 7.886696 0.001709 
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Table B.26: Determination of 2-hexyl-nonanal column costs at Level 3 of hydroformylation process development (LMS scenario) 

       Material of construction  

   Ft 
0.3048 
(Ft/m)   Fp 1   

       Fm 1   

   L/D 10   Fc 1   

Nm N Nactual H D H D 
Column 
($M/yr) 

Total cost 
($M/yr) 

Reboiler 
($M/yr) 

Total cost 
($M/yr) 

411.3359 422.67187 453.3437 905.6875 90.56875 905.6875 90.56875 0.957758 5.657131 
                      
0.01  

                         
5.66  

412.0422 424.08454 485.1690 911.3381 91.13381 911.3381 91.13381 1.055628 4.375265 
                      
0.01  

                         
4.38  

412.6294 425.25893 502.5178 916.0357 91.60357 916.0357 91.60357 1.140347 4.025462 
                      
0.01  

                         
4.03  

413.7225 427.44509 542.8901 924.7804 92.47804 924.7804 92.47804 1.306114 5.010095 
                      
0.01  

                         
5.02  

414.0046 482.00933 562.0186 927.0373 92.70373 927.0373 92.70373 1.35059 5.868972 
                      
0.01  

                         
5.88  

414.2964 488.59291 572.1858 929.3717 92.93717 929.3717 92.93717 1.397318 7.280021 
                      
0.01  

                         
7.29  

414.4818 489.96371 572.9274 930.8548 93.08548 930.8548 93.08548 1.427391 8.605311 
                      
0.01  

                         
8.62  
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Table B.27: Determination 2-hexyl-nonanal column costs at Level 3 of hydroformylation process development (LMS scenario) continued 

    Material of construction  

Ft 0.3048   Fp 1  

    Fm 1  

L/D 10   Fc 1  

H D H D 

Total 
cost  
($M/yr)  

total 
cost 
($M/yr) 

EPH-3 
($M/yr) 

928.475 90.8475 533.06319 53.30631862          1.32  
         
2.02      974.06  

914.0773 91.40773 534.77077 53.4770767          1.32  
         
1.98      974.13  

918.7539 91.87539 536.19618 53.61961836          1.32  
         
1.98      974.13  

927.481 92.7481 538.85621 53.88562113          1.32  
         
2.08      973.94  

929.7358 92.97358 539.54346 53.95434618          1.32  
         
2.17      973.76  

932.0684 93.20684 540.25445 54.02544538          1.32  
         
2.31      973.46  

933.5507 93.35507 540.70627 54.07062677          1.32  
         
2.46      973.16  
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Table B.28: Effect of single pass C14 conversion on separation costs and EPH-3 at Level 3 of hydroformylation process development 

(LMS Scenario) 

C14 
conversion  flash 

C14 
column C15 column total EPH-2 Cost (k$/yr) EPH-3 

0.12 0.055041 
              
0.70  

                
1.32  

                             
2.07           855.68                2 072.85  

    
853.61  

0.22 0.037119 
              
0.66  

                
1.32  

                             
2.02           855.71                2 017.84  

    
853.69  

0.35 0.027189 
              
0.66  

                
1.32  

                             
2.01           855.71                2 007.48  

    
853.70  

0.7 0.016564 
              
0.75  

                
1.32  

                             
2.09           855.62                2 092.67  

    
853.53  

0.8 0.014948 
              
0.84  

                
1.32  

                             
2.18           855.54                2 181.50  

    
853.35  

0.9 0.013613 
              
0.99  

                
1.32  

                             
2.33           855.39                2 327.20  

    
853.07  

0.96 0.012915 
              
1.14  

                
1.32  

                             
2.48           855.25                2 476.35  

    
852.77  
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Table B.29: Assumptions and justifications 

Unit Description Justification 

% Filled Volume 75 % 75 % of the vessel is dedicated 

to fluid (Douglas, 1988) 

Material factor Fm Determined from Guthrie cost 

tables (Turton et al., 2012) 

Pressure factor Fp Determined from Guthrie cost 

tables (Turton et al., 2012) 

Flash residence time 5 mins Peters and Timmerhaus 2004 

L/D (CSTR reactor) 1-1.5 Peters and Timmerhaus 2004 

L/D (columns) At least 10 Peters and Timmerhaus 2004 
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Appendix C: Chapter 5: Aspen PlusTM Simulation 

C.1.1 Determination of physical property method 

High temperature or pressure process steps are encountered in these designs. However, two 

different phases of matter (gas phase, and liquid phase) are processed and the components 

present (H2, CO, Marlipal, Water, alkenes, aldehydes and gasses above their critical 

temperatures) make for a highly complex system. This means that no single physical property 

method is sufficient for accurate simulation of this system. The following passage details how 

the thermodynamic property method was selected in this study. 

C.1.1.1 Model Selection Algorithm 

Before application of any algorithm to the selection of a physical property method it is important 

to define the system in terms of its components. The nature of the components and the level 

of their interaction determine whether an equation of state based (EOS) or activity coefficient 

based method will be used or not. The components and their critical properties in the C8 

upgrading to C15 aldehydes are listed in Table C.1 

Table C.1: Key components and critical properties 

                            Critical Temperature         Critical Pressure                   References 

Component                   (Tc/oC)                             (Pc/bar) 

H2 -242 20.3 www.airliquide.com 

CO -140.7 34.99 www.airliquide.com 

C2H4 9.20 50.42 Steele and Chirico 1992 

C7H14 264.15 29.21 Steele and Chirico 1992 

C8H16 294.25 26.75 Steele and Chirico 1992 

C14H28 418.85 16.20 Steele and Chirico 1992 

C10H22 244.55 21.10 www.colonicalchemical.com 

Marlipal  374.15 44.20 www.colonicalchemical.com 

C15H30O 454.34 65.34 www.alibaba.com 
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Several algorithms are documented for selecting physical property methods are listed in 

literature. For the purpose of this project three of those many algorithms were reviewed and 

compared for the purpose of developing a physical property model for the whole or sections 

of the simulation. The Aspen method (Aspen Technology, 2009), Bob Seader method (Seider 

et al., 2004) and the Eric Carlson (1996) method were reviewed. The Aspen method is in 

reality composed of a number of alternative algorithms. One set emerges from the use of the 

built-in property method selection assistant and another algorithm that is presented in the 

Aspen User Manual (2009). The use of the property method selection assistant will be 

discussed briefly but not illustrated like the other three methods, shown in Figure C.1-C.3. 

 

 

 

 

 

 

 

Figure C.1: The Aspen property method selection algorithm (ASPEN TECH 2009) 
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Figure C.2: The Bob Seader property method selection algorithm 

 

 

 

 

 

 

 

 

 

Figure C.3: The Eric Carlson physical property method selection algorithm (Carlson 1996) 
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The Figures C.1-C.3 above shows an Aspen Technology (2009), Bob Seader and Carlson, 

(1996) physical property selection algorithms. Rules for the physical property selection as 

given by the three algorithms were considered in order to come up with physical property 

method that accurately represent the system under question. The Aspen flowchart in Figure 

C.1 recommends the use of EOS for the Metathesis section and the activity coefficient based 

method with Henry’s law for the Hydroformylation section. The Bob Seader method 

recommends a further evaluation of the physical property for nonpolar Metathesis reaction 

system and a special system e.g. PC-SAFT method for the Hydroformylation section since it 

contains non-hydrocarbon components. Either PENG-ROB, RK-SOAVE, LK-PLOCK, PR-BM, 

RKS-BM can be used for the metathesis section according to Carlson 1996 and a further 

evaluation of polar non-electrolyte hydroformylation system be conducted as was shown in 

the selected physical property method in Figure C.3. However, in previous simulation study 

on the Hydroformylation of long chain alkenes, Hentschel et al. (2014), Hentschel et al. (2015) 

and Schafer et al. (2012), recommends the use of PC-SAFT property method for the more 

complex Hydroformylation system and the UNIFAC-Dortmund to model the LLE three phase 

decanter system.  

The available activity coefficient based methods in Aspen Plus™ include UNIFAC, UNIQUAC, 

Non- Random-Two-Liquid (NRTL), and WILSON among others. It is also important to define 

different sections of the process into low pressure (<10bar), high pressure (>10bar) region 

and polar and nonpolar sections according to Aspen Tech recommendations. As already 

mentioned, the composition of the mixture is highly complex. Components, such as Marlipal, 

and water, have strong dipoles and many of the polar compounds are associative and form 

complexes. Therefore, it is suggested that equation-of-state models like CPA or SAFT be used 

as the property method for the hydroformylation reaction section. These models explicitly 

account for association and will most accurately simulate the thermodynamic properties of 

these components. The following diagram Figure C.4 illustrates the decision making process 

which were followed in choosing the property methods used in simulations. Dashed blocks 
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indicate decisions made (i.e. system and component characteristics and properties) and dark 

blocks specify the final options for possible property methods. Almost all the property methods 

available in Aspen PlusTM are illustrated in this diagram. 

 

 

 

            

            

            

            

            

            

            

            

            

            

            

            

            

Figure C.5 Property method selection for the study      
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are above their critical temperatures in the simulations). The availability of pure-component 

and binary parameters is a very important factor for calculating pure-component or mixture 

properties. The choice of property method is highly dependent on the availability of binary 

parameters in ASPEN Plus, seeing that obtaining of experimental data and regression thereof 

are not in the scope of this project.  

C.1.2 Design Specifications 

The phase behaviour of microemulsions using 1-dodecene has been studied in detail and it is 

known from the literature that the general pattern observed with 1-dodecene can also be 

applied when using 7-tetradecene as alkene (Haumann et al., 2002). Hence, the following 

design specifications for 1-dodecene hydroformylation must also allow the determination of 

alkene/surfactant/water ratio during the hydroformylation 7-tetradecene. 

α =  
molefin

molefin + mwater
= 50 % 

γ =  
msurfactant

molefin + mwater + msurfactant
= 8 % 

This design specification made sure that the catalyst loss in the product stream lies to a 

minimum (lower than 1 ppm) ensure economic feasibility according to Muller et al. (2013) and 

Muller et al. (2015) 

 

 

C1.1.3 Section AREA-A100 simulation flowsheet 

 

 

Figure C.6 Section AREA-A100 Aspen PlusTM flowsheet
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Table C.2 stream Table Section AREA-A100 

Stream Units 101 101A 101B 101C 103 302 402 CAT-MUP HGR-2 CAT 

Mass flow tonne/yr          

1-OCT-01 tonne/yr. 14159.64 31100.76 31100.76 31100.76 16941.12 10050.09 6891.03 0.00 10050.09 

7-TET-01 tonne/yr. 0.00 18586.20 18586.20 18586.20 30977.03 18586.08 0.12 0.00 18586.08 

ETHYL-01 tonne/yr. 0.00 73.75 73.75 73.75 1843.70 44.25 29.50 0.00 44.25 

2-OCT-01 tonne/yr. 0.00 0.00 0.00 0.00 5.46 0.00 0.00 0.00 0.00 

6-TRIDEC tonne/yr. 0.00 0.80 0.80 0.80 0.80 0.48 0.32 0.00 0.48 

PROPYLEN tonne/yr. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

HYDRO-01 tonne/yr. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CARB-01 tonne/yr. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MARLIPAL tonne/yr. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

WATER tonne/yr. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2-HEXYLNO tonne/yr. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ISO-ALDEH tonne/yr. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

HGR-2-CATA tonne/yr. 0.00 11.86 11.86 11.86 11.86 11.86 0.00 0.00 11.86 

RHO-CAT tonne/yr. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total flow tonne/yr. 14159.64 49773.37 49773.37 49773.37 49773.37 28692.76 6920.97 0.00 28692.76 

Temperature oC 30.00 36.10 36.10 50.00 50.00 30.00 157.00 30.00 30.00 

Pressure bar 1.00 1.06 2.00 2.00 2.00 1.00 1.00 1.00 1.00 

Vapour 
fraction 

  0 0 0 0 0 0 0 0 
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APPENDICES 

C.1.1.4 Aspen PlusTM Section AREA-A200 

 

Figure C.7 Section AREA-A200 Aspen PlusTM flowsheet 

Table C.3 Stream Table Section AREA-A200 

Stream Units 201A 201B 202A 202B 203 

Mass flow tonne/yr      

1-OCT-01 tonne/yr 16941.1166 16941.12 190.97 190.971836 16750.14 

7-TET-01 tonne/yr 30977.0256 30977.03 0.228607 0.228607 30976.797 

ETHYL-01 tonne/yr 1843.70319 1843.703 1769.95506 1769.95506 73.7481275 

2-OCT-01 tonne/yr 5.46123 5.46123 5.46 5.46 0 

6-TRIDEC tonne/yr 0.8 0.8 0 0 0.8 

PROPYLEN tonne/yr 0 0 0 0 0 

HYDRO-01 tonne/yr 0 0    

CARB-01 tonne/yr 0 0    

MARLIPAL tonne/yr 0 0    

WATER tonne/yr 0 0    

2-HEXYLNO tonne/yr 0 0    

ISO-ALDEH tonne/yr 0 0    

HGR-2-CATA tonne/yr 11.861917 11.86192 0 0 11.861917 

RHO-CAT tonne/yr 0 0    

Total flow tonne/yr 49779.9686 49779.97 1966.61673 1966.61673 47813.35 

Temperature oC 50 33 33 33 33 

Pressure bar 2 2 1 1 1 

Vapour 
fraction 

 0 0 0 0 0 
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APPENDICES 

C.1.1.4 Aspen PlusTM Section AREA-A300 

 

Figure C.8 Section AREA-A300 Aspen PlusTM flowsheet 

Table C.4 Stream Table Section AREA-A200 

Stream Units 301A 301B 301C 302A 302B 303 

Mass flow tonne/yr       

1-OCT-01 tonne/yr 16750.14 16750.14 16750.14 10050.087 10050.0869 6700.06 

7-TET-01 tonne/yr 30976.80 30976.80 30976.80 18586.078 18586.0782 12390.95 

ETHYL-01 tonne/yr 73.75 73.75 73.75 44.248877 44.2488765 29.50 

2-OCT-01 tonne/yr 0.00 0.00 0.00 0 0 0.00 

6-TRIDEC tonne/yr 0.80 0.80 0.80 0.48 0.48 0.32 

PROPYLEN tonne/yr 0.00 0.00 0.00 0 0 0.00 

HYDRO-01 tonne/yr 0.00 0.00 0.00 0 0 0.00 

CARB-01 tonne/yr 0.00 0.00 0.00 0 0 0.00 

MARLIPAL tonne/yr 0.00 0.00 0.00 0 0 0.00 

WATER tonne/yr 0.00 0.00 0.00 0 0 0.00 

2-HEXYLNO tonne/yr 0.00 0.00 0.00 0 0 0.00 

ISO-ALDEH tonne/yr 0.00 0.00 0.00 0 0 0.00 

HGR-2-CATA tonne/yr 11.86 11.86 11.86 11.86 11.861917 0.00 

RHO-CAT tonne/yr 0.00 0.00 0.00 0 0 0.00 

Total flow tonne/yr 47813.35 47813.35 47813.35 28692.56 28692.7559 19120.82 

Temperature oC 33 30 30 30 30 30 

Pressure bar 1 1 40 40 40 40 

Vapour 
fraction 

 0 0 0 0 0 0 
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APPENDICES 

C.1.1.5 Aspen PlusTM Section AREA-A400 

 

Figure C.9 Section AREA-A400 Aspen PlusTM flowsheet 

Table C.5 Stream Table Section AREA-A400 

Stream Units 401A 401B 401C 402 403 

Mass flow tonne/yr      

1-OCT-01 tonne/yr 6700.06 6700.06 6891.02976 6891.03 0 

7-TET-01 tonne/yr 12390.95 12390.95 12390.95 0.123909 12390.8235 

ETHYL-01 tonne/yr 29.50 29.50 29.50 29.50 0.00 

2-OCT-01 tonne/yr 0.00 0.00 0.00 0.00 0.00 

6-TRIDEC tonne/yr 0.32 0.32 0.32 0.32 0.32 

PROPYLEN tonne/yr 0.00 0.00 0.00 0.00 0.00 

HYDRO-01 tonne/yr 0.00 0.00 0.00 0.00 0.00 

CARB-01 tonne/yr 0.00 0.00 0.00 0.00 0.00 

MARLIPAL tonne/yr 0.00 0.00 0.00 0.00 0.00 

WATER tonne/yr 0.00 0.00 0.00 0.00 0.00 

2-HEXYLNO tonne/yr 0.00 0.00 0.00 0.00 0.00 

ISO-ALDEH tonne/yr 0.00 0.00 0.00 0.00 0.00 

HGR-2-CATA tonne/yr 0.00 0.00 0.00 0.00 0.00 

RHO-CAT tonne/yr 0.00 0.00 0.00 0.00 0.00 

Total flow tonne/yr 19120.82 19120.82 19120.82 6920.973 12199.85 

Temperature oC 30 30 120 150 171 

Pressure bar 1 1 1 1 1.5 

Vapour 
fraction 

 0 0 0 0 0 
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APPENDICES 

C.1.1.6 Aspen PlusTM Section AREA-A500 

 

Figure C.10 Section AREA-A500 Aspen PlusTM flowsheet 
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APPENDICES 

Table C.6 Stream Table Section AREA-A500 

Stream Units 501A 501B 501C 502A 502B 502C 503A 503B 503C 504A 

Mass flow tonne/yr           

1-OCT-01 tonne/yr 0 0 0 0 0 0 0 0 0 0 

7-TET-01 tonne/yr 12390.8235 12390.8235 12390.82 0 0 0 0 0 0 15044.16 

ETHYL-01 tonne/yr 0 0 0 0 0 0 0 0 0 0 

2-OCT-01 tonne/yr 0 0 0 0 0 0 0 0 0 0 

6-TRIDEC tonne/yr 0.32 0.32 0.32 0 0 0 0 0 0 67.75789 

PROPYLEN tonne/yr 0 0 0 0 0 0 0 0 0 0 

HYDRO-01 tonne/yr 0 0 0 2809.759 2809.759 2809.759 0 0 0 141.117 

CARB-01 tonne/yr 0 0 0 3855.337 3855.337 3855.337 0 0 0 59.44621 

MARLIPAL tonne/yr 0 0 0 0 0 0 495.63294 495.6329 495.6329 346.8043 

WATER tonne/yr 0 0 0 2022.378 0 0 12.056 12.056 12.056 3008.832 

2-HEXYLNO tonne/yr 0 0 0 0 0 0 0 0 0 15.04416 

ISO-ALDEH tonne/yr 0 0 0 0 0 0 0 0 0 5.01472 

HGR-2-CATA tonne/yr 0 0 0 0 0 0 0 0 0 0 

RHO-CAT tonne/yr 0 0 0 0 0 0 0 0 0 21.92605 

Total flow tonne/yr 12391.1435 12391.1435 12391.14 8687.474 6665.096 6665.096 507.68894 507.6889 507.6889 18710.1 
Temperature oC 175 160 160 30 120 160 30 30 160 180 

Pressure bar 1.5 1.5 40 15 40 40 1 40 40 0.01 

Vapour 
fraction 

 0 0 0 1 0 0 0 0 0 0 
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APPENDICES 

Table C.7 Continued Stream Table Section AREA-A500 

Stream Units 504B 504C 505A 505B 505C 506 507 RH-CAT MARL WATR 602 FRSHSYNG 

Mass flow tonne/yr             

1-OCT-01 tonne/yr 0 0 0 0 0 0 0 0 0 0 0 0 

7-TET-01 tonne/yr 15044.16 15044.16 0.01074 0.01074 0.01074 27434.99 15063.18 0 0 0 12.99926 0 

ETHYL-01 tonne/yr 0 0 0 0 0 0 0 0 0 0 0 0 

2-OCT-01 tonne/yr 0 0 0 0 0 0 0 0 0 0 0 0 

6-TRIDEC tonne/yr 67.75789 67.75789 0.006 0.006 0.006 68.08389 68.08389 0 0 0 0.098 0 

PROPYLEN tonne/yr 0 0 0 0 0 0 0 0 0 0 0 0 

HYDRO-01 tonne/yr 141.117 141.117 118.3335 118.3335 118.3335 3069.209 2823.47 0 0 0 2682.297 127.462 

CARB-01 tonne/yr 59.44621 59.44621 59.47 59.47 59.47 3974.254 2147.37 0 0 0 2087.9 1767.437 

MARLIPAL tonne/yr 346.8043 346.8043 283.9431 283.9431 283.9431 1126.38 1126.38 0 0.138777 0 148.6899 0 

WATER tonne/yr 3008.832 3008.832 25170.42 25170.42 25170.42 27434.99 30213.69 0 0 0.1 2022.38 0 

2-HEXYLNO tonne/yr 15.04416 15.04416 10544 10544 10544 10559.04 21533.04 0 0 0 0.77 0 

ISO-ALDEH tonne/yr 5.01472 5.01472 43.717 43.717 43.717 48.73172 3669.727 0 0 0 0.32 0 

HGR-2-
CATA 

tonne/yr 0 0 0 0 0 0 0 0 0 0 0 0 

RHO-CAT tonne/yr 21.92605 21.92605 21.93483 21.93483 21.93483 43.86088 43.86088 21.93483 0 0 0 0 

Total flow tonne/yr 18710.1 18710.1 36241.84 36241.84 36241.84 76538.25 76538.24 21.93483 0.138777 0.1 6955.454 1894.899 
Temperature oC 176 160 75 75 160 160 160 30 30 30 75 30 

Pressure bar 0.01 0.01 15 40 40 40 40 1 1 1 15 15 

Vapour fraction 0 0 0 0 0 0 0 0 0 0 1 1 
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APPENDICES 

C.1.1.7 Aspen PlusTM Section AREA-A600 

 

Figure C.11: Section AREA-A600 Aspen PlusTM flowsheet 

Table C.8 Stream Table Section AREA-A600 

Stream Units 601A 601B 602 603 604 

Mass flow tonne/yr      

1-OCT-01 tonne/yr 0 0 0 0 0 

7-TET-01 tonne/yr 15063.18 15063.18 12.99926 15050.17 0.01074 

ETHYL-01 tonne/yr 0 0 0 0 0 

2-OCT-01 tonne/yr 0 0 0 0 0 

6-TRIDEC tonne/yr 67.883 67.883 0.098 67.779 0.006 

PROPYLEN tonne/yr 0 0 0 0 0 

HYDRO-01 tonne/yr 2823.47 2823.47 2682.297 22.84 118.3335 

CARB-01 tonne/yr 2147.37 2147.37 2087.9 0 59.47 

MARLIPAL tonne/yr 495.63294 495.63294 148.6899 63 283.9431 

WATER tonne/yr 27454.0035 27454.0035 2105.38 261.2 25170.42 

2-HEXYLNO tonne/yr 21533.0421 21533.0421 0.77 10905 10544 

ISO-ALDEH tonne/yr 3669.727 3669.727 0.32 3625.69 43.717 

HGR-2-CATA tonne/yr 0 0 0 0 0 

RHO-CAT tonne/yr 21.9436063 21.9436063 0 0.029996 21.91361 

Total flow tonne/yr 73276.2522 73276.2522 6955.454 29995.71 36241.82 
Total flow tonne/yr 75624.4665 75624.4665 7187.144 29995.69 38524.63 

Temperature oC 160 75 75 75 75 

Pressure bar 40 40 15 15 15 

Vapour fraction 0 0 1 0 0 
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APPENDICES 

C.1.1.8 Aspen PlusTM Section AREA-A700 

 

Figure C.12: Section AREA-A700 Aspen PlusTM flowsheet 

Table C.9 Stream Table Section AREA-A700 

Stream Units 701A 701B 702 703 

Mass flow tonne/yr     

1-OCT-01 tonne/yr 0 0 0 0 

7-TET-01 tonne/yr 15050.17 15050.17 15044.15 6.020068 

ETHYL-01 tonne/yr 0 0 0 0 

2-OCT-01 tonne/yr 0 0 0 0 

6-TRIDEC tonne/yr 67.779 67.779 67.75189 0.027112 

PROPYLEN tonne/yr 0 0 0 0 

HYDRO-01 tonne/yr 22.84 22.84 22.83086 0.009136 

CARB-01 tonne/yr 0 0 0 0 

MARLIPAL tonne/yr 63 63 0.0252 62.9748 

WATER tonne/yr 261.2 261.2 261.0955 0.10448 

2-HEXYLNO tonne/yr 10905 10905 449 10456 

ISO-ALDEH tonne/yr 3625.69 3625.69 1.450276 3624.24 

HGR-2-CATA tonne/yr 0 0 0 0 

RHO-CAT tonne/yr 0.029996 0.029996 0.029984 1.2E-05 

Total flow tonne/yr 29995.71 29995.71 15846.33 14149.38 
Temperature oC 30 121 150 171 

Pressure bar 1 1 0.01 0.015 

Vapour fraction 0 0 0 0 
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APPENDICES 

 

C.1.1.9 Aspen PlusTM Section AREA-A800 

 

Figure C.13 Section AREA-A800 Aspen PlusTM flowsheet 

Table C.10 Stream Table Section AREA-A800 

Stream Units 801 802A 802B 803A 803B 

Mass flow tonne/yr      

1-OCT-01 tonne/yr 0 0 0 0 0 

7-TET-01 tonne/yr 6.020068 6.020068 0 0 0 

ETHYL-01 tonne/yr 0 0 0 0 0 

2-OCT-01 tonne/yr 0 0 0 0 0 

6-TRIDEC tonne/yr 0.027112 0.027112 0 0 0 

PROPYLEN tonne/yr 0 0 0 0 0 

HYDRO-01 tonne/yr 0.009136 0.009136 0 0 0 

CARB-01 tonne/yr 0 0 0 0 0 

MARLIPAL tonne/yr 62.9748 0 0 63 63 

WATER tonne/yr 0.10448 0.10448 261.2 0 0 

2-HEXYLNO tonne/yr 10456 10309.62 10309.62 146.384 146.384 

ISO-ALDEH tonne/yr 3624.24 50.73936 50.73936 3573.5 3573.5 

HGR-2-CATA tonne/yr 0 0 0 0 0 

RHO-CAT tonne/yr 1.2E-05 1.2E-05 0 0 0 

Total flow tonne/yr 14149.38 10366.52 10621.56 3782.884 3782.884 

Stream Units 801 802A 802B 803A 803B 

Temperature oC 171 171 30 175 30 

Pressure bar 0.01 0.01 0.01 0.01 0.01 

Vapour fraction 0 0 0 0 0 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



287 

 

 

 

APPENDICES 

Scenario B hydroformylation section 

C.1.1.20 Aspen PlusTM Section AREA-B600 

 

Figure C.14 Section AREA-AB60 Aspen PlusTM flowsheet 

Table C.11 Stream Table Section AREA-B600 

Stream Units 601A 601B 602 603 

Stream Units 601A 601B 602 603 

Mass flow tonne/yr     

1-OCT-01 tonne/yr 0 0 0 0 

7-TET-01 tonne/yr 15063.18 15063.18 12.99926 15050.18 

ETHYL-01 tonne/yr 0 0 0 0 

2-OCT-01 tonne/yr 0 0 0 0 

6-TRIDEC tonne/yr 67.883 67.883 0.098 67.785 

PROPYLEN tonne/yr 0 0 0 0 

HYDRO-01 tonne/yr 2823.47 2823.47 2682.297 141.1735 

CARB-01 tonne/yr 2147.37 2147.37 2087.9 59.47 

MARLIPAL tonne/yr 495.6329 495.6329 148.6899 346.9431 

WATER tonne/yr 27454 27454 2022.38 25431.62 

2-HEXYLNO tonne/yr 21533.04 21533.04 0.77 21449 

ISO-ALDEH tonne/yr 3669.727 3669.727 0.32 3669.407 

HGR-2-CATA tonne/yr 0 0 0 0 

RHO-CAT tonne/yr 21.94361 21.94361 0 21.94361 

Total flow tonne/yr 73192.45 73192.45 6955.454 66237.53 

Temperature oC 160 71 71 71 

Pressure bar 40 40 15 15 

Vapour fraction 0 0 1 0 
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C.1.1.21 Aspen PlusTM Section AREA-B700 

 

Figure C.15 Section AREA-B700 Aspen PlusTM flowsheet 

Table C.12 Stream Table Section AREA-B700 

Stream Units 701A 701B 702 703 

Mass flow tonne/yr     

1-OCT-01 tonne/yr 0 0 0 0 

7-TET-01 tonne/yr 15050.18 15050.18 15044.16 6.020072 

ETHYL-01 tonne/yr 0 0 0 0 

2-OCT-01 tonne/yr 0 0 0 0 

6-TRIDEC tonne/yr 67.785 67.785 67.75789 0.027114 

PROPYLEN tonne/yr 0 0 0 0 

HYDRO-01 tonne/yr 141.1735 141.1735 141.117 0.056469 

CARB-01 tonne/yr 59.47 59.47 59.44621 0.023788 

MARLIPAL tonne/yr 346.9431 346.9431 0.138777 346.8043 

WATER tonne/yr 25431.62 25431.62 25421.45 10.17265 

2-HEXYLNO tonne/yr 21449 21449 10993 10456 

ISO-ALDEH tonne/yr 3669.407 3669.407 1.467763 3667.939 

HGR-2-CATA tonne/yr 0 0 0 0 

RHO-CAT tonne/yr 21.94361 21.94361 21.93483 0.008777 

Total flow tonne/yr 66237.53 66237.53 51750.47 14487.05 

Temperature oC 30 30 30 30 

Pressure bar 15 40 40 1 

Vapour fraction 0 0 0 00 
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C.1.1.22 Aspen PlusTM Section AREA-B800 

 

Figure C.16 Section AREA-B800 Aspen PlusTM flowsheet 

Table C.13 Stream Table Section AREA-B800 

Stream Units 801A 801B 802 803 

Mass flow tonne/yr     

1-OCT-01 tonne/yr 0 0 0 0 

7-TET-01 tonne/yr 15050.18 15050.18 15044.16 6.020072 

ETHYL-01 tonne/yr 0 0 0 0 

2-OCT-01 tonne/yr 0 0 0 0 

6-TRIDEC tonne/yr 67.785 67.785 67.75789 0.027114 

PROPYLEN tonne/yr 0 0 0 0 

HYDRO-01 tonne/yr 141.1735 141.1735 141.117 0.056469 

CARB-01 tonne/yr 59.47 59.47 59.44621 0.023788 

MARLIPAL tonne/yr 346.9431 346.9431 0.138777 346.8043 

WATER tonne/yr 25431.62 25431.62 25421.45 10.17265 

2-HEXYLNO tonne/yr 10905 10905 449 10456 

ISO-ALDEH tonne/yr 3669.407 3669.407 1.467763 3667.939 

HGR-2-CATA tonne/yr 0 0 0 0 

RHO-CAT tonne/yr 21.94361 21.94361 21.93483 0.008777 

Total flow tonne/yr 55693.53 55693.53 41206.47 14487.05 

Temperature oC 30 121 150 171 

Pressure bar 1 1 0.01 0.015 

Vapour fraction 0 0 0 0 
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C.1.1.23 Aspen PlusTM Section AREA-B900 

 

Figure C.17 Section AREA-B900 Aspen PlusTM flowsheet 

Table C.14 Stream Table Section AREA-B900 

Stream Units 901 902A 902B 903A 903B 

Mass flow tonne/yr      

1-OCT-01 tonne/yr 0 0 0 0 0 

7-TET-01 tonne/yr 6.020072 6.020072 0 0 0 

ETHYL-01 tonne/yr 0 0 0 0 0 

2-OCT-01 tonne/yr 0 0 0 0 0 

6-TRIDEC tonne/yr 0.027114 0.027114 0 0 0 

PROPYLEN tonne/yr 0 0 0 0 0 

HYDRO-01 tonne/yr 0.056469 0.056469 0 0 0 

CARB-01 tonne/yr 0.023788 0.023788 0 0 0 

MARLIPAL tonne/yr 346.8043 0 0 63 63 

WATER tonne/yr 10.17265 10.17265 261.2 0 0 

2-HEXYLNO tonne/yr 10456 10309.62 10309.62 146.384 146.384 

ISO-ALDEH tonne/yr 3667.939 51.35115 51.35115 3616.588 3616.588 

HGR-2-CATA tonne/yr 0 0 0 0 0 

RHO-CAT tonne/yr 0.008777 0.008777 0 0 0 

Total flow tonne/yr 14487.05 10377.28 10622.17 3825.972 3825.972 

Temperature oC 171 171 30 175 30 

Pressure bar 0.01 0.01 0.01 0.01 0.01 

Vapour fraction 0 0 0 0 0 
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C.1.1.24 Aspen PlusTM Custom HGr-2 separation model FORTRAN codes 

NUMTUBES=5000       NHNPERM=FPHN/MWHN 

      DIAM=0.0635       JPD=JTOTAL*MFRACPD 

      LENG=1.06157       FPPD=JPD*AREA 

      AREA=3.14*DIAM*LENG*NUMTUBES       NPDPERM=FPPD/MWPD 

      REJCOE=0.99       JWA=JTOTAL*MFRACWA 

      CF=MFRACCAT       FPWA=JWA*AREA 

      CP=CF*(1-REJCOE)       NWAPERM=FPWA/MWWA 

      C1C8=TOTCONC*MOLFRC8       JMA=JTOTAL*MFRACMA 

      C14=TOTCONC*MOLFRC14       FPMA=JMA*AREA 

      CHN=TOTCONC*MOLFRCHN       NMAPERM=FPMA/MWMA 

      CPD=TOTCONC*MOLFRCPD       JCO=JTOTAL*MFRACCO 

      CWA=TOTCONC*MOLFRCWA       FPCO=JCO*AREA 

      CMA=TOTCONC*MOLFRCMA       NCOPERM=FPCO/MWCO 

      MOLARVOL=VOL*3600/NTOTAL       JH2=JTOTAL*MFRACH2 

      VC8=MOLARVOL*MOLFRC8       FPH2=JH2*AREA 

      VC14=MOLARVOL*MOLFRC14       NH2PERM=FPH2/MWH2 

      VHN=MOLARVOL*MOLFRCHN       JHGR=JTOTAL*MFRACHG 

      VPD=MOLARVOL*MOLFRCPD       FPHG=JHGR*AREA 

      VWA=MOLARVOL*MOLFRCWA       NHGRPERM=FPHG/MWHG 

      VMA=MOLARVOL*MOLFRCMA       N1C8PERM=FP1C8/MW1C8 

      PEMC8=0.6851*10^-15       N2C8PERM=FP2C8/MW2C8 

      PEMC14=0.1311*10^-15       NC13PERM=FPC13/MWC13 

      PEMHN=0.31469*10^-16       NC14PERM=FPC14/MWC14 

      PEMPD=0.31469*10^-16       JCAT=JTOTAL*CP 

      PEMWA=0.6434*10^-16       FPCAT=JCAT*AREA 

      PEMMA=0.1254*10^-15       NCATPERM=FPCAT/MWCAT 

      PEMAVG1=C1C8*VC8*PEMC8+C14*VC14*PEMC14       NCATRET=NCATFEED-NCATPERM 

      PEMAVG2=CHN*VHN*PEMHN+CPD*VPD*PEMPD       N1C8RET=N1C8FEED-N1C8PERM 

      PEMAVG3=CWA*VWA*PEMWA+CMA*VMWA*PEMMA       N2C8RET=N2C8FEED-N2C8PERM 

      PEMAVG=PEMAVG1+PEMAVG2+PEMAVG3       NC13RET=NC13FEED-NC13PERM 

      JTOTAL=TMP*PEMAVG*DENSFEED*100000*3600/VISC       NC14RET=NC14FEED-NC14PERM 

      J1C8=JTOTAL*MFRAC1C8       NHNRET=NHNFEED-NHNPERM 

      FP1C8=J1C8*AREA       NPDRET=NPDFEED-NPDPERM 

      J2C8=JTOTAL*MFRAC2C8       NWARET=NWAFEED-NWAPERM 

      FP2C8=J2C8*AREA       NMARET=NMAFEED-NMAPERM 

      JC14=JTOTAL*MFRACC14       NCORET=NCOFEED-NCOPERM 

      FPC14=JC14*AREA       NH2RET=NH2FEED-NH2PERM 

      JC13=JTOTAL*MFRACC13       NHGRET=NHGFEED-NHGPERM 

      FPC13=JC13*AREA  

      JHN=JTOTAL*MFRAC2HN  

      FPHN=JHN*AREA  
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C1.1.25 Aspen PlusTM Custom Rh-TPPTS membrane custom model FORTRAN codes 

      NUMTUBES=6400       NC2PERM=FPC2/MWC2 

      DIAM=0.0635       JC3=JTOTAL*MFRACC3 

      LENG=1.06157       FPC3=JC3*AREA 

      AREA=3.14*DIAM*LENG*NUMTUBES       NC3PERM=FPC3/MWC3 

      REJCOE=0.90       N1C8PERM=FP1C8/MW1C8 

      CF=MFRACCAT       N2C8PERM=FP2C8/MW2C8 

      CP=CF*(1-REJCOE)       NC13PERM=FPC13/MWC13 

      C1C8=TOTCONC*MOLFRC8       NC14PERM=FPC14/MWC14 

      C14=TOTCONC*MOLFRC14       JCAT=JTOTAL*CP 

      MOLARVOL=VOL*3600/NTOTAL       FPCAT=JCAT*AREA 

      VC8=MOLARVOL*MOLFRC8       NCATPERM=FPCAT/MWHG2 

      VC14=MOLARVOL*MOLFRC14       NCATRET=NCATFEED-NCATPERM 

      PEMC8=0.6851*10^-15       NC2RET=NC2FEED-NC2PERM 

      PEMC14=0.1311*10^-15       N1C8RET=N1C8FEED-N1C8PERM 

      PEMAVG=C1C8*VC8*PEMC8+C14*VC14*PEMC14       N2C8RET=N2C8FEED-N2C8PERM 

      JTOTAL=TMP*PEMAVG*DENSFEED*100000*3600/VISC       NC13RET=NC13FEED-NC13PERM 

      J1C8=JTOTAL*MFRAC1C8       NC3RET=NC3FEED-NC3PERM 

      FP1C8=J1C8*AREA       NC14RET=NC14FEED-NC14PERM       

      J2C8=JTOTAL*MFRAC2C8  

      FP2C8=J2C8*AREA  

      JC14=JTOTAL*MFRACC14  

      FPC14=JC14*AREA  

      JC13=JTOTAL*MFRACC13  

      FPC13=JC13*AREA  

      JC2=JTOTAL*MFRACC2  

      FPC2=JC2*AREA  
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Appendix D: Chapter 6: Economic evauation 

D.1.1 Energy requirements 

Energy requirements have an influence on the profitability of the process; hence, it is a 

requirement to compare the two process scenarios in terms of energy utilization. In this 

section, the overall energy requirements for the two process scenarios are evaluated. A 

comparison of the theoretical to the simulation energy requirements was also carried out in 

order to check the accuracy of results of the simulations. 

D.1.1.1 Process scenario A simulation 

Thermodynamic balances were carried out to determine the energy requirements of each 

processing step. The overall balances were obtained by carrying out heat balances for each 

of the reaction steps in the process. Tables D.1-D.4 are a record of the heat balances for the 

steps considered for the upgrading of low value 1-octene from Fischer-Tropsch’s Synthol 

product stream to 2-hexyl-nonanal a Guebert-type aldehyde.  

Table D.1 Heat balance for the metathesis reaction 

Heat input Heat output 

 Heat required to raise temperature of 

reactants to reaction temperature 

 Heat released by cooling ethylene  

product 

 ∫ 𝐶𝑝(𝐶8)𝑑𝑇
50

30
  − ∫ 𝐶𝑝(𝐶2)𝑑𝑇

50

30
 

 Heat required for endothermic 

metathesis reaction 
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Table D.2 Heat balance for the hydroformylation reaction 

Heat input Heat output 

 Heat required to raise temperature of 

reactants to reaction temperature 

 Heat released by cooling the product 

 ∫ 𝐶𝑝(𝐶14)𝑑𝑇 + ∫ 𝐶𝑝(𝐻2𝑂)𝑑𝑇 +
160

30

160

30

∫ 𝐶𝑝(𝑀𝑎𝑟𝑙𝑖𝑝𝑎𝑙)𝑑𝑇 + ∫ 𝐶𝑝(𝐻2)𝑑𝑇 +
160

30

160

30

∫ 𝐶𝑝(𝐶𝑂)𝑑𝑇
160

30
 

 − ∫ 𝐶𝑝(𝐶15𝑂)𝑑𝑇 − ∫ 𝐶𝑝(𝐼𝑠𝑜−𝐶15𝑂)𝑑𝑇
171

30

171

30
 

  Heat released by exothermic reaction 

By evaluating all the energy balances for each individual step from Tables D.1- D.2, the overall 

balance can be obtained as summarized in Table  and Table . Our analysis comprises an 

energy analysis that quantifies the difference in energy content between all process inputs 

and the products of the process at standard conditions (303.15 K and 1 bar). The individual 

processes are studied as black boxes, i.e., the flows between the various unit operations 

(reactors, separation equipment, etc.) and the actual temperature and pressures of these flows 

are not considered. In this work, the European Union average of 72 % was assumed as overall 

theoretical energy recovery efficiency (Neelis et al., 2007). 

Table D.3 Overall heat balance for process scenario A 

Heat input Heat output 

Step description Energy  

(kJ/mol 2-HN) 

Step description  Energy  

(kJ/mol 2-HN) 

1-octene preheating for 

metathesis reaction     

(30-50 oC) 

13.53337 Ethylene product cooling 

(50-30 oC) 

1.69 

Metathesis heat of reaction  0.30427 2-HN product cooling     

(160-30 oC) 

80.62 
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Table D.4 Overall heat balance for process scenario continoued 

Heat input Heat output 

7-tetradecene preheating 

for hydroformylation 

reaction (120-150 oC) 

21.23952 Hydroformylation heat of 

reaction  

0.13100 

Water preheating for 

hydroformylation reaction 

(30-160 oC) 

0.00178 iso-Aldehy product cooling 

(157 oC -30 oC) 

38.04112 

Marlipal preheating for 

hydroformylation reaction 

(30-160 oC) 

0.00468 Total heat output 120.47783 

CO preheating for 

hydroformylation reaction 

(30-160 oC) 

5.37114 Recoverable heat % 

(Neelis et al., 2007) 

72 

H2 preheating for 

hydroformylation reaction 

(30-160 oC) 

6.37076 Total recoverable 86.74 

Total heat input 46.83   

Net heat   39.91 

Table 6.3 shows that the process theoretically has a heat excess of 39.91 kJ/mol 2-HN. The 

auxiliary work energy that includes pumping and separation energy, also not included in the 

balance is 43.45 kJ/mol 2-HN. Adding the thermal energies and auxiliary work process 

scenario A theoretically requires 3.24 kJ/mol 2-HN. 

D.1.1.2 Process Scenario B simulation 

The energy requirement for scenario B were done in a similar manner to scenario A. Table 

A.20 is a summary of the energy requirements calculation considered in the balance. 
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Table D.5 Overall heat balance for process scenario B 

Heat input Heat output 

Step description Energy  

(kJ/mol 2-HN) 

Step description  Energy  

(kJ/mol 2-HN) 

1-octene preheating for 

metathesis reaction     

(30-50 oC) 

14.81763 Ethylene product cooling 

(50-30 oC) 

1.84559 

Metathesis heat of reaction  0.33314 Hydroformylation product 

cooling (160-30 oC) 

80.99557 

7-tetradecene preheating 

for hydroformylation 

reaction (120-150 oC) 

23.25506 Hydroformylation heat of 

reaction  

0.13100 

Water preheating for 

hydroformylation reaction 

(30-160 oC) 

0.00000 Iso-product cooling 

 (160 -30 oC) 

39.62501 

Marlipal preheating for 

hydroformylation reaction 

(30-160 oC) 

0.00512 Total heat output 

 

122.59717 

CO preheating for 

hydroformylation reaction 

(30-160 oC) 

5.88084 Recoverable heat % 

 

72 

H2 preheating for 

hydroformylation reaction 

(30-160 oC) 

6.97531 Total recoverable 88.27 

Total heat input 51.26710 Max recoverable output  

Net heat   37.00 
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Table A.20 shows that the process theoretically has a heat excess of 37.00 kJ/mol 2-HN. The 

auxiliary work energy that includes pumping and separation energy, also not included in the 

balance is 40.45 kJ/mol 2-HN. Adding the thermal energies and auxiliary work process 

scenario A theoretically requires 6.45 kJ/mol 2-HN. 

D.1.1.3 Simulation and energy requirement 

The simulation energy requirement was calculated as the sum of the duties of all individual 

blocks in the flowsheet and the net energy requirement for the heat exchanger network. The 

operating unit block duties were extracted from Aspen PlusTM and heat exchanger network 

heat requirements were optimized with the aid of Aspen Plus Energy AnalyserTM v8.2 Table 

D.7. Compares energy requirement to the expected values. 

Table D.6: Comparison of simulated to theoretical energy requirements  

Process Energy requirement 

Calculated (kJ/mol 2-HN) Simulated (kJ/mol 2-HN) 

Scenario A 3.24 5.43 

Scenario B 3.19 5.17 

 

Table D.6 summarizes the expected energy requirements and the actual from simulation. 

From Table D.6, the process scenario B shows large deviations between the calculated values 

and the obtained values. In both cases, the expected heat recovery was much more than the 

actual recovered heat. Some of the low-grade heat, which could not be re-used elsewhere in 

the process, was accounted as recoverable in the theoretical calculations. The highest 

contributor of this low grade unrecoverable energy was the low temperature flash process for 

the ethylene recovery section.  
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Figure D.1 shows the HEN for process Scenario A 

 

Figure D.1 HEN for process Scenario A 

 

 

Figure D.2 shows the HEN for process Scenario B 

 

Figure D.2 HEN for process Scenario A 
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D.2 Economic evaluation 

D.2.1 Capital expenses estimation 

For some pieces of equipment such OSN membrane, scaling law equations relating the cost 

to size was used.  

 

Cost(C2016) = Cost(C0) (
Capacity(S2016)

Capacity(S0)
)

n

 
                                   

(D.1) 

  

Where,  

Cost (C2016) is the new estimated cost in current year 

Capacity (SS2016) is the new estimation variable in year 2016,  

Cost (C0) is the initial equipment cost with in the base year  

Capacity (S0) is the capacity in base year, and  

n, is the scaling factor. 

As a demonstrative calculation, the purchased cost of an OSN membrane separator of feed 

rate 26,40 ton/hr can be calculated using the installed cost of an OSN reported by Evonik 

industry of 35 ton/hr purchased in 2015 at $ 1700 000,00. Using the scaling method in Eq. 6.1 

Reference capacity= 35 ton/r, New Capacity=26.4 ton/hr, Reference cost=$78400, from data 

tables n=0.6 (Turton et al. 2012). Using these data: 

Installed Cost(IC) = $1700000 (
26.4

35.0
)

0.6

= $1435391,77 

The capital costs were adjusted with the Chemical Engineering Plant Cost Index (CEPCI) to 

a common basis period April 2016 (Chemical Engineering, 2016) according to Eq. (6.2). 

Cost (C2016) = Cost (C0) (
CEPCI2016

CEPCI0
)  

(D.2) 

  

Where,  

Cost (C2016) is the new estimated cost in current year 2016,  
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Cost (C0) is the cost in base year, 

CEPCI (2016) is the most recent index in Q1,  

CEPCI (0) is the cost index in base year, 

CEPCI (2016) is the index during that year the equipment was supplied. 

As a demonstrative calculation, the installed cost of a carbon steel metathesis reactor 

purchased in 2012 at $ 44 523 702,46. Using the scaling method in Equation. D.2 

CEPCI2012=584.60 and CEPCI2016= 568,70. Using these data; 

Cost (2016) = $ 44 523 702.46 (
568.7

584.6
) = $ 43 312 743,06 

Table D.7 Comparison between Fixed operating Costs for the Project Scenarios A and B 

   SCENARIO A SCENARIO B 

 Remark CASE A CASE B 

Installed Cost (IC)   90811173.71 93087244.80 

Purchased Cost IC/2,262 40146407.48 41152628.12 

        

Direct Capital Cost % of PC     

(a) Freight 3 % of PC 1204392.22 1234578.84 

(b) Yard Improvements 11 % PC 4416104.82 4526789.09 

(c) Environmemntal 0 % PC 0.00   

(d) Buildings 43 % PC 1726295.52 1769563.01 

        

Total direct Cost (DC) (IC + above) 18162234.74 18617448.96 

        

Indirect capital cost       

(a) Engineering 16% of DC 2905957.56 297879.18 

(b) construction 26 % of DC 4722181.03 484053.67 

(d) contractor fees 17% of DC 3087579.91 316496.63 

(e)  contingency 23 % of DC 3632446.95 372348.98 

        

Total indirect cost (IDC) 20 % of DC 18162234.74 18617448.96 

PC 31% of DC 18162234.74 18617448.96 

Fixed Capital Investment, FCI DC + IDC + AO 145297877.94 148939591.67 

        

Working Capital, WC 20% of TCI 36324469.49 37234897.92 

Total Capital Investment, TCI FCI/0.8 181622347.43 186174489.59 
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D.2.1.1 Installed costs for membrane modules 

Table D.2 is a summary of the membrane modules for the two process scenarios. 

Table D.8 Comparison of membrane modules for scenario A and B 

  Scenario A Scenario B 

 No. Modules Cost ($M) No. Modules Cost ($M) 

HGr-2 OSN       

Stage 1 13 2.79 13 2.79 

Stage 2 12 2.16 12 2.16 

Stage 3 12 1.80 12 1.8 

Rh OSN         

Stage 1 - - 13 2.61 

Stage 2 - - 13 2.01 

Stage 3 - - 12 1.75 

Total 37 6.75 37 13.12 

 

D.2.3 Operating Costs 

Operating Labour 

The cost of operating labour is calculated according to the number of operators required per 

shift and that is calculated according to Eq. (5.3) (Turton et al., 2012),  

𝑁𝑂𝐿 = (6,29 + 31,7𝑃2 + 0,23𝑁𝑛𝑝)0,5                                                               (D.4) 

  

Where, P is the number of solid handling stages and 𝑁 𝑛𝑝 is the total number of major process 

equipment, which includes compressors, towers, reactors, heaters and exchangers. 

Total operating costs 

A summary of the operating costs is listed in Table D.3. 
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Table D.9: Calculation of capital investment for project Scenarios A and B 

Utility Prize Unit Source 

Hoveyda-Grubbs 2 267,622,64 $/kg www.alibaba.com 

Rh catalyst 120,000,00 $/kg www.Kitco.com, (2015) 

1-octene 1,60 $/kg Sasol Olefins, (2015) 

H2 0,03 $/kg Piet et al. (2014) 

CO 0,03 $/kg Piet et al. (2014) 

Water 0,20 $/kg www.randwater.com 

Marlipal 3,96 $/kg www.zauba.com/import 

Electricity 0.052 $/KW www.eskom.co.za/ (2016) 

Steam 0.3-0.76 $/kg Hentschel et al. (2014) 

Cooling water 0.05 $/kg Hentschel et al. (2014) 

Membrane price/stability factor 500 $/m2yr Schmidt et al. (2014) 

Rhodium concentration  50  ppm Schmidt et al. (2014) 

HGr-2 concentration  200 ppm Van der Gryp et al. (2012) 
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Table D.10 Manufacturing costs comparison between Scenarios A and B 

   SCENARIO A SCENARIO B 

COST ITEM Typical range Value Used value Used 

1. Direct/ Variable Manufacturing costs       

(a) Raw Materials       

1-octene input 29108697.39 29108697.39 

H2 input 57255.86 59830.52 

CO input 1779758.00 17779587.00 

Direct Operating Labour, DOL (6,29+31,7P2+0,23Np)^2 3234598.00 3844433.00 

Supervisory and clerical labour, SCL 15 % of DOL 485189.70 72778.46 

(b) solvents        

Marlipal input 441.60 441.25 

H20 input 128.25 128.15 

(c) Catalysts        

HGr-2 input 231847309.41 231847309.41 

Rh-catalyst input 627302594.32 623568000.00 

  TOTAL RAW MATERIALS 888320811.83 884584406.71 

(d) Utilities        

Electricity   3673552.48 3173552.48 

Steam   902263.11 902263.11 

Cooling water   139599.50 139599.50 

  TOTAL UTILITIES 4715415.09 4215415.09 

(e) Other        

Plant Maintenance and Repairs, PMR  7 % of FCI 1017085.15 1042577.14 

Operating Supplies 15 % of PMR 15256.28 15638.66 

Laboratory Charges 15 % of DOL 48518.97 57666.50 

Patents and Royalties 4 % of TPC 5208862.90 5192003.95 

Membranes Replacement    546575.00 1153262.00 

Subtotal: Variable Production Costs, VPC   899872525.21 896260970.04 

2. Fixed Charges, $ FCh         

(a) Depreciation w/o     

(b) Taxes (property) 0,02*FCI 2905957.56 2978791.83 

(c) Financing (interest) 1% of FCI 1452978.78 1489395.92 

(d) Insurance 8 % of FCI 11623830.24 11915167.33 

(e) Rent 5 % of FCI 7264893.90 7446979.58 

(f) Contingency 10% FCI 1452978.78 1489395.92 

Subtotal: Fixed Charges, FCH   24700639.25 25319730.58 

3. Plant Overhead Costs, $ POC        

(a) General Plant Overhead        

Subtotal: Plant Overhead Costs, POC of TPC 10 % of TPC 130221572.46 129800098.68 

Total Operating Costs VPC+FCh+POC 1054794736.92 1051380799.30 

4. General expenses, GE        

(a) Administration costs 4 % TPC 52088628.98 51920039.47 

(b) Distribution and Marketing Costs 10 % TPC 130221572.46 129800098.68 

(c)  Research And Developmnent 5 %of TPC 65110786.23 64900049.34 

Total General Expenses, TGE    247420987.67 246620187.49 

Total production Costs     1302215724.60 1298000986.79 
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Table D.11: Cash flow projections for scenario B (Notes: FCI- Fixed Capital Investment, COM- Cost of manufacturing, DCF- Discounted cash flow) 

Fixed Capital 
Investment 

$145 297 877.94   Operating Labour 3917211.45500  Revenue 2-HEXYL-NONANAL $1 500 000 000.00 

Raw Materials $884 584 406.71   Utilities 4215415.08900       

Periodic Expenses $53 031 521.40             

Total Installed Cost $186 174 490    discount rate  15%   TOTAL $1 500 000 000.00 

COM $1 298 000 986.79   Taxation 28.00%       

Year Depreciation FCI-depreciation Revenue COM Cashflow Discounted Cash Flow 
Cummulative 
Discounted Cash Flow 

1.00  - 145297877.94  - - (111704693.76) (97134516.31) (97134516.31) 

2.00  - 145297877.94  - - (74469795.84) (56309864.53) (153444380.84) 

3.00  72648938.97  72648938.97  1500000000.00  1298000986.79  165780992.42  109003693.54  (44440687.29) 

3.00  29059575.59  116238302.35  1500000000.00  1298000986.79  153575970.67  100978693.63  56538006.34  

4.00  14529787.79  130768090.15  1500000000.00  1298000986.79  149507630.09  85481472.74  142019479.08  

5.00  14529787.79  130768090.15  1500000000.00  1298000986.79  149507630.09  74331715.43  216351194.51  

6.00  14529787.79  130768090.15  1500000000.00  1298000986.79  149507630.09  64636274.29  280987468.80  

7.00  - 145297877.94  1500000000.00  1298000986.79  145439289.51  54676015.99  335663484.79  

8.00  - 145297877.94  1500000000.00  1298000986.79  145439289.51  47544361.73  383207846.51  

9.00  - 145297877.94  1500000000.00  1298000986.79  145439289.51  41342923.24  424550769.75  

10.00  - 145297877.94  1500000000.00  1298000986.79  145439289.51  35950368.04  460501137.79  

11.00  - 145297877.94  1500000000.00  1298000986.79  145439289.51  31261189.60  491762327.39  

12.00  - 145297877.94  1500000000.00  1298000986.79  145439289.51  27183643.13  518945970.51  

13.00  - 145297877.94  1500000000.00  1298000986.79  145439289.51  23637950.55  542583921.06  

14.00  - 145297877.94  1500000000.00  1298000986.79  145439289.51  20554739.60  563138660.66  

15.00  - 145297877.94  1500000000.00  1298000986.79  145439289.51  17873686.61  583693400.27  
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Table D.12: Cash flow projections for scenario A (Notes: FCI- Fixed Capital Investment, COM- Cost of manufacturing, DCF- Discounted cash flow) 

Total Installed Cost $181 622 347          Revenue From products   

Fixed Capital 
Investment 

$145 297 877.94   Operating Labour 
$3 719 
787.70000 

  2-HEXYL-NONANAL $1 500 000 000.00 

Raw Materials $888 320 811.83   Utilities 
$4 715 
415.08900 

      

Periodic Expenses $11 735 983.12    Discount rate 15 %       

COM $1 313 951 707.72     Tax rate  28 %   TOTAL $1 500 000 000.00 

Year Depreciation FCI-depreciation Revenue COM Cashflow Discounted Cash Flow 
Cummulative 
Discounted Cash 
Flow 

0.00             0.00  

1.00 - 145297877.94 - 108973408.46 (108973408.46) (94759485.61) (94759485.61) 

2.00 - 145297877.94 - 72648938.97 (72648938.97) (54933035.14) (149692520.75) 

3.00 72648938.97 72648938.97 1500000000.00 1313951707.72 154296473.35  101452435.84  (48240084.91) 

4.00 29059575.59 116238302.35 1500000000.00 1313951707.72 142091451.61  81241248.63  33001163.71  

5.00 14529787.79 130768090.15 1500000000.00 1313951707.72 138023111.03  68621879.74  101623043.45  

6.00 14529787.79 130768090.15 1500000000.00 1313951707.72 138023111.03  59671199.77  161294243.22  

7.00 14529787.79 130768090.15 1500000000.00 1313951707.72 138023111.03  51887999.80  213182243.02  

8.00 0.00 145297877.94 1500000000.00 1313951707.72 133954770.44  43790052.07  256972295.09  

9.00 0.00 145297877.94 1500000000.00 1313951707.72 133954770.44  38078306.15  295050601.24  

10.00 0.00 145297877.94 1500000000.00 1313951707.72 133954770.44  33111570.57  328162171.81  

11.00 0.00 145297877.94 1500000000.00 1313951707.72 133954770.44  28792670.06  356954841.86  

12.00 0.00 145297877.94 1500000000.00 1313951707.72 133954770.44  25037104.40  381991946.26  

13.00 0.00 145297877.94 1500000000.00 1313951707.72 133954770.44  21771395.13  403763341.39  

14.00 0.00 145297877.94 1500000000.00 1313951707.72 133954770.44  18931647.94  422694989.33  

15.00 0.00 145297877.94 1500000000.00 1313951707.72 133954770.44  16462302.55  439157291.88  
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Appendix A: Indices 

Marshal and Smith Index  

 

Figure E.2 M& S indices estimation 

Chemical Engineering Plant Cost Index 

Marshall & Swift/Boeckh, LLC, (2013) http://www.equipment-cost-index.com/eci/Downloads 

(extrapolated for  years 2013-2016 using  projected increases ) 

 

Chemical Engineering Cost Index January 2015 

http://www.isr.umd.edu/~adomaiti/chbe446/literature/ChECostIndexJan2015.pdf 
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