
DEBATE Open Access

Differential sexual network connectivity
offers a parsimonious explanation for
population-level variations in the
prevalence of bacterial vaginosis: a data-
driven, model-supported hypothesis
Chris R. Kenyon1* , Wim Delva2,3,4,5,6 and Rebecca M. Brotman7

Abstract

Background: The prevalence of bacterial vaginosis (BV) and vaginal microbiota types varies dramatically between
different populations around the world. Understanding what underpins these differences is important, as high-
diversity microbiotas associated with BV are implicated in adverse pregnancy outcomes and enhanced susceptibility
to and transmission of sexually transmitted infections.

Main text: We hypothesize that these variations in the vaginal microbiota can, in part, be explained by variations in
the connectivity of sexual networks. We argue: 1) Couple-level data suggest that BV-associated bacteria can be
sexually transmitted and hence high sexual network connectivity would be expected to promote the spread of BV-
associated bacteria. Epidemiological studies have found positive associations between indicators of network
connectivity and the prevalence of BV; 2) The relationship between BV prevalence and STI incidence/prevalence can
be parsimoniously explained by differential network connectivity; 3) Studies from other mammals are generally
supportive of the association between network connectivity and high-diversity vaginal microbiota.

Conclusion: To test this hypothesis, we propose a combination of empirical and simulation-based study designs.
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Background
Over 17 studies from around the world have established
that women’s vaginal microbiota (VMB) can be classified
into one of 3 to 9 clusters or community state types
(CSTs) [1–3]. The most commonly referenced typing sys-
tem is that developed by Ravel et al. in 2011 [4]. This
schema describes 5 CSTs of which four CSTs were re-
spectively dominated by 4 different Lactobacillus species
– L. crispatus, L gasseri, L. iners and L. jensenii (Fig. 1).
The fifth CST was characterized by a paucity of Lactoba-
cillus spp. and an abundance of a highly diverse polymi-
crobial community of facultative anaerobic BV-associated

bacteria (BVAB), including Gardnerella vaginalis, Atopo-
bium vaginae, Clostridiales spp., Megasphaera spp. and
Leptotrichia/Sneathia spp. [1, 5]. This CST (which can be
split into two different CSTs [6]) corresponds closely with
bacterial vaginosis (BV) as defined by Nugent’s scoring
system, as well as pH, and we refer to it here as the
BV-VMB. Several longitudinal VMB studies have con-
cluded that the VMB can be relatively stable over time [1,
7, 8]. In a minority of women and particularly those with
BV-VMB, the community composition of the VMB can be
fairly dynamic [1, 7].
There is little consensus as to why the proportion of

reproductive-age women with particular CSTs, and in
particular those with BV-VMB, varies so dramatically be-
tween different populations [1]. Some have postulated
that genetic differences between populations (such as
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differences in innate and adaptive immune systems, the
composition and quantity of vaginal secretions, and li-
gands on epithelial cell surfaces [4, 9]) may be respon-
sible. Others have argued that the prevalence of
practices known to influence the VMB may be respon-
sible: including use of vaginal douching, nutrition, smok-
ing, personal hygiene, methods of birth control, and
sexual behaviors [10–12].
Both BV and some L. iners-dominated VMBs have

been associated with various adverse outcomes, includ-
ing enhanced susceptibility to STIs such as HIV, en-
hanced transmission of HIV, pelvic inflammatory disease
and a range of adverse pregnancy outcomes [13–15].
One meta-analysis found that BV-VMB increased the
risk of HIV acquisition by 60% (relative risk 95% CI 1.2–
2.1) [16]. In populations where the prevalence of BV is
over 30%, this may translate into 15% of HIV infections
being attributable to BV-VMB [16]. Similar lines of rea-
soning suggest that BV-VMB may explain a considerable
proportion of the differential spread of other STIs be-
tween different populations [17–23].

We hypothesize that variations in sexual network con-
nectivity may be at least partially responsible for varia-
tions in the prevalence of BV-VMB between different
populations, and below we present three types of evi-
dence in support of this thesis:

Individual and couple-level data
Individual and couple-level data suggest that BVAB can
be sexually transmitted. Multiple studies have found an
association between BV and a number of individual-level
sexual risk factors amongst women including: i) a higher
number of lifetime sexual partners [24]; ii) retaining the
same sexual partner after a diagnosis of BV [25, 26]; iii)
a high frequency of vaginal intercourse [27]; iv)
self-identification as sex workers [28, 29]; v) anal or re-
ceptive oral sex [30, 31]; vi) sharing sex toys between
women who have sex with women [32]. Male circumci-
sion has been shown in a randomized controlled trial to
result in a 50% lower risk of BV for partners of circum-
cised males [33]. Circumcision was also associated with
a reduction in a wide range of anaerobes in the coronal

Fig. 1 Schematic illustration of interactions between sexual network connectivity, frequency distribution of vaginal community state types (CSTs) and
the prevalence of STIs using the example of non-Hispanic blacks and non-Hispanic whites in the USA. Non-Hispanic blacks have been noted to have
higher network connectivity - largely due to a high prevalence of sexual partner concurrency [67]. This enhanced network connectivity facilitates the
spread of STIs as well as the bacteria responsible for bacterial vaginosis (BV) and possibly less resilient L. iners vaginal community state types. BV and
the STIs then further facilitate the spread of one another. (The distribution of vaginal CSTs is taken from a study by Ravel et al. [4], the prevalence ratios
of STIs are taken from [67, 77]. The community state types are described by the presence of BV or the predominant Lactobacillus species present e.g.
‘L. iners’ refers to a Lactobacillus iners dominant type. The numbers around the pie-charts denote the percent each CST comprises)
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sulcus including a number of BVAB [33, 34]. Consistent
condom use has been shown in a meta-analysis to be as-
sociated with a reduced odds for BV [24] and several,
but not all studies, have found that inconsistent or no
condom use is a risk factor for recurrent BV [24, 27, 35].
These findings suggest that BV can be sexually transmit-
ted. Other non-sexual epidemiologic risk factors for BV
include: i) lack of hormonal contraception ii) cigarette
smoking, iii) douching [13] (Table 1).
Couple studies have found high rates of concordance

(up to 100%) for various BVAB (including biofilm form-
ing G. vaginalis [36]) in women’s VMB and the coronal

sulci/distal urethras of their male partners [36–41] or
the vaginas of their female partners [42]. A study of the
genital microbiomes of 165 men and their partners in
Rakai, Uganda found that the penile microbiomes could
be segregated into two main groups - a BV and a
non-BV-type group [43]. The BV-type group had a
higher prevalence and abundance of BV associated bac-
teria. The female partners of this group were also more
likely to have BV [43] as assessed by Nugent’s scoring
(the women in this study did not have their vaginal
microbiomes characterized molecularly). Two studies
that simultaneously characterized the genital micro-
biomes of women and their male partners found a
strong intra-couple correlation for the presence or ab-
sence of individual bacterial species [39, 44]. In both
studies, concentrations of BVAB were low or undetect-
able in women without BV and their partners but abun-
dant and concordant at a species level for women with
BV and their partners coronal sulci (and to a lesser ex-
tent urethra) [39, 44]. Other studies have established a
high degree of concordance of oligotype and phenotype
(such a biofilm forming or not) of G. vaginalis and other
BVAB between monogamous partners [36, 45, 46]. In
one of these studies, for example, all women with BV
had evidence of a biofilm- forming G. vaginalis vaginal
infection as did all their male partners in their urine
[36]. Women who have sex with women have also been
shown to have a high degree of concordance for BV sta-
tus and this has been linked to practices that transmit
vaginal fluid between women [47, 48].
STIs are transmitted along sexual networks, and as a

result, the amount of connectivity between individuals in
the network determines the speed and extent of STI
spread in the network [49–51]. Network connectivity is
a complex concept that can be characterized by a
multi-dimensional array of metrics, including the num-
ber of partners per unit time, prevalence of concurrent
partnering, size of core groups, type of sex, size of sexual
network, length of gaps between partnerships, degree
and type of homophily and relations between core and
non-core groups [50, 52–57]. We will confine our fur-
ther consideration of network connectivity to number of
partners per unit time and partner concurrency (partner-
ships overlapping in time). Both of these variables have
clear definitions, have multiple prevalence estimates
from around the world and have been found to be risk
factors for most major STIs, including BV at the individ-
ual level [24, 52, 58–61]. We acknowledge however that
these variables are measures of local sexual networks.
Future work could benefit from incorporating better
measures of global sexual network connectivity such as
the size of the forward reachable set. Since sexual net-
work connectivity is a population-level property, eco-
logical studies are also necessary to explore the possible

Table 1 Correlation of bacterial species between vagina and
penile skin and male urethra from couples with bacterial
vaginosis and couples without bacterial vaginosis in cross
sectional study by Zozaya et al. [39] Only the top 13 most
correlated species are shown

Vagina-Penile Skin Vagina-Male Urethra

Rho a Rho a

Couples with BV (n = 65)

Megasphaera2 0.549 0.085

Pv.123-f2–42 0.537 0.584

Pv.123-f-110 0.482 0.448

BVAB1 0.477 0.153

P.bivia 0.422 0.510

Prevotella 0.421 0.402

Gardnerella 0.419 0.324

Aerococcus 0.413 0.421

Pv.123-b-95 0.411 0.239

L.iners 0.399 0.215

Porphyromonas 0.399 0.105

Sneathia 0.376 0.258

Leptotrichia 0.371 0.376

Couples without BV (n = 31)

Pv.123-f-82 0.504 −0.033

Dialister 0.443 0.240

L.crispatus 0.391 −0.084

L.jensenii 0.384 −0.259

Lactobacillus sp. 0.327 0.284

Pv.123-b-46 0.280 0.379

Streptococcus 0.221 0.179

U.urealyticum 0.156 −0.071

L.helveticus 0.142 0.223

L.gasseri 0.125 −0.133

Peptoniphilus 0.049 −0.023

Gardnerella 0.034 −0.146

L.iners −0.020 0.043
aRhos in bold indicate a P-value of < 0.05
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explanations for variations in STI prevalence [50, 62].
Although not all studies have reached this conclusion,
[63, 64] studies have generally found a positive associ-
ation between STI prevalence and the prevalence of
partner concurrency and/or numbers of partners per
unit time [50, 52, 58, 65–67].
If BVAB are sexually transmitted then the various ways

whereby enhanced network connectivity has been shown
to enhance the transmission of various STIs could also
promote the spread of BVAB [58]. This is illustrated in
Fig. 2 and Additional file 1, which contrast the transmis-
sibility of BVAB in high and low connectivity popula-
tions. In Fig. 2, both networks commence with woman
‘A’ having a BV-VMB (red). In the high connectivity net-
work, the BVAB can be transmitted to her partner ‘B’
who can then transmit them to the other women he is
having sex with and the BV-VMB can thereby spread
through the population. In the low connectivity network,
the BVAB are trapped in the ‘A-B’ relationship until it
breaks up at T3 when both ‘A’ and ‘B’ can transmit the
BVAB to their new partners.
Enhanced network connectivity may play a particularly

important role in facilitating the spread of the
BV-associated G. vaginalis and T. vaginalis, because of
their relatively short periods of colonization in men [68].

T. vaginalis colonizes men for only 6 weeks (and women
for 60 weeks) [69, 70]. This gender gap in
colonization-duration means that T. vaginalis would go
extinct in a serial monogamous population with at least
7 weeks between consecutive partners of men [66]. Con-
currency enables T. vaginalis to bypass this bottleneck
and thereby could facilitate the spread of T. vaginalis
and indirectly BV (because T. vaginalis predisposes to
BV [71]). Similarly, G. vaginalis – one of the likely driver
species of BV [72, 73] – has been shown to be well
adapted to long-term colonization of the high glycogen
vaginal environment [74] but poorly suited to long-term
urethral colonization in men [74]. G. vaginalis thus colo-
nizes men for under 3 months but persists long term in
women [36, 75]. One study, for example, found an iden-
tical strain of biofilm forming G. vaginalis persisting in
one woman’s vagina for 15 years [36]. If the BVAB (or at
least a number of the keystone species responsible for
BV) have a duration of colonization in the male that is
as short as that of G. vaginalis, then this would result in
a break of transmission of BVAB in populations with
serial monogamy and gaps of a few months between sex-
ual relationships. The illustration in Fig. 2 would then
need to be adapted as ‘B’ would no longer be able to
transmit the BVAB to his new partner at T3 if the time

Fig. 2 Schematic illustration of how high sexual network connectivity can enhance transmission of bacterial vaginosis associated bacteria (BVAB -
depicted in red). In the low connectivity network (right), the BVAB are trapped in the A-B relationship until this breaks up when woman A can
transmit the BVAB to her new partner (C). Man B may then also transmit BVAB to his new partner (D) but if the gap between his old and new
partner exceeds the duration of penile colonization for BVAB (time between T2 and T3) then he will not transmit to his new partner. In the high
connectivity network (left), the BVAB does not need to wait for the A-B partnership to end and can, without impediment, spread to other
individuals connected via sexual partnerships (Squares-men, Circles-women, Red/Gray nodes-BVAB−/non-BVAB -containing genital microbiome,
Gray lines-sexual partnership active on first day of the month; see text for further details)
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gap since his previous relationship was long enough to
have removed the BVAB from his penile microbiome.

An individual-based network model of BV transmission
To demonstrate the interacting effects of higher sexual
network connectivity and a shorter duration of
colonization in men more explicitly, we developed a
simple, didactic individual-based model representing two
adjacent but entirely separate communities (see Add-
itional file 1: NetworkModelDescription for a detailed
description of the model). In the first community only
serially monogamous relationships can be formed. In the
second, both men and women remain available to form
new relationships, regardless of the number of relation-
ships they are already engaged in. In both communities,
the duration of BVAB colonization is set to a fixed
period of 6 weeks in men and 60 weeks in women. Add-
itional file 2: NetworkMovie shows model output over
10 years with populations of 250 people in each commu-
nity. In the community where concurrent relationships
were allowed, the prevalence of partner concurrency var-
ied between 2 and 11% over the 10-year simulation
period, and by the end of it, 42% more relationships had
been formed, compared to the community with lower
network connectivity. The prevalence of BV-VMB plat-
eaued around 55% in the high connectivity network and
around 15% in the low connectivity network (a relative
difference of 267%). This is an example based in hetero-
sexual couplings and certainly future models should in-
clude partnerships between women as well.

Epidemiological studies confirm that concurrency and
partner number are risk factors for BV
Epidemiological studies have shown number of partners
per unit time to be a risk factor for BV-VMB [24, 76,
77]. Partner concurrency has also been shown to be an
independent risk factor for BV in a longitudinal study of
3620 women followed up quarterly for 5 visits [58]. In
the Rakai study mentioned above, men with extramarital
partners were also found to be more likely to have the
BV-type penile microbiome than men with no extra-
marital partners [43]. Finally, an ecological study found
associations at the level of countries between the preva-
lence of male concurrency and the prevalence of BV
among women [78]. The same association was found at
the level of ethnic groups within countries [78].

Network connectivity is a parsimonious
explanation for the association between the
prevalence of BV and STIs
It has been argued that certain racial groups such as
‘black populations’ [9] tend to have a higher prevalence
of BV and that this is due to biological differences in
susceptibility to BV [4, 9, 79]. The available evidence,

however, suggests that populations (irrespective of race)
with high network connectivity have a higher BV preva-
lence. (i) Black populations with low risk behavior as
established by low prevalence of HIV and other STIs
have low prevalences of BV [80, 81]. (ii) Populations
with high network connectivity (as deduced by high STI
prevalences) have high BV prevalences regardless of eth-
nicity. This has been most clearly established in sex
workers where sex workers from all ethnic groups with
available data have high BV prevalences [2, 28, 29]. BV
prevalences have also been found to vary between
non-black ethnic/racial groups within Canada, Peru,
China and Spain [80]. In the case of Canada and Peru,
the high BV-prevalence ethnic groups were also found
to have higher prevalences of other STIs suggesting a
common risk factor may be responsible [80]. (iii) The
available evidence suggests that prior to sexual debut,
there are no differences in VMB between ethnic groups
but that differences only emerge post debut [82, 83]. (iv)
In a longitudinal study, white women with black part-
ners had the same BV prevalence as black women [84]
and black women with white partners had the same BV
prevalence as white women (C Kenyon’s unpublished
data). (v) The VMBs from all racial/ethnic groups pro-
filed thus far include all the major CSTs. It is merely the
proportionate mix of CSTs that varies between ethnic
groups [1, 85]. (vi) We have been unable to find any
published studies that have established evidence of gen-
etic differences in susceptibility to particular VMBs by
race/ethnic group.
Populations with a higher prevalence of BV also tend

to have a higher prevalence of other STIs [65]. This as-
sociation has been shown between BV and HIV preva-
lence at the level of world regions [80], countries [65]
and ethnic groups within countries (Fig. 1) [80]. These
positive associations between STIs and BV could be due
to a common underlying risk factor (such as network
connectivity [65]) Alternatively, they could be explained
by these STIs enhancing the probability of transition to
BV [17]. However, this explanation begs the question,
why did these populations have higher STI prevalences?
A possible answer is that they have poorer STI treatment
services [86]. The correlation between STI prevalence
and quality of STI services is, however, weak or absent
[87]. Furthermore, this does not explain the strong cor-
relation between the incurable STI, herpes simplex
virus-2 (HSV-2), and BV and other STIs [88, 89]. These
considerations lead us to predict that the most parsimo-
nious explanation for why the prevalence of BV and vari-
ous STIs is higher in certain populations than others is
that these populations have more densely connected sex-
ual networks. High network connectivity would be ex-
pected to not only directly facilitate the spread of BVAB
and other STIs, but also to do so indirectly via the

Kenyon et al. BMC Women's Health            (2019) 19:8 Page 5 of 9



positive feedback resulting from BV and STIs enhancing
the spread of one another. BV for example has been
shown to enhance susceptibility to chlamydia [17, 21],
gonorrhoea [17], HIV [23, 90, 91], HSV-2 [18, 19] and T.
vaginalis [17, 21, 22]. HSV-2 and T. vaginalis have in
turn been found to increase the risk for development of
BV and acquisition of other STIs [17, 20, 21, 23].

Data from animal studies
Results from vaginal microbiome profiling in other ani-
mals are compatible with the hypothesis that differences
in sexual network connectivity influence vaginal micro-
biomes. A study that compared the sympatric mice, Pero-
myscus californius and Peromyscus maniculatus found
that the socially and genetically promiscuous P. manicula-
tus had greater vaginal microbiome diversity (a key feature
of a BV-VMB) than the monogamous P. californius [92].
Likewise a study that compared the vaginal microbiomes
of 9 primate species with different mating behaviors found
that vaginal microbial diversity was strongly correlated
with host-specific socioecologic factors such as female and
male promiscuity [93]. Unlike the gut microbiome the va-
ginal microbiome showed little congruence with host
phylogeny or diet [93]. The authors concluded that differ-
ences in sexual behavior were key determinants of the de-
gree of vaginal microbial diversity.

Empirical and simulation-based hypothesis tests
Testing the network-connectivity-VMB hypothesis
would ideally involve longitudinal studies that follow
up sympatric sub-populations with high and low STI
prevalence from the time of sexual debut. Critically
these studies should characterize the vaginal and
penile microbiomes of sexual partners at frequent in-
tervals. This, combined with detailed behavioral data,
should enable researchers to ascertain if differences
in network connectivity are responsible for the dif-
ferential spread of BVAB in the high and low STI
prevalence populations. The longitudinal study de-
sign should also provide better insights into the in-
teractions between sexual behaviour, genital
microbiomes and STIs. The importance of these lon-
gitudinal couple studies for the BV-network connect-
ivity hypothesis cannot be overstated. We have
shown evidence of a strong correlation between
penile skin microbiota and the partner’s VMB. Lon-
gitudinal studies are however required to establish
that these penile microbiota can be sexually trans-
mitted to the man’s next partner and result in
changes in her VMB.
In addition to empirical research, simulation-based

study designs would also be useful to test aspects of the
hypothesis presented here. Previous modeling studies
have found that relatively small increases in network

connectivity can lead to non-linear increases in HIV/
STI spread [53]. If this applies to BV as well, then
more connected sexual networks would be expected to
facilitate the rapid spread of BVAB and various other STIs
soon after sexual debut. Our own individual-based model
of BVAB transmission provides a fitting illustration of the
strong, non-linear effect of higher network connectivity,
even in the absence of other STIs. The addition of a few
key features could turn this didactic tool into a rigorous
framework that unifies relevant knowledge of the micro-
biology, epidemiology and sociology of BV and other STI
co-infections. In line with current insights from molecular
microbiology, vaginal and penile microbiomes should be
classified into at least five CSTs [43]. Furthermore, interac-
tions with various STI co-infections – most notably chla-
mydia, gonorrhoea, T. vaginalis, HSV-2 and HIV – should
be modelled explicitly, and other non-infectious causal
factors (such as douching, smoking, diet) on the pathway
to develop BV should be included as well. Lastly, the
model should allow for more heterogeneity in sexual ac-
tivity levels, as well as more structure in the network (for
example, a non-random age-mixing pattern, and cluster-
ing of a high-risk core group within the network, and
same sex partnerships). Besides the obvious advantages of
being relatively fast and inexpensive, simulation studies
can quantify the effect of uncertainty surrounding behav-
ioral and biological parameters on the main outcomes
measures.
If confirmed by empirical and simulated data, the

network connectivity approach would offer a new
paradigm for conceptualizing how differences in
VMB emerge. If the proportion of a population that
has BV is a population-level-property that is partially
determined by network connectivity, then this intro-
duces new options for prevention of BV and
BV-associated adverse health outcomes such as ad-
verse pregnancy outcomes and transmission of other
STIs including HIV. It suggests that interventions
that have been shown to reduce network connectiv-
ity may result in reductions in the prevalence of
these VMBs. Because BV-VMBs may be responsible
for a large proportion of the population attributable
fraction of HIV and other STIs [16] and the spread
of these STIs is also directly enhanced by network
connectivity, small reductions in connectivity could
translate into large declines in STI incidence. Ugan-
da’s ‘Zero Grazing’ campaign [94] and similar pro-
cesses elsewhere in Africa [95], which resulted in
dramatic declines in side-partners and hence net-
work connectivity, could be viewed as providing
guidance for this approach. A better appreciation for
the network connectivity would also help us unravel
the disparities between ethnic groups that we see in
BV, STIs and reproductive outcomes.
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Additional file 1: A text document detailing the construction of the
Netlogo model of BV transmission. (PDF 63 kb)

Additional file 2: A movie file illustrating the main findings of the
Netlogo model of BV transmission. (MP4 60657 kb)

Additional file 3: The Netlogo model of BV transmission. (NLOGO 30 kb)
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