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Summary 
 

Amino acid metabolism serves as a source of sulphur, carbon and nitrogen for bacteria growing in wine or 

grape juice. The metabolism of amino acids controls the rate of growth and malic acid degradation and also 

results in the formation of various aromatic compounds which may positively or negatively influence the 

aroma profile of wine. L. plantarum, a lactic acid bacterium (LAB), may be used as co-inoculant in high pH 

(≥ 3.5) grape juice for fast malic acid degradation and high aroma production. 

Since the research on L. plantarum nitrogen metabolism is scarce, the overall goal of this study was to better 

understand it. The first aim was to determine the amino acid requirements in L. plantarum for growth and 

malic acid degradation, through single amino acid omissions. This entailed inoculation of nitrogen starved 

L. plantarum strains into chemically defined media (in this case synthetic grape juice) in which one amino 

acid is removed at a time. The data suggests that amino acid trophic requirements in L. plantarum are highly 

strain dependent, although Leu, Ile, Val, Glu and Met were shown under our conditions to be essential amino 

acids and Gln, Gly, His, Lys and Trp were non-essential amino acids. In a subsequent experiment, 5 single 

amino acid omissions (Ala, Arg, Gln, Trp and Val) were selected to evaluate their effect on growth and malic 

acid uptake in synthetic grape juice. During malolactic fermentation (MLF) the removal of Ala and Val had 

completely repressed MLF induced by L. plantarum while the removal of Trp and Arg had somewhat 

repressed MLF. Only the removal Gln did not hinder MLF for at least one strain.   

The second aim was to determine the order of amino acid uptake by L. plantarum in synthetic grape juice 

using HPLC. Asp, Thr, Ser and Ala tends to be assimilated at a high rate within the first 72 h while the 

branched chain amino acids, aromatic amino acids (AAA) and Met are assimilated after 72 h.  

The third aim determined the amino acid uptake in Chardonnay grape juice. The assimilation pattern differed 

considerably between synthetic grape juice and Chardonnay grape juice. In contrast to synthetic grape juice 

Arg, Leu, Phe and Ala were preferred amino acid sources. It is thought that the differences could be attributed 

to mainly two factors: initial nitrogen concentration (40 mg N/L in SGJ vs 240 mg N/L in grape juice) and 

the pre-culture conditions.  

This study confirmed that higher nitrogen concentrations resulted in higher growth and quicker malic acid 

degradation. The high nitrogen requirement of certain amino acids combined with the harsh wine parameters 

experienced in sequential MLF might explain why L. plantarum struggles with MLF in this scenario. Further 

research should be directed towards identifying the preferred amino acids in dried and fresh L. plantarum 

starter cultures to assess if there is a difference. If nitrogen requirements continues to be investigated in L. 

plantarum successful tailored supplements can be created to aid the growth of L. plantarum in wine or grape 

juice.   
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Opsomming 
 

Aminosuur metabolisme dien as ‘n bron van swawel, stikstof en koolstof vir bakterieë wat in wyn en 

druiwesap groei. Die metabolisme van aminosure beheer die tempo van groei, appelsuur afbraak asook die 

vorming van verskeie aromatiese verbindings wat die wyn aromaprofiel positief of negatief mag beïnvloed. 

L. plantarum, ‘n melksuurbakterium, mag gebruik word as ko-inokulant in hoë pH (≥ 3.5) druiwesap vir 

vinnige afbraak van appelsuur en hoë aroma produksie.  

Aangesien navorsing op die stikstof metabolisme van L. plantarum seldsaam is, was dit die algehele 

doelstelling van hierdie studie om dit beter te verstaan. Die eerste doelwit was om die aminosuur vereistes in 

L. plantarum te bepaal in terme van groei en appelsuur afbraak d. m. v. aminosuur weglatings. Dit behels die 

inokulasie van ‘n stikstof-uitgehongerde L. plantarum ras in chemiese gedefinieerde media (in hierdie geval 

sintetiese druiwesap) waarin een aminosuur op ‘n keer weggelaat is. Die data stel voor dat aminosuur trofiese 

vereistes in L. plantarum baie sterk afhanklik is van die ras wat gebruik word. Algeheel toon Leu, Ile, Val 

Glu en Met om essensiële aminosure te wees terwyl Gln, Gly, His, Lys en Trp toon om nie-essensiële 

aminosure te wees. In ‘n daaropvolgende eksperiment is 5 enkele aminosuur weglatings (Ala, Arg, Gln, Trp 

en Val) gekies om die effek op groei en appelsuur afbraak in sintetiese druiwesap te evalueer. Gedurende 

appelmelksuurgisting (AMG) het die weglating van Ala en Val die proses heeltemal onderdruk terwyl die 

weglating van Trp en Arg AMG slegs gedeeltelik onderdruk het. Slegs die weglating van Gln het glad nie 

AMG verhinder nie vir ten minste een ras.  

Die tweede doelwit het die volgorde van aminosuur opname deur L. plantarum in sintetiese druiwesap bepaal 

deur gebruik te maak van HPLC. Gevolglik, is bepaal dat Asp, Thr, Ser en Ala geneig is om eerste opgeneem 

te word teen ‘n hoë tempo binne die eerste 72 h van AMG terwyl Met, die vertakte ketting en aromatiese 

aminosure na 72 h geassimileer word.  

Die derde doelwit het die aminosuur opname in Chardonnay druiwesap bepaal. Die patroon van aminosuur 

assimilasie verskil heelwat tussen sintetiese druiwesap en Chardonnay druiwesap. In teenstelling met die 

sintetiese druiwesap, is Arg, Leu, Phe en Ala verkies as voorkeur bronne van aminosure in Chardonnay 

druiwesap. Die verskil tussen die resultate kan heelwaarskynlik toegeskryf word aan hoofsaaklik 2 faktore: 

die aanvanklike stikstof konsentrasie (40 mg N/L in sintetiese druiwesap en 240 mg N/L in druiwesap) en 

die vooraf kultiverings toestande. 

Hierdie studie bevestig dat hoër stikstof konsentrasies tot hoër groei en vinniger appelsuur afbraak lei. Die 

hoë stikstof vereistes tesame met die stresvolle wynkondisies wat verband hou met na alkoholiese fermentasie 

inokulasie mag verder verduidelik waarom L. plantarum sukkel onder hierdie toestande. Verdere navorsing 

behoort gerig te word om voorkeur aminosure in droë en vars aanvangskulture van L. plantarum te 

identifiseer, om te bepaal of daar ‘n verskil is. As stikstof vereistes in L. plantarum verder noukeurig 

ondersoek word kan stikstof aanvullings vervaardig word om L. plantarum te help met groei in wyn of 

druiwesap.  
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Chapter 1 – General introduction and project aims 
 

1.1 Introduction 

Lactic acid bacteria (LAB) are non-sporulation, non-motile, low G+C Gram-positive bacteria (Dicks 

and Endo, 2009) that occupy a wide variety of ecological niches and have been unconsciously used for 

thousands of years in the fermentation of food and foodstuffs such as wine and cheese. LAB is an 

economically important group of microorganisms as they play a crucial role in the fermentation of many 

food and beverage products. They contribute to the flavour and aroma profile, texture and preservation 

of the final product. For example in wine, LAB’s association with wine leads to the decarboxylation of 

L-malic acid to L-lactic acid and carbon dioxide and concomitant deacidification of wine in a process 

known as malolactic fermentation (MLF). MLF has a three-fold benefit for consumers and winemakers: 

firstly, LAB decreases the perceived acidity, secondly LAB provides microbial stability to the wine by 

degrading malic acid and thus prevents spoilage by other LAB, and thirdly it adds aromatic complexity 

to the wine (Bartowsky and Henschke, 2004).  

In order to gain standardized and consistent quality in fermented products such as cheese and wine, 

selected pure starter cultures are often used. The success of a LAB starter culture is based on whether 

they can overcome the internal hostile environment and finish the fermentation in a relative short period 

with limited production of undesirable compounds (Sun et al., 2016; Torriani et al., 2011). For instance 

Lactococcus lactis is the preferred starter culture in cheese as this species thrive at pH 5, high osmolarity 

( ≤ 4%), in anaerobic environments and produces bacteriocins (Fox et al., 1998). Whereas wine has a 

pH of 3-3.4, an alcohol content 12-15%, therefore Oenococcus. oeni is the most commonly used starter 

culture as this species is most tolerant to the wine conditions. Noticeably, lactobacilli are not preferred 

starter bacteria in both cheese and wine but may nevertheless partake in cheese ripening and MLF (Du 

Toit et al., 2011; Fox et al., 1998). Of course, in wine, various factors such as pH, ethanol, fermentation 

temperature, yeast, the content of phenolic acids, sulphur dioxide, antimicrobial peptides, amino acids 

and sugars will determine the extent to which Lactobacillus and other non-starter bacteria will survive 

in wine (Du Toit et al., 2011). There is some risk associated with the inhabitation of Lactobacillus 

species in wine. Lactobacillus brevis, L. fermentum and L. hilgardii species are implicated in production 

tetrahydropyridine, a compound with aroma described to be similar to acetamide or mouse urine and is 

commonly referred to as a ‘mousy’ taint (Du Toit and Pretorius, 2000). However not all non-starter 

lactobacilli cultures are undesirable to the wine-industry. Aside from negative characteristics of high 

diacetyl (Pretorius, 2016) and acetic acid production from tartaric acid degradation (Du Toit and 

Pretorius, 2000), L. plantarum can positively contribute to wine production. 

L. plantarum contains enzymes such as proteases, β-glucosidases, esterases and enzymes of the citrate 

lyase pathway (Mtshali et al., 2010). Equally important, L. plantarum’s extra- and intracellular 
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enzymatic fractions are active under wine-making conditions (Matthews et al., 2007; Pérez-Martín et 

al., 2013). These enzymes add or modulate the aroma in wine. A common and well-known contribution 

is the formation of diacetyl, the catabolic product of citrate degradation, which is responsible for the 

buttery aroma of cheese and wine (Bartowsky and Henschke, 2004; Malherbe et al., 2013). But some 

of the most important precursors to the production of aroma compounds are amino acids.  

Amino acids provide the carbon skeleton for the production of carbonyls, higher alcohols, and esters. 

More specifically, the degradation of branched-chain amino acids (BCAA) which comprise of Leu, Ile 

and Val are responsible for the production of isoamyl alcohol (3-methylbutanol) (Dickinson et al., 1997; 

Smit et al., 2004), active amyl alcohol (2-methylbutanol) (Dickinson et al., 2000) and isobutyl alcohol 

(2-methylpropanol) (Dickinson et al., 1998), all well-known aroma compounds. The production of 

higher alcohols and esters, impart a floral and/or fruity note, while the production of volatile sulphur 

compounds provide for a cabbage aroma in cheese (Cheng, 2010; Smit et al., 2009). The same 

compounds are also noted to be influenced by L. plantarum in wine after MLF (Knoll et al., 2011; Lee 

et al., 2009; Maicas et al., 1999; Pozo-Bayon et al., 2005).   

LAB amino acid metabolism is also linked to the health aspects of wine. Biogenic amines are the 

corresponding products of amino acid decarboxylation and are toxic to humans. Histamine and 

tyramine, for example causes dilation of blood vessels leading to headaches and high blood pressure 

(Mete et al., 2017; Silla Santos, 1996; Smit et al., 2008). In L. plantarum however the production of 

histamine, tyramine and phenylethylamine are noted to be absent (Landete et al., 2007; Lerm, 2010; 

Moreno-Arribas et al., 2000). Arg is one of the major amino acid found in grape juice. The catabolism 

through the Arginine deiminase (ADI) pathway leads to the production of ornithine, NH4, ATP and 

most importantly citrulline. Extruded citrulline may react spontaneously with the abundant ethanol in 

wine medium to produce ethyl carbamate, a possible carcinogen (Schlatter and Lutz, 1990). The ADI 

pathway is absent in wine L. plantarum (Liu et al., 1995) due to the absence of Arg deiminase 

gene/enzyme (Lerm et al., 2011). 

Amino acids also play a significant role in the growth of LAB in wine as limited quantity of nitrogen 

severely hamper the growth of LAB (Saguir and de Nadra, 2007; Terrade et al., 2009; Wegkamp et al., 

2010). In turn adequate growth of LAB in wine would prevent ‘stuck’ MLF; a common problem related 

to MLF. Furthermore, the absence of certain amino acids completely supresses the growth of wine LAB. 

In O. oeni 14-16 amino acid result in zero growth and wine lactobacilli (L. hilgardii and L. buchneri) 

have 4-5 amino acid auxotrophies (Terrade and Mira de Orduña, 2009). However, L. plantarum being 

an alternative inducer of MLF in high pH grape juice has not been adequately investigated.  
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1.2 Project Aims 

L. plantarum has to emerged as an alternative  starter culture for MLF in the last decade (Du Toit et al., 

2011). However, little is known at this stage about L. plantarum nutritional requirements with regards 

to nitrogen, microelements and vitamins and especially related to the wine matrix. This study focused 

on the amino acid nutritional requirements. Amino acid availability and uptake not only directly impacts 

the growth of L. plantarum (Saguir and de Nadra, 2007; Wegkamp et al., 2010) but also influences the 

aroma and health aspects of wine.  

Therefore the aims of this study were as follows: 

i) To determine the amino acid requirements of red wine isolated L. plantarum strains in a 

chemically defined medium; 

ii) To determine the order of single-amino acid uptake in a chemically defined medium; and  

iii) To determine the difference between amino acid uptake in grape juice and chemically 

defined medium. 
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Chapter 2- The factors influencing the amino acid catabolism in lactic 

acid bacteria 
 

2.1 Introduction 

Lactic acid bacteria (LAB) is responsible for fermentation of various food and food stuffs such as cheese and 

wine. In cheese, LAB is responsible for its aging which entails enzymatic degradation of lactose, fatty acids 

and proteins originating from milk (Engels, 1997). Similarly, LAB induces malolactic fermentation (MLF) in 

wine which results in the degradation of L-malic acid in grape must to L-lactic acid, resulting in a wine with a 

softer mouthfeel. With the inhabitation of LAB in these environments, the aroma and flavour profile is altered 

through a diverse number of enzymes and pathways (Mtshali et al., 2010).  

The pathways that govern flavour and aroma formation are carbohydrate, lipolysis, organic acid, phenolic acid 

and nitrogen metabolism. The products of carbohydrate metabolism are highly dependent upon the genus and 

strain undertaking the catabolism as homofermentative bacteria produces lactic acid from glucose through 

glycolysis and heterofermentative bacteria produces additionally to lactic acid also acetic acid and ethanol 

through the pentose phosphate pathway. Malic acid, tartaric acid and citric acid are readily disseminated to 

lactic acid, acetic acid and diacetyl. Diacetyl is known for its characteristic butter aroma (Bartowsky and 

Henschke, 2004; Malherbe et al., 2013). Through the mechanism of β-oxidation, fatty acids are converted to 

secondary alcohols and lactones (Hassan et al., 2013). Several wine LAB strains possess the hydroxycinnamic 

acid decarboxylase capable of catabolising the grape derived hydroxycinnamic acid to volatile phenols (Cavin 

et al., 1997; Esteban-Torres et al., 2013; Rodríguez et al., 2009). These compounds have odours reminiscent 

of medicinal, barn yard and leather aromas and are quite detrimental to wine quality. Nitrogen metabolism 

plays an essential role in wine aroma as a significant portion of the volatile fraction originates from amino acid 

metabolism. Depending upon the composition of the media, this may be first initiated by protein hydrolysis 

since the amino acids in dairy products and wine is relatively scarce (most amino acids in grape must is taken 

up by yeast during alcoholic fermentation). LAB have an extensive network of proteinases and peptidases to 

hydrolyse casein in milk and cheese (Christensen et al., 1999) and mannoproteins in wine (Remize et al., 2006) 

to yield peptides and free amino acids. Once transported into the cell the catabolism of amino acids can pass 

through four pathways: decarboxylation, transamination, lyase and oxidative deamination.  

LAB can also undergo MLF in grape juice. Contrary to wine and milk, grape juice contains a lot of amino 

acids of which Arg and Pro constitutes the largest composition. Depending upon the cultivar, vintage, 

agricultural practises, Val, Ala, His and Leu might be high as well (Monteiro and Bisson, 1991; Spayd and 

Andersen-Bagge, 1996). Without these amino acids it would be impossible for LAB to complete MLF in wine. 

It is therefore of interest to answer how these compounds are broken down to aid in LAB growth and what 

controls its metabolism.  
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Amino acid catabolism is reliant on the presence, functionality and expression of enzymes presiding over the 

reaction (Godon et al., 1993). Strict regulatory control is maintained over the gene’s expression to resist the 

synthesis of unnecessary and wasteful metabolites. A good example of excellent regulatory control are genes 

clustered together in the same operon under the control of a single promoter and regulatory protein e.g. the 

His-operon (Delorme et al., 1999, 1993), BCAA operon (Godon et al., 1993) and Arg-operon (Divol et al., 

2003; Zúñiga et al., 2002). The exogenous environment (pH, temperature, substrates availability) and the 

intracellular environment (intracellular pH, toxic substrate/product accumulation will determine the induction 

or repression of a gene. A pleiotropic gene e.g. CodY also controls either repression or induction of both 

catabolic and biosynthetic enzyme (Den Hengst et al., 2005b).  

To better grasp the amino acid metabolism of LAB, regulation and factors inducing or repressing a response 

will be investigated for most of the amino acids. Analysis of the pathways will also shine light on their 

physiological significance.  

2.2 Branched-chain and aromatic amino acid catabolism 

2.2.1 Ehrlich pathway 

More than 100 years ago it was suggested that a pathway exist in which branched chain amino acids (BCAA) 

are degraded into fusel alcohols. This was based upon the astute observation between the similarities of the 

carbon skeletons. Only much later was it confirmed through magnetic resonance and knock-out experiments 

that BCAA are indeed responsible for fusel alcohol formation in yeast (Dickinson et al., 2000, 1998, 1997). In 

this pathway, BCAA and aromatic amino acids (AAA) are transaminated to an α-keto acid, decarboxylated to 

an aldehyde and then reduced by an alcohol dehydrogenase to produce the corresponding fusel alcohol (Fig. 

2.1). Likewise these compounds are also noted to be produced in LAB during food fermentations. 

2.2.1.1 Transamination 

The respective first and last step in the catabolism and anabolism of BCAA and AAA is transamination, 

catalysed by a transaminase enzyme (Chambellon and Yvon, 2003). The transaminase enzymes are pyridoxal 

5’-phosphate (PLP) dependent and metal ion-independent enzymes composed of a homodimer. It transfers 

amino groups from an amino donor (amino acid) to an amino acceptor (α-keto acid). The most preferred α-

keto acid is α-keto glutamate even though oxaloacetate and pyruvate is also shown to participate in 

transamination (Pudlik and Lolkema, 2012). In Lc. lactis, BCAA and AAA is catalysed only by the branched-

chain amino acid transferase (BcaT) and the aromatic amino acid transferase (AraT) (Chambellon and Yvon, 

2003; Rijnen et al., 2003). These transaminases catalyse all transaminase reactions (with exception of Asp) 

and works to complement one another. BcaT displays the highest activity towards Val, Ile and Met and 

decreased activity towards Leu and AAA (Yvon et al., 2000) while AraT on the other hand displays the highest 

activity toward all AAA and Leu but has very weak activity towards Met, Ile and Val (Chambellon and Yvon, 

2003; Rijnen et al., 2003).  
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Transamination reaction in LAB is a major obstacle (bottleneck) in flavour formation. This is mainly due to 

the lack of α-keto glutamate supply (Kieronczyk et al., 2004; Rijnen et al., 2003; Yvon et al., 1998). Supply is 

generated by only two means: regeneration of α-keto glutamate or transportation of. α-keto glutamate. α-keto 

glutamate cannot be synthesized by lactobacilli and the majority of Lc. lactis due to an incomplete TCA cycle 

as the isocitrate dehydrogenase enzyme mediating the conversion of isocitrate toward α-keto glutamate is 

absent (Morishita and Yajima, 1995; Tanous et al., 2005). Glutamate dehydrogenase (GDH) is an enzyme that 

is responsible for the recycling of α-keto glutamate. It catalyse glutamate through oxidative deamination to α-

keto glutamate but the activity is always moderate to low. Alternatively α-keto glutamate can be transported 

across the cell through citrate permease (CitP), however this transporter is  promiscuous having affinity for all 

compounds containing X-CR2-COO-, in which X is either OH, O, or H (Pudlik and Lolkema, 2012). As the 

name suggests CitP is the transporter of citrate. The promiscuous nature of the enzyme results in competition 

between different metabolites resulting in decreased level of uptake of α-keto glutamate as observed with Lc. 

lactis in high citrate concentrations (Pudlik and Lolkema, 2013). 

On the other hand high citric acid concentration might also be beneficial towards BCAA and AAA degradation. 

In an attempt to detoxify the media of excess citric acid, Lc. lactis will convert citrate to Asp. The last step in 

this pathway requires a transamination reaction to convert oxaloacetate to Asp. In this case oxaloacetate acts 

as the keto donor and BCAA and AAA acts as the amino donors to yield keto acids (Pudlik and Lolkema, 

2012). 

A factor which may limit BCAA and AAA conversion is high concentration of Asp as Asp will compete with 

BCAA and AAA for the limited α-keto glutamate. Asp can also compete for α-keto acid and is transaminate 

by Asp transaminase (EC 2.6.1.1). Unlike the other transaminases Asp transaminase has only affinity for Asp 

allowing faster catabolism of Asp and quicker diminishing of α-keto acids supply (Kieronczyk et al., 2004; 

Peralta et al., 2016) 

Taking enzymatic kinetics into account, enzyme characterization reveals BcaT functions optimally in the 

presence of PLP at more neutral pH (7 and 8) (Pudlik and Lolkema, 2013; Thage et al., 2004; Yvon et al., 

2000). However an activity assay revealed the transamination activity to be unaffected by slightly acidic pH 

(5 and 6). It is thought that purification of the enzyme may alter its properties and in this way makes the 

enzymatic (Pudlik and Lolkema, 2013). Increases in transport rate of BCAA in Streptococcus cremoris of 

BCAA from acidic intracellular pH to neutral emphasizes the underlying importance of pH in the catabolism 

of BCAA in LAB (Driessen et al., 1987).  

2.2.1.2 α-Keto acid decarboxylation 

From the preceding section it is clear that the conversion of BCAA and AAA to α-keto acid is theoretically 

very low. The conversion to aroma compounds is further hindered as α-keto acid becomes a centralised 

metabolite that can enter into four different reactions namely reverse transamination, CoA addition, 

hydroxyacid dehydrogenase and decarboxylation. Thus decarboxylation must compete with reverse 
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transamination, a CoA addition reaction and the more favourable hydroxyacid dehydrogenase to produce an 

aldehyde (Smit et al., 2009, 2004). It is for this reason that decarboxylation is the rate limiting step in the 

flavour formation (Smit et al., 2004). The latter reaction is the one that contributes to the aroma profile of 

either cheese or wine producing aldehydes, carboxylic acids, higher alcohols and ethyl and acetate esters. In a 

Lc. lactis isolate containing both decarboxylation and hydroxyacid dehydrogenase activity, Smit et al. (2004) 

showed  that competitiveness between the four pathways exists and the prevailing condition will depend upon 

the reduction potential. In the absence of NADH, the NADH-dependent hydroxyacid dehydrogenase activity 

will cease and faster and higher production of aldehydes will be gained. When NADH is present hydroxyacid 

dehydrogenase will outcompete decarboxylation resulting in much higher levels of hydroxyacids than 

aldehydes.  

Two decarboxylase enzymes have been isolated and characterised in Lc. lactis. α-Ketoisovalerate 

decarboxylase (Kidv) and branched-chain α-keto acid decarboxylase (KdcA). Both are thiamin diphosphate 

(ThDP)-dependent, has an optimal pH at 6.3 to 6.5 with KdcA having broader pH activity profile and is found 

to have the highest activity towards α-ketoisovalerate (derivative of Val), with much lower activity towards α-

ketoisocaproate (derivative of Leu) and α-keto-β-methyl valerate (derivative of Ile) (De la Plaza et al., 2004; 

Smit et al., 2005).  

A further obstruction in aroma formation is the absence of decarboxylation activity in LAB (Smit et al., 2004). 

Screening of 156 bacteria belonging to genera Lactococcus, Lactobacillus and Leuconostoc revealed only 16% 

of Lactococcus species possessed the decarboxylation activity (Fernández de Palencia et al., 2006).  

2.2.1.3 Global BCAA regulation 

CodY is a pleiotropic regulator of amino acids in Gram-positive bacteria in response to nitrogen availability 

(Den Hengst et al., 2005a; Guédon et al., 2001; Petranovic et al., 2004). The strength of CodY repression is 

modulated only by BCAA that acts as cofactors and directly stimulate CodY binding to the regulatory sites of 

the target genes (Petranovic et al., 2004). All the cofactors do not have the exact same effect on the CodY 

repression system. For example when Ile binds to CodY the global effect on repression is higher than when 

either Val or Leu is bound to CodY (Chambellon and Yvon, 2003). The CodY binds to a conserved high 

affinity binding site known as the CodY-box which is situated 80bp upstream of the first codon (Den Hengst 

et al., 2005b). Several molecules of CodY binds to the CodY-box preventing the RNA polymerase from 

binding to the target site and preventing transcription (Den Hengst et al., 2005a, 2005b). As already mentioned, 

only BCAA can actively interact with the CodY to repress catabolic enzyme formation but the exact 

mechanism by which the BCAA influences CodY to modulate gene expression is unknown (Den Hengst et 

al., 2005a). When the intracellular pool of BCAA are low, the co-regulated genes of the CodY regulon (Prtp 

proteinase, Opp transporter, PepN, PepC, PepO1 peptidases) are expressed. Protein degradation, peptide 

transport and cleavage increases the intracellular content of the amino acids. Increased concentration of amino 

acids allows BCAA to act as cofactors binding to CodY and represses the genes of the CodY operon (Guédon 
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et al., 2001). During stationary phase CodY-mediated repression of peptide and amino acid transport systems 

is relieved to maintain the intracellular nitrogen balance (Den Hengst et al., 2005b).  
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2.3 Arginine catabolism 

2.3.1 Arginine deiminase pathway 

Of all amino acids Arg is the most studied in LAB and is one of the major amino acids in grape must and wine. 

Arginine is degraded by LAB through the arginine deiminase (ADI) pathway. Not all LAB possess the ADI 

pathway and it seems to be genus specific. This pathway benefits the LAB through energy provision (under 

sugar limiting conditions) and increasing of intracellular pH by producing ATP and ammonium respectively. 

Fig. 2.1. Reaction scheme of simplified branched-chain amino acid and aromatic amino acid degradation pathway. 

GDH: glutamate dehydrogenase, BcaT: branched-chain amino acid, AraT: aromatic amino acid transaminase, 

KivD: Keto acid decarboxylase and ADH: alcohol dehydrogenase. 
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Degradation of arginine entails 3 consecutive steps. The first reaction is a deamination reaction in which Arg 

is degraded to L-citrulline. The second step is the transfer of a carbamoyl (NH2-CO) group from L-citrulline 

to a phosphate group to produce L-ornithine and carbamoyl phosphate. The L-citrulline may also be extruded 

and spontaneously react with the ethanol in the medium to produce the carcinogen, ethyl carbamate. In the 

final step a phosphate is transferred from carbamoyl phosphate to ADP to form ATP, carbon dioxide and 

ammonia. The cycle is self-sustaining as the intracellular ornithine (a product of arginine catabolism) is 

expelled for extracellular arginine effectively trading product for reactant and thus ensuring the cycle 

continuous (Tonon and Lonvaud-Funel, 2002).  

In L. sakei the genes of the ADI path are arranged in a cluster (argABCTDR). The following genes arcA, arcB, 

arcC arcT arcD and argR codes for the expression of the arginine deiminase, ornithine transcarbomoylase, 

carbamate kinase, ornithine-arginine antiporter, transferase and the regulatory protein of the Crp/Fnr family 

respectively (Zúñiga et al., 2002, 1998). The organization of genes differ in O. oeni. The arcR lies upstream 

of argA, there are 2 arcD genes (arcD1 and arcD2). Thus the operon is organised as follows: arcRABCD1D2 

(Divol et al., 2003). Contrary to L. sakei the expression of arcD1 and argD2 are constitutively expressed and 

are not influenced by the presence Arg (Divol et al., 2003).   

Literature have identified several key aspects which could play a role in Arg catabolism regulation namely the 

LAB presiding over the fermentation, catabolic repression, pH of the medium and Arg supplementation. The 

ADI pathway is most commonly observed in obligate heterofermentative lactobacilli (L. sanfranciscensis, L. 

hilgardii, L. brevis and L. fructivorans) (De Angelis et al., 2002). The only homofermentative lactobacilli, L. 

plantarum is not often associated with ADI degradation (Lerm et al., 2011; Liu et al., 1995). Some L. 

plantarum stains have ADI activity but are sometimes noted to be deficient in one of the 3 enzymes. For 

example in a sourdough isolated L. plantarum strain, carbamate kinase activity was absent and a study into 

South African wine-isolated L. plantarum strains revealed an absence of the argA gene (Lerm et al., 2011). 

However L. plantarum strains isolated from Italian red must is seen to degrade Arg through the ADI pathway 

(Spano et al., 2004). This is also seen in L. plantarum isolated from orange juice (Arena et al., 1999). Therefore, 

the ability for LAB to degrade Arg through the ADI pathway is highly strain specific.  

In L. sake the presence of glucose (0.1 g/L) is seen to exert repression upon the argA gene and citrulline 

accumulation (Montel and Champomier, 1992; Zúñiga et al., 1998). More energy is generated through 

substrate-level phosphorylation than chemiosmosis (through which the ADI pathway generates its energy) 

(Tonon and Lonvaud-Funel, 2002). Therefore, the need for chemiosmosis becomes unnecessary in the 

presence of sugars (Konings et al., 1997; Molenaar et al., 1993). However, catabolite repression is not reflected 

in all LAB strains as neither L. plantarum nor O. oeni, loses activity at high glucose concentrations (Spano et 

al., 2004; Tonon et al., 2001). 

As mentioned before the ADI pathway leads toward the production of ammonia which causes intracellular pH 

to increase. LAB uses this pathway to overcome the acidic pH in media to ensure their survival (Tonon and 

Lonvaud-Funel, 2002). For this reason high expression of the arc gene is seen in L. plantarum at pH 3.6 and 
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4.5. The rise in pH has been shown to play a significant role in LAB survival in wine and improve metabolic 

turnover. In fact O. oeni can completely degrade Arg at pH of 3.9, partially at 3.6 and nothing at pH 3.3 due 

to the acidic environment (de Orduña et al., 2001). pH also influences enzymatic activity of the arginine 

deiminase, ornithine transcarbamoylase and carbamate kinase functions optimally at pH 5.0, 6.5 and 6.0 

respectively(Champomier Vergès et al., 1999; De Angelis et al., 2002). 

Lastly, the presence of Arg is a major inducer of ADI activity. Without the presence of Arg, basal level of arc 

gene are expressed but when Arg is added, the arc gene expression is significantly expressed in L. plantarum 

(Spano et al., 2004). In O. oeni there the presence of Arg does not influence the expression of the of the arc 

genes (Divol et al., 2003). 

2.4 Biogenic amine formation 

Biogenic amines are low molecular weight nitrogenous compounds commonly found in wine at low 

concentrations. This subject has been under investigation for decades since these molecules are found 

commonly in wine and the intake of these compounds are associated with adverse health defects in humans 

such as heart palpitations, headaches, high blood pressure and several allergic disorders in humans (Mete et 

al., 2017; Silla Santos, 1996). All the amino acid precursors of biogenic amines frequently found in wine are 

summarised in Table 2.1. Of all the biogenic amines histamine and tyramine is of the highest relevance since 

these two amines are the most toxic and their concentration generally increases during MLF (Marcobal et al., 

2006). The concern for the toxic nature of these compounds has resulted in an embargo on wines containing 

histamine above a specific threshold of 10 mg/L from several European countries (Austria, Belgium, France, 

Germany and Switzerland) (Polo et al., 2011). Another prevalent biogenic amine is putrescine which smells 

reminiscent of rotten meat. Histamine, tryptamine and putrescine represent the majority of biogenic amines in 

wine (Moreno-Arribas et al., 2000).  

Table 2.1.The amino acid precursors and the resulting product through decarboxylation [adapted 

from Silla Santos, (1996)] 

Amino acid (substrate) Biogenic amine (product) 

Histidine Histamine 

Tyrosine Tyramine 

Tryptophan Tryptamine 

Phenylalanine Phenylethylamine 

Lysine Cadaverine 

Arginine/ Ornithine Spermidine and spermine/Putrescine 

 

There can be no doubt that spontaneous MLF causes biogenic amines to increase in wine (Marcobal et al., 

2006; Wang et al., 2014). There are many factors that influences this increase but it can be summarised in 2 

principal factors namely wine composition and the strain(s) used to conduct MLF. Several parameters of wine 

are identified to play a role in biogenic amine formation namely pH, SO2, ethanol, amino acids, sugar and 

organic acid concentration.   
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Wine pH influences the viability of the LAB and the enzymatic activity of the decarboxylases. In the latter 

case enzymatic characterization of the tdc from L. brevis revealed the enzyme to be active at pH 3 -7 with 

optimal activity at pH 5 (Moreno-Arribas and Lonvaud-Funel, 1999). Wine pH lower than 3.4 are unfavourable 

towards the growth of LAB (Guerzoni et al., 1995). Polo et al. (2011) showed that the longer natural LAB 

remained viable, the more biogenic amines are produced. Thus higher pH are more favourable for biogenic 

amine accumulation as it has a larger diversity of LAB and the LAB also higher in number.  

High concentrations of SO2 and ethanol (11-13% v/v) will repress LAB growth and subsequently prevent 

amino acid decarboxylation (Mazzoli et al., 2009). However, ethanol is also a repressor of diamine oxidases 

responsible for oxidative deamination of biogenic amines (Silla Santos, 1996). 

There are contradicting information on whether biogenic amine production is effected by the initial quantity 

of the amino acids prior to MLF. Many studies has observed an increase in histamine concentration with 

supplementation of His (Lorenzo et al., 2017; Mazzoli et al., 2009; Molenaar et al., 1993). In support of this 

evidence, Landete et al. (2006), found higher expression of the His decarboxylase (hdc) gene resulting in 

higher histamine concentration. However, in other studies, no correlation is seen with the availability of His 

and histamine accumulation (Bauza et al., 1995; Martínez-Pinilla et al., 2013). But when Arg and His was 

supplied together in synthetic medium, Mazzoli et al. (2009) found histamine concentration to decrease 

together with ornithine. This study concluded that histamine production was repressed through the division of 

metabolic flux between His decarboxylation and the ADI pathway. Therefore repression of an individual 

biogenic amine is mediated through the lack of amino acid supplementation and higher diversity in amino acid 

composition. Similar data is also seen with tyrosine supplementation and tyramine accumulation. Of all the 

factors analysed by Moreno-Arribas et al. (2000) only Tyr is seen to highly stimulate tyramine production. In 

contrast high tyramine concentration is seen to repress TDC activity.  

LAB occupy various ecological niches. Not all of these niches are abundant in energy rich carbon sources. 

Wine, for example, contain 2-5 g/L of sugars and the generation of energy through substrate level 

phosphorylation in this environment is limited. Therefore, LAB must compensate by gathering energy via 

chemiosmosis. L-malic acid, the principal substrate in MLF, is decarboxylated to lactic acid, a milder acid. L-

lactic acid is released by membrane vesicles outside the cell into the wine matrix in exchange for L-malic acid 

through an antiporter transport system. This exchange provides for a change in the transmembrane pH gradient 

and membrane potential for the synthesis of ATP. The intracellular environment becomes acidic while the pH 

of the wine matrix slightly increases while at the same time the membrane vesicle become negatively charged 

on account of the accumulation of deprotonated L-malic acid (Konings et al., 1997). ATP synthesis is driven 

in the exact same fashion with the decarboxylation of amino acids except the precursor (amino acids) have a 

pKa value higher than the product (biogenic amine) (Konings et al., 1997; Molenaar et al., 1993). It is possible 

the decarboxylation is activated under energy limiting conditions when ATP cannot be generated through 

substrate level phosphorylation. Also Landete et al. (2006) found that the hdc was activated during exponential 

phase possibly to provide energy to match the demand for energy demand during this phase. When the cells 
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reached stationary phase the hdc was repressed. In support of this expression study Moreno-Arribas et al. 

(2000) found increased HDC activity at the end of the exponential phase. Higher concentrations of D-glucose, 

D-fructose, L citric acid, L-malic acid and L-lactic acid is shown to repress the formation of histamine (Landete 

et al., 2006). L-citric acid has been shown to exert some repression on TDC activity. In contrast, other studies 

reported malate and citrate concentration have no effect on histamine accumulation and glucose is seen to 

enhance histamine formation (Mazzoli et al., 2009; Moreno-Arribas et al., 2000).  

The most important criterion for limiting biogenic amine formation is to conduct MLF with a commercial 

strain of LAB that have been selected not to possess the genes responsible for biogenic amine formation. The 

distribution of decarboxylase-positive LAB are quite low in wine. LAB has only a few strains capable of 

producing biogenic amines (Lerm et al., 2011; Moreno-Arribas et al., 2000, 2003). Spontaneous MLF 

fermentations usually leads to higher increases in biogenic amines compared to MLF induced by a carefully 

selected commercial strain of O. oeni (Polo et al., 2011). This is because spontaneous fermentations have a 

wide variety of LAB genera and species which may carry the undesirable decarboxylase genes. Strains of L. 

brevis and L. hilgardii are more frequently associated with the presence of the tdc gene than other species 

(Coton et al., 2010; Downing, 2003; Lucas and Lonvaud-Funel, 2002) and are the most frequent producers of 

tyramine (Landete et al., 2007; Moreno-Arribas et al., 2000). In other lactobacilli, tyramine synthesis is rarely 

observed or completely absent (Guerrini et al., 2002; Landete et al., 2007; Lerm, 2010; Moreno-Arribas et al., 

2000). O. oeni on the other hand  has been associated with the production of histamine more frequently 

(Guerrini et al., 2002; Landete et al., 2005). Data also exist that shows O. oeni to be devoid of HDC activity 

(Moreno-Arribas et al., 2003). However the histamine production is not characteristic of O. oeni as the hdc 

gene is frequently remarked to be absent but when present, the production of histamine is quiet low when 

compared to other LAB strains such as Pediococcus parvalus and L. hilgardii (Guerrini et al., 2002; Landete 

et al., 2005; Moreno-Arribas et al., 2003). 

Some winemaking factors such as the addition of pectolytic enzymes, aging with lees, longer skin maceration 

time and fermentation temperature are shown to influence the biogenic amine concentration (Lorenzo et al., 

2017; Martín-Álvarez et al., 2006; Rosi et al., 2009). With aging the yeast autolyse and releases vitamins and 

amino acids that favour the growth of LAB, skin maceration releases phenolic compounds, amino acids, 

proteins and polysaccharides and increased fermentation temperatures increases the metabolic rate of LAB 

(Smit et al., 2008). 

2.5 Threonine catabolism 

Acetaldehyde is an important wine component and plays a role in the catabolism of Thr. Thr aldolase (EC 

4.1.2.48), is the enzyme responsible for this reaction (Ott et al., 2000). Gly is also produced as a result. Enzyme 

assays on Thr aldolase revealed Gly might inhibit the enzyme depending on the organism. Numerous studies 

have shown in Streptococcus thermophilus and Lactobacillus bulgaricus that Gly have a feed-back inhibition 

on Thr aldolase i.e. a greater concentration of Gly would reduce the concentration of acetaldehyde. On the 

other hand increased concentration of Thr would stimulate acetaldehyde production (Marranzine et al., 1989; 
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Rysstad et al., 1990; Wilkins et al., 1986). Marranzine et al. (1989) pointed out that the stimulation of Thr 

aldolase by Thr may be greater than the inhibitory effect of Gly. Thus the Thr aldolase exist with the intension 

of creating and maintaining the Gly balance for growth.  

2.6 Aspartate catabolism 

The catabolism of Asp has already been extensively covered in another review (Fernández and Zúñiga, 2006). 

Briefly, Asp can be degraded by 1 of 3 pathways. Transamination catalysed by an Asp transferase (EC 2.6.1.1), 

decarboxylation via an Asp decarboxylase (EC 4.1.1.12) and elimination through the action of the aspartate 

lyase (EC 4.3.1.1).  

Enzyme characterization of an Asp transferase from Lactobacillus brevis has shown the enzyme operates at 

maximal efficiency at 25ºC and has high affinity towards its substrates α-ketoglutarate and Asp (Hu et al., 

2017). In contrast an Asp aminotransferase from L. munnis had optimum temperature of 40ºC and had a greater 

affinity for Asp than α-ketoglutarate. Asp seem to be the most preferred source of amino acid transferase 

activity than the BCAA, AAA and Met (Kieronczyk et al., 2004; Peralta et al., 2016). Subsequently, glutamate 

dehydrogenase activity (responsible for deamination of glutamate to α-keto glutamate) has been observed to 

favour the transamination of Asp. As a result more acetoin and diacetyl is produced (Kieronczyk et al., 2004). 

2.7 Sulphur amino acid catabolism 

Met and Cys are the sulphur-containing amino acids. The catabolism of Met is mainly responsible for the 

production of volatile sulphur compounds (VSC) like dimethylsulphide (DMS), dimethyldisulphide (DMDS), 

dimethytrisulphide (DMTS) and methional. Generally the formation of VSC above the perception threshold is 

quite detrimental to the aroma profile of wine but beneficial to the ripening of cheese as it adds the 

characteristic cheese aroma. Cysteine catabolism on the other hand produces hydrogen sulphide (H2S), an 

odour reminiscent of rotten egg. 

Met degradation can take place through 2 pathways: transamination pathway and elimination pathway (Fig. 

2.2). In the transamination pathway, Met is exposed to the same pathway and enzymes as previously described 

for BCAA and AAA (see section 2.2) although the activity towards Met is markedly lower (Rijnen et al., 2003; 

Yvon et al., 2000). Therefore, Met degradation through the transaminase pathway is subjected to the same 

regulatory control. The final products of this pathway are methionol and 3-methylthiopropionic acid which are 

the alcohol and carboxylic acid derivatives respectively. O. oeni and Lactobacillus is capable of producing 

both of these compounds in red wine during MLF with O. oeni being the highest producer of all wine LAB 

(Pripis-Nicolau et al., 2004). Furthermore, the initial concentration of Met in wine before MLF is reported to 

affect the production of methionol. Any grape variety with higher concentration of Met in the grape must may 

result in higher concentration of methionol in the wine after MLF (Moreira et al., 2002; Ugliano and Moio, 

2005).  

Met elimination proceeds through a C-5 lyase catalysed by cystathionine-γ-lyase (EC 4.4.1.1) through α,γ- 

elimination producing methanethiol and ammonia (Hanniffy et al., 2009). The centralised metabolite in VSC 
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synthesis is methanetiol. DMS, DMDS and DMTS are oxidised chemically from methanethiol. Also, thioesters 

can be produced through the addition of fatty acids. The production of methanethiol can proceed through 2 

pathways: either indirectly through transamination and decarboxylation or directly through C-5 lyase. In the 

transamination pathway, Met lead to formation of keto-γ-methylthiobutyric acid (KMBA) and is subsequently 

either chemically oxidised or decarboxylated to methanethiol (Hanniffy et al., 2009). Furthermore there exist 

a negative correlation with increase Met addition and aminotransferase activity (Dias and Weimer, 1998). Low 

decarboxylation activity in Lc. lactis is another impediment of methanethiol. Nevertheless Lc. lactis has high 

transaminase activity towards Met despite the above-mentioned obstacles (Hanniffy et al., 2009). However the 

subsequent decarboxylase activity is very low in Lc. lactis.  

Both Cys and Met are substrates for elimination by cystathionine-γ-lyase (EC 4.4.1.1). The mechanism of 

action for this enzyme is an α,γ- elimination of Met resulting in methanethiol and ammonia and α,β-elimination 

of Cys resulting in H2S and ammonia and pyruvate (Bruinenberg et al., 1997; Knoll et al., 2011). Enzyme 

characterization of cystathionine-γ-lyase in O. oeni and Lc lactis indicated that the enzyme greatly prefers Cys 

over Met as substrate and has optimal activity at alkaline pH (Bruinenberg et al., 1997; Bustos et al., 2011; 

Hanniffy et al., 2009; Knoll et al., 2011). All sulphur amino acid degradation enzymes (transaminases and 

lyases) are pyridoxyl-5-phosphate dependent (Bruinenberg et al., 1997; Knoll et al., 2011). Incubation with 

higher pyridoxyl-5-phosphate concentration increased production of VSC at cheese pH and temperature 

(Wolle et al., 2006). In addition enzymatic activity may increase with extended aging of cheese and degrade 

substrates at faster rates (Burbank and Qian, 2008). A C-5 lyase (YtjE) is shown also to be under control of 

the CodY repressor. The relative expression of YtjE only increases exponentially after stationary phase 

(García-Cayuela et al., 2012). 
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Fig. 2.2. Methionine catabolism in lactic acid bacteria (Adapted from Hanniffy et al., 2009). 
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2.8 Lysine catabolism 

LAB metabolism of lysine has been implicated in the formation of 2-acetyltetrahydropyridine, a N-heterocycle 

compound. This is a spoilage odour compound responsible for the mousy taint of wine. 2-Lysine is probably 

degraded via a 2,3,4,5-tetrahydropyridine intermediate whereby acetylation occurs to produce 2-

acetyltertrahydropyridine (Costello and Henschke, 2002). It seems the production of 2-

acetyltetrahydropyridine seems only to be reserved for heterofermentative LAB (Lactobacillus, Leuconostoc 

and Oenococcus) (Costello et al., 2001). In heterofermentative LAB, fermentable carbon sources are degraded 

via the phosphoketolase pathway. Acetate and ethanol are synthesized and can be utilized in an acylation 

reaction with 2,3,4,5-tetrahydropyridine to synthesize 2-acetyltetrahydropyridine (Fig. 2.3). In contrast no N-

heterocyclic production is seen in L. plantarum and Pediococcus which are homofermentative LAB (Costello 

et al., 2001; Zúñiga et al., 1993). It is for this reason substantial higher production of 2-

acetyltertrahydropyridine is observed when fructose is available in excess. Furthermore, the presence of 

ethanol, Fe2+ ions and Lys increases the production of 2-acetyltetrahydropyridine (Costello and Henschke, 

2002).   

 

2.9 Conclusion  

LAB occupy a variety of ecological niches with low pH, high osmolarity and anaerobiosis, which are 

uninhabitable to most other microorganisms. This is achievable due to LAB’s frugal control over its 

metabolism. The catabolism of amino acids provides for energy through chemiosmosis, increase in the 

intracellular pH, redox balance and a source of nitrogen, sulphur and carbon.  

Generally speaking, the degradation of amino acids were mostly influenced by 2 factors namely the growth of 

the LAB in question and the carbohydrate metabolism. Firstly if LAB favours the medium in which it resides 

there will be a corresponding higher growth and higher amino acid degradation since these conditions favour 

higher enzymatic activity. Secondly, in terms of carbohydrate metabolism, homofermentative bacteria are less 

associated with biogenic amine, ethyl carbamate and 2-acetyltetrahydropyridine formation than their 

heterofermentative counterparts.  
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Chapter 3 – The amino acid requirements and usage of L. plantarum 
 

3.1 Abstract 

Lactobacillus plantarum is a lactic acid bacteria (LAB) capable of performing malolactic fermentation 

(MLF) in grape juice and wine. During MLF, LAB deacidify and alter the aroma composition of the wine. 

A major contributor to the aroma profile of wine is the metabolism of amino acids. This study aimed to 

better understand the amino acid requirements of L. plantarum strains, isolated from red wines, by 

identifying essential and preferable amino acids. Using single amino acid omissions, L. plantarum amino 

acid requirements was determined in solid and liquid chemically defined media. The trophic status of four 

amino acids is identical for all strains, namely auxotrophic for Glu and Val and prototrophic for Gln and 

Trp. All other amino acids trophic requirements are highly strain and sometimes media dependent. 

Subsequently, the order of amino acid uptake was determined during MLF over the course of 6 days in 

synthetic grape juice (SGJ). In addition, the quantity of amino acid uptake was also determined in 

Chardonnay grape juice. In SGJ, Asp, Thr, Ser and Ala tends to be taken up first, while branch chain amino 

acids, aromatic amino acid and Met are taken up last. In Chardonnay grape juice L. plantarum assimilates 

Lys and Leu at higher quantities than all other amino acids. This evidence suggests that L. plantarum’s 

nutrient requirements are strain dependent and certain amino acids will be assimilated faster depending upon 

the media composition and the pre-culture conditions.  

3.2 Introduction 

Lactobacillus plantarum is a facultative heterofermentative lactic acid bacteria (LAB) that is able to survive 

in an array of ecological niches such as plant surfaces, human gastrointestinal tract and food products such 

as cheese and wine (Siezen and van Hylckama Vlieg, 2011). In wine, L. plantarum will decarboxylate L- 

malic acid to L- lactic acid in the process known as malolactic fermentation (MLF). This decarboxylation 

reaction results in wine with enhanced microbial stability and aroma complexity (Malherbe et al., 2013). L. 

plantarum has been recognized to be the predominant LAB species in the early stages of spontaneous MLF 

in wine and brandy base wines (Cañas et al., 2009; Du Plessis et al., 2004; González-Arenzana et al., 2012; 

López et al., 2008; Ruiz et al., 2010). However their numbers eventually decline during MLF and are 

subsequently replaced by Oenococcus oeni, which is much better adapted to the major parameters associated 

with the wine environment (such as pH, SO2, ethanol) (Du Plessis et al., 2004; G-Alegría et al., 2004; 

González-Arenzana et al., 2012). The ability of L. plantarum to survive in wine and to complete MLF is 

highly strain-dependent (G-Alegría et al., 2004; López et al., 2008; Maicas et al., 1999; Pozo-Bayon et al., 

2005) as well as dependent upon the pH of wine as L. plantarum are more viable in slightly higher pH (≥3.5-  

vs 3.2) (Du Toit et al., 2011; G-Alegría et al., 2004; Guerzoni et al., 1995). A L. plantarum strain (L. 

plantarum V22) isolated from an Italian red wine has the ability to complete MLF faster than O. oeni when 

inoculated after alcoholic fermentation (AF) in a red wine with a pH of 3.6.  Alternatively, L. plantarum can 

be co-inoculated with yeast in order for MLF to proceed with AF. In this way, L. plantarum is introduced 
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to the grape must when the ethanol and yeast antimicrobial metabolites concentrations are low (Du Toit et 

al., 2011) and the nutrient content is high. Under these conditions the growth and metabolic rate is 

substantially higher than the conditions in sequential inoculation (Guerzoni et al., 1995; Maarman, 2014).  

Although L. plantarum may actively partake in MLF and its growth relative to O. oeni in wine is fairly well 

characterized, L. plantarum’s nitrogen metabolism in wine is inadequately researched. Amino acids are 

arguably one of the most important metabolites in terms of LAB metabolism in wine. Not only does the 

amino acids requirements impact the growth of the organism, the amino acid catabolism may influence the 

aroma and health aspects of wine. With regard to aroma formation, the degradation of branched-chain amino 

acids (BCAA) and Phe increases the fusel alcohol (higher alcohol) and ester content and adds to fruity and 

floral aromas to wine (Dickinson et al., 2000, 1998, 1997; Smit et al., 2005). Sulphur containing amino acids 

are the precursors for the volatile sulphur compounds (VSC), methional and hydrogen sulphide (H2S) 

(McSweeney and Sousa, 2000). The VSC and methional smells reminiscent of fecal, cabbage and sulphur 

and H2S smells of rotten egg (Friedrich and Acree, 1998; Molimard and Spinnler, 1996; Ott et al., 1997) 

and these sulphur aroma compounds are detrimental to the wine quality. Glu, Asp and Ala acts as keto 

donors in the degradation of BCAA, aromatic amino acids (AAA) and Met to aroma compounds. 

Decarboxylation of several amino acids such as the AAA, His, Glu, Lys and Arg leads to the formations of 

biogenic amines. Some of these compounds such as histamine tyramine and phenylethylamine are 

associated with adverse health defects such as migraines and high blood pressure while other biogenic amine 

such as cadaverine and putrescine not only enhance toxicity of other biogenic amines it also impart off-

flavours to the aroma of wine (Lerm et al., 2010; Pessione and Cirrincione, 2016; Silla Santos, 1996; Smit 

et al., 2008). 

Since L. plantarum can occupy a number of ecological niches, studies surrounding its amino acid 

requirements are not limited to a single environment or strain. Studies have been conducted in reconstituted 

skim milk and chemically defined media using strains that have been isolated from dairy environments (Ma 

et al., 2016; Morishita et al., 1981; Teusink et al., 2005) or orange skin peels (Saguir and de Nadra, 2007). 

Overall these studies have revealed that some amino acid trophic requirements appears to be common among 

all L. plantarum strains while other trophic requirements are highly strain dependent. These studies also 

revealed that amino acids with longer biosynthetic pathways are more likely to become auxotrophic (eg. His 

vs. Gly, Ala) (Morishita et al., 1981), feed-back inhibition may influence common biosynthetic pathways 

(eg. AAA repression of Shikimate pathway) (Teusink et al., 2005) and mutations will emerge after long 

term adaptation to a specific media e.g. BCAA (Godon et al., 1993).  

The methods to date to determine the amino acid requirements in LAB used quantitative means for its 

characterization. In this way each amino acid requirement can either be classified as essential, stimulatory 

or non-essential (Garvie, 1967; Ma et al., 2016; Morishita et al., 1981; Osborne and Edwards, 2007; Saguir 

and de Nadra, 2007; Terrade and Mira de Orduña, 2009; Teusink et al., 2005). However not all of these 

studies ensured that the intracellular nitrogen content was depleted prior transfer to an omission media. In 
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fact only Terrade and Mira de Orduña (2009) applied and argued the case of depletion of intracellular 

nitrogen content prior to transfer into single-omission media. This was accomplished through three sub-

cultivations of low cellular concentration (104 CFU/ml) in single amino acid omission media. Another point 

of contention is the omission of Gln and Asn (in some cases) from the chemically defined media. With these 

omissions, Glu and Asp cannot be supplemented and added pressure is placed upon the metabolic flux to 

generate free amino acid for protein synthesis and this could yield lower growth. 

The aim of this study was to optimize the method for determination of amino acid auxotrophies and to 

determine the nitrogen requirements of red wine isolated strains of L. plantarum. The nitrogen requirements 

was further evaluated by determining the order of amino acid uptake for each amino acids in synthetic grape 

juice during MLF and to determine the overall amino acid uptake in Chardonnay grape juice after MLF.  

3.3 Materials and methods 

3.3.1 Bacterial strains, media and cultivation  

The Lactobacillus plantarum strains used in this study were L. plantarum 65.1, L. plantarum 73.1, L. 

plantarum 75, L. plantarum 83 and L. plantarum 85.1. These strains were isolated from South African red 

wine fermentations in commercial cellars and form part of the culture collection of the Institute for Wine 

Biotechnology (IWBT). The LAB strains were all maintained as culture stocks at ­80ºC in 50% (v/v) 

glycerol (Saarchem, Merck) solution.  

The chemically defined media used for testing L. plantarum’s trophic requirements and amino acid 

utilization was a synthetic grape juice (SGJ) based on the media of Henschke and Jiranek (1993) with slight 

adjustments (Table 3.1.). I) The sugar concentration of glucose and fructose was reduced from 250 g/L to 

10 g/L. II) All 20 proteogenic amino acids were added at the same nitrogen concentration (Table 3.2.) to 

the synthetic grape juice (SGJ).  

The L. plantarum strains were cultivated routinely on De Man Rogosa and Sharp (MRS) plates containing 

50 g/L MRS broth (Biolab, Merck) and 15 g/L bacteriological agar (Biolab, Merck). Upon incubation the 

MRS plate cultures were placed in anaerobic chambers with anaerobic sheets (Anaerocult® A, Merck). L. 

plantarum was cultivated at 30ºC for 2 days. 

A single inoculated colony of the L. plantarum strains was cultured for 24 h in 5 ml MRS broth (Biolab, 

Merck) at 30ºC under microaerophilic (no agitation) conditions. Before inoculation into SGJ, the cultures 

were subjected to starvation: after the growth phase, the cells (from the 5 ml cultures) were harvested by 

centrifugation (5000 rpm, 7 min), washed thrice with 0.85% saline solution, and transferred to 100 ml 

starvation media (SGJ without amino acids). After a 48 h starvation period at 30ºC, cells were harvested by 

centrifugation (5 000 rpm, 7 min), washed twice with 0.85% saline solution and resuspended in 10 ml of 

the same solution. 
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Before inoculation into Chardonnay grape juice the strains were cultured in an activation media which 

consisted of 50 g/L MRS broth (Biolab, Merck), 40 g/L D (-) fructose (Biolab, Merck), 4.0 g/L L (-) malic 

acid (Biolab, Merck) and 1.0 g/L Tween 80. The pH of the activation media was adjusted to 3.5 with 37% 

HCl prior to autoclaving. L. plantarum was inoculated and cultured in the activation media to a final OD600 

of 0.05 under microaerophilic conditions (no stirring) at 30ºC.  

All fermentations in SGJ and Chardonnay grape juice were carried out 20ºC until the end of MLF (malic 

acid concentration ≤ 0.3 g/L). Initial OD600 values after inoculation of L. plantarum were 0.05. This value 

corresponded to approximately 5 -10 x 106 CFU/ml.   

Growth in omission media were carried out at 30ºC. Growth continued in the solid omission media until 

single colonies emerged in the no amino acid omission control. In the liquid omission media growth was 

stopped after 4 days.  

3.3.2 Species-specific PCR of LAB  

To confirm that all strains belonged to L. plantarum, species-specific primers were used to amplify 

conserved genes via PCR. Genomic DNA was extracted according to the method of Lewington et al. (1987) 

with a slight adjustment as mutanolysin was added at a final concentration of 1000 U/ml to aid with the 

degradation of the bacterial cell wall. Nanodrop® ND-1000 (NanoDrop Technologies, Inc., Wilmington, 

USA) was used to measure the quantity and quality of the DNA.  The recA gene was amplified via PCR 

since this gene is conserved in L. plantarum (Torriani et al., 2001). The PCR cycling parameters are 

summarized in Table 3.3. 

3.3.3 Growth experiments on single amino acid omission chemically defined plate-based and liquid 

media 

The amino acid auxotrophies were evaluated by using single amino acid omissions in chemically defined 

solid and liquid media. The solid SGJ was adjusted to pH 5.2 and 2% granulated agar (DifcoTM, Dickinson 

and Co.) was added prior to autoclaving. The vitamins, trace elements, lipids, amino acids and antibiotics 

[100 mg/L Delvocid (DSM Food Specialist, Netherlands), 25 mg/L Kanamycin (Sigma-Aldrich)] were filter 

sterilized through 0.22 μm filters (Whatman®) together prior to addition to the hot (60-70ºC) SGJ. 

Antibiotics were used to supress the growth of fungi and acetic acid bacteria on this nutrient rich media, 

which may appear several days after inoculation. When the amino acids were added to the SGJ, each amino 

acid was added at a concentration of 1 mg N/L (Table 3.2.). Two criteria are used for the acceptance of a 

prototrophic result, namely colonies must appear within the same time as the positive control (6 days) and 

colonies must be the approximate size of the positive control (Godon et al., 1993). Growth were classified 

as partial when smaller colonies emerged within 6 days of incubation.   
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The amino acid solution and SGJ was adjusted to pH 3.5 [as L. plantarum prefer a slightly higher wine pH 

(Guerzoni et al., 1995)] and 5 ml SGJ was aseptically transferred to 10 ml tubes. Anoxic gas was not added 

to the culture prior to incubation and the cultures incubated semi-aerobically upon inoculation. 

 

  

 

 

 

Table 3.1. The composition of synthetic grape juice (SGJ) media. 

 Substrate In 1 L 

Carbon Sources Glucose 10 g 

 Fructose 10 g 

Acids  KH Tartrate 2.5 g 

 L-Malic acid 3 g 

 Citric acid 0.2 g 

Salts K2HPO4 1.14 g 

 MgSO4.7H2O 1.23 g 

 CaCl2.2H2O 0.44 g 

Vitamins  Myo-inositol 100 mg 

 Pyridoxine 2 mg 

 Nicotinic acid 2 mg 

 Calcium pantothenate 1 mg 

 Thiamin.HCl 0.5 mg 

 p-Aminobenzoic acid 0.2 mg 

 Riboflavin 0.2 mg 

 D-Biotin 0.125 mg 

 Folic acid 0.2 mg 

Trace elements MnCl2.4H2O 200 μg 

 ZnCl2 135 μg 

 FeCl2 30 μg 

 CuCl2 15 μg 

 H3BO3 5 μg 

 Co(NO3)2.6H2O 30 μg 

 NaMoO4.2H2O 25 μg 

 KIO3 10 μg 

Lipids Ergosterol 10 mg 

 Tween 80 0.5 ml 

Nitrogen source See Table 3.2. 
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Table 3.2. The amino acid composition of the synthetic grape juice to yield a final 

concentration of either 1 mg N/L or 2 mg N/L. 

Amino acid 
mg amino acid added to 

achieve 2 mg N/L 

mg amino acid added to 

achieve 1 mg N/L 

L-Alanine 12.72 6.36 

L-Arginine 6.22 3.11 

L-Aspartic acid 19.02 9.51 

L-Asparagine 9.44 4.72 

L-Cysteine 17.3 8.65 

L-Glutamic acid 21.02 10.51 

L-Glutamine 10.44 5.22 

L-Glycine 10.72 5.36 

L-Histidine 7.38 3.69 

L-Isoleucine 18.74 9.37 

L-Leucine 18.74 9.37 

L-Lysine 10.44 5.22 

L-Methionine 21.32 10.66 

L-Phenylalanine 23.6 11.8 

L-Proline 16.44 8.22 

L-Serine 15 7.5 

L-Threonine 17.02 8.51 

L-Tryptophan 14.58 7.29 

L-Tyrosine 25.88 12.94 

L-Valine 16.74 8.37 

 

 

 

 

Table 3.3. The species-specific primers and PCR parameters to confirm L. plantarum identity. 

  Main cycling parameters  
Reference 

Primer pair TDI. TD. TA. TE No. of  cycles TEF 

plan F/pREV 94ºC (1) 94ºC (1) 55ºC (1) 72ºC (1) 30 72ºC (10) Torriani et al., 2001 

TDI: initial denaturation temperature, TD: denaturation temperature, TA: annealing temperature, TE extension 

temperature, TET: final extension temperature. Numbers in parenthesis indicates time in minutes. 
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Before inoculation the starved culture was serially diluted to 10-6. The 10-6 dilution typically contained 

between 300-1000 colony forming units (CFU)/ml. The solid and liquid synthetic grape juice was plated 

and inoculated respectively into single-omission amino acid media with 100 μl of the 10-6 starved 

culture dilution. In the solid media trophic requirements were scored as prototrophic when single 

colonies had emerged within the same time as the no-omission control (i.e. within 144 h days of 

incubation). In the liquid-based approach a prototrophic result was scored when the strain displayed an 

OD600 value above 0.1 (limit of detection) which roughly corresponded with 1x108 CFU/ml within the 

same time as the respective no-amino acid control. Results were mean of three biological repeats.   

3.3.4 Fermentations in synthetic grape juice 

Fermentations were carried out in 100 ml spice flasks capped with a rubber stopper and CO2 outlet. The 

spice-flasks contained 80 ml of SGJ with all amino acids at 2 mg N/L (Table 3.2). The starved bacterial 

cultures were inoculated into SGJ at an approximate cell-concentration of 1x107 CFU/mL. 

Fermentations preceded at 20ºC until malic acid was depleted. In each case stationary-phase was 

reached long before the depletion of malic acid. Samples were taken every 24 h for determination of 

malic acid, amino acid and CFU/mL. The supernatant was extracted by centrifugation (5000 rpm, 7 

min) and stored at -20ºC for the quantification of malic acid and amino acid concentrations. The 

fermentations were carried out in triplicate. 

3.3.5 Vinification of grape juice 

Grape juice fermentations were carried out using clarified free run juice (cv. Chardonnay) received from 

Neethlingshof, Western Cape, South Africa. Prior to MLF, thermovinification was applied to the grape 

juice to eliminate the indigenous yeast and bacterial species. The juice was heated to 70-80ºC for 15 

min. Hot grape juice were dispensed and capped into clean 2 L fermentation bottles and stored at -4ºC 

until further use. 

The bottles were capped with rubber stopper and CO2 outlet. Fermentation in grape juice was carried 

out at 20ºC for 144 h.  The strains L. plantarum 73.1, 83 and 85.1 were chosen according to results 

obtained for auxotrophic analysis to conduct MLF in Chardonnay grape juice. Each strain was 

inoculated at approximately 1x107 CFU/mL. MLF was monitored by the measurement of the 

degradation of malic acid using Arena 20XT. Samples were taken for the determination of cell counts 

(CFU/ml), malic acid and amino acid concentrations every 24 h. The parameters of the grape juices 

after thermovinification and before inoculation of L. plantarum are summarized in Table 3.4. 
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3.3.6 High Performance Liquid Chromatography for amino acid quantification 

The high performance liquid chromatography (HPLC) was used to quantify the amino acids by pre-

column derivatisation and fluorescence detection using an Agilent 1100 system. The method of 

Henderson and Brooks, (2010) was used with modification to the derivatisation and injection. Column 

Poroshell HPH-C18 (4.6x150mm, 2.7 μm) (Chemetrix (Pty) Ltd) was used for derivatisation of the 

amino acids and was fitted to a Guard column (UHPLC Guard, Poroshell HPH-C18 4.6mm) (Chemetrix 

(Pty) Ltd) to preserve the service life of the column. The temperature of the column apparatus were 

40ºC during derivitisation. O-phthaldialdehyde (Sigma Aldrich) was used for the derivatisation of the 

primary amino acid, iodoacetic acid (Sigma Aldrich) was used for the derivatisation of cysteine, while 

fluorenylmethyloxycarbonyl chloride (Sigma Aldrich) was used for the derivatisation of the secondary 

amino acids. Norvaline and sarcosine were used as internal standards for primary and secondary amino 

acids respectively. Agilent Chemstation 32 was used as the software for the integration of the data. 

3.3.7 Malic acid quantification 

An Arena 20XT (Thermo Electron Corporation, Finland) automated enzymatic kit robot was used to 

quantify L-malic acid with an enzymatic kit (Enzytec™ Fluid L -malate Id-No: E5280, Roche, R-

Biopharm). 

3.4 Results 

3.4.1 Strain identification 

The recA gene of all 5 strains were amplified using PCR and the resulting amplicon length was 300 bp. 

The strains that were used in this study, therefore, belong to the species, L. plantarum, as the expected 

band size was obtained (Torriani et al., 2001). 

3.4.2 Essential amino acid determination in L. plantarum 

3.4.2.1 Solid omission media  

Formation of colonies within 6 days at 30ºC was scored as growth, whereas formation of small colonies 

within the same time was scored as partial growth and no formation of colonies was scored as no growth 

(Table 3.5). To assess the viability of the starved culture cells 100 μl were plated on MRS-agar and all 

starved cultures could grow after 2 days on MRS-agar, indicating the cells were viable at the time of 

inoculation. All strains were unable to grow in the absence of all amino acid, while supplementation of 

Table 3.4. The parameters of the grape juice (cv. Chardonnay) before inoculation. 

 YAN (mg/L) pH Malic acid (g/L) Total SO2 (mg/L) 

Neethlingshof  198.8 3.42 3.12 32 
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all 20 amino acids to SGJ enabled all 5 strains to grow. The data show a significant variation in amino 

acid auxotrophies: L. plantarum 65.1 and 73.1 were auxotrophic for 14 amino acids, L. plantarum 75 

for 6 amino acids and L. plantarum 83 and 85.1 for 4 amino acids. Furthermore every single strain could 

grow in the presence of all amino acids and in the absence of Gln, Thr and Trp, while no strain could 

grow in the absence of Val, Asp, and Glu. Collectively the BCAA were nutritionally essential. For the 

rest of the amino acids, the strains showed great variability.   

 

3.4.2.2 Liquid omission media 

The solid media growth assays were not always conclusive, as indicated by the partial growth, therefore 

interpretation of auxotrophy vs prototrophy required further investigation. To verify the data, the L. 

plantarum strains were subjected to the same auxotrophies in SGJ liquid media. No growth was 

observed when Ala, Cys, Leu and Val were omitted from the media (Fig. 3.1). Ile and Met were also 

essential in most of the strains. Conversely growth was observed when Gln, Gly, His, Lys, Trp and Tyr 

was omitted from the media. Additionally, Pro and Phe could be synthesized by all but one strain. In 

most cases a single omission of an amino acid lead neither to a nullification of growth nor a complete 

independence thereof, leading as in the case of solid media to intermediary growth phenotypes as well. 

Table 3.5. Impact of single amino acid omission on the growth of L. plantarum on solid media. 

Amino acid omitted 
L. plantarum strain 

65.1 73.1 75 83 85.1 

Ala ͞ + ± + + 

Arg ±  ͞ ± ± ± 

Asn + + ͞ + + 

Asp ͞ ͞ ͞ ͞ ͞ 

Cys ͞ ͞ + + + 

Glu ͞ ͞ ͞ ͞ ͞ 

Gln + + + + + 

Gly ͞ ͞ ± + + 

His ͞ ͞ ± + + 

Ile ͞ ͞ ± ± ± 

Leu ͞ ͞ ͞ + ͞ 

Lys ͞ + + + + 

Met ͞ ͞ ± + ͞ 

Phe ±  ± ± ͞ ± 

Pro ͞ ͞ ± ± + 

Ser ͞ ͞ ͞ + + 

Thr +  + + + + 

Trp + + ± + + 

Tyr ͞ ͞ ± + + 

Val ͞ ͞ ͞ ͞ ͞ 

No omission +  +  + + + 

All AA omitted ͞ ͞ ͞ ͞ ͞ 

(+) indicates growth, (±) indicates partial growth and (-) indicates an absence of growth on single 

amino acid omission solid media  
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For example in most cases of an omission of Arg, Asn, Asp, Lys and Tyr the optical density were 

significantly lower than the zero omission control. In almost all cases the omission of Gln, Gly, His, 

Phe, Pro, Ser and Trp from the media did not influence the growth of the prototrophic strains 

significantly.  

3.4.2.3 Impact of amino acid omission on MLF 

In order to further evaluate the amino acid trophic requirements of L. plantarum, MLF was carried out 

in SGJ by two strains (73.1 and 83) (Figs. 3.2 and 3.3). Five amino acid omissions were chosen for 

further investigation: Ala, Val, Trp, Gln and Arg based on the results obtained from the trophic studies. 

These amino acids present different trophic requirements, with 2 being essential (Ala and Val), 1 

stimulatory (Arg) and 2 non-essential (Gln and Trp). L. plantarum 73.1 completely degraded malic acid 

only when Gln was omitted from SGJ. L. plantarum 73.1 degraded half of the malic acid when Arg was 

omitted, while only slight decreases in malic acid concentration were observed when Val and Ala were 

omitted. With the omission Ala and Val both strains grew very slowly, reaching an OD600 slightly 

beyond 0.100 after 144 h. Unexpectedly, with regards to L. plantarum 83, not a single omission had 

resulted in a complete degradation of malic acid. With the omission of Gln, Arg and Trp more than half 

of the malic acid was degraded. On the other hand, similarly to L. plantarum 73.1, the omission of Ala 

and Val led small degradation of malic acid and growth inhibition.  

The growth results aligned with the malic acid degradation results. A total degradation of malic acid 

lead to an overall higher optical density in comparison to smaller malic acid uptake. In the case both of 

Ala and Val, both strains’ optical density at OD600 only showed a slight increase beyond the limit of 

detection of 0.100 (OD600) after MLF while at the same time the OD600 had increased greatly for Gln, 

Arg and the no omission control. Overall this data shows that amino acids are crucial for the completion 

of MLF. 

3.4.3 Amino acid assimilation of L. plantarum in synthetic grape juice 

3.4.3.1 Growth kinetics of L. plantarum in synthetic grape juice 

Three strains were chosen form the liquid assays dataset to investigate the amino acid uptake in L. 

plantarum. During MLF in SGJ the strains all reached stationary phase at 72 h (Fig. 3.4) but MLF was 

only completed ([malic acid] ≤ 0.3 g/L) at 144 h. All strains reached approximately 1x108 CFU/ml at 

48 h and further increased till 60 h (L. plantarum 73.1) and 72 h (L. plantarum 83 and 85.1) where after 

cell counts began declining slightly over a 72 h period.  
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Fig. 3.1. The % relative optical density OD600 of L. plantarum grown in single amino acid omission SGJ 

relative to a zero amino acid SGJ control. The % relative optical densities in amino acid omission growth 

results are represented in (A) Ala, Arg, Asp, Asn and Cys, (B) Glu, Gln, Gly, His and Ile (C) Leu, Lys Met, 

Phe and Pro and (D) Ser, Thr, Trp, Tyr and Val. 
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Fig. 3.2. The uptake of malic acid in L. plantarum 73.1 (A) and L. plantarum 83 (B) when the amino acids 

Val, Ala, Trp, Arg and Gln are omitted individually from the SGJ media. The fermentations included a no 

omission control and a control in which all amino acids were omitted. 
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Fig. 3.3. The optical density at 600 nm for L. plantarum 73.1 (A) and L. plantarum 83 (B) when the amino 

acid Ala, Val, Trp, Arg and Gln was individually excluded from the SGJ. Controls included a zero omission 

and a control in which all amino acids were removed.  
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3.4.3.2 The order of uptake of amino acids by L. plantarum during MLF 

In the media in which the concentration of each amino acid had been adjusted to the same amount of 

nitrogen (i.e. 2 mg N/L) each L. plantarum strain showed the same amino acids assimilation pattern and 

order of amino acid uptake, independently of the amino acid trophic requirements (Figs. 3.5-3.8 and 

Table 3.6). The quantity of single-amino acid uptake however differed in some cases. Asp is rapidly 

assimilated compared to any other amino acid and completely consumed within 72 h. 72 h coincides 

with the time that the bacteria entered stationary phase (Fig. 3.4). No other amino acid is completely 

consumed at this time point. In the first 36 h Asp, Lys and Ala are the most preferred amino acids 

representing at least over 50% of the amino acids absorbed at this time point. Only 12 amino acids are 

consumed in the first 36 h: Asp, Lys, Ala, Thr, His, Gly, Asn, Arg, Ser, Pro, Trp and Leu. Less preferred 

(in terms of uptake) amino acids like Glu, Ser, Thr, Arg, Tyr, Val, Met, Phe, Ile, Leu represents less 

than 20% of the cumulative uptake during MLF. Noticeably, the essential amino acids Glu, Ile and Val 

are absent from the assimilation despite the strains showing no growth impairment within 36 h. In the 

first 72 h the total amino acid assimilation of Asp, Thr, and Ser accounted for 40-50% of consumption. 

Glu consumption only sharply increased between 36-72 h with 0.5-1.1 mg N/L of uptake (B). BCAA 

and AAA assimilation was limited before 72 h with total BCAA uptake representing only 5% of total 

amino acid uptake. However after 72 h, BCAA assimilation represents 19.37-24.25% of total amino 

acid uptake (D). Moreover 70% of Leu assimilation, 70-75% of Ile assimilation, and 65-70% of Val 

assimilation had taken place after 72 h. Tyr and Phe assimilation after 72 h had accounted for 72-95% 

and 85-95% (C). The uptake of His, Arg and Pro (83 and 85.1) was also 50% and higher after 72 h.  

Ala, Thr and Asn assimilation was much higher at 36 – 72 h. representing more than 40% of their 

respective total assimilation. A decrease in Ser corresponded with an increase in Gly (E).  

Overall Thr, Asp, Ser were completely assimilated at 144 h by all 3 strains (Fig. 3.5). For each strain 

there was a high assimilation of Ala, Glu, Arg, Lys and Leu while Ile, Tyr, Asn and Val always have 

moderate uptake. Among the BCAA, Leu always have the highest preference, followed by Ile and Val. 

Among the AAA, Phe was the most preferred amino acid, next to Tyr. The concentration of Cys could 

not be measured possibly due to oxygenation and spontaneous reaction with other metabolites.  

 

3.4.4 Amino acid assimilation of L. plantarum in Chardonnay grape juice  

3.4.4.1 Growth kinetics of L. plantarum in Chardonnay grape juice 

The same strains used in MLF of SGJ were used to conduct MLF of Chardonnay grape juice. In 

Chardonnay, both L. plantarum 83 and L. plantarum 85.1 completed MLF at 48 h while L. plantarum 

73.1 completed MLF at 72 h (Fig. 3.9). The CFU/ml of L. plantarum 73.1, 83 and 85.1 at the end of 

Stellenbosch University  https://scholar.sun.ac.za



40 
 

MLF is 3.0x108, 1.5x108 and 4x108 respectively. While CFU/ml of L. plantarum 83 and 85.1 remains 

constant after MLF. Only the CFU/ml of L. plantarum 73.1 increased to 1x109 at 144 h.  

 

 

Fig. 3.4. The growth of L. plantarum 73.1, L. plantarum 83.1  and L. plantarum 85.1in synthetic 

grape juice media containing all amino acids. Data points represents mean of triplicates.  

 

3.4.4.2 Amino acid assimilation of L. plantarum in Chardonnay grape juice 

A uniform pattern of amino acid assimilation was also observed with the MLF in Chardonnay grape 

juice (Fig. 3.11), although the specific uptake of single amino acids during MLF in natural grape juice 

after 72 h is different to the MLF in SGJ (Fig. 3.10). The total amino acid assimilation ranges from 190-

290 mg/L (Supplementary Table 4). No amino acid was completely assimilated at the end of MLF. 

Overall, L. plantarum mainly consumed Leu, Arg Lys, Ala and Phe in grape juice. Although the % 

uptake of Ala and Arg is relatively low (> 20%) the absolute uptake of Ala and Arg was high (Ala: 17-

27 mg; Arg 20-38 mg/L) since these amino acids were present in high concentrations in the juice. The 

% uptake of Leu, Lys and Phe is also high (60-85%) and accounts for more than 30 mg/L. 75-80% of 

Lys was taken up (20-22.38 mg/L) (Fig. 3.10. A). In terms of the BCAA and AAA, Leu was taken up 

more than Ile and Val (32-36 mg/L vs 10 mg/L) and Phe was taken up more than Trp and Tyr (18-21 

mg/L vs 4-11 mg/L). The uptake of all α-keto glutamic family of amino acids (Gln, Glu, Pro and Arg) 

was very low with less than 20 % of uptake (Fig. 3.10. B).   
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Fig. 3.7. The uptake of single amino acids during pure culture MLF by L. plantarum 83 (in SGJ) from the 

beginning to the end of MLF. 
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Fig. 3.8. The uptake of single amino acids during pure culture MLF by L. plantarum 85.1 (in 

SGJ) from the beginning to the end of MLF. 
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Table 3.6. The order of amino acid uptake by L. plantarum in synthetic grape juice (SGJ) after MLF 

(144 h).  

Order of amino acid uptake 
L. plantarum strain 

73.1 83 85.1 

1 Asp Asp Asp 

2 Ser Ser Ser 

3 Thr Thr Thr 

4 Ala Ala Ala 

5 Leu Glu Glu 

6 Arg Arg Arg 

7 Ile Lys Lys 

8 Phe Leu Leu 

9 Glu Ile Phe 

10 Lys Phe Tyr 

11 Tyr Tyr Asn 

12 Val Asn Ile 

13 Asn Val Val 

14 His Gly His 

15 Met His Trp 

16 Gly Met Met 

17 Pro Pro Pro 

18 Trp Trp Gly 
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Fig. 3.9. The cell count and uptake of malic acid of L. plantarum 73.1, L. plantarum 85.1 and L. plantarum 

83 throughout and after MLF in Chardonnay. 
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0

10

20

30

40

50

60

70

80

90

100

73.1 83 85.1

%
 u

p
ta

k
e

L. plantarum strains

C

Phe Tyr Trp

0

5

10

15

20

25

30

35

40

73.1 83 85.1

L. plantarum strains

B

Glu Arg Gln Pro

0

10

20

30

40

50

60

70

80

90

100

73.1 83 85.1

L. plantarum strains

D

Ala Leu Ile Val

0

10

20

30

40

50

60

73.1 83 85.1

%
 u

p
ta

k
e

L. plantarum strains

E

Gly Ser

0

10

20

30

40

50

60

70

80

90

100

73.1 83 85.1

L. plantarum strains

F

His Met

Stellenbosch University  https://scholar.sun.ac.za



47 
 

3.5 Discussion 

3.5.1 Amino acid requirements in L. plantarum 

This study investigated the effect of specific amino acid requirements on the growth of 5 L. plantarum 

strains. The single-omission methodology proved to be somewhat difficult to implement with L. 

plantarum since in many cases no clear yes/no response was apparent. This issue was addressed in both 

solid and liquid single-omission methodologies by placing strong emphasis on elimination of the intra- 

and extracellular nitrogen content in the cells through nitrogen starvation-induced pre-culture medium 

and inoculating low numbers of cells. This made results more reliable but did not fully address the 

problem. Both of these observations have also been emphasized by Terrada and Mira de Orduña, (2009). 

Contrary to other published studies on this subject, the amino acids Gln and Asn were added to the 

medium as these amino acids are also present in grape juice (Bely et al., 1990) and could potentially 

aid to overcome an amino acid auxotrophy. The only nitrogen source which was not provided in SGJ 

was NH4 as this is a non-utilised in L. plantarum.  

In this study, two single-omission methodologies were used to determine the effect of amino acid 

nutrient requirements on the growth of L. plantarum. A follow-up experiment evaluated the impact of 

specific amino acid omission on MLF. The strains’ point of origin is important when discussing trophic 

requirements. Since these strains were isolated from spontaneous fermentation in Pinotage wines, these 

strains likely originated from the surface of grape berries as previously suggested in literature (Cañas 

et al., 2009; Ruiz et al., 2010). It is often suggested that LAB isolated from dairy-based environments 

have more nitrogen requirements than LAB isolated from plant environments as dairy LAB have 

evolved to possess an extensive network of proteolytic enzymes to liberate essential amino acids from 

the protein-rich environments. As a result the need for biosynthetic enzymes becomes unnecessary and 

mutations arise in the genes that encode them (Godon et al., 1993). Since plant-based environments do 

not provide the same support, LAB require more biosynthetic enzymes and have less amino acid 

requirements (Morishita et al., 1981). However the data in this study align well with the evidence in 

literature as the absolute amino acid requirements in this study ranged from 5-8 amino acids in the liquid 

assays while the amino acid requirements in dairy related environments ranged from 6- 7 (Ma et al., 

2016; Morishita et al., 1981; Teusink et al., 2005).  

Even with the significant variability between the two methods, the Val and Glu auxotrophies stood out 

and were shared by all strains. The amino acids found to be essential in the liquid-assay and in most 

published studies are the BCAA (Leu, Ile, Val), Met and Glu (Ma et al., 2016; Morishita et al., 1981; 

Saguir and de Nadra, 2007; Teusink et al., 2005). The requirement of the BCAA in the liquid assays is 

most likely due to an absence of the BCAA pathway in L. plantarum WCFS1 (Teusink et al., 2005). 

The Glu auxotroph stems from L. plantarum’s inability to generate α-keto glutamate due the absence 

of the isocitrate dehydrogenase enzyme in the citric acid cycle (Morishita et al., 1981). A curious 
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observation in this regard was the small accretion of growth when inoculated with L. plantarum 73.1. 

This growth was most likely due to a deamination of Gln to produce Glu through use of the glutamine 

synthetize-GOGAT activity as seen with Lc. lactis subsp. lactis NCDO 2118 (Lapujade and Loubiere, 

1998). Ala biosynthesis requires only a single enzymatic reaction from pyruvate (a central metabolite) 

which can be catalysed by more than one enzyme (BcaT and AraT). His biosynthesis on the other hand 

requires 11 enzymatic reactions which is catalysed by eight enzymes of which three have bifunctional 

activity (Delorme et al., 1999, 1993; Umbarger, 1978). The more enzymes required in the biosynthesis 

of an amino acid, the higher the probability that the amino acid pathway may become disrupted by a 

genetic lesion(s) in one or more of the genes encoding the biosynthetic enzyme(s) (Morishita et al., 

1981). We would thus expect a complete nutritional dependence upon the presence of His and not Ala, 

however the data from the liquid assay suggests an opposite narrative. This may be explained by the 

very low activity towards directed towards Ala biosynthesis in Lc. lactis (Pudlik and Lolkema, 2012) 

and the low and high concentration of His and Ala in grape juice respectively . 

The low to intermediate growth in the liquid culture assays and fermentation trials with the omission of 

an amino acid are described by many studies as ‘stimulatory’. For example, in O. oeni, growth in terms 

of optical density in omission media between 20% and 80% relative to the positive control is considered 

stimulatory (Garvie, 1967; Remize et al., 2006; Terrade and Mira de Orduña, 2009) as there is neither 

a complete reliance nor independence for growth on the particular amino acid. Of course, there is no 

set ‘rule’ on declaring certain values as stimulatory as it is based upon the judgement and preference of 

the author. Based upon the unilateral low growth in the omission of Arg, Asp, Lys and Tyr, these amino 

acids requirements are stimulatory to the L. plantarum strains in this study. This reduction in growth is 

related to diversion of energy and metabolites towards the synthesis of an amino acid which could place 

a metabolic strain upon L. plantarum (Wegkamp et al., 2010). 

Not only was the trophic status strain dependent but media dependent as well. All conditions between 

the liquid and solid media assays were kept the same aside from pH, aeration and water activity. Clearly 

one or all of these factors may be responsible for Arg formation but the exact mechanism of repression 

is unknown. Only Bringel (1998) has reported the CPSasearginine (an enzyme responsible for Arg 

formation) to be inhibited by oxygen.  

3.5.2 Amino acid assimilation in L. plantarum 

L. plantarum amino acid assimilation was investigated in SGJ and grape juice using HPLC. All L. 

plantarum strains have a higher preference for Asp than any other amino acid in SGJ. Asp uptake might 

be related to the synthesis of other amino acids such as Asn, Lys, Met and Thr (Umbarger, 1978). Asp 

is also precursor to oxaloacetate which may also feed and sustain the citric acid cycle. Ser, Thr and Ala 

are also highly preferred amino acid sources. Ser and Thr catabolism are both responsible for Gly 

production in Lc. lactis (Ardö, 2006; Trip et al., 2013; Umbarger, 1978). Gly, in turn, can easily be 
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incorporated into the cell material (Saguir and de Nadra, 2007). It is interesting to note that the high 

assimilation of Ser, Ala and Asp in this study were also noted to be highly assimilated in propionic 

bacteria (Thierry and Maillard, 2002).  

There is an association between peptidoglycan and the highest assimilated amino acids. The 

peptidoglycan of Gram-positive bacteria is made-up of cross-linked glycan strands which, in turn, is 

composed of alternating sugars of N-acetlyglucamic acid and N-acetyl N-acetylmuramic acid. N-acetyl 

muramic acid has an attached pentapeptide composed of L-Ala, D-Glu, L-Lys or meso-aminopimelic 

acid (L-Lys derivative), and 2 D-Ala. The cross-linking of the pentapeptide can either be direct or could 

take place by way of a cross bridge of one (D-Asp) or several (Gly, L-Ala and L-Ser) amino acids 

(Delcour et al., 1999). These amino acid all needs incorporation into the cell wall. It might be the reason 

for the higher assimilation during the exponential phase.  

Generally, there is no higher consumption of essential amino acids although some correlation has been 

established before in L. plantarum (Saguir and de Nadra, 2007). BCAA and Met and other essential 

amino acids from the liquid-assays, were assimilated after 72 h at moderate to low levels (Ile, Val and 

Met). On the other hand, non-essential amino acids like Asp, Ser and Thr are taken up faster and at 

higher concentrations. Moreover with the omission of Tyr, L. plantarum grew more poorly than an 

omission of Phe yet Phe was assimilated at a slightly higher rate. The amino acid assimilation profile 

of L. plantarum in SGJ and propionic bacteria align. A review of the metabolism of propionic bacteria 

found Ser, Ala and Asp to be assimilated at very high levels than all other amino acids (Thierry and 

Maillard, 2002). 

In this study the concentrations of amino acid undergoing transamination such as the BCAA, AAA and 

Met decreases rapidly after 72 h. This observation concurs with expression studies which revealed high 

expression of transaminases (araT, bcaT ) and decarboxylase (kivD) encoding genes in Lc. lactis after 

stationary phase (García-Cayuela et al., 2012). Gram-positive bacteria is under strong regulation by a 

pleiotropic regulatory protein named CodY. This protein controls the expression both of araT, bcaT 

and kivD (decarboxylase gene) at transcriptional level (Chambellon and Yvon, 2003). The expression 

of CodY is only dependent upon the presence of intracellular BCAA (especially Ile) (Chambellon and 

Yvon, 2003; Petranovic et al., 2004). During stationary phase the BCAA concertation decreases and 

regulatory effect of CodY is less active. Since L. plantarum is a LAB and the amino acid assimilation 

behaves in the fashion just described, this species may be under CodY repression however further 

research is required to support this hypothesis 

3.5.3 Differences in amino acid assimilation between synthetic grape juice and Chardonnay 

The same strains of L. plantarum exhibited a different pattern of amino acid assimilation between SGJ 

(chemically defined media) and grape juice (differential media). The amino acid composition between 
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the SGJ used in this study and grape juice is different (Supplementary Tables 1 - 4). In SGJ, the initial 

concentration of all amino acids are 2 mg N/L, whereas the starting concentrations of amino acids in 

grape juice are higher than 2 mg N/L with some amino acids as high as 97 mg N/L (Arg), 26 mg N/L 

(Ala), 24 mg N/L (Pro) and 22 mg N/L (Gln). Furthermore, as the pH was relatively high (pH 3.42) and 

SO2 was below 60 mg/L adaptation to grape juice, through pre-culturing in activation media (See 

Materials and Methods), was a prudent and preventative measure to ensure L. plantarum would finish 

MLF prior to inhabitation of yeast, other LAB and acetic acid bacteria after several days, in this 

nutritious rich media. Notwithstanding higher amino acid concentrations and pre-culture conditions 

there was a few other factors which could have influenced the amino acid uptake pattern such as sugar 

concentration and MLF temperature. In SGJ, the sugar concentrations of glucose and fructose was each 

added at 10 mg/L. During optimization it was learned that L. plantarum take up very little sugar. For 

example in SGJ in which both glucose and fructose was added at 50 g/L only 2 g/L was taken up by L. 

plantarum over a 6 day period. When L. plantarum was inoculated into SGJ with 50 g/L of glucose and 

50 g/L of fructose sugar quantification revealed L. plantarum to take up 2 mg/L of each sugar. Excessive 

additions was thus unnecessary to stimulate growth. However excessive sugar concentrations might 

influence amino acid uptake as the amino acid catabolism is under catabolite repression. The arginine 

deiminase pathway (ADI) for example is under catabolite repression (Bringel, 1998) Fermentation 

temperature in Chardonnay grape juice (20ºC) differed from the SGJ temperature (30ºC) to mimic 

alcoholic fermentation conditions used in the wine-industry namely between 20-25ºC for red wine and 

12-16ºC for white wine. All these varying factors, might be responsible for the discrepancy observed 

between assimilation in SGJ and ‘real’ grape juice. 

The same preferred amino acid (i.e. amino acid most likely to be assimilated) from SGJ and ‘real’ grape 

juice differed indicating that L. plantarum has no consistent demand for the same amino acids under 

different conditions. For instance the most assimilated amino acids were Phe, Leu, Arg and Lys while 

Asp, Ala, Ser and Thr was assimilated at a higher rate. This phenomenon is also apparent when 

comparing this study on amino acid assimilation with several others. Lee et al. (2009) reported increases 

in the levels of BCAA in MLF wines. In turn, Pozo-Bayon et al. (2005) reported decreases in Arg, Met, 

Thr, Trp and Tyr and increases in all other amino acids due to protein degradation. Consistency in amino 

acid assimilation in this study only existed in the non-preferred amino acids sources as His, Met, Gly 

was always taken up at low concentrations. 

3.6 Conclusions 

This study increased our knowledge surrounding L. plantarum’s amino acid metabolism. L. plantarum 

are unable to grow to its full extent or complete MLF without the availability of certain amino acids. L. 

plantarum, isolated from spontaneous red wine had slightly more essential amino acids as L. plantarum 

that reside in cheese and dairy products. It is well known and acknowledged by many that culturing 
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species in the same ecological niche for extended periods, may result in certain genes not being 

essential, increasing the likelihood of accumulation of mutations.  

This was the first time the assimilation of non-essential and essential amino acids were investigated in 

chemically defined media for L. plantarum. Although Saguir and de Nadra (2007) also investigated 

amino acid requirements and uptake in synthetic media, amino acid assimilation was only investigated 

for the amino acids which were found to be essential.  

Asp appears to be a limiting factor in the biomass formation. Asp was the only amino acid totally 

consumed in all bacteria when the bacteria reached stationary phase. 72 h coincides with the time Asp 

was totally consumed. This study highlighted the complexity of amino acid metabolism and suggested 

all wine-isolated L. plantarum have the same affinity for the same amino acid when cultured under the 

same conditions. When changing the conditions the assimilation changes. The factors conditions that 

have been identified to play a role in this study: nitrogen composition (relative ratios and quantity) and 

pre-culturing conditions. The development of fruity aroma from the catabolism of BCAA and Phe can 

only take place after stationary phase in L. plantarum if the subsequent decarboxylase and reductase 

are expressed. Although the BCAA are essential nutrient requirements in L. plantarum they do not play 

a major role in the growth of L. plantarum. 

From an aromatic perspective the amino acids of interest are the amino acids capable of donating an 

amino group (Leu, Ile, Val, Phe, Tyr and Met) and donating a keto group (Ala, Asp and Glu) in a 

transamination reaction. The BCAA and AAA and Met are only assimilated after 72 h during stationary 

phase. 
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3.9 Supplementary data 

 

  

Supplementary Table 1. The concentration of each amino acid (mg/L) at the start and 36 h  after 

inoculation of L. plantarum in synthetic grape juice (SGJ). 

 

Initial 

concentration 

concentration at  t = 36 h 

L. plantarum 73.1  L. plantarum 83 L. plantarum 85.1 

Asp 20.05 12.09 ± 0.08 6.00 ± 0.49 12.37 ± 0.14 

Glu 17.92 18.60 ± 0.37 16.97 ± 0.18 19.23 ± 0.31 

Cys 2.84 2.90 ± 0.08 3.18 ± 0.52 2.95 ± 0.04 

Asn 7.82 6.82 ± 0.04 7.69 ± 0.03 7.76 ± 0.24 

Ser 14.17 12.88 ± 0.10 11.95 ± 0.14 13.27 ± 0.21 

Gln 4.65 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

His 9.65 8.71 ± 0.23 9.19 ± 0.22 8.99 ± 0.33 

Gly 9.40 7.92 ± 0.26 8.12 ± 0.32 8.36 ± 0.18 

Thr 17.31 14.76 ± 0.20 15.85 ± 1.35 17.24 ± 1.29 

Arg 6.84 6.21 ± 0.20 6.19 ± 0.08 6.71 ± 0.16 

Ala 11.61 9.36 ± 0.12 9.11 ± 0.06 10.56 ± 0.33 

Tyr 23.71 24.97 ± 0.48 25.40 ± 0.31 25.76 ± 0.74 

Val 14.09 14.15 ± 0.46 14.39 ± 0.09 14.89 ± 0.25 

Met 18.14 19.30 ± 0.42 19.53 ± 0.20 19.45 ± 0.16 

Trp 13.43 12.54 ± 0.26 12.48 ± 0.32 12.32 ± 0.14 

Phe 22.94 23.18 ± 0.36 23.48 ± 0.61 23.59 ± 0.30 

Ile 16.43 16.66 ± 0.46 16.68 ± 0.28 17.31 ± 0.23 

Leu 15.56 15.13 ± 0.36 15.25 ± 0.25 15.90 ± 0.10 

Lys 9.55 7.01 ± 1.00 6.16 ± 0.06 6.89 ± 0.15 

Pro 13.77 13.46 ± 0.35 14.40 ± 0.59 14.63 ± 0.42 

Total amino acids 269.89 246.66   242.02   258.17   
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Supplementary Table 2. The concentration of each amino acid (mg/L) at the start and 72 h  after 

inoculation of L. plantarum in SGJ. 

 

Initial 

concentration 

concentration at t = 72 h 

L. plantarum 73.1 L. plantarum 83 L. plantarum 85.1 

Asp 20.05 0.19 ± 0.10 0.10 ± 0.07 0.08 ± 0.05 

Glu 17.92 13.42 ± 0.55 7.72 ± 2.28 7.80 ± 2.81 

Cys 2.84 4.36 ± 1.90 3.18 ± 0.78 2.76 ± 0.22 

Asn 7.82 4.21 ± 0.11 4.67 ± 0.45 4.64 ± 0.62 

Ser 14.17 6.91 ± 0.23 2.34 ± 1.99 3.23 ± 1.26 

Gln 4.65 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

His 9.65 9.76 ± 0.25 8.54 ± 0.33 8.68 ± 0.61 

Gly 9.40 11.25 ± 0.25 7.26 ± 0.69 7.10 ± 0.93 

Thr 17.31 4.54 ± 0.40 7.73 ± 2.36 8.63 ± 1.07 

Arg 6.84 4.72 ± 0.31 3.97 ± 1.04 4.08 ± 0.67 

Ala 11.61 4.99 ± 0.32 4.63 ± 2.63 5.47 ± 1.45 

Tyr 23.71 24.27 ± 0.74 22.83 ± 1.95 23.03 ± 2.20 

Val 14.09 12.86 ± 0.55 12.03 ± 1.09 11.93 ± 1.35 

Met 18.14 19.20 ± 0.74 18.02 ± 0.88 18.14 ± 1.38 

Trp 13.43 12.59 ± 0.91 12.34 ± 0.59 12.12 ± 0.58 

Phe 22.94 22.59 ± 0.90 19.25 ± 3.35 19.38 ± 2.79 

Ile 16.43 15.18 ± 0.77 13.16 ± 1.68 12.94 ± 1.87 

Leu 15.56 13.06 ± 0.65 11.67 ± 1.67 11.49 ± 1.92 

Lys 9.55 5.17 ± 0.50 6.03 ± 2.01 5.41 ± 0.61 

Pro 13.77 15.74 ± 0.90 13.96 ± 1.30 13.18 ± 1.07 

Total amino acids 269.89 205.02   179.43   180.09   
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Supplementary Table 3. The concentration of each amino acid (mg/L) at the start and 144 h  after 

inoculation of L. plantarum in SGJ. 

 

Initial 

concentration 

concentration at  t = 144 h 

L. plantarum 73.1 L. plantarum 83 L. plantarum 85.1 

Asp 20.05 0.22 ± 0.22 0.05 ± 0.08 0.36 ± 0.34 

Glu 17.55 4.74 ± 0.72 0.14 ± 0.20 2.09 ± 1.26 

Cys 2.84 4.80 ± 0.66 3.40 ± 1.58 3.11 ± 1.57 

Asn 7.82 4.52 ± 0.08 4.46 ± 0.31 3.26 ± 0.21 

Ser 14.17 0.54 ± 0.10 0.24 ± 0.09 0.10 ± 0.05 

Gln 4.65 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

His 9.65 8.44 ± 0.10 7.18 ± 0.78 5.32 ± 0.25 

Gly 9.40 13.43 ± 0.36 8.01 ± 0.74 5.92 ± 0.78 

Thr 17.31 0.00 ± 0.00 0.00 ± 0.00 -0.36 ± 0.01 

Arg 6.84 2.74 ± 0.34 1.02 ± 0.11 0.63 ± 0.46 

Ala 11.84 2.31 ± 0.42 0.53 ± 0.34 0.30 ± 0.21 

Tyr 23.99 13.42 ± 2.38 8.30 ± 0.19 5.96 ± 0.90 

Val 14.09 10.54 ± 0.41 7.26 ± 0.50 4.59 ± 1.54 

Met 18.14 18.70 ± 0.50 13.83 ± 0.90 10.51 ± 1.37 

Trp 13.43 13.74 ± 0.36 13.59 ± 0.83 11.07 ± 0.52 

Phe 23.35 10.67 ± 2.22 8.25 ± 0.60 2.63 ± 0.33 

Ile 16.43 10.43 ± 0.80 4.62 ± 0.99 1.78 ± 1.28 

Leu 15.56 6.93 ± 0.99 3.59 ± 0.84 1.26 ± 1.00 

Lys 10.22 2.73 ± 0.35 1.93 ± 1.00 2.22 ± 0.66 

Pro 13.77 16.24 ± 0.36 12.57 ± 1.50 10.99 ± 0.42 

Total amino acids 271.10 145.15   98.97   71.73   
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Supplementary Table 4. The concentration of each amino acid (mg/L) at the start and 72 h  after inoculation of L. plantarum 

in Chardonnay grape juice. 

 
Initial concentration 

concentration at  t = 72 h 

L. plantarum 73.1 L. plantarum 83 L. plantarum 85.1 

Asp 20.42 ± 1.25 13.72 ± 0.45 15.01 ± 0.27 14.79 ± 1.20 

Glu 59.05 ± 2.74 49.23 ± 1.46 48.63 ± 0.05 46.89 ± 0.68 

Cys 10.41 ± 1.99 6.78 ± 0.23 8.37 ± 0.59 7.83 ± 1.64 

Asn 13.38 ± 1.86 7.94 ± 0.22 10.13 ± 0.19 10.11 ± 0.36 

Ser 87.39 ± 2.47 71.09 ± 0.98 77.33 ± 1.69 72.19 ± 1.66 

Gln 77.08 ± 3.79 65.89 ± 0.89 73.71 ± 0.45 73.26 ± 5.60 

His 52.52 ± 4.43 47.55 ± 0.82 51.55 ± 3.91 51.26 ± 10.70 

Gly 13.75 ± 4.26 7.31 ± 0.40 7.44 ± 0.32 7.84 ± 0.28 

Thr 63.81 ± 3.03 51.72 ± 1.13 53.91 ± 0.32 53.93 ± 1.29 

Arg 292.17 ± 15.58 253.53 ± 5.56 265.13 ± 13.58 272.70 ± 31.03 

Ala 166.73 ± 3.88 139.63 ± 0.75 144.62 ± 3.11 149.71 ± 0.06 

GABA 164.74 ± 6.81 157.06 ± 3.54 163.14 ± 8.08 168.92 ± 15.45 

Tyr 15.44 ± 1.41 4.84 ± 0.05 6.81 ± 0.12 7.15 ± 0.45 

CY2 26.57 ± 5.81 14.08 ± 0.72 14.63 ± 0.34 15.88 ± 3.58 

Val 28.55 ± 4.32 17.85 ± 0.83 18.99 ± 0.09 18.03 ± 0.70 

Met 9.86 ± 3.02 3.58 ± 0.09 4.34 ± 0.13 3.97 ± 0.43 

Trp 26.27 ± 2.01 21.01 ± 0.56 21.68 ± 0.61 22.55 ± 1.06 

Phe 28.68 ± 7.50 7.28 ± 0.10 10.05 ± 0.00 10.92 ± 0.07 

Ile 15.76 ± 3.75 6.10 ± 0.15 6.39 ± 0.24 5.64 ± 0.93 

Orn 7.94 ± 1.16 7.67 ± 0.35 8.20 ± 1.25 8.90 ± 1.65 

Leu 47.57 ± 17.00 11.39 ± 0.79 15.16 ± 0.39 13.97 ± 0.93 

Lys 26.23 ± 12.93 4.15 ± 0.35 5.85 ± 0.07 5.23 ± 0.36 

Pro 223.59 ± 42.19 219.39 ± 23.66 255.52 ± 31.86 203.46 ± 35.43 

Total amino acids 1477.90   1188.79   1286.59   1245.13   
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Chapter 4 – General discussion and conclusions 
 

4.1 General discussion 

Malolactic fermentation (MLF) can occur at the start, middle or end of alcoholic fermentation in grape juice 

or wine. MLF is defined as the process in which L-malic acid is converted to L-lactic acid. This reaction results 

in wine with a softer mouthfeel from less perceived acidity. Additionally, the LAB provides microbial stability 

to the wine and can alter the aroma profile of wine. Oenococcus oeni is predominantly used at the end of 

alcoholic fermentation for MLF, since most LAB species cannot tolerate the various combined factors of wine 

to finish MLF. Additionally, O. oeni produces limited quantities of spoilage and undesirable metabolites. When 

MLF is induced with other species of LAB it often leads to stuck or sluggish fermentation and the formation 

of metabolites associated with spoilage (Du Toit and Pretorius, 2000). However, one species of LAB may 

compete with O. oeni as commercial starter culture in the MLF of high pH grape juice, namely Lactobacillus 

plantarum. (Du Toit et al., 2011). 

There are many advantages in using L. plantarum as commercial starter culture for MLF instead of O. oeni. 

Firstly, the decarboxylation genes involved in the formation of biogenic amines (e.g. histamine and tryptamine) 

are absent for the selected commercial strains but this phenomenon is strain dependent therefore the selection 

of their absence is important (Iorizzo et al., 2016; Lerm et al., 2011; López et al., 2008; Moreno-Arribas et al., 

2000). Secondly, PCR screening of L. plantarum strains isolated from South African spontaneous red wine 

MLF revealed the Arg deiminase in the arginine deiminase (ADI) pathway to be absent (Lerm et al., 2011) 

although recently a single study have linked wine L. plantarum strains to the ADI degradation (Spano et al., 

2004). Although this pathway increases energy production and intracellular pH through the release of 

ammonium it also synthesises citrulline which, when bound to ethanol in the wine, produces ethyl carbamate, 

a carcinogen (Schlatter and Lutz, 1990). In contrast to L. plantarum, O oeni has been observed to produce 

small quantities of histamine and tryptamine and is known to possess the ADI pathway (Divol et al., 2003; 

Lerm et al., 2011; Zúñiga et al., 2002, 1998). Thirdly, L. plantarum is homofermentative and as a result it does 

not use the pentose phosphate pathway for the degradation of glucose and fructose to produce and acetic acid 

which contributes to the volatile acidity of wine (Costello et al., 2001; Zúñiga et al., 1993). Fourthly, L. 

plantarum has been shown in some cases to produce wine with more fruitier aromas than O. oeni when co-

inoculation is done (Lee et al., 2009; Pozo-Bayon et al., 2005; Sun et al., 2016). Lastly, some strains of L. 

plantarum is just as successful as O. oeni to induce and complete MLF in grape juice (Bravo-Ferrada et al., 

2013; Fumi et al., 2010; G-Alegría et al., 2004; Guerzoni et al., 1995; Lerm et al., 2011; Maarman, 2014; Sun 

et al., 2016) . 

There are many factors that influence the growth of L. plantarum in grape must and wine. To obtain successful 

MLF the grape must should comprise of a higher pH (3.5-4.0), and low initial SO2 and ethanol concentrations 

(G-Alegría et al., 2004; Guerzoni et al., 1995). But even these factors which are considered by most studies as 
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important to prevent incomplete MLF, does not assure a successful MLF (Lerena et al., 2016). The other factor 

that might play a crucial role that is not easy to measure is the amino acid composition. 

Therefore, this study focussed on amino acid usage to ascertain the amino acid requirements of L. plantarum. 

According to literature, all facets of amino acid that influences growth in an organism can be classified into 

three categories. The findings of this study and its relevance to winemaking will be discussed according to 

these categories.  

The first category consist of amino acid trophic requirements in terms of essential and non-essential amino 

acids. This category defines whether the pathways for the biosynthesis of amino acids are present, functional 

and expressed (Godon et al., 1993). For example, in silico analysis of the genome of L. plantarum WCFS1 

revealed the pathways for the biosynthesis of branched chain amino acids (BCAA) to be absent, while the 

pathways for the aromatic amino acids (AAA) are present but could remain unexpressed due to feed-back 

inhibition (Teusink et al., 2005). In our study, single amino acid growth experiments revealed amino acid 

requirements to be highly strain dependent. Overall, the 5 L. plantarum strains tested in this study had 6- 8 

amino acid requirements. This in turn concurs with literature which consistently finds 6-8 amino acids to be 

essential in L. plantarum (Garvie, 1967; Ma et al., 2016; Saguir and de Nadra, 2007; Teusink et al., 2005). 

From a MLF perspective O. oeni, is a more nutritionally fastidious species than L. plantarum having 13-16 

requirements (Terrade and Mira de Orduña, 2009). From a wine making perspective, a commercial strain with 

less nutrient requirements are more beneficial for the completion of MLF since Saccharomyces cerevisiae 

(primary yeast responsible for alcoholic fermentation) is known to readily assimilate various amino acids 

during its exponential phase which, in many cases, overlaps with the essential amino acids needs of L. 

plantarum strains observed in this study (Met, Ile, Leu) (Barrajón-Simancas et al., 2011; De Koker, 2015; 

Gobert et al., 2017). Additionally, since the amino acid requirements are highly strain dependent, the 

commercial L. plantarum strains’ essential amino acids must be identified in order to assess the compatibility 

of these strains with S. cerevisiae during co-inoculation or to ensure that complex nutrients applied for MLF 

contains these essential amino acids as part of their composition. If these essential amino acids are assimilated 

before the completion of MLF, L. plantarum must rely on its proteolytic system which could extend the time 

of MLF or lead to a ‘stuck’ MLF as the de novo synthesis of proteolytic enzymes requires more energy than 

simple uptake of single amino acids (Wegkamp et al., 2010). This provides one more reason why L. plantarum 

survives exceptionally well in grape juice for the first few days (González-Arenzana et al., 2012) and poorly 

in wine. 

The second category are preferred and non-preferred amino acid sources and refers to amino acids that are 

either taken-up or remains unassimilated. Limitations to growth, with regards to amino acid composition in 

wine or grape juice, might not extend to the supply of essential amino acids alone, but also whether the demand 

for preferred amino acids (i.e. amino acid most likely to be assimilated) are adequately supplied. As observed 

in this study, the lack of the amino acid Asp in SGJ was the only identifiable factor that could have terminated 

the growth of L. plantarum. Furthermore, in this study all strains of L. plantarum had the same preference for 
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amino acids under the same conditions. When the composition of the media shifts from synthetic grape juice 

to Chardonnay grape juice and the L. plantarum strains are pre-cultured in a different media, different 

preferences were observed. All 3 strains for example had taken-up all Asp, Ala and Ser during MLF in synthetic 

grape juice while in clarified Chardonnay grape juice all strains had taken up a large quantity of Lys, Phe, Leu 

and Arg. This is also supported in literature as there is no case between different studies in which the uptake 

of amino acids in L. plantarum were uniform (Lee et al., 2009; Pozo-Bayon et al., 2005). This study identified 

that the preferred amino acid of S. cerevisiae (De Koker, 2015) overlaps with the preference of L. plantarum.  

The third category which was not investigated in this study is efficient and non-efficient amino acid sources. 

Efficient nitrogen sources are characterised as sources which stimulates growth much faster than inefficient 

nitrogen sources. L. plantarum have preference for the same amino acids that is considered in S cerevisiae to 

be efficient nitrogen sources (Ala, Asp, Glu, Arg and Phe) (Mckinnon, 2013). In theory it would therefore 

stand to reason that co-inoculation with L. plantarum would severely reduce the rate of alcoholic fermentation 

and S. cerevisiae would reduce the rate of MLF. One study had discovered that simultaneous inoculation of S. 

cerevisiae and L. plantarum had disrupted both malic acid and citric acid uptake (Onetto and Bordeu, 2015). 

Then again, many other studies report L. plantarum and S. cerevisiae co-inoculation in grape juice to result in 

completion of both alcoholic fermentation and MLF (Fumi et al., 2010; Lerena et al., 2016; Lerm, 2010; Sun 

et al., 2016). Thus, there is a strong possibility that L. plantarum would not hinder alcoholic fermentation. 

Similarly, several studies have investigated simultaneous alcoholic fermentation with S. cerevisiae and MLF 

with O. oeni and discovered no significant retardation on the alcoholic fermentation kinetics or yeast growth 

(Abrahamse and Bartowsky, 2012; Guzzon et al., 2016; Lasik-Kurdyś et al., 2017; Muñoz et al., 2014; 

Taniasuri et al., 2016; Tristezza et al., 2016; Zapparoli et al., 2009).  

Though it was not the aim of this study to investigate L. plantarum growth in grape juice some interesting 

results have emerged that has not been previously found. The Chardonnay grape juice used in this study had 

been clarified and was devoid of its initial natural microflora. The grape juice had a pH of 3.4 and sulphur 

dioxide concentration of 32 mg/L. In this grape juice, activated L. plantarum took 2-3 days to finish MLF. In 

sterile high pH wines L. plantarum is also noted to take-up all malic acid within 3-4 days (Bravo-Ferrada et 

al., 2013). Therefore the success of simultaneous inoculation is not solely dependent upon the composition of 

the juice but also upon the winemaking practises for instance application of thermovinification, flotation prior 

to inoculation are applied. 

4.2 Future prospects 

Future prospects should be directed to identifying the cause of disparity in data between the liquid and plate 

assay as this deserves some consideration. Although the principal of the omission technique is consistent, some 

factors between the solid and liquid assays were different. To illustrate an example, in the plate-based method 

the cultures were incubated anaerobically, while the liquid cultures were incubated micro-aerophylically. The 

absence of oxygen is seen to play a role in the biosynthesis of Arg through inhibition of the CPSaseArginine 

(Bringel, 1998). The liquid culture has one more auxotrophy for Arg than the plate-based method. Therefore, 
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the effect of oxygen should be investigated toward amino acid biosynthesis. Similarly other factors such as 

pH, temperature and amino acid composition might influence the activity of a biosynthetic enzyme, and should 

be investigated as well.  

The uptake of amino acids were only investigated using inoculated starved and activated culture of L. 

plantarum, neither of which are standard practise in the wine industry. A subsequent investigation should 

examine the effect on amino acid assimilation using a freeze-dried culture of L. plantarum.  

It was proven in this study that the fusel alcohol precursors may be the preferred amino acid sources in grape 

juice. It then becomes necessary to characterize the enzymes responsible for their formation such as the keto-

acid isovalerate decarboxylase (KivD), the branched-chain amino acid transferase (BcaT), the aromatic amino 

acid transferase (AraT) and the glutamate dehydrogenase (GDH) as it would prove useful to assess whether a 

single pure culture of L. plantarum can add to the aroma profile through the Ehrlich pathway. The same 

characterized strains should also undergo MLF in grape juice and the aroma should subsequently be quantified 

to assess their influence on wine aroma. 

If a L. plantarum amino acid usage is well-defined under various conditions a tailored nutrient may be 

developed to ensure the survival of L. plantarum and successful MLF in grape juice but one critical piece is 

missing. Amino acid requirements must be classified as efficient, inefficient and non-utilized in L. plantarum. 

When classification is done it would be known which efficient amino acids should be added at higher 

concentrations. 
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