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Abstract: Entropy-based complexity of cardiovascular variability at short time scales is 

largely dependent on the noise and/or action of neural circuits operating at high 

frequencies. This study proposes a technique for canceling fast variations from 

cardiovascular variability, thus limiting the effect of these overwhelming influences on 

entropy-based complexity. The low-pass filtering approach is based on the computation of 

the fastest intrinsic mode function via empirical mode decomposition (EMD) and its 

subtraction from the original variability. Sample entropy was exploited to estimate 

complexity. The procedure was applied to heart period (HP) and QT (interval from Q-wave 

onset to T-wave end) variability derived from 24-hour Holter recordings in 14  

non-mutation carriers (NMCs) and 34 mutation carriers (MCs) subdivided into 11 

asymptomatic MCs (AMCs) and 23 symptomatic MCs (SMCs). All individuals belonged 

to the same family developing long QT syndrome type 1 (LQT1) via KCNQ1-A341V 

mutation. We found that complexity indexes computed over EMD-filtered QT variability 

differentiated AMCs from NMCs and detected the effect of beta-blocker therapy, while 

complexity indexes calculated over EMD-filtered HP variability separated AMCs from 

SMCs. The EMD-based filtering method enhanced features of the cardiovascular control 

that otherwise would have remained hidden by the dominant presence of noise and/or fast 

physiological variations, thus improving classification in LQT1. 

Keywords: heart rate variability; LQT1; EMD; sample entropy; KCNQ1-A341V mutation; 

beta-blocker therapy; autonomic nervous system; cardiovascular control 

 

1. Introduction 

Long QT syndrome type 1 (LQT1) is an inherited disease affecting the delayed slow rectifier 

potassium current IKs of the cardiac cells. The most visible effect of this pathology on the surface 

electrocardiogram is the prolongation of the QT interval accompanied by its maladjustments to heart 

period (HP) changes [1,2]. As a consequence, in the presence of a tachycardic run, LQT1 patients have 

a greater likelihood that the incoming cardiac depolarization occurs when the ventricular repolarization 

process is not concluded, and this phenomenon promotes the development of lethal arrhythmias. 

While genetic mutations underpinning LQT1 have been recognized [2] and the administration of 

beta-blockers, lengthening HP and reducing HP variability, is an effective therapy [3], the attention of 

the scientific community has recently moved towards factors modifying the arrhythmic risk of LQT1 

patients [4–7]. Indeed, within a group of mutation carriers (MCs) presenting the same genotype, two 

different phenotypes might be detected, leading to completely different clinical outcomes: 

asymptomatic MCs (AMCs), who did not develop any major cardiac arrhythmias and, thereby, are at 

low cardiac risk, and symptomatic MCs (SMCs), who experienced episodes of cardiac arrest and 

syncope and, thereby, are at high cardiac risk. Recent studies pointed out the role of the autonomic 

nervous system in modulating the cardiac risk of LQT1 patients [8,9]. Indeed, it was found that AMCs 

feature a low baroreflex sensitivity [8] and a smaller HP prolongation after an exercise stress test [9] 

compared to SMCs, thus suggesting that a less reactive vagal control directed to the sinus node is a 
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protective factor. Even more recently, we found that AMCs exhibit a lower complexity of the QT 

variability at long time scales [10], as assessed from multiscale entropy analysis [11,12], compared to 

SMCs, thus suggesting that a less complex sympathetic control directed to ventricles is a protective 

factor and stressing the clinical relevance of the assessment of complexity indexes from QT variability 

in LQT1 [10].  

Unfortunately, automatic QT measurement is a complicated task due to the difficulty in defining the 

T-wave end, especially in 24-hour Holter recordings with low temporal resolution and in pathological 

individuals exhibiting abnormal ventricular repolarization [13]. As a consequence, QT variability is 

affected by broad band noise and has a low signal-to-noise ratio, which might prevent any 

differentiation between AMCs and SMCs. As a matter of fact, multiscale entropy analysis [11,12] 

allowed the separation between AMCs and SMCs at long time scales due to its intrinsic ability to filter 

fast QT variations when long time scales are under scrutiny [10].  

The aim of this study is to provide a method to filter out fast fluctuations of QT variability and to 

allow the separation among groups having different cardiac risk using complexity analysis, even at 

short time scales, thus rendering unnecessary the application of the multiscale entropy and simplifying 

the process of LQT1 risk stratification based on complexity analysis. This method is based on the 

empirical mode decomposition (EMD) [14], allowing the decomposition of the QT variability into 

oscillatory modes, called intrinsic mode functions (IMFs), and on the evaluation of complexity at short 

time scales based on sample entropy (SampEn) [15]. EMD has been extensively applied to 

cardiovascular variabilities, especially to HP dynamics [16–18], with relevant findings in risk 

stratification of chronic heart failure patients [19]. SampEn is a widely-accepted method for the 

assessment of the complexity of the cardiac control, and it has been extensively validated compared to 

other entropy-based metrics [20,21]. We hypothesize that the fastest IMF computed over QT 

variability provides a good description of the superimposed noise. Therefore, we propose to perform 

traditional complexity analysis at short time scales using SampEn over the original QT variability after 

having canceled the fastest IMF. We applied this procedure to QT variability derived from 24-hour 

Holter recordings obtained from non-MCs (NMCs) and MCs, all belonging to a South African founder 

population with LQT1 due to the KCNQ1-A341V mutation [22,23]. The procedure was applied to the 

HP variability series, as well. We assessed the ability of the method to distinguish NMCs from MCs, 

divided into AMCs and SMCs, and to study the effect of beta-blocker therapy (BB) in AMCs and 

SMCs. The contribution of the autonomic nervous system to the original QT and HP series and their 

EMD-filtered versions were evaluated, as well, by comparing recordings obtained daytime (DAY) and 

nighttime (NIGHT) in both AMCs and SMCs. 

2. Methods 

2.1. EMD-Based Filtering Approach  

Given the time series x = {x(i), i = 1, …, N} with x = HP or QT, where i is a progressive cardiac 

beat number and N is the series length, EMD is a technique allowing the decomposition of the signal 

into IMFs from the shortest to the longest time scale [14]. IMFs are characterized by the symmetry 

with respect to zero, the uniqueness of the local frequency and the impossibility for different modes to 
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share the same frequency at the same time. The method is based on an iterative procedure composed 

by several steps: (1) the identification of all the extrema (maxima and minima) of x; (2) the generation 

of the upper and lower envelope of x via cubic spline interpolation among all maxima and minima of x, 

respectively; (3) point-by-point averaging of the two envelopes to compute the local mean series m; (4) 

subtraction of m from x to obtain a mode candidate h (i.e., h(i) = x(i) − m(i)); (5) if h did not satisfy the 

previously defined properties necessary to be an IMF, x was replaced with h and the procedure was 

repeated starting from the first step; and (6) if h did fulfill the previously defined properties to be an 

IMF, the procedure was repeated starting again from first step over the residual (i.e., the difference 

between the original x and all identified IMFs). The process ended when the amplitude of the residual 

satisfied a predefined stopping criterion (i.e., the residual was below a predetermined level, or it had a 

monotonic trend) [14]. In this work, we identified only the first IMF as being the one with the fastest 

characteristic frequency (CF), and we filtered x by subtracting the first IMF from x, thus providing an 

EMD-filtered version of the original series, xf. The CF of the first IMF was computed as the median of 

the instantaneous frequency of the first IMF obtained from the Hilbert spectrum [19]. 

2.2. SampEn 

Given x, we define the pattern of length L, xL(i) as the ordered sequence of L delayed samples,  

xL(i) = [x(i), x(i − 1), …, x(i − L + 1)]. The pattern xL(i) is actually a point in the L-dimensional 

embedding space reconstructed with the technique of the lagged coordinates with a delay equal to 1. 

The pattern xL(i) can be seen as the sequence formed by the current sample, x(i), and by the sequence 

of L-1 past samples, xL-1(i − 1) = [x(i − 1), …, x(i – L + 1)], i.e., xL(i) = [x(i), xL-1(i − 1)]. Defined as  

xL = {xL(i), i = L, …, N} and xL-1 = {xL-1(i − 1), i = L, …, N} the sets of patterns of length L and L − 1 

respectively, SampEn estimates the conditional probability that two patterns that are closer than a 

tolerance r in xL−1 remain nearby in xL [15]. It was calculated as the difference between the negative 

logarithm of the average probability of finding two patterns closer than r in L-dimensional and  

(L − 1)-dimensional embedding space [15]. SampEn was computed with r equal to 0.15-times the 

standard deviation of the series and with an embedding dimension L = 3. SampEn was assessed over x, 

labeled as SampEnx, and over xf, labeled as SampEnxf, with x = HP or QT.  

3. Study Population, Experimental Protocol and Data Analysis  

3.1. Study Population 

All NMCs and MCs belonged to a South African founder population with LQT1 due to the 

KCNQ1-A341V mutation [22,23]. Twelve-lead 24-hour Holter recordings were acquired from  

14 NMCs (aged from 19 to 56, median = 36.5; 6 males) and 34 MCs divided in 11 AMCs (aged from 

24 to 62, median = 46; 4 males) and 23 SMCs (aged from 16 to 57, median = 39; 9 males). The groups 

are age-matched according to a Kruskal-Wallis one-way analysis of variance on ranks with p < 0.05. 

Seven AMCs and 22 SMCs were recorded both off BB (BBoff) and on BB (BBon). The remaining  

4 AMCs and 1 SMCs were recorded only BBoff. All MCs were recorded BBoff. The number of 

subjects and the relevant pharmacological condition are summarized in Table 1. The administered 

drugs were quite homogeneous among patients being in 86% of the cases under propranolol therapy. 
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The protocol adhered to the principles of the Declaration of Helsinki for medical studies involving 

human subjects. The protocol was approved by the local ethical committees of the Universities of 

Vanderbilt, Stellenbosch and Pavia. All enrolled subjects and family members signed an informed 

consent for clinical and genetic evaluations. Written informed consent was obtained from the next of 

kin, caretakers or guardians on behalf of minors enrolled in the study.  

Table 1. Number of subjects undergoing a complete 24-hour Holter recording in each 

group and relevant pharmacological condition. 

Groups 
Number of 

subjects 
Number of subjects 
acquired only BBoff 

Number of subjects acquired both  
BBoff and BBon 

NMC 14 14 0 
AMC 11 4 7 
SMC 23 1 22 

NMC = non mutation carrier; BB = beta-blocker therapy; BBoff = off BB; BBon = on BB;  
AMC = asymptomatic MC; SMC = symptomatic MC. 

3.2. Data Acquisition 

Seventy-seven 12-lead 24-hour Holter recordings (Mortara Instrument Inc., Milwaukee, WI, USA 

and Ela Medical, Sorin Group, Arvada, CO, USA) were analyzed. The majority of the recordings were 

acquired using equipment from Mortara Instrument (i.e., 90%). The sampling rate was 180 Hz with an 

amplitude resolution of 6.25 µV for the Mortara device, while it was 200 Hz with an amplitude 

resolution of 10 µV for the Ela Medical device. The lead with the best signal-to-noise ratio was chosen 

for analysis. The availability of 24-hour Holter recordings permitted the selection of epochs of 5000 

consecutive beats during DAY (from 2:00 to 6:00 PM) and NIGHT (from 12:00 PM to 4:00 AM).  

3.3. Data Analysis 

We computed HP as the temporal distance between two consecutive R-wave peaks of the 

electrocardiogram. Jitters in the R-wave location were minimized via parabolic interpolation. Then, we 

took the time distance between the R-wave peak and the T-wave end as an approximation of the QT 

interval [24]. The end of the T-wave was located when the absolute value of the first derivative over 

the descending part of the T-wave went below a user-defined threshold computed as 30% of the 

maximum absolute value of the first derivative computed on the T-wave downslope [24]. The HP and 

QT intervals were automatically extracted from Holter recordings. Results were manually checked to 

avoid missing beats or erroneous identifications. HP and QT series were corrected through cubic spline 

interpolation only in the case of missing beats, the detection of spikes of noise or evident arrhythmias. 

The number of the corrections was always kept below 5% of the length of the series. HP and QT series 

were extracted during DAY and NIGHT. The mean of HP, QT and corrected QT (QTc) according to 

the Bazett’s formula [25] were evaluated and labeled as μHP, μQT and μQTc respectively. SampEn was 

computed over the original HP and QT series (i.e., SampEnHP and SampEnQT) and from the  

EMD-filtered HP and QT series (i.e., SampEnHPf and SampEnQTf). The CF of the first IMF derived 

from HP and QT variability was assessed, as well. 
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3.4. Statistical Analysis 

The Wilcoxon signed rank test was utilized to assess the significance of the differences between CF 

computed over the first IMF of HP and QT series regardless of group, period of analysis and therapy. 

Two-way repeated measures analysis of variance (one factor repetition, Holm-Sidak test for multiple 

comparisons) was utilized to assess the significance of the differences between SampEn assessed over 

the original and EMD-filtered HP and QT series, regardless of group, period of analysis and therapy. 

One-way analysis of variance (Holm-Sidak test for multiple comparisons), or Kruskal-Wallis one-way 

analysis of variance on ranks (Dunn’s method for multiple comparisons) when appropriate, was 

applied to check the significance of the differences among BBoff NMCs, AMCs and SMCs during 

DAY. Two-way repeated measures analysis of variance (one factor repetition, Holm-Sidak test for 

multiple comparisons) was utilized to assess the significance of the differences between BBoff AMCs 

and SMCs in relation to the period of analysis (i.e., DAY and NIGHT) and between AMCs and SMCs 

during DAY in relation to therapy (i.e., BBoff and BBon). Statistical analysis was carried out using a 

commercial statistical program (Sigmaplot, Systat Software, Inc, Chicago, IL, ver.11.0). p < 0.05 was 

always considered as significant.  

4. Results  

The mean of HP, QT and QTc (i.e., μHP, μQT, μQTc) were reported in Tables 2, 3 and 4 as mean ± 

standard deviation. μHP increased during NIGHT (Table 3) and as a consequence of BB (Table 4) in 

both AMCs and SMCs. In addition, μHP was longer in AMCs than in NMCs (Table 2), and μHP 

lengthened more in response to BB in AMCs than in SMCs (Table 4). μQT was longer in MCs (Table 

2) and it increased during NIGHT in both AMCs and SMCs (Table 3) and due to BB only in SMCs 

(Table 4). μQTc was longer in MCs (Table 2), and it decreased during NIGHT only in AMCs (Table 3) 

and due to BB in both AMCs and SMCs (Table 4). 

Table 2. Mean of HP, QT and QTc in BBoff NMCs and MCs during DAY.  

 NMC AMC SMC 

μHP (ms) 697.6 ± 100.6 847.9 ± 143.8 § 761.3 ± 95.0 

μQT (ms) 317.6 ± 39.2 422.2 ± 51.7 § 408.6 ± 42.4 § 

μQTc (ms.s−1/2) 397.1 ± 71.9 461.9 ± 33.9 § 468.7 ± 33.4 § 

§: p < 0.05 versus NMCs.  

Table 3. Mean of HP, QT and QTc in BBoff AMCs and SMCs during DAY and NIGHT. 

 DAY NIGHT 

 AMC SMC AMC SMC 

μHP (ms) 847.9 ± 143.8 761.3 ± 95.0 1,022.6 ± 136.3 * 952.4 ± 117.1 * 

μQT (ms) 422.2 ± 51.7 408.6 ± 42.4 447.5 ± 42.1 * 445.3 ± 31.2 * 

μQTc (ms.s−1/2) 461.9 ± 33.9 468.9 ± 33.4 445.0 ± 30.5 * 458.6 ± 25.4 

*: p < 0.05 within the same group (i.e., AMCs or SMCs) versus DAY.  
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Table 4. Mean of HP, QT and QTc in AMCs and SMCs both BBon and BBoff during DAY. 

 BBoff BBon 

 AMC SMC AMC SMC 

μHP (ms) 855.8 ± 143.5 757.9 ± 95.8 1,038.2 ± 176.0 @ 927.8 ± 117.2 #,@ 

μQT (ms) 424.0 ± 57.6 406.5 ± 42.1 426.7 ± 58.0 429.8 ± 29.3 @ 

μQTc (ms.s−1/2) 459.4 ± 43.0 467.5 ± 33.7 418.8 ± 37.2 @ 447.4 ± 28.1 @ 

@: p < 0.05 within the same group (i.e., AMCs or SMCs) versus BBoff. #: p < 0.05 within the same therapy (i.e., BBoff or 
BBon) versus AMCs subjects.  

Figure 1 shows the CF of the first IMF derived from the series of HP (Figure 1a,c,e) and QT  

(Figure 1b,d,f). The CF of the first IMF computed over the HP series was similar in NMCs, AMCs and 

SMCs (Figure 1a). It significantly decreased during NIGHT in both AMCs and SMCs (Figure 1c), and 

it increased as an effect of BB only in AMCs (Figure 1e). The CF of the first IMF computed over the 

QT series was not influenced by mutation (Figure 1b); it was not modified during NIGHT (Figure 1d), 

and it was not affected by BB (Figure 1f). It is worth noting that after pooling together the CFs 

calculated in all individuals (i.e., NMCs and MCs) regardless of the experimental period (i.e., DAY or 

NIGHT) and therapy (i.e., BBoff or BBon), the CF assessed over the HP series was significantly 

smaller than that derived from QT series.  

Figure 1. Bar and grouped bar graphs show the CF of the first IMF computed over HP and 

QT variability in (a,c,e) and (b,d,f), respectively. The series were derived from BBoff 

NMCs (gray bars), AMCs (black bars) and SMCs (white bars) during DAY in (a) and (b), 

from BBoff AMCs and SMCs during DAY and NIGHT in (c) and (d) and from AMCs and 

SMCs both BBoff and BBon during DAY in (e) and (f). Values are given as the mean plus 

standard deviation. The symbol * indicates p < 0.05.  

 



Entropy 2014, 16 4846 

 

 

Figure 2 shows SampEn computed over HP and QT variability after pooling together all individuals 

regardless of the experimental period and therapy. SampEn was computed over the original series x 

(SampEnx, with x = HP or QT, slash-pattern bars) and over the EMD-filtered version (SampEnxf, with 

x = HP or QT, backslash-pattern bars). SampEn over QT variability was significantly higher than 

SampEn over HP variability regardless of the processing (i.e., original or filtered series). SampEnx, 

was significantly higher than SampEnxf regardless of the series (i.e., HP or QT).  

Figure 2. Grouped bar graphs show results of short-term complexity analysis over HP and 

QT variability after pooling together all individuals (i.e., NMCs and MCs) regardless of the 

experimental period (i.e., DAY or NIGHT) and therapy (i.e., BBoff or BBon). SampEn 

was computed over the original series x (SampEnx, with x = HP or QT, slash-pattern bars) 

and over the EMD-filtered version (SampEnxf, with x = HP or QT, backslash-pattern bars). 

Values are given as the mean plus standard deviation. The symbol * indicates p < 0.05.  

 

Figure 3 shows SampEn computed over the beat-to-beat variability of HP (Figure 3a,b) and QT 

(Figure 3c,d) in BBoff NMCs (gray bars) and MCs during DAY. MCs were divided into AMCs (black 

bars) and SMCs (white bars). SampEn was computed over the original HP and QT series in  

Figure 3a,c, respectively, and over the EMD-filtered HP and QT versions in Figure 3b,d, respectively. 

SampEn over the original HP and QT series (Figure 3a,c) and over the EMD-filtered HP versions 

(Figure 3b) was similar in all considered groups. Conversely, SampEn computed over the  

EMD-filtered QT series distinguished AMCs from NMCs, while no difference was detected between 

NMCs and SMCs and between AMCs and SMCs (Figure 3d).  

Figure 4 shows SampEn computed over the beat-to-beat variability of HP (Figure 4a,b) and QT 

(Figure 4c,d) in BBoff MCs during DAY and NIGHT. MCs were divided into AMCs (black bars) and 

SMCs (white bars). SampEn was computed over the original HP and QT series in Figure 4a,c, 

respectively, and over the EMD-filtered HP and QT versions in Figure 4b,d, respectively. SampEn 

computed over the HP variability increased during NIGHT in both AMCs and SMCs (Figure 4a), 

while this circadian rhythm was not evident in SampEn computed over the EMD-filtered HP 

variability (Figure 4b). Conversely, while SampEn computed over the HP variability was not able to 

distinguish AMCs from SMCs during both DAY and NIGHT (Figure 4a), SampEn computed over the 

EMD-filtered HP variability differentiated AMCs and SMCs during DAY, being larger in SMCs than 

in AMCs (Figure 4b). SampEn computed over the QT variability decreased during NIGHT in both 

AMCs and SMCs (Figure 4c), while this circadian rhythm was observed in SampEn calculated over 

the EMD-filtered QT series only in SMCs (Figure 4d).  
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Figure 3. Bar graphs show the results of short-term complexity analysis over HP and QT 

variability in (a,b) and (c,d), respectively. The series were derived from BBoff NMCs 

(gray bars) and MCs during DAY. MCs were divided in AMCs (black bars) and SMCs 

(white bars). SampEn was assessed over the original series in (a) and (c) and over the 

EMD-filtered series in (b) and (d). Values are given as the mean plus standard deviation. 

The symbol * indicates p < 0.05.  

 

Figure 4. Grouped bar graphs show the results of short-term complexity analysis over HP 

and QT variability in (a,b) and (c,d), respectively. The series were derived from BBoff 

MCs during DAY and NIGHT. MCs were divided in AMCs (black bars) and SMCs (white 

bars). SampEn was assessed over the original series in (a) and (c) and over the  

EMD-filtered series in (b) and (d). Values are given as the mean plus standard deviation. 

The symbol * indicates p < 0.05.  
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Figure 5 shows SampEn computed over the beat-to-beat variability of HP (Figure 5a,b) and QT 

(Figure 5c,d) in BBoff and BBon MCs. MCs were divided into AMCs (black bars) and SMCs (white 

bars). SampEn computed over the HP variability increased BBon in both AMCs and SMCs  

(Figure 5a), while the effect of BB was not evident in SampEn computed over the EMD-filtered HP 

variability (Figure 5b). Conversely, while SampEn computed over the HP variability was not able to 

separate AMCs from SMCs both BBoff and BBon (Figure 5a), SampEn computed over the  

EMD-filtered HP variability differentiated BBoff AMCs from SMCs, being larger in BBoff SMCs 

than in BBoff AMCs (Figure 5b). SampEn computed over the QT variability was similar in AMCs and 

SMCs regardless of the administration of BB (Figure 5c). Conversely, the effect of BB was to decrease 

SampEn computed over the EMD-filtered QT variability in SMCs, while it remained unmodified in 

AMCs (Figure 5d).  

Figure 5. Grouped bar graphs show the results of short-term complexity analysis over HP 

and QT variability in (a,b) and (c,d), respectively. The series were derived from BBoff and 

BBon MCs during DAY. MCs were divided in AMCs (black bars) and SMCs (white bars). 

SampEn was assessed over the original series in (a) and (c) and over the EMD-filtered 

series in (b) and (d). Values are given as the mean plus standard deviation. The symbol * 

indicates p < 0.05.  

 

5. Discussion  

The main findings of this study are: (i) the EMD-based filtering method was helpful to cancel 

broad-band noise present on QT variability; (ii) when applied to QT variability obtained from 24-hour 

Holter recordings in LQT1 patients, the EMD-based filtering approach differentiated AMCs from 

NMCs and detected the effect of BB on SMCs; (iii) when applied to HP variability obtained from  

24-hour Holter recordings in LQT1 patients, the EMD-based filtering method cancelled the 

contribution of vagal modulation to the HP dynamics and enhanced cardiovascular control targeting 

the sinus node via inputs at frequencies slower than the breathing rate; and (iv) the comparison 

between complexity indexes derived from the EMD-filtered QT and HP series confirmed the larger 
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complexity of cardiac control directed to ventricles compared to the one targeting the sinus node as a 

likely result of inputs modifying QT independently of HP changes.  

5.1. EMD-Filtered QT Variability Allowed the Separation of AMCs from NMCs  

We have recently found that the complexity of the QT variability at long time scales, as 

automatically assessed from 24-hour Holter recordings, is smaller in AMCs than in SMCs [10]. This 

finding is clinically relevant, because it suggests that a low complexity of the sympathetic control 

directed to ventricles at long time scales, as assessed from QT variability, is a protective factor in 

LQT1, and markers of QT variability complexity can be utilized to improve risk stratification in LQT1. 

Of special interest, this result was obtained at long time scales via multiscale entropy [11,12], while 

traditional complexity analysis at short time scales failed to separate groups [10]. One possible 

explanation of the different power of the multiscale complexity indexes as a function of the time scale 

might be the presence of broad-band noise commonly affecting QT variability when automatically 

derived from 24-hour Holter recordings [13]. The multiscale entropy approach, especially at long time 

scales, has the intrinsic ability to filter out fast QT variations, thus limiting the effect of broad-band 

noise on the complexity estimates [10]. The present study tested the hypothesis that even complexity 

analysis at short time scales, carried out via the traditional estimation of SampEn, has the possibility to 

distinguish groups with different cardiac risk provided that it is computed over a suitable filtered 

version of the original QT variability series. Here, the proposed filtering procedure is based on the 

identification of the fastest IMF, as detected from EMD, and on its subtraction from the original series. 

This procedure is motivated by the observation that the EMD-filtered version of the QT variability is 

obtained without a priori setting the frequency response of the low-pass filter, because the fastest IMF 

describes the most rapid temporal scales on a case-by-case basis, thus increasing the flexibility of the 

low-pass filtering procedure. In agreement with the hypothesis, we found out that SampEn computed 

over the EMD-filtered QT variability differentiated AMCs from NMCs, while NMCs were similar to 

the SMCs. The smaller value of SampEn computed over the EMD-filtered QT variability in AMCs is 

in agreement with the findings obtained from the original QT variability at long time scales in [10] and 

confirms the observation that a low complexity of the sympathetic control directed to ventricles is 

protective in LQT1. This result is relevant, because it simplifies the extraction of entropy-based 

complexity indexes from QT variability (i.e., the multiscale entropy approach is no longer necessary) 

and favors the inclusion of these markers into risk stratification procedures.  

5.2. EMD-Filtered QT Variability Allowed the Detection of the Effect of BB  

The ability of the EMD-filtering approach to enhance features pertinent to the sympathetic control 

directed to ventricles was stressed by the assessment of the effect of BB in MCs. Indeed, before 

applying the EMD-based filtering procedure, the complexity indexes of QT variability were not able to 

detect the effect of BB. Conversely, after the application of the EMD-based filtered procedure, the 

effect of BB over SMCs appeared clearly. Indeed, BB reduced the complexity of the EMD-filtered QT 

variability, and this reduction, in addition to the prolongation of HP and the reduction of HP  

variability [3], is protective, because it makes the complexity of the sympathetic control of SMCs more 

similar to that of the AMCs [10].  
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5.3. EMD-Based Filtering Approach Cancelled Respiratory Sinus Arrhythmia from HP Variability 

The entropy-based complexity of the HP variability at short time scales is under vagal  

control [20,21,26,27]. This observation was confirmed by the results of the present study. Indeed, 

SampEn assessed over the original HP variability was significantly increased during NIGHT and in 

response to BB in both AMCs and SMCs [10]. The effect of the EMD-based filtering procedure was to 

filter out the respiratory sinus arrhythmia largely responsible for the complexity of the HP  

variability [20,21]. Indeed, SampEn assessed over the EMD-filtered HP series did not exhibit the 

circadian rhythmicity and did not vary in response to BB. This finding stresses again the ability of the 

proposed EMD-based filtering procedure to cancel fast variations present on cardiovascular variability 

series. The ability of the EMD-based filtering procedure to cancel the respiratory sinus arrhythmia was 

supported by the CF analysis. Indeed, the CF of the first IMF derived from HP variability was lower 

during NIGHT due to the slowness of the breathing rate during sleep, and the standard deviation of the 

CF was quite large due to the high inter-subject variability of the breathing frequency.  

5.4. EMD-Based Filtering of HP Variability Enhanced Cardiac Control Targeting the Sinus Node at 

Frequencies Slower Than the Respiratory One  

The most surprising result obtained from this study over the HP variability is that the EMD-based 

filtering procedure was able to enhance features of the cardiovascular control directed to the sinus node 

that otherwise would have remained unveiled. Indeed, after the subtraction of the fastest IMF from the 

original HP variability, we were able to distinguish AMCs from SMCs. Indeed, the complexity of the 

EMD-filtered HP variability was smaller in AMCs than in SMCs during DAY in absence of BB. This 

result confirms and extends over the HP variability the observation that a smaller complexity of the 

sympathetic control is a protective factor in LQT1.  

5.5. Comparison between Complexity of EMD-Filtered HP and QT Variability  

We confirm here that QT variability is more complex than HP variability [10,28]. This finding was 

not surprising, because QT variability is more affected by broad-band noise resulting from jitters in 

delineation of the T-wave offset [24] than HP series. The analysis of the CF of the first IMF derived 

from QT variability confirmed the intrinsic noisy nature of the QT series compared to the HP one. 

Indeed, the CF computed over the QT series was higher than that derived from HP series; it was 

characterized by a lower standard deviation, and it did not vary during NIGHT. It is less trivial to find 

out that, after canceling the fastest IMF estimated via EMD, the complexity of EMD-filtered QT series 

remained significantly larger than that of the EMD-filtered HP one. Therefore, we confirm with this 

analysis the larger complexity of the cardiac control targeting QT compared to that of the cardiac 

regulation directed to the sinus node. This larger complexity might be the result of inputs capable of 

modifying QT independently of HP variations and, thus, operating in an asynchronous way with 

respect to those changing QT through modifications of HP [29–31].  
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6. Conclusions  

We proposed an EMD-based filtering procedure to improve the signal-to-noise ratio of QT 

variability series derived automatically from 24-hour Holter recordings. This procedure is particularly 

helpful before assessing entropy-based QT variability complexity at short time scales due to the large 

amount of noise usually affecting this measurement. In the proposed application to a LQT1 population 

with the founder effect, the procedure allowed the differentiation of AMCs from NMCs and the 

detection of the effect of BB in SMCs. It is remarkable that this differentiation was not achieved using 

a largely utilized clinical index, such as QTc. Since similar results were obtained at longer time scales 

using multiscale entropy analysis in [10], the practical advantage of the proposed methodology was the 

reduction of the analysis time and approach involvedness, thus favoring the application of complexity 

indexes into clinically-oriented protocols. Given the generality of the proposed EMD-based filtering 

procedure, it can be applied to any variability series characterized by a low signal-to-noise ratio due to 

jitters in the detection of the fiducial points. Therefore, we suggest to exploit this technique even 

before computing complexity indexes at short time scales from the HP series when the small size of 

the autonomic modulation leads to negligible HP changes (e.g., in the heart failure population, heart 

transplanted patients or after administration of a high dose of atropine in healthy individuals). 

However, this procedure can be profitably exploited even when the HP series is characterized by a 

high signal-to-noise ratio. In this situation, it cancels the respiratory sinus arrhythmia, thus enhancing 

features of the cardiovascular control that otherwise might remain unveiled by the dominant vagal 

modulation. Future studies should check different filtering approaches and entropy-based metrics to 

better understand the efficacy of the proposed technique compared to techniques exploiting diverse 

tools. In addition, since a possible limitation of the present study is the low sampling rate of the 

electrocardiogram, we advocate studies assessing its influence over QT variability and derived 

complexity parameters. 
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List of Abbreviations 

LQT1  long QT syndrome type 1 

HP  heart period  

QT  interval from Q-wave onset to T-wave end 

QTc  corrected QT  

MC  mutation carrier  

NMC  non-mutation carrier  

AMC  asymptomatic MC 

SMC  symptomatic MC 

DAY  daytime 

NIGHT  nighttime 

BB  beta-blocker therapy 

BBoff  off BB 

BBon  on BB 

EMD  empirical mode decomposition 

IMF  intrinsic mode function 

CF  characteristic frequency 

SampEn  sample entropy 

μHP  HP mean 

μQT  QT mean 

μQTc  QTc mean 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Schwartz, P.J.; Crotti, L. QTc Behavior During Exercise and Genetic Testing for the Long-QT 

Syndrome. Circulation 2011, 20, 2181–2184. 

2. Schwartz, P.J.; Priori, S.G.; Spazzolini, C.; Moss, A.J.; Vincent, G.M.; Napolitano, C.; Denjoy, I.; 

Guicheney, P.; Breithardt, G.; Keating, M.T.; et al. Genotype-phenotype correlation in the  

long-QT syndrome-Gene specific triggers for life threatening arrhythmias. Circulation 2001, 

103, 89–95. 

3. Schwartz P.J.; Ackerman M.J. The long QT syndrome. A transatlantic clinical approach to 

diagnosis and therapy. Eur. Heart J. 2013, 34, 3109–3116. 

4. Crotti, L.; Lundquist, A.L.; Insolia, R.; Pedrazzini, M.; Ferrandi, C.; De Ferrari, G.M.; Vicentini, A.; 

Yang, P.; Roden, D.M.; George, A.L.; Schwartz, P.J. KCNH2-K897T is a genetic modifier of 

latent congenital long QT syndrome. Circulation 2005, 112, 1251–1258. 

5. Crotti, L.; Monti, M.C.; Insolia, R.; Peljto, A.; Goosen, A.; Brink, P.A.; Greenberg, D.A.; 

Schwartz, P.J.; George, A.L. NOS1AP is a genetic modifier of the long-QT syndrome. 

Circulation 2009, 120, 1657–1663. 



Entropy 2014, 16 4853 

 

 

6. Amin, A.S.; Giudicessi, J.R.; Tijsen, A.J.; Spanjaart, A.M.; Reckman, Y.J.; Klemens, C.A.; 

Tanck, M.W.; Kapplinger, J.D.; Hofman, N.; Sinner, M.F.; et al. Variants in the 3' untranslated 

region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with 

type 1 long QT syndrome in an allele-specific manner. Eur. Heart J. 2012, 33, 714–723. 

7. Duchatelet, S.; Crotti, L.; Peat, R.; Denjoy, I.; Itoh, H.; Berthet, M.; Ohno, S.; Fressart, V.; 

Monti, M.C.; Crocamo, C.; et al. Identification of a KCNQ1 polymorphism acting as a protective 

modifier against arrhythmic risk in the long QT syndrome. Circ. Cardiovasc. Genet. 2013, 6, 

354–361. 

8. Schwartz, P.J.; Vanoli, E.; Crotti, L.; Spazzolini, C.; Ferrandi, C.; Goosen, A.; Hedley, P.; 

Heradien, M.; Bacchini, S.; Turco, A.; et al. Neural control of heart rate is an arrhythmia risk 

modifier in long QT syndrome. J. Am. Coll. Cardiol. 2008, 51, 920–929. 

9. Crotti, L.; Spazzolini, C.; Porretta, A.P.; Dagradi, F.; Taravelli, E.; Petracci, B.; Vicentini, A.; 

Pedrazzini, F.; La Rovere, M.T.; Vanoli, E.; et al. Vagal reflexes following an exercise stress 

test. A simple clinical tool for gene-specific risk stratification in the long QT syndrome. J. Am. 

Coll. Cardiol. 2012, 60, 2515–2524. 

10. Bari, V.; Valencia, J.F.; Vallverdú, M.; Girardengo, G.; Marchi, A.; Bassani, T.; Caminal, P.; 

Cerutti, S.; George, A.L.; Brink, P.A.; et al. Multiscale complexity analysis of the cardiac control 

identifies asymptomatic and symptomatic patients in long QT syndrome type 1. PLoS ONE, 

2014, 9, doi:10.1371/journal.pone.0093808. 

11. Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of complex physiologic 

time series. Phys. Rev. Lett. 2002, 89, doi:10.1103/PhysRevLett.89.068102. 

12. Valencia, J.F.; Porta, A.; Vallverdù, M.; Clarià, F.; Baranowski, R.; Orlowska-Baranowska, E.; 

Caminal, P. Refined multiscale entropy: Application to 24-h Holter recordings of heart period 

variability in healthy and aortic stenosis subjects. IEEE Trans. Biomed. Eng. 2009, 56, 2202–2213. 

13. Baumert, M.; Starc, V.; Porta, A. Conventional QT variability measurement vs. template 

matching techniques: comparison of performance using simulated and real ECG. PLoS ONE 

2012, 7, doi:10.1371/journal.pone.0041920. 

14. Huang, N.E.; Zheng, S.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; 

Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and  

non-stationary time series analysis. Proc. R. Soc. A 1998, 454, 903–995. 

15. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and 

sample entropy. Am. J. Physiol. 2000, 278, 2039–2049. 

16. Balocchi, R.; Menicucci, D.; Santarcangelo, E.; Sebastian, L.; Gemignani, A.; Ghelarducci, B.; 

Varanini, M. Deriving the respiratory sinus arrhythmia from the heartbeat time series using 

empirical mode decomposition. Chaos Solit. Fract. 2004, 20, 171–177. 

17. Neto, E.S.; Custaud, M.A.; Cejka, J.C.; Abry, P.; Frutoso, J.; Gharib, C.; Flandrin, P. Assessment 

of cardiovascular autonomic control by the empirical mode decomposition. Methods Inf. Med. 

2004, 43, 60–65. 

18. Echeverría, J.C.; Crowe, J.A.; Woolfson, M.S.; Hayes-Gill, B.R. Application of empirical mode 

decomposition to heart rate variability analysis. Med. Biol. Eng. Comput. 2001, 39, 471–479. 
  



Entropy 2014, 16 4854 

 

 

19. Maestri, R.; Pinna, G.D.; Accardo, A.; Allegrini, P.; Balocchi, R.; D’Addio, G.; Ferrario, M.; 

Menicucci, D.; Porta, A.; Sassi, R.; et al. Nonlinear indices of heart rate variability in chronic 

heart failure patients: redundancy and comparative clinical value. J. Cardiovasc. Electrophysiol. 

2007, 18, 425–433. 

20. Porta, A.; Castiglioni, P.; Bari, V.; Bassani, T.; Marchi, A.; Cividjian, A.; Quintin, L.; Di Rienzo, M. 

K-nearest-neighbor conditional entropy approach for the assessment of short-term complexity of 

cardiovascular control. Physiol. Meas. 2013, 34, 17–33.  

21. Porta, A.; Gnecchi-Ruscone, T.; Tobaldini, E.; Guzzetti, S.; Furlan, R.; Montano, N. Progressive 

decrease of heart period variability entropy-based complexity during graded head-up tilt. J. Appl. 

Physiol. 2007, 103, 1143–1149. 

22. Brink, P.A.; Crotti, L.; Corfield, V.; Goosen, A.; Durrheim, G.; Hedley, P.; Heradien, M.; 

Geldenhuys, G.; Vanoli, E.; Bacchini, S.; et al. Phenotypic variability and unusual clinical severity 

of congenital long-QT syndrome in a founder population. Circulation 2005, 112, 2602–2610. 

23. Brink, P.A.; Schwartz, P.J. Of founder populations, long QT syndrome, and destiny. Heart 

Rhythm 2009, 6, 25–33. 

24. Porta, A.; Baselli, G.; Lombardi, F.; Cerutti, S.; Antolini, R.; Del Greco, M.; Ravelli, F.; Nollo, G. 

Performance assessment of standard algorithms for dynamic R-T interval measurement: 

Comparison between R-Tapex and R-Tend approach. Med. Biol. Eng. Comput. 1998, 36, 35–42. 

25. Bazett, H.C. An analysis of the time-relations of electrocardiograms. Heart 1920, 7, 353–370. 

26. Turianikova, Z.; Javorka, K.; Baumert, M.; Calkovska, A.; Javorka, M. The effect of orthostatic 

stress on multiscale entropy of heart rate and blood pressure. Physiol. Meas. 2011, 32, 1425–1437. 

27. Porta, A.; Faes, L.; Masé, M.; D’Addio, G.; Pinna, G.D.; Maestri, R.; Montano, N.; Furlan, R.; 

Guzzetti, S.; Nollo, G.; et al. An integrated approach based on uniform quantization for the 

evaluation of complexity of short-term heart period variability: Application to 24h Holter 

recordings in healthy and heart failure humans. Chaos 2007, 17, doi:10.1063/1.2404630. 

28. Baumert, M.; Javorka, M.; Seeck, A.; Faber, R.; Sanders, P.; Voss, A. Multiscale entropy and 

detrended fluctuation analysis of QT interval and heart rate variability during normal pregnancy. 

Comput. Biol. Med. 2012, 42, 347–352. 

29. Porta, A.; Tobaldini, E.; Gnecchi-Ruscone, T.; Montano, N. RT variability unrelated to heart 

period and respiration progressively increases during graded head-up tilt. Am. J. Physiol. 2010, 

298, 1406–1414. 

30. Negoescu, R.; Dinca-Panaitescu, S.; Filcescu, V.; Ionescu, D.; Wolf, S. Mental stress enhances 

the sympathetic fraction of QT variability in an RR-independent way. Integr. Physiol. Behav. Sci. 

1997, 32, 220–227. 

31. Browne, K.F.; Prystowsky, E.; Heger, J.J.; Zipes, D.P. Modulation of Q-T interval by the 

autonomic nervous system. PACE-Pacing Clin. Electrophysiol. 1983, 6, 1050–1055. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


