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Abstract 

Modern chemical and metallurgical processes consist of numerous process units with several 

complex interactions existing between them. The increased process complexity has in turn amplified 

the effect of faulty process conditions on the overall process performance. Fault diagnosis forms a 

critical part of a process monitoring strategy and is crucial for improved process performance. 

The increased amount of process measurements readily available in modern process plants allows 

for more complex data-driven fault diagnosis methods. Linear and nonlinear feature extraction 

methods are popular multivariate fault diagnosis procedures employed in literature. However, these 

methods are yet to find wide spread industrial application. The multivariate fault diagnosis methods 

are not often evaluated on real-world modern chemical processes. The lack of real world application 

has in turn led to the absence of economic performance assessments evaluating the potential 

profitability of these fault diagnosis methods. 

The aim of this study is to design and investigate the performance of a fault diagnosis strategy with 

both traditional fault diagnosis performance metrics and an economic impact assessment (EIA). A 

complex dynamic process model of the pressure leach at a base metal refinery (BMR) was developed 

by Dorfling (2012). The model was recently updated by Miskin (2015), who included the actual 

process control layers present at the BMR. A fault library was developed, through consultation of 

expert knowledge from the BMR, and incorporated into the dynamic model by Miskin (2015). The 

pressure leach dynamic model will form the basis for the investigation. 

Principal component analysis (PCA) and kernel PCA (KPCA) were employed as feature extraction 

methods. Traditional and reconstruction based contributions were employed as fault identification 

methods. Economic Performance Functions (EPFs) were developed from expert knowledge from the 

plant. The fault diagnosis performance was evaluated through the traditional performance metrics 

and the EPFs. 

Both PCA and KPCA provided improved fault detection results when compared to a simple univariate 

method. PCA provided significantly improved detection results for five of the eight faults evaluated, 

when compared to univariate detection. Fault identification results suffered from significant fault 

smearing.  

The significant fault detection results did not translate into a significant economic benefit. The EIA 

proved the process to be robust against faults, when implementing a basic univariate fault detection 

approach. Recommendations were made for possible industrial application and future work focusing 

on EIAs, training data selection and fault smearing.  
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Opsomming 

Moderne chemiese- en metallurgiese-prosesse bestaan uit ŉ verskeidenheid proseseenhede met 

talle komplekse interaksies wat tussen die proseseenhede bestaan. Die toename in die komplekse 

interaksies versterk die effek van foutiewe prosesomstandighede op die algehele prosesverrigting.  

Die toename in die beskikbaarbaarheid van prosesmetings in moderne prosesse, laat meer 

komplekse datagedrewe fout-diagnostiese metodes toe. Lineêre en nie-lineêre kenmerk-ekstraksie 

metodes is gewilde meerveranderlike fout-diagnostiese prosedures wat in literatuur gebruik word. 

Dié metodes het egter nog nie ŉ algemene toepassing in die industrie gevind nie. Die 

meerveranderlike fout-diagnostiese metodes word egter nie gereeld op die werklik moderne 

chemiese-prosesse toegepas nie; die gebrek aan dié toepassings veroorsaak die afwesigheid van 

ekonomiese impakstudies wat die winsgewendheid van hierdie fout-diagnostiese metodes evalueer.  

Die doel van hierdie studie is om ‘n fout-diagnostiese strategie te ontwerp en om die werkverrigting 

te ondersoek met beide tradisionele fout-diagnostiese werkverrigtingstatistieke en ekonomiese 

impak assessering (EIA). ‘n Komplekse dinamiese prosesmodel van die drukloogproses by ‘n 

basismetaalraffinadery (BMR) is ontwikkel deur Dorfling (2012). Die model is onlangs deur Miskin 

(2015) opdateer wat die werklike BMR prosesbeheerstrategie geïmplementeer het. ‘n Biblioteek van 

foute is ontwikkel d.m.v. die konsultering met kundiges by die BMR en is suksesvol opgeneem in die 

dinamiese model deur Miskin (2015). Die dinamiese drukloogmodel vorm die basis van hierdie 

projek.  

Hoofkomponentanalise (HKA) en Kern-HKA (KHKA) is gebruik as metodes vir kenmerk-ekstraksie. 

Tradisionele- en rekonstruksie-gebaseerde bydraberekeninge is gebruik as fout-identifikasie 

metodes. Ekonomiese-verrigtingfunksies (EVF’s) is ontwikkel met die hulp van kundiges by die BMR. 

Die fout-diagnose werkverrigting is geëvalueer met beide tradisionele fout-diagnostiese 

werkverrigtingstatistieke en die EVF’s.  

Beide HKA en KHKA het verbeterde foutopsporings resultate gelewer in vergelyking met ‘n 

eenvoudige eenveranderlike metode. HKA het beduidende verbeterde foutopsporingsresultate vir 

vyf van die agt foute gelewer, in vergelyking met eenveranderlike foutopsporing. Fout-identifikasie 

resultate het aan beduidende fout smeer-effekte gely.  

Dié beduidende foutopsporings resultate het nie tot ‘n beduidende ekonomiese voordeel gelei nie. 

Die EIA het bewys dat die proses wel robuus is teen foute, wanneer ‘n basiese eenveranderlike 

foutopspring strategie gevolg word. Aanbevelings is gemaak vir moontlike industriële aanwending en 

toekomstige werk wat fokus op EIA’s, opleidingsdata-seleksie en foutsmeer-effek.  
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Chapter 1: Introduction 

Chapter 1 provides a brief background and introduction on process monitoring and the application of 

dynamic process models. The chapter aims to provide the reader with some background on process 

monitoring and the use of dynamic process models, before providing the specific project aim and 

objectives. The thesis layout is summarized in section 1.5.  

1.1 A background to process monitoring 

Modern industrial chemical processes consist of several process units with complex interactions 

existing between these units. These complex interactions have made the monitoring of these 

processes more challenging. The strong growth in process automation technology has also increased 

process efficiency and further decreased the demand for process supervision.  

Fault diagnosis is the main focus of process monitoring and consists of fault detection followed by 

fault identification. Abnormal (faulty) process conditions need to be detected and identified as soon 

as possible using some fault detection and identification method. Once the abnormal conditions and 

its locations have been identified, corrective action can be taken. The longer a process is operated at 

abnormal conditions, the risk of possible unsafe operation or environmental damage is increased.  

Process monitoring, and especially fault detection and identification, has received significant 

research focus in the last decade. This is in part due to the vast increase in measurement 

instrumentation available on modern industrial chemical plants. The result is an increased amount of 

process data being readily available. The increase in computational resources has also contributed to 

the increased investigation of multivariate fault detection and identification methods. These 

multivariate statistical methods allow for the inclusion of the complex interactions present in 

modern industrial chemical processes. The multivariate results are then used to identify when a 

process is moving away from the desired operating conditions.  

1.1.1 Process control layers 

It is important to recognize that a fault detection and identification strategy, forms part of the overall 

plant wide control strategy. In order to understand where a fault detection and identification 

strategy fits in, the different control layers needs to be discussed. The different control layers are 

shown in Figure 1.1.  
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Figure 1.1: Typical process control layers.  

The first control layer consists of the basic process control systems. These systems are designed to 

control several process variables through a simple feedback and/or feedforward system. The 

controller aims to operate at the desired conditions with as little possible variance. If a certain 

process measurement moves outside an allowable range, an alarm is triggered. The alarm in turn 

notifies the plant operator who can then take corrective action. The alarms form the second control 

layer.  

The third control layer is safety interlock systems. If a process moves into dangerous or unstable 

operating zones, valves automatically default to avoid any harm to personnel or the environment. 

This usually results in immediate plant shut down and unplanned maintenance.  

Safety valves, rupture disks and other relief devices are designed to relieve a process from dangerous 

operating conditions through some self-actuating reaction. These valves act as the fourth control 

layer. The fifth control layer is containment. The containment objective is to limit the damage once a 

process has become out of control. For example: the required response to contain a chemical 

spillage.  
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1.1.2 Fault detection and identification as part of overall control strategy 

Fault detection and identification will form part of the second control layer (alarms) of the overall 

control strategy shown in Figure 1.1. Multivariate statistical methods are applied to process data. If 

the multivariate statistical results indicate a deviation from the desired conditions, alarms are 

triggered. The operator can then decide to take further action after the alarm is triggered. However, 

the amount of alarms triggered per operator is regulated by international standards. The ISA 

regulations state a maximum of twelve alarms triggered an hour per operator (Izadi et al. 2011). 

These regulations further emphasises the need for accurate process monitoring methods.  

Once the fault has been detected, the location of the abnormal conditions needs to be identified. 

The results from the multivariate statistical methods are used to identify the possible location of the 

fault. The fault location can then aid the operator in taking swift corrective actions.  

1.1.3 A multivariate statistical approach to fault detection and identification 

As mentioned in section 1.1, multivariate statistical methods have received significant research 

attention. These methods are employed to extract features from the available process data. A 

feature can be thought of as an inferential variable, a calculated variable that is more informative or 

useful in further processing than the measured variables it is calculated from.  

There are several multivariate feature extraction methods available. The most common multivariate 

feature extraction method is principal component analysis (PCA). PCA is a linear feature extraction 

method. Non-linear feature extraction methods have also received significant attention in literature. 

A common nonlinear feature extraction method employed in process monitoring literature is kernel 

principal component analysis (KPCA).  

Although significant research has focused on the use of multivariate statistical methods, these 

methods are yet to find wide spread industrial application. The lack of industrial application is in part 

due to a shortage of cost/benefit analysis and case studies, since the process monitoring and fault 

diagnosis benefits are difficult to quantify. A cost/benefit analysis will also require either accurate 

historical plant data or a complex dynamic model, based on a real-life process.  

1.1.4 Profitable operation 

The current economic environment has also increased the demand for profitable operation. 

Increased competition and varying customer demands need to be met with strict quality control 

measures. The possible economic benefit of fault detection and identification methods in modern 

metallurgical/chemical processes is yet to be evaluated. Early fault detection and identification may 

result in an increased time spent at the optimal operating conditions. Early fault detection may 

prevent unplanned maintenance, emergency shut-downs and decrease unsafe process conditions.  
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1.2 Mining in South Africa and process monitoring 

The South African mining industry continuous to face economic challenges. The difficult economic 

environment is mainly due to hushed commodity prices, regulatory uncertainty and short term 

volatility. Mining safety has also continued to receive significant attention, with the overall fatality 

rate declining substantially over the past 20 years (PWC 2016).  

The economic challenges and safety requirements have increased the need for resource efficiency, 

specifically to minimize process downtime and maximize process safety through advanced process 

control methods. Process monitoring is an advanced process control method where potential 

disastrous and unsafe events are detected early to ultimately avoid the unwanted consequences.  

In order to investigate the application and potential implementation of process monitoring, it should 

be applied and evaluated on an actual industrial process. With testing on the actual plant usually not 

being an option, another methodology is usually required. A possible method is to test the 

application of process monitoring on a dynamic process model. Considering the complexity of most 

modern chemical processes, the dynamic model should include these complexities to accurately 

evaluate the possibility of process monitoring. However, the requirement of a complex dynamic 

process model is the major drawback for cost/benefit analysis, due to the effort required for the 

development of such a dynamic model. 

1.3 Application of dynamic process models 

Dynamic process models are mathematical models developed to mimic the operation of a given 

process. These models can be developed from first principles, historical process data or a 

combination of both first principles and historical process data. Once the dynamic model has been 

developed, it can be used to optimize processes or assess possible process changes. These changes 

could be the possible implementation of advanced control or process monitoring systems. Dynamic 

process models can also be further used to train operators. Operators first evaluate process changes 

using the dynamic model, before transitioning to the actual process. 

With the ongoing increase in computational resources, more complex models are being developed in 

the metallurgical industry. Extensive research has been done on metal concentrators. This includes 

SAG mills, ball mills, crushers, screens, cyclones and flotation cells (Karelovic et al. 2016; dos Santos 

et al. 2014; Quist and Evertsson 2016; Salazar et al. 2009; Salazar et al. 2010). 
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Not much work has been conducted towards the development of hydrometallurgical complex 

dynamic models. Faris et al. (1992) developed a nickel and copper acid leach model. The work 

confirmed the possible use of dynamic models for operator training.  

A dynamic model of the pressure leach at a base metal refinery (BMR) was developed by Dorfling 

(2012). The BMR removes copper and nickel from a precious metal containing residue. The dynamic 

process model accurately simulates the extent of both precious and base metals present in the 

process. The dynamic process model was more recently updated by Miskin (2015). A combination of 

expert knowledge and historical plant data were used to increase the accuracy of the dynamic 

model. The dynamic model includes the actual process control layers, a fault library and varying input 

conditions. Therefore the dynamic model poses the potential for accurately assessing possible 

process additions or changes.  

1.4 Project aim and objectives 

The main aim of this project is to determine whether abnormal process conditions can be detected 

and identified using multivariate detection methods at the BMR pressure leach and whether the 

multivariate fault detection will result in an economic gain. In order to achieve the main outcome, 

four objectives are identified: 

1. Design and application of a process monitoring approach for fault detection and 

identification to simulated fault data. 

2. Evaluation of a fault detection and identification approach based on process monitoring 

performance metrics. 

3. Definition of economic key performance indicators for the pressure leaching process. 

4. Evaluation of a fault detection and identification approach based on economic key 

performance indicators for the pressure leaching process.  

The dynamic process model, developed by Dorfling (2012), can be used to simulate abnormal 

conditions and input process disturbances. The model was more recently updated by Miskin (2015), 

who increased the model complexity, to more accurately mimic actual plant operating conditions. 

The dynamic model will be the base from which the project aim is investigated.  

1.5 Thesis layout 

Chapter 2 provides a brief description of the BMR. A short process description and a summary of the 

process chemistry are included. The dynamic model developed by Dorfling (2012) is briefly described. 

A summary of the model validation and control implementation results by Miskin (2015) are 

provided.  
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Chapter 3 provides the relevant literature for each project objective. Multivariate fault diagnosis is 

described followed by a summary of significant results from previous studies. The development of 

economic performance functions are described with a focus on previous economic impact 

assessments.  

The relevant tasks relating to each objective are outlined in Chapter 4. The first objective is 

addressed in Chapter 5. A fault detection and identification approach is designed. A methodology is 

provided for the application of the fault detection and identification approach to the simulated data.  

The second objective is addressed in Chapter 6. The performance of the developed fault detection 

and identification approach is evaluated utilizing the traditional fault detection performance metrics. 

Chapter 7 addresses the third objective. Economic indicators are identified for the pressure leaching 

process. The economic indicators are used to develop specific economic performance functions for 

the process.  

The final objective is addressed in Chapter 8. The performance of the fault detection and 

identification approach is evaluated with the economic performance functions developed in Chapter 

7. Chapter 9 summarizes the work conducted in Chapters 5 – 8. Conclusions and recommendations 

are provided in Chapter 9.  
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Chapter 2: Process description 

As discussed in Chapter 1, the base metal refinery (BMR) pressure leach model, developed by Dorfling 

(2012), will be used to assess the benefits of adding multivariate process monitoring methods. 

Chapter 2 aims to familiarize the reader with the dynamic model and the changes made by Miskin 

(2015).  

A brief process description of the BMR is provided in section 2.1, followed by a summary of the 

process chemistry in section 2.2. The dynamic model developed by Dorfling (2012) is briefly described 

in section 2.3, while the model validation and control implementation results from Miskin (2015) is 

also summarized. The Chapter is summarized in section 2.4.  

2.1 Base metal refinery 

The Bushveld complex, located in South Africa, is home to the world’s largest deposit of Platinum 

Group Elements (PGEs). Today the world’s three largest PGE producers, Anglo American Platinum, 

Lonmin Platinum and Impala Platinum are operating on the Bushveld complex (van Schalkwyk, 2011). 

After ore has been extracted from the Bushveld complex, it is sent to comminution circuits followed 

by flotation circuits. Thereafter the ore is sent to a smelter where a Ni-Cu-Fe-S converter matte is 

produced which contains the Platinum Group Minerals (PGMs) (van Schalkwyk, 2011). 

The converter matte is then sent to the Base Metal Refinery (BMR), situated northwest of 

Johannesburg, South Africa. An overall schematic of the process is provided in Figure 2.1. The 

converter matte is sent through a milling circuit in preparation for the BMR. The milled converter 

matte is next sent to the first stage atmospheric leach. The first stage leach consists of five 

continuously stirred reactors (CSTRs) and oxygen is continuously sparged into the first three reactors 

(Lamya, 2007). Spent electrolyte is recycled from the copper electrowinning circuit and added to the 

first stage atmospheric leach. Approximately 70% of the nickel present in the feed is dissolved as well 

as most of the sulphuric acid is depleted from the recycled spent electrolyte (Dorfling et al. 2013). 

Refer to van Schalkwyk (2011) and Coetzee (2016) for an in-depth review of the first stage leach and 

nickel crystallizer. 

The first stage leach residue is then sent to the second and third stage pressure leach. The autoclave 

consists of four compartments. The second stage consists of the first three compartments, while the 

third stage is defined as the fourth compartment of the autoclave. The compartments allow for 

improved control of the temperature and residence time. The pressure in the autoclave is controlled 

by manipulating the oxygen flow to the autoclave. The pressure control ensures the oxygen partial 
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pressure is adequate for the reactions presented in section 2.2. The second stage product is sent to a 

solid/liquid separator and the residue sent to the fourth compartment (Dorfling 2012). 

The solid residue from the pressure leaching system is then sent to a caustic leach and a formic acid 

leach. The remaining copper, selenium and tellurium is removed, resulting in a concentrated PGE 

stream. The PGE concentrate is sent to the precious metal refinery (PMR) where pure PGEs are 

produced (Dorfling 2012). 

The liquid residue of the pressure leach consists mainly of copper, nickel, diluted sulphuric acid and 

traces of iron. The liquid residue is first sent to a selenium and tellurium removal unit. Once the 

selenium and tellurium have been removed, the product is sent to a copper electrowinning circuit. 

The selenium and tellurium needs to be removed in order to prevent poisoning of the copper 

cathodes in the electrowinning circuit (Lamya 2007).  

This project will focus on the second and third stage pressure leaching process. The typical operating 

conditions are given in Table 2.1 (Miskin 2015).  

Table 2.1: Pressure leach process typical operating conditions (Miskin 2015).  

Operating condition Compartment 

1 2 3 4 

Temperature (ᴼC) 130 130 125 140 

Level (%) - - 70 80 

Redox potential (mV) 350 - 380 - 450 - 480 520 - 550 

Acid concentration (g/L) 18 - 25 15 – 20 - 35 - 45 

 

The autoclave is typically operated at a pressure of 5.5 bar and temperatures of 125˚C - 140˚C 

(Dorfling 2012). Temperatures above 150˚C will damage the linings in the autoclave. There are two 

autoclaves available at the BMR. The autoclaves can be operated in parallel if an increased 

production rate is required. A complete process flow diagram of the pressure leach section is 

provided in Appendix A.  
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Figure 2.1: Simplified flowsheet of the BMR..
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2.2 Process Chemistry 

The process chemistry of the pressure leaching process can be categorized as either base metal 

leaching chemistry or PGM leaching chemistry. The base metal leaching chemistry is provided in 

section 2.2.1 and the PGM leaching chemistry is provided in section 2.2.2. 

2.2.1 Base Metals 

Rademan et al. (1999), Lamya (2007) and van Schalkwyk (2011) all investigated the first stage Ni-Cu-

Fe-S matte leaching with sulphuric acid. Both oxygen and sulphuric acid are required to rapidly 

remove the Ni from the matte, while Cu present in the recycled spent electrolyte is precipitated back 

through cementation and metathesis reactions. 

Rademan et al. (1999) investigated the pressure leaching of the first stage leach residue. It was 

concluded that the base metal leaching chemistry is observed in three steps.In the first step, nickel is 

leached from the residue, while copper ions are precipitated back. Reactions 1 – 4 shows both the 

nickel dissolution and cupper precipitation (Rademan et al. 1999) 

Ni + 2H+ + 0.5O2  Ni2+ + H2O        Reaction 1 

Ni3S2 + 2H+ + 0.5O2  Ni2+ + 2NiS + H2O       Reaction 2 

Ni3S2 + 2Cu2+ 
 Cu2S + NiS + 2Ni2+       Reaction 3 

Ni3S2 + Ni + 4Cu2+ 
 2Cu2S + 4Ni2+       Reaction 4 

The copper can then be removed through reaction 5 (Dorfling 2012). 

5Cu2S + 2H+ + 0.5O2  Cu2+ + 5Cu1.8S + H2O      Reaction 5 

Copper is both leached and precipitated in the second step. The dissolution of copper is given in 

reaction mechanisms 6 – 8 (Rademan et al. 1999) 

25Cu1.96S + 8H+ + 2O2  4Cu2+ 25Cu1.8S + 4H2O      Reaction 6 

16Cu2S + 2H+ + 0.5O2  Cu2+ + Cu31S16 + H2O      Reaction 7 

10Cu31S16 + 44H+ + 11O2  22Cu2+ + 16Cu1.8S + 22H2O     Reaction 8 

The final step, step three, involves the simultaneous leaching of both copper and nickel as given in 

reaction mechanisms 9 – 12 (Rademan et al. 1999) 

5Cu1.8S + 8H+ + 2O2  4Cu2+ + 5CuS + 4H2O      Reaction 9 

5Cu1.8S + 8Fe3+  4Cu2+ + 5CuS + 8Fe2+       Reaction 10 
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2Ni3S4 + 2H2O + 15O2  6Ni2++ 4H+ + 8SO4
2-      Reaction 11 

2Ni3S4 + 6Cu2+ + 2H2O + 3O2  6Ni2+ + 6CuS + 4H+ + 2SO4
2-    Reaction 12 

Two groups of the most important reactions occurring in the fourth and final leaching compartment 

were defined by Steenkamp and Dunn (1999). The first group involves the leaching of the first stage 

leach hydrolysis products as given by reactions 13 -14. 

Cu(OH)2CuSO4 + H2SO4  2CuSO4 + 4H2O      Reaction 13 

2Fe(OH)SO4 + H2SO4  Fe2(SO4)3 + 2H2O       Reaction 14 

The second group is defined by the oxidation of the sulphide minerals, as given by reactions 15 – 17 

(Steenkamp and Dunn 1999).  

NiS + 2O2  NiSO4         Reaction 15 

2Cu2S + 2H2SO4 + 5O2  4CuSO4 + 2H2O       Reaction 16 

CuS + 2O2  CuSO4         Reaction 17 

2.2.2 Platinum Group Metals 

The PGMs consists out of platinum (Pt), rhodium (Rh), ruthenium (Ru) and iridium (Ir), other precious 

metals (OPMs) is defined as the latter three. Dorfling (2012) investigated the leaching mechanisms of 

the OPMs.  

Cementation reactions occurs with all OPMs, resulting in the formation of oxides as shown in 

reaction 18 and 19, with {X} representing the OPM. The cementation can either occur with copper or 

nickel (Dorfling 2012).  

8{X}3+ + 3Cu9S5 + 38O2  8{X}O2 + 27Cu2+ + 15SO4
2-     Reaction 18 

2{X}3+ + Ni3S4 + 4H2O + 8O2  2{X}O2 + 3Ni2+ + 8H+ +4SO4
2-    Reaction 19 

The OPM’s present in the alloy phase or as an oxide, can be leached according to reactions 20 and 21 

(Dorfling 2012). 

4{X} + 3O2 + 12H+  4{X}3+ + 6H2O       Reaction 20 

2{X}O2 + 6H+  2{X}3+ + 3H2O + 0.5O2       Reaction 21 

The remaining OPM-sulphide minerals can be leached through reactions 22 – 24 respectively 

(Dorfling 2012).  
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Ir2S3 + 6O2  2Ir3+ + 3SO4
2-        Reaction 22 

Rh2S3 + 6O2  2Rh3+ + 3SO4
2-        Reaction 23 

4RuS2 + 2H2O + 15O2  4Ru3+ + 8SO4
2- + 4H+       Reaction 24 

2.3 Pressure leaching system dynamic model 

2.3.1 Model development 

A dynamic model of the pressure leaching process was developed by Dorfling (2012). Batch 

experiments were conducted by Dorfling (2012) in order to determine the rate constants for 21 of 

the chemical reactions in the pressure leaching process. Mass and energy balances along with 

constitutive equations were used to complete the open-loop dynamic model. The final model 

consists of 217 ordinary differential equations. The model predicts the extent of leaching of Cu, Fe, 

Ni, Rh, Ir and Rh. Pt and Pd leaching are not included in the dynamic model.  

The MATLAB® model was transferred to a Simulink® model by Haasbroek and Lindner (2015). A flow-

sheet of the dynamic model is provided in Figure 2.2. Refer to Appendix A for a complete process 

flow diagram of the Simulink® model.  

Several assumptions were made by Dorfling (2012) with the development of the dynamic model. 

These assumptions were investigated by Miskin (2015) through model validation. A summary of the 

model validation is provided in section 2.3.2. 
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Figure 2.2: Simplified dynamic process model flow-sheet.  
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2.3.2 Model validation 

Miskin (2015) followed a validation approach set out by Sargent (2005). The Sargent (2005) validation 

approach consists of four categories: data validity, conceptual model validation, computerized model 

validation and operational validation. The assumptions made by Dorfling (2012) were all included in 

the four validation categories.  

Several model updates were incorporated by Miskin (2015) during the model validation process. The 

updates resulted in a more robust model with the final goal of being able to accurately simulate 

abnormal process conditions.  

Dorfling et al. (2013) noted that the extent of leaching predicted by the model was inaccurate. Miskin 

(2015) was unable to improve the extent of leaching predicted by the dynamic model. This is due to 

the experimental constants determined through the experimental leaching tests. Higher acid 

concentrations were used by Dorfling (2012) during the experimental tests than is typically observed 

in the BMR. However, the dynamic model can adequately predict the dynamic changes from process 

changes and disturbances. 

2.3.3 Control implementation 

Miskin (2015) further aimed to improve the dynamic process model with the implementation of the 

actual control layers present at the BMR. Miskin (2015) first implemented the regulatory control 

present at the BMR. All regulatory controllers currently present at the pressure leaching process 

were successfully incorporated and validated. A summary of the regulatory controllers present at the 

pressure leaching process are provided in Table 2.2. Table 2.2 provides the controller tag, controlled 

variable (CV), manipulated variable (MV) and controller algorithm. Controller algorithms include 

proportional integral (PI) and proportional integral derivative (PID) controllers. Refer to appendix A 

for a complete process flow diagram with process controller tags. 

Four supervisory controllers present at the pressure leaching process were also included in the 

dynamic process model. 33 alarm systems and 37 interlocks were included by Miskin (2015). It was 

also noted by Miskin (2015) that most alarm systems were set to default values and not in use. 

However, the alarm systems set points are not suitable when using the dynamic model, due to the 

offset in predictions between the plant and the dynamic model. 
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Table 2.2: Dynamic process model regulatory process controllers.  

Controller Tag Controlled Variable (CV) Manipulated Variable (MV) Control algorithm 

Flow control 

FIC-0106 Flow (Stream 1) Valve (Stream 1) PI 

FIC-0101 Valve (Stream 2) Valve (Stream 2) PI 

FIC-1102 Valve (Stream 3) Valve (Stream 3) PI 

FIC-0202 Valve (Stream 4) Valve (Stream 4) PI 

FIC-0201 Valve (Stream 5) Valve (Stream 5) PI 

FIC-0203 Valve (Stream 7) Valve (Stream 7) PI 

FIC-0205 Valve (Stream 9) Valve (Stream 9) PI 

FIC-3001A Valve (Stream 10) Valve (Stream 10) PI 

FIC-3001B Valve (Stream 11) Valve (Stream 11) PI 

FIC-3001C Valve (Stream 12) Valve (Stream 12) PID 

FIC-3002 Valve (Stream 14) Valve (Stream 14) PI 

FIC-0401 Valve (Stream 15) Valve (Stream 15) PI 

FIC-0150-3 Valve (Stream 21) Valve (Stream 21) PI 

FIC-0150-4 Valve (Stream 20) Valve (Stream 20) PI 

FIC-0150-5 Valve (Stream 18) Valve (Stream 18) PI 

FIC-0150-9 Valve (Stream 19) Valve (Stream 19) PI 

FIC-3003 Valve (Stream 22) Valve (Stream 22) PI 

Level control 

LIC-0101 Level (TK-10) Flow (FIC-0106) Cascade PI 

LIC-0201 Level (TK-20) Flow (FIC-0203) Cascade PI 

LIC-0401 Level (TK-40) Flow (FIC-0401) Cascade PID 

LIC-151 Level (TK-150) Flow (FIC-0150-9) Cascade PID 

LIC-3002 Level (compartment 3) Flow (FIC-3002) Cascade PI 

LIC-3003 Level (compartment 4) Flow (FIC-3003) Cascade PI 

Density control 

- Density (Stream 5) Flow (FIC-0101) Feedforward 

Temperature control 

TIC-3001 Temperature (compartment 1) Flow (FIC-0205) Cascade PI 

TIC-3003 Temperature (compartment 2) Valve (CW in AC2) PID 

TIC-3004 Temperature (compartment 3) Valve (CW in AC3) PI 

TIC-0401 Temperature (TK-40) Valve (CW in TK-40) PI 

TIC-3005 Temperature (compartment 4) Valve (Stream 13) PI 

Pressure control 

PIC-3001 Pressure (Autoclave) Flow (Stream 10+11+12) Cascade PI 
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2.3.4 Stochastic disturbance modelling (random walks) 

In order to further mimic true plant operation, Miskin (2015) introduced stochastic input disturbance 

changes in the form of input random walks. These random walks simulate varying compositional 

input conditions. Upper and lower bounds were determined from historical plant data. A random 

seed is used to initialize the random walk from a random position.  

Figure 2.3 show Ru, Rh, Fe, Ir, Ni, Cu input concentration variations. The scaled concentrations 

variations are similar to that observed from historical plant data.  

 

Figure 2.3: Stochastic input disturbance modelling example. Concentrations are scaled, and show the 

variation over a 365 day period (Miskin 2015).  

2.4 Summary 

It is clear that the pressure leach at the BMR has received significant attention through, most 

recently, the research conducted by Miskin (2015) and Dorfling (2012). The dynamic model now 

poses the potential to be used for the accurate evaluation of potential process changes as mentioned 

in Chapter 1, section 1.3. Furthermore, the dynamic model provides the potential to not only 

investigate the efficacy of potential process changes, but also to investigate the profitability of these 

potential process changes.  
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Chapter 3: Literature review 

Chapter 3 provides an in-depth literature review on multivariate fault diagnosis and economic impact 

assessment. The literature will form the basis from which to evaluate the potential benefit and 

implementation of the multivariate fault diagnosis methods.  

A fault library developed by Miskin (2015) is described in section 3.1, followed by a brief summary on 

the impact of each individual fault on the process. Linear and nonlinear multivariate statistical fault 

detection and identification methods are described in sections 3.2 – 3.4. Hyper-parameter selection 

for both PCA and KPCA is described. Significant results from previous fault detection and identification 

results are investigated and summarized.  

An economic performance evaluation technique is discussed in section 3.5. Significant results from 

previous economic impact assessments are investigated and summarized.  

3.1 Faults in the process engineering industry 

3.1.1 Process faults and failures 

A fault is defined by Isermann (2005) as “an unpermitted deviation of at least one characteristic 

property of the system from the acceptable, usual, standard condition.” (Isermann, 2005, p.20). A 

failure is defined by Isermann (2005) as “a permanent interruption of a system’s ability to perform a 

required function under specific operating conditions” (Isermann, 2005, p.20).  

Faults in the chemical/metallurgical engineering industry can be further categorized according to the 

sources of the specific faults. These faults can be abrupt, intermittent or can develop over several 

months depending on the nature of the fault. Each type of fault appearance is described in Figure 

3.1. The abrupt fault is immediate, while the incipient fault effect develops over a certain period of 

time. The intermittent appears and disappears inconsistently with time (Isermann, 2005).  
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Figure 3.1: Fault types:  a) abrupt, b) intermittent and c) incipient. 

3.1.2 Impact of faults in the process engineering industry 

Any abnormal process behaviour can lead to a number of problems, including deviations in product 

purity, production/throughput limitations, increased maintenance etc. (Russel et al. 2000). According 

to Venkatasubramanian et al. (2003) the petrochemical industry loses $20 billion a year due to 

abnormal (faulty) process conditions.  

3.1.3 BMR fault database 

Miskin (2015) developed a fault database for the pressure leaching process present at the BMR. The 

faults were obtained from expert knowledge, following a site visit by Miskin (2015). A total of 

seventeen faults were identified and categorized as actuator failure, structural failure, incorrect 

operator intervention, sensor failure or controller malfunctions.  

A total of eight faults were successfully modelled and incorporated into the dynamic pressure 

leaching model. It is possible to simulate some faults; however, it is impossible to incorporate some 

faults into the current dynamic model resolution or the current dynamic model scope e.g. the 

simulation of the crystallization of metals cannot be incorporated into the resolution of the current 

reaction kinetics.  

All the simulated faults are provided in Table 3.1. All the faults either have a medium or high priority 

for mitigation according to expert knowledge collected by Miskin (2015).  
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Table 3.1: Simulated fault database. All faults have either a medium or high priority for mitigation (Miskin 

2015). 

# Fault  Classification Priority for fault mitigation 

1 Valve blockage (density 

disturbance) 

Actuator failure High 

2 Valve wear Actuator failure High 

3 Valve stiction Actuator failure Medium 

4 Pump impeller wear Structural failure High 

5 Solid build-up in cooling coils Structural failure High 

6 Peristaltic pump tube failure Structural failure High 

7 Sulphuric acid controller misuse Operator intervention Medium 

8 Bubbler level sensor blockage Sensor failure Medium 

 

The above faults simulated by Miskin (2015) will be the faults considered in this project. Single fault 

simulations were carried out by Miskin (2015) and the individual fault impacts were noted through 

key performance indicators (KPIs). Results obtained by Miskin (2015) for each fault are summarized 

in sections 3.1.3.1 – 3.1.3.8. The location of each fault is indicated in Figure 3.2.  
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Figure 3.2: BMR simulated fault locations and fault types.  

Actuator failure 
Structural failure 
Incorrect operator intervention  
Sensor failure 
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3.1.3.1 Valve Blockage (density disturbance) 

A valve in the first stage leach residue stream often blocks, resulting in a density disturbance. Five 

density spikes were incorporated into the first stage residue feed stream, in order to simulate the 

fault occurrence. The density spikes are based on historical plant data of the fault (Miskin 2015). 

The largest deviation was observed in the level of second stage slurry preparation stage. However, 

the disturbance had a lesser effect on downstream processing. Increased base metal filtrate content 

in all the pressure leach compartments was observed. This was attributed to an increase in first stage 

solid residue flow. The resulting increase in solids resulted in a decreased PGM concentration in the 

pressure leach liquid residue, due to an increased reaction surface area (Miskin 2015).  

Miskin (2015) noted that although the effects of the disturbance were quite small and the changes in 

base metal and PGM concentration is not unwanted, the fault occurs almost every 24 hours. The 

cumulative impact of the fault can have a detrimental impact on the process.  

3.1.3.2 Valve Wear 

The outlet valve of the fourth pressure leaching compartment suffers from significant valve wear. 

The valve wear was modelled by simulating the change of the valve towards a quick opening valve. 

Historical plant data of the valve wear was used to determine the degree of wear (Miskin 2015).  

The largest variation occurred at the origin of the fault i.e. the fourth compartment outlet stream. 

The fault had an overall insignificant impact, since the valve travel distance was decreased, resulting 

in better process performance. However, the controllers will struggle to mitigate further 

disturbances, since they were tuned for a linear response valve and not a quick opening valve (Miskin 

2015).  

3.1.3.3 Valve Stiction 

The valve on the second stage slurry preparation tank spent electrolyte feed was identified as being 

subject to the occurrence of valve stiction (Miskin 2015). 

The fault caused oscillatory behaviour in the flow controller input. The resulting valve stiction heavily 

influences both the performance of the spent electrolyte controller and the second stage slurry 

preparation tank density controller. The final result is a decrease in the outlet density of the second 

stage preparation tank (Miskin 2015).  

The resulting decrease in density has a significant effect on the temperature and pressure of the 

pressure leaching system. Since the entry stream to the pressure leaching system has a constant 

volumetric flow rate, the decrease in density causes a decrease in solids concentration and an 

increase in both sulphuric acid and formic acid concentrations. The decrease in solids presence 
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resulted in a decreased amount of heat released per unit of volume. The lack of heat released caused 

significant deviations in both temperature and pressure throughout each compartment (Miskin 

2015).  

Furthermore, the amount of PGMs in the liquid phase increased on average by 78% throughout each 

compartment. Miskin (2015) concluded that this is due to an increase in the rates at which the PGMs 

are leached.  

3.1.3.4 Pump Impeller Wear 

The pump at the outlet of the flash recycle tank often suffers from impeller wear, due to the highly 

abrasive slurries. Miskin (2015) incorporated the fault by assuming a constant rate of impeller wear.  

Initially the flash recycle tank outlet valve is able to deal with the disturbance, however, once it 

became saturated, the flow in the flash recycle tank outlet stream decreased dramatically. The fault 

caused large deviations throughout the process. The largest deviations occurred in the third 

compartment (Miskin 2015). 

The first compartment temperature and outlet flow-rate oscillated significantly. In order to rectify 

the temperature variation, the controller tries to increase the inlet flow-rate; however, the worn 

pump impeller is unable to increase the flow-rate. The result is significant increases in the flash 

recycle tank level (Miskin 2015).  

The first compartment level immediately decreases. The temperature controllers are unable to reach 

their set-points in all compartments. The largest deviations are noted in the third leaching 

compartment (Miskin 2015).  

In order to keep the flash recycle tank from overflowing, the feed stream from the second stage 

preparation tank is decreased. This causes the level in the second stage slurry preparation tank to 

start rising significantly. The first stage leach residue feed stream flow is then reduced, to combat the 

rapid rise in tank volume. The spent electrolyte and formic acid flow-rates are controlled via a feed-

forward controller, with the first stage leach residue stream as input. However, due to large noise in 

the first stage leach residue measurement, the second stage slurry preparation tank increases for 

several hours, before the level starts to drop again. This resulted in an unacceptable decrease in the 

second stage slurry preparation tank outlet density (Miskin 2015).  

3.1.3.5 Solid Build-up in cooling coils 

Cooling coils present in the pressure leaching system compartments can get blocked due to solid 

build-up from hard water being used. The second compartment cooling coil was considered as the 

location of the fault (Miskin 2015).  
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Initially the valve present on the cooling coil tries to increase the flow-rate, however it quickly 

reaches saturation. The second compartment temperature can then no longer be controlled. The 

fault then caused large deviations in several sections of the process (Miskin 2015).  

Large temperature deviations were noted in both compartments one and two. The second 

compartment temperature increases significantly, reducing the partial pressure of oxygen, which in 

turn reduces the rate at which base metals are leached in the first compartment. The lack of base 

metal leaching results in a temperature decrease in the first compartment (Miskin 2015).  

Again, significant increases in PGM concentrations were noted in all the compartments. An increase 

in base metal concentration was observed in the solid phase for all compartments. The reason for 

the deviations is mainly due to the temperature variations, which directly influence the reaction 

rates (Miskin 2015).  

3.1.3.6 Peristaltic Pump tube failure 

A peristaltic pump tube upstream from the pressure leaching system often fails and causes the pipe 

to block. The fault was simulated as an abrupt stoppage of the first stage residue stream (Miskin 

2015). 

The largest deviation was observed to be the PGM concentration in the exit stream of the pressure 

leaching system. Again, the density in the second stage slurry preparation tank is decreased, resulting 

in a decreased availability of base metal reaction surface. The PGM leaching rate is then increased 

which results in an increased concentration of PGMs in all compartments (Miskin 2015).  

3.1.3.7 Sulphuric Acid controller misuse 

The sulphuric acid concentration in the flash recycle tank is manually kept above 20 g/L. Operators 

often open the flow of sulphuric acid into the flash recycle tank and then forget to close it again. 

Miskin (2015) determined that the sulphuric acid stream will be left unattended for 2 hours, before it 

is realized that the sulphuric acid concentration is too high. The result is simulated as a sulphuric acid 

concentration spike approximately every two hours (Miskin 2015). 

The largest deviation was observed in the pressure of each compartment. Furthermore, a decrease in 

base metal concentrations in all compartments was observed. This is primarily due to the increased 

acid availability, resulting in an increased leaching of base metals. Furthermore, the same is true for 

the PGM concentration in the liquid phase (Miskin 2015).  
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3.1.3.8 Bubbler level sensor blockage 

Most level sensors currently present in the BMR are bubbler level sensors. Occasionally solids are 

lodged into the bubbler level sense tubes, resulting in an increased pressure drop and ultimately in a 

positive biased level reading (Miskin 2015).  

A level sensor situated in the third compartment was identified as the possible location of the fault. A 

bias is added to level reading in order to simulate the fault. The result is an immediate decrease in 

the actual level of compartment three (Miskin 2015).  

The largest deviation was observed in the third compartment level controller performance. 

Furthermore a significant increase in the PGM concentration in the third compartment liquid phase 

was observed. Since the volume is decreased, the residence time is also decreased, resulting in 

insufficient time for PGM precipitation. The insufficient PGM precipitation resulted in an increased 

amount of base metals present in the third compartment solid phase (Miskin 2015).  

3.2 Fault detection 

3.2.1 Univariate fault detection 

Univariate statistical monitoring involves the monitoring of individual process variables and is the 

traditional and most basic process monitoring method. The upper and lower control limit of the 

variable are pre-defined and an alarm is triggered when the variable is detected outside its set 

control limits (Russell et al. 2000). A univariate monitored process variable example is provided in 

Figure 3.3. Once an observation moves outside either the lower or upper control limit, it indicates a 

potential abnormal process condition.  
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Upper control limit

Lower control limit

Figure 3.3: Univariate monitoring chart example. Both upper and lower limits are indicated in red. Process 

measurements are indicated in green.  

The main drawback of univariate statistical monitoring is the lack of considering the other process 

variables when determining the upper and lower control thresholds for an individual process 

variable. Most modern chemical processes require that the information contained within the 

correlation between variables is taken into account for accurate process monitoring (Russell et al. 

2000). 

Another potential problem with univariate process monitoring is the high dimensionality of the 

process data. Most modern chemical and metallurgical processes have multiple process 

measurements which results in a highly dimensional process measurement data set. Monitoring each 

of these process measurements individually will be challenging and can easily result in alarms 

triggered exceeding the allowed amount per process operator.  

Figure 3.4 provides an example where univariate monitoring will be ineffective. The individual upper 

and lower control limits of each process variables do not indicate any abnormal process condition. 

However, observing the trend in Figure 3.4, it is clear that there is an abnormal (faulty) 

measurement.  
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Abnormal 
measurement

 

Figure 3.4: Univariate detection unable to capture correlation between process variables. Univariate control 

limits are indicated in red. Process measurements are indicated in green.  

Correlations between process variables need to be taken into account for accurate fault detection 

results. Multivariate statistical methods are utilized to capture these inter correlations.  

3.2.2 Multivariate fault detection 

As discussed in section 3.2.1, univariate statistical monitoring is an insufficient fault detection 

method. The correlations between process variables need to be taken into account for accurate fault 

detection results. Multivariate statistical monitoring techniques have been developed to capture the 

‘hidden’ information in variables and thus offer a more accurate and safe fault detection technique.  

A generalized framework for data-driven fault detection methods is given by Aldrich and Auret 

(2013) in Figure 3.5. Process operation data, X, is collected from the specific process. The process 

operation data consist of all measured variables at specific time intervals. Features are extracted 

from the process operation data matrix and captured in a score matrix F. The score matrix F, is then 

projected back to the original input space, resulting in a new reconstructed data matrix {X}. Finally a 

residual matrix E can be calculated from the original and reconstructed input space. Changes in the 

projection, and therefore the process, can be monitored with the E and F matrices (Aldrich and Auret 

2013).  
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Figure 3.5: Generalized Framework for data-driven fault detection. X is the scaled process operation data. 

Changes in the projections can be monitored using the E (residual) and F (score) matrix (Redrawn from 

Aldrich and Auret 2013).  

Data driven fault detection methods can further be classified between steady-state and non-steady-

state processes. The non-steady-state processes consist of either batch or continuous processes 

(Aldrich and Auret 2013).  

Although the dynamic model is continuous non-steady-state, the study will focus on the steady-state, 

data-driven, multivariate fault detection methods. This is due to the robustness of the steady-state 

methods and the general simplicity when compared to dynamic methods. The steady-state process 

data can be classified as either classical Gaussian/linear data, or non-Gaussian/nonlinear data 

(Aldrich and Auret 2013).  

3.2.3 Linear feature extraction 

Principal Component Analysis (PCA) is a linear feature extraction method involving the orthogonal 

transformation of data from the original coordinate system. The new coordinate system is defined by 

the principal components of the original system. The main goal is then to define a certain number of 

principal components which captures most of the variability in the data and thus reduce the original 

dimensions of the input data (Scholkopf et al. 1998).  

Figure 3.6 provides a two-dimensional example of orthogonal transformation. The data are projected 

onto the principal components which are transformed to a new coordinate system. The new 

coordinate system is referred to as the feature space (Scholkopf et al. 1998). 
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Figure 3.6: Two-dimensional orthogonal transformation. Process measurements are indicated in green. First 

plot represent the input space and second plot represent the principal component feature space.  

When considering a multi-dimensional input space, a significant amount of the input space variance 

can be explained with the first few principal components, assuming a significant amount of 

correlation exists in the input space. These principal components can be used to reduce the size of 

and denoise the original input space (Scholkopf et al. 1998). 

PCA, when used as a fault detection method, consists of a training stage followed by a verification 

stage and finally the application stage. The training stage involves the application of PCA on pre-

defined normal operating condition (NOC) data. The NOC-data should contain no faults and only 

Principal 
component 2

Principal 
component 1
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process disturbances. However, this can be problematic in industry, since data is not readily available 

with no unwanted process deviations (Aldrich and Auret 2013).  

After the validation stage, the results obtained from the training stage can be used on new, unseen, 

data. Faults can then be detected with the new projected data moving outside the training feature 

space (Aldrich and Auret 2013).  

The quality of the fault detection results is not only dependent on the quality of the NOC data, but 

also the amount of NOC data. Russel et al. (2000) calculated the minimum required amount of data 

for the given amount of process variables at a 95% significance level. The data requirements are 

provided in Table 3.2 for a specific amount of observation variables.  

Table 3.2: Minimum data requirements for specific amounts of observation variables (Russel et al. 2000). 

Observation variables Data sample size requirement 

1 19 

2 30 

5 63 

10 118 

25 284 

50 559 

100 1110 

3.2.3.1 Principal component analysis calculation 

Consider a NOC data matrix X with n samples and m process variables. The data first needs to be 

standardized. The mean, µ, and standard deviation, 𝜎, of each variable vector xi [1 x m] is calculated 

as shown in equations 3.1 and 3.2, followed by the calculation of the centred NOC-data vector  𝐱𝒊̃, as 

shown in equation 3.3 (Aldrich and Auret 2013). 

𝜇 =
1

𝑛
 ∑ 𝒙𝑖

𝑛
𝑖=1            (3.1) 

𝜎 =  √∑ (𝒙𝑖
𝑛
𝑖=1 − 𝜇)2/𝑛          (3.2) 

𝒙𝑖̃ = (
𝐱 − 𝜇

𝜎
)            (3.3) 

The centred data matrix  𝐗̃ is used to calculate the covariance matrix C.  

𝐂 =
1

𝑛
∑ 𝒙𝑖̃𝒙𝑖̃

𝑇 𝑛
𝑖=1           (3.4) 

Next, Eigen decomposition of the covariance matrix results in the eigenvectors P and eigenvalues λ. 

Stellenbosch University  https://scholar.sun.ac.za



Chapter 3: Literature review Page 30 
 

𝐂𝐏 =  𝛌𝐏           (3.5) 

The variance in the data is accounted for in the eigenvalues 𝛌. Each principal component, pi, 

corresponds to the specific eigenvalue 𝛌𝒊. Typically the first few principal components will account 

for most of the variance in the original data set X. The scaled data can now be projected onto the 

principal components, resulting in the score matrix, T, as shown in equation 3.6 (Russel et al. 2000).  

𝐓 = 𝐗𝐏            (3.6) 

The number of retained principal components A is determined by calculating the cumulative fraction 

of variance contribution for each principal component up to a certain pre-specified variance 

threshold (Aldrich and Auret 2013).  

Once the number of retained principal component has been calculated, the original data can be 

reconstructed. The reconstructed data matrix {X} is calculated as shown in equation 3.7. The retained 

principle components is given in the matrix PA and the corresponding scores are given in the score 

matrix TA (Russel et al. 2000).  

{𝐗} =  𝐓𝐀𝐏𝐀
𝐓           (3.7) 

Now that most of the variance in the data is reserved in the retained principle components, PA, 

new/unseen scaled process data can be mapped onto these principle components as shown in 

equation 3.8. The resulting feature matrix TA
Test can then be used to reconstruct the new process 

data, as shown in equation 3.9 (Aldrich and Auret 2013). 

𝐓𝐀
𝐓𝐞𝐬𝐭 =  𝐗𝐓𝐞𝐬𝐭𝐏𝐀           (3.8) 

{𝐗}𝐓𝐞𝐬𝐭 =  𝐓𝐀
𝐓𝐞𝐬𝐭 𝐏𝐀

𝐓          (3.9) 

If the number of retained variables is less than four, a simple automated visualization of the score 

matrices, of both the NOC-data and unseen data, will be sufficient for process monitoring, since 

abnormal behaviour will be easily recognized from the automated visualization. However, when the 

number of retained variables exceeds three, it is no longer possible to visualize the score matrices 

(Aldrich and Auret 2013).  

It is therefore required that results are summarized and monitored against some threshold. 

Abnormal behaviour can then be automatically detected once results moves outside the threshold. 

In order to summarize the PCA results, fault detection diagnostics are used. The fault detection 

diagnostics are described in section 3.2.3.1. 
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3.2.3.1 PCA fault detection diagnostics 

Two fault detection diagnostics are utilized. As described in Figure 3.5, deviations can be noted from 

either the score matrix or the reconstructed matrix. The principal component feature space are 

monitored with the Modified Hotelling’s T2 statistic. The reconstructed matrix is monitored using the 

Q-statistic or Squared Prediction Error (SPE). 

The Modified Hotelling’s T2 statistic (TA
2) represents the deviation (distance) of a projection from the 

centre of the space defined by the retained principal components (Aldrich and Auret 2013). The 

calculation of TA i
2 for a given sample i  is given in equation 3.10 (Kourti 2002).  

TA i
2 =  ∑ ( 

𝑡𝑖
2

𝜆𝑖  
⁄ )𝐴

𝑖=1                      (3.10) 

The TA
2 statistic is therefore used to monitor whether a new projected score has moved further away 

from the centre of the retained principal components, as first predicted under the NOC. An upper 

threshold can be set for the TA
2 statistic from the NOC results, which can be used to detect abnormal 

conditions when new calculated TA
2 statistics exceed the calculated threshold.  

The SPE represents the distance between a real observation and its reconstructed sample (Aldrich 

and Auret 2013). The SPE calculation for a sample i is provided in equation 3.11 (Kourti 2002). 

𝑆𝑃𝐸𝑖 =  ∑ (𝐱̃𝑖 − {𝐱}𝑖 )2𝑚
𝑖=1                     (3.11) 

A large deviation in the SPE statistic indicates that the original retained principal components are no 

longer adequate in explaining the input space variance. As with the TA
2 statistic, a threshold is 

calculated from the NOC PCA results. The determination of the threshold will be discussed in section 

3.3. 

3.2.4 Non-linear feature extraction 

PCA exploits the linear correlations in the data to detect abnormal behaviour. However, when non-

linear correlations are present in the data, PCA might no longer be an adequate fault detection 

technique (Jemwa 2006). Kernel methods are used to capture non-linear correlations in data. Kernel 

Principal Component Analysis (KPCA) is a popular non-linear fault detection method (Aldrich and 

Auret 2013).  

In order to account for the non-linearity, instead of determining orthogonal vectors in the input 

space, {X}, the KPCA finds orthogonal vectors in an implicit dot-product space: {H} (Scholkopf et al. 

1998). In this input space, {H}, the data is expected to be more linear and thus PCA is again 

applicable. The data is transferred from the input space, {X} to the feature space, {H} is done with a 

nonlinear mapping function (Aldrich and Auret 2013).  
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The KPCA mapping is described in Figure 3.7. The measurement vector x, is first projected to the dot-

product space with a nonlinear mapping function Φ. The mapped vector Φ(x) is then projected to the 

linear feature space with PCA (Aldrich and Auret 2013). 

Input space {X} Feature space {H}

x

Φ(x) Mapping to {H}

PΦ(x) 

KPCA feature space

Projection in {H}

 

Figure 3.7: KPCA projection redrawn from Auret and Aldrich (2013). A single observation from the input 

space is first mapped to an infinite dimensional plane φ(x). PCA is then applied, and φ(x) is mapped to the 

linear KPCA feature space.  

3.2.4.1 Kernel-PCA calculation 

In the feature space, {H}, the covariance matrix, C can be calculated with equation 3.12. The mapping 

function is represented by Φ(x) (Scholkopf et al. 1998) 

𝐂 =
1

𝑛
 ∑ 𝛷(𝑥𝑖)𝛷𝑛

𝑖=1 (𝑥𝑖)𝑇 ,    𝑤𝑖𝑡ℎ    ∑ 𝛷(𝑥𝑖) = 0𝑛
𝑖=1                  (3.12) 

The dot product can be replaced by a kernel trick. The kernel trick avoids the non-linear explicit 

mapping shown in equation 3.12, with the use of a kernel function (Scholkopf et al. 1998). Eigen 

decomposition is used to diagonalize the covariance matrix C, as shown in equation 3.13, where m 

refers to the single eigenvector and eigenvalue pair (Aldrich & Auret 2013). 

𝐂𝒑𝒎 =  𝛌𝒎𝒑𝒎                      (3.13) 

The eigenvector, pm, can be calculated with equation 3.14 with the coefficients αi (Lee et al. 2004). 

𝐩𝐦  =  ∑ αiΦ(𝐱i)
n
i=1                      (3.14) 

Substituting equations 3.12 and 3.14 into 3.13 will result in equation 3.15. 

𝛌𝒎 ∑ αi 𝛷(𝑥𝑖)𝛷𝑛
𝑖=1 (𝑥𝑗)

𝑇
=  

1

𝑛
 ∑ αiΦ(𝐱i)

n
i=1  ∙  ∑ ( 𝛷(𝑥𝑖)𝛷𝑛

𝑖=1 (𝑥𝑖)  ∙  𝛷(𝑥𝑗))               (3.15) 

The kernel matrix, K, can then be defined as: 
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𝐊𝐢𝐣 =  𝛷(𝑥𝑖) ∙ 𝛷(𝑥𝑗)                     (3.16) 

Equation 3.16 can now be substituted into equation 3.15 and be reduced to equation 3.17. 

𝐊2𝛂𝑚  =  𝑛𝝀𝑚𝛂𝑚𝐊                     (3.17) 

Equation 3.17 can be reduced to the eigenvalue problem shown in equation 3.18. (Scholkopf 1998). 

The eigenvalue in equation 3.17 is scaled:  𝝀𝑚̃ =  𝝀𝑚/𝑛. 

𝐊𝛂𝑚 =  𝝀𝑚̃𝛂𝑚                      (3.18) 

The Kernel matrix given in equation 3.16 can be defined by a kernel function. There are several types 

of kernel functions. The Gaussian kernel is the most common and is given in equation 3.19. (Lindner 

2014).  

𝐊𝐢𝐣 = 𝑘(𝑥𝑖, 𝑥𝑗) =  exp (−
|| 𝑥𝑖 − 𝑥𝑗 ||

2𝑐2 )                    (3.19) 

The norm between two sample vectors i and j is calculated in the nominator, while c is the kernel 

width. The kernel width can be selected a priori and will be discussed in section 3.2.4.2.  

The calculated kernel matrix needs to be centred as shown in equation 3.20. 1nxn is a matrix of ones 

of size [n x n]. (Aldrich and Auret 2013). 

𝐊̌ = 𝐊 − 𝐊 
1𝑛×𝑛

𝑛
− 

1𝑛×𝑛

𝑛
𝐊 + 

1𝑛×𝑛

𝑛
𝐊 

1𝑛×𝑛

𝑛
                  (3.20) 

The scores can now be calculated by projecting the mapping Φ(x) onto the eigenvectors.  

𝐭𝐦 =  
1

√𝝀𝑚̃

 ∑ 𝛼𝑖,𝑚 𝑛
𝑖=1 𝐊𝐢𝐣                    (3.21) 

New unseen data, consisting of q observations, can now be projected onto the eigenvectors obtained 

from the training data. The kernel matrix for the test data is first calculated as shown in equation 

3.22 (Gutteriez-Osuna, R, 2013). 

𝐊𝐣𝐢
𝑻𝒆𝒔𝒕  =  𝑘(𝑥𝑗

𝑇𝑒𝑠𝑡 , 𝑥𝑖)                     (3.22) 

The test kernel should then be centred as shown in equation 3.23 (Gutteriez-Osuna, R, 2013).  

𝐊̌𝑇𝑒𝑠𝑡 =  𝐊𝐓𝐞𝐬𝐭 − 𝐊𝐓𝐞𝐬𝐭 1𝑛×𝑛

𝑛
−

1𝑞×𝑛

𝑛
 𝐊 +

1𝑞×𝑛

𝑛
𝐊

1𝑛×𝑛

𝑛
                 (3.23) 

Finally the scores can be calculated for the test data as given in equation 3.24 (Gutteriez-Osuna, R, 

2013). 
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𝐭𝐦 =  
1

√𝝀𝑚̃

 ∑ 𝛼𝑖,𝑚 𝑛
𝑖=1 𝐊𝐣𝐢

𝑻𝒆𝒔𝒕                     (3.24) 

3.2.4.2 KPCA detection diagnostics 

The TA
2 and SPE statistics are again used as monitoring statistics for KPCA. The TA

2 is calculated again 

as given in equation 3.9.  

Since data are not reconstructed as with PCA, the SPE statistic needs to be modified. Lee et al. (2004) 

proposed a method to calculate the SPE statistic, by defining the SPE as the difference in the sum of 

scores, when all principle components are retained and the actual number of retained principal 

components. The SPE can be calculated as shown in equation 3.25 (Lee et al. 2004).  

𝑆𝑃𝐸 =  ∑ (𝑡𝑛
𝑗

)2𝑚
𝑗=1 −  ∑ (𝑡𝑛

𝑗
)2𝐴

𝑗=1                    (3.25) 

3.2.4.3 Kernel width selection 

The kernel width c used in the equation 3.19 is an important hyper parameter. Selecting an 

acceptable kernel width is crucial for optimal KPCA performance. However, there is a lack of robust 

fault detection kernel width selection methods in literature. Popular methods used in literature 

require prior knowledge of both the NOC and fault data.  

The Gaussian kernel function uses a multivariate normal distribution to determine the similarity 

(kernel matrix entry) between samples i and j. The kernel width determines the standard deviation of 

the multivariate normal distribution.  

A smaller kernel width will result in less similarity between a samples i and j. This will in turn result in 

more sparsely mapped data. A larger kernel width will in turn increase the similarity between 

samples and result in more concentrated mapped data.  

Aldrich and Auret (2013) suggest that the kernel width is calculated using cross-validation with the 

use of the pair wise distances of the calculated norms in the input space. The method aims to 

minimize the reconstruction error (SPE). However, Aldrich and Auret (2013) used a different SPE than 

the one provided in equation 3.25. 

Therefore, a new kernel width selection method is proposed and is provided in Appendix B. The 

proposed kernel width selection method aims to select a kernel width only based on the normal 

operating conditions (NOC) data. Furthermore, the method is based on the assumption that the 

optimal kernel width will result in a Gaussian projected feature space. The effect of kernel width is 

also further discussed in Appendix B.  
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The proposed method is compared to published KPCA fault identification studies. The studies 

investigated the Tennessee Eastman process (TEP). The TEP is a popular benchmark process used in 

fault detection studies. The process data consist of 54 process variables and 21 fault data. Refer to 

Russel et al. (2000) for an in depth description of the process.  

3.2.5 Significant results from previous fault detection studies 

The following section will focus on significant results from previous fault detection studies. The 

studies are categorized according to their respective applications. 

3.2.5.1 Metallurgical application 

Groenewald et al. (2006) investigated the application of PCA on an industrial grinding circuit. PCA in 

conjunction with expert knowledge from the grinding circuit successfully detected shifts in the 

process. It was noted that the availability of good quality process data has a significant effect on the 

PCA performance. It was recommended that non-linear feature extraction methods should be 

further investigated.  

Wang et al. (2015) applied Dynamic PCA (DPCA) to a simulated industrial Se/Te removal and copper 

electrowinning circuit. DPCA is an extension of PCA which allows for time-lagged information which 

was used to allow for the large residence times present at the copper electrowinning circuit. It was 

found that the DPCA was effective in detecting process faults.  

Wu et al. (2002) investigated the design of an expert controller for a zinc leaching process. The 

expert controller was based on several steady-state models. An inference engine was used to detect 

and diagnose faults. Knowledge base and plant data was used to identify and locate faults from the 

inference engine. The system was implemented on a real-world process. Results showed that faults 

can be detected early and be successfully diagnosed.  

Jemwa and Aldrich (2006) investigated the use of KPCA as fault detection method in mineral 

processing operations. A framework was developed for the use of kernel methods for fault detection. 

Support vector multi-classifiers were used to determine the optimal kernel width. The framework 

was applied to a PGM froth flotation case study and a calcium carbide furnace case study. The study 

highlighted the importance of proper confidence interval selection for detection diagnostics.  

3.2.5.1 Non - Metallurgical application 

Lee et al. (2004) developed a new KPCA online monitoring strategy. The strategy was applied to a 

simple simulation case study and a biological waste water treatment case study. The results were 

compared to PCA results. The results showed that KPCA effectively captured the correlations 

between process variables. The problem of selecting the kernel width parameter was discussed and 
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suggested as future work. The problem of mapping KPCA scores back to the original input space was 

also discussed.  

Phillpotts (2016) investigated the use of non-linear fault detection and diagnosis methods on a pilot 

scale distillation column. PCA, KPCA, linear discriminant analysis and kernel discriminant analysis 

were all investigated as fault detection methods. The importance of optimal kernel width selection 

was noted. Both PCA and KPCA successfully detected abnormal operating conditions.  

3.2.5.3 Summary 

The significant results from previous studies, discussed in sections 3.2.5.1 and 3.2.5.2 emphasized 

the importance of accurate NOC data selection. The potential for fault diagnosis strategies on 

metallurgical processes was further emphasized.  Furthermore, the literature show that KPCA has the 

potential to provide improved fault detection results, when compared to PCA.  

3.3 Fault detection performance metrics 

3.3.1 Monitoring charts 

The detection diagnostics, TA
2 and SPE, can be evaluated over time in order to monitor the process 

performance. The simplest monitoring chart is the Shewhart chart. The Shewhart chart is a plot of 

both TA
2 and SPE over time, which only considers the current process conditions. If there is significant 

movement in either of the TA
2 or SPE statistics, an alarm will be triggered, indicating abnormal 

conditions (Russell et al. 2000). The drawback of the Shewhart chart is the lack of consideration of 

small NOC changes. These small NOC changes can result in false alarms being triggered. The PCA and 

KPCA models will then have to be retrained. Figure 3.8 provides a Shewhart chart example.  
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Figure 3.8: Shewhart chart example. Green samples indicate TA
2 statistic and control limit is indicated in red.  
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3.3.2 Missing and false alarms 

When a TA
2 or SPE observation exceeds the calculated control limit, an alarm is triggered. The false 

alarm rate (FAR) is the percentage of total samples observed outside the control limit when no fault 

is occurring (Aldrich and Auret 2013). 

A missing alarm is defined as an observation where no alarm is raised under known fault conditions. 

The missing alarm rate (MAR) is defined as the percentage of total samples observed as missed 

alarms (Aldrich and Auret 2013).  

The true alarm rate (TAR) is defined as the amount of successful alarms triggered under fault 

conditions and can be calculated using equation 3.26, when the MAR is defined as a percentage 

(Lindner 2014).  

TAR (%) = 100 − MAR(%)                     (3.26) 

3.3.3 Receiver operator curve 

The receiver operator curve (ROC) is a plot of the TAR and FAR at different detection diagnostic 

control limits. Therefore it is a method for evaluating the chosen control threshold. A FAR of 0% and 

TAR of 100% is desired (Aldrich and Auret 2013).  

An example of a receiver operating curve is provided in Figure 3.9. From the receiver operating curve 

the upper limit selection can be evaluated. The TAR at a desired FAR can indicate the optimal 

performance achievable when moving the detection diagnostic control limit.  

 

 

 

 

 

 

 

 

 

Figure 3.9: Example Receiver Operating curve. 
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From the ROC, the area under the curve (AUC) can be calculated with numerical integration as shown 

in Figure 3.10. 

 

Figure 3.10: AUC calculation example. AUC is calculated with numerical integration as shown in blue.  

The AUC can be calculated to assess how close the ROC is to the ideal conditions. If the AUC is one, it 

indicates optimum fault detection performance; however, an AUC below 0.5 indicates that the 

performance is worse than a random selection of whether a fault is occurring (Lindner 2014).  

3.3.4 Detection delay 

The detection delay is used to evaluate how fast a fault is detected. It is defined as the time taken, 

before a certain number of consecutive alarms are triggered. A small detection delay is desired. A 

detection delay of three samples were used by both Aldrich and Auret (2013) and Lindner (2014).  
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3.4 Fault identification 

Once a fault detection diagnostic exceeds its threshold, the location of the fault needs to be 

identified. The fault location refers to the variables indicating the cause of the fault and not the fault 

symptoms. The following section will describe methods to be used to identify the fault location.  

3.4.1 Traditional contribution plots 

SPE and score distance (TA
2) contribution plots are traditionally used to identify faults (Russel et al. 

2000). The fault location is identified as the process variables who contribute most to an out of 

control detection diagnostic. The SPE contribution of variable j for each sample i is calculated as 

follows (Alcala and Qin 2009).  

𝐶𝑖,𝑗 (𝑆𝑃𝐸) = (𝐗𝐢,𝐣 −  {𝐗}𝐢,𝐣)
2
                (3.27) 

The score distance contributions can be calculated as follows (Auret 2010).  

𝐶𝑖,𝑗 (𝑇𝐴
2) = 𝐓𝒊,𝒋𝛌−𝟏

𝒊𝐏𝐣
𝐓𝐗𝐢,𝐣                 (3.28) 

The traditional contribution plots can suffer from fault smearing. Fault smearing occurs when several 

process variables are flagged as abnormal from the contribution plots. However, these flagged 

process variables only point to the symptoms of the fault and not the cause of the fault. This is 

problematic, since a delayed fault identification negates the gain from the early fault detection 

(Alcala and Qin 2009).  

3.4.2 Reconstruction based contribution plot 

Alcala and Qin (2009) proposed reconstruction based contributions (RBC) to address the problem of 

fault smearing for PCA. The reconstruction based contribution is defined as the amount of 

reconstruction required along each variable direction that minimizes the detection diagnostic. The 

SPE RBC is given in the following equation (Alcala and Qin 2009). 

𝑅𝐵𝐶𝑗
𝑆𝑃𝐸 =

𝐶𝑗

𝐶𝑗𝑗̃
                    (3.29) 

Cj is the traditional contribution and Cjj is the jth diagonal element of the residual subspace matrix. 

The residual subspace is the principal components not retained and can be calculated as: 

𝐂̃ =  𝐏̃𝐏̃𝑇  ,   𝐏̃ = 𝐏𝑖 ×(𝑗−𝐴)                 (3.30) 

The T2-statistic RBC is given in the following equation. (Alcala and Qin 2009). 

𝑅𝐵𝐶𝑗
𝑇2

=  
(𝛿𝑖

𝑇𝐃𝐱)
2

𝑑𝑖𝑖
                  (3.31) 
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D can be calculated as follows, with dii the ith diagonal element of D.  

𝐃 =  𝐏𝐀𝛌𝐀𝐏𝐀
𝐓                   (3.32) 

A threshold is calculated from the 99th percentile of the NOC contributions for each monitored 

process variable. Relative contributions can then be calculated and the largest contributing variables 

can be identified once a fault has been detected (Auret 2010). 

3.5 Economic impact assessment 

The section aims to provide the required background information for an economic impact 

assessment. Economic impact assessments are used to evaluate the profitability of process changes. 

Economic performance functions (EPFs) provide the basis for an economic impact assessment. 

Advanced process controllers utilize EPFs to optimize process operating by decreasing variations 

through control. Fault diagnosis utilize EPFs to minimize the time spent away from a predetermined 

optimal economic process operating conditions.  

The possible economic benefits from a process addition can further be subdivided into the tangible 

and nontangible benefits. The tangible benefits are usually easy to measure and is the focus of most 

economic impact studies. The intangible benefits are more difficult to measure, e.g. increased 

process safety. These benefits are often not considered in economic impact assessments.  

3.5.1 Economic performance function development methodology 

Wei (2010) developed an economic performance function (EPFs) and joint performance functions 

(JEPFs) methodology. The methodology was developed to help in economic performance assessment 

of process controllers. A schematic outline of the methodology is provided in Figure 3.11 followed by 

a brief description.  
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Figure 3.11: Performance function development methodology by Wei (2010).  

The first stage in the methodology is to determine the required information to successfully develop 

the EPFs. A clear understanding of the process operations and process economics is required in this 

stage (Wei 2010).  

The second stage involves the gathering of the required information determined in the first stage. 

There are three sources of information for the development of the EPFs. These sources are: surveys, 

literature and plant tests. Surveys focus on expert information gathered from the process in 

question, while literature refers to the different types of EPFs and previously developed EPFs (Wei 

2010).  

The third stage is especially important when only considering a section of a processing plant. The 

specific control objectives might not always be to optimize profit, but rather to optimize throughput, 

process safety etc. The control objectives specific to the section of the process should aim to 

represent the corporate and manufacturing strategies and therefore the EPF should be constrained 

to operate in line with these strategies (Wei 2010). 

The assumptions made when developing EPFs are crucial for the overall accuracy of the EPF. The 

clear understanding of the process objectives developed in the previous stages is required to make 

suitable assumptions. Small or negligible economic impacts should be neglected when it will simplify 

the development of the EPF (Wei 2010).  
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All the information gathered in the first four stages are then used to develop the performance 

functions. Plant data can be used, however, such data is usually confidential (Wei 2010). This can be 

avoided with the use of percentage values. Oosthuizen et al. (2004) conducted an economic 

evaluation of an electric arc furnace controller, described the additional costs as a percentage of the 

normal operating cost of the electric arc furnace.  

Finally, JEPFs can be developed, if required. The aim of JEPFs is to not report overlapping economic 

information. Due to the highly correlated systems present in most modern chemical processes, 

process variables often overlap, which could result in EPFs reporting a single economic gains/losses 

repeatedly (Wei 2010). 

3.5.2 Economic performance evaluation of advanced process controllers 

Bauer and Craig (2007) introduced an advanced process controller (APC) economic performance 

evaluation framework. The framework aims to provide an APC life-cycle economic assessment. 

Although the focus is on APCs, there are many similarities when considering a fault diagnosis 

method. The life-cycle assessment framework is provided in Figure 3.12.  

The life-cycle assessment highlights the importance of re-assessing the APC performance once it has 

been implemented. If the APC performance is unsatisfactory, the base case APC design should be re-

evaluated. The survey conducted by Bauer and Craig (2007) confirmed that many APCs are 

abandoned following shifts in the process normal operating conditions (NOC). 

The observations made by Bauer and Craig (2007) can be translated to a fault diagnosis system. 

When considering a fault diagnosis system, the base case refers to the NOC training data. If the 

system performance is unsatisfactory, the NOC data should be re-evaluated. Furthermore, poor 

model training will result in either poor fault detection or high false alarm rates. Both will result in 

the fault diagnosis system being abandoned by plant operators.  

These observations are important when considering the durability and ultimately the profitability of 

a fault diagnosis system. The system should be robust to process disturbances and shifts in the NOC, 

while still detecting faulty process conditions prior to any significant deviations in the process NOC.  
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Figure 3.12: APC economic performance evaluation Figure redrawn from Bauer and Craig (2007). + And – 

refer to the decision whether controller performance is acceptable.  

3.5.3 Significant results from previous economic performance studies 

Bauer et al. (2007) developed a profit index to evaluate the potential economic benefit from 

improved process control. The linear, quadratic and Clifftent performance functions were individually 

investigated. The profit index quantifies the possible economic gain from shifting the operation point 

closer to a specified operating limit. The main drawback with this method is the implementation of 

exponential functions for the profit index.  
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Bauer and Craig (2007) conducted an industry survey on APC economic performance estimation. 

Following the survey, an APC economic performance framework was developed. The survey 

concluded that economic benefit estimation methods have not kept up with the fast growth in APC.  

The survey identified the main profit contributors as: increased throughput, increased process 

stability, reduced energy consumption and increased yield without quality giveaway. Another survey 

in Japan also noted that APC stopped operating following changes in the process NOC. This is due to 

the lack of APC benefit re-assessment after a shift in the NOC.  

Bin Shams (2010) developed a methodology to quantify the economic loss when faults are not 

detected under standard fault detection (univariate) conditions. Cumulative sum (CUMSUM) charts 

and PCA were investigated as fault detection methods. A methodology was developed for tuning the 

process controllers in conjunction with a monitoring system. A minimization function was used to 

determine controller tuning parameters. The minimization function aimed to optimization of the 

related cost without any fault detection and the cost variability in the manipulated and controller 

variables. Three TEP faults which were not detected in previous fault detection studies were 

investigated. Controllers were re-tuned, resulting in early detection of these faults and therefore a 

potential economic benefit. The importance of optimal controller tuning in conjunction with a 

monitoring system was highlighted by the study.  

Wei and Craig (2009) completed an economic performance assessment of two run-of-mine (ROM) 

process controllers. Economic performance functions were specifically created for the ROM circuits 

with the methodology developed by Wei (2010). The economic performance functions were used to 

compare a proportional-integral-derivative (PID) controller with a nonlinear model predictive 

controller (NMPC). The NMPC outperformed the PID controller, since it allowed for operating 

conditions closer to the optimal economic performance set point as determined by the economic 

performance function.  

Olivier and Craig (2017) investigated the economic operability in the presence of abnormal 

conditions. Monte Carlo-based analysis is first used to determine whether process controllers can 

still operate within a desired state in the presence of abnormal conditions. EPFs are then used to 

determine whether the process will be more profitable if the process is shut down in order to repair 

the fault. The proposed method was applied to a simulation of a run-of-mine ore milling circuit. The 

results were promising, highlighting the importance of an economic analysis when deciding to shut 

down a process.  
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Chapter 4: Project Objectives and tasks 

Chapter 3 provided the relevant literature on fault diagnosis and economic impact assessment. The 

literature is used to address the objectives set out in Chapter 1, section 1.4. Chapter 4 provides the 

subsequent tasks relating to each objective.  

The four formal project objectives are:  

1. Design and application of process monitoring approach for fault detection and identification 

to simulated fault data. 

2. Evaluation of fault detection and identification approach based on process monitoring 

performance metrics. 

3. Definition of economic key performance indicators for the pressure leaching process. 

4. Evaluation of fault detection and identification approach based on economic key 

performance indicators for the pressure leaching process.  

The first objective is the design of a fault detection and identification approach. Both PCA and KPCA 

will be used as fault detection methods. Traditional contributions and reconstruction-based 

contributions will be used as fault identification methods.  

Following the completion of the first objective, the developed fault detection and identification 

models will be applied to simulated fault data. The simulated fault data is gathered from the fault 

library implemented by Miskin (2015). The performance of each method will be evaluated using the 

traditional performance measures discussed in section 3.3. 

Economic key performance indicators will be identified and incorporated as economic performance 

functions using the methodology developed by Wei (2010). The performance of the fault detection 

and identification methods will then finally be evaluated using the economic key indicators identified 

in the third objective.  

The tasks relating to each objective are provided and summarized in Figure 4.1. 
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Figure 4.1: Project objectives and tasks summary.  

  

1. Design fault detection and identification approach

 Develop PCA and KPCA Matlab® models
 Validate model results
 Develop traditional contribution plot models
 Develop RBC plot models

2. Apply fault detection and fault identification models

 Simulate fault conditions
 Apply fault detection and identification models to 

simulated fault data
 Evaluate fault detection performance using 

traditional performance metrics

3. Define economic key performance indicators

 Consult expert knowledge on economic key 
performance indicators

 Develop economic performance functions based 
on Wei (2010) methodology

4. Evaluate fault detection and identification performance based on 
economic performance

 Apply economic performance function to 
simulated fault data

 Evaluate potential economic gain from early fault 
detection 
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Chapter 5: Methodology: Fault detection and identification 

Chapter 5 addresses the first project objective. The fault detection and identification model 

development methodology is provided. The methodology is divided into three sections. 

The first section describes the data pre-processing step. The main objective is to extract only the data 

which will be available at the actual BMR from the simulated data. The data is then sub-sampled to 

individual fault detection methods requirements.  

Both PCA and KPCA model development methodologies are described in the second step. A general 

methodology is provided for each method. Hyper-parameter selection, specifically for the process, for 

each method is then discussed. 

The fault identification methodology is provided in the third step. Traditional and reconstruction 

based contributions methodologies are provided for PCA and only traditional contributions for KPCA.  

5.1 Data pre-processing 

The objective of the data pre-processing step is to extract only the data which would be available on 

the actual process from the simulated process data. The data should then be sub-sampled at a pre-

determined sampling interval. The simulation data should be the same as that available at the actual 

plant in order to be more representative of reality and more accurately evaluate the fault detection 

and identification results.  

5.1.1 Fault detection sampling interval 

The amount of data available is unlimited, but the amount of data used is limited by the available 

computational power. This consideration is especially important when applying the hyperplane 

projection required for KPCA.  

Once the fault detection sampling interval has been determined, the measurements which would be 

available on the plant need to be extracted from the simulated data. These measurements can be 

classified as either online or offline measurements.  

5.1.2 Online Sampling 

Online measurements include all sensor measurements with instantaneous measurement results 

available. A total of 35 sensor measurements are included in the scope of the dynamic model. The 

overall online measurement pre-processing approach is provided in Figure 5.1.  
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Figure 5.1: Online sub-sampling approach.  

The data from the online measurements is first extracted from the simulated data set. At the same 

time, the desired online sampling time vector is calculated from the fault detection sampling time 

and the simulation duration, as shown in Figure 5.1.  

The desired sampling vector is compared to the time vector of the extracted simulated data. If the 

time vectors are equal, the measurement data at that point is saved. This process is repeated until 

the data available at fault detection sampling interval has been saved. Online data is readily available 

(every few seconds) at the plant.  

5.1.3 Offline Sampling 

Filtrate and residue samples are collected within the process and analysed offline. The composition 

of each sample is determined during offline analysis. Offline samples can be collected as either a grab 

or a composite sample. Grab samples are samples taken at some discrete time intervals. Composite 

samples are numerous smaller samples collected over a given time period. Offline samples collected 

within the pressure leaching system are provided in Table 5.1.  
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Table 5.1: Offline sample types and required analysis times.  

Sample Sample type Time before results are 

available (hours) 

first stage residue Grab 8 

third stage residue  Grab 8 

fourth stage residue Composite 24 

third stage filtrate Grab 8 

fourth stage filtrate Grab 8 

Preparation tank density Grab 1 

 

The analysis time in table 5.1 indicates the time required before results become available. The fourth 

compartment residue is the only composite sample and is collected in a filter press over a 24-hour 

period. The offline sub-sampling approach is given in Figure 5.2.  

Similar to the online sub-sampling method, the offline measurements are first extracted from the 

simulated data and compared to the desired offline sampling vector. However, when the compared 

vectors are unequal the previous available measurement is displayed. Once all the measurements 

have been extracted, a specific sample time lag is introduced. The objective of the time lag is to allow 

for the required offline analysis time. Therefore, composition results will only be available once the 

simulated offline analysis has been completed.  

Only the instantaneous data is saved for grab samples. The 24 hour average compositions are saved 

for the composite sample.  

 

Stellenbosch University  https://scholar.sun.ac.za



Chapter 5: Methodology: Fault detection and identification Page 50 
 

 

Simulated 
data

Offline 
measurements

Equal
 Offline 

sampling time

Simulation 
duration

Offline 
sampling time 

vector

Not equal

Sample type

Offline 
samples

Display 
previously 

available values

Online sub-sampling 
method

Sub-sampled
offline measurements

Key:

Data

Decision

Calculation

 

Figure 5.2: Offline sub-sampling approach.  
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5.2 Fault detection  

A general fault detection methodology for both PCA and KPCA is provided followed by a discussion of 

the specific hyper-parameter selection methodology.  

5.2.1 General PCA fault detection approach 

A general PCA fault detection training approach is provided in Figure 5.3. The processed training 

dataset serves as input. The input data is standardized and the input mean and standard deviation 

are saved. PCA is then applied to the standardized data with the amount of retained variance serving 

as the only hyper-parameter. The selection of the amount of retained variance is discussed in section 

5.2.3. The number of retained principal components and the principal components are then 

calculated and saved.  

Next the fault detection diagnostics can be calculated. The scores from the reduced feature space are 

reconstructed to calculate the SPE statistic. The scores are used to calculate the T2-statistic.  

Verification NOC data serves as input in order to calculate the detection diagnostic control limit. The 

selection of the upper percentile is discussed in section 5.2.3. The control limits for both detection 

diagnostics are consequently saved.  
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Figure 5.3: General PCA fault detection training approach.  
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Following the PCA application on the training and verification data, PCA is applied to new unseen data. A 

PCA application approach is provided in Figure 5.4. 

The pre-processed unseen data includes NOC data and fault data. The unseen data is first standardized 

with the saved training set mean and standard deviation. The standardized unseen data is then projected 

onto the reduced feature space using the saved principal components and number of retained principal 

components.  

The fault detection diagnostics can then be calculated as in the training case. The detection diagnostics 

are then compared to their respective control limits. The traditional fault detection performance metrics 

are then calculated. The FAR is calculated using the NOC data from the unseen data. The MAR and DD is 

calculated from the fault data. The ROC is determined by varying the upper control limit using the unseen 

NOC data. The AUC is then calculated from the ROC. The performance of PCA as fault detection method 

can then be evaluated with the use of the traditional fault detection performance metrics.  

 

Stellenbosch University  https://scholar.sun.ac.za



Chapter 5: Methodology: Fault detection and identification Page 54 
 

Unseen Data
Principal components 

and amount of retained 
variables

Training set standard 
deviation and mean

Data standardization
Reduced feature space 

projection

Projected 
data

Modified Hotelling’s T2 

statistic
SPE

SPE control limit
T2 Statistic control 

limit

Traditional fault 

detection performance 

metrics

Traditional fault 

detection performance 

metrics

Fault detection performance 
evaluation

Key:

Data

Input

Calculation

Output

 

Figure 5.4: PCA fault detection application.  
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5.2.2 General KPCA fault detection approach 

The KPCA training approach is provided in Figure 5.5. The NOC training set used is limited by the 

computational power available. Therefore, the NOC training set from PCA is sub-sampled in order to 

allow for the increased computational requirement.  

The sub-sampled processed NOC training data is first standardized. The training set mean and 

standard deviation is saved. The standardized data is then projected to an infinitely large hyperplane 

with the kernel width and Gaussian kernel function. The kernel matrix is centred and the centred 

kernel matrix is saved.  

PCA is then applied in the hyperplane which results in a reduced feature space. The principal 

components and number of retained principal components are saved. The TA
2 statistic is calculated 

as with PCA. The SPE statistic is calculated from the scores and number of retained principal 

components. The control limits are calculated for both fault detection diagnostics with NOC 

verification data. Both control limits are then saved.  
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Figure 5.5: KPCA training approach
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Following the KPCA application on the training and verification data, KPCA is applied to new unseen 

data. A KPCA application approach is provided in Figure 5.6. 

The pre-processed unseen data includes NOC data and fault data. The unseen data is first 

standardized with the saved training set mean and standard deviation. The standardized unseen data 

is then projected onto the hyperplane with the Gaussian kernel function. The new data is then 

centred and projected onto the reduced feature space.  

The fault detection diagnostics can then be calculated as in the training case. The detection 

diagnostics are then compared to their respective control limits. The traditional fault detection 

performance metrics are then calculated. The FAR is calculated using the NOC data available from 

the unseen data. The MAR and DD is calculated from the fault data. The ROC is determined by 

varying the upper control limit using the unseen NOC data. The AUC is then calculated from the ROC.  

The performance of KPCA as fault detection method can then be evaluated with the use of the 

traditional fault detection performance metrics.  
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Figure 5.6: KPCA fault detection approach 
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5.2.3 Hyper-parameter selection 

The hyper parameter selection for each fault detection method is discussed in the following section.  

5.2.3.1 PCA 

The amount of retained variance and detection diagnostics control limits serve as PCA model inputs. 

The amount of retained variance is set to 90% and upper control limits are calculated as the 99th 

percentile from the verification data detection diagnostics. The 90% variance retention is popular in 

fault detection studies. The 99th percentile control limit should result in a 1% FAR when applied to 

unseen NOC data.  

5.2.3.2 KPCA 

The amount of retained variance and detection diagnostics control limits is calculated similar to PCA 

when considering KPCA. This allows for a fair comparison between PCA and KPCA results.  

The kernel width selection is important to ensure good KPCA fault detection performance. A 

proposed kernel width selection methodology was developed and is provided in Appendix B. In 

Appendix B the effect of kernel width is discussed and the method is also applied to the Tennessee 

Eastman case study to evaluate the proposed approach against other published kernel selection 

methods.  

5.3 Fault identification 

The following section provides the fault identification approach for each fault detection method. An 

overall contribution plot methodology is provided in Figure 5.7. 
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Figure 5.7: Contribution plot methodology.  

The contribution plots are calculated for whichever fault diagnostic detects the fault first. The 

specific fault identification method is then applied to the fault data. The relative contributions are 

calculated from the training data contributions.  

The contribution plots are then produced at the given detection delay. The average contributions 

from the detection delay and five consecutive samples are used to produce a real-time contribution 

plot. The fault identification performance can then be evaluated from the contribution plots.  

Considering the large number of monitored variables, a single contribution plot will be difficult to 

evaluate. The contribution plots are therefore split into four sections as shown in Figure 5.8.  
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Figure 5.8: Process contribution plots representation. Preparation section indicated in red, pressure leach 

section indicated in green and recycle section indicated in blue. 

The first section is the preparation section. This section includes the second stage preparation and 

flash recycle tank. The second section is the autoclave, including all four compartments. The third 

section is the recycle section. This section includes the second stage discharge tank, second stage 

discharge thickener and third stage preparation tank. Offline samples are considered as a separate 

section.  

Process variable names are also abbreviated. The abbreviations are given in Table 5.2.  

Key:

1. Preparation section

2.Pressure leach section

3.Recycle section
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Table 5.2: Fault identification process variable abbreviations.  

Abbreviation Definition 

PT Pressure leach preparation tank. 

FR Flash recycle tank. 

AT# Autoclave. # indicates the compartment number.  

RT Third compartment recycle tank.  

SL Third compartment recycle solid/liquid 

separator. 

RM Third compartment recycle mixing tank 

F Flow measurement 

L Level measurement 

T Temperature measurement.  

OX Oxygen 

SE Spent electrolyte 

SA Sulphuric acid  

W Water  

PROD Product 

REC Recycle 

 

The type of measurement is given first, followed by its location and the stream component. All 

flowrates are seen as feed rates e.g. ‘FFRSA’ is the sulphuric acid feed flow to the flash recycle tank. 
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5.4 Repeatability 

As discussed in Chapter 2, section 2.3.4, random walks were incorporated by Miskin (2015) to 

simulate varying model inputs. This allows for each fault simulation to initiate from different initial 

conditions.  

The different input compositions result in different model dynamic behaviour. This allows for each 

simulation run to be different. Each fault was simulated ten times to evaluate the robustness of each 

fault detection method. Initial random walk seeds were selected at random. The initial seeds are 

saved to allow for the replication of each simulation.  

5.5 Post hoc analysis 

Detection results needs to be statistically evaluated in order to determine whether a given method 

does provide increased detection performance. The fault detection results will be first evaluated 

using one-way analysis of variance (ANOVA). The ANOVA will compare the fault detection 

performance metrics results of the different fault detection methods. A significant ANOVA test result 

indicates at least one of the fault detection method results to differ from the other fault detection 

methods.  

The main drawback of a one-way ANOVA test is that it will not indicate which fault detection 

methods provided significantly different results from the compared methods. In order to tell which 

method provided significantly different results, the least significant difference (LSD) test is applied.  

The LSD test compares the individual means of each fault detection method by calculating the 

significant difference only for the two methods being compared (Fisher 1951).The one-way ANOVA 

test is first utilized in order to determine whether there is any significant difference in the fault 

detection performance metric results of the different fault detection methods. If ANOVA indicates a 

significant difference in fault detection method results, LSD test is applied to determine which 

detection method provides significant different results. 
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Chapter 6: Fault detection and identification results 

Chapter 6 provides the model training, fault detection and fault identification results, following the 

methodologies described in Chapter 5.  

Both PCA and KPCA model training results are discussed in section 6.1. Univariate fault detection 

results of each fault are compared to the PCA and KPCA detection results. The univariate fault 

detection methodology is provided in Appendix C.  

The traditional fault detection performance metrics discussed in Chapter 3, section 3.3, are used to 

evaluate and compare the fault detection results in section 6.2. ANOVA is followed by LSD post hoc 

analysis to determine any significant differences in each detection performance metric. The complete 

fault detection and post hoc analysis results are provided in Appendix D.  

Traditional and reconstruction based contribution plots are used to identify faults from both PCA and 

KPCA detection results (section 6.3). Complete contribution plots are provided in Appendix E. The 

fault detection and identification results are summarized in section 6.4. 

6.1 Model training 

As previously mentioned in Chapter 3, section 3.2.5, and Chapter 5, section 5.2; the selection of 

accurate normal operating conditions (NOC) data is challenging when considering the constant 

changes in the process operating conditions and feed compositions. It is important to include these 

input changes in the NOC training data set. This will allow for a more robust training model. The 

stochastic disturbance inputs (random walks) modelled by Miskin (2015) and discussed in Chapter 2, 

section 2.3, were used to develop a more robust training data set.  

In order to allow the composition random walks to reach both upper and lower bounds, each 

random walk variable gradient was increased. The NOC training data simulation was therefore ‘sped 

up’ with a factor of twenty to offer a more robust training data set. Offline sampling times were 

reduced by a constant factor of eight. A shortened online sampling interval of 0.01 hours was used. 

This increased the representativeness (in terms of as much input condition states covered as 

possible) of the NOC training data set. The resulting training set consists of 19210 observations and 

89 process variables.  

The amount of retained variance was set at 90% for both PCA and KPCA. Detection diagnostic 

control limits were selected at the 99th percentile of NOC verification data. Therefore, detection 

results are comparable for both PCA and KPCA since the verification data set false alarm rate should 

Stellenbosch University  https://scholar.sun.ac.za



Chapter 6: Fault detection and identification results Page 65 
 

be similar for both detection methods. A detailed description of the univariate training and 

application is provided in Appendix C.  

The PCA and KPCA application approaches were validated through a comparison to previously 

published fault detection studies. The validation results confirmed that both PCA and KPCA were 

comparable to previously published work. The validation results are provided in Appendix G.  

6.1.1 PCA 

The PCA model was successfully trained on the entire sped up training set. The number of retained 

components to explain 90% of the input variance is indicated in Figure 6.1. 

 

Figure 6.1: PCA cumulative variance plot. The number of retained variables required to explain 90% of the 

input space variance is indicated in red.  

Twenty eight principal components were retained in order to explain 90% of the input space 

variance. The first principal component explains approximately 22% of the input space variance. The 

cumulative variance plot clearly indicates that PCA can adequately reduce the input dimensions 

while still retaining significant input space variance.  

The training and verification score plot for the first two retained components is shown in Figure 6.2. 

Training data is indicated in green and verification data is indicated in blue.  
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Figure 6.2: Two dimensional PCA training and verification score plot. Training data indicated in green and 

verification data indicated in blue.  

Figure 6.2 shows a concentration of verification data. The verification data is not projected outside 

the two dimensional training data set projections and large variations are observed in the two 

dimensional projected space. These observations confirm the training data set is able to allow for 

significant variations in NOC data. The large training feature projection area is due to the large 

variations of the input random walks.  

Figure 6.1 showed that approximately 33 % of the NOC training data set variance can be explained 

with the first two principal components. The specific variable contributions to the first two principal 

components are shown in Figure 6.3. A variable contribution furthest from the origin (0, 0) shows 

the most significant contribution to the first two principal components. Offline samples are variables 

numbered 37 and above.  

-10 -5 0 5 10 15
-10

-8

-6

-4

-2

0

2

4

6

8

10

T1

T
2

 

 

Training

Verification

Stellenbosch University  https://scholar.sun.ac.za



Chapter 6: Fault detection and identification results Page 67 
 

 

Figure 6.3: PCA first two principal components variable contributions. Process variables furthest from the 

origin (0, 0) provide the largest contributions to the first two principal components.  

It is clear from Figure 6.3 that many process variables contribute significantly to the first two 

principal components. It is also noted from Figure 6.3 that offline sample variables contribute 

significantly more to the first two principal components, when compared to the online samples. This 

is again expected, when considering the large variations of the input random walks.  

Some variables also offer very similar contributions to both principal components. This can be due to 

strong correlations existing between variables. This is especially noted with many offline sample 

variables. It is expected that strong correlations exist between these variables due to the chemical 

reactions present in the autoclave.  

The training and verification data Shewhart charts are shown in Figure 6.4. The 99th verification 

percentile control limits are indicated in red.  
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Figure 6.4: PCA training Shewhart charts. Training data are shown in green, verification data in blue and the 

99th percentile control limit in red.  

Figure 6.4 shows the detection diagnostic control limits selected. A T2-statistic limit of 50.58 and SPE 

statistic limit of 49.14 were selected. Both detection diagnostics clearly do not deviate significantly 

from the training detection diagnostics. This confirms the observations made from Figure 6.2. The 

verification data is not projected outside the training data projection in all 28 dimensions.  

6.1.2 KPCA 

The sped-up training data set was sub-sampled due to computational power restrictions. The data is 

of type float and training required approximately 7-8 hours of CPU time. A 2nd generation Intel Core 

i7-980 processer was available with 16 GB RAM.  

A constant sub-sampling interval of 7 was selected which resulted in a training set consisting of 2700 

observations. The verification data was not sub-sampled in order to ensure fair detection diagnostic 

control limit selection. This will also potentially minimize the loss of NOC training data set 

information due to the sub-sampling.  
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The kernel width was selected based on the proposed kernel width selection method provided in 

Appendix B. The kernel width selection minimization function plot is provided in Figure 6.5. The 

minimization function (J) compares the Mahalonobis distances between training and verification 

data sets and chi-square distribution with A (retained variables) degrees of freedom. 

 

Figure 6.5: Kernel width minimization function. The minimization function (J) compares the Mahalonobis 

distances between training and verification data sets and chi-square distribution with A (retained variables) 

degrees of freedom.  

As shown in Figure 6.5, a kernel width of c = 79.13 was selected based on the minimization function. 

Figure 6.6 show the effect of kernel width size on the NOC training and verification first two principal 

component scores.  
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Figure 6.6: Effect of small and large kernel width on two dimensional feature space. The amount of retained 

variables (A) to explain 90% of the input space variance is indicated. Training data is indicated in green and 

verification data indicated in blue.  

Figure 6.6 clearly shows the smaller kernel width results in a larger two-dimensional feature space, 

while the larger kernel width results in a smaller two-dimensional feature space. The smaller kernel 

width over fitted the training data set resulting in verification data being projected outside the 

training data projections. The large kernel width selected results in data overlapping in the nonlinear 

hyper plane. The overlapping reduces the non-linearity of the hyper plane. The effect of kernel width 

size is further investigated and discussed in Appendix B.  

The KPCA cumulative variance plot for the first 89 principal components is provided in Figure 6.7. 

The number of principal components to be retained to explain 90 % of the NOC training set variance 

is shown in red.  
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Figure 6.7: KPCA cumulative retained variance. The amount of retained variables required to explain 90% of 

the input space variance is indicated in red. 

The cumulative variance plot in Figure 6.7 is exactly the same as the PCA cumulative variance plot in 

Figure 6.1. This is due to the large kernel width selected in Figure 6.5. The large kernel width results 

in the hyperplane projection, projecting data as if all data are from a multivariate normal 

distribution.  

The two-dimensional feature space training and verification plot is shown in Figure 6.8. Training data 

is indicated in green and verification data is indicated in blue.  
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Figure 6.8: KPCA training and verification two dimensional score plot. Training data indicated in green and 

verification data indicated in blue. 

The training and verification feature space projections is similar to that of PCA. Consider the shape of 

the verification data projection in both Figure 6.8 and Figure 6.2. The KPCA projection space seems 

to be a mirror image of the PCA projection space observed in Figure 6.2. However, the projected 

verification data clearly moves outside the two dimensional projected training data in Figure 6.8. 

This could be due to the significant sub-sampling for the KPCA training data set. The resulting 

projected training data is much sparser than the PCA projected training data. These observations 

again emphasises the importance of selecting the detection diagnostic control limits on the same 

verification data set.  

The training and verification data KPCA Shewhart charts are provided in Figure 6.9. The 99th 

verification percentile control limits are indicated.  

Stellenbosch University  https://scholar.sun.ac.za



Chapter 6: Fault detection and identification results Page 73 
 

 

Figure 6.9: KPCA training and verification Shewhart charts. Training data are shown in green, verification 

data in blue and the 99th percentile control limit in red. 

T2-statistic and SPE control limits of 116.1 and 20.90 were selected from the verification data. The T2-

statistic clearly indicates that the projected verification data moves outside the training feature 

space.  

Although the two-dimensional training feature spaces for both PCA and KPCA were similar in size, 

the KPCA T2-statistic control limit is much larger than that of PCA. This is expected due to the 

projected verification data moving outside the training and feature space and the significant sub-

sampling of the training data set. The larger control limits should in return provide realistic false 

alarm rates.  

The fault detection results are discussed in section 6.2, using the detection performance metrics 

described in Chapter 3, section 3.3. Refer to section 3.1.3 for an impact summary for each fault.  
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6.2 Fault detection 

Fault detection results are discussed in the following section. The density disturbance, valve wear, 

valve stiction and pump impeller wear detection results are provided in Figure 6.10. The solids build-

up in cooling coil, peristaltic pump tube failure, sulphuric acid controller misuse and bubbler level 

sensor failure detection results are provided in Figure 6.11. Mean detection results are shown, while 

standard deviations observed from replicates are indicated with error bars.  

The density disturbance (valve blockage) fault detection results are shown in Figure 6.10 (i). The 

density disturbance occurs right at the start of the process and has little impact on the process. It is 

therefore expected that the fault will be difficult to detect as it propagates through the process. 

Both univariate and KPCA were unable to detect the fault. Both PCA detection diagnostics were able 

to detect the fault in five of the ten replicates. The PCA detection diagnostics large standard 

deviations confirm the inconsistent detection delays. False alarm rates are below 4% for both PCA 

and KPCA.  

The post hoc analysis showed a significant difference in both PCA detection delays when compared 

to KPCA and univariate. A significant difference in the PCA SPE false alarm rate was noted when 

compared to univariate and KPCA SPE. The false alarm rate is, however, still acceptable below 5%. 

The PCA SPE offered the best AUC, while both KPCA and univariate have AUCs below 0.5, which is 

expected when considering the poor detection delays (AUC results reported in Appendix D).  

Both PCA detection diagnostics achieved the lowest missing alarm rates. This is expected when 

considering the detection delays shown in Figure 6.10 (i). The KPCA T2-statistic missing alarm rate 

indicates that some alarms were triggered under fault conditions. However, the alarms were not 

triggered consecutively resulting in no registered detection delay. The post hoc analysis confirmed 

this observation with no significant difference in missing alarm rates observed between PCA and 

KPCA.  

The valve wear detection results are shown in Figure 6.10 (ii). A transition time of 504 hours (3 

weeks) was used to more accurately simulate the fault occurrence and evaluate the fault impact. 

The valve wear changes the valve characteristic from linear to quick opening; however process 

controllers are able to deal sufficiently with the valve wear. It is therefore expected that the fault will 

be difficult to detect significantly early.  

Figure 6.10 (ii) shows that a univariate variable has the smallest mean detection delay. The fault is 

detected through the third residue offline sample. The fault is next detected by the KPCA T2-statistic 

and closely followed by the PCA T2-statistic. Large standard deviations are observed for the detection 
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delay results. The post hoc analysis however, did not show a significant difference in detection 

delays when comparing the T2-statistic results to the univariate results. This is expected considering 

the large standard deviations observed.  

The KPCA T2-statistic has the lowest mean missing alarm rate as shown in Figure 6.10 (ii). However, 

the post hoc analysis did not show any significant difference in the missing alarm rates. This is again 

expected when considering the large standard deviations observed and no significant difference in 

detection delays.  

The valve stiction detection results are shown in Figure 6.10 (iii). A transition period of 504 hours (3 

weeks) was used to more accurately simulate the fault occurrence and evaluate the fault impact. 

The valve stiction results in large valve oscillatory behaviour. It is therefore expected that the fault 

will be easier detected when compared to the valve wear.  

Figure 6.10 (iii) clearly shows the PCA SPE detecting the fault prior to both KPCA and univariate. This 

is confirmed by the post hoc analysis. The KPCA SPE mean detection delays are also smaller than any 

mean univariate detection delay. The fourth compartment residue sample has the smallest mean 

detection delay. Large standard deviations are observed in both KPCA detection diagnostics. 

The large standard deviation in PCA SPE false alarm rate is also noted. The false alarm rate is within 

ISA standards; however it is still far outside the 1% limit set through the verification data (refer to 

Appendix D for univariate control limit selection methodology).  

It is expected that the PCA SPE will have the smallest mean missing alarm rate considering the 

results observed in Figure 6.10 (iii). The post hoc analysis confirmed that the PCA SPE missing alarm 

rate is significantly lower than the univariate missing alarm rate, but not the KPCA SPE missing alarm 

rate.  

The pump impeller wear detection results are shown in Figure 6.10 (iv). The fault was simulated with 

a 504 hour (3 weeks) transition period. Once the impeller is fully worn, the flow to the autoclave 

significantly drops. The fault has a significant impact on the process. It is therefore desired that the 

fault should be detected prior to the impeller being fully worn. 

Figure 6.10 (iv) show that the KPCA T2-statistic has the best mean detection delay. Both KPCA and 

PCA detection diagnostics mean detection delays are below univariate. The post hoc analysis 

confirmed only the KPCA T2-statistic detected the fault significantly earlier than univariate.  
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The fault was univariate detected through the second stage product mixing tank level. The PCA SPE 

shows the lowest missing alarm rate. Again, this indicates the lack of consecutive alarms being 

triggered, when considering the detection delay results. 

 

Figure 6.10: Fault detection false alarm rate, detection delay and missing alarm rate results: i) density 

disturbance, ii) valve wear, iii) valve stiction, iv) pump impeller wear. Mean results are shown, with error 

bars indicating standard deviations. Univariate variable detected indicated in pink.  
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The solids build-up-in-cooling coil results are shown in Figure 6.11 (i).The solids build-up in cooling 

coil is an incipient fault with a transition time of 50 hours. Once the second compartment cooling 

coil is blocked, the temperature of the compartment quickly rises. It is therefore crucial that the fault 

is detected prior to when the cooling coil is completely blocked.  

From Figure 6.11 (i) it is clear that both PCA detection diagnostics have the lowest mean detection 

delay. Both KPCA detection diagnostics do not perform better than the best univariate detection 

variable. The post hoc analysis confirms that both PCA detection diagnostics have significantly lower 

detection delays when compared to both univariate and KPCA.  

The third compartment temperature is the first univariate variable to detect the fault. This detection 

time also indicates the time at which the cooling water flow controller can no longer deal with the 

decreased flow. The approximately 9 hours which PCA detects the fault prior to this is significant 

since it allows intervention prior to a total loss of cooling water flow.  

It is expected that both PCA detection diagnostics provide the smallest missing alarm rate. This 

observation is confirmed by the post hoc analysis for the PCA SPE statistic. However, the KPCA again 

does not perform better than the univariate detection variable.  

Peristaltic pump tube failure detection results are provided in Figure 6.11 (ii). The peristaltic pump 

tube failure is an abrupt fault. The pump failure results in an immediate drop of first stage residue 

flow. The fault has a significant and immediate impact on the process. It is therefore desired that the 

fault is detected as soon as possible.  

Figure 6.11 (ii) shows that all detection methods have a mean detection delay below 2 hours. The 

post hoc analysis confirms that the PCA SPE statistic detects the fault significantly earlier than both 

KCPA and univariate.  

The early PCA SPE detection delay could contribute to process safety when considering the high 

mitigation priority and immediate impact of the fault. Following on the detection results, it is 

expected that PCA SPE has the lowest missing alarm rate. This is confirmed by the post hoc analysis.  

Although the KPCA SPE has a smaller mean detection delay than univariate, a much larger mean 

missing alarm rate is observed. This could indicate the fault ‘collapsing’ into the reduced feature 

space after it has been detected.  

Sulphuric acid controller misuse detection results are provided in Figure 6.11 (iii). The sulphuric acid 

controller misuse is an abrupt fault which lasts for one hour. The fault has a lesser impact on the 

process, with process controllers being able to deal with the impact. Increased number of PGMs in 
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the filtrate is expected with the increase in sulphuric acid. It is therefore desired to detect the fault 

as early as possible to decrease the number of recycled PGMs.  

From Figure 6.11 (iii) it is clear that univariate is unable to successfully detect the fault. Univariate 

only detected the fault once in all ten replicates. Although both KPCA and PCA has clearly smaller 

mean detection delays, large standard deviations are observed for both methods. This is due to PCA 

only detecting the fault in five of the ten replicates, while KPCA only detected the fault in three of 

the ten replicates. The post hoc analysis confirms that only the PCA T2-statistic has a significantly 

different detection delay.  

The missing alarm rate trends in Figure 6.11 (iii) are similar to the detection delay results. The post 

hoc analysis confirmed the PCA T2-statistic missing alarm rate to be only significantly different to 

that of univariate.  

Bubbler level sensor bias detection results are provided in Figure 6.11 (iv). The bubbler level sensor 

bias is an abrupt fault. The fault causes the level reading of the fourth compartment to be biased. It 

is therefore expected that the fault will be difficult to detect, since the actual level measurement of 

the compartment is not available.  

Similar to the sulphuric acid controller misuse fault, the fault was not detected with each replicate. 

Although the KPCA SPE has the smallest mean detection delay, the post hoc analysis concluded that 

there is no significant difference in detection delay results.  

Univariate offline samples and PCA detected the fault in three of the ten replicates. KPCA detected 

the fault in six of the ten replicates. Figure 6.11 (iv) shows large deviations in most missing alarm 

rates. The post hoc analysis confirmed this observation with showing no significant difference in 

missing alarm rates.  
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Figure 6.11: Fault detection false alarm rate, detection delay and missing alarm rate results: i) solids build 

up, ii) peristaltic pump tube failure, iii) sulphuric acid controller misuse, iv) bubbler level sensor failure. 

Mean results are shown, with error bars indicating standard deviations. Please note the difference in 

detection delay results scale for both figures i and ii. Univariate variable detected indicated in pink.  

Stellenbosch University  https://scholar.sun.ac.za



Chapter 6: Fault detection and identification results Page 80 
 

Large standard deviations are observed in both PCA and KPCA results provided in Figures 6.10 and 

6.11. The variations again emphasises the significant impact of the input random walks. Acceptable 

false alarm rates are also observed (below 5% and below ISA standards provided in Appendix C). The 

false alarm rates indicate that both PCA and KPCA training models can adequately handle the input 

variations from the replicates.  

Figures 6.10 and 6.11 clearly indicate that multivariate methods can successfully detect process 

faults. Once a fault is detected, the correct fault location needs to be identified. The fault 

identification results are provided and discussed in section 6.3.  

6.3 Fault identification 

The following section provides the fault identification results for each individual fault. Only 

significant process variable contributions are provided and discussed. Contribution plots relating to 

the detection diagnostic with the smallest mean detection delay are investigated for both PCA and 

KPCA. The significant contribution plots are provided in Appendix E.  

6.3.1 PCA  

The PCA fault identification results are summarised in Tables 6.1 and 6.2. Process variables with 

significant relative contributions are provided in the tables. The first variable provided, is the correct 

fault location. The variable is shown in green if it was identified and red if the location variable was 

not identified. The remaining variables are all symptoms of the fault which were identified. Results 

for both traditional- and reconstruction based -contributions (RBC) are considered.  

Table 6.1 clearly show only fault symptoms were identified for faults 1 – 4. It is expected that correct 

fault location identification will be challenging when considering the 504 hour fault transition 

periods and the small impact of the density disturbance (valve blockage) fault.  

The large density disturbance fault detection delays observed in Figure 6.10(i) indicated that fault 

symptoms triggered alarms instead of the fault location. The fourth compartment level should 

indicate the correct valve wear location. However, only offline samples are identified. This is again 

due to process controllers being able to deal with the fault and therefore hide its location. Similar 

observations are made for the pump impeller wear and valve stiction faults. RBC was generally 

unable to decrease the fault smearing when compared to the traditional contributions. However, 

RBC did provide less significant offline sample contributions.   
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Table 6.1: PCA fault identification results. The detection diagnostic with the smallest detection delay is 

considered. Process variables providing significant contributions are indicated using either traditional or 

reconstruction based contribution plots. Fault location correctly identified is shown in green. Fault location 

not identified is indicated in red. 

# Fault name Detection 

diagnostic 

Traditional contributions RBC 

1 Density disturbance 

(Valve blockage) 

SPE  Preparation tank 

residue feed flow 

 Flash recycle tank feed 

flow 

 Pressure leach 

preparation tank 

temperature 

 Third compartment 

residue 

 First stage residue 

 Fourth compartment 

residue 

 Preparation tank 

residue feed flow 

 Recycle mixing tank 

temperature 

 Third compartment 

solid/liquid separator 

level 

 Third and fourth 

compartment residues 

 Third and fourth 

compartment filtrate 

2 Valve wear T2  Fourth compartment 

outlet flow and level 

 Fourth and first 

compartment residue 

 Fourth compartment 

outlet flow and level 

 Third and fourth 

compartment residue 

 Third compartment 

filtrate 

3 Valve stiction SPE  Preparation tank 

spent electrolyte feed 

 Third compartment 

solid/liquid separator 

level 

 Third and fourth 

compartment filtrate 

 Preparation tank 

spent electrolyte feed 

 Third compartment 

solid/liquid separator 

level 

 Fourth compartment 

filtrate 

4 Pump impeller wear T2  First compartment 

feed flow 

 First compartment 

feed flow 
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 Fourth compartment 

residue 

 Third and fourth 

compartment residues 

 Third compartment 

filtrate 

Legend: 

Fault location identified  

Fault symptom not identified  

 

Both identification methods identified the second compartment temperature as the correct location 

variable for the solids build-up in cooling coils fault. RBC successfully identified the sulphuric acid 

controller misuse location variable. Both identification methods were unable to identify the correct 

location variables for both the peristaltic pump tube failure and bubbler level sensor failure faults. It 

is expected that the bubbler level sensor fault identification will be difficult to identify, considering 

the measurement showing no change in level.  

Table 6.2: PCA fault identification results. The detection diagnostic with the smallest detection delay is 

considered. Process variables providing significant contributions are indicated using either traditional or 

reconstruction based contribution plots. Fault location correctly identified is shown in green. Fault location 

not identified is indicated in red.  

# Fault name Detection 

diagnostic 

Traditional contributions RBC 

5 Solids build-up in cooling 

coils 

SPE  Second compartment 

temperature 

 Third and fourth 

compartment filtrate 

 second compartment 

temperature 

 Third and fourth 

compartment filtrate 

 Flash recycle tank 

temperature 

6 Peristaltic pump tube 

failure 

SPE  Preparation tank 

residue feed flow 

 Preparation tank flow 

 Preparation tank 

residue feed flow 

 Preparation tank flow 

Table 6.1 (cont.): PCA fault identification results. The detection diagnostic with the smallest detection delay is 

considered. Process variables providing significant contributions are indicated using either traditional or 

reconstruction based contribution plots. Fault location correctly identified is shown in green. Fault location not 

identified is indicated in red. 
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recycle 

 Third compartment 

recycle tank 

temperature 

 Third compartment 

solid/liquid separator 

level 

recycle 

 Preparation tank level 

 Third compartment 

level 

 Second compartment 

temperature 

 Third compartment 

temperature 

 First compartment 

level 

 Autoclave pressure 

 Third compartment 

recycle tank level 

7 Sulphuric acid controller 

misuse 

T2  Flash recycle tank 

sulphuric acid flow 

 Second compartment 

temperature 

 Fourth compartment 

residue 

 Flash recycle tank 

sulphuric acid flow 

 

8 Bubbler level sensor bias SPE  Third compartment 

level and outlet flow 

 Third compartment 

recycle tank level 

 Third and fourth 

compartment residue 

 Third and fourth 

compartment filtrate 

 Third compartment 

level and outlet flow 

 Third and fourth 

compartment residue 

 Third and fourth 

compartment filtrate 

Legend: 

Fault location identified  

Fault location not identified  

Table 6.2 (cont.): PCA fault identification results. The detection diagnostic with the smallest detection delay is 

considered. Process variables providing significant contributions are indicated using either traditional or 

reconstruction based contribution plots. Fault location correctly identified is shown in green. Fault location not 

identified is indicated in red. 
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6.3.2 KPCA 

The KPCA fault identification results are summarised in Tables 6.3 and 6.4. Results are again 

presented as with PCA, however only traditional contribution plots were considered.  

The traditional contribution plot results for the first four faults are provided in Table 6.3. The correct 

fault locations were not identified. This is again due to the significant transition periods. Fault 

identification results are not available for the density disturbance (valve blockage) fault, since the 

fault was not detected as shown in Figure 6.10. 

Table 6.3 also indicates that KPCA suffered increased fault smearing when compared to the PCA 

traditional contribution plot results in Table 6.1. This is expected, considering the general increased 

detection delays observed in Figure 6.10. The increased detection delay allows for more fault 

symptoms to be developed.  

Table 6.3: KPCA fault identification results. The detection diagnostic with the smallest detection delay is 

considered. Process variables providing significant contributions are indicated using traditional contribution 

plots. Fault location correctly identified is shown in green. Fault location not identified is indicated in red. 

# Fault name Detection 

diagnostic 

Traditional contributions 

1 Density disturbance 

(Valve blockage) 

SPE Fault not detected 

2 Valve wear T2  Fourth compartment outlet flow and level 

 Third compartment recycle tank level 

 Third compartment recycle tank temperature 

 Third and fourth compartment residue 

 Third and fourth compartment filtrate 

3 Valve stiction SPE  Preparation tank spent electrolyte feed 

 First compartment recycle flow 

 Second compartment O2 flow 

 Second compartment temperature 

 Autoclave pressure 

 Third and fourth compartment residue 

 Third and fourth compartment filtrate 

4 Pump impeller wear T2  First compartment feed flow 

 Flash recycle tank temperature 
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 First compartment recycle flow 

 Second compartment O2 flow 

 Second compartment temperature 

 Third compartment recycle tank level 

 Third compartment recycle tank temperature 

Legend: 

Fault location identified  

Fault symptom not identified  

 

The KPCA traditional contribution plots for the remaining faults are provided in Table 6.4. The solids 

build-up in cooling fault location was successfully identified. The peristaltic pump tube failure and 

sulphuric acid controller misuse fault locations were not identified. The bubbler level sensor was not 

considered, since the fault was not detected. The peristaltic pump tube failure suffered from 

significant fault smearing considering the number of fault symptoms identified. This is expected, 

when considering the immediate impact of the fault and the increased detection delay when 

compared to PCA.  

 

  

Table 6.3 (cont.): KPCA fault identification results. The detection diagnostic with the smallest detection delay is 

considered. Process variables providing significant contributions are indicated using traditional contribution plots. 

Fault location correctly identified is shown in green. Fault location not identified is indicated in red. 
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Table 6.4: KPCA fault identification results. The detection diagnostic with the smallest detection delay is 

considered. Process variables providing significant contributions are indicated using traditional contribution 

plots. Fault location correctly identified is shown in green. Fault location not identified is indicated in red. 

# Fault name Detection 

diagnostic 

Traditional contributions 

5 Solids build-up in cooling 

coils 

SPE  Second compartment temperature 

 Second compartment O2 flow 

 Third and fourth compartment filtrate 

 Third and fourth compartment residue 

6 Peristaltic pump tube 

failure 

SPE  Preparation tank residue feed flow 

 Preparation tank level 

 Flash recycle tank level 

 Flash recycle tank temperature 

 Second compartment O2 flow 

 Third compartment level 

 Second compartment temperature 

 Third compartment recycle tank level 

 Third compartment recycle mixing tank level 

 Third compartment recycle mixing tank 

temperature 

7 Sulphuric acid controller 

misuse 

T2  Flash recycle tank sulphuric acid flow 

 Second compartment O2 flow 

 Third compartment O2 flow 

 Second compartment temperature 

 Third and fourth compartment residue 

 Third and fourth compartment filtrate 

8 Bubbler level sensor bias SPE Fault not detected 

Legend: 

Fault location identified  

Fault symptom not identified  
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6.4 Summary 

The following section will provide a summary of the results discussed in sections 6.1 – 6.3. Both PCA 

and KPCA models were successfully trained. The training models were robust to input disturbances, 

offering acceptably low false alarms. The detection results can therefore be considered realistic for a 

real-world application. The fault detection and post hoc analysis results are summarized in Table 6.5.  

Table 6.5: Fault detection results summary. Post hoc analysis results are indicated.  

# Fault  Univariate PCA KPCA 

1 Density disturbance    

2 Valve wear    

3 Valve stiction    

4 Impeller wear    

5 Solids build-up in cooling coil    

6 Peristaltic pump tube failure    

7 Sulphuric acid controller misuse    

8 Bubbler level sensor bias    

Legend: 

Fault detected  

Fault not detected  

Method detected fault significantly earlier than univariate  

Method detected fault significantly earlier than univariate and PCA/KPCA  

 

Table 6.5 clearly indicates that PCA out performed both KPCA and univariate methods. KPCA did not 

show significantly improved detection results when compared to univariate. This confirms 

observations made from the KPCA training results. The large kernel width selected indicated that 

input space linear correlations only needed to be taken into account. Furthermore, the sub-sampled 

training set resulted in higher detection diagnostic thresholds.  

The early fault detection of both the solids build-up in cooling coil and peristaltic pump tube failure 

is of significance in terms of possible process safety. Both faults can have a significant immediate 

impact on process safety, adding an increased significance to the early fault detection results.  
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The input random walks incorporated by Miskin (2015) also clearly had a significant impact on the 

detection results. Large standard deviations were observed with the longer incipient faults, while 

faults were not always detected when considering the lower impact faults.  

The fault identification results are summarized in Table 6.6. 

Table 6.6: Fault identification results summary.  

# Fault  PCA KPCA 

Traditional 

contributions 

RBC Traditional 

contributions 

1 Density disturbance   n.c 

2 Valve wear    

3 Valve stiction    

4 Impeller wear    

5 Solids build-up in cooling coil    

6 Peristaltic pump tube failure    

7 Sulphuric acid controller misuse    

8 Bubbler level sensor bias   n.c 

Legend: 

Fault location identified  

Only fault symptoms identified  

Contribution plots not considered n.c 

 

The promising detection results were not supported by the fault identification results. Fault 

smearing was still observed for most faults. The PCA RBC only performed slightly better when 

compared to the PCA traditional contribution plots. KPCA traditional contribution plots provided 

similar results to that observed for PCA.  

The tight process controller tuning is the main contributing factor for the poor fault identification 

results observed. The process controllers ‘hide’ the faults in order to preserve optimal operating 

conditions. This observation is in line with the conclusions made by Bin Shams (2010). In order to 

optimize a fault diagnosis strategy, the process controllers needs to detuned to allow for slightly 

more process variations. The detuned process controllers will allow for decreased detection delays 

and more accurate fault identification.   
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Chapter 7: Economic performance function development 

Following the fault detection and identification results described in Chapter 6, the next objective 

needs to be addressed. Suitable economic indicators need to be identified for the pressure leach 

process followed by the development of economic performance functions (EPFs) in order to complete 

an economic impact assessment.  

Chapter 7 describes the EPF development. The EPF development methodology developed by Wei 

(2010), discussed in Chapter 3, section 3.5.2, is followed to develop EPFs specific to the BMR. The 

methodology follows the five steps set out in Figure 3.11. The steps are described in sections 7.1- 7.5.  

Two EPFs are developed: The first EPF focus on potential PGE losses in the process and the second 

EPF focus on potential PGE build-up in the process. The Chapter is summarized in section 7.6. 

7.1 Information required 

The goal of the first step is to determine the information required for the economic performance 

functions development. An understanding of process operations was developed from previous 

studies conducted on the base metal refinery (BMR). The work completed by Miskin (2015) and 

Knoblauch (2015) were used to develop an in-depth knowledge of the control strategy and process 

control systems present at the BMR. A site visit was conducted to develop an understanding of the 

process economics and identify the main economic objectives/key indicators. Expert knowledge 

identified the main objective as the Platinum group element (PGE) production rate with a specific 

focus on minimizing PGE losses (N.M. and J.B. 2016). 

Unwanted variations in the PGE residue composition can be caused be either under- or over –

leaching. Under-leaching occurs when the base metals are not sufficiently removed from the PGE-

containing residue. Over-leaching results in excess PGEs being removed from the PGE-containing 

residue, alongside the base metals. The PGEs are then sent to the copper electrowinning circuit as 

second and third stage filtrate.  

Figure 7.1 provides a basic flowsheet of the copper electrowinning circuit. The pressure leach filtrate 

is sent to the Se/Te removal unit followed by the copper electrowinning circuit. The spent electrolyte 

from the copper electrowinning circuit is recycled to the first stage atmospheric leach.  
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Se/Te 
removal Electrowinning

2nd and 3rd pressure 
leach filtrate Copper cathodes

Spent electrolyte 
sent to 1st stage 

leach

Figure 7.1: Copper electrowinning circuit. Second and third stage leach filtrate is first sent to Se/Te removal 

unit, followed by the copper electrowinning circuit.  

Abnormal process conditions can lead to over-leaching. The over-leaching in turn results in increased 

PGMs reporting to the pressure leach filtrate product stream. These PGEs are then sent to the 

copper electrowinning circuit. Some of the PGEs are lost to the copper cathodes, while the 

remaining PGEs are recycled as spent electrolyte to the first stage atmospheric leach. The recycled 

PGEs are referred to as metals in process (MIP).  

Although the MIP are not lost and will report back to the pressure leach in the first stage residue, 

any build-up of PGEs in the process is unwanted. Increased MIP also delays the PGE production rate 

further downstream (N.M. and J.B. 2016). 

Under-leaching will result in an increased amount of base metals reporting to the pressure leach 

residue. The residue is then sent to an acid wash. The acid wash uses sulphuric acid in a batch 

process to remove the unwanted base metals. The spent electrolyte containing the base metals is 

then sent to the copper electrowinning circuit. The sulphuric acid required for the acid wash is not 

considered as an economic penalty. This is due to the overall sulphuric acid balance present in the 

BMR. The sulphuric acid used for the acid wash will therefore only result in a decreased amount of 

sulphuric acid required upstream. (N.M. and J.B. 2016). 

Possible base metal losses are also not considered as an economic penalty. This is again due to the 

acid wash reducing any base metal losses. The copper production is not the main economic objective 

as identified by expert knowledge (N.M. and J.B. 2016). 

Stellenbosch University  https://scholar.sun.ac.za



Chapter 7: Economic performance function development Page 91 
 

7.2 Performance function information 

Following section 7.1, potential over-leaching was identified as the main concern. Specific emphasis 

is placed on the potential increase in PGEs lost to the copper cathodes and the potential increase in 

MIP. The fractions of PGEs lost to the copper cathodes were gathered from the site visit. Fractions 

were calculated from historical plant operational data. The fraction of the copper electrowinning 

feed PGEs lost to the copper cathodes are provided in Table 7.1 (N.M. and J.B. 2016). 

Table 7.1: Fraction of copper electrowinning feed PGEs lost to copper cathodes (N.M. and J.B. 2016). 

PGE Feed fraction lost to copper cathodes (%) 

Rh 0.75 

Ru 0.8 

Ir 3 

Pt 31 

Pd 18 

 

Table 7.1 clearly indicates significantly larger amounts of Pt and Pd is lost to the copper cathodes 

when compared to the remaining PGEs. However, it is important to note that the inlet Pt and Pd 

concentrations are relatively small when compared to the remaining PGEs concentration.  

7.3 Performance measures 

The strategy of the pressure leaching process is to produce a PGM rich residue. This strategy is 

reached through the removal of copper and the minimization of copper leaching. The key 

measurements are the operating condition control of the autoclave and the offline residue and 

filtrate samples.  

7.4 Assumptions 

The following assumptions are made when considering the economic performance function 

development. The assumptions relate to the either the PGE concentrations evaluated or the 

potential impacts of the simulated process faults not considered.  
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The assumptions relating to the PGE concentrations are: 

 Prior to the copper electrowinning circuit, filtrate is first sent to a selenium and tellurium 

removal unit. Steenekamp and Dunn (1999) reported that some PGMs are recovered in the 

unit through precipitation. It is assumed that the precipitated PGEs recovered are negligible. 

 Coetzee (2016) reported some small amounts of Ru and Ir reporting in the atmospheric 

leach filtrate. It is assumed that these PGE losses are negligible after consultation with 

expert knowledge (N.M. and J.B. 2016). 

 The fractions of PGEs lost, provided in Table 7.1, are constant. 

 All PGE prices are constant.  

The assumptions relating to the impact of process faults are: 

 According to expert knowledge, faults will not result in an emergency shutdown (N.M. and 

J.B. 2016). 

 Increased cooling water and oxygen usage are negligible according to simulation data and 

expert knowledge (N.M. and J.B. 2016). 

 Process recovery times are considered constant, irrespective of the detection delay.  

7.5 Performance functions 

Following sections 7.1 - 7.4, two EPFs are developed. The first performance function is the PGE 

losses to the copper electrowinning circuit. The performance function is provided in equation 7.1.  

𝑃𝐺𝐸 𝑙𝑜𝑠𝑠𝑒𝑠 ($/ℎ𝑟) =  ∑ 𝑃𝑖𝑓𝑖(𝐹𝑖 −  𝐹𝑖𝑠)5
𝑖=1                    (7.1) 

In the above equation Fi refers to the individual PGE inlet flow-rate to the copper electrowinning 

circuit. Pi is the current PGE price and fi is the fraction of the PGE lost to the copper cathodes (Table 

7.1).  

The second EPF is the metals in process (MIP) function. The MIP performance function is the PGEs 

recycled to the first stage atmospheric leach. The performance function is provided in equation 7.2. 

𝑀𝐼𝑃 ($/ℎ𝑟) =  ∑ 𝑃𝑖(1 − 𝑓𝑖)(𝐹𝑖 −  𝐹𝑖𝑠)5
𝑖=1                    (7.2) 

It is important to note that the MIP performance function does not represent any monitory loss. The 

MIP performance function shows the delayed PGE production rate.   
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Figure 7.2 aims to illustrate the use of both EPFs. Both EPFs are linear performance functions and are 

dependent on the individual PGE flowrates to the copper electrowinning circuit. The NOC point is 

indicated in red. Abnormal (faulty) process conditions will lead to potential increases in the PGE flow 

to the copper electrowinning circuit, which in turn will result in an increased amount of PGEs lost 

and MIP. Reducing the operating time spent away from the NOC point, will decrease the PGEs lost 

and the MIP under abnormal (faulty) conditions.  

PGE flow to copper 
electrowinning circuit
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E 
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st

 /
 r
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d
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M
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) NOC 

 

Figure 7.2: PGEs lost and MIP linear EPFs illustration. NOC operating conditions indicated in red.  

The performance functions calculation methodology is shown in Figure 7.3. The NOC data are used 

to calculate the steady-state PGEs flow to the copper electrowinning circuit. The PGEs flow to the 

copper electrowinning circuit can then be calculated under abnormal process data. PCA, KPCA and 

univariate detection delays are then used to calculate the PGEs lost and MIP for each detection 

method. The potential economic benefit from early multivariate fault detection can then be 

evaluated.  
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Figure 7.3: Performance function calculation methodology. 

Pt and Pd concentrations are not predicted by the dynamic model as mentioned in Chapter 2, 

section 2.3. In order to include Pt and Pd in the EPFs, the concentrations are predicted using linear 

regression models. The linear regression models are developed from historical plant data. The 

models predict both the 2nd and 3rd stage filtrate Pt and Pd concentrations as a function of the 

combined Ir, Rh and Ru concentrations. The linear regression results are discussed and provided in 

Appendix G.  

7.6 Summary 

Two EPFs were successfully developed through consultation of previously published literature and 

expert knowledge from the BMR. The EPFs focus on the potential increases in PGEs lost and recycled 

due to over-leaching in the autoclave. A methodology is provided to evaluate the economic impact 

of the multivariate fault detection results provided in Chapter 6.  
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Chapter 8: Economic impact analysis results 

The final project objective is addressed in Chapter 8, following the economic performance function 

development discussed in Chapter 7. The PGEs lost EPF results are discussed in section 8.1. The MIP 

EPF results are discussed in section 8.2. The economic impact assessment results are summarised in 

section 8.3.  

The economic impact results for both PCA and KPCA are compared to the univariate economic impact 

results. Significant differences were determined with ANOVA followed by LSD post hoc analysis as 

described in Chapter 5, section 5.5.  

All economic impact results are scaled between zero and ten. Ten was set as the monetary value of 

the maximum PGM production rate ($/hr).  

8.1 PGEs lost 

The PGEs lost EPF results are given in Table 8.1. It is clear that the significant decreased detection 

delays provided by PCA, observed in Chapter 6, did not translate in a significant decrease in PGE 

losses. The valve stiction early fault detection provided the only significant economic benefit. The 

largest losses were observed for the pump impeller wear, which is expected when considering the 

large detection delays observed in Chapter6, Figure 6.10, and the impact of the fault described in 

Chapter 3, section 3.1.3.4. The smallest losses are observed for the peristaltic pump tube failure, 

which is again expected when considering the immediate impact and detection of the fault.  

It should also be noted that the scaled results are relatively small. The small losses observed firstly 

indicate the robustness of the process. It is clear that process controllers can mitigate fault 

symptoms to an extent to minimize the PGE losses to the copper electrowinning circuit. Secondly, it 

should also be noted that the univariate fault detection detects faults prior to any significant over-

leaching occurs. This observation is especially evident for the solids build-up in cooling coils fault. 

The univariate detection delay detects the fault prior to autoclave temperatures increasing 

significantly, which will result in unacceptable levels of over-leaching.  
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Table 8.1: Scaled PGEs lost EPF results. Both mean and standard deviation results are provided. Significant 

differences between detection methods are indicated in green.  

# Fault Name Univariate detection 

(x 10-3) 

PCA detection (x 10-3) KPCA detection (x 10-3) 

µ σ µ σ µ σ 

1 Valve blockage 1.88 1.75 1.38 1.90 1.88 1.75 

2 Valve wear 0.890 1.88 1.61 2.83 1.23 2.01 

3 Valve stiction 5.00 4.56 0.573 0.486 2.07 1.59 

4 Pump impeller wear 9.98 17.0 3.91 6.76 9.95 17.0 

5 Solids build-up in 

cooling coils 
0.299 

0.379 
0.191 

0.257 0.299 0.379 

6 Peristaltic pump tube 

failure 

0.000107 0.000300 0.0000171 0.000500 0.0000714 0.000178 

7 H2SO4 controller 

misuse 
1.31 

1.09 
0.876 

0.946 1.01 0.830 

8 Level sensor blockage 4.36 2.31 3.06 2.62 2.62 2.75 

Legend: 

Significant economic benefit when compared to univariate  

Significant economic benefit when compared to univariate and PCA/KPCA  
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8.2 Metals in process 

The MIP EPF results are provided in Table 8.2. The results are similar to that observed to that in 

Table 8.1. This is expected when considering the linear relationship between the EPFs. Similar to the 

PGE losses, only the valve stiction fault provides a significant decrease in MIP. The reported values in 

Table 8.2, although larger than that observed in Table 8.1, are still relatively small. The increased 

PGE’s recycled should not results in a significant build-up of PGEs, assuming univariate detection 

delays. 

Table 8.2: Scaled PGMs lost EPF results. Both mean and standard deviation results are provided. Significant 

differences between detection methods are indicated in green. 

# Fault Name Univariate 

detection (x 10-3) 

PCA detection (x 10-3) KPCA detection (x 10-3) 

µ σ µ σ µ σ 

1 Valve blockage 19.4 18.1 14.2 19.6 19.4 18.1 

2 Valve wear 9.27 19.6 16.3 24.3 12.5 20.9 

3 Valve stiction 69.8 52.2 5.88 5.24 21.3 16.5 

4 Pump impeller wear 108 175 42.3 175 103 175 

5 Solids build-up in 

cooling coils 

3.06 3.89 1.95 2.64 3.06 3.89 

6 Peristaltic pump tube 

failure 

0.000998 0.00316 0.000166 0.000524 0.000617 0.000183 

7 H2SO4 controller 

misuse 

13.3 11.4 8.96 9.75 10.3 8.64 

8 Level sensor 

blockage 

45.9 23.7 32.1 27.3 27.6 28.6 

Legend: 

Significant economic benefit when compared to univariate  

Significant economic benefit when compared to univariate and PCA/KPCA  
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8.3 Summary 

Economic impact assessment was successfully completed for PCA, KPCA and compared to univariate 

fault detection. The significant benefits in PCA detection delays observed in Chapter 6, section 6.4, 

did not translate in a significant economic benefit. The lack of a significant economic benefit is due 

to the robustness of the process and the univariate detection delays, detecting faults prior to 

significant increased variations in leaching performance.   
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Chapter 9: Conclusions and recommendations 

Chapter 9 provides conclusions for the objectives set out in Chapter 1. Subsequent recommendations 

are made from the conclusions and are provided in sections 9.4 and 9.5.  

9.1 Fault detection 

A fault diagnosis approach was successfully designed specifically for the base metal refinery (BMR). 

Principal component analysis (PCA) and kernel PCA (KPCA) were utilized as linear and nonlinear 

feature extraction methods. Results were compared to a simple univariate fault detection approach 

to quantify potential benefits.  

Robust simulated normal operating conditions (NOC) training data were collected through rigorous 

input disturbance modelling. The random walk input disturbances allowed for replicates of 

simulated faults, ten replicates were completed per fault. The replicates and robust training data set 

allowed for rigorous testing of both PCA and KPCA as fault detection methods.  

Post hoc statistical analysis of detection delay results confirmed PCA outperformed KPCA and a base 

case univariate fault detection methodology. PCA provided a significant decrease in detection delay 

for six of the eight faults evaluated. KPCA did not provide improved results, due to the linearity of 

the NOC training data set, sub sampling of the NOC training data set and the kernel width selection 

process.  

9.2 Fault identification 

Traditional contribution plots were used to identify fault locations for both PCA and KPCA. 

Reconstruction based contributions (RBC) were used to address possible fault smearing for PCA. 

Only two of the eight faults were successfully identified using RBC, while traditional contribution 

plots only correctly identified a single fault for both PCA and KPCA. The poor identification results 

were mainly due to the significant fault smearing. The fault smearing was expected due to the 

significant fault transition periods and process controllers’ supressing fault location symptoms.  

9.3 Economic impact assessment 

The key economic indicator was identified following a site visit and two Economic Performance 

Functions (EPFs) were subsequently developed. The significant decrease in detection times observed 

for PCA when compared to base case univariate detection, did not translate into a similar significant 

economic benefit. Only one fault showed a statistically significant economic benefit due to early 

fault detection from PCA.  

Stellenbosch University  https://scholar.sun.ac.za



Chapter 9: Conclusions and recommendations Page 100 
 

Therefore it is concluded that the multivariate fault diagnosis methods tested here do not promise 

sufficient benefit over a simple univariate fault detection approach for the operating plant 

considered.  

9.4 Recommendations for industrial application 

9.4.1 BMR pressure leach plant 

It is recommended that a multivariate fault diagnosis system is implemented at the operating plant, 

since the PCA fault detection results showed significant potential. If a multivariate fault diagnosis 

system is to be implemented, a more robust fault identification approach needs to be developed and 

implemented. Recommendations are made for industry in general and are provided in section 9.4.2. 

9.4.2 General  

The availability and selection of robust NOC training data will be a hindrance for real world 

application, due to clean NOC training data being not being readily available at an actual plant. It is 

recommended that expert knowledge is incorporated when selecting NOC data. Expert knowledge 

together with operators can determine whether the NOC data in question will be adequate for 

model training. 

Another possible hindrance will be the fault identification method applied, specifically when aiming 

to apply a fully automated fault diagnosis system. The basic fault identification methods applied in 

this work will not offer satisfactory performance for an industrial application. It is recommended 

that more complex fault identification methods are investigated for industrial application. A possible 

improved method is using process causality for fault identification. Lindner (2014) investigated the 

use of process causality in several case studies.  

A more supervised fault identification method can also be recommended for industry use. Expert 

operator knowledge can be used in conjunction with basic fault identification methods. Expert 

knowledge together with process operators can potentially identify fault locations from the 

triggered contribution variables.  

An efficient and interactive interface would need to be developed which includes the fault detection 

and identification results. This will allow operators to more easily and readily determine the current 

process conditions and potential process abnormalities.  

9.5 Recommendations for future work 

Considering the work completed in this study, the main recommendation will be an increased focus 

on economic impact assessments for fault diagnosis applications. The economic performance related 
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literature reviewed for this study was mostly focused on advanced process controllers and not fault 

diagnosis systems. Considering the significant amount of work completed on especially fault 

detection methods, there needs to be an increased focus on economic performance to determine 

whether the increasingly more complex fault detection methods translates into a similar economic 

benefit.  

Furthermore, these fault diagnosis methods need to be investigated on more complex real-life case 

studies or actual plant data. This will provide an opportunity to address the problems relating to 

NOC data selection and fault smearing.  
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Appendix A: Process flow diagram and dynamic process model 

 

Figure A.1: Pressure leach process flow diagram.  
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Figure A.2: Dynamic pressure leach model Simulink® flow diagram.  
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Appendix B: Kernel width selection 

Appendix B describes a proposed approach to optimal kernel-width estimation. The proposed method 

was used to select a kernel width from the normal operating conditions (NOC) training data set. The 

proposed method is based on the following requirements: 

1. KPCA-based fault detection will be most optimal if projected data in the feature space are 

Gaussian. 

2. Only NOC data should be used to estimate kernel-width, since fault data are typically scarce.  

3. False alarms must be minimized by ensuring good generalization to unseen NOC data.  

These requirements are used to develop an optimization objective function. The limitations to the 

proposed kernel width estimation method is discussed.  

1. Kernel width effect demonstration  

To demonstrate the effect of the kernel-width parameter, consider Figure B.1 and Figure B.2. Figure 

B.1 gives an example of two-dimensional input data: NOC used for training the KPCA projection; NOC 

used for verification (unseen during the training procedure); and test data representing a fault 

condition. Figure B.2 shows the projection of these three data sets into a two-dimensional KPCA 

feature space.  

 

Figure B.1: Demonstration data: Two-dimensional input space 
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Figure B.2: Demonstration data: Two-dimensional KPCA feature space for various values of the kernel-width 

c (green = training NOC; blue = validation NOC; red = test data). Note that the extent of the feature space has 

been kept the same for all plots. 

Various interesting properties of KPCA is visible in Figure 2. If the kernel-width c is selected as too 

small, the projection of the training and verification NOC data sets do not follow Gaussian 

distributions, as expected. Strange artefacts arise due to the ill-conditioned kernel matrix resulting 

from too small a kernel-width.  

As the kernel-width increases, the strange artefacts disappear, but there is still a noticeable 

difference between the NOC training and verification data, which should not be the case for good 

generalizability. When an optimal kernel-width is reach, training and verification NOC data are 

similar, and Gaussian. As the kernel-width increases beyond that, the extent of the projected 

features decreases (note the values of the feature space axes). For fault detection with the modified 

Hotelling’s T2 statistic, the statistical significance threshold is independent of kernel-width; these 

larger kernel-widths would make missing alarms more likely. If a percentile of the NOCtrain Hotelling’s 

T2 statistic is used as threshold, this issue is less important.  

Stellenbosch University  https://scholar.sun.ac.za



Appendix B: Kernel width selection Page 112 
 

An automated search strategy is required to select an appropriate kernel-width: not too small (which 

would introduce artefacts and does not generalize to NOC verification data), and not too large (which 

would reduce the information content in the data).  

2. Optimization objective function 

From the requirements, the proposed kernel width estimation approach defines three criteria to be 

optimized: a feature space Gaussianity criterion, a generalizability criterion (ensuring that the 

projected training and verification NOC data are Gaussian) and the FARs.  

2.1 Feature space Gaussianity  

A Gaussian feature space will allow the modified Hoteling’s T2-statistic to be used effectively for fault 

detection in the feature space.  

Two indices are defined to check the Gaussianity of the feature space projections: TC and VC (the 

NOC training and verification Gaussianity; larger values indicating increasing non-Gaussianity). These 

indices are calculated by comparing the feature space distance distributions of the NOC training and 

verification data to chi-squared distributions corresponding to Gaussian distance distributions 

(Vamuza and Filzmoser, 2008).  

2.2 Only NOC data should be used 

Unsupervised fault detection requires only the use of NOC data. Therefore only NOC data should be 

used when selecting the kernel width prior to any application to unseen fault data.  

2.3 FAR should be minimized 

The features for training NOC and verification NOC should be similar, to show good generalizability of 

the KPCA projection. An index, DC, is defined to assess the similarity of the NOC training and 

verification feature distributions. The feature space distance distributions are again used for 

comparison. 

A constraint can also be placed on the maximal permissible false alarm rate (FAR) calculated on the 

verification NOC data. The constraint is set at 5%.  

3. Methodology 

The proposed optimal kernel-width estimation procedure is given here, for a range of considered 

kernel widths cmin ≤ c ≤ cmax: 

1. Split NOC data set randomly into training and verification subsets, NOCtrain and NOCverification
. 
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2. Set the required cumulative variance to be explained v. 

3. Select kernel-width c. 

4. Train KPCA on NOCtrain data, with Gaussian kernel and kernel-width c. Select a number of 

features to capture at least v cumulative variance. Store the features Ttrain, weight vectors 

{αa}train and kernel matrix Ktrain. 

5. Apply KPCA (with trained parameters c, a, {αa}train and Ktrain) to NOCverification data to determine 

the features Tverification. 

6. Calculate the squared Mahalonobis distance distributions for the NOC training and 

verification features: {d2}train and {d2}verification. 

7. Calculate TC as the maximum absolute distance between the distribution of {d2}train and the 

chi-squared distribution with a degrees of freedom. 

8. Calculate VC as the maximum absolute distance between the distribution of {d2}verification and 

the chi-squared distribution with a degrees of freedom. 

9. Calculate DC as the maximum absolute distance between {d2}train and {d2}verification. 

10. Calculate the false alarm rate FAR for NOCtraining. FAR based on the Hotelling’s T2 statistic of 

the features Ttrain, where the upper limit for detection is θT2 (typically chosen as some 

percentile of the NOCverification Hotelling’s T2 statistic). 

11. Calculate the false alarm rate FAR for NOCtraining FAR based on the modified SPE statistic of 

the features Ttrain, where the upper limit for detection is θSPE (typically chosen as some 

percentile of the NOCtrain modified SPE). 

12. Choose new c; repeat steps 3 to 10. 

13. Optimal kernel-width c* is given by: 

𝑐∗ = arg min
𝑐

{𝐽(𝑐) = 𝑇𝐶 + 𝑉𝐶 + 𝐷𝐶} 

𝑠. 𝑡. 𝐹𝐴𝑅𝑆𝑃𝐸,𝑇2 < 0.05 

4. Case Study 

The proposed kernel width selection approach is applied to the well-known Tennessee Eastman 

benchmark problem (Russel et al. 2000).  

An in depth process description is provided in Russel et al. 2000.  
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All training for the Tennessee Eastman process case study was done on the NOC data set (d00) and 

the NOC test data set (d00_te) combined, resulting in n = 1460 samples. A random split of 50% was 

selected to obtain NOCtrain and NOCverification.  

The first set of results compares the proposed approach to results achieved by the KPCA 

implementation of Deng et al. (2013). The design aspects are given in Table B.1, and the comparison 

of true alarm rates and detection delays in Table B.2. 

Table B.1. Design aspects for Deng et al. (2013) comparison 

Design aspect Deng et al. (2013) This study 

Feature space characterization Kernel density function Hotelling’s T2; θ based on 99th 

percentile 

Number of input variables m 52 52 

Cumulative variance explained 

v 

90% 90% 

Number of retained 

components a 

30 32 

Optimal kernel width c 1 040 92.32 

The comparison with Deng et al. (2013) shows promising results: detection rates and detection 

delays are similar for most faults.  
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Table B.2. Comparison of true alarm rates and detection delays with Deng et al. (2013) and the proposed 

method. Extent of differences indicated with green and red. 

 

The second set of results compares the proposed approach to results achieved by the KPCA 

implementation of Lee et al. (2008). The design aspects are given in Table B.3, and the comparison of 

true alarm rates and detection delays in Table B.4. 

Table B.3. Design aspects for Lee et al. (2008) comparison 

Design aspect Lee et al. (2008) This study 

Feature space characterization Hotelling’s T2; θ based on α = 

0.01 

Hotelling’s T2; θ based on 99th 

percentile 

Number of input variables m 33 33 

Cumulative variance explained 

v 

88% 88% 

Number of retained 

components a 

11 32 

Optimal kernel width c 90.825 25.27 

T2 SPE T2 SPE T2 SPE T2 SPE T2 SPE T2 SPE

1 99.4 99.8 99.4 99.6 0.0 0.1 7 3 8 5 1 2

2 98.8 98.5 98.6 98.4 0.1 0.1 11 13 13 16 2 3

3 6.6 8.3 4.7 3.5 1.9 4.8 0 0 0 0 - -

4 64.4 100.0 40.3 98.9 24.1 1.1 112 1 344 6 232 5

5 30.9 35.5 28.9 19.5 2.0 16.0 11 1 12 9 1 8

6 99.3 100.0 99.0 99.5 0.3 0.5 7 1 10 6 3 5

7 100.0 100.0 100.0 100.0 0.0 0.0 1 1 2 2 1 1

8 97.5 98.0 97.3 90.4 0.3 7.6 23 17 24 23 1 6

9 7.1 7.1 6.5 3.6 0.6 3.5 1 0 0 0 - -

10 49.5 61.3 40.8 18.9 8.8 42.4 84 48 108 108 24 60

11 60.3 63.5 56.8 52.6 3.5 10.9 47 7 52 97 5 90

12 98.8 97.1 99.1 91.4 -0.4 5.8 7 3 8 23 1 20

13 94.6 95.6 94.9 94.9 -0.3 0.8 46 37 47 42 1 5

14 99.9 99.8 99.9 89.8 0.0 10.1 1 2 2 3 1 1

15 9.9 9.5 7.1 3.9 2.8 5.6 775 0 0 0 - -

16 31.6 59.8 25.1 14.5 6.5 45.3 196 15 310 513 114 498

17 81.5 95.0 83.1 92.5 -1.6 2.5 29 22 28 26 -1 4

18 89.4 90.8 89.5 90.0 -0.1 0.8 89 84 90 85 1 1

19 15.9 24.8 15.6 6.0 0.3 18.8 0 0 0 0 - -

20 42.3 56.8 41.4 47.6 0.9 9.1 87 85 86 88 -1 3

21 48.8 53.5 41.3 46.5 7.5 7.0 275 249 507 474 232 225

Difference

Detection delays

Fault

Deng et al. 

(2013)

Proposed 

method
Difference

True alarm rates

Deng et al. 

(2013)

Proposed 

method
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The comparison with Lee et al. (2008) also shows acceptable results, except for three faults (2, 6 and 

18) with poorer performance by the proposed approach. Although faults 2, 6 and 18 show poor 

performance for the proposed method, closer inspection revealed that the faults are detected early 

(see short detection delays), but that the faults are then “hidden” in the process soon after: the 

scores in the feature space collapse to the centre. If a reconstruction to the original input space was 

done to calculate the SPE statistic, this behaviour would have been classified as faulty. 

Table B.4. Comparison of true alarm rates and detection delays with Lee et al. (2008) and the proposed 

method. Extent of differences indicated with green and red.  

 

5. Proposed approach limitations 

There are some limitations with the proposed kernel width selection approach. These limitations are 

briefly discussed. 

i) Although the method requires FARs below a given threshold, smaller FARs will result in 

decreased detection rates. It is therefore important not to over-emphasise a low FAR. 

ii) The method does not provide a kernel width range selection approach. This could be 

problematic due to the computational expense of KPCA. Input space distance percentiles 

could be used as starting point.  

T2 SPE T2 SPE T2 SPE T2 SPE

1 100.0 100.0 90.3 71.9 9.8 28.1 8 5

2 98.0 98.0 7.6 3.4 90.4 94.6 13 31

3 4.0 5.0 7.4 2.0 -3.4 3.0 0 0

4 9.0 100.0 33.9 99.9 -24.9 0.1 356 2

5 27.0 25.0 25.9 8.1 1.1 16.9 12 2

6 99.0 100.0 2.4 3.5 96.6 96.5 22 13

7 100.0 100.0 85.9 83.5 14.1 16.5 2 2

8 97.0 96.0 84.8 40.9 12.3 55.1 24 19

9 4.0 4.0 7.0 2.1 -3.0 1.9 0 0

10 43.0 51.0 35.5 9.4 7.5 41.6 145 126

11 24.0 81.0 55.9 54.3 -31.9 26.8 52 57

12 98.0 97.0 72.3 47.8 25.8 49.3 23 24

13 94.0 95.0 48.5 49.5 45.5 45.5 47 42

14 79.0 100.0 97.1 74.5 -18.1 25.5 2 11

15 8.0 6.0 9.0 1.9 -1.0 4.1 0 0

16 30.0 52.0 22.8 7.9 7.3 44.1 310 0

17 74.0 95.0 43.4 72.4 30.6 22.6 30 23

18 90.0 90.0 4.5 6.9 85.5 83.1 95 85

19 3.0 49.0 18.0 4.2 -15.0 44.8 0 0

20 41.0 52.0 38.3 49.0 2.8 3.0 87 88

True alarm rates Detection delays

Fault

Lee et al. 

(2008)

Proposed 

method
Difference

Proposed 

method
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iii) Only the first two feature space dimensions are used to estimate the linearity. The effect 

of other dimensions may also need to be considered since the feature space usually 

consist of several dimensions when considering chemical or metallurgical processes.  

iv) The proposed kernel width selection approach is only compared to two previous studies. 

More comparisons may be required, including different process case studies to further 

improve and evaluate the proposed approach.  

v) It is important to consider the training and verification set dimensionality to avoid model 

overfitting.  
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Appendix C: Univariate fault detection  

Appendix C provides further information on univariate fault detection. Some background on the 

control limits selection is provided. The methodology for the control limit selection for the pressure 

leach is finally provided.  

1. Background 

Univariate fault detection considers each process variable individually. An upper and lower threshold 

is calculated for each process variable. Once a variable moves outside these predefined limits, it 

indicates potential fault conditions.  

Russel et al. (2000) proposed a statistical univariate monitoring approach. The method is based on a 

cumulative standard normal distribution. The upper and lower thresholds are calculated from the 

variable mean 𝜇 and standard deviation 𝜎.  

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝜇 ±  𝑐𝛼/2𝜎          (C.1) 

𝑐𝛼/2𝜎 is the standard normal deviate for some level of significance 𝛼.  

Thresholds can also be selected based on an upper and lower percentile. The selection of thresholds 

is crucial to avoid large FARs (Russel et al. 2000).The maximum amount of false alarms per hour can 

be calculated from the amount of operators typically present and the ISA standard.  

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐹𝐴𝑅 =  𝐼𝑆𝐴𝑝𝑒𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑁𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠       (C.2) 

The maximum amount of false alarms allowed can be used to evaluate the upper and lower control 

limit performance.  

2. Pressure leaching process 

The control limit selection process for the pressure leach process is described in the following 

section. The control limit selection process has two objectives: 

1. Verification FAR should be as close as possible to 1%, to ensure detection results comparable 

to PCA and KPCA.  

2. Offline thresholds should be robust in order to avoid FARs above the ISA standards.  

The verification total false alarm rate calculated for univariate should be equal to 1%. This will ensure 

that the results are comparable to that of both PCA and KPCA. Since a total of 89 process variables 

are monitored, each individual false alarm rate should not exceed 0.011 %. This will allow for a total 

Stellenbosch University  https://scholar.sun.ac.za



Appendix C: Univariate fault detection Page 119 
 

false alarm rate of 1%. The 1% false alarm rate is also well below the maximum false alarm rate 

calculated from equation C.2.  

As discussed in section 5.1.3, offline samples only get updated after a specific analysis time. All the 

offline analysis times exceed the five sample detection delay. Therefore, once an offline sample 

moves outside a threshold it will count towards a detection delay. It is therefore important that the 

offline sample thresholds do not result in any false alarms. An offline sample false alarm result in a 

false detection delay.  

To ensure that offline sample thresholds are more robust, each threshold increased with a single 

sample standard deviation. The univariate detection training methodology is provided in Figure C.1.  

Figure C.1 shows the percentile of the threshold selection being changed iteratively until the false 

alarm rate is set at 0.011 %. One standard deviation is then added to both upper and lower 

thresholds in order to allow for a more robust offline sample thresholds.  
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Figure C.1: Univariate fault detection threshold selection methodology.  
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Appendix D: Fault detection results 

Appendix D provides the mean detection performance metric results for each fault. Significant 

differences are indicated following the ANOVA and LSD test results. The multivariate detection results 

are compared to the univariate variable who first detects the fault.  

If a fault was not detected, a default detection delay of 800 hours was selected. This should be 

considered when observing the sometimes large standard deviations. 

Legend: 

LSD test significant difference from univariate detection  

LSD test significant difference from univariate and other 

multivariate method 

 

LSD test significant difference from only other multivariate 

method. 

 

ANOVA show insignificant difference in means  
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1. Density disturbance (Valve blockage) 

Performance 

metric 

Univariate 

detection 

PCA KPCA 

Best T2 SPE T2 SPE 

𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 

FAR 
0.00 0.00 0.90 1.60 1.40 2.07 0.65 1.03 1.15 1.55 

MAR 
100 100 96.26 3.45 96.40 3.25 98.15 2.50 99.25 0.80 

DD 
N/D - 401.40 4201.59 401.05 4201.59 800.00 0.00 800.00 0.00 

AUC 
0.63 0.03 0.48 0.10 0.78 0.21 0.48 0.16 0.29 0.13 

 

2. Valve Wear 

Performance 

metric 

Univariate detection PCA KPCA 

Best T2 SPE T2 SPE 

𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 

FAR 
0.00 0.00 2.80 2.20 0.20 0.63 0.10 0.21 1.25 1.16 

MAR 
80.58 23.41 89.16 10.29 95.72 5.02 81.15 19.72 97.38 4.15 

DD 
232.970 208.903 265.923 368.22 420.087 400.508 475.540 283.480 713.620 185.407 

AUC 
0.89 0.16 0.66 0.12 0.84 0.07 0.74 0.16 0.29 0.14 
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3. Valve Stiction 

Performance 

metric 

Univariate 

detection 

PCA KPCA 

Best T2 SPE T2 SPE 

𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 

FAR 
0.00 0.00 1.40 2.01 4.80 13.13 1.10 2.11 4.05 4.54 

MAR 
76.28 19.66 61.05 31.40 24.60 30.05 54.19 39.79 53.35 42.73 

DD 
169.000 85.874 205.11 177.85 13.54 10.30 235.240 215.090 180.630 326.911 

AUC 
0.89 0.07 0.82 0.11 0.98 0.01 0.82 0.17 0.79 0.23 

 

4. Impeller Wear 

Performance 

metric 

Univariate 

detection 

PCA KPCA 

Best T2 SPE T2 SPE 

𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 

FAR 
0.00 0.00 1.90 2.23 0.60 1.26 0.25 0.26 0.95 1.38 

MAR 
84.50 0.94 74.30 14.33 82.22 3.95 78.88 22.32 95.16 3.11 

DD 
412.150 43.24 355.10 110.91 380.42 56.84 292.120 136.721 382.930 62.727 

AUC 
0.54 0.01 0.65 0.20 0.78 0.23 0.59 0.22 0.27 0.14 
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5. Solids build-up in cooling coils 

Performance 

metric 

Univariate 

detection 

PCA KPCA 

Best T2 SPE T2 SPE 

𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 

FAR 
0.00 0.00 1.30 2.50 0.00 0.00 1.55 2.10 1.90 2.41 

MAR 
79.90 0.75 77.44 4.12 71.57 4.02 82.58 4.09 83.27 5.53 

DD 
41.330 3.83 34.52 10.03 32.77 8.77 41.950 8.83 41.650 5.442 

AUC 
0.80 0.01 0.69 0.11 0.91 0.09 0.60 0.11 0.62 0.03 

 

6. Peristaltic pump tube failure 

Performance 

metric 

Univariate 

detection 

PCA KPCA 

Best T2 SPE T2 SPE 

𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 

FAR 
0.00 0.00 0.67 1.61 0.50 0.81 0.00 0.00 0.88 1.07 

MAR 
5.47 0.00 2.89 6.09 0.75 2.19 19.05 5.64 37.26 4.27 

DD 
1.60 0.00 1.02 1.21 0.61 0.47 1.280 1.336 7.900 0.645 

AUC 
0.98 0.01 0.98 0.02 0.99 0.00 0.86 0.04 0.77 0.05 
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7. Sulphuric acid controller misuse 

Performance 

metric 

Univariate detection PCA KPCA 

Best T2 SPE T2 SPE 

𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 

FAR 
0 0 1.70 1.83 0.90 1.91 0.19 0.59 3.13 4.99 

MAR 
99.2008 2.527295 94.60 6.71 96.29 6.15 98.41 2.12 96.49 3.68 

DD 
7284.5 2262.61 401.39 420.18 481.71 410.09 651.32 313.51 578.70 356.56 

AUC 
0.659033 0.097906 0.48 0.12 0.80 0.18 0.46 0.12 0.33 0.10 

 

8. Bubbler level sensor blockage 

Performance 

metric 

Univariate detection PCA KPCA 

Best T2 SPE T2 SPE 

𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 𝒙̅ s 

FAR 
0.00 0.00 1.80 2.94 3.30 5.44 0.60 1.07 2.65 3.21 

MAR 
83.83 31.88 97.34 5.33 86.98 22.48 96.34 4.40 94.86 3.16 

DD 
5693.50 3715.80 800.00 0.00 560.08 386.63 800.00 0.00 323.90 410.05 

AUC 
0.70 0.14 0.59 0.18 0.93 0.06 0.57 0.19 0.39 0.06 
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Appendix E: Fault identification results 

Appendix E provides the fault identification contribution plot results summarised in Chapter 6, section 

6.3. The significant contribution plots for each fault is provided and described. Contribution plot 

results representations are summarized from Chapter 5, section 5.3.  

As discussed in Chapter 5, section 5.3, contribution plots are evaluated for each section of the plant. 

Specifically, the preparation-, recycle- and pressure leach –section. Offline samples are also 

considered separately. 

Water

Sulphuric Acid

Spent Electrolyte

First stage residue

Formic Acid leach filtrate

Oxygen

Steam

To Flash Recycle Tank 2

Cu Sulphate leach 
solution

PGM Slurry

Vent

2nd Stage slurry 
preparation tank

Flash Recycle Tank

3rd Stage slurry 
preparation tank

2nd and 3rd stage Leach
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Key:

1. Preparation section

2.Pressure leach section
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Figure E.1: Contribution plot sections. Preparation section indicated in red, pressure leach section indicated 

in green and recycle section indicated in blue.  
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Process variables are abbreviated as discussed in Chapter 5, section 5.3. The abbreviations are 

provided in Table E.1.  

Table E.1: Fault identification process variable abbreviations.  

Abbreviation Definition 

PT Pressure leach preparation tank. 

FR Flash recycle tank. 

AT# Autoclave. # indicates the compartment number.  

RT Third compartment recycle tank.  

SL Third compartment recycle solid/liquid 

separator. 

RM Third compartment recycle mixing tank 

F Flow measurement 

L Level measurement 

T Temperature measurement.  

OX Oxygen 

SE Spent electrolyte 

SA Sulphuric acid  

W Water  

PROD Product 

REC Recycle 

 

Offline sample compositions are provided in Table E.2. The fourteen residue species and seven 

filtrate species is shown. Note that the PGE oxides are not present in the first stage residue. 

Therefore, only eleven different species are presented in the first stage residue composition.  
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Table E.2: Residue and filtrate offline sample compositions.  

Residue Filtrate 

NiS Cu 

Ni3S4 Ni 

Cu9S5 Fe 

CuS Rh 

FeOHSO4 Ru 

Rh2S3 Ir 

Rh H2SO4 

RhO2*** Cu 

RuS2 - 

Ru - 

RuO2*** - 

Ir2S3 - 

Ir - 

IrO2*** - 

***Compositions not detected in first stage residue 

 

Significant contribution plots are discussed in sections E.1 – E.8.  
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E.1 Density disturbance (Valve blockage) 

The valve blockage (density disturbance) relative PCA SPE contribution plots are provided in Figure 

E.2.  

 

Figure E.2: Density disturbance PCA SPE relative contribution plots. The preparation section contributions are 

shown in the first plot and the offline sample contributions are shown the second plot.  

The first contribution plot shows the flash recycle tank flow exceeding the contribution limit. This is a 

symptom of the fault, since the density disturbance causes some variation in the second stage 

preparation tank level. The feedforward controller subsequently reacts by changing the flow to the 

flash recycle tank.  
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Some minor deviations are observed in the offline residue samples. The CuS concentration show 

significant contributions for both the third and fourth compartment residues. This is expected, since 

the density disturbance causes a slight increase in base metal residue concentrations.  

The density disturbance (valve blockage) PCA SPE RBC plots are shown in Figure E.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.3: Density disturbance SPE relative RBC plots. The preparation and recycle sections contributions are 

shown in the first two plots. Offline sample contributions are shown in the third plot.  
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Figure E.3 shows some deviations in the third stage recycle tank temperature. This is again only a 

symptom of the fault. The offline sample contribution plot shows deviations in all samples excluding 

the first stage residue. Larger deviations are observed in the fourth compartment residue. Both base 

metals and PGEs show significant contributions, indicating a specifically large deviation in the fourth 

compartment PGE concentrations.  

Both the traditional and RBC emphasised the relatively small impact of the fault on the process. In 

conjunction with the relatively large detection delay, it will be difficult to diagnose and mitigate the 

fault prior to it propagating through the process. KPCA contribution plots are not considered, since 

KPCA was unable to detect the fault in any of the replicates.  

E.2 Valve wear  

The valve wear PCA relative T2-statistic contribution plot is shown in Figure E.4. 

 

Figure E.4: Valve wear PCA relative T2 contribution plot. Only offline samples provided significant 

contributions.  

Large contributions were noted at the fourth compartment residue. The PGE concentration show 

large deviations in the fourth compartment residue. No significant contributions were noted in the 

first three fault identification sections. The fault is hidden by the process controllers resulting in poor 

fault identification results. 

The valve wear PCA relative T2-statistic RBC plot is shown in Figure E.5. 
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Figure E.5: Valve wear PCA relative RBC T2 plot. Only offline samples provided significant contributions.  

In contrast to Figure E.4, the largest contributions are noted at the third compartment residue and 

filtrate samples. However, the RBC similarly is unable to identify any significant contributions in the 

previous three sections.  

The valve wear KPCA relative T2-statistic contribution plots are shown in Figure E.6. 
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Figure E.6: Valve wear KPCA relative T2 contribution plot. The recycling section contributions are shown in 

the first plot. Offline sample contributions are shown in the second plot.  

Some deviations are noted in the third compartment mixing tank level and temperature. These 

contributions are considered to be symptoms of the fault. Large contributions are again noted at the 

third compartment filtrate and residue samples.  
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It is clear that none of the contribution plots identify the true fault location. This is primarily due to 

the process controllers hiding the impact of the fault as it propagates through the process. In 

conjunction with the poor detection delay results, the multivariate methods clearly offer no 

advantage to univariate when considering the valve wear fault.  

E.3 Valve stiction 

The valve stiction PCA relative SPE contribution plots are given in Figure E.7. 

 

Figure E.7: Valve stiction PCA relative SPE contribution plot. The recycling section contributions are shown in 

the first plot. Offline sample contributions are shown in the second plot. 

The largest contribution is noted at the third compartment solid/liquid separator level. Some 

deviations are also noted in third and fourth compartment filtrate. These contributions are all 
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symptoms of the fault. The PGEs show the largest deviations. Similar observations were made by 

Miskin (2015). The valve stiction results in lower concentration base metals present and therefore an 

increased rate of PGE leaching.  

The valve stiction PCA SPE relative RBC plots are shown in Figure E.8.  

 

 

 

 

 

 

 

 

 

Figure E.8: Valve stiction PCA RBC SPE plot. The recycling section contributions are shown in the first plot. 

Offline sample contributions are shown in the second plot. 

Similar contributions are noted with the RBC. Again only symptoms of the fault are identified. The 

same 4th compartment filtrate samples are again identified.  
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The valve stiction KPCA relative T2-statistic contribution plots are shown in Figure E.9. 

 

Figure E.9: Valve stiction KPCA relative T2 contribution plot. The pressure leach section is shown in the first 

plot, followed by the offline samples plot.  

Several significant contributions were noted in the autoclave section. Some variation in the second 

compartment temperature is noted, resulting in deviations in the oxygen feed rate. Some deviation 

in first compartment recycle is noted. These variations are again only symptoms of the fault. The 

fault results in density changes in the second stage preparation tank, which in turn affects the flash 

recycle tank level and flow-rates.  

The detection results clearly indicate that valve stiction can be detected significantly early. However, 

the fault identification results show it will be more challenging to identify the correct fault location 

after the fault has been detected.  
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E.4 Pump impeller wear 

The pump impeller wear PCA relative T2-statistic contribution plot is shown in Figure E.10. 

 

Figure E.10: Impeller wear PCA relative T2 contribution plot. Only offline sample contributions are shown.  

Significant contributions were only noted in the fourth compartment residue sample. Deviations in 

the both filtrate and residue samples are expected. The PGMs and PGEs provide the largest 

contributions for in the 4th compartment residue. The actual location of the fault is not identified.  

The pump impeller wear PCA T2-statistic RBC plot is shown in Figure E.11. 

 

Figure E.11: Impeller wear PCA relative RBC T2 plot. Only offline sample contributions are shown. 
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Again only significant contributions were noted in offline samples from Figure E.11. The RBC is also 

unable to identify the actual fault location. Similar deviations in both PGM and PGE compositions are 

noted for both the third and fourth compartment residue.  

The pump impeller wear relative KPCA T2-statistic contribution plots are shown in Figure E.12. 
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Figure E.12: Impeller wear KPCA relative T2 contribution plot. The preparation-, pressure leach- and recycle –

section contribution plots are shown followed by offline sample contribution plot.  

Some minor significant contributions were noted in the autoclave. Since the fault occurs in the 

second stage feed, the first compartment recycle flow contribution can be considered to correctly 

identify the fault location.  

Large contributions are noted in both third compartment offline samples. This is expected 

considering the temperature effect of the impeller wear.  
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E.5 Solids build-up in cooling coil 

The solids build-up in cooling coil PCA relative contribution plots are given in Figure E.13. 

 

 

 

 

 

 

 

 

Figure E.13: Solids build up in cooling coils PCA SPE relative contribution plots. The pressure leach section 

and offline samples provided significant contributions.  

The largest contribution is observed at the second compartment temperature. Some minor 

contribution variations are observed in the third and fourth compartment filtrate samples. The 

contribution plot therefore correctly identifies the fault location.  

The solid build-up in cooling coil PCA relative RBC plots are given in Figure E.14. 
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Figure E.14: Solids build up in cooling coils PCA SPE relative RBC plots. The preparation section, pressure 

leach section and offline samples provided significant contributions.  
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Similar to the traditional contribution plots, the second compartment temperature shows a large 

contribution. Larger contributions are observed for both the third and fourth compartment filtrate.  

 

 

 

 

 

 

 

 

Figure E.15: Solids build up in cooling coils KPCA T2-statistic relative contribution plots. The pressure leach 

section, recycle section and offline samples provided significant contributions. 
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Figure E.15 (cont.): Solids build up in cooling coils KPCA T2-statistic relative contribution plots. The pressure 

leach section, recycle section and offline samples provided significant contributions. 

Deviations in contributions are observed in the second compartment oxygen flow and second 

compartment temperature. The oxygen flow is reduced to accommodate for the increasing 

compartment temperature.  

Significant contributions are also observed in the third and fourth compartment offline samples. The 

increase in temperature will also result in significant changes in sample compositions. However, due 

to the sampling time delay, it is expected that these changes should only be observed at a later 

period.  

All contribution plots correctly identified the fault location. The offline sample contributions are 

however considered as incorrect.  
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E.6 Peristaltic pump tube failure 

The peristaltic pump tube failure relative PCA SPE contribution plots are shown in Figure E.16.  

 

Figure E.16: Traditional PCA SPE contribution plots. The preparation section and recycle section provided 

significant contributions.  

Due to the immediate impact of the fault, several variations in contributions are observed. The first is 

the preparation tank residue flow and level. This is expected, since the first stage residue flow 

towards the preparation tank immediately drops, which in turn results in an immediate drop in the 

level of the tank. Both these contributions are directly linked to fault location.  

A large deviation is also observed in the level of the third compartment recycle mixing tank. This is a 

definite symptom of the fault and does not contribute to identifying the fault location.  

The peristaltic pump tube failure PCA relative RBC plots are provided in Figure E.17.  
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Figure E.17: Reconstruction based SPE contribution plots. The preparation section, pressure leach section 

and recycle section provided significant contributions. 
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Similar deviations in contributions are observed at the second stage preparation tank. However, 

more symptoms are incorrectly identified. The loss in flow towards the autoclave results in 

temperature, level and oxygen flow deviations. A large deviation is consequently observed in the 

third compartment recycle tank level.  

The RBC correctly identifies the location of the fault, but also fails to deal with the significant fault 

smearing observed in E.17 .The peristaltic pump tube failure KPCA relative T2-statistic contribution 

plots are given in Figure E.18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.18: KPCA T2-statistic contribution plots. The preparation section, pressure leach section and recycle 

section provided significant contributions.  
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Similar fault symptoms are observed in the relative KPCA T2-statistic contribution plots. Smaller 

deviations are observed at the second stage preparation tank section. The KPCA contributions 

therefore suffer more from fault smearing when trying to identify the peristaltic pump tube failure.  

E.7 Sulphuric acid controller misuse 

The sulphuric acid controller misuse PCA relative T2-statistic contribution plot is given in Figure E.19. 

 

 

 

 

 

 

Figure E.19: Sulphuric acid controller misuse PCA relative T2 contribution plot. The pressure leach section and 

offline samples provided significant contributions.  

The only significant contributions are observed in the second compartment temperature and fourth 

compartment residue. Neither correctly identifies the location of the fault. The increased sulphuric 

acid results in minor disturbances to the autoclave temperatures.  

The sulphuric acid controller misuse PCA relative T2-statistic contribution plot is given in Figure E.20. 
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Figure E.20: Sulphuric acid controller misuse PCA relative RBC T2 plot. The preparation section provided 

significant contributions.  

The relative RBC plot in Figure E.20 shows the flash recycle tank sulphuric acid flow contributing to 

the T2-statistic. The contribution correctly identifies the location of the fault.  

The sulphuric acid controller misuse KPCA relative T2-statistic contribution plots are given in Figure 

E.21. 
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Figure E.21: Sulphuric acid controller misuse KPCA relative T2 contribution plot. The pressure leach section 

and offline samples provided significant contributions.  

The KPCA contribution plots in Figure E.21 only identifies the symptoms of the fault. Large deviations 

are observed in the third and fourth compartment offline samples. This is due to the over-leaching 

occurring in both the third and fourth compartments.  
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E.8 Bubbler level sensor blockage 

The PCA relative SPE contribution plots are given in Figure E.22. 

 

 

 

 

 

 

 

 

Figure E.22: Bubbler level sensor bias PCA SPE relative contribution plot. The recycle section and offline 

samples provided significant contributions.  

Small deviations are observed in the third compartment recycle section. Deviations in contributions 

are also observed in both third and fourth compartment offline samples. All contribution deviations 

identify symptoms of the fault and not the location of the fault.  

The relative PCA RBS plots are given in Figure E.23. 
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Figure E.23: Bubbler level sensor bias PCA relative SPE RBC plot. Offline samples provided significant 

contributions.  

Large deviations are observed in both third and fourth compartment offline samples. The 

contributions again only identify the symptoms of the fault and not the true fault location. Since the 

KPCA T2-statistic was unable to detect the fault, the KPCA T2-statistic contribution plots are not 

considered.  
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Appendix F: Platinum and palladium concentration 

estimation 

Appendix F discusses the estimation of both platinum and palladium concentrations. Linear regression 

is used to determine concentrations from iridium, rhodium and ruthenium concentrations. The 

estimated platinum and palladium concentrations were used in the economic impact analysis as 

described in Chapter 7. Historical plant data was used to develop linear regression models for both 

the second and third stage filtrate.  

1. Second stage filtrate 

Historical second stage filtrate composition data was used to build linear regression models for both 

platinum and palladium. The platinum concentration plant and estimated concentration is provided 

in Figure F.1. The estimated Pt concentration regression model provided a R2 of 0.860.  

 

Figure F.1: Second stage filtrate scaled platinum concentration estimation comparison. The solid line 

represents perfect prediction.  

The palladium concentration plant and estimated concentration is provided in Figure F.2. The 

estimated palladium concentration regression model provided a R2 of 0.795.  
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Figure F.2: Second stage filtrate palladium concentration estimation comparison. The solid line represents 

perfect prediction. 

2. Third stage filtrate 

Historical third stage filtrate composition data was used to build linear regression models for both 

platinum and palladium. The platinum concentration plant and estimated concentration is provided 

in Figure F.3. The estimated Pt concentration regression model provided a R2 of 0.672.  
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Figure F.3: Third stage filtrate scaled platinum concentration estimation comparison. The solid line 

represents perfect prediction. 

The palladium concentration plant and estimated concentration is provided in Figure F.4. The 

estimated palladium concentration regression model provided a R2 of 0.777. 

 

Figure F.4: Third stage filtrate palladium concentration estimation comparison. The solid line represents 

perfect prediction.  
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Appendix G: PCA and KPCA fault detection verification 

Appendix G provides PCA and KPCA results compared to previously published literature. The objective 

of the section is to verify the PCA and KPCA fault detection methodologies developed in this work. The 

Tennessee Eastman process is used as the benchmark process for both PCA and KPCA.  

PCA is verified with results published by Yin et al. (2012). KPCA is verified with results published by 

Aldrich and Auret (2012).  

1. PCA verification  

The PCA results obtained from Yin et al. (2012) is used as comparison. PCA was applied to the entire 

Tennessee Eastman data set and 9 principal components were retained.  

The comparison of results for fault 16 is shown in Figure G.1.  

i)

ii)

 

Figure G.1: i) Fault 16 T2-statistic result and ii) Fault 16 T2-statistic taken from Yin et al. (2012).  

The comparison of results for fault 16 is shown in Figure G.1.  
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ii)

i)

 

Figure G.2: i) Fault 17 SPE-statistic result and ii) Fault 17 SPE-statistic taken from Yin et al. (2012).  

Other available results from Yin et al. (2012) were also compared. All results were similar and 

therefore verifying the PCA methodology developed in this work.  

2. KPCA verification  

Reproducing KPCA results is more challenging. Mainly due to the use of different kernel widths and 

kernel width selection procedures not always being stated clearly.  

Results were compared to that of Aldrich and Auret (2012). The entire Tennessee Eastman process 

data set was used for training. 16 principal components were retained and the kernel width was 

selected from the 50th pairwise distance percentile.  

The scree plot and fault 5 T2-statistic result is shown in Figure G.3.  
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ii)

i)

 

Figure G.3: KPCA i) percentage variance explained and ii) Fault 5 T2-statistic result.  

The results in Figure G.3 were comparable to the results obtained by Aldrich and Auret (2012). The 

results are similar and other fault results were also subsequently compared. The comparison verified 

the KPCA model developed in this work.  
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